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Preface

About This Book

[m0146]

What this book is about: This book is
intended to serve as a primary textbook for a
one-semester first course in undergraduate
engineering electromagnetics, including the
following topics: electric and magnetic fields;
electromagnetic properties of materials;
electromagnetic waves; and devices that operate
according to associated electromagnetic
principles including resistors, capacitors,
inductors, transformers, generators, and
transmission lines.

This book employs the “transmission lines first”
approach, in which transmission lines are
introduced using a lumped-element equivalent
circuit model for a differential length of
transmission line, leading to one-dimensional
wave equations for voltage and current.1 This is
sufficient to address transmission line concepts
including characteristic impedance, input
impedance of terminated transmission lines, and
impedance matching techniques. Attention then
turns to electrostatics, magnetostatics,
time-varying fields, and waves, in that order.

Target audience: This book is intended for
electrical engineering students in the third year
of a bachelor of science degree program. It is
assumed that readers are familiar with the
fundamentals of electric circuits and linear
systems, which are normally taught in the second
year of the degree program. It is also assumed

1Are you an instructor who is not a fan of the “trans-
mission lines first” approach? Then see “What are those

little numbers in square brackets?” later in this sec-
tion.

that readers have received training in basic
engineering mathematics, including complex
numbers, trigonometry, vectors, partial
differential equations, and multivariate calculus.
Review of the relevant principles is provided at
various points in the text. In a few cases (e.g.,
phasors, vectors) this review consists of a
separate stand-alone section.

Notation, examples, and highlights.
Section 1.7 summarizes the mathematical
notation used in this book. Examples are set
apart from the main text as follows:

Example 0.1. This is an example.

“Highlight boxes” are used to identify key ideas
as follows:

This is a key idea.

What are those little numbers in square
brackets? This book is a product of the
Open Electromagnetics Project. This project
provides a large number of sections (“modules”)
which are assembled (“remixed”) to create new
and different versions of the book. The text
“[m0146]” that you see at the beginning of this
section uniquely identifies the module within the
larger set of modules provided by the project.
This identification is provided because different
remixes of this book exist, each consisting of a
different subset and arrangement of these
modules. Prospective authors can use this
identification as an aid in creating their own
remixes.

Why do some sections of this book seem
to repeat material presented in previous
sections? In some remixes of this book, authors

Electromagnetics Vol 1 (Beta). c© 2018 S.W. Ellingson. CC BY SA 4.0 https://doi.org/10.7294/W4WQ01ZM
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xiii

might choose to eliminate or reorder modules.
For this reason, the modules are written to
“stand alone” as much as possible. As a result,
there may be some redundancy between sections
that would not be present in a traditional
(non-remixable) textbook. While this may seem
awkward to some at first, there are clear benefits:
In particular, it never hurts to review relevant
past material before tackling a new concept.
And, since the electronic version of this book is
being offered at no cost, there is not much gained
by eliminating this useful redundancy.

Why cite Wikipedia pages as additional
reading? Many modules cite Wikipedia entries
as sources of additional information. Wikipedia
represents both the best and worst that the
internet has to offer. Most authors of traditional
textbooks would agree that citing Wikipedia
pages as primary sources is a bad idea, since peer
review is crowd-sourced and content is subject to
change over time. On the other hand, many
Wikipedia pages are excellent, and serve as
useful sources of relevant information that is not
strictly within the scope of the curriculum.
Furthermore, students benefit from seeing the
same material presented differently, in a broader
context, and with additional references cited by
Wikipedia pages. We trust instructors and
students to realize the potential pitfalls of this
type of resource, and to be alert for problems.

Acknowledgments: Here’s a list of talented
and helpful people who have contributed to this
book:

The staff of VT Publishing, University Libraries,
Virginia Tech:
Managing Editor: Anita Walz
Advisors: Peter Potter, Corinne Guimont
Cover: Robert Browder, Anita Walz

Virginia Tech students:
Figure designer: Michaela Goldammer
Figure designer: Kruthika Kikkeri
Figure designer: Youmin Qin

External Reviewers:
Samir El-Ghazaly, University of Arkansas
Stephen Gedney, University of Colorado Denver

Randy Haupt, Colorado School of Mines
Karl Warnick, Brigham Young University

About the Open
Electromagnetics Project

[m0148]

The Open Electromagnetics Project was
established at Virginia Tech in 2017 with the
goal of creating no-cost openly-licensed
textbooks for courses in undergraduate
engineering electromagnetics. While a number of
very fine traditional textbooks are available on
this topic, we feel that it has become
unreasonable to insist that students pay
hundreds of dollars per book when high-quality
alternatives can be provided using modern media
at little or no cost to the student. This project is
equally motivated by the desire for the freedom
to adopt, modify, and improve educational
resources. This work is distributed under a
Creative Commons BY SA license which allows –
and we hope encourages – others to adopt,
modify, improve, and expand the scope our work;
subsequently “returning the favor.”

About the Author
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Chapter 1

Preliminary Concepts

1.1 What is
Electromagnetics?

[m0037]

The topic of this book is applied engineering
electromagnetics. This topic is often described as
“the theory of electromagnetic fields and waves”,
which is both true and misleading. The truth is
that electric fields, magnetic fields, their sources,
waves, and the behavior these waves are all
topics covered by this book. The misleading part
is that our principal aim shall be to close the gap
between basic electrical circuit theory and the
more general theory that is required to address
certain topics that are of broad and common
interest in the field of electrical engineering. (For
a preview of topics where these techniques are
required, see the list at the end of this section.)

In basic electrical circuit theory, the behavior of
devices and systems is abstracted in such a way
that the underlying electromagnetic principles do
not need to be considered. Every student of
electrical engineering encounters this, and is
grateful since this greatly simplifies analysis and
design. For example, a resistor is commonly
defined as a device which exhibits a particular
voltage V = IR in response to a current I, and
the resistor is therefore completely described by
the value R. This is an example of a “lumped
element” abstraction of an electrical device.
Much can be accomplished knowing nothing else
about resistors; no particular knowledge of the
physical concepts of electrical potential,

conduction current, or resistance is required.
However this simplification makes it impossible
to answer some frequently-encountered questions.
Here are just a few:

• What determines R? How does one go
about designing a resistor to have a
particular resistance?

• Practical resistors are rated for
power-handling capability; e.g., discrete
resistors are frequently identified as
“1/8-W”, “1/4-W”, and so on. How does
one determine this and how can this be
adjusted in the design?

• Practical resistors exhibit significant
reactance as well as resistance. Why? How
is this determined? What can be done to
mitigate this?

• Most things which are not resistors also
exhibit significant resistance and reactance;
for example, electrical pins and
interconnects. Why? How is this
determined? What can be done to mitigate
this?

The answers to the these questions must involve
properties of materials and the geometry in which
those materials are arranged. These are precisely
the things that disappear in lumped element
device models, so it is not surprising that such
models leave us in the dark on these issues. It
should also be apparent that what is true for the
resistor is also going to be true for other devices
of practical interest, including capacitors (and

Electromagnetics Vol 1 (Beta). c© 2018 S.W. Ellingson. CC BY SA 4.0 https://doi.org/10.7294/W4WQ01ZM
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devices unintentionally exhibiting capacitance),
inductors (and devices unintentionally exhibiting
inductance), transformers (and devices
unintentionally exhibiting mutual impedance),
and so on. From this perspective,
electromagnetics may be viewed as a
generalization of electrical circuit theory that
addresses these considerations. Conversely basic
electric circuit theory may be viewed a special
case of electromagnetic theory which applies
when these considerations are not important.
Many instances of this “electromagnetics as
generalization” vs. “lumped-element theory as
special case” dichotomy appear in the study of
electromagnetics.

There is more to the topic, however. There are
many devices and applications in which
electromagnetic fields and waves are primary
engineering considerations that must be dealt
with directly. Examples include persistent
storage of data (e.g., hard drives), electrical
generators and motors, antennas, printed circuit
board stackup and layout, fiber optics, and
systems for radio, radar, remote sensing, and
medical imaging. Considerations such as signal
integrity and electromagnetic compatibility
(EMC) similarly require explicit consideration of
electromagnetic principles.

Although electromagnetic considerations pertain
to all frequencies, these considerations become
increasingly difficult to avoid with increasing
frequency. This is because the wavelength of an
electromagnetic field decreases with increasing
frequency.1 When wavelength is large compared
to the size of the region of interest (e.g., a
circuit), then analysis and design is not much
different from zero-frequency (“DC”) analysis
and design.

For example, the free space wavelength at 3 MHz
is about 100 m, so a planar circuit having
dimensions 10 cm × 10 cm is just 0.1% of a
wavelength across at this frequency. Although an
electromagnetic wave may be present, it has
about the same value over the region of space

1Most readers have encountered the concepts of fre-
quency and wavelength previously, but if needed see Sec-
tion 1.3 for a quick primer.

occupied by the circuit. In contrast, the free
space wavelength at 3 GHz is about 10 cm, so
the same circuit is one full wavelength across at
this frequency. In this case, different parts of this
circuit observe the same signal with very
different magnitude and phase.

Some of the behaviors associated with
non-negligible dimensions are undesirable,
especially if not taken into account in the design
process. However these behaviors can also be
exploited to do some amazing and useful things –
for example, to launch an electromagnetic wave
(i.e., to create an antenna), or to create filters
and impedance matching devices consisting only
of metallic shapes, free of discrete capacitors or
inductors.

Electromagnetic considerations become not only
unavoidable but central to analysis and design
above a few hundred MHz, and especially in the
millimeter-wave, infrared (IR), optical, and
ultraviolet (UV) bands.2 The discipline of
electrical engineering encompasses applications in
these frequency ranges even though – ironically –
such applications may not operate according to
principles that can be considered “electrical”!
Fortunately, electromagnetic theory applies.

Another common way to answer the question
“What is electromagnetics?” is to identify the
topics that are commonly addressed within this
discipline. Here’s a list of topics – some of which
have already been mentioned – in which explicit
consideration of electromagnetic principles is
either important or essential:3

• Antennas

• Coaxial cable

• Design and characterization of common
discrete passive components including
resistors, capacitors, and inductors

• Distributed filters

2See Section 1.2 for a quick primer on the electromag-
netic spectrum and this terminology.

3Presented in alphabetical order so as to avoid the ap-
pearance of any bias on the part of the author!
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• Electromagnetic compatibility (EMC)

• Fiber optics

• Generators

• Magnetic resonance imaging (MRI)

• Magnetic storage (of data)

• Microstrip transmission lines

• Modeling of non-ideal behaviors of discrete
components

• Motors

• Non-contact sensors

• Photonics

• Printed circuit board stackup & layout

• Radar

• Radio wave propagation

• Radio frequency electronics

• Signal integrity

• Transformers

• Waveguides

In summary:

Applied engineering electromagnetics is the
study of those aspects of electrical engineer-
ing in situations in which the electromagnetic
properties of materials and the geometry in
which those materials are arranged is impor-
tant. This requires an understanding of elec-
tromagnetic fields and waves, which are of
primary interest in some applications.

Finally, here are two broadly-defined learning
objectives that should now be apparent: (1)
Learn the techniques of engineering analysis and
design that apply when electromagnetic
principles are an important consideration, and
(2) Better understand the physics underlying the
operation of electrical devices and systems, so
that when issues associated with these physical
principles emerge one is prepared to recognize
and grapple with them.

1.2 Electromagnetic
Spectrum

[m0075]

Electromagnetic fields exist at frequencies from
DC (0 Hz) to at least 1020 Hz – that’s at least 20
orders of magnitude!

At DC, electromagnetics consists of two distinct
disciplines: electrostatics, concerned with electric
fields; and magnetostatics, concerned with
magnetic fields.

At higher frequencies, electric and magnetic
fields interact to form propagating waves. Waves
having frequencies within certain ranges are
given names based on how they manifest as
physical phenomena; these names are (in order of
increasing frequency): radio, infrared (IR),
optical (also known as “light”), ultraviolet (UV),
X-rays, and gamma-rays (γ-rays); see Table 1.1
and Figure 1.1.

The term electromagnetic spectrum refers to
the various forms of electromagnetic phenom-
ena that exist over the continuum of frequen-
cies.

The speed (properly known as “phase velocity”)
at which electromagnetic fields propagate in free
space is given the symbol c, and has the value
∼= 3.00× 108 m/s. This value is often referred to
as the “speed of light”. While it is certainly the
speed of light in free space, it is also speed of any
electromagnetic wave in free space. Given
frequency f , wavelength is given by the
expression

λ =
c

f
in free space

Table 1.1 shows the free space wavelengths
associated with each of the regions of the
electromagnetic spectrum.

This book presents a version of electromagnetic
theory which is based on classical physics. This
approach works well for most practical problems.
However at very high frequencies wavelengths
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Regime Frequency Range Wavelength Range
γ-Ray > 3× 1019 Hz < 0.01 nm
X-Ray 3× 1016 Hz – 3× 1019 Hz 10–0.01 nm
Ultraviolet (UV) 2.5× 1015 – 3× 1016 Hz 120–10 nm
Optical 4.3× 1014 – 2.5× 1015 Hz 700–120 nm
Infrared (IR) 300 GHz – 4.3× 1014 Hz 1 mm – 700 nm
Radio 3 kHz – 300 GHz 100 km – 1 mm

Table 1.1: The electromagnetic spectrum. Note that the indicated ranges are arbitrary, but consistent
with common usage.

become small enough that quantum effects may
be important. This is usually the case in the
X-ray band and above. In some applications
these effects become important at frequencies as
low as the optical, IR, or radio bands. (A prime
example is the photoelectric effect ; see
“Additional References”, below.) Thus, caution
is required when applying the classical version of
electromagnetic theory presented here, especially
at these higher frequencies.

Theory presented in this book is applicable
to DC, radio, IR, and optical waves; and to
a lesser extent to UV waves, X-rays, and γ-
rays. Certain phenomena in these frequency
ranges – in particular quantum mechanical
effects – are not addressed in this book.

The radio portion of the electromagnetic
spectrum alone spans 12 orders of magnitude in
frequency (and wavelength), and so, not
surprisingly, exhibits a broad range of
phenomena. This is shown in Figure 1.1. For this
reason the radio spectrum is further subdivided
into bands as shown in Table 1.2. Also shown in
Table 1.2 are commonly-used band identification
acronyms and some typical applications.

Similarly the optical band is partitioned into the
familiar “rainbow” of red through violet, as
shown in Figure 1.1 and Table 1.3. Other
portions of the spectrum are sometimes similarly
subdivided in certain applications.

Additional Reading:

• “Electromagnetic spectrum” on Wikipedia.
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Figure 1.1: Electromagnetic Spectrum.

https://en.wikipedia.org/wiki/Electromagnetic_spectrum
https://creativecommons.org/licenses/by-sa/3.0/
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Band Frequencies Wavelengths Typical Applications
EHF 30-300 GHz 10–1 mm WLAN (60 GHz), Data Links
SHF 3–30 GHz 10–1 cm Terrestrial & Satellite Data Links, Radar
UHF 300–3000 MHz 1–0.1 m TV Broadcasting, Cellular, WLAN
VHF 30–300 MHz 10–1 m FM & TV Broadcasting, LMR
HF 3–30 MHz 100–10 m Global terrestrial comm., CB Radio
MF 300–3000 kHz 1000–100 m AM Broadcasting
LF 30–300 kHz 10–1 km Navigation, RFID
VLF 3–30 kHz 100–10 km Navigation

Table 1.2: The radio portion of the electromagnetic spectrum, according to a common scheme for
naming ranges of radio frequencies. WLAN: Wireless local area network, LMR: Land mobile radio,
RFID: Radio frequency identification.

Band Frequencies Wavelengths
Violet 668–789 THz 450–380 nm
Blue 606–668 THz 495–450 nm
Green 526–606 THz 570–495 nm
Yellow 508–526 THz 590–570 nm
Orange 484–508 THz 620–590 nm
Red 400–484 THz 750–620 nm

Table 1.3: The optical portion of the electromag-
netic spectrum.

• “Photoelectric effect” on Wikipedia.

1.3 Fundamentals of Waves

[m0074]

In this section we formally introduce the concept
of a wave and explain some basic characteristics.

To begin, let us consider not electromagnetic
waves, but rather sound waves. To be clear,
sound waves and electromagnetic waves are
completely distinct phenomena: Sound waves are
variations in pressure, whereas electromagnetic
waves are variations in electric and magnetic
fields. However the mathematics that govern
sound waves and electromagnetic waves are very
similar, so the analogy provides useful insight.
Furthermore sound waves are intuitive for most
people because they are readily observed. So,

here we go:

Imagine standing in an open field and that it is
completely quiet. In this case the air pressure
everywhere is about 101 kPa (101,000 N/m2) at
sea level, and we refer to this as the quiescent air
pressure. Sound can be described as the
differential air pressure p(x, y, z, t), which we
define as the absolute air pressure at the spatial
coordinates (x, y, z) minus the quiescent air
pressure. So, when there is no sound, p = 0. The
function p as an example of a scalar field.4

Let’s also say you are standing at x = y = z = 0
and you have brought along a friend who is
standing at x = d; i.e., a distance d from you
along the x axis. Also, for simplicity, let us
consider only what is happening along the x axis;
i.e., p(x, t).

At t = 0, you clap your hands once. This forces
the air between your hands to press outward,
creating a region of increased pressure (i.e.,
p > 0) that travels outward. As the region of
increased pressure moves outward, it leaves
behind a region of low pressure where p < 0. Air
molecules immediately move toward this region
of lower pressure, and so the air pressure close to
your hands quickly returns to the quiescent
value, p = 0. This traveling disturbance in p(x, t)
is the sound of the clap. The disturbance
continues to travel outward until it reaches your

4Although it’s not important in this section, you can
read about the concept of a “field” in Section 2.1.

https://en.wikipedia.org/wiki/Photoelectric_effect
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p(x,t)

x

p(x,t)

x

c© Y. Qin CC BY 4.0

Figure 1.2: The differential pressure p(x, t) (top)
a short time after the clap and (bottom) a slightly
longer time after the clap.

friend, who then hears the clap.

At each point in time, you can make a plot of
p(x, t) versus x for the current value of t. At
times t < 0, we have simply p(x, t) = 0. A short
time after t = 0, the peak pressure is located at
slightly to the right of x = 0. This is shown in
Figure 1.2. The pressure is not a simple impulse,
because interactions between air molecules
constrain the pressure to be continuous over
space. So instead we see a rounded pulse
representing the rapid build-up and similarly
rapid decline in air pressure. A short time later
p(x, t) looks very similar, except the pulse is now
located further away.

Now: What precisely is p(x, t)? Completely
skipping over the derivation, the answer is that
p(x, t) is the solution to the acoustic wave
equation (see “Additional References” at the end
of this section):

∂2p

∂x2
− 1

c2s

∂2p

∂t2
= 0 (1.1)

where cs is the speed of sound, which is about
340 m/s at sea level. Just to emphasize the
quality of the analogy between sound waves and
electromagnetic waves, know that the acoustic

wave equation is mathematically identical to the
equation that governs electromagnetic waves.

Although “transient” phenomena – analogous to
a clap – are of interest in electromagnetics, an
even more common case of interest is the wave
resulting from a sinusoidally-varying source. We
can demonstrate this kind of wave in the context
of sound as well. Here we go:

In the previous scenario, you pick up a trumpet
and blow a perfect A note. The A note is 440 Hz,
meaning that the air pressure emerging from your
trumpet is varying sinusoidally at a frequency of
440 Hz. Let’s say you can continue to blow this
note long enough for the entire field to be filled
with the sound of your trumpet. Now what does
the pressure-versus-distance curve look like? Two
simple observations will settle that question:

• p(x, t) at any constant position x is going to
be a sinusoid as a function of x. This is
because the acoustic wave equation is linear
and time invariant, so a sinusoidal excitation
(i.e., your trumpet) results in a sinusoidal
response at the same frequency (i.e., the
sound heard by your friend).

• p(x, t) at any constant time t is also going to
be a sinusoid as a function of x. This is
because the sound is propagating away from
the trumpet and toward your friend, and
anyone in between will also hear the A note,
but with a phase shift determined by the
difference in distances.

This is enough information to know that the
solution must have the form:

p(x, t) = Am cos (ωt− βx+ ψ) (1.2)

where ω = 2πf , f = 440 Hz, and Am, β, and ψ
remain to be determined.

You can readily verify that Equation 1.2 satisfies
the acoustic wave equation when

β =
ω

cs
(1.3)

In this problem we find β ∼= 8.13 rad/m. This
means that at any given time, the difference in

https://creativecommons.org/licenses/by/4.0/
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phase measured between any two points
separated by a distance of 1 m is 8.13 rad. The
parameter β goes by at least three names: phase
propagation constant, wavenumber, and spatial
frequency. The term “spatial frequency” is
particularly apt, since β plays precisely the same
role for distance (x) as ω plays for time (t) –
This is apparent from Equation 1.2. However,
“wavenumber” is probably the more
commonly-used term.

The wavenumber β (rad/m) is the rate at
which the phase of a sinusoidal wave pro-
gresses with distance.

Note that Am and ψ are not determined by the
wave equation, but instead are properties of the
source. That is, Am is determined by how hard
we blow, and ψ is determined by the time at
which we began to blow and the location of the
trumpet. For simplicity, let us assume that we
begin to blow at time t≪ 0; i.e., in the distant
past so that the sound pressure field has achieved
steady state by t = 0, and that ψ = 0. Also let us
set Am = 1 in whatever units we choose to
express p(x, t). We then have:

p(x, t) = cos (ωt− βx) (1.4)

Now we have everything we need to make plots
of p(x) at various times.

Figure 1.3(a) shows p(x, t = 0). As expected,
p(x, t = 0) is periodic in x. The associated period
is referred to as the wavelength λ. Since λ is the
distance required for the phase of the wave to
progress by 2π rad, and because phase is
progressing at a rate of β rad/m, it must be that:

λ =
2π

β
(1.5)

In the present example, we find λ ∼= 77.3 cm.

Wavelength λ = 2π/β is the distance required
for the phase of a sinusoidal wave to progress
by one complete cycle (i.e., 2π rad) at any
given time.

Now let us consider the situation at t = +1/4f ,
which is t = 568 µs or ωt = π/2. We see in

p(x,t)

x

λ

p(x,t)

x

p(x,t)

x

c© Y. Qin CC BY 4.0

Figure 1.3: The differential pressure p(x, t) for
(a) t = 0, (b) t = 1/4f for “−βx”, as indicated
in Equation 1.4 (wave traveling to right); and (c)
t = 1/4f for “+βx” (wave traveling to left).

https://creativecommons.org/licenses/by/4.0/
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Figure 1.3(b) that the waveform has shifted a
distance λ/4 to the right. It is in this sense that
we say the wave is propagating in the +x
direction. Furthermore, we can now compute a
phase velocity vp: We see that a point of constant
phase has shifted a distance λ/4 in time 1/4f , so

vp = λf (1.6)

In the present example, we find vp ∼= 340 m/s;
i.e., we have found that the phase velocity is
equal to the speed of sound cs. It is in this sense
that we say that the phase velocity is the speed
at which the wave propagates.5

Phase velocity vp = λf (m/s) is the speed
at which a point of constant phase in a sinu-
soidal waveform travels.

Recall that earlier we arbitrarily made the
contribution of βx to the phase negative (see
Equation 1.2). What’s the deal with that? To
sort this out, let’s change the sign of βx and see
if it still satisfies the wave equation – one finds
that it does. Next we repeat the previous
experiment and see what happens. The result is
shown in Figure 1.3(c). Note that points of
constant phase have traveled an equal distance,
but now in the −x direction. In other words, this
alternative choice of sign for βx within the
argument of the cosine function represents a wave
which is propagating in the opposite direction.
This leads us to the following realization:

If the phase of the wave is decreasing with
βx, then the wave is propagating in the +x
direction. If the phase of the wave is increas-
ing with βx, then the wave is propagating in
the −x direction.

Since the prospect of sound traveling toward the
trumpet is clearly nonsense in the present
situation, we may neglect that possibility.
However, what happens if there is a wall located
in the distance, behind your friend? Then we

5It is worth noting here is that “velocity” is technically
a vector; i.e., speed in a given direction. Nevertheless, this
quantity is actually just a speed, and this particular abuse
of terminology is generally accepted.

expect an echo from the wall, which would be a
second wave propagating in the reverse direction,
and for which the argument of the cosine
function would contain the term “+βx”.

Finally, let us return to electromagnetics.
Electromagnetic waves satisfy precisely the same
wave equation (i.e., Equation 1.1) as do sound
waves, except that the phase velocity is much
greater. Interestingly, though, the frequencies of
electromagnetic waves are also much greater than
those of sound waves, so we can end up with
wavelengths having similar orders of magnitude.
In particular, an electromagnetic wave with
λ = 77.3 cm (the wavelength of the “A” note in
the preceding example) lies in the radio portion
of the electromagnetic spectrum.

An important difference between sound and
electromagnetic waves is that electromagnetic
waves are vectors; that is, they have direction as
well as magnitude. Furthermore, we often need
to consider multiple electromagnetic vector waves
(in particular, both the electric field and the
magnetic field) in order to completely
understand the situation. Nevertheless the
concepts of wavenumber, wavelength, phase
velocity, and direction of propagation apply in
precisely the same manner to electromagnetic
waves as they do to sound waves.

Additional Reading:

• “Wave Equation” on Wikipedia.

• “Acoustic Wave Equation” on Wikipedia.

1.4 Guided and Unguided
Waves

[m0040]

Broadly speaking, waves may be either guided or
unguided.

Unguided waves include those which are radiated
by antennas as well as those which are
unintentionally radiated. Once initiated, these

https://en.wikipedia.org/wiki/Wave_equation
https://en.wikipedia.org/wiki/Acoustic_wave_equation
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waves propagate in an uncontrolled manner until
they are redirected by scattering or dissipated by
losses associated with the materials.

Examples of guided waves are those that exist
within structures such as transmission lines,
waveguides, and optical fibers. We refer to these
as guided because they are constrained to follow
the path defined by the structure.

Antennas and unintentional radiators emit
unguided waves. Transmission lines, waveg-
uides, and optical fibers carry guided waves.

1.5 Phasors

[m0033]

In many areas of engineering, signals are
well-modeled as sinusoids. Also, devices that
process these signals are often well-modeled as
linear time-invariant (LTI) systems. The
response of an LTI system to any linear
combination of sinusoids is another linear
combination of sinusoids having the same
frequencies.6 In other words, (1) sinusoidal
signals processed by LTI systems remain
sinusoids and are not somehow transformed into
square waves or some other waveform; and (2) we
may calculate the response of the system for one
sinusoid at a time, and then add the results to
find the response of the system when multiple
sinusoids are applied simultaneously. This
property of LTI systems is known as
superposition.

The analysis of systems that process sinusoidal
waveforms is greatly simplified when the
sinusoids are represented as phasors. Here is the
key idea:

A phasor is a complex-valued number that
represents a real-valued sinusoidal waveform.
Specifically, a phasor has the magnitude and
phase of the sinusoid it represents.

6 A “linear combination” of functions fi(t) where i =
1, 2, 3, ... is

∑
i aifi(t) where the ai’s are constants.
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Figure 1.4: Examples of phasors, displayed here
as points in the real-imaginary plane.

Figures 1.4 and 1.5 show some examples of
phasors and the associated sinusoids.

It is important to note that a phasor by itself is
not the signal. A phasor is merely mathematical
shorthand for the actual, real-valued physical
signal.

Here is a completely general form for a physical
(hence, real-valued) quantity varying sinusoidally
with angular frequency ω = 2πf :

A(t;ω) = Am(ω) cos (ωt+ ψ(ω)) (1.7)

where Am(ω) is magnitude at the specified
frequency, ψ(ω) is phase at the specified
frequency, and t is time. Also, we require
∂Am/∂t = 0; that is, that the time variation of
A(t) is completely represented by the cosine
function alone. Now we can equivalently express
A(t;ω) as a phasor C(ω):

C(ω) = Am(ω)ejψ(ω) (1.8)

To convert this phasor back to the physical signal
it represents, we (1) restore the time dependence
by multiplying by ejωt, and then (2) take the real
part of the result. In mathematical notation:
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t
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Ame
jψ
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-jAm

note slightly larger amplitude

note now a sine function

Figure 1.5: Sinusoids corresponding to the phasors
shown in Figure 1.4.

A(t;ω) = Re
{
C(ω)ejωt

}
(1.9)

To see why this works, simply substitute the
right hand side of Equation 1.8 into
Equation 1.9. Then:

A(t) = Re
{
Am(ω)ejψ(ω)ejωt

}

= Re
{
Am(ω)ej(ωt+ψ(ω))

}

= Re {Am(ω) [cos (ωt+ ψ(ω))

+j sin (ωt+ ψ(ω))]}
= Am(ω) cos (ωt+ ψ(ω))

as expected.

It is common to write Equation 1.8 as follows,
dropping the explicit indication of frequency
dependence:

C = Ame
jψ (1.10)

This does not normally cause any confusion since
the definition of a phasor requires that values of
C and ψ are those that apply at whatever
frequency is represented by the suppressed
sinusoidal dependence ejωt.

Table 1.4 shows mathematical representations of
the same phasors demonstrated in Figure 1.4
(and their associated sinusoidal waveforms in
Figure 1.5). It is a good exercise is to confirm
each row in the table, transforming from left to
right and vice-versa.

It is not necessary to use a phasor to represent a
sinusoidal signal. We choose to do so because
phasor representation leads to dramatic
simplifications. For example:

• Calculation of the peak value from data
representing A(t;ω) requires a time-domain
search over one period of the sinusoid.
However if you know C, the peak value of
A(t) is simply |C|, and no search is required.

• Calculation of ψ from data representing
A(t;ω) requires correlation (esentially,
integration) over one period of the sinusoid.
However if you know C, then ψ is simply the
phase of C, and no integration is required.
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A(t) C
Am cos (ωt) Am
Am cos (ωt+ ψ) Ame

jψ

Am sin (ωt) = Am cos
(
ωt− π

2

)
−jAm

Am cos (ωt) +Bm sin (ωt) = Am cos (ωt) +Bm cos
(
ωt− π

2

)
Am − jBm

Table 1.4: Some examples of physical (real-valued) sinusoidal signals and the corresponding phasors.
Am and Bm are real-valued and constant with respect to t.

These are just two examples. In fact,
mathematical operations applied to A(t;ω) can
be equivalently performed as operations on C,
and the latter are typically much easier than the
former. To demonstrate this, we first make two
important claims and show that they are true.

Claim 1: Let C1 and C2 be two complex-valued
constants (independent of t). Also,
Re
{
C1e

jωt
}
= Re

{
C2e

jωt
}
for all t. Then,

C1 = C2.

Proof: Evaluating at t = 0 we find
Re {C1} = Re {C2}. Since C1 and C2 are
constant with respect to time, this must be true
for all t. At t = π/(2ω) we find

Re
{
C1e

jωt
}
= Re {C1 · j} = −Im {C1}

and similarly

Re
{
C2e

jωt
}
= Re {C2 · j} = −Im {C2}

therefore Im {C1} = Im {C2}. Once again: Since
C1 and C2 are constant with respect to time, this
must be true for all t. Since the real and
imaginary parts of C1 and C2 are equal, C1 = C2.

What does this mean? We have just shown that
if two phasors are equal, then the sinusoidal
waveforms that they represent are also equal.

Claim 2: For any real-valued linear operator T
and complex-valued quantity C,
T (Re {C}) = Re {T (C)}.

Proof: Let C = cr + jci where cr and ci are
real-valued quantities, and evaluate the right side

of the equation:

Re {T (C)} = Re {T (cr + jci)}
= Re {T (cr) + jT (ci)}
= T (cr)

= T (Re {C})

What does this mean? The operators that we
have in mind for T include addition,
multiplication, differentiation, integration, and so
on. Here’s an example with differentiation:

Re

{
∂

∂ω
C

}
= Re

{
∂

∂ω
(cr + jci)

}
=

∂

∂ω
cr

∂

∂ω
Re {C} =

∂

∂ω
Re {(cr + jci)} =

∂

∂ω
cr

In other words, differentiation of a sinusoidal
signal can be accomplished by differentiating the
associated phasor, so there is no need to
transform a phasor back into its associated
real-valued signal in order to perform this
operation.

Summarizing:

Claims 1 and 2 together entitle us to perform
operations on phasors as surrogates for the
physical, real-valued, sinusoidal waveforms
they represent. Once we are done, we can
transform the resulting phasor back into the
physical waveform it represents using Equa-
tion 1.9, if desired.

However a final transformation back to the time
domain is usually not desired, since the phasor
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tells us everything we can know about the
corresponding waveform.

A skeptical student might question the value of
phasor analysis on the basis that signals of
practical interest are sometimes not
sinusoidally-varying, and therefore phasor
analysis seems not to apply generally. It is
certainly true that many signals of practical
interest are not sinusoidal, and many are far
from it. Nevertheless, phasor analysis is broadly
applicable. There are basically two reasons why
this is so:

• Many signals, although not strictly
sinusoidal, are “narrowband” and therefore
well-modeled as sinusoidal. For example, a
cellular telecommunications signal might
have a bandwidth on the order of 10 MHz
and a center frequency of about 2 GHz. This
means the difference in frequency between
the band edges of this signal is just 0.5% of
the center frequency. The frequency
response associated with signal propagation
or with hardware can often be assumed to
be constant over this range of frequencies.
With some caveats, doing phasor analysis at
the center frequency and assuming the
results apply equally well over the
bandwidth of interest is often a pretty good
approximation.

• It turns out that phasor analysis is easily
extensible to any physical signal, regardless
of bandwidth. This is so because any
physical signal can be decomposed into a
linear combination of sinusoids – this is
known as Fourier analysis. The way to find
this linear combination of sinusoids is by
computing the Fourier series, if the signal is
periodic; or the Fourier Transform,
otherwise. Phasor analysis applies to each
frequency independently, and the results can
be added together to obtain the result for
the complete signal. The process of
combining results after phasor analysis
results is nothing more than integration over

frequency; i.e.:

∫ +∞

−∞

A(t;ω)dω

Using Equation 1.9, this can be rewritten:

∫ +∞

−∞

Re
{
C(ω)ejωt

}
dω

In fact we can go one step further using
Claim 2:

Re

{∫ +∞

−∞

C(ω)ejωtdω

}

The quantity in the curly braces is simply
the Fourier transform of C(ω). Thus we see
that we can analyze a signal of
arbitrarily-large bandwidth simply by
keeping ω as an independent variable while
we are doing phasor analysis, and if we ever
need the physical signal, we just take the
real part of the Fourier transform of the
phasor. So not only is it possible to analyze
any time-domain signal using phasor
analysis, it is also often far easier than doing
the same analysis on the time-domain signal
directly.

Summarizing:

Phasor analysis does not limit us to sinu-
soidal waveforms. Phasor analysis is applica-
ble to signals which are sufficiently narrow-
band, and can also be applied to signals of
arbitrary bandwidth via Fourier analysis.

Additional Reading:

• “Phasor” on Wikipedia.

• “Fourier analysis” on Wikipedia.

1.6 Units

[m0072]

https://en.wikipedia.org/wiki/Phasor
https://en.wikipedia.org/wiki/Fourier_analysis
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Prefix Abbreviation Multiply by:
exa E 1018

peta P 1015

tera T 1012

giga G 109

mega M 106

kilo k 103

milli m 10−3

micro µ 10−6

nano n 10−9

pico p 10−12

femto f 10−15

atto a 10−18

Table 1.5: Prefixes used to modify units.

The term “unit” refers to the measure used to
express a physical quantity. For example, the
mean radius of the Earth is about
6,371,000 meters; in this case the unit is the
meter.

A number like “6,371,000” becomes a bit
cumbersome to write, so it is common to use a
prefix to modify the unit. For example, the
radius of the Earth is more commonly said to be
6371 kilometers, where one kilometer is
understood to mean 1000 meters. It is common
practice to use prefixes, such as “kilo-”, that
yield values in the range 0.001 to 10, 000. A list
of standard prefixes appears in Table 1.5.

Writing out the names of units can also become
tedious. For this reason it is common to use
standard abbreviations; e.g., “6731 km” as
opposed to ‘6371 kilometers”, where “k” is the
standard abbreviation for the prefix “kilo” and
“m” is the standard abbreviation for “meter”. A
list of commonly-used base units and their
abbreviations is shown in Table 1.6.

To avoid ambiguity it is important to always
indicate the units of a quantity; e.g., writing
“6371 km” as opposed to “6371”. Failure to do
so is a common source of error and
misunderstandings. An example is the
expression:

l = 3t

Unit Abbreviation Quantifies:
ampere A electric current
coulomb C electric charge
farad F capacitance
henry H inductance
hertz Hz frequency
joule J energy
meter m distance
newton N force
ohm Ω resistance
second s time
tesla T magnetic flux density
volt V electric potential
watt W power
weber Wb magnetic flux

Table 1.6: Some units that are commonly used in
electromagnetics.

where l is length and t is time. It could be that l
is in meters and t is in seconds, in which case “3”
really means “3 m/s”. However if it is intended
that l is in kilometers and t is in hours, then “3”
really means “3 km/h” and the equation is
literally different. To patch this up, one might
write “l = 3t m/s”; however note that this does
does not resolve the ambiguity we just identified
– i.e., we still don’t know the units of the
constant “3”. Alternatively one might write
“l = 3t where l is in meters and t is in seconds”,
which is unambiguous but becomes quite
awkward for more complicated expressions. A
better solution is to write instead:

l = (3 m/s) t

or even better:

l = at where a = 3 m/s

since this separates this issue of units from the
perhaps more-important fact that l is
proportional to t and the constant of
proportionality (a) is known.

The meter is the fundamental unit of length in
the International System of Units, known by its
French acronym “SI” and sometimes informally
referred to as the “metric system”.
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In this work we will use SI units exclusively.

Although SI is probably the most popular for
engineering use overall, other systems remain in
common use. For example, the English system,
where the radius of the Earth might alternatively
be said to be about 3959 miles, continues to be
used in various applications and to a lesser or
greater extent in various regions of the world. An
alternative system in common use in physics and
material science applications is the CGS
(“centimeter-gram-second”) system. The CGS
system is similar to SI, but with some significant
differences: For example, the base unit of energy
is the CGS system is not the “joule” but rather
the “erg”, and the values of some physical
constants become unitless. Therefore – once
again – it is very important to include units
whenever values are stated.

SI defines seven fundamental units from which all
other units can be derived. These fundamental
units are distance in meters (m), time in seconds
(s), current in amperes (A), mass in kilograms
(kg), temperature in kelvin (K), particle count in
moles (mol), and luminosity in candela (cd). SI
units for electromagnetic quantities such as
coulombs (C) for charge and volts (V) for electric
potential are derived from these fundamental
units.

A frequently-overlooked feature of units is their
ability to assist in error-checking mathematical
expressions. For example, the electric field
intensity may be specified in volts per meter
(V/m), so an expression for the electric field
intensity that yields units of V/m is said to be
“dimensionally correct” (but not necessarily
correct), whereas an expression that cannot be
reduced to units of V/m cannot be correct.

Additional Reading:

• “International System of Units” on
Wikipedia.

• “Centimetre-gram-second system of units”
on Wikipedia.

1.7 Notation

[m0005]

The list below describes notation used in this
book.

• Vectors : Boldface is used to indicate a
vector; e.g., the electric field intensity vector
will typically appear as E. Quantities not in
boldface are scalars. When writing by hand,

it is common to write “E” or “
−→
E ” in lieu of

“E”.

• Unit vectors : A circumflex is used to
indicate a unit vector; i.e., a vector having
magnitude equal to one. For example, the
unit vector pointing in the +x direction will
be indicated as x̂. In discussion, the
quantity “x̂” is typically spoken “x hat”.

• Time: The symbol t is used to indicate time.

• Position: The symbols (x, y, z), (ρ, φ, z), and
(r, θ, φ) indicate positions using the
cartesian, cylindrical, and polar coordinate
systems, respectively. It is sometimes
convenient to express position in a manner
which is independent of a coordinate system;
in this case we typically use the symbol r.
For example r = x̂x+ ŷy + ẑz in the
cartesian coordinate system.

• Phasors: A tilde is used to indicate a phasor
quantity; e.g., a voltage phasor might be
indicated as Ṽ , and the phasor
representation of E will be indicated as Ẽ.

• Curves, surfaces, and volumes: These
geometrical entities will usually be indicated
in script; e.g., an open surface might be
indicated as S and the curve bounding this
surface might be indicated as C. Similarly
the volume enclosed by a closed surface S
may be indicated as V.

• Integrations over curves, surfaces, and
volumes will usually be indicated using a
single integral sign with the appropriate

https://en.wikipedia.org/wiki/International_System_of_Units
https://en.wikipedia.org/wiki/Centimetre-gram-second_system_of_units
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subscript; for example:
∫

C

· · · dl is an integral over the curve C

∫

S

· · · ds is an integral over the surface S
∫

V

· · · dv is an integral over the volume V.

• Integrations over closed curves and surfaces
will be indicated using a circle superimposed
on the integral sign; for example:
∮

C

··· dl is an integral over the closed curve C

∮

S

··· ds is an integral over the closed surface S

A “closed curve” is one which forms an
unbroken loop; e.g., a circle. A “closed
surface” is one which encloses a volume with
no openings; e.g., a sphere.

• The symbol “∼=” means “approximately
equal to”. This symbol is used when
equality exists, but is not being expressed
with exact numerical precision. For example,
the ratio of the circumference of a circle to
its diameter is π, where π ∼= 3.14.

• The symbol “≈” also indicates
“approximately equal to”, but in this case
the two quantities are unequal even if
expressed with exact numerical precision.
For example, ex = 1 + x+ x2/2 + ... as a
infinite series, but ex ≈ 1 + x for x≪ 1.
Using this approximation e0.1 ≈ 1.1, which is
in good agreement with the actual value
e0.1 ∼= 1.1052.

• The symbol “∼” indicates “on the order of”,
which is a relatively weak statement of
equality indicating that the indicated
quantity is within a factor of 10 or so the
indicated value. For example, µ ∼ 105 for a
class of iron alloys, with exact values being
being higher or lower within a factor of 5 or
so.

• The symbol “,” means “is defined as” or “is
equal as the result of a definition”.

• Complex numbers : j ,
√
−1.

• See Appendix C for notation used to identify
commonly-used physical constants.

[m0026]
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Chapter 2

Electric and Magnetic Fields

2.1 What is a Field?

[m0001]

A field is the continuum of values of a quan-
tity as a function of position and time.

The quantity that the field describes may be a
scalar or a vector, and the scalar part may be
either real- or complex-valued.

In electromagnetics, the electric field intensity E
is a real-valued vector field that may vary as a
function of position and time, and so might be
indicated as “E(x, y, z, t)”, “E(r, t)”, or simply
“E”. When expressed as a phasor, this quantity
is complex-valued but exhibits no time
dependence, so we might say instead “Ẽ(r)” or,

again, simply “Ẽ”.

An example of a scalar field in electromagnetics
is the electric potential, V ; i.e., V (r, t).

A wave is a time-varying field that continues to
exist in the absence of the source that created it,
and is therefore able to transport energy.

2.2 Electric Field Intensity

[m0002]

Electric field intensity is a vector field which we
assign the symbol E and which has units of
electrical potential per distance; in SI units, volts

F

c© M. Goldammer CC BY SA 4.0

Figure 2.1: A positively-charged particle experi-
ences a repulsive force F in the presence of another
particle which is also positively-charged.

per meter (V/m). Before offering a formal
definition, it is useful to consider the broader
concept of the electric field.

Imagine that the universe is empty except for a
single particle of positive charge. Next imagine
that a second positively-charged particle appears;
the situation is now as shown in Figure 2.1.
Since like charges repel, the second particle will
be repelled by the first particle, and vice versa.
Specifically, the first particle is exerting a force
on the second particle. If the second particle is
free to move, it will do so; this is an expression of
kinetic energy. If the second particle is somehow
held in place, we say the second particle possesses
an equal amount of potential energy. This
potential energy is no less “real”, since we can
convert it to kinetic energy simply by releasing
the particle, thereby allowing it to move.

Now let us revisit the original (one particle)
scenario. In that scenario, we could make a map
in which every position in space is assigned a
value which describes the force that a particle
having a specified charge q would experience if it
were to appear there. The result looks something
like Figure 2.2. This map of force vectors is

Electromagnetics Vol 1 (Beta). c© 2018 S.W. Ellingson. CC BY SA 4.0 https://doi.org/10.7294/W4WQ01ZM

https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.7294/W4WQ01ZM
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�

c© M. Goldammer CC BY SA 4.0

Figure 2.2: A map of the force that would be
experienced by a second particle having a specified
charge. Here the magnitude and direction of the
force is indicated by the size and direction of the
arrow.

essentially a description of the electric field
associated with the first particle.

There are many ways in which the electric field
may be quantified. Electric field intensity E is
simply one of these ways. We define E(r) to be
the force F(r) experienced by a test particle
having charge q, divided by q; i.e.,

E(r) , lim
q→0

F(r)

q
(2.1)

Note that it is required for the charge to become
vanishingly small (as indicated by taking the
limit) in order for this definition to work. This is
because the source of the electric field is charge,
and so the test particle contributes to the total
electric field. Therefore the test charge must be
small enough not to significantly perturb the
field being evaluated, so q must be effectively
zero. This makes Equation 2.1 unsatisfying from
an engineering perspective, and we’ll address
that later in this section.

According the definition asserted by
Equation 2.1, the units of E are those of force
divided by charge. The SI units for force and
charge are newtons (N) and coulombs (C)
respectively, so E has units of N/C. However we

typically express E in units of V/m, not N/C.
What’s going on? The short answer is that
1 V/m = 1 N/C:

N

C
=

N ·m
C ·m =

J

C ·m =
V

m

where we have used the fact that 1 N·m =
1 joule (J) of energy, and 1 J/C = 1 V.

Electric field intensity (E, N/C or V/m) is a
vector field that quantifies the force experi-
enced by a charged particle due to the influ-
ence of charge not associated with that par-
ticle.

The analysis of units doesn’t do much to answer
the question of why we should prefer to express
E in V/m as opposed to N/C. We now tackle
that question. Figure 2.3 shows a simple thought
experiment that demonstrates the concept of
electric field intensity in terms of an electric
circuit. This circuit consists of a parallel-plate
capacitor in series with a 9 V battery.1 The effect
of the battery, connected as shown, is to force an
accumulation of positive charge on the upper
plate, and an accumulation of negative charge on
the lower plate. If we consider the path from the
position labeled “A”, along the wire and through
the battery to the position labeled “B”, the
change in electric potential is +9 V. It must also
be true that the change in electric potential as
we travel from B to A through the capacitor is
−9 V, since the sum of voltages over any closed
circuit is zero. Said differently, the change in
electric potential between the plates of the
capacitor, starting from node A and ending at
node B, is +9 V. Now, note that the spacing
between the plates in the capacitor is 1 mm.
Thus the rate of change of the potential between
the plates is 9 V divided by 1 mm, which is
9000 V/m. This is literally the electric field
intensity between the plates. That is, if one
places a particle with an infinitesimally-small
charge between the plates (point “C”), and then
measures the ratio of force to charge, one finds it
is 9000 N/C pointing toward A. We come to the
following remarkable conclusion:

1It is not necessary to know anything about capacitors
to get to the point, so no worries!

https://creativecommons.org/licenses/by-sa/4.0/
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c© Y. Qin CC BY 3.0

Figure 2.3: A simple circuit used to describe the
concept of electric field intensity. In this example,
E at point C is 9000 V/m directed from B toward
A.

E points in the direction in which electric po-
tential is most rapidly decreasing, and the
magnitude of E is the rate of change in elec-
trical potential with distance in this direc-
tion.

Additional Reading:

• Electric field on Wikipedia

2.3 Permittivity

[m0008]

Permittivity describes the effect of material in
determining the magnitude of the electric field in
response to electric charge. For example, one can
observe from laboratory experiments that a
particle having charge q gives rise to the electric
field

E = R̂ q
1

4πR2

1

ǫ
(2.2)

where R is distance from the charge and R̂
points away from the charge. Note that E
increases with q, which makes sense since electric
charge is the source of E. Also note that E is
inversely proportional to 4πR2, indicating that E
decreases in proportion to the area of a sphere
surrounding the charge – a principle commonly

known as the inverse square law. The remaining
factor 1/ǫ is the constant of proportionality
which captures the effect of material. Given
units of V/m for E and C for Q, we find that ǫ
must have units of farads per meter (F/m). (To
see this, note that 1 F = 1 C/V.)

Permittivity (ǫ, F/m) describes the effect of
material in determine the electric field inten-
sity in response to charge.

In free space (that is, a perfect vacuum), we find
that ǫ = ǫ0 where:

ǫ0 ∼= 8.854× 10−23 F/m (2.3)

The permittivity of air is only slightly greater,
and usually can be assumed to be equal to that
of free space. In most other materials, the
permittivity is significantly greater; that is, the
same charge results in a weaker electric field
intensity.

It is common practice to describe the
permittivity of materials relative to the
permittivity of free space. This relative
permittivity is given by:

ǫr ,
ǫ

ǫ0
(2.4)

Values of ǫr for a few representative materials is
given in Appendix A.1. Note that ǫr ranges from
1 (corresponding to a perfect vacuum) to about
60 or so in engineering applications, and is
generally less than 10 for commonly-encountered
materials. Also note that relative permittivity is
sometimes referred to as dielectric constant. This
term is a bit misleading however, since
permittivity is a meaningful concept for many
materials which are not dielectrics.

Additional Reading:

• “Permittivity” on Wikipedia.

• Appendix A.1 (“Permittivity of Some
Common Materials”).

• “Inverse square law” on Wikipedia.

https://creativecommons.org/licenses/by/3.0/
https://en.wikipedia.org/wiki/Electric_field
https://en.wikipedia.org/wiki/Permittivity
https://en.wikipedia.org/wiki/Inverse-square_law
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2.4 Electric Flux Density

[m0011]

Electric flux density, assigned the symbol D, is
an alternative to electric field intensity (E) as a
way to quantify an electric field. Although this
alternative description is not strictly necessary, it
offers some actionable insight and some
notational convenience, as we shall point out at
the end of this section.

First, what is electric flux density? Recall that a
particle having charge q gives rise to the electric
field intensity

E = R̂ q
1

4πR2

1

ǫ
(2.5)

where R is distance from the charge and R̂
points away from the charge. Note that E is
inversely proportional to 4πR2, indicating that E
decreases in proportion to the area of a sphere
surrounding the charge. Now integrate both sides
of Equation 2.5 over a sphere S of radius R:

∮

S

E(r) · ds =
∮

S

[
R̂ q

1

4πR2

1

ǫ

]
· ds (2.6)

Factoring out constants that do not vary with
the variables of integration, the right-hand side is

q
1

4πR2

1

ǫ

∮

S

ds

The remaining integral is simply the area of S,
which is 4πR2. Thus we find:∮

S

E(r) · ds = q

ǫ
(2.7)

The integral of a vector field over a specified
surface is known as flux (see “Additional
Reading” at the end of this section). Thus, we
have found that the flux of E through the sphere
S is equal to a constant, namely q/ǫ, and that
this constant is the same regardless of the radius
R of the sphere. Said differently, the flux of E is
constant with distance, and does not vary as E
itself does. Let us capitalize on this observation
by making the following small modification to
Equation 2.7:

∮

S

[ǫE] · ds = q (2.8)

In other words, the flux of the quantity ǫE is
equal to the enclosed charge, regardless of the
radius of the sphere over which we are doing the
calculation. This leads to the following definition:

The electric flux density D = ǫE, having
units of C/m2, is a description of the elec-
tric field in terms of flux, as opposed to force
or change in electric potential.

It may appear that D is redundant information
given E and ǫ, but this is true only in
homogeneous media. The concept of electric flux
density becomes important – and decidedly not
redundant – when we encounter boundaries
between media having different permittivities.
As we shall see in Section 5.18, boundary
conditions on D constrain the component of the
electric field which is perpendicular to the
boundary separating two material regions. If one
ignores the “flux” character of the electric field
represented by D and instead considers only E,
then only the tangential component of the
electric field is constrained. In fact, when one of
the two materials comprising the boundary
between two material regions is a perfect
conductor, then the electric field is completely
determined by the boundary condition on D.
This greatly simplifies the problem of finding the
electric field in a region bounded or partially
bounded by materials that can be modeled as
perfect conductors, including many metals. In
particular, this principle makes it easy to analyze
capacitors.

We conclude this section with a warning: Even
though the SI units for D are C/m2, D describes
an electric field and not a surface charge density.
It is certainly true that one may describe the
amount of charge distributed over a surface using
units of C/m2. However D is not necessarily a
description of actual charge, and there is no
implication that the source of the electric field is
a distribution of surface charge. On the other
hand it is true that D can be interpreted as an
equivalent surface charge density that would give
rise to the observed electric field, and in some
cases this equivalent charge density turns out to
be the actual charge density.
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c© Y. Qin CC BY 3.0

Figure 2.4: Evidence of a vector field from obser-
vations of the force perceived by the bar magnets
on the right in the presence of the bar magnets on
the left.

Additional Reading:

• “Flux” on Wikipedia.

2.5 Magnetic Flux Density

[m0003]

Magnetic flux density is a vector field which we
identify using the symbol B and which has SI
units of tesla (T). Before offering a formal
definition, it is useful to consider the broader
concept of the magnetic field.

Magnetic fields are an intrinsic property of some
materials; most notably permanent magnets.
The basic phenomenon is probably familiar, and
is shown in Figure 2.4. A bar magnet has “poles”
identified as “N” (“north”) and “S” (”south”).
The N-end of one magnet attracts the S-end of
another magnet but repels the N-end of the other
magnet, and so on. The existence of a vector
field is apparent since the observed force acts at
a distance and is asserted in a specific direction.
In the case of a permanent magnet, the source of
the magnetic field is a combination of effects
occurring at the scale of the atoms and electrons
comprising the material. These mechanisms
require some additional explanation which we
shall defer for now.

Magnetic fields also appear in the presence of

c© Y. Qin CC BY 4.0

Figure 2.5: Evidence that current can also create
a magnetic field.

current. For example, a coil of wire bearing a
current is found to influence permanent magnets
(and vice versa) in the same way that permanent
magnets effect each other. This is shown in
Figure 2.5. From this we infer that the
underlying mechanism is the same – i.e., the
vector field generated by a current-bearing coil is
the same phenomenon as the vector field
associated with a permanent magnet. Whatever
the source, we are now interested in quantifying
its behavior.

To begin, let us consider the effect of a magnetic
field on a electrically-charged particle. First,
imagine a region of free space with no electric or
magnetic fields. Next imagine that a charged
particle appears. This particle will experience no
force. Next a magnetic field appears; perhaps
this is due to a permanent magnet or a current in
the vicinity. This situation is shown in Figure 2.6
(top). Still, no force is applied to the particle. In
fact, nothing happens until the particle in set in
motion. Figure 2.6 (bottom) shows an example:
Suddenly, the particle perceives a force. We’ll get
to the details about direction and magnitude in a
moment, but the main idea is now evident: A
magnetic field is something that applies a force
to a charged particle in motion, distinct from (in
fact, in addition to) the force associated with an

https://creativecommons.org/licenses/by/3.0/
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Figure 2.6: The force perceived by a charged par-
ticle which is (top) motionless and (bottom) mov-
ing with velocity v = ẑv, which is perpendicular to
the plane of this document and toward the reader.

electric field.

Now it is worth noting that a single charged
particle in motion is the simplest form of current,
and since motion is required for the magnetic
field to influence the particle, it appears that
current is not only a source of the magnetic field,
but also that the magnetic field exerts a force on
current. Summarizing:

A magnetic field quantifies the force exerted
on permanent magnets and currents in the
presence of other permanent magnets and
currents.

So, how to quantify a magnetic field? The
answer from classical physics involves another
experimentally-derived equation that predicts
force as a function of charge, velocity, and a
vector field B representing the magnetic field.
Here it is: The force applied to a particle bearing
charge q is

F = qv ×B (2.9)

where v is the velocity of the particle and “×”
denotes the cross product. The cross product of
two vectors is in a direction perpendicular to
each of the two vectors, so the force exerted by

the magnetic field is perpendicular to both the
direction of motion and the direction in which
the magnetic field points. Why perpendicular to
both? For that matter, why should the force
depend on how fast the particle is traveling?
Those are great questions, but unfortunately
those are questions for which classical physics
provides no obvious answers! These are simply
two of the ways in which the magnetic field is
strange.

Dimensional analysis of Equation 2.9 reveals that
B has units of (N·s)/(C·m). In SI, this
combination of units is known as the tesla (T).

We have referred to B as magnetic flux density,
and therefore tesla is a unit of magnetic flux
density. A fair question to ask at this point is:
What makes this a flux density? The short
answer is that this terminology is somewhat
arbitrary, and in fact is not even uniformly
accepted. In engineering electromagnetics, the
preference for referring to B as a “flux density”
is because we frequently find ourselves
integrating B over a mathematical surface. Any
quantity which is obtained by integration over a
surface is referred to as “flux”, and so it becomes
natural to think of B as a flux density; i.e., as
flux per unit area. The SI unit for magnetic flux
is the weber (Wb). Therefore, B may
alternatively be described as having units of
Wb/m2, and 1 Wb/m2 = 1 T.

Magnetic flux density (B, T or Wb/m2) is a
description of the magnetic field that can be
defined as the solution to Equation 2.9.

When describing magnetic fields, we occasionally
refer to the concept of a field line, defined as
follows:

A magnetic field line is the curve in space
traced out by following the direction in which
the magnetic field vector points.

This concept is illustrated in Figure 2.7 for a
permanent bar magnet and Figure 2.8 for a
current-bearing coil.

https://creativecommons.org/licenses/by/4.0/
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c© Y. Qin CC BY 4.0

Figure 2.7: The magnetic field of a bar magnet,
illustrating field lines.

c© Y. Qin CC BY 4.0

Figure 2.8: The magnetic field of a current-
bearing coil, illustrating field lines.

Magnetic field lines are remarkable for the
following reason:

A magnetic field line always forms a closed
loop.

This is true in a sense even for field lines which
seem to form straight lines (for example, those
along the axis of the bar magnet and the coil in
Figures 2.7 and 2.8), since a field line that travels
to infinity in one direction reemerges from
infinity in the opposite direction.

Additional Reading:

• “Magnetic Field” on Wikipedia.

2.6 Permeability

[m0009]

Permeability describes the effect of material in
determining the magnetic flux density. All else
being equal, magnetic flux density increases in
proportion to permeability.

To illustrate the concept, consider that a particle
bearing charge q moving at velocity v gives rise
to a magnetic flux density:

B(r) = µ
qv

4πR2
× R̂ (2.10)

where R̂ is the unit vector pointing from the
charged particle to the field point r, R is this
distance, and “×” is the cross product. Note
that B increases with charge and speed, which
makes sense since moving charge is the source of
the magnetic field. Also note that B is inversely
proportional to 4πR2, indicating that |B|
decreases in proportion to the area of a sphere
surrounding the charge, also known as the
inverse square law. The remaining factor, µ, is
the constant of proportionality which captures
the effect of material. We refer to µ as the
permeability of the material. Since B can be
expressed in units of Wb/m2 and the units of v
are m/s, we see that µ must have units of henries

https://creativecommons.org/licenses/by/4.0/
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per meter (H/m). (To see this, note that 1 H ,
1 Wb/A.)

Permeability (µ, H/m) describes the effect
of material in determining the magnetic flux
density.

In free space, we find that the permeability
µ = µ0 where:

µ0 = 4π × 10−7 H/m (2.11)

It is common practice to describe the
permeability of materials in terms of their
relative permeability:

µr ,
µ

µ0
(2.12)

which gives the permeability relative to the
minimum possible value; i.e., that of free space.
Relative permeability for a few representative
materials is given in Appendix A.2.

Note that µr is approximately 1 for all but a
small class of materials. These are known as
magnetic materials, and may exhibit values of µr
as large as ∼ 106. A commonly-encountered
category of magnetic materials is ferromagnetic
material, of which the best-known example is
iron.

Additional Reading:

• “Permeability (electromagnetism)” on
Wikipedia.

• Section 7.16 (“Magnetic Materials”).

• Appendix A.2 (“Permeability of Some
Common Materials”).

2.7 Magnetic Field Intensity

[m0012]

Magnetic field intensity H is an alternative
description of the magnetic field in which the
effect of material is factored out. For example,

the magnetic flux density B (reminder:
Section 2.5) due to a point charge q moving at
velocity v can be written:

B = µ
qv

4πR2
× R̂ (2.13)

where R̂ is the unit vector pointing from the
charged particle to the field point r, R is this
distance, “×” is the cross product, and µ is the
permeability of the material. We can rewrite
Equation 2.13 as:

B , µH (2.14)

with:
H =

qv

4πR2
× R̂ (2.15)

so H in homogeneous media does not depend on
µ.

Dimensional analysis of Equation 2.15 reveals
that the units for H are amperes per meter
(A/m). However, H does not represent surface
current density,2 as the units might suggest.
While it is certainly true that a distribution of
current (A) over some linear cross-section (m)
can be described as a current density having
units of A/m, H is associated with the magnetic
field and not a particular current distribution.
Said differently, H can be viewed as a description
of the magnetic field in terms of an equivalent
(but not actual) current.

The magnetic field intensity H (A/m), de-
fined using Equation 2.14, is a description of
the magnetic field independent from its de-
pendence on material properties.

It may appear that H is redundant information
given B and µ, but this is true only in
homogeneous media. The concept of magnetic
field intensity becomes important – and
decidedly not redundant – when we encounter
boundaries between media having different
permeabilities. As we shall see in Section 7.11,
boundary conditions on H constrain the
component of the magnetic field which is tangent

2The concept of current density is not essential to un-
derstand this section; however a primer can be found in
Section 6.2.

https://en.wikipedia.org/wiki/Permeability_(electromagnetism)
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to the boundary separating two material regions.
If one ignores the characteristics of the magnetic
field represented by H and instead considers only
B, then only the perpendicular component of the
magnetic field is constrained.

The concept of magnetic field intensity also turns
out to be useful in a certain problems in which µ
is not a constant, but rather is a function of
magnetic field strength. In this case the magnetic
behavior of the material is said to be nonlinear.
For more on this, see Section 7.16.

Additional Reading:

• “Magnetic field” on Wikipedia.

2.8 Electromagnetic
Properties of Materials

[m0007]

In electromagnetic analysis one is principally
concerned with three properties of matter. These
properties are quantified in terms of constitutive
parameters, which describe the effect of material
in determining an electromagnetic quantity in
response to a source. Here are the three principal
constitutive parameters:

• Permittivity (ǫ, F/m) quantifies the effect of
matter in determining the electric field in
response to electric charge. Permittivity is
addressed in Section 2.3.

• Permeability (µ, H/m) quantifies the effect
of matter in determining the magnetic field
in response to current. Permeability is
addressed in Section 2.6.

• Conductivity (σ, S/m) quantifies the effect
of matter in determining the flow of current
in response to an electric field. Conductivity
is addressed in Section 6.3.

The electromagnetic properties of most com-
mon materials in most common applications
can be quantified in terms of the constitutive
parameters ǫ, µ, and σ.

To keep the theory from becoming too complex,
we usually require the constitutive parameters
themselves to exhibit a few basic properties.
These properties are as follows:

• Homogeneity. A material which is
homogeneous is uniform over the space it
occupies; that is, the value of its constitutive
parameters is constant for all points in the
space in which the material exists. A
counter-example would be some material
which is composed of multiple
chemically-distinct compounds which are
not thoroughly mixed; for example, soil.

• Isotropy. A material which is isotropic
behaves in precisely the same way regardless
of how it is oriented with respect to sources
and fields occupying the same space. A
counter-example is quartz, whose atoms are
arranged in a uniformly-spaced crystalline
lattice. As a result, the electromagnetic
properties of quartz can be changed simply
by rotating the material with respect to the
applied sources and fields.

• Linearity. A material is said to be linear if
its properties are constant and independent
of the magnitude of the sources and fields
applied to the material. For example,
discrete capacitors have capacitance which is
determined in part by the permittivity of
the material separating the terminals
(Section 5.23). This material is
approximately linear when the applied
voltage V is below the rated working
voltage; i.e., ǫ is constant and so capacitance
does not vary significantly with respect to
V . When V is greater than the working
voltage, the dependence of ǫ on V becomes
more pronounced, and then capacitance
becomes a function of V . In another
practical example, it turns out that µ for
ferromagnetic materials is nonlinear such

https://en.wikipedia.org/wiki/Magnetic_field
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that the precise value of µ depends on the
magnitude of the magnetic field.

• Time-invariance. An example of a class of
materials which is not necessarily
time-invariant is piezoelectric materials,
whose electromagnetic properties vary
significantly depending on the mechanical
forces applied to them (a property which can
be exploited to make sensors and
transducers).

Linearity and time-invariance (LTI) are
particularly important properties to consider
because they are requirements for the property of
superposition. For example: In a LTI material we
may calculate the field E1 due to a point charge
q1 at r1, calculate the field E2 due to a point
charge q2 at r2, and then the field when both
charges are simultaneously present is simply
E1 +E2. The same is not true for materials
which are not LTI. Devices which are nonlinear
and therefore not LTI – such as the
voltage-stressed capacitor described above – no
longer follow the rules of basic circuit theory,
which presumes that superposition applies. This
condition makes analysis and design much more
difficult.

No practical material is truly homogeneous,
isotropic, linear, and time-invariant. However for
most materials in most applications, the
deviation from this ideal condition is not large
enough to significantly affect engineering analysis
and design. In other cases, materials may be
significantly non-ideal in one of these respects,
but may still be analyzed with appropriate
modifications to the theory.

[m0054]
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Chapter 3

Transmission Lines

3.1 Introduction to
Transmission Lines

[m0028]

A transmission line is a structure intended to
transport electromagnetic signals or power.

A rudimentary transmission line is simply a pair
of wires with one wire serving as “ground” and
the other wire bearing an electrical potential
which is defined relative to ground. Transmission
lines having random geometry, such as the test
leads shown in Figure 3.1, are useful only at very
low frequencies and when loss, reactance, and
immunity to electromagnetic interference (EMI)
are not a concern.

by Dmitry G

Figure 3.1: These leads used to connect test
equipment to circuits in a laboratory are a very
rudimentary form of transmission line, suitable
only for very low frequencies.

However many circuits and systems operate at
frequencies where the length or cross-sectional
dimensions of the transmission line may be a
significant fraction of a wavelength. In this case
the transmission line is no longer “transparent”
to the circuits at either end. Furthermore loss,
reactance, and EMI are significant problems in
many applications. These concerns motivate the
use of particular types of transmission lines, and
make it necessary to understand how to properly
connect the transmission line to the rest of the
system.

In electromagnetics, the term “transmission line”
refers to a structure which is intended to support
a guided wave. A guided wave is an
electromagnetic wave that is contained within or
bound to the structure, and which does not
radiate away from the structure. This condition
is normally met if the length and cross-sectional
dimensions of the transmission line are small
relative to a wavelength – say λ/100 (i.e., 1% of
the wavelength). For example, two
randomly-arranged wires serve well enough to
carry a signal at f = 10 MHz over a length
l = 3 cm, since l is only 0.1% of the wavelength
λ = c/f = 30 m. However if l is increased to 3 m,
or if f is increased to 1 GHz, then l is now 10%
of the wavelength. In this case one should
consider using a transmission line that forms a
proper guided wave.

Preventing unintended radiation is not the only
concern. Once we have established a guided wave
on a transmission line, it is important that power
applied to the transmission line be delivered to
the circuit or device at the other end, and not

Electromagnetics Vol 1 (Beta). c© 2018 S.W. Ellingson. CC BY SA 4.0 https://doi.org/10.7294/W4WQ01ZM
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reflected back into the source. For the random
wire f = 10 MHz, l = 3 cm example above, there
is little need for concern, since we expect a phase
shift of roughly 0.001 · 360◦ = 0.36◦ over the
length of the transmission line, which is about
0.72◦ for a round trip. So, to a good
approximation, the entire transmission line is at
the same electrical potential and thus transparent
to the source and destination. However if l is
increased to 3 m, or if f is increased to 1 GHz,
then the associated round-trip phase shift
becomes 72◦. In this case a reflected signal
traveling in the opposite direction will add to
create a total electrical potential which varies in
both magnitude and phase with position along
the line. Thus the impedance looking toward the
destination via the transmission line will be
different than the impedance looking toward the
destination directly. The modified impedance
will depend on the cross-sectional geometry,
materials, and length of the line.

Cross-sectional geometry and materials also
determine the loss and EMI immunity of the
transmission line.

Summarizing:

Transmission lines are designed to support
guided waves with controlled impedance, low
loss, and a degree of immunity from EMI.

3.2 Types of Transmission
Lines

[m0144]

Two common types of transmission lines are
coaxial line (Figure 3.2) and microstrip line
(Figure 3.3). Both are examples of transverse
electromagnetic (TEM) transmission lines. A
TEM line employs a single electromagnetic wave
“mode” having electric and magnetic field
vectors in directions perpendicular to the axis of
the line, as shown in Figures 3.4 and 3.5. TEM
transmission lines appear primarily in radio
frequency applications.

c© Tkgd2007 CC BY 3.0 (modified)

Figure 3.2: Structure of a coaxial transmission
line.

g�ound plane
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c© SpinningSpark CC BY SA 3.0 (modified)

Figure 3.3: Structure of a microstrip transmission
line.

E

�

Figure 3.4: Structure of the electric and magnetic
fields within coaxial line. In this case, the wave is
propagating away from the viewer.

�

�

Figure 3.5: Structure of the electric and magnetic
fields within microstrip line. (The fields outside
the line are possibly significant, complicated, and
not shown.) In this case, the wave is propagating
away from the viewer.

https://creativecommons.org/licenses/by/3.0/
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TEM transmission lines such as coaxial line
and microstrip line are designed to support a
single electromagnetic wave which propagates
along the length axis of the transmission line
with electric and magnetic field vectors per-
pendicular to the direction of propagation.

Not all transmission lines exhibit TEM field
structure. In non-TEM transmission lines the
electric and magnetic field vectors that are not
necessarily perpendicular to the axis of the line,
and the structure of the fields is complex relative
to the field structure of TEM lines. An example
of a transmission line that exhibits non-TEM
field structure is the waveguide (see example in
Figure 3.6). Waveguides are most prevalent at
radio frequencies, and tend to appear in
applications where it is important to achieve very
low loss, or where power levels are very high.
Another example is common “multimode”
optical fiber (Figure 3.7). Optical fiber exhibits
complex field structure because the wavelength
of light is very small compared to the physical
dimensions of practical fiber, making the
excitation and propagation of non-TEM waves
difficult to avoid. (This issue is overcome in a
different form of optical fiber, known as “single
mode” fiber, which is much more difficult and
expensive to manufacture.)

Higher-order transmission lines, including
radio-frequency waveguides and multimode
optical fiber, are designed to guide waves that
have relatively complex structure.

Additional Reading:

• Coaxial cable on Wikipedia.

• Microstrip on Wikipedia.

• Waveguide (electromagnetism) on
Wikipedia.

• Optical fiber on Wikipedia.

c© Averse CC BY SA 2.0 Germany

Figure 3.6: A network of radio frequency waveg-
uides in an air traffic control radar.

c© BigRiz CC BY SA 3.0 Unported

Figure 3.7: Strands of optical fiber.
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Figure 3.8: Symbols representing transmission
lines: Top: As a generic two-conductor direct con-
nection. Middle: As a generic two-port “black
box”. Bottom: As a coaxial cable.

3.3 Transmission Lines as
Two-Port Devices

[m0077]

Figure 3.8 shows common methods to represent
transmission lines in circuit diagrams. In each
case the source is represented using a Thévenin
equivalent circuit consisting of a voltage source
VS in series with an impedance ZS .

1 In
transmission line analysis, the source may also be
referred to as the generator. The termination on
the receiving end of the transmission line is
represented, without loss of generality, as an
impedance ZL. This termination is often referred
to as the load, although in practice it can be any
circuit that exhibits an input impedance of ZL.

The two-port representation of a transmission
line may be completely described by its length l

1For a refresher on this concept, see “Additional Read-
ing” at the end of this section.

along with some combination of the following
parameters:

• Phase propagation constant β, having units
of rad/m. This parameter also represents
the wavelength in the line through the
relationship λ = 2π/β.

• Attenuation constant α, having units of
1/m. This parameter quantifies the effect of
loss in the line.

• Characteristic impedance Z0, having units of
Ω. This is the ratio of potential (“voltage”)
to current when the line is perfectly
impedance-matched at both ends.

These parameters depend on the materials and
geometry of the line, as is explained elsewhere in
this book.

Note that a transmission line is typically not
transparent to the source and load. In particular,
the load impedance may be ZL, but the
impedance presented to the source may or may
not be equal to ZL. Similarly, the source
impedance may be ZS , but the impedance
presented to the load may or may not be equal to
ZS . The effect of the transmission line on the
source and load impedances will depend on the
parameters identified above.

Additional Reading:

• Thévenin’s theorem on Wikipedia.

3.4 Lumped-Element Model

[m0029]

It is possible to ascertain the relevant behaviors
of a transmission line using elementary circuit
theory applied to a differential-length
lumped-element model of the transmission line.
The concept is illustrated in Figure 3.9, which
shows a generic transmission line, aligned with
its length axis along the z axis. The transmission

https://creativecommons.org/licenses/by-sa/3.0/deed.en
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line is divided into segments having small but
finite length ∆z. Each segment is modeled as an
identical two-port having the equivalent circuit
representation shown in Figure 3.10. The
equivalent circuit consists of 4 components as
follows:

• The resistance R′∆z represents the
series-combined ohmic resistance of the two
conductors. This should account for both
conductors since the current in the actual
transmission line must flow through both
conductors. The prime notation reminds us
that R′ is resistance per unit length; i.e.,
Ω/m, and it is only after multiplying by
length that we get a resistance in Ω.

• The conductance G′∆z represents the
leakage of current directly from one
conductor to the other. When G′∆z > 0,
the resistance between the conductors is less
than infinite and therefore current may flow
between the conductors. This amounts to a
loss of power separate from the loss
associated with R′ above. G′ has units of
S/m. Further note that G′ is not equal to
1/R′ as defined above: G′ and R′ are
describing entirely different physical
mechanisms (and in principle either could
be defined as either a resistance or a
conductance).

• The capacitance C ′∆z represents the
capacitance of the transmission line
structure. Capacitance is the tendency to
store energy in electric fields, and depends
on the cross-sectional geometry and the
media separating the conductors. C ′ has
units of F/m.

• The inductance L′∆z represents the
inductance of the transmission line
structure. Inductance is the tendency to
store energy in magnetic fields, and (like
capacitance) depends on the cross-sectional
geometry and the media separating the
conductors. L′ has units of H/m.

In order to use the model, one must have values
for R′, G′, C ′, and L′. Methods for computing

z

�z�z �z �z

Figure 3.9: Interpretation of a transmission line as
a cascade of discrete series-connected two-ports.

R'Δz L'Δz

G'Δz C'Δz

c© Omegatron CC BY SA 3.0 Unported (modified)

Figure 3.10: Lumped-element equivalent circuit
model for each of the two-ports in Figure 3.9.

these parameters are addressed elsewhere in this
book.

3.5 Telegrapher’s Equations

[m0079]

In this section we derive the equations that
govern the potential v(z, t) and current i(z, t)
along a transmission line which is oriented along
the z axis. For this we will employ the
lumped-element model developed in Section 3.4.

To begin, we define voltages and currents as
shown in Figure 3.11. We assign the variables
v(z, t) and i(z, t) to represent the potential and
current on the left side of the segment, with
reference polarity and direction as shown in the
figure. Similarly we assign the variables
v(z +∆z, t) and i(z +∆z, t) to represent the
potential and current on the right side of the
segment, again with reference polarity and
direction as shown in the figure. Applying
Kirchoff’s voltage law from the left port, through
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R'Δz L'Δz

G'Δz
C'Δz

v(z,t) i(z+Δz,t)i(z,t)

+

_

+

_

v(z+Δz,t)

c© Omegatron CC BY SA 3.0 Unported (modified)

Figure 3.11: Lumped-element equivalent circuit
transmission line model, annotated with sign con-
ventions for potentials and currents.

R′∆z and L′∆z, and returning via the right
port, we obtain:

v(z, t)− (R′∆z) i(z, t)− (L′∆z)
∂

∂t
i(z, t)

− v(z +∆z, t) = 0 (3.1)

Moving terms containing factors of ∆z to the
right and then dividing through by ∆z, we obtain

− v(z +∆z, t)− v(z, t)

∆z
=

R′ i(z, t) + L′ ∂

∂t
i(z, t) (3.2)

Then taking the limit as ∆z → ∞:

− ∂

∂z
v(z, t) = R′ i(z, t) + L′ ∂

∂t
i(z, t) (3.3)

Applying Kirchoff’s current law at the right port,
we obtain:

i(z, t)−(G′∆z) v(z+∆z, t)−(C ′∆z)
∂

∂t
v(z+∆z, t)

− i(z +∆z, t) = 0 (3.4)

Arranging factors containing currents to appear
on the left and then dividing through by ∆z, we
obtain

− i(z +∆z, t)− i(z, t)

∆z
=

G′ v(z +∆z, t) + C ′ ∂

∂t
v(z +∆z, t) (3.5)

Taking the limit as ∆z → ∞:

− ∂

∂z
i(z, t) = G′ v(z, t) + C ′ ∂

∂t
v(z, t) (3.6)

Equations 3.3 and 3.6 are the Telegrapher’s
Equations. These coupled simultaneous dif-
ferential equations can be solved for v(z, t)
and i(z, t) given R′, G′, L′, C ′ and suitable
boundary conditions.

The time-domain Telegrapher’s Equations are
usually more than we need or want. If we are
only interested in the response to a sinusoidal
stimulus, then considerable simplification is
possible using phasor representation.2 First we
define phasors Ṽ (z) and Ĩ(z) through the usual
relationship:

v(z, t) = Re
{
Ṽ (z) ejωt

}
(3.7)

i(z, t) = Re
{
Ĩ(z) ejωt

}
(3.8)

Now we see:

∂

∂z
v(z, t) =

∂

∂z
Re
{
Ṽ (z) ejωt

}

= Re

{[
∂

∂z
Ṽ (z)

]
ejωt

}

In other words, ∂v(z, t)/∂z expressed in phasor

representation is simply ∂Ṽ (z)/∂z; and

∂

∂t
i(z, t) =

∂

∂t
Re
{
Ĩ(z) ejωt

}

= Re

{
∂

∂t

[
Ĩ(z)ejωt

]}

= Re
{[
jωĨ(z)

]
ejωt

}

In other words, ∂i(z, t)/∂t expressed in phasor

representation is jωĨ(z). Therefore Equation 3.3
expressed in phasor representation is:

− ∂

∂z
Ṽ (z) = [R′ + jωL′] Ĩ(z) (3.9)

Following the same procedure, Equation 3.6
expressed in phasor representation is found to be:

− ∂

∂z
Ĩ(z) = [G′ + jωC ′] Ṽ (z) (3.10)

2For a refresher on phasor analysis, see Section 1.5.
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Equations 3.9 and 3.10 are the Telegrapher’s
Equations in phasor representation.

The principal advantage of these equations over
the time-domain versions is that we no longer
must need to contend with derivatives with
respect to time; only derivatives with respect to
distance remain. This considerably simplifies the
equations.

Additional Reading:

• Telegrapher’s equations on Wikipedia.

• Kirchhoff’s circuit laws on Wikipedia.

3.6 Wave Equation for a
Transmission Line

[m0027]

Consider a transmission line aligned along the z
axis. The phasor form of the Telegrapher’s
Equations (Section 3.5) relate the potential

phasor Ṽ (z) and the current phasor Ĩ(z) to each
other and to the lumped-element model
equivalent circuit parameters R′, G′, C ′, and L′.
These equations are

− ∂

∂z
Ṽ (z) = [R′ + jωL′] Ĩ(z) (3.11)

− ∂

∂z
Ĩ(z) = [G′ + jωC ′] Ṽ (z) (3.12)

An obstacle to using these equations is that we
require both equations to solve for either the
potential or the current. In this section we reduce
these equations to a single equation, a wave
equation, that is more convenient to use and
which provides some additional physical insight.

We begin by differentiating both sides of
Equation 3.11 with respect to z, yielding:

− ∂2

∂z2
Ṽ (z) = [R′ + jωL′]

∂

∂z
Ĩ(z) (3.13)

Then using Equation 3.12 to eliminate Ĩ(z), we
obtain

− ∂2

∂z2
Ṽ (z) = − [R′ + jωL′] [G′ + jωC ′] Ṽ (z)

(3.14)
This equation is normally written as follows:

∂2

∂z2
Ṽ (z)− γ2 Ṽ (z) = 0 (3.15)

where we have made the substitution:

γ2 = (R′ + jωL′) (G′ + jωC ′) (3.16)

The positive square root of γ2 is known as the
propagation constant :

γ ,
√

(R′ + jωL′) (G′ + jωC ′) (3.17)

The propagation constant γ (units of m−1)
captures the effect of materials, geometry,
and frequency in determining the variation
in potential and current with distance on a
transmission line.

Following essentially the same procedure but
beginning with Equation 3.12, we obtain

∂2

∂z2
Ĩ(z)− γ2 Ĩ(z) = 0 (3.18)

Equations 3.15 and 3.18 are the wave equa-
tions for Ṽ (z) and Ĩ(z), respectively.

Note that both Ṽ (z) and Ĩ(z) satisfy the same
linear homogeneous differential equation. This
does not mean that Ṽ (z) and Ĩ(z) are equal.

Rather, it means that Ṽ (z) and Ĩ(z) can differ
by no more than a multiplicative constant. Since
Ṽ (z) is potential and Ĩ(z) is current, that
constant must be an impedance. This impedance
is known as the characteristic impedance and is
determined in Section 3.7.

The general solutions to Equations 3.15 and 3.18
are

Ṽ (z) = V +
0 e

−γz + V −
0 e

+γz (3.19)

https://en.wikipedia.org/wiki/Telegrapher's_equations
https://en.wikipedia.org/wiki/Kirchhoff's_circuit_laws
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Ĩ(z) = I+0 e
−γz + I−0 e

+γz (3.20)

where V +
0 , V −

0 , I+0 , and I−0 are complex-valued
constants. It is shown in Section 3.8 that
Equations 3.19 and 3.20 represent sinusoidal
waves propagating in both the +z and −z
directions along the length of the line. The
values of the constants are determined by
boundary conditions; i.e., constraints on Ṽ (z)

and Ĩ(z) at some position(s) along the line.
These constants may represent sources, loads, or
simply discontinuities in the materials and/or
geometry of the line.

The reader is encouraged to verify that the
Equations 3.19 and 3.20 are in fact solutions to
Equations 3.15 and 3.18, respectively, for any
values of the constants V +

0 , V −
0 , I+0 , and I−0 .

3.7 Characteristic
Impedance

[m0052]

Characteristic impedance is the ratio of voltage
to current for a wave which is propagating in
single direction on a transmission line. This is an
important parameter in the analysis and design
of circuits and systems using transmission lines.
In this section we formally define this parameter
and derive an expression for this parameter in
terms of the equivalent circuit model introduced
in Section 3.4.

Consider a transmission line aligned along the z
axis. Employing some results from Section 3.6,
recall that the phasor form of the wave equation
in this case is

∂2

∂z2
Ṽ (z)− γ2 Ṽ (z) = 0 (3.21)

where

γ ,
√
(R′ + jωL′) (G′ + jωC ′) (3.22)

Equation 3.21 relates the potential phasor Ṽ (z)
to the equivalent circuit parameters R′, G′, C ′,
and L′. The same equation relates the current

phasor Ĩ(z) to these equivalent circuit
parameters:

∂2

∂z2
Ĩ(z)− γ2 Ĩ(z) = 0 (3.23)

Since both Ṽ (z) and Ĩ(z) satisfy the same linear
homogeneous differential equation, they may
differ by no more than a multiplicative constant.
Since Ṽ (z) is potential and Ĩ(z) is current, that
constant can be expressed in units of impedance.
Specifically, this is the characteristic impedance,
so-named because it depends only on the
materials and cross-sectional geometry of the
transmission line – i.e., things which determine γ
– and not length, excitation, termination, or
position along the line.

To derive the characteristic impedance, first
recall that the general solutions to
Equations 3.21 and 3.23 are

Ṽ (z) = V +
0 e

−γz + V −
0 e

+γz (3.24)

Ĩ(z) = I+0 e
−γz + I−0 e

+γz (3.25)

where V +
0 , V −

0 , I+0 , and I−0 are complex-valued
constants whose values are determined by
boundary conditions; i.e., constraints on Ṽ (z)

and Ĩ(z) at some position(s) along the line. Also
we will make use of the telegrapher’s equations
(Section 3.5):

− ∂

∂z
Ṽ (z) = [R′ + jωL′] Ĩ(z) (3.26)

− ∂

∂z
Ĩ(z) = [G′ + jωC ′] Ṽ (z) (3.27)

We begin by differentiating Equation 3.24 with
respect to z, which yields

∂

∂z
Ṽ (z) = −γ

[
V +
0 e

−γz − V −
0 e

+γz
]

(3.28)

Now we use this this to eliminate ∂Ṽ (z)/∂z in
Equation 3.26, yielding

γ
[
V +
0 e

−γz − V −
0 e

+γz
]
= [R′ + jωL′] Ĩ(z)

(3.29)

Solving the above equation for Ĩ(z) yields:

Ĩ(z) =
γ

R′ + jωL′

[
V +
0 e

−γz − V −
0 e

+γz
]

(3.30)
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Comparing this to Equation 3.25, we note

I+0 =
γ

R′ + jωL′
V +
0 (3.31)

I−0 =
−γ

R′ + jωL′
V −
0 (3.32)

We now make the substitution

Z0 =
R′ + jωL′

γ
(3.33)

and observe

V +
0

I+0
=

−V −
0

I−0
, Z0 (3.34)

As anticipated, we have found that coefficients in
the equations for potentials and currents are
related by an impedance, namely, Z0.
Subsequently, Z0 may be defined in terms of the
ratio of the associated constants.

Characteristic impedance can be written entirely
in terms of the equivalent circuit parameters by
substituting Equation 3.22 into Equation 3.33,
yielding:

Z0 =

√
R′ + jωL′

G′ + jωC ′
(3.35)

The characteristic impedance Z0 (Ω) is the
ratio of potential to current in a wave travel-
ing in a single direction along the transmis-
sion line.

Take care to note that Z0 is not the ratio of Ṽ (z)

to Ĩ(z) in general; rather, Z0 relates only the
potential and current waves traveling in the same
direction.

Additional Reading:

• Characteristic impedance on Wikipedia.

3.8 Wave Propagation on a
Transmission Line

[m0080]

In Section 3.6 it is shown that expressions for the
phasor representations of the potential and
current along a transmission line are

Ṽ (z) = V +
0 e

−γz + V −
0 e

+γz (3.36)

Ĩ(z) = I+0 e
−γz + I−0 e

+γz (3.37)

where γ is the propagation constant and it
assumed that the transmission line is aligned
along the z axis. In this section we demonstrate
that these expressions represent sinusoidal waves,
and point out some important features. Before
attempting this section the reader should be
familiar with the contents of Sections 3.4, 3.6,
and 3.7. A refresher on fundamental wave
concepts (Section 1.3) may also be helpful.

We first define real-valued quantities α and β to
be the real and imaginary components of γ; i.e.,

α , Re {γ} (3.38)

β , Im {γ} (3.39)

and subsequently

γ = α+ jβ (3.40)

Then we observe

e±γz = e±(α+jβ)z = e±αz e±jβz (3.41)

It may be easier to interpret this expression by
reverting to the time domain:

Re
{
e±γzejωt

}
= e±αz cos (ωt± βz) (3.42)

Thus, e−γz represents a damped sinusoidal wave
traveling in the +z direction, and e+γz represents
a damped sinusoidal wave traveling in the −z
direction.

Let’s define Ṽ +(z) and Ĩ+(z) to be the potential
and current associated with a wave propagating
in the +z direction. Then:

Ṽ +(z) , V +
0 e

−γz (3.43)

or equivalently in the time domain:

v+(z, t) = Re
{
Ṽ +(z) ejωt

}

= Re
{
V +
0 e

−γzejωt
}

=
∣∣V +

0

∣∣ e−αz cos (ωt− βz + ψ) (3.44)

https://en.wikipedia.org/wiki/Characteristic_impedance
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v+(z,t=0)

Figure 3.12: The potential v+(z, t) of the wave
traveling in the +z direction at t = 0 for ψ = 0.

where ψ is the phase of V +
0 . Figure 3.12 shows

v+(z, t). From fundamental wave theory we
recognize

β , Re {γ} (rad/m) is the phase propagation
constant, which is the rate at which phase
changes as a function of distance.

Subsequently the wavelength in the line is

λ =
2π

β
(3.45)

Also from fundamental wave theory we recognize

α , Im {γ} (1/m) is the attenuation con-
stant, which is the rate at which magnitude
diminishes as a function of distance.

Sometimes the units of α are indicated as
“Np/m” (“nepers” per meter), where the term
“neper” is used to indicate the units of the
otherwise unitless real-valued exponent of the
constant e.

Note that α = 0 for a wave that does not
diminish in magnitude with increasing distance,
in which case the transmission line is said to be
lossless. If α > 0 then the line is said to be lossy
(or possibly “low loss” if the loss can be
neglected), and in this case the rate at which the

magnitude decreases with distance increases with
α.

Next let us consider the speed of the wave. To
answer this question, we need to be a bit more
specific about what we mean by “speed”. At the
moment we mean phase velocity; that is, the
speed at which a point of constant phase seems
to move through space. In other words, what
distance ∆z does a point of constant phase
traverse in time ∆t? To answer this question, we
first note that the phase of v+(z, t) can be
written generally as

ωt− βz + φ

where φ is some constant. Similarly the phase at
some time ∆t later and some point ∆z further
along can be written as

ω (t+∆t)− β (z +∆z) + φ

The phase velocity vp is ∆z/∆t when these two
phases are equal; i.e., when

ωt− βz + φ = ω (t+∆t)− β (z +∆z) + φ

Solving for vp = ∆z/∆t, we obtain:

vp =
ω

β
(3.46)

Having previously noted that β = 2π/λ, the
above expression also yields the expected result

vp = λf (3.47)

The phase velocity vp = ω/β = λf is the
speed at which a point of constant phase trav-
els along the line.

Returning now to consider the current associated
with the wave traveling in the +z direction:

Ĩ+(z) = I+0 e
−γz (3.48)

We can rewrite this expression in terms of the
characteristic impedance Z0, as follows:

Ĩ+(z) =
V +
0

Z0
e−γz (3.49)
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Similarly we find that the current Ĩ−(z)

associated with Ṽ −(z) for the wave traveling in
the −z direction is

Ĩ−(z) =
−V −

0

Z0
e−γz (3.50)

The negative sign appearing in the above
expression emerges as a result of the sign
conventions used for potential and current in the
derivation of the telegrapher’s equations
(Section 3.5). The physical significance of this
change of sign is that wherever the potential of
the wave traveling in the −z direction is positive,
then the current at the same point is flowing in
the −z direction.

It is frequently necessary to consider the
possibility that waves travel in both directions
simultaneously. A very important case where this
arises is when there is reflection from a
discontinuity of some kind; e.g., from a
termination which is not perfectly
impedance-matched. In this case the total
potential Ṽ (z) and total current Ĩ(z) can be
expressed as the general solution to the wave
equation; i.e., as the sum of the “incident”
(+z-traveling) wave and the reflected
(−z-traveling) waves:

Ṽ (z) = Ṽ +(z) + Ṽ −(z) (3.51)

Ĩ(z) = Ĩ+(z) + Ĩ−(z) (3.52)

The existance of waves propagating
simultaneously in both directions gives rise to a
phenomenon known as a standing wave.
Standing waves and the calculation of the
coefficients V −

0 and I−0 due to reflection are
addressed in Sections 3.13 and 3.12 respectively.

3.9 Lossless and Low-Loss
Transmission Lines

[m0083]

Quite often the loss in a transmission line is
small enough that it may be neglected. In this
case several aspects of transmission line theory

may be simplified. In this section we present
these simplifications.

First, recall that “loss” refers to the reduction of
magnitude as a wave propagates through space.
In the lumped-element equivalent circuit model
(Section 3.4), the parameters R′ and G′ of the
represent physical mechanisms associated with
loss. Specifically, R′ represents the resistance of
conductors, whereas G′ represents the
undesirable current induced between conductors
through the spacing material. Also recall that the
propagation constant γ is, in general, given by

γ ,
√
(R′ + jωL′) (G′ + jωC ′) (3.53)

With this in mind, we now define “low loss” as
meeting the conditions:

R′ ≪ ωL′ (3.54)

G′ ≪ ωC ′ (3.55)

When these conditions are met, the propagation
constant simplifies as follows:

γ ≈
√
(jωL′) (jωC ′)

=
√
−ω2L′C ′

= jω
√
L′C ′ (3.56)

and subsequently

α , Re {γ} ≈ 0 (low-loss approx.) (3.57)

β , Im {γ} ≈ ω
√
L′C ′ (low-loss approx.) (3.58)

vp = ω/β ≈ 1√
L′C ′

(low-loss approx.) (3.59)

Similarly:

Z0 =

√
R′ + jωL′

G′ + jωC ′
≈
√
L′

C ′
(low-loss approx.)

(3.60)

Of course if the line is strictly lossless (i.e.,
R′ = G′ = 0) then these are not approximations,
but rather the exact expressions.

In practice these approximations are quite
commonly used, since practical transmission lines
typically meet the conditions expressed in
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Equations 3.54 and 3.55, and the resulting
expressions are much simpler. We further
observe that Z0 is approximately independent of
frequency when these conditions hold.

However also note that “low loss” does not mean
“no loss”, and it is common to apply these
expressions even when R′ and/or G′ is large
enough to yield significant loss. For example, a
coaxial cable used to connect an antenna on a
tower to a radio near the ground typically has
loss that is important to consider in the analysis
and design process, but nevertheless satisfies
Equations 3.54 and 3.55. In this case the low-loss
expressions for β and Z0 are used, but α might
not be approximated as zero.

3.10 Coaxial Line

[m0143]

Coaxial transmission line consists of metallic
inner and outer conductors separated by a spacer
material is shown in Figure 3.13. The spacer
material is typically a low-loss dielectric material
having permeability µ ≈ µ0 and permittivity ǫs
which may range from very near ǫ0 (air-filled
line) to a factor of 2–3 times ǫ0. The outer
conductor is alternatively referred to as the
“shield”, since it typically provides a high degree
of isolation from nearby objects and
electromagnetic fields. Coaxial line is
single-ended3 in the sense that the conductor
geometry is asymmetric and the shield is
normally attached to ground at both ends. These
characteristics make coaxial line attractive for
connecting circuits in separate enclosures, and
for connecting antennas to receivers and
transmitters.

Coaxial line exhibits TEM field structure as
shown in Figure 3.14.

Expressions for the equivalent circuit parameters
C ′ and L′ for coaxial line can be obtained from

3The references in “Additional Reading” at the end of
this section may be helpful if you are not familiar with this
concept.

r
σs

b

a

Figure 3.13: Cross-section of a coaxial transmis-
sion line, indicating design parameters.

�

�

Figure 3.14: Structure of the electric and magnetic
fields within coaxial line. In this case, the wave is
propagating away from the viewer.



40 CHAPTER 3. TRANSMISSION LINES

basic electromagnetic theory. It is shown in
Section 5.24 that the capacitance per unit length
is

C ′ =
2πǫs

ln (b/a)
(3.61)

where a and b are the radii of the inner and outer
conductors, respectively. Using analysis shown in
Section 7.14, the inductance per unit length is

L′ ≈ µ0

2π
ln

(
b

a

)
(3.62)

The loss conductance G′ depends on the
conductance σs of the spacer material, and is
given by

G′ =
2πσs

ln (b/a)
(3.63)

This expression is derived in Section 6.5.

The loss resistance per unit length, R′, is
relatively difficult to describe in a general way.
One obstacle is that the inner and outer
conductors typically consist of different materials
or compositions of materials. The inner
conductor is not necessarily a single
homogeneous material; instead, the inner
conductor may consist of a variety of materials
selected by trading-off between conductivity,
strength, weight, and cost. Similarly the outer
conductor is not necessarily homogeneous; for a
variety of reasons the outer conductor may
instead be a metal mesh, braid, or a composite of
materials. Another complicating factor is the
fact that the resistance of the conductor varies
significantly with frequency, whereas C ′, L′, and
G′ exhibit relatively little variation from their
electro- and magnetostatic values. These factors
make it difficult to devise a single expression for
R′ that is both as simple as those shown above
for the other parameters, and generally
applicable. Fortunately, it turns out that the
low-loss conditions R′ ≪ ωL′ and G′ ≪ ωC ′ are
normally applicable,4 so that R′ and G′ are
important only if it is necessary to compute loss.

Since the low-loss conditions are normally met, a
convenient expression for the characteristic
impedance is obtained from Equations 3.61 and

4See Section 3.9 for a reminder about this concept.

3.62 for L′ and C ′ respectively:

Z0 ≈
√
L′

C ′
(low-loss)

≈ 1

2π

√
µ0

ǫs
ln
b

a
(3.64)

The spacer permittivity can be expressed as
ǫs = ǫrǫ0 where ǫr is the relative permittivity of
the spacer material. Since

√
µ0/ǫ0 is a constant,

the above expression is commonly written

Z0 ≈ 60 Ω√
ǫr

ln
b

a
(low-loss) (3.65)

Thus, it is possible to express Z0 directly in
terms of parameters describing the geometry (a
and b) and material (ǫr) used in the line, without
the need to first compute the values of
components in the lumped-element equivalent
circuit model.

Example 3.1. RG-59 Coaxial Cable.

RG-59 is a very common type of coaxial
line. Figure 3.15 shows a section of RG-59
cut away so as to reveal its structure. The
radii are a ∼= 0.292 mm and b ≈ 1.855 mm
(mean), yielding L′ ≈ 370 nH/m. The
spacer material is polyethylene having
ǫr ∼= 2.25, yielding C ′ ≈ 67.7 pF/m. The
conductivity of polyethylene is
σs ∼= 5.9× 10−5 S/m, yielding
G′ ≈ 200 µS/m. Typical resistance per unit
length R′ is on the order of 0.1 Ω/m near
DC, increasing approximately in proportion
to the square root of frequency.

From the above values, we find that RG-59
satisfies the low-loss criteria R′ ≪ ωL′ for
f ≫ 43 kHz and G′ ≪ ωC ′ for f ≫ 470 kHz.
Under these conditions, we find
Z0 ≈

√
L′/C ′ ∼= 74 Ω. Thus, the ratio of the

potential to the current in a wave traveling
in a single direction on RG-59 is about 74 Ω.

The phase velocity of RG-59 is found to be
vp ≈ 1/

√
L′C ′ ∼= 2× 108 m/s, which is about

67% of c, the speed of electromagnetic
radiation in free space. In other words, a
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Figure 3.15: RG-59 coaxial line. A: Insulating
jacket. B: Braided outer conductor. C: Dielectric
spacer. D: Inner conductor.

signal that takes 1 ns to traverse a distance l
in free space requires about 1.5 ns to
traverse a length-l section of RG-59. Since
vp = λf , a wavelength in RG-59 is 67% of a
wavelength in free space.

Using the expression

γ ,
√

(R′ + jωL′) (G′ + jωC ′) (3.66)

with R′ = 0.1 Ω/m, and then taking the real
part to obtain α, we find α ∼ 0.01 m−1. So,
for example, the magnitude of the potential
or current is decreased by about 50% by
traveling a distance of about 70 m. In other
words, e−αl = 0.5 for l ∼ 70 m at relatively
low frequencies, and increases with
increasing frequency.

Additional Reading:

• “Coaxial cable” on Wikipedia. Includes
descriptions and design parameters for a
variety of commonly-encountered coaxial
cables.

• “Single-ended signaling” on Wikipedia.

• Sec. 8.7 (“Differential Circuits”) in
S.W. Ellingson, Radio Systems Engineering,
Cambridge Univ. Press, 2016.
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Figure 3.16: Microstrip transmission line struc-
ture and design parameters.

3.11 Microstrip Line

[m0082]

Microstrip transmission line consists of a narrow
metallic trace separated from a metallic ground
plane by a slab of dielectric material, as shown in
Figure 3.16. This is a natural way to implement
a transmission line on a printed circuit board,
and so accounts for an important and expansive
range of applications. The reader should be
aware that microstrip is distinct from stripline,
which is a very different type of transmission
line; see “Additional Reading” at the end of this
section for disambiguation of these terms.

Microstrip line is single-ended5 in the sense that
the conductor geometry is asymmetric and the
one conductor – namely, the ground plane – also
normally serves as ground for the source and
load.

The spacer material is typically a low-loss
dielectric material having permeability µ ≈ µ0

and relative permittivity ǫr in the range 2 to
about 10 or so.

Microstrip line nominally exhibits TEM field
structure. This structure is shown in Figure 3.17.
Note that electric and magnetic fields exist both
in the dielectric and in the space above the
dielectric, which is typically (but not always!)
air. This complex field structure makes it
difficult to describe microstrip line concisely in

5The reference in “Additional Reading” at the end of
this section may be helpful if you are not familiar with this
concept.

https://creativecommons.org/licenses/by-sa/3.0/
https://en.wikipedia.org/wiki/Coaxial_cable
https://en.wikipedia.org/wiki/Single-ended_signaling
https://creativecommons.org/licenses/by-sa/3.0/
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h

W

Figure 3.17: Structure of the electric and magnetic
fields within microstrip line. (The fields outside
the line are possibly significant, complicated, and
not shown.) In this case, the wave is propagating
away from the viewer.

terms of the equivalent circuit parameters of the
lumped-element model. Instead, expressions for
Z0 directly in terms of h/W and ǫr are typically
used instead. A variety of these expressions are
in common use, representing different
approximations and simplifications. A
widely-accepted and broadly-applicable
expression is:6

Z0 ≈ 42.4 Ω√
ǫr + 1

×

ln

[
1 +

4h

W ′

(
Φ+

√
Φ2 +

1 + 1/ǫr
2

π2

)]

(3.67)

where

Φ ,
14 + 8/ǫr

11

(
4h

W ′

)
(3.68)

and W ′ is W adjusted to account for the
thickness t of the microstrip line. Typically
t≪W and t≪ h, for which W ′ ≈W . Simpler
approximations for Z0 are also commonly
employed in the design and analysis of microstrip
lines. These expressions are limited in the range
of h/W for which they are valid, and can usually
be shown to be special cases or approximations
of Equation 3.67. Nevertheless they are
sometimes useful for quick “back of the
envelope” calculations.

Accurate expressions for wavelength λ, phase
propagation constant β, and phase velocity vp

6This is from Wheeler 1977, cited in “Additional Read-
ing” at the end of this section.

are similarly difficult to obtain for waves in
microstrip line. An approximate technique
employs a result from the theory of uniform
plane waves in unbounded media (Equation 9.38
from Section 9.2):

β = ω
√
µǫ (3.69)

It turns out that the electromagnetic field
structure in the space between the conductors is
well-approximated as that of a uniform plane
wave in unbounded media having the same
permeability µ0 but a different relative
permittivity, which we shall assign the symbol
ǫr,eff (for “effective relative permittivity”). Then

β ≈ ω
√
µ0 ǫr,eff ǫ0 (low-loss microstrip)

= β0
√
ǫr,eff (3.70)

In other words, the phase propagation constant
in microstrip can be approximated as the
free-space phase propagation β0 , ω

√
µ0ǫ0 times

a correction factor
√
ǫr,eff . Then ǫr,eff may be

crudely approximated as follows:

ǫr,eff ≈ ǫr + 1

2
(3.71)

i.e., ǫr,eff is roughly the average of the relative
permittivity of the dielectric slab and the relative
permittivity of free space. The assumption
employed here is that ǫr,eff is approximately the
average of these values because some fraction of
the power in the guided wave is in the dielectric,
and the rest is above the dielectric. Various
approximations are available to improve on this
approximation; however in practice variations in
the value of ǫr for the dielectric due to
manufacturing processes typically make a more
precise estimate irrelevant.

Using this concept, we obtain

λ =
2π

β
=

2π

β0
√
ǫr,eff

=
λ0√
ǫr,eff

(3.72)

where λ0 is the free-space wavelength c/f .
Similarly the phase velocity vp, can be estimated
using the relationship

vp =
ω

β
=

c
√
ǫr,eff

(3.73)
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i.e., the phase velocity in microstrip is slower
than c by a factor of

√
ǫr,eff .

Example 3.2. 50 Ω Microstrip in FR4
Printed Circuit Boards.

FR4 is a low-loss fiberglass epoxy dielectric
which is commonly used to make printed
circuit boards (see “Additional Reading” at
the end of this section). FR4 circuit board
material is commonly sold in a slab having
thickness h ∼= 1.575 mm with ǫr ∼= 4.5. Let
us consider how we might implement a
microstrip line having Z0 = 50 Ω using this
material. Since h and ǫr are fixed, the only
parameter remaining to set Z0 is W . A bit
of experimentation with Equation 3.67
reveals that h/W ≈ 1/2 yields Z0 ≈ 50 Ω for
ǫr = 4.5. Thus W should be about 3.15 mm.
The effective relative permittivity is

ǫr,eff ≈ (4.5 + 1)/2 = 2.75

so the phase velocity for the wave guided by
this line is about c/

√
2.75; i.e., 60% of c.

Similarly the wavelength of this wave is
about 60% of the free space wavelength.

Additional Reading:

• “Microstrip” on Wikipedia.

• “Printed circuit board” on Wikipedia.

• “Stripline” on Wikipedia.

• “Single-ended signaling” on Wikipedia.

• Sec. 8.7 (“Differential Circuits”) in
S.W. Ellingson, Radio Systems Engineering,
Cambridge Univ. Press, 2016.

• H.A. Wheeler, “Transmission Line
Properties of a Strip on a Dielectric Sheet on
a Plane,” IEEE Trans. Microwave Theory &
Techniques, Vol. 25, No. 8, Aug 1977,
pp. 631–47.

• “FR-4” on Wikipedia.
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Figure 3.18: A wave arriving from the left incident
on a termination located at z = 0.

3.12 Voltage Reflection
Coefficient

[m0084]

We now consider the scenario shown in
Figure 3.18. Here a wave arriving from the left
along a lossless transmission line having
characteristic impedance Z0 arrives at a
termination located at z = 0. The impedance
looking into the termination is ZL, which may be
real-, imaginary-, or complex-valued. The
questions are: Under what circumstances is a
reflection – i.e., a leftward traveling wave –
expected, and what is precisely is that wave?

The potential and current of the incident wave
are related by the constant value of Z0. Similarly,
the potential and current of the incident wave
are related by Z0. Therefore it suffices to
consider either potential or current. Choosing
potential, we may express the incident wave as

Ṽ +(z) = V +
0 e

−jβz (3.74)

where V +
0 is determined by the source of the

wave, and so is effectively a “given”. Any
reflected wave must have the form

Ṽ −(z) = V −
0 e

+jβz (3.75)

Therefore the problem is solved by determining
the value of V −

0 given V +
0 , Z0, and ZL.

Considering the situation at z = 0, note that by

https://en.wikipedia.org/wiki/Microstrip
https://en.wikipedia.org/wiki/Printed_circuit_board
https://en.wikipedia.org/wiki/Stripline
https://en.wikipedia.org/wiki/Single-ended_signaling
https://en.wikipedia.org/wiki/FR-4
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definition we have

ZL ,
ṼL

ĨL
(3.76)

where ṼL and ĨL are the potential across and
current through the termination, respectively.
Also the potential and current on either side of
the z = 0 interface must be equal; thus:

Ṽ +(0) + Ṽ −(0) = ṼL (3.77)

Ĩ+(0) + Ĩ−(0) = ĨL (3.78)

where Ĩ+(z) and Ĩ−(z) are the currents

associated with Ṽ +(z) and Ṽ −(z), respectively.
Since the voltage and current are related by Z0,
Equation 3.78 may be rewritten as follows:

Ṽ +(0)

Z0
− Ṽ −(0)

Z0
= ĨL (3.79)

Evaluating the left sides of Equations 3.77 and
3.79 at z = 0, we find:

V +
0 + V −

0 = ṼL (3.80)

V +
0

Z0
− V −

0

Z0
= ĨL (3.81)

Substituting these expressions into Equation 3.76
we obtain:

ZL =
V +
0 + V −

0

V +
0 /Z0 − V −

0 /Z0

(3.82)

Solving for V −
0 we obtain

V −
0 =

ZL − Z0

ZL + Z0
V +
0 (3.83)

Thus the answer to the question posed earlier is
that

V −
0 = ΓV +

0 , where (3.84)

Γ ,
ZL − Z0

ZL + Z0
(3.85)

The quantity Γ is known as the voltage reflection
coefficient. Note that when ZL = Z0, Γ = 0 and
therefore V −

0 = 0. In other words,

If the terminating impedance is equal to the
characteristic impedance of the transmission
line, then there is no reflection.

If on the other hand ZL 6= Z0, then |Γ| > 0,
V −
0 = ΓV +

0 , and a leftward-traveling reflected
wave exists.

Since ZL may be real-, imaginary-, or
complex-valued, Γ too may be real-, imaginary-,
or complex-valued. Therefore V −

0 may be
different from V +

0 in magnitude, sign, or phase.

Note also that Γ is not the ratio of I−0 to I+0 .
The ratio of the current coefficients is actually
−Γ (This is relatively straightforward to prove,
and is left as an exercise for the student). It is
quite simple to show this with a simple
modification to the above procedure, and is left
as an exercise for the student.

Summarizing:

The voltage reflection coefficient Γ, given by
Equation 3.85, determines the magnitude and
phase of the reflected wave given the inci-
dent wave, the characteristic impedance of
the transmission line, and the terminating
impedance.

[m0085]

We now consider values of Γ that arise for
commonly-encountered terminations.

Matched Load (ZL = Z0). In this case the
termination may be a device with impedance Z0,
or the termination may be another transmission
line having the same characteristic impedance.
When ZL = Z0, Γ = 0 and there is no reflection.

Open Circuit. An “open circuit” is the absence
of a termination. This condition implies
ZL → ∞, and subsequently Γ → +1. Since the
current reflection coefficient is −Γ, the reflected
current wave is 180◦ out of phase with the
incident current wave, making the total current
at the open circuit equal to zero, as expected.

Short Circuit. “Short circuit” means ZL = 0,
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and subsequently Γ = −1. In this case the phase
of Γ is 180◦, and therefore the potential of the
reflected wave cancels the potential of the
incident wave at the open circuit, making the
total potential equal to zero, as it must be. Since
the current reflection coefficient is −Γ, the
reflected current wave is in phase with the
incident current wave, making the magnitude of
the total current at the short circuit greater than
zero, as expected.

Purely Reactive Load. A purely reactive load,
including that presented by a capacitor or
inductor, has ZL = jX where X is reactance. In
particular, an inductor is represented by X > 0
and a capacitor is represented by X < 0. We find

Γ =
−Z0 + jX

+Z0 + jX
(3.86)

The numerator and denominator have the same
magnitude, so |Γ| = 1. Let φ be the phase of the
denominator (+Z0 + jX). Then the phase of the
numerator is π − φ. Subsequently the phase of Γ
is (π − φ)− φ = π − 2φ. Thus we see that the
phase of Γ is no longer limited to be 0◦ or 180◦,
but can be any value in between. The phase of
reflected wave is subsequently shifted by this
amount.

Other Terminations. Any other termination,
including series and parallel combinations of any
number of devices, can be expressed as a value of
ZL which is, in general, complex-valued.
Nevertheless, the value of |Γ| is limited to the
range 0 to 1. To see this, note:

Γ =
ZL − Z0

ZL + Z0
=
ZL/Z0 − 1

ZL/Z0 + 1
(3.87)

Note that the smallest possible value of |Γ|
occurs when the numerator is zero; i.e., when
ZL = Z0. Therefore the smallest value of |Γ| is
zero. The largest possible value of |Γ| occurs
when ZL/Z0 → ∞ (i.e., an open circuit) or when
ZL/Z0 = 0 (a short circuit); the result in either
case is |Γ| = 1. Thus

0 ≤ |Γ| ≤ 1 (3.88)

3.13 Standing Waves

[m0086]

A standing wave consists of waves moving in
opposite directions. These waves add to make a
distinct magnitude variation as a function of
distance that does not vary in time.

To see how this can happen, first consider that
an incident wave V +

0 e
−jβz, which is traveling in

the +z axis along a lossless transmission line.
Associated with this wave is a reflected wave
V −
0 e

+jβz = ΓV +
0 e

+jβz, where Γ is the voltage
reflection coefficient. These waves add to make
the total potential

Ṽ (z) = V +
0 e

−jβz + ΓV +
0 e

+jβz

= V +
0

(
e−jβz + Γe+jβz

) (3.89)

The magnitude of Ṽ (z) is most easily found by

first finding |Ṽ (z)|2, which is:

Ṽ (z)Ṽ ∗(z)

=|V +
0 |2

(
e−jβz + Γe+jβz

) (
e−jβz + Γe+jβz

)∗

=|V +
0 |2

(
e−jβz + Γe+jβz

) (
e+jβz + Γ∗e−jβz

)

=|V +
0 |2

(
1 + |Γ|2 + Γe+j2βz + Γ∗e−j2βz

)
(3.90)

Let φ be the phase of Γ; i.e.,

Γ = |Γ| ejφ (3.91)

Then, continuing from the previous expression:

|V +
0 |2

(
1 + |Γ|2 + |Γ| e+j(2βz+φ) + |Γ| e−(2βz+φ)

)

=|V +
0 |2

(
1 + |Γ|2 + |Γ|

[
e+j(2βz+φ) + e−(2βz+φ)

])

(3.92)

The quantity in square brackets can be reduced
to a cosine function using the identity

cos θ =
1

2

[
ejθ + e−jθ

]

yielding:

|V +
0 |2

[
1 + |Γ|2 + 2 |Γ| cos (2βz + φ)

]
(3.93)
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Recall that this is |Ṽ (z)|2. |Ṽ (z)| is therefore the
square root of the above expression:

∣∣∣Ṽ (z)
∣∣∣ = |V +

0 |
√
1 + |Γ|2 + 2 |Γ| cos (2βz + φ)

(3.94)
Thus we have found that the magnitude of the
resulting total potential varies sinusoidally along
the line. This is referred to as a standing wave
because the variation of the magnitude of the
phasor resulting from the interference between
the incident and reflected waves does not vary
with time.

We may perform a similar analysis of the
current, leading to:

∣∣∣Ĩ(z)
∣∣∣ =

|V +
0 |
Z0

√
1 + |Γ|2 − 2 |Γ| cos (2βz + φ)

(3.95)
Again we find the result is a standing wave.

Now let us consider the outcome for a few special
cases.

Matched load. When the impedance of the
termination of the transmission line, ZL, is equal
to the characteristic impedance of the
transmission line, Z0, Γ = 0 and there is no
reflection. In this case the above expressions
reduce to |Ṽ (z)| = |V +

0 | and |Ĩ(z)| = |V +
0 |/Z0, as

expected.

Open or Short-Circuit. In this case Γ = ±1
and we find:

∣∣∣Ṽ (z)
∣∣∣ = |V +

0 |
√
2 + 2 cos (2βz + φ) (3.96)

∣∣∣Ĩ(z)
∣∣∣ =

|V +
0 |
Z0

√
2− 2 cos (2βz + φ) (3.97)

where φ = 0 for an open circuit and φ = π for a
short circuit. The result for an open circuit
termination is shown in Figure 3.19(a)
(potential) and 3.19(b) (current). The result for
a short circuit termination is identical except the
roles of potential and current are reversed. In
either case, note that voltage maxima correspond
to current minima, and vice versa.

Also, note that the period of the standing wave is
λ/2; i.e., one-half of a wavelength. This can be
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Figure 3.19: Standing wave associated with an
open-circuit termination.
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Figure 3.20: Standing waves associated with
loads exhibiting various reflection coefficients.

confirmed as follows: First note that the
frequency argument of the cosine function of the
standing wave is 2βz. This can be rewritten as
2π (β/π) z, so the frequency of variation is β/π
and the period of the variation is π/β. Since
β = 2π/λ, we see that the period of the variation
is λ/2. Furthermore, this is true regardless of Γ.

Mismatched loads. A common situation is
that the termination is neither perfectly-matched
(Γ = 0) nor an open/short circuit (|Γ| = 1).
Examples of the resulting standing waves are
shown in Figure 3.20.

Additional Reading:

• “Standing Wave” on Wikipedia.

3.14 Standing Wave Ratio

[m0081]

Precise matching of transmission lines to
terminations is often not practical or possible.
Whenever a significant mismatch exists, a
standing wave (Section 3.13) is apparent. The
quality of the match is commonly expressed in
terms of the standing wave ratio (SWR) of this
standing wave. SWR is defined as the ratio of

the maximum magnitude of the standing wave to
minimum magnitude of the standing wave. In
terms of the potential:

SWR ,
maximum |Ṽ |
maximum |Ṽ |

(3.98)

SWR can be calculated using a simple
expression, which we shall now derive. Recall
from Section 3.13 that

∣∣∣Ṽ (z)
∣∣∣ = |V +

0 |
√
1 + |Γ|2 + 2 |Γ| cos (2βz + φ)

(3.99)
The maximum value occurs when the cosine
factor is equal to +1, yielding:

max
∣∣∣Ṽ
∣∣∣ = |V +

0 |
√

1 + |Γ|2 + 2 |Γ| (3.100)

Note that the argument of the square root
operator is equal to (1 + |Γ|)2; therefore:

max
∣∣∣Ṽ
∣∣∣ = |V +

0 | (1 + |Γ|) (3.101)

Similarly the minimum value is achieved when
the cosine factor is equal to −1, yielding:

min
∣∣∣Ṽ
∣∣∣ = |V +

0 |
√

1 + |Γ|2 − 2 |Γ| (3.102)

So:

min
∣∣∣Ṽ
∣∣∣ = |V +

0 | (1− |Γ|) (3.103)

Therefore:

SWR =
1 + |Γ|
1− |Γ| (3.104)

This relationship is shown graphically in
Figure 3.21. Note that SWR ranges from 1 for
perfectly-matched terminations (Γ = 0) to
infinity for open- and short-circuit terminations
(|Γ| = 1).

It is sometimes of interest to find the magnitude
of the reflection coefficent given SWR. Solving
Equation 3.104 for |Γ| we find:

|Γ| = SWR− 1

SWR+ 1
(3.105)

https://en.wikipedia.org/wiki/Standing_wave
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Figure 3.21: Relationship between SWR and |Γ|.

SWR is often referred to as the voltage standing
wave ratio (VSWR), although repeating the
analysis above for the current reveals that the
current SWR is equal to potential SWR, so the
term “SWR” suffices.

SWR < 2 or so is usually considered a “good
match”, although some applications require SWR
< 1.1 or better, and other applications are
tolerant to SWR of 3 or greater.

Example 3.3. Reflection coefficient for
various values of SWR.

What is the reflection coefficient for the
above-cited values of SWR? Using
Equation 3.105, we find:

• SWR = 1.1 corresponds to |Γ| = 0.0476.

• SWR = 2.0 corresponds to |Γ| = 1/3.

• SWR = 3.0 corresponds to |Γ| = 1/2.

3.15 Input Impedance of a
Terminated Lossless
Transmission Line

[m0087]
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Figure 3.22: A transmission line driven by a source
on the left and terminated by an impedance ZL on
the right.

Consider Figure 3.22, which shows a lossless
transmission line being driven from the left and
which is terminated by an impedance ZL on the
right. If ZL is equal to the characteristic
impedance Z0 of the transmission line, then the
input impedance Zin will be equal to ZL.
Otherwise Zin depends on both ZL and the
characteristics of the transmission line. In this
section we determine a general expression for Zin
in terms of ZL, Z0, the phase propagation
constant β, and the length l of the line.

Impedance is defined at the ratio of potential to
current, so:

Zin(l) ,
Ṽ (z = −l)
Ĩ(z = −l)

(3.106)

Using the coordinate system indicated in
Figure 3.22, the interface between source and
transmission line is located at z = −l. Now
employing expressions for Ṽ (z) and Ĩ(z) from
Section 3.13 with z = −l, we find:

Zin(l) =
V +
0

(
e+jβl + Γe−jβl

)

V +
0 (e+jβl − Γe−jβl) /Z0

= Z0
e+jβl + Γe−jβl

e+jβl − Γe−jβl
(3.107)

Multiplying both numerator and denominator by
e−jβl:

Zin(l) = Z0
1 + Γe−j2βl

1− Γe−j2βl
(3.108)

Recall that Γ in the above expression is:

Γ =
ZL − Z0

ZL + Z0
(3.109)
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Summarizing:

Equation 3.108 is the input impedance of a
lossless transmission line having characteris-
tic impedance Z0 and which is terminated
into a load ZL. The result also depends on
the length and phase propagation constant of
the line.

It’s worth noting that Zin(l) is periodic in l.
Since the argument of the complex exponential
factors is 2βl, the frequency at which Zin(l) is
β/π; and since β = 2π/λ, the associated period is
λ/2. Not surprisingly, this is the same period
exhibited by the standing wave (Section 3.13),
and underscores that the variation in impedance
with length is due to the interference of incident
and reflected waves.

Also worth noting is that Equation 3.108 can be
written entirely in terms of ZL and Z0, since Γ
depends only on these two parameters. Here’s
that version of the expression:

Zin(l) =
ZL + jZ0 tanβl

Z0 + jZL tanβl
(3.110)

This expression can be derived by substituting
Equation 3.109 into Equation 3.108, and is left as
an exercise for the student.

3.16 Input Impedance for
Open- and
Short-Circuit
Terminations

[m0088]

Let us now consider the input impedance of a
transmission line which is terminated in an open-
or short-circuit. Such a transmission line is
sometimes referred to as a stub. First: Why
consider such a thing? From a “lumped element”
circuit theory perspective, this would not seem to
have any particular application. However, the
fact that this structure exhibits an input
impedance that depends on length (Section 3.15)

enables some very useful applications. First,
however, let us consider the answer to the
question at hand: What is the input impedance
when the transmission line is open- or
short-circuited.

For a short circuit, ZL = 0, Γ = −1, and we find

Zin(l) = Z0
1 + Γe−j2βl

1− Γe−j2βl

= Z0
1− e−j2βl

1 + e−j2βl
(3.111)

Multiplying numerator and denominator by e+jβl

we obtain

Zin(l) = Z0
e+jβl − e−jβl

e+jβl + e−jβl
(3.112)

Now we invoke the following trigonometric
identities:

cos θ =
1

2

[
e+jθ + e−jθ

]
(3.113)

sin θ =
1

j2

[
e+jθ − e−jθ

]
(3.114)

Employing these identities, we obtain:

Zin(l) = Z0
j2 (sinβl)

2 (cosβl)
(3.115)

and finally:

Zin(l) = +jZ0 tan (βl) (3.116)

Figure 3.23(a) shows what’s going on. As
expected, Zin = 0 when l = 0, since this amounts
to a short circuit with no transmission line. Also
Zin varies periodically with increasing length,
with period λ/2. This is precisely as expected
from standing wave theory (Section 3.13). What
is of particular interest now is that as l → λ/4 we
see Zin → ∞: Remarkably, the transmission line
has essentially transformed the short circuit
termination into an open circuit!

For an open circuit termination, ZL → ∞,
Γ = +1, and we find

Zin(l) = Z0
1 + Γe−j2βl

1− Γe−j2βl

= Z0
1 + e−j2βl

1− e−j2βl
(3.117)
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(a) Short-circuit termination (ZL = 0).
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(b) Open-circuit termination (ZL → ∞).

Figure 3.23: Input reactance (Im{Zin}) of a stub.
Re{Zin} is always zero.

Following the same procedure detailed above for
the short-circuit case, we find

Zin(l) = −jZ0 cot (βl) (3.118)

Figure 3.23(b) shows the result for open-circuit
termination. As expected, Zin → ∞ for l = 0,
and the same λ/2 periodicity is observed. What
is of particular interest now is that at l = λ/4 we
see Zin = 0: In this case the transmission line
has transformed the open circuit termination into
a short circuit.

Now taking stock of what we have determined:

The input impedance of a short- or open-
circuited lossless transmission line is com-
pletely imaginary-valued and is given by
Equations 3.116 and 3.118, respectively.

The input impedance of a short- or open-
circuited lossless transmission line periodic
in length with period λ/2 and alternates be-
tween open- and short-circuit conditions with
each λ/4-increase in length.

Additional Reading:

• “Stub (electronics)” on Wikipedia.

3.17 Applications of Open-
and Short-Circuited
Transmission Line
Stubs

[m0145]

The theory of open- and short-circuited
transmission lines – often referred to as stubs –
was addressed in Section 3.16. These structures
have important and wide-ranging applications.

In particular, these structures can be used to
replace discrete inductors and capacitors in

https://en.wikipedia.org/wiki/Stub_(electronics)
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certain applications. To see this, consider the
short-circuited line (Figure 3.23(b) of
Section 3.16): Note that each value of l which is
less than λ/4 corresponds to a particular positive
reactance; i.e., the transmission line “looks” like
an inductor. Also note that lengths between λ/4
and λ/2 result in reactances which are negative;
i.e., the transmission line “looks” like a
capacitor. Thus, it is possible to replace an
inductor or capacitor with a short-circuited
transmission line of the appropriate length. The
input impedance of such a transmission line is
identical to that of the inductor or capacitor at
the design frequency. The variation of reactance
with respect to frequency will not be identical,
which may or may not be a concern depending
on the bandwidth and frequency response
requirements of the application. Open-circuited
lines may be used in a similar way.

This property of open- and short-circuited
transmission lines makes it possible to implement
impedance matching circuits (see Section 3.23),
filters, and other devices entirely from
transmission lines, with fewer or no discrete
inductors or capacitors required. Transmission
lines do not suffer the performance limitations of
discrete devices at high frequencies and are less
expensive. A drawback of transmission line stubs
in this application is that the lines are typically
much larger than the discrete devices they are
intended to replace.

Example 3.4. Emitter Induction Using
Short-Circuited Line.

In the design of low-noise amplifiers using
bipolar transistors in common-emitter
configuration, it is often useful to introduce
a little inductance between the emitter and
ground. This is known as “inductive
degeneration”, “emitter induction”, or
sometimes by other names. It can be
difficult to find suitable inductors, especially
for operation in the UHF band and higher.
However a microstrip line can be used to
achieve the desired inductive impedance.
Determine the length of a stub that

implements a 2.2 nH inductance at 6 GHz
using microstrip line with characteristic
impedance 50 Ω and phase velocity 0.6c.

Solution. At the design frequency, the
impedance looking into this section of line
from the emitter should be equal to that of
a 2.2 nH inductor, which is
+jωL = +j2πfL = +j82.9 Ω. The input
impedance of a short-circuited stub of
length l which is grounded (thus,
short-circuited) at the opposite end is
+jZ0 tanβl (Section 3.16). Setting this
equal to +j82.9 Ω and noting that
Z0 = 50 Ω, we find that βl ∼= 1.028 rad. The
phase propagation constant is (Section 3.8):

β =
ω

vp
=

2πf

0.6c
∼= 209.4 rad/m (3.119)

Therefore the length of the microstrip line is
l = (βl) /β ∼= 4.9 mm.

Additional Reading:

• “Stub (electronics)” on Wikipedia.

3.18 Measurement of
Transmission Line
Characteristics

[m0089]

This section presents a simple technique for
measuring the characteristic impedance Z0,
electrical length βl, and phase velocity vp of a
lossless transmission line. This technique requires
two measurements: The input impedance Zin
when the transmission line is short-circuted, and
Zin when the transmission line is open-circuited.

In Section 3.16 it is shown that the input
impedance Zin of a short-circuited transmission
line is

Z
(SC)
in = +jZ0 tanβl

and when a transmission line is terminated in an

https://en.wikipedia.org/wiki/Stub_(electronics)
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open circuit, the input impedance is

Z
(OC)
in = −jZ0 cotβl

Observe what happens when we multiply these
results together:

Z
(SC)
in · Z(OC)

in = Z2
0

that is, the product of the measurements Z
(OC)
in

and Z
(SC)
in is simply the square of the

characteristic impedance. Therefore

Z0 =

√
Z

(SC)
in · Z(OC)

in (3.120)

If we instead divide these measurements, we find

Z
(SC)
in

Z
(OC)
in

= − tan2 βl

Therefore

tanβl =

[
−Z

(SC)
in

Z
(OC)
in

]2
(3.121)

If l is known in advance to be less than λ/2, then
βl can be determined by taking the inverse
tangent. If l is of unknown length and longer
than λ/2, one must take care to account for the
periodicity of tangent function; in this case it
may not be possible to unambiguously determine
βl. Although we shall not present the method
here, it is possible to resolve this ambiguity by
making multiple measurements over a range of
frequencies.

Once βl is determined, it is simple to determine l
given β, β given l, and then vp. For example, the
phase velocity of a transmission line may be
determined by first finding βl for a known length
of transmission line using the above procedure,
calculating β = (βl) /l, and then vp = ω/β.

3.19 Quarter-Wavelength
Transmission Line

[m0091]

Quarter-wavelength sections of transmission line
play an important role in many systems at radio
and optical frequencies. The remarkable
properties of open- and short-circuited
quarter-wave line are presented in Section 3.16,
and should be reviewed before reading further.
In this section we perform a more general
analysis, considering not just open- and
short-circuit terminations but any terminating
impedance, and then address some applications.

The general expression for the input impedance
of a lossless transmission line is (Section 3.15):

Zin(l) = Z0
1 + Γe−j2βl

1− Γe−j2βl
(3.122)

Note that when l = λ/4:

2βl = 2 · 2π
λ

· λ
4
= π

Subsequently:

Zin(λ/4) = Z0
1 + Γe−jπ

1− Γe−jπ

= Z0
1− Γ

1 + Γ

(3.123)

Recall that (Section 3.15):

Γ =
ZL − Z0

ZL + Z0
(3.124)

Substituting this expression and then multiplying
numerator and denominator by ZL + Z0, one
obtains

Zin(λ/4) = Z0
(ZL + Z0)− (ZL − Z0)

(ZL + Z0) + (ZL − Z0)

= Z0
2Z0

2ZL

(3.125)

Thus

Zin(λ/4) =
Z2
0

ZL
(3.126)

Note that the input impedance is inversely
proportional to the load impedance. For this
reason, a transmission line of length λ/4 is
sometimes referred to as a quarter-wave inverter
or simply as a impedance inverter.
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Z
L

l=λ/4

Figure 3.24: Impedance-matching using a quarter-
wavelength transmission line.

Quarter-wave lines play a very important role in
RF engineering. As impedance inverters, they
have the useful attribute of transforming small
impedances into large impedances, and vice-versa
– we’ll come back to this idea later in this
section. First, let’s consider how quarter-wavel
lines are used for impedance matching. Look
what happens when we solve Equation 3.126 for
Z0:

Z0 =
√
Zin(λ/4) · ZL (3.127)

This equation indicates that we may match the
load ZL to a source impedance (represented by
Zin(λ/4)) simply by making the characteristic
impedance equal to the value given by the above
expression and setting the length to λ/4. The
scheme is shown in Figure 3.24.

Example 3.5. 300-to-50 Ω match using an
quarter-wave section of line.

Design a transmission line segment that
matches 300 Ω to 50 Ω at 10 GHz using a
quarter-wave match. Assume microstrip line
for which propagation occurs with
wavelength 60% that of free space.

Solution. The line is completely specified
given its characteristic impedance Z0 and
length l. The length should be one-quarter
wavelength with respect to the signal
propagating in the line. The free-space
wavelength λ0 = c/f at 10 GHz is ∼= 3 cm.
Therefore the wavelength of the signal in the
line is λ = 0.6λ0 ∼= 1.8 cm, and the length of
the line should be l = λ/4 ∼= 4.5 mm.

Z
L

λ/4

Z1
(completely

real-valued)

Figure 3.25: Impedance-matching a complex-
valued load impedance using quarter-wavelength
transmission line.

The characteristic impedance is given by
Equation 3.127:

Z0 =
√
300 Ω · 300 Ω ∼= 122.5 Ω (3.128)

This value would be used to determine the
width of the microstrip line, as discussed in
Section 3.11.

It should be noted that for this scheme to yield a
real-valued characteristic impedance, the product
of the input (source) and load impedances must
be a real-valued number. For example, this
method is not suitable if ZL has a significant
imaginary-valued component and match to a
real-valued impedance is desired. In that case
the two-stage strategy shown in Figure 3.25 may
be used. In this scheme, the load impedance is
first transformed to a real-valued impedance
using a length l1 of transmission line. This is
accomplished using Equation 3.122 (quite simple
using a numerical search) or using the Smith
chart (see “Additional Reading” at the end of
this section). The characteristic impedance Z01

of this transmission line is not critical and can be
selected for convenience. Normally the smallest
value of l1 is desired. This value will always be
less than λ/4 since Zin(l1) is periodic in l1 with
period λ/2; i.e., there are two changes in the sign
of the imaginary component of Zin(l1) as l1 is
increased from zero to λ/2. After eliminating the
imaginary component of ZL in this manner, the
real component of the resulting impedance may
then be transformed using the quarter-wave
matching technique described above.
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Example 3.6. Matching a patch antenna
to 50 Ω.

A particular patch antenna exhibits a source
impedance of ZA = 35 + j35 Ω. Interface
this antenna to 50 Ω using the technique
described above. (See “Microstrip antenna”
in “Additional Reading” at the end of this
section for some optional reading on patch
antennas.) For the section of transmission
line adjacent to the patch antenna, use
characteristic impedance Z01 = 50 Ω.
Determine the lengths l1 and l2 of the two
segments of transmission line, and the
characteristic impedance Z02 of the second
(quarter-wave) segment.

Solution. The length of the first section of
the transmission line (adjacent to the
antenna) is determined using
Equation 3.122:

Z1(l1) = Z01
1 + Γe−j2β1l1

1− Γe−j2β1l1
(3.129)

where β1 is the phase propagation constant
for this section of transmission line and

Γ ,
ZA − Z01

ZA + Z01

∼= −0.0059− j0.4142 (3.130)

We seek the value of smallest positive value
of β1l1 for which the imaginary part of
Z1(l1) is zero. This can determined using a
Smith chart (see “Additional Reading” at
the end of this section) or simply by a few
iterations of trial-and-error. Either way we
find
Z1(β1l1 = 0.779 rad) ∼= 20.709 + j0.031 Ω,
which we deem to be close enough to be
acceptable. Note that β1 = 2π/λ, where λ is
the wavelength of the signal in the
transmission line. Therefore

l1 =
β1l1
β1

=
β1l1
2π

λ ∼= 0.124λ (3.131)

The length of the second section of the
transmission line, being a

quarter-wavelength transformer, should be
l2 = 0.25λ. Using Equation 3.127, the
characteristic impedance Z02 of this section
of line should be

Z02
∼=
√
(20.709 Ω) (50 Ω) ∼= 32.2 Ω

(3.132)

By the way, patch antennas often appear in
systems implemented on printed circuit
boards, because they themselves are easily
implemented on printed circuit boards. A
great follow-up to this example would be to
complete the solution in microstrip
(Section 3.11) by determining the width of
lines given a particular substrate and
dielectric thickness.

Discussion. A bit of follow-up is
appropriate here. The total length of the
matching structure is l1 + l2 ∼= 0.374λ. A
patch antenna would typically have sides of
length about λ/2 = 0.5λ, so we see that the
matching structure is nearly as big as the
antenna itself. At frequencies where patch
antennas are commonly used, and especially
at frequencies in the UHF (300–3000 MHz)
band, patch antennas often dominate the
size of the system, so it is not attractive to
have the matching structure also require a
similar amount of space. Thus we would be
motivated to find a smaller matching
structure.

Although quarter-wave matching techniques are
generally effective and commonly used, they have
one important contraindication, noted above:
They often result in structures which are larger
than necessary. That is, any structure which
employs a quarter-wave match will be at least
λ/4 long. Other transmission line matching
techniques – and in particular, single stub
matching (Section 3.23) – typically result in
structures which are significantly smaller.

The impedance inversion property of
quarter-wavelength lines has applications beyond
impedance matching. The following example
demonstrates one such application:
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Example 3.7. RF/DC decoupling in
transistor amplifiers.

Transistor amplifiers for RF applications
often receive DC current at the same
terminal which delivers the amplified RF
signal, as shown in Figure 3.26 The power
supply is essentially a current source and so
has a low output impedance. If the power
supply is directly connected to the
transistor, then the RF will flow
predominantly in the direction of the power
supply as opposed to following the desired
path, which exhibits a higher impedance.
This can be addressed using an inductor in
series, which presents low impedance at DC
and high impedance at RF. Unfortunately
discrete inductors are often not practical at
high RF frequencies. This is because
practical inductors also exhibit parallel
capacitance, which tends to decrease
impedance.

A solution is to replace the inductor with a
transmission line having length λ/4 as
shown in Figure 3.27. A wavelength at DC
is infinite, so the transmission line is
essentially transparent to the power supply.
At radio frequencies the line transforms the
low impedance of the power supply to an
impedance which is very large relative to the
impedance of the desired RF path, as
desired. Furthermore, transmission lines on
printed circuit boards are much cheaper
than discrete inductors (and are always in
stock!).

Additional Reading:

• “Quarter-wavelength impedance transformer”
on Wikipedia.

• “Smith chart” on Wikipedia.

• “Microstrip antenna” on Wikipedia.

RF out
(moderate Z)

DC power in

(low Z)

Figure 3.26: Decoupling of DC input power and
RF output signal at the output of a common-
emitter RF amplifier, using a discrete inductor.

RF out

(moderate $)

DC power in

(low $)

λ/4

Figure 3.27: Decoupling of DC input power and
RF output signal at the output of a common-
emitter RF amplifier, using a quarter-wavelength
transmission line.

https://en.wikipedia.org/wiki/Quarter-wave_impedance_transformer
https://en.wikipedia.org/wiki/Smith_chart
https://en.wikipedia.org/wiki/Microstrip_antenna
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3.20 Power Flow on
Transmission Lines

[m0090]

It is often important to know the power
associated with transmission line waves. The
power of the waves incident upon, reflected by,
and absorbed by a load are each of interest. In
this section we shall work out expression for
these powers and consider some implications in
terms of reflection coefficient (Γ) and standing
wave ratio (SWR).

Let’s begin by considering a lossless transmission
line which is oriented along the z axis. The
time-average power associated with a sinusoidal
wave having potential v(z, t) and current i(z, t) is

Pav(z) ,
1

T

∫ t0+T

t0

v(z, t) i(z, t) dt (3.133)

where T , 2π/f is one period of the wave and t0
is the start time for the integration. Since the
time-average power of a sinusoidal signal is
time-invariant, t0 may be set equal to zero
without loss of generality.

Let us now calculate the power of a wave
incident from z < 0 on a load impedance ZL at
z = 0. We may express the associated potential
and current as follows:

v+(z, t) =
∣∣V +

0

∣∣ cos (ωt− βz + φ) (3.134)

i+(z, t) =

∣∣V +
0

∣∣
Z0

cos (ωt− βz + φ) (3.135)

And so the associated time-average power is

P+
av(z) =

1

T

∫ T

0

v+(z, t) i+(z, t) dt

=

∣∣V +
0

∣∣2

Z0
· 1
T

∫ T

0

cos2 (ωt− βz + φ) dt

(3.136)

Employing a well-known trigonometric identity:

cos2 θ =
1

2
+

1

2
cos 2θ (3.137)

we may rewrite the integrand as follows

cos2 (ωt− βz + φ) =
1

2
+

1

2
cos (2 [ωt− βz + φ])

(3.138)
Then integrating over both sides of this quantity

∫ T

0

cos2 (ωt− βz + φ) dt =
T

2
+ 0 (3.139)

The second term of the integral is zero because it
is the integral of cosine over two complete
periods. Subsequently we see that the position
dependence (here, the dependence on z) is
eliminated. In other words, the power associated
with the incident wave is the same for all z < 0,
as expected. Substituting into Equation 3.136 we
obtain:

P+
av =

∣∣V +
0

∣∣2

2Z0
(3.140)

This is the time-average power associated with
the incident wave, measured at any point z < 0
along the line.

Equation 3.140 gives the time-average power
associated with a wave traveling in a single
direction along a lossless transmission line.

Using precisely the same procedure, we find that
the power associated with the reflected wave is

P−
av =

∣∣ΓV +
0

∣∣2

2Z0
= |Γ|2

∣∣V +
0

∣∣2

2Z0
(3.141)

or simply

P−
av = |Γ|2 P+

av (3.142)

Equation 3.142 gives the time-average power
associated with the wave reflected from an
impedance mismatch.

Now: What is the power PL delivered to the load
impedance ZL? The simplest way to calculate
this power is to use the principle of conservation
of power. Applied to the present problem, this
principle asserts that the power incident on the
load must equal the power reflected plus the
power absorbed; i.e.,

P+
av = P−

av + PL (3.143)
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Applying the previous equations, this can be
rewritten

PL =
(
1− |Γ|2

)
P+
av (3.144)

Equations 3.144 gives the time-average power
transferred to a load impedance, and is equal
to the difference between the powers of the
incident and reflected waves.

Example 3.8. How important is it to
match 50 Ω to 75 Ω?

Two impedances which commonly appear in
radio engineering are 50 Ω and 75 Ω. It is
not uncommon to find that it is necessary to
connect a transmission line having a 75 Ω
characteristic impedance to a device, circuit,
or system having a 50 Ω input impedance,
or vice-versa. If no attempt is made to
match these impedances, what fraction of
the power will be delivered to the
termination, and what fraction of power will
be reflected? What is the SWR?

Solution. The voltage reflection coefficient
going from 50 Ω transmission line to a 75 Ω
load is

Γ =
75− 50

75 + 50
= 0.2

The fraction of power reflected is
|Γ|2 = 0.04, which is 4%. The fraction of

power transmitted is 1− |Γ|2, which is 96%.
Going from a 50 Ω transmission line to a
75 Ω termination changes only the sign of Γ,
and therefore the fractions of reflected and
transmitted power remain 4% and 96%,
respectively. In either case (from
Section 3.14):

SWR =
1 + |Γ|
1− |Γ| = 1.5

This is often acceptable, but may not be
good enough in some particular
applications. Suffice it to say that it is not a

“given” that an impedance-matching device
is required to connect a 50 Ω to 75 Ω.

3.21 Impedance Matching:
General Considerations

[m0092]

“Impedance matching” refers to the problem of
transforming a particular impedance ZL into a
modified impedance Zin. The problem of
impedance matching arises because it is not
convenient, practical, or desirable to have all
devices in a system operate at the same input
and output impedances. Here are just a few of
the issues:

• It is not convenient or practical to market
coaxial cables having characteristic
impedance equal to every terminating
impedance that might be encountered.

• Different types of antennas operate at
different impedances, and the impedance of
most antennas vary significantly with
frequency.

• Different types of amplifiers operate most
effectively at different output impedances.
For example, amplifiers operating as current
sources operate most effectively with low
output impedance, whereas amplifiers
operating as voltage sources operate most
effectively with high output impedances.

• Independently of the above issue, techniques
for the design of transistor amplifiers rely on
intentionally mismatching impedances; i.e.,
matching to an impedance different than
that which maximizes power transfer or
minimizes reflection. In other words, various
design goals are met by applying particular
impedances to the input and output ports of
the transistor.7

7For a concise introduction to this concept, see Chap-
ter 10 of S.W. Ellingson, Radio Systems Engineering, Cam-
bridge Univ. Press, 2016.
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For all of these reasons, electrical engineers
frequently find themselves with the task of
transforming a particular impedance ZL into a
modified impedance Zin.

The reader is probably already familiar with a
broad class of approaches to the impedance
matching problem that employ discrete
components and do not require knowledge of
electromagnetics.8 To list just a few of these:
transformers, resistive (lossy) matching,
single-reactance matching, and two-reactance
(“L” network) matching. However all of these
have limitations. Perhaps the biggest set of
limitations pertains to the performance of
discrete components at high frequencies. Here
are just a few of the most common problems:

• Practical resistors actually behave as ideal
resistors in series with ideal inductors,

• Practical capacitors actually behave as ideal
capacitors in series with ideal resistors, and

• Practical inductors behave as ideal inductors
in parallel with ideal capacitors, and in
series with ideal resistors.

All of this makes the use of discrete components
increasingly difficult with increasing frequency.

One possible solution to these types of problems
is to more precisely model each component, and
then to account for the non-ideal behavior by
incorporating the appropriate models in the
analysis and design process. Alternatively, one
may consider ways to replace particular
troublesome components – or, in some cases, all
discrete components – with transmission line
devices. The later approach is particularly
convenient in circuits implemented on printed
circuit boards at frequencies in the UHF band
and higher, since the necessary transmission line
structures are easy to implement as microstrip
line, and are relatively compact since the
wavelength is relatively small. However,
applications employing transmission lines as

8For an overview, see Chapter 9 of S.W. Ellingson, Ra-
dio Systems Engineering, Cambridge Univ. Press, 2016.

components in impedance matching devices can
be found at lower frequencies as well.

3.22 Single-Reactance
Matching

[m0093]

An impedance matching structure can be
designed using a section of transmission line
combined with a discrete reactance, such as a
capacitor or an inductor. In the strategy
presented here, the transmission line is used to
transform the real part of the load impedance or
admittance to the desired value, and then the
reactance is used to modify the imaginary part to
the desired value. (Note the difference between
this approach and the quarter-wave technique
described in Section 3.19: In that approach, the
first transmission line is used to zero the
imaginary part.) There are two versions of this
strategy, which we will now consider separately.

The first version is shown in Figure 3.28. The
purpose of the transmission line is to transform
the load impedance ZL into a new impedance Z1

for which Re{Z1} = Re{Zin}. This can be done
by solving the equation (from Section 3.15)

Re {Z1} = Re

{
Z0

1 + Γe−j2βl

1− Γe−j2βl

}
(3.145)

for l, using a numerical search, or using the
Smith chart.9 The characteristic impedance Z0

and phase propagation constant β of the
transmission line are independent variables and
can be selected for convenience. Normally the
smallest value of l that satisfies Equation 3.145 is
desired. This value will be ≤ λ/4 because the
real part of Z1 is periodic in l with period λ/4.

After matching the real component of the
impedance in this manner, the imaginary
component of Z1 may then be transformed to the
desired value (Im{Zin}) by attaching a reactance

9For more about the Smith chart, see “Additional Read-
ing” at the end of this section.
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Z
L

Z
1

Z
0

%

jXS

Zin

Figure 3.28: Single-reactance matching with a se-
ries reactance.

Xs in series with the transmission line input,
yielding Zin = Z1 + jXS . Therefore we choose

Xs = Im {Zin − Z1} (3.146)

The sign of Xs determines whether this
reactance is a capacitor (Xs < 0) or inductor
(Xs > 0), and the value of this component is
determined from Xs and the design frequency.

Example 3.9. Single reactance in series.

Design a match consisting of a transmission
line in series with a single capacitor or
inductor that matches a source impedance of
50Ω to a load impedance of 33.9 + j17.6 Ω
at 1.5 GHz. The characteristic impedance
and phase velocity of the transmission line
are 50Ω and 0.6c respectively.

Solution. From the problem statement:
Zin , ZS = 50 Ω and ZL = 33.9 + j17.6 Ω
are the source and load impedances
respectively at f = 1.5 GHz. The
characteristic impedance and phase velocity
of the transmission line are Z0 = 50 Ω and
vp = 0.6c respectively.

The reflection coefficient Γ (i.e., ZL with
respect to the characteristic impedance of
the transmission line) is

Γ ,
ZL − Z0

ZL + Z0

∼= −0.142 + j0.239 (3.147)

The length l of the primary line (that is, the
one that connects the two ports of the
matching structure) is determined using the
equation:

Re {Z1} = Re

{
Z0

1 + Γe−j2βl

1− Γe−j2βl

}
(3.148)

where here Re {Z1} = Re {ZS} = 50 Ω. So a
more-specific form of the equation that can
be solved for βl (as a step toward finding l)
is:

1 = Re

{
1 + Γe−j2βl

1− Γe−j2βl

}
(3.149)

By trial and error (or, using the Smith chart
if you prefer) we find βl ∼= 0.408 rad for the
primary line, yielding Z1

∼= 50.0 + j29.0 Ω
for the input impedance after attaching the
primary line.

We may now solve for l as follows: Since
vp = ω/β (Section 3.8), we find

β =
ω

vp
=

2πf

0.6c
∼= 52.4 rad (3.150)

Therefore l = (βl) /β ∼= 7.8 mm.

The impedance of the series reactance
should be jXs

∼= −j29.0 Ω to cancel the
imaginary part of Z1. Since the sign of this
impedance is negative, it must be a
capacitor. The reactance of a capacitor is
−1/ωC, so it must be true that

− 1

2πfC
∼= −29.0 Ω (3.151)

Thus we find the series reactance is a
capacitor of value C ∼= 3.7 pF.

The second version of the single-reactance
strategy is shown in Figure 3.29. The difference
in this scheme is that the reactance is attached in
parallel. In this case it is easier to work the
problem using admittance (i.e., reciprocal
impedance) as opposed to impedance; this is
because the admittance of parallel reactances is
simply the sum of the associated admittances;
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Figure 3.29: Single-reactance matching with a
parallel reactance.

i.e.,

Yin = Y1 + jBp (3.152)

where Yin = 1/Zin, Y1 = 1/Z1, and Bp is the
discrete parallel susceptance; i.e., the imaginary
part of the discrete parallel admittance.

So, the procedure is as follows: The transmission
line is used to transform YL into a new
admittance Y1 for which Re{Y1} = Re{Yin}.
First we note that

Y1 ,
1

Z1
= Y0

1− Γe−j2βl

1 + Γe−j2βl
(3.153)

where Y0 , 1/Z0 is characteristic admittance.
Again the characteristic impedance Z0 and phase
propagation constant β of the transmission line
are independent variables and can be selected for
convenience. In the present problem we aim to
solve the equation

Re {Y1} = Re

{
Y0

1− Γe−j2βl

1 + Γe−j2βl

}
(3.154)

for the smallest value of l, using a numerical
search or using the Smith chart. After matching
the real component of the admittances in this
manner, the imaginary component of the
resulting admittance may then be transformed to
the desired value by attaching the susceptance
Bp in parallel with the transmission line input.
Since we desire jBp in parallel with Y1 to be Yin,
the desired value is

Bp = Im {Yin − Y1} (3.155)

The sign of Bp determines whether this is a
capacitor (Bp < 0) or inductor (Bp > 0), and the
value of this component is determined from Bp
and the design frequency.

Example 3.10. Single reactance in parallel.

Design a match consisting of a transmission
line in parallel with a single capacitor or
inductor that matches a source impedance of
50Ω to a load impedance of 33.9 + j17.6 Ω
at 1.5 GHz. The characteristic impedance
and phase velocity of the transmission line
are 50Ω and 0.6c respectively.

Solution. From the problem statement:
Zin , ZS = 50 Ω and ZL = 33.9 + j17.6 Ω
are the source and load impedances
respectively at f = 1.5 GHz. The
characteristic impedance and phase velocity
of the transmission line are Z0 = 50 Ω and
vp = 0.6c respectively.

The reflection coefficient Γ (i.e., ZL with
respect to the characteristic impedance of
the transmission line) is

Γ ,
ZL − Z0

ZL + Z0

∼= −0.142 + j0.239 (3.156)

The length l of the primary line (that is, the
one that connects the two ports of the
matching structure) is the solution to:

Re {Y1} = Re

{
Y0

1− Γe−j2βl

1 + Γe−j2βl

}
(3.157)

where here Re {Y1} = Re {1/ZS} = 0.02 mho
and Y0 = 1/Z0 = 0.02 mho. So the equation
to be solved for βl (as a step toward finding
l) is:

1 = Re

{
1− Γe−j2βl

1 + Γe−j2βl

}
(3.158)

By trial and error (or the Smith chart) we
find βl ∼= 0.126 rad for the primary line,
yielding Y1 ∼= 0.0200− j0.0116 mho for the
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input admittance after attaching the
primary line.

We may now solve for l as follows: Since
vp = ω/β (Section 3.8), we find

β =
ω

vp
=

2πf

0.6c
∼= 52.4 rad (3.159)

Therefore l = (βl) /β ∼= 2.4 mm.

The admittance of the parallel reactance
should be jBp ∼= +j0.0116 mho to cancel
the imaginary part of Y1. The associated
impedance is 1/jBp ∼= −j86.3 Ω. Since the
sign of this impedance is negative, it must
be a capacitor. The reactance of a capacitor
is −1/ωC, so it must be true that

− 1

2πfC
∼= −86.3 Ω (3.160)

Thus we find the parallel reactance is a
capacitor of value C ∼= 1.2 pF.

Additional Reading:

• “Smith chart” on Wikipedia.

3.23 Single-Stub Matching

[m0094]

In Section 3.22 we considered impedance
matching schemes consisting of a transmission
line combined with a reactance which is placed
either in series or in parallel with the
transmission line. In many problems the required
discrete reactance is not practical because it is
not a standard value, or because of non-ideal
behavior at the desired frequency (see
Section 3.21 for more about this), or because one
might simply wish to avoid the cost and logistical
issues associated with an additional component.
Whatever the reason, a solution is to replace the
discrete reactance with a transmission line
“stub”; that is, a transmission line which has
been open- or short-circuited. Section 3.16

Connector

M'() *(),

Stub

Spinningspark CC BY SA 3.0

Figure 3.30: A practical implementation of
a single-stub impedance match using microstrip
transmission line. Here, the stub is open-circuited.

explains how it is that a stub can replace a
discrete reactance. Figure 3.30 shows a practical
implementation of this idea, implemented in
microstrip. This section explains the theory, and
we’ll return to this implementation at the end of
the section.

Figure 3.31 shows the scheme. This scheme is
ususally implemented using the parallel reactance
approach, as depicted in the figure. Although a
series reactance scheme is also possible in
principle, it is usually not as convenient. This is
because most transmission lines use one of their
two conductors as a local datum; e.g., the ground
plane of a printed circuit board for microstrip
line is tied to ground, and the outer conductor
(“shield”) of a coaxial cable is usually tied to
ground. This is contrast to a discrete reactance
(such as a capacitor or inductor), which does not
require that either of its terminals be tied to
ground. This issue is avoided in the
parallel-attached stub because the
parallel-attached stub and the transmission line
to which it is attached both have one terminal at
ground.

The single-stub matching procedure is essentially
the same as the single parallel reactance method,
except the parallel reactance is implemented
using a short- or open-circuited stub as opposed
a discrete inductor or capacitor. Since parallel
reactance matching is most easily done using
admittances, it is useful to express
Equations 3.116 and 3.118 (input impedance of
an open- and short-circuited stub, respectively,

https://en.wikipedia.org/wiki/Smith_chart
https://creativecommons.org/licenses/by-sa/3.0/deed.en
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Figure 3.31: Single-stub matching.

from Section 3.16) in terms of susceptance:

Bp = −Y02 cot (β2l2) short-circuited stub
(3.161)

Bp = +Y02 tan (β2l2) open-circuited stub
(3.162)

As in the main line, the characteristic impedance
Z02 = 1/Y02 is an independent variable and is
chosen for convenience.

A final question is: When to choose the
short-circuited stub, and when to choose the
open-circuited stub? Given no other basis for
selection, the termination that yields the shortest
stub is chosen. An example of an “other basis for
selection” that frequently comes up is whether
DC might be present on the line. If DC is present
with the signal of interest, then a short circuit
termination without some kind of remediation for
the DC component would certainly be a bad idea.

Example 3.11. Single stub matching.

Design a single-stub match that matches a
source impedance of 50Ω to a load
impedance of 33.9 + j17.6 Ω. Use
transmission lines having characteristic
impedances of 50Ω throughout, and leave
your answer in terms of wavelengths.

Solution. From the problem statement:
Zin , ZS = 50 Ω and ZL = 33.9 + j17.6 Ω
are the source and load impedances
respectively. Z0 = 50 Ω is the characteristic
impedance of the transmission lines to be
used. The reflection coefficient Γ (i.e., ZL
with respect to the characteristic impedance
of the transmission line) is

Γ ,
ZL − Z0

ZL + Z0

∼= −0.142 + j0.239 (3.163)

The length l1 of the primary line (that is,
the one that connects the two ports of the
matching structure) is the solution to the
equation (from Section 3.22):

Re {Y1} = Re

{
Y01

1− Γe−j2β1l1

1 + Γe−j2β1l1

}
(3.164)

where here Re {Y1} = Re {1/ZS} = 0.02 mho
and Y01 = 1/Z0 = 0.02 mho. Also note

2β1l1 = 2

(
2π

λ

)
l1 = 4π

l1
λ

(3.165)

where λ is the wavelength in the
transmission line. So the equation to be
solved for l1 is:

1 = Re

{
1− Γe−j4πl1/λ

1 + Γe−j4πl1/λ

}
(3.166)

By trial and error (or using the Smith chart;
see “Additional Reading” at the end of this
section) we find l1 ∼= 0.020λ for the primary
line, yielding Y1 ∼= 0.0200− j0.0116 mho for
the input admittance after attaching the
primary line.

We now seek the shortest stub having an
input admittance of ∼= +j0.0116 mho to
cancel the imaginary part of Y1. For an
open-circuited stub, we need

Bp = +Y0 tan 2πl2/λ ∼= +j0.0116 mho
(3.167)

The smallest value of l2 for which this is
true is ∼= 0.084λ. For a short-circuited stub,
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we need

Bp = −Y0 cot 2πl2/λ ∼= +j0.0116 mho
(3.168)

The smallest positive value of l2 for which
this is true is ∼= 0.334λ; i.e., much longer.
Therefore, we choose the open-circuited stub
with l2 ∼= 0.084λ. Note the stub is attached
in parallel at the source end of the primary
line.

Finally, returning to Figure 3.30: Single-stub
matching is a very common method for
impedance matching using microstrip
transmission lines at frequences in the UHF band
(300-3000 MHz) and above. In Figure 3.30 the
top (visible) traces comprise one conductor,
whereas the ground plane (underneath, so not
visible) comprises the other conductor. The end
of the stub is not connected to the ground plane,
so the termination is an open circuit. A short
circuit termination is accomplished by connecting
the end of the stub to the ground plane using a
via; that is, a plated-through that electrically
connects the top and bottom layers.

Additional Reading:

• “Stub (electronics)” on Wikipedia.

• “Smith chart” on Wikipedia.

• “Via (electronics)” on Wikipedia.

[m0151]

https://en.wikipedia.org/wiki/Stub_(electronics)
https://en.wikipedia.org/wiki/Smith_chart
https://en.wikipedia.org/wiki/Via_(electronics)
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Chapter 4

Vector Analysis

4.1 Vector Arithmetic

[m0006]

A vector is a mathematical object that has both
a scalar part (i.e., a magnitude and possibly a
phase) as well as a direction. Many physical
quantities are best described as vectors. For
example, the rate of movement through space
can be described as speed ; i.e., as a scalar having
units of m/s. However this quantity is more
completely described as velocity ; i.e., as a vector
whose scalar part is speed and direction indicates
the direction of movement. Similarly, force is a
vector whose scalar part indicates magnitude
(units of N) and direction indicates the direction
in which the force is applied. Electric and
magnetic fields are also best described as vectors.

In mathematical notation, a real-valued vector A
is said to have a magnitude A = |A| and
direction â such that

A = Aâ (4.1)

where â is a unit vector (i.e., a real-valued vector
having magnitude equal to one) having the same
direction as A. If a vector is complex-valued,
then A is similarly complex-valued.

Cartesian Coordinate System. Fundamentals
of vector arithmetic are most easily gasped using
the Cartesian coordinate system. This system is
shown in Figure 4.1. Note carefully the relative
orientation of the x, y, and z axes. This
orientation is important. For example: there are
two directions that are perpendicular to the

y

x

.

origin

c© K. Kikkeri CC BY SA 4.0

Figure 4.1: Cartesian coordinate system.

z = 0 plane (in which the x- and y-axes lie), but
the +z axis is specified to be one of these in
particular.

Position-Fixed vs. Position-Free Vectors.
It is often convenient to describe a position in
space as a vector whose magnitude is the
distance from the origin of the coordinate system
and whose direction is measured from the origin
toward the position of interest. This is shown in
Figure 4.2. These position vectors are
“position-fixed” in the sense that they are
defined with respect to a single point in space; in
this case, the origin. Position vectors can also be

Electromagnetics Vol 1 (Beta). c© 2018 S.W. Ellingson. CC BY SA 4.0 https://doi.org/10.7294/W4WQ01ZM

https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.7294/W4WQ01ZM
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c© K. Kikkeri CC BY SA 4.0

Figure 4.2: Position vectors. The vectors r1 and
r1 are position-fixed and refer to particular loca-
tions.

defined as vectors that are defined with respect
to some other point in space; in which case they
are considered position-fixed to that position.

Position-free vectors, on the other hand, are not
defined with respect to a particular point in
space. An example is shown in Figure 4.3.
Particles 1 m apart may both be traveling at
2 m/s in the same direction. In this case the
velocity of each particle can be described using
the same vector, even though the particles are
located at different points in space.

Position-free vectors are said to be equal if they
have the same magnitudes and directions.
Position-fixed vectors, on the other hand, must
be also be referenced to the same position (e.g.,
the origin) to be considered equal.

Basis Vectors. Each coordinate system is
defined in terms of three basis vectors which
concisely describe all possible ways to traverse
three-dimensional space. A basis vector is a

v

particle 1

1

v

particle 2

2

c© K. Kikkeri CC BY SA 4.0

Figure 4.3: Two particles exhibiting the same
velocity. In this case, the velocity vectors v1 and
v2 are position-free and equal.

position-free unit vector which is perpendicular
to all other basis vectors for that coordinate
system. The basis vectors x̂, ŷ, and ẑ of the
Cartesian coordinate system are shown in
Figure 4.4. In this notation, x̂ indicates the
direction in which x increases most rapidly, ŷ
indicates the direction in which y increases most
rapidly, and ẑ indicates the direction in which z
increases most rapidly. Alternatively, you might
interpret x̂, ŷ, and ẑ as unit vectors that are
parallel to the x-, y-, and z-axes and point in the
direction in which values along each axis
increase.

Vectors in the Cartesian Coordinate
System. In Cartesian coordinates, we may
describe any vector A as follows:

A = x̂Ax + ŷAy + ẑAz (4.2)

where Ax, Ay, and Az are scalar quantities
describing the components of A in each of the
associated directions, as shown in Figure 4.5.
This description makes it clear that the
magnitude of A is:

|A| =
√
A2
x +A2

y +A2
z (4.3)

and therefore we can calculate the associated

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
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Figure 4.4: Basis vectors in the Cartesian coor-
dinate system.

unit vector as

â =
A

|A| =
A√

A2
x +A2

y +A2
z

= x̂Ax
(
A2
x +A2

y +A2
z

)−1/2

+ ŷAy
(
A2
x +A2

y +A2
z

)−1/2

+ ẑAz
(
A2
x +A2

y +A2
z

)−1/2

(4.4)

Vector Addition and Subtraction. It is
common to add and subtract vectors. For
example, vectors describing two different forces
A and B applied to the same point can be
described as a single force vector C which is the
sum of A and B; i.e., C = A+B. This addition
is quite simple in the Cartesian coordinate
system:

C = A+B

= (x̂Ax + ŷAy + ẑAz) + (x̂Bx + ŷBy + ẑBz)

= x̂ (Ax +Bx) + ŷ (Ay +By) + ẑ (Az +Bz)

(4.5)

In other words, the x̂ component of C is the sum
of the x̂ components of A and B, and similarly

y

4

5

A6

A7

Ay

A

c© K. Kikkeri CC BY SA 4.0

Figure 4.5: Components of a vector A in the
Cartesian coordinate system.

for ŷ and ẑ. From the above example, it is clear
that vector addition is commutative; i.e.,

A+B = B+A (4.6)

In other words, vectors may be added in any
order. Vector subtraction is defined similarly:

D = A−B

= (x̂Ax + ŷAy + ẑAz)− (x̂Bx + ŷBy + ẑBz)

= x̂ (Ax −Bx) + ŷ (Ay −By) + ẑ (Az −Bz)

(4.7)

In other words, the x̂ component of D is the
difference of the x̂ components of A and B, and
similarly for ŷ and ẑ. Like scalar subtraction,
vector subtraction is not commutative.

Relative Positions and Distances. A
common task in vector analysis is to describe the
position of one point in space relative to a
different point in space. Let us identify those two
points using the position vectors r1 and r2, as
indicated in Figure 4.6. We may identify a third
vector r12 as the position of r2 relative to r1:

r12 = r2 − r1 (4.8)

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
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Figure 4.6: Relative position (distance and direc-
tion) between locations identified by their position
vectors.

Now |r12| is the distance between these points,
and r12/ |r12| is a unit vector indicating the
direction to r2 from r1.

Example 4.1. Direction and distance
between positions.

Consider two positions, identified using the
position vectors r1 = 2x̂+ 3ŷ + 1ẑ and
r2 = 1x̂− 2ŷ + 3ẑ, both expressed in units
of meters. Find the direction vector that
points from r1 to r2, the distance between
these points, and the associated unit vector.

Solution. The vector that points from r1 to
r2 is

R = r2 − r1

= (1− 2)x̂+ (−2− 3)ŷ + (3− 1)ẑ

= −x̂− 5ŷ + 2ẑ (4.9)

The distance between r1 and r2 is simply
the magnitude of this vector:

|R| =
√
(−1)

2
+ (−5)

2
+ (2)

2 ∼= 5.48 m

(4.10)

The unit vector R̂ is simply R normalized

to have unit magnitude:

R̂ = R/ |R|
∼= (−x̂− 5ŷ + 2ẑ) /5.48
∼= −0.182x̂− 0.913ŷ + 0.365ẑ (4.11)

Multiplication of a Vector by a Scalar.
Let’s say a particular force is specified by a
vector F. What is the new vector if this force is
doubled? The answer is simply 2F; that is, twice
the magnitude applied in the same direction.
This is an example of scalar multiplication of a
vector. Generalizing, the product of the scalar α
and the vector A is simply αA.

Scalar (“Dot”) Product of Vectors. Another
common task in vector analysis is to determine
the similarity in the direction in which two
vectors point. In particular, it is useful to have a
metric which, when applied to the vectors
A = âA and B = b̂B, has the following
properties (see Figure 4.7):

• If A is perpendicular to B, the result is zero.

• If A and B point in the same direction, the
result is AB.

• If A and B point in opposite directions, the
result is −AB.

• Results intermediate to these conditions
depend on the angle ψ between A and B,
measured as if A and B were arranged
“tail-to-tail” as shown in Figure 4.8.

In vector analysis, this operator is known as the
scalar product (not to be confused with scalar
multiplication) or the dot product. The dot
product is written A ·B and is given in general
by the expression:

A ·B = AB cosψ (4.12)

Note that this expression yields the special cases
previously identified, which are ψ = π/2, ψ = 0,
and ψ = π, respectively. The dot product is
commutative; i.e.,

A ·B = B ·A (4.13)
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Figure 4.7: Special cases of the dot product.

The dot product is also distributive; i.e.,

A · (B+C) = A ·B+A ·C (4.14)

The dot product has some other useful

A

Bψ

c© K. Kikkeri CC BY SA 4.0

Figure 4.8: Calculation of the dot product.

properties. For example, note:

A ·A = (x̂Ax + ŷAy + ẑAz) · (x̂Ax + ŷAy + ẑAz)

= x̂ · x̂A2
x + x̂ · ŷAxAy + x̂ · ẑAxAz

+ ŷ · x̂AxAy + ŷ · ŷA2
y + ŷ · ẑAyAz

+ ẑ · x̂AxAz + ẑ · ŷAyAz + ẑ · ẑA2
z

(4.15)

which looks pretty bad until you realize that

x̂ · x̂ = ŷ · ŷ = ẑ · ẑ = 1 (4.16)

and any other dot product of basis vectors is
zero. Thus, the whole mess simplifies to:

A ·A = A2
x +A2

y +A2
z (4.17)

This is the square of the magnitude of A, so we
have discovered that

A ·A = |A|2 = A2 (4.18)

Applying the same principles to the computation
of the dot product of potentially different vectors
A and B, we find:

A ·B = (x̂Ax + ŷAy + ẑAz) · (x̂Bx + ŷBy + ẑBz)

= AxBx +AyBy +AzBz
(4.19)

This is a particularly easy way to calculate the
dot product, since it eliminates the problem of
determining the angle ψ. In fact, an easy way to
calculate this angle is to first calculate the dot
product using Equation 4.19 and then use the
result to solve Equation 4.12 for ψ.

Example 4.2. Angle between two vectors.

Consider the position vectors
C = 2x̂+ 3ŷ + 1ẑ and D = 3x̂− 2ŷ + 2ẑ,
both expressed in units of meters. Find the
angle between these vectors.

Solution. From Equation 4.12

C ·D = CD cosψ (4.20)

where C = |C|, D = |D|, and ψ is the angle

https://creativecommons.org/licenses/by-sa/4.0/
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we seek. From Equation 4.19:

C ·D = CxDx + CyDy + CzDz (4.21)

= 2 · 3 + 3 · (−2) + 1 · 2 m2 (4.22)

= 2 m2 (4.23)

also

C =
√
C2
x + C2

y + C2
z
∼= 3.742 m (4.24)

D =
√
D2
x +D2

y +D2
z
∼= 4.123 m (4.25)

so

cosψ =
C ·D
CD

∼= 0.130 (4.26)

Taking the inverse cosine, we find ψ = 82.6◦.

Cross Product. The cross product is a form of
vector multiplication that results in a vector
which is perpendicular to both of the operands.
The definition is as follows:

A×B = n̂AB sinψAB (4.27)

As shown in Figure 4.9, the unit vector n̂ is
determined by the “right hand rule”: Using your
right hand, curl your fingers to most directly
traverse the angle ψAB beginning at A and
ending at B; then n̂ points in the direction of
your fully-extended thumb.

It should be apparent that the cross product is
not commutative but rather is anticommutative;
that is,

A×B = −B×A (4.28)

You can confirm this for yourself using either
Equation 4.27 or simply by applying the
right-hand rule.

The cross product is distributive:

A× (B+C) = A×B+A×C (4.29)

There are two useful special cases of the cross
product that are worth memorizing. The first is
the cross product of a vector with itself, which is
zero:

A×A = 0 (4.30)

n

B

A

AB
ψ
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Figure 4.9: The cross product A×B.

The second is the cross product of vectors which
are perpendicular; i.e., for which ψAB = π/2. In
this case:

A×B = n̂AB (4.31)

In particular note:

x̂× x̂ = ŷ × ŷ = ẑ× ẑ = 0 (4.32)

whereas

x̂× ŷ = ẑ (4.33)

ŷ × ẑ = x̂ (4.34)

ẑ× x̂ = ŷ (4.35)

A useful diagram that summarizes these
relationships is shown in Figure 4.10.

It is typically awkward to “manually” determine
n̂ in Equation 4.27. However in Cartesian
coordinates the cross product may be calculated
as:

A×B = x̂ (AyBz −AzBy)

+ ŷ (AzBx −AxBz)

+ ẑ (AxBy −AyBx)

(4.36)

This may be easier to remember as a matrix
determinant:

A×B =

∣∣∣∣∣∣

x̂ ŷ ẑ
Ax Ay Az
Bx By Bz

∣∣∣∣∣∣
(4.37)
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x y

z

Figure 4.10: Cross products among basis vectors
in the Cartesian system. The cross product of any
two basis vectors is the third basis vector when the
order of operands is counter-clockwise as shown in
the diagram, and is −1 times the third basis vec-
tor when the order of operands is clockwise with
respect to the arrangement in the diagram.

Similar expressions are available for other
coordinate systems.

Vector analysis routinely requires expressions
involving both dot products and cross products
in different combinations. Often these
expressions may be simplified, or otherwise made
more convenient, using the vector identities listed
in Appendix B.3.

Additional Reading:

• “Vector field” on Wikipedia.

• “Vector algebra” on Wikipedia.

4.2 Cartesian Coordinates

[m0004]

The Cartesian coordinate system is introduced in
Section 4.1. Concepts described in that section –
i.e., the dot product and cross product – are
described in terms of the Cartesian system. In
this section we identify some additional features
of this system that are useful in subsequent work,
and also set the stage for alternative systems;
namely the cylindrical and spherical coordinate
systems.

Integration Over Length. Consider a vector

field A = x̂A(r), where r is a position vector.
What is the integral of A over some curve C
through space? To answer this question, we first
identify a differential-length segment of the curve
and note that this section of the curve can be
described as

dl = x̂dx+ ŷdy + ẑdz (4.38)

The contribution to the integral for that section
of the curve is simply A · dl, and then we
integrate to obtain the result; i.e.,

∫

C

A · dl (4.39)

For example, if A = x̂A0 (i.e., A(r) is a constant)
and if C is a straight line from x = x1 and x = x2
along some constant y and z, then dl = x̂dx,
A · dl = A0dx, and subsequently the above
integral is

∫ x2

x1

A0dx = A0 (x2 − x1) (4.40)

In particular notice that if A0 = 1 then this
integral gives the length of C. Although the
formalism seems unnecessary in this simple
example, it becomes very useful when integrating
over paths that vary in more than one direction
and with more complicated operands.

Note that the Cartesian system was an
appropriate choice for preceding example because
this allowed two of the three basis directions (i.e.,
y and z) to be immediately eliminated from the
calculation. Said differently, the preceding
example is expressed with the minimum number
of varying coordinates in the Cartesian system.
Here’s a counter-example: If C had been a circle
in the z = 0 plane, then the problem would have
required two basis directions to be considered;
namely, both x and y. In this case another
system – namely cylindrical coordinates
(Section 4.3) – minimizes the number of varying
coordinates (to just one; namely φ).

Integration Over Area. Now we ask the
question: What is the integral of some vector
field A over some surface S? The answer is

∫

S

A · ds (4.41)

https://en.wikipedia.org/wiki/Vector_field
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We refer to ds as the differential surface element,
which is a vector having magnitude equal to the
differential area ds; and is normal
(perpendicular) to each point on the surface.
There are actually two such directions: We’ll
choose +z for now and return to clear up the
ambiguity a bit later. Now, as an example, if
A = ẑ and S is the surface bounded by
x1 ≤ x ≤ x2, y1 ≤ y ≤ y2, then

ds = ẑ dx dy (4.42)

since dxdy is differential surface area in the z = 0
plane and ẑ is normal to the z = 0 plane. So
A · ds = dxdy, and subsequently the above
integral becomes

∫ x2

x1

∫ y2

y1

dx dy = (x2 − x1) (y2 − y1) (4.43)

i.e., this is a calculation of area.

Once again, we see the Cartesian system was an
appropriate choice for this example because this
choice minimizes the number of varying
coordinates; in the above example, the surface of
integration is described by a constant value of z
with variable values of x and y. If the surface
had instead been a cylinder or a sphere, not only
would all three basis directions be variable, but
also the surface normal n would be variable,
making the problem dramatically more
complicated.

Now let’s return to the issue of the direction of
ds. What’s the problem with choosing −ẑ as this
direction? Simply that the resulting area would
be negative. “Negative area” is simply the
expected (“positive”) area, except with respect
to the opposite-facing normal vector. In this
problem the sign of the area is simply a
technicality, but in some problems in
electromagnetics this sign becomes important.
This usually happens when the quantity of
interest is a flux. If A were a flux density, then
the integration over area that we just performed
indicates the magnitude and direction of flux,
and so the direction chosen for ds defines the
direction of positive flux. Here’s just one
example: Section 2.4 describes the electric field
in terms of a flux (i.e., as electric flux density D)

in which case positive flux flows away from a
positively-charged source.

Integration Over Volume. Another common
task in vector analysis is integration of some
quantity over a volume. Since the procedure is
the same for scalar or vector quantities, we shall
consider integration of a scalar quantity A(r) for
simplicity. First, we note that the contribution
from a differential volume element

dv = dx dy dz (4.44)

is A(r) dv, so the integral over the volume V is

∫

V

A(r) dv (4.45)

For example, if A(r) = 1 and V is a cube
bounded by x1 ≤ x ≤ x2, y1 ≤ y ≤ y2, and
z1 ≤ z ≤ z2, then the above integral becomes

∫ x2

x1

∫ y2

y1

∫ z2

z1

dx dy dz = (x2 − x1) (y2 − y1) (z2 − z1)

(4.46)
i.e., this is a calculation of volume.

The Cartesian system was an appropriate choice
for this example because V is a cube, which is
easy to describe in Cartesian coordinates and
relatively difficult to describe in any other
coordinate system.

Additional Reading:

• “Cartesian coordinate system” on
Wikipedia.

4.3 Cylindrical Coordinates

[m0096]

Cartesian coordinates (Section 4.2) are not
convenient in certain cases. One of these is when
the problem has cylindrical symmetry. For
example: In the Cartesian coordinate system, the
cross-section of a cylinder concentric with the
z-axis requires two coordinates to describe: x

https://en.wikipedia.org/wiki/Cartesian_coordinate_system
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Figure 4.11: Cylindrical coordinate system and
associated basis vectors.

and y. However this cross section can be
described using a single parameter – the radius ρ
– in the cylindrical coordinate system. This
results in a dramatic simplification of the
mathematics in some applications.

The cylindrical system is defined with respect to
the Cartesian system in Figure 4.11. In lieu of x
and y, the cylindrical system uses ρ, the distance
measured from the closest point on the z axis;1

and φ, the angle measured in a plane of constant
z, beginning at the +x axis (φ = 0) with φ
increasing toward the +y direction.

The basis vectors in the cylindrical system are ρ̂,
φ̂, and ẑ. As in the Cartesian system, the dot
product of like basis vectors is equal to one, and
the dot product of unlike basis vectors is equal to
zero. The cross products of basis vectors are as
follows:

ρ̂× φ̂ = ẑ (4.47)

φ̂× ẑ = ρ̂ (4.48)

ẑ× ρ̂ = φ̂ (4.49)

A useful diagram that summarizes these
relationships is shown in Figure 4.12.

1Note that some textbooks use “r” in lieu of ρ for this
coordinate.

? @

z

Figure 4.12: Cross products among basis vectors
in the cylindrical system. (See Figure 4.10 for in-
structions on the use of this diagram.)

The cylindrical system is usually less useful than
the Cartesian system for identifying absolute and
relative positions. This is because the basis
directions depend on position. For example, ρ̂ is
directed radially outward from the ẑ axis, so
ρ̂ = x̂ for points along the x-axis but ρ̂ = ŷ for
points along the y axis. Similarly, the direction φ̂
varies as a function of position. To overcome this
awkwardness, it is common to set up a problem
in cylindrical coordinates in order to exploit
cylindrical symmetry, but at some point to
convert to cartesian coordinates. Here are the
conversions:

x = ρ cosφ (4.50)

y = ρ sinφ (4.51)

and z has the same meaning in both systems.
The conversion from Cartesian to cylindrical is as
follows:

ρ =
√
x2 + y2 (4.52)

φ = arctan (y, x) (4.53)

where arctan is the four-quadrant inverse tangent
function; i.e., arctan(y/x) in the first quadrant
(x > 0, y > 0), but possibly requiring an
adjustment for the other quadrants because the
signs of both x and y are individually
significant.2

Similarly it is often necessary to represent basis
vectors of the cylindrical system in terms of
Cartesian basis vectors, and vice-versa.
Conversion of basis vectors is straightforward
using dot products to determine the components

2Note that this function is available in MATLAB and
Octave as atan2(y,x).
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· ρ̂ φ̂ ẑ
x̂ cosφ − sinφ 0
ŷ sinφ cosφ 0
ẑ 0 0 1

Table 4.1: Dot products between basis vectors in
the cylindrical and Cartesian coordinate systems.

of the basis vectors in the new system. For
example, x̂ in terms of the basis vectors of the
cylindrical system is

x̂ = ρ̂ (ρ̂ · x̂) + φ̂
(
φ̂ · x̂

)
+ ẑ (ẑ · x̂) (4.54)

This requires dot products between basis vectors
in the two systems, which are summarized in
Table 4.1. Using this table, we find

x̂ = ρ̂ cosφ− φ̂ sinφ (4.55)

ŷ = ρ̂ sinφ+ φ̂ cosφ (4.56)

and of course ẑ requires no conversion. Going
from Cartesian to cylindrical, we find

ρ̂ = x̂ cosφ+ ŷ sinφ (4.57)

φ̂ = −x̂ sinφ+ ŷ cosφ (4.58)

Integration Over Length. A
differential-length segment of a curve in the
cylindrical system is described in general as

dl = ρ̂dρ+ φ̂ρdφ+ ẑ dz (4.59)

Note that the contribution of the φ coordinate to
differential length is ρdφ, not simply dφ. This is
because φ is an angle, not a distance. To see why
the associated distance is ρdφ, consider the
following: The circumference of a circle of radius
ρ is 2πρ. If only a fraction of the circumference is
traversed, the associated arclength is the
circumference scaled by φ/2π, where φ is the
angle formed by the traversed circumference.
Therefore the distance is 2πρ · φ/2π = ρφ, and
the differential distance is ρdφ.

As always the integral of a vector field A(r) over
a curve C is ∫

C

A · dl (4.60)

dl

y

x
C DG
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Figure 4.13: Example in cylindrical coordinates:
The circumference of a circle.

To demonstrate the cylindrical system, let us
calculate the integral of A(r) = φ̂ when C is a
circle of radius ρ0 in the z = 0 plane, as shown in
Figure 4.13. In this example, dl = φ̂ ρ0 dφ since
ρ = ρ0 and z = 0 are both constant along C.
Subsequently A · dl = ρ0dφ and the above
integral is ∫ 2π

0

ρ0 dφ = 2πρ0 (4.61)

i.e., this is a calculation of circumference.

Note that the cylindrical system is an
appropriate choice for the preceding example
because the problem can be expressed with the
minimum number of varying coordinates in the
cylindrical system. If we had attempted this
problem in the Cartesian system, we would find
that both x and y vary over C, and in a relatively
complex way.3

Integration Over Area. Now we ask the
question: What is the integral of some vector
field A over a circular surface S in the z = 0
plane, having radius ρ0? This is shown in
Figure 4.14. The differential surface vector in
this case is

ds = ẑ (dρ) (ρdφ) = ẑ ρ dρ dφ (4.62)

3Nothing will drive this point home more firmly than
trying it. It can be done, but it’s a lot more work...
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Figure 4.14: Example in cylindrical coordinates:
The area of a circle.

The quantities in parentheses are the radial and
angular dimensions, respectively. The direction
of ds indicates the direction of positive flux – see
the discussion in Section 4.2 for an explanation.
In general, the integral over a surface is

∫

S

A · ds (4.63)

To demonstrate, let’s consider A = ẑ; in this case
A · ds = ρ dρ dφ and the integral becomes
∫ ρ0

0

∫ 2π

0

ρ dρ dφ =

(∫ ρ0

0

ρ dρ

)(∫ 2π

0

dφ

)

=

(
1

2
ρ20

)
(2π)

= πρ20
(4.64)

which we recognize as the area of the circle, as
expected. The corresponding calculation in the
Cartesian system is quite difficult in comparison.

Whereas the previous example considered a
planar surface, we might consider instead a
curved surface. Here we go: What is the integral
of a vector field A = ρ̂ over a cylindrical surface
S concentric with the z axis, having radius ρ0
and extending from z = z1 to z = z2? This is
shown in Figure 4.15. The differential surface
vector in this case is

ds = ρ̂ (ρ0dφ) (dz) = ρ̂ρ0 dφ dz (4.65)

y

x

z

ρ
z2

z1

ρdϕ

dz

0
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Figure 4.15: Example in cylindrical coordinates:
The area of the curved surface of a cylinder.

The integral is
∫

S

A · ds =
∫ 2π

0

∫ z2

z1

ρ0 dφdz

= ρ0

(∫ 2π

0

dφ

)(∫ z2

z1

dz

)

= 2πρ0 (z2 − z1)

(4.66)

which is the area of S, as expected. Once again,
the corresponding calculation in the Cartesian
system is quite difficult in comparison.

Integration Over Volume. The differential
volume element in the cylindrical system is

dv = dρ (ρdφ) dz = ρ dρ dφ dz (4.67)

For example, if A(r) = 1 and the volume V is a
cylinder bounded by ρ ≤ ρ0 and z1 ≤ z ≤ z2,
then
∫

V

A(r) dv =

∫ ρ0

0

∫ 2π

0

∫ z2

z1

ρ dρ dφ dz

=

(∫ ρ0

0

ρ dρ

)(∫ 2π

0

dφ

)(∫ z2

z1

dz

)

= πρ20 (z2 − z1)

(4.68)
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i.e., area time length, which is volume.

Once again: The procedure above is clearly more
complicated than is necessary if we are interested
only in computing volume; however then the
operand is not constant-valued we are no longer
computing volume; then this particular
formalism is appropriate and possibly necessary.

Additional Reading:

• “Cylindrical coordinate system” on
Wikipedia.

4.4 Spherical Coordinates

[m0097]

The spherical coordinate system is defined with
respect to the Cartesian system in Figure 4.16.
The spherical system uses r, the distance
measured from the origin;4 θ, the angle measured
from the +z axis toward the z = 0 plane; and φ,
the angle measured in a plane of constant z,
identical to φ in the cylindrical system.

Spherical coordinates are preferred over
Cartesian and cylindrical coordinates when the
geometry of the problem exhibits spherical
symmetry. For example: In the Cartesian
coordinate system, the surface of a sphere
concentric with the origin requires all three
coordinates (x, y, and z) to describe. However
this surface can be described using a single
constant parameter – the radius r – in the
spherical coordinate system. This leads to a
dramatic simplification in the mathematics in
certain applications.

The basis vectors in the spherical system are r̂,
θ̂, and φ̂. As always, the dot product of like basis
vectors is equal to one, and the dot product of
unlike basis vectors is equal to zero. For the
cross-products, we find:

r̂× θ̂ = φ̂ (4.69)

4Note that some textbooks use “R” in lieu of r for this
coordinate.
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Figure 4.16: Spherical coordinate system and as-
sociated basis vectors.

θ̂ × φ̂ = r̂ (4.70)

φ̂× r̂ = θ̂ (4.71)

A useful diagram that summarizes these
relationships is shown in Figure 4.17.

Like the cylindrical system, the spherical system
is usually less useful than the Cartesian system
for identifying absolute and relative positions.
The reason is the same: Basis directions in the
spherical system depend on position. For
example, r̂ is directed radially outward from the

θ

ϕ

r

Figure 4.17: Cross products among basis vectors
in the spherical system. (See Figure 4.10 for in-
structions on the use of this diagram.)
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· r̂ θ̂ φ̂
x̂ sin θ cosφ cos θ cosφ − sinφ
ŷ sin θ sinφ cos θ sinφ cosφ
ẑ cos θ − sin θ 0

Table 4.2: Dot products between basis vectors in
the spherical and Cartesian coordinate systems.

origin, so r̂ = x̂ for points along the x-axis but
r̂ = ŷ for points along the y axis and r̂ = ẑ for
points along the z axis. Similarly, the directions
of θ̂ and φ̂ vary as a function of position. To
overcome this awkwardness, it is common to set
up a problem in spherical coordinates in order to
exploit spherical symmetry, but at some point to
convert to Cartesian coordinates. Here are the
conversions:

x = r cosφ sin θ (4.72)

y = r sinφ sin θ (4.73)

z = r cos θ (4.74)

The conversion from Cartesian to spherical
coordinates is as follows:

r =
√
x2 + y2 + z2 (4.75)

θ = arccos (z/r) (4.76)

φ = arctan (y, x) (4.77)

(4.78)

where arctan is the four-quadrant inverse tangent
function.5

Dot products between basis vectors in the
spherical and Cartesian systems are summarized
in Table 4.2. This information can be used to
convert between basis vectors in the spherical
and Cartesian systems, in the same manner
described in Section 4.3; e.g.

x̂ = r̂ (r̂ · x̂) + θ̂
(
θ̂ · x̂

)
+ φ̂

(
φ̂ · x̂

)
(4.79)

r̂ = x̂ (x̂ · r̂) + ŷ (ŷ · r̂) + ẑ (ẑ · r̂) (4.80)

and so on.

5Note that this function is available in MATLAB and
Octave as atan2(y,x).

Example 4.3. Cartesian to spherical
conversion.

A vector field G = x̂ xz/y. Develop an
expression for G in spherical coordinates.

Solution: Simply substitute expressions in
terms of spherical coordinates for
expressions in terms of Cartesian
coordinates. Use Table 4.2 and
Equations 4.72–4.74. Making these
substitutions and applying a bit of
mathematical clean-up afterward, one
obtains

G =
(
r̂ sin θ cotφ+ φ̂ cos θ cotφ− φ̂

)

· r cos θ cosφ (4.81)

Integration Over Length. A
differential-length segment of a curve in the
spherical system is

dl = r̂ dr + θ̂ r dθ + φ̂ r sin θ dφ (4.82)

Note that θ is an angle, as opposed to a distance.
The associated distance is r dθ in the θ direction.
Note also that in the φ direction, distance is r dφ
in the z = 0 plane, and less by the factor sin θ for
z <> 0.

As always the integral of a vector field A(r) over
a curve C is ∫

C

A · dl (4.83)

To demonstrate line integration in the spherical
system, imagine a sphere of radius a centered at
the origin with “poles” at z = +a and z = −a.
let us calculate the integral of A(r) = θ̂ where C
is the arc drawn directly from pole to pole along
the surface of the sphere, as shown in
Figure 4.18. In this example, dl = θ̂ a dθ since
r = a and φ (which could be any value) are both
constant along C. Subsequently A · dl = a dθ and
the above integral is

∫ π

0

a dθ = πa (4.84)

i.e., half the circumference of the sphere, as
expected.
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Figure 4.18: Example in spherical coordinates:
Pole-to-pole distance on a sphere.

The point to be noted here is that the spherical
system is an appropriate choice for this example
because the problem can be expressed with the
maximum number of constant coordinates in the
spherical system. If we had attempted this
problem in the Cartesian system, we would find
that both z and either x or y (or all three) vary
over C, and in a relatively complex way.

Integration Over Area. Now we ask the
question: What is the integral of some vector
field A over the surface S of a sphere of radius a
centered on the origin? This is shown in
Figure 4.19. The differential surface vector in
this case is

ds = r̂ (r dθ) (r sin θ dφ) = r̂ r2 sin θ dθ dφ
(4.85)

As always, the direction is normal to the surface
and in the direction associated with positive flux.
The quantities in parentheses are the distances
associated with varying θ and φ, respectively. In
general, the integral over a surface is

∫

S

A · ds (4.86)

In this case, let’s consider A = r̂; in this case

a

r sinθ
 dϕ

y

x

z

r d
θ

c© K. Kikkeri CC BY SA 4.0

Figure 4.19: Example in spherical coordinates:
The area of a sphere.

A · ds = a2 sin θ dθ dφ and the integral becomes

∫ π

0

∫ 2π

0

a2 sin θ dθ dφ = a2
(∫ π

0

sin θdθ

)(∫ 2π

0

dφ

)

= a2 (2) (2π)

= 4πa2

(4.87)

which we recognize as the area of a sphere, as
expected. The corresponding calculation in the
Cartesian or cylindrical systems is quite difficult
in comparison.

Integration Over Volume. The differential
volume element in the spherical system is

dv = dr (rdθ) (r sin θdφ) = r2dr sin θ dθ dφ
(4.88)

For example, if A(r) = 1 and the volume V is a
sphere of radius a centered on the origin, then

∫

V

A(r) dv =

∫ a

0

∫ π

0

∫ 2π

0

r2dr sin θ dθ dφ

=

(∫ a

0

r2dr

)(∫ π

0

sin θ dθ

)(∫ 2π

0

dφ

)

=

(
1

3
a3
)
(2) (2π)

=
4

3
πa3

(4.89)

https://creativecommons.org/licenses/by-sa/4.0/
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which is the volume of a sphere.

Additional Reading:

• “Spherical coordinate system” on Wikipedia.

4.5 Gradient

[m0098]

The gradient operator is a important and useful
tool in electromagnetic theory. Here’s the main
idea:

The gradient of a scalar field is a vector which
points in the direction in which the field is
most rapidly increasing, with the scalar part
equal to the rate of change.

A particularly important application of the
gradient is that it relates the electric field
intensity E(r) to the electric potential field V (r).
This is apparent from a review of Section 2.2
(“Electric Field Intensity”); see in particular the
battery-charged capacitor example. In that
example it is demonstrated that:

• The direction of E(r) is the direction in
which V (r) decreases most quickly, and

• The scalar part of E(r) is the rate of change
of V (r) in that direction. Note that this is
also implied by the units, since V (r) has
units of V whereas E(r) has units of V/m.

The gradient is the mathematical operation that
relates the vector field E(r) to the scalar field
V (r) and is indicated by the symbol “∇” as
follows:

E(r) = −∇V (r) (4.90)

or, with the understanding that we are interested
in the gradient as a function of position r, simply

E = −∇V (4.91)

At this point we should note that the gradient is
a very general concept, and that we have merely

identified one application of the gradient above.
In electromagnetics there are many situations in
which we seek the gradient ∇f of some scalar
field f(r). Furthermore we find that other
differential operators that are important in
electromagnetics can be interpreted in terms of
the gradient operator ∇. These include
divergence (Section 4.6), curl (Section 4.8), and
the Laplacian (Section 4.10).

In the Cartesian system:

∇f = x̂
∂f

∂x
+ ŷ

∂f

∂y
+ ẑ

∂f

∂z
(4.92)

Example 4.4. Gradient of a ramp function.

Find the gradient of f = ax (a “ramp”
having slope a along the x direction).

Solution. Here, ∂f/∂x = a and
∂f/∂y = ∂f/∂z = 0. Therefore ∇f = x̂a.
Note that ∇f points in the direction in
which f most rapidly increases, and has
magnitude equal to the slope of f in that
direction.

The gradient operator in the cylindrical and
spherical systems is given in Appendix B.2.

Additional Reading:

• “Gradient” on Wikipedia.

4.6 Divergence

[m0044]

In this section we present the divergence
operator, which provides a way to calculate the
flux associated with a point in space. First, let us
review the concept of flux.

The integral of a vector field over a surface is a
scalar quantity known as flux. Specifically, the
flux F of a vector field A(r) over a surface S is

∫

S

A · ds = F (4.93)

https://en.wikipedia.org/wiki/Spherical_coordinate_system
https://en.wikipedia.org/wiki/Gradient
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Note that A could be fairly described as a flux
density ; i.e., a quantity having units equal to the
units of F , but divided by area (i.e., m2). Also
worth noting is that the flux of a vector field
which has unit magnitude and is normal to all
points on S is simply the area of S.

It is quite useful to identify some electromagnetic
quantities as either fluxes or flux densities. Here
are two important examples:

• The electric flux density D, having units of
C/m2, is a description of the electric field as
a flux density. (See Section 2.4 for more
about electric flux density.) The integral of
D over a closed surface yields the enclosed
charge Qencl, having units of C. This
relationship is known as Gauss’ Law:

∮

S

D · ds = Qencl (4.94)

(See Section 5.5 for more about Gauss’ Law.)

• The magnetic flux density B, having units of
Wb/m2, is a description of the magnetic field
as a flux density. (See Section 2.5 for more
about magnetic flux density.) The integral
of B over a surface (open or closed) yields
the magnetic flux Φ, having units of Wb:

∫

S

B · ds = Φ (4.95)

This is important because, for example, the
time rate of change of Φ is proportional to
electric potential. (See Section 8.3 for more
about this principle, called Faraday’s Law.)

Summarizing:

Flux is the scalar quantity obtained by inte-
grating a vector field, expressed in this case
as a flux density, over a specified surface.

The concept of flux applies to a surface of finite
size. However what is frequently of interest is
behavior at a single point, as opposed to the sum
or average over a region of space. For example:
Returning to the idea of electric flux density (D),

perhaps we are not concerned about the total
charge (units of C) enclosed by a surface, but
rather the charge density (C/m3) at a point. In
this case we could begin with Equation 4.94 and
divide both sides of the equation by the volume
V enclosed by S:

∮
S
D · ds
V

=
Qencl
V

(4.96)

Now we let V shrink to zero, giving us an
expression that must be true at whatever point
we decide to converge upon. Taking the limit as
V → 0:

lim
V→0

∮
S
D · ds
V

= lim
V→0

Qencl
V

(4.97)

The quantity on the right hand side is the volume
charge density ρv (units of C/m3) at the point at
which we converge after letting the volume go to
zero. The left hand side is, by definition, the
divergence of D, sometimes abbreviated “div D”.
Thus the above equation can be written

div D = ρv (4.98)

Divergence is the flux per unit volume
through an infinitesimally-small closed sur-
face surrounding a point.

We will typically not actually want to integrate
and take a limit in order to calculate the
divergence. Fortunately, we do not have to. It
turns out that this operation can be expressed as
the dot product ∇ ·D; where, for example,

∇ , x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z
(4.99)

in the Cartesian coordinate system. This is the
same “∇” that appears in definitions of the
gradient operator (Section 4.5) and is same
operator that often arises when considering other
differential operators. If we expand D in terms of
its Cartesian components:

D = x̂Dx + ŷDy + ẑDz (4.100)

Then

div D = ∇ ·D =
∂Dx

∂x
+
∂Dy

∂y
+
∂Dz

∂z
(4.101)
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This seems to make sense for two reasons. First,
it is dimensional correct: Taking the derivative of
a quantity having units of C/m2 with respect to
distance yields a quantity having units of C/m3.
Second, it makes sense that flux from a point
should be related to the sum of the rates of
change of the flux density in each basis direction.
Summarizing:

The divergence of a vector field A is ∇ ·A.

Example 4.5. Divergence of a uniform
field.

A field A which is constant with respect to
position is said to be uniform. A completely
general description of such a field is
A = x̂Ax + ŷAy + ẑAz where Ax, Ay, and
Az are all constants. We see immediately
that the divergence of such a field must be
zero: That is, ∇ ·A = 0, because each
component of A is constant with respect to
position. This also makes sense from the
perspective of the “flux through an
infinitesmally-small closed surface”
interpretation of divergence: If the flux is
uniform, the flux into the surface equals the
flux out of the surface, for a net flux of zero.

Example 4.6. Divergence of a
linearly-increasing field.

Consider a field A = x̂A0x where A0 is a
constant. The divergence of A is
∇ ·A = A0. If we interpret A as a flux
density, then we have found that the net flux
per unit volume is simply the rate at which
the flux density is increasing with distance.

To compute divergence in other coordinate
systems, we merely need to know either ∇ for
those systems. In the cylindrical system:

∇ = ρ̂
1

ρ

∂

∂ρ
ρ+ φ̂

1

ρ

∂

∂φ
ρ+ ẑ

∂

∂z
(4.102)

and in the spherical system:

∇ = r̂
1

r2
∂

∂r
r2 + θ̂

1

r sin θ

∂

∂θ
sin θ + φ̂

1

r sin θ

∂

∂φ
(4.103)

Alternatively, one may use the explicit
expressions for divergence given in Appendix B.2.

Example 4.7. Divergence of a
radially-decreasing field.

It is fairly common to encounter a vector
field which is directed radially outward from
a point and which decreases linearly with
distance; i.e., A = r̂A0/r where A0 is a
constant. For example, the electric field
intensity due to a point charge does this; see
Section 2.2. In this case, the divergence is
most easily computed in the spherical
coordinate system since partial derivatives
in all but one direction (r) equal zero.
Neglecting terms that include these
zero-valued partial derivatives, we find:

∇ ·A = r̂
1

r2
∂

∂r

(
r2
[
A0

r

])
=
A0

r2
(4.104)

In other words: If we interpret A as a flux
density, then the flux per unit volume is
decreasing with as the square of distance
from the origin. This seems reasonable since
the area of a sphere centered on the origin
increases with the square of distance from
the origin, and the flux density in the
present problem must be inversely
proportional to this area.

It is useful to know is that divergence, like ∇
itself, is a linear operator; that is, for any
constant scalars a and b and vector fields A and
B:

∇ · (aA+ bB) = a∇ ·A+ b∇ ·B (4.105)

Additional Reading:

• “Divergence” on Wikipedia.

https://en.wikipedia.org/wiki/Divergence
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4.7 Divergence Theorem

[m0046]

The Divergence Theorem relates an integral over
a volume to an integral over the surface bounding
that volume. This is useful in a number of
situations that arise in electromagnetic analysis.
In this section we derive this theorem.

Consider a vector field A representing a flux
density, such as the electric flux density D or
magnetic flux density B. The divergence of A is

∇ ·A = f (4.106)

where is f(r) is the flux per unit volume through
an infinitesimally-small closed surface
surrounding the point at r. Since f is flux per
unit volume, we can obtain flux for any larger
contiguous volume V by integrating over V; i.e.,

flux through V =

∫

V

f dv (4.107)

In the Cartesian system, V can be interpreted as
a three-dimensional grid of infinitesimally-small
cubes having sidelengths dx, dy, and dz
respectively. Note that the flux out of any face
of one of these cubes is equal to the flux into the
cube that is adjacent through that face. That is,
the portion of the total flux that flows between
cubes cancels when added together. In fact the
only fluxes which do not cancel in the integration
over V are those corresponding to faces which lie
on the bounding surface S, since the integration
stops there. Stating this mathematically:

∫

V

f dv =

∮

S

A · ds (4.108)

Thus, we have converted a volume integral into a
surface integral.

To obtain the Divergence Theorem, we return to
Equation 4.106. Integrating both sides of that
equation over V, we obtain

∫

V

(∇ ·A) dv =

∫

V

f dv (4.109)

Now applying Equation 4.108 to the right hand
side:

∫

V

(∇ ·A) dv =

∮

S

A · ds (4.110)

The Divergence Theorem (Equation 4.110)
states that the integral of the divergence of
a vector field over a volume is equal to the
flux of that field through the surface bound-
ing that volume.

The principal utility of the Divergence Theorem
is to convert problems which are defined in terms
of quantities known throughout a volume, into
problems which are defined in terms of quantities
known over the bounding surface; and vice-versa.
This theorem is employed several times in this
book.

Additional Reading:

• “Divergence theorem” on Wikipedia.

4.8 Curl

[m0048]

Curl is an operation that, when applied to a
vector field, quantifies the circulation of that
field. The concept of circulation has several
applications in electromagnetics. Two of these
applications correspond to directly to Maxwell’s
Equations:

• The circulation of an electric field is
proportional to the rate of change of the
magnetic field. This is a statement of the
Maxwell-Faraday Equation (Section 8.8),
which includes as a special case Kirchoff’s
Voltage Law (Section 5.11).

• The circulation of a magnetic field is
proportional to the source current and the
rate of change of the electric field. This is a
statement of Ampere’s Law (Sections 7.9
and 8.9)

https://en.wikipedia.org/wiki/Divergence_theorem
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Thus we are motivated to formally define
circulation, and then to figure out how to most
conveniently apply the concept in mathematical
analysis. The result is the curl operator.

So, we begin with the concept of circulation:

“Circulation” is the integral of a vector field
over a closed path.

Specifically, the circulation of the vector field
A(r) over the closed path C is

∮

C

A · dl (4.111)

The circulation of a uniform vector field is zero
for any valid path. For example, the circulation
of A = x̂A0 is zero because non-zero
contributions at each point on C cancel out when
summed over the closed path. On the other
hand, the circulation of A = φ̂A0 over a circular
path of constant ρ and z is a non-zero constant,
since the non-zero contributions to the integral
at each point on the curve are equal and
accumulate when summed over the path.

Example 4.8. Circulation of the magnetic
field intensity surrounding a line current.

Consider a current I (units of A) flowing
along the z axis in the +z direction, as
shown in Figure 4.20. It is known that this
current gives rise to a magnetic field
intensity H = φ̂H0/ρ, where H0 is a
constant having units of A since the units of
H are A/m. (Feel free to consult Section 7.5
for the details; however no additional
information is needed to follow the example
being presented here.) The circulation of H
along any circular path of radius a in a
plane of constant z is therefore

∮

C

H · dl =
∫ 2π

φ=0

(
φ̂
H0

a

)
·
(
φ̂ a dφ

)
= 2πH0

Note that the circulation of H in this case
has two remarkable features: (1) It is
independent of the radius of the path of

z

I

H

c© K. Kikkeri CC BY SA 4.0

Figure 4.20: Magnetic field intensity due to a
current flowing along the z axis.

integration; and (2) it has units of A, which
suggests a current. In fact, it turns out that
the circulation of H in this case is equal to
the enclosed source current I. Furthermore,
it turns out that the circulation of H along
any path enclosing the source current is
equal to the source current! These findings
are consequences of Ampere’s Law, as noted
above.

Curl is, in part, an answer to the question: What
is the circulation at a point in space? In other
words, what is the circulation as C shrinks to it’s
smallest possible size. The answer in one sense is
zero, since the arclength of C is zero in this limit
– there is nothing to integrate over. However if
we ask instead what is the circulation per unit
area in the limit, then the result should be the
non-trivial value of interest. To express this
mathematically, we constrain C to lie in a plane,
and define S to be the open surface bounded by
C in this case. Then we define the scalar part of
the curl of A to be:

lim
∆s→0

∮
C
A · dl
∆s

(4.112)

where ∆s is the area of S, and (important!) we
require C and S to lie in the plane that
maximizes the above result.

Because S and it’s boundary C lie in a plane, it is

https://creativecommons.org/licenses/by-sa/4.0/
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possible to assign a direction to the result. The
chosen direction is the normal n̂ to the plane in
which C and S lie. Because there are two
normals at each point on a plane, we specify the
one which satisfies the right hand rule. This rule,
applied to the curl, states that the correct
normal is the one which points through the plane
in the same direction as the fingers of the right
hand when the thumb of your right hand is
aligned along C in the direction of integration.
Why is this the correct orientation of n̂? See
Section 4.9 for the answer to that question. For
the purposes of this section, it suffices to consider
this to be simply an arbitrary sign convention.

Now with the normal vector n̂ unambiguously
defined, we can now formally define the curl
operation as follows:

curl A , lim
∆s→0

n̂
∮
C
A · dl
∆s

(4.113)

where, once again, ∆s is the area of S, and we
select S to lie in the plane that maximizes the
magnitude of the above result. Summarizing:

The curl operator quantifies the circulation of
a vector field at a point.

The magnitude of the curl of a vector field
is the circulation, per unit area, at a point
and such that the closed path of integration
shrinks to enclose zero area while being con-
strained to lie in the plane that maximizes
the magnitude of the result.

The direction of the curl is determined by the
right-hand rule applied to the associated path
of integration.

Curl is a very important operator in
electromagnetic analysis. However, the definition
(Equation 4.113) is usually quite difficult to
apply. Remarkably, however, it turns out that
the curl operation can be defined in terms of the
∇ operator; that is, the same ∇ operator
associated with the gradient, divergence, and
Laplacian operators. Here is that definition:

curl A , ∇×A (4.114)

For example: In Cartesian coordinates,

∇ , x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z
(4.115)

and
A = x̂Ax + ŷAy + ẑAz (4.116)

so curl can be calculated as follows:

∇×A =

∣∣∣∣∣∣

x̂ ŷ ẑ
∂
∂x

∂
∂y

∂
∂z

Ax Ay Az

∣∣∣∣∣∣
(4.117)

or, evaluating the determinant:

∇×A = x̂

(
∂Az
∂y

− ∂Ay
∂z

)

+ ŷ

(
∂Ax
∂z

− ∂Az
∂x

)

+ ẑ

(
∂Ay
∂x

− ∂Ax
∂y

)
(4.118)

Expressions for curl in each of the three major
coordinate systems is provided in Appendix B.2.

It is useful to know is that curl, like ∇ itself, is a
linear operator; that is, for any constant scalars a
and b and vector fields A and B:

∇× (aA+ bB) = a∇×A+ b∇×B (4.119)

Additional Reading:

• “Curl (mathematics)” on Wikipedia.

4.9 Stokes’ Theorem

[m0051]

Stokes’ Theorem relates an integral over an open
surface to an integral over the curve bounding
that surface. This relationship has a number of
applications in electromagnetic theory. Here is
the theorem:

∫

S

(∇×A) · ds =
∮

C

A · dl (4.120)

https://en.wikipedia.org/wiki/Curl_(mathematics)
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c© Cronholm144 (modified) CC BY SA 3.0

Figure 4.21: The relative orientations of the di-
rection of integration C and surface normal n̂ in
Stokes’ Theorem.

where S is the open surface bounded by the
closed path C. The direction of the surface
normal ds is related to the direction of
integration along C by the right hand rule,
illustrated in Figure 4.21. In this case, the right
hand rule states that the correct normal is the
one which points through the plane in the same
direction as the fingers of the right hand when
the thumb of your right hand is aligned along C
in the direction of integration.

Stokes’ Theorem is a purely mathematic result,
and not a principle of electromagnetics per se.
The relevance of the theorem to electromagnetic
theory is primarily as a tool in the associated
mathematical analysis. Usually the theorem is
employed to transform a problem expressed in
terms of an integration over a surface into an
integration over a closed path, or vice-versa. For
more information on the theorem and its
derivation, see “Additional Reading” at the end
of this section.

Additional Reading:

• “Stokes’ Theorem” on Wikipedia.

4.10 The Laplacian Operator

[m0099]

The Laplacian ∇2f of a field f(r) is the

divergence of the gradient of that field:

∇2f , ∇ · (∇f) (4.121)

Note that the Laplacian is essentially a definition
of the second derivative with respect to the three
spatial dimensions. For example, in Cartesian
coordinates,

∇2f =
∂2f

∂x2
+
∂2f

∂y2
+
∂2f

∂z2
(4.122)

as can be readily verified by applying the
definitions of gradient and divergence in
Cartesian coordinates to Equation 4.121.

The Laplacian relates the electric potential (i.e.,
V , units of V) to electric charge density (i.e., ρv,
units of C/m3). This relationship is known as
Poisson’s Equation (Section 5.15):

∇2V = −ρv
ǫ

(4.123)

where ǫ is the permittivity of the medium. The
fact that V is related to ρv in this way should
not be surprising, since electric field intensity (E,
units of V/m) is proportional to the derivative of
V with respect to distance (via the gradient) and
ρv is proportional to the derivative of E with
respect to distance (via the divergence).

The Laplacian operator can also be applied to
vector fields; for example, Equation 4.122 is valid
even if the scalar field “f” is replaced with a
vector field. In the Cartesian coordinate system,
the Laplacian of the vector field
A = x̂Ax + ŷAy + ẑAz is

∇2A = x̂∇2Ax + ŷ∇2Ay + ẑ∇2Az (4.124)

An important application of the Laplacian
operator of vector fields is the wave equation;
e.g., the wave equation for E in a lossless and
source-free region is (Section 9.2)

∇2E+ β2E = 0 (4.125)

where β is the phase propagation constant.

It is sometimes useful to know that the Laplacian
of a vector field can be expressed in terms of the
gradient, divergence, and curl as follows:

∇2A = ∇ (∇ ·A)−∇× (∇×A) (4.126)

https://creativecommons.org/licenses/by-sa/3.0/
https://en.wikipedia.org/wiki/Stokes'_theorem
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The Laplacian operator in the cylindrical and
spherical coordinate systems is given in
Appendix B.2.

Additional Reading:

• “Laplace operator” on Wikipedia.

[m0043]

https://en.wikipedia.org/wiki/Laplace_operator
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Chapter 5

Electrostatics

[m0116]

Electrostatics is the theory of the electric field in
conditions in which it’s behavior is independent
of magnetic fields, including

• The electric field associated with fixed
distributions of electric charge,

• Capacitance (the ability of a structure to
store energy in an electric field), and

• The energy associated with the electrostatic
field.

• Steady current induced in a conducting
material in the presence of an electrostatic
field (essentially, Ohm’s Law)

The term “static” refers to the fact that these
aspects of electromagnetic theory can be
developed by assuming sources are
time-invariant; we might say that electrostatics is
the study of the electric field at DC. However
many aspects of electrostatics are relevent to AC,
radio frequency, and higher-frequency
applications as well.

Additional Reading:

• Electrostatics on Wikipedia.

5.1 Coulomb’s Law

[m0102]

Consider two charge-bearing particles in free
space, identified as “particle 1” and “particle 2”
in Figure 5.1. Let the charges borne by these
particles be q1 and q2, and let R be the distance
between them. If the particles bear charges of
the same sign (i.e., if q1q2 is positive), then the
particles repel; otherwise, they attract. This
repulsion or attraction can be quantified as a
force experienced by each particle. Physical
observations reveal that the magnitude of the
force is proportional to q1q2, and inversely
proportional to R2. For particle 2 we find:

F = R̂F0
q1q2
R2

(5.1)

where R̂ is the unit vector pointing from the
particle 1 to the particle 2, and F0 is a constant.
The value of F0 must have units of inverse
permittivity; i.e., (F/m)−1. This is most easily
seen by dimensional analysis of the above
relationship, including the suspected factor:

C · C
F/m ·m2

=
C · C
F ·m =

C · C
C/V ·m =

C ·V
m

=
J

m
= N

where we have used the facts that 1 F = 1 C/V,
1 V = 1 J/C, and 1 N = 1 J/m. This finding
suggests that F0 ∝ ǫ−1, where ǫ is the
permittivity of the medium in which the particles
exist. Observations confirm that the force is in
fact inversely proportional to the permittivity,
with an additional factor of 1/4π (unitless).
Putting this all together we obtain what is
commonly known as Coulomb’s Law :

F = R̂
q1q2
4πǫR2

(5.2)

Electromagnetics Vol 1 (Beta). c© 2018 S.W. Ellingson. CC BY SA 4.0 https://doi.org/10.7294/W4WQ01ZM
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Figure 5.1: Coulomb’s Law describes the force
percieved by pairs of charged particles.

Subsequently the force perceived by particle 2 is
equal and opposite; i.e., equal to −F.

Separately it is known that F can be described in
terms of the electric field intensity E1 associated
with particle 1:

F = q2E1 (5.3)

This is essentially the definition of E1, as
explained in Section 2.2. Combining this result
with Coulomb’s Law, we obtain a means to
directly calculate the field associated with the
first particle in the absence of the second particle:

E1 = R̂
q1

4πǫR2
(5.4)

where now R̂R is the vector beginning at the
particle 1 and ending at the point to be
evaluated.

The electric field intensity associated with
a point charge (Equation 5.4) is (1) di-
rected away from positive charge, (2) pro-
portional to the magnitude of the charge, (3)
inversely proportional to the permittivity of
the medium, and (3) inversely proportional
to distance squared.

We have described this result as originating from
Coulomb’s Law, which is based on physical
observations. However the same result may be
obtained directly from Maxwell’s Equations
using Gauss’ Law (Section 5.5).

Example 5.1. Electric field of a point
charge at the origin.

A common starting point in electrostatic
analysis is the field associated with a
particle bearing charge q at the origin of the
coordinate system. Because the electric field
is directed radially away from a
positively-charged source particle in all
directions, this field is most conveniently
described in the spherical coordinate
system. Thus, R̂ becomes r̂, R becomes r,
and we have

E(r) = r̂
q

4πǫr2
(5.5)

Here’s a numerical example: What is the
electric field intensity at a distance 1 µm
from a single electron located at the origin,
in free space? In this case
q ∼= −1.60× 10−19 C (don’t forget that
minus sign!), ǫ = ǫ0, r = 1 µm, and we find:

E(r) = −r̂ (1.44 kV/m) (5.6)

This is large relative to electric field
strengths commonly encountered in
engineering applications. The strong electric
field of the electron is not readily apparent
because electrons in common materials tend
to be accompanied by roughly equal
amounts of positive charge, such as the
protons of atoms. Sometimes, however, the
effect of individual electrons does become
significant in practical electronics through a
phenomenon known as shot noise.

Additional Reading:

• “Coulomb’s Law” on Wikipedia.

• “Shot Noise” on Wikipedia.

5.2 Electric Field Due to
Point Charges

https://creativecommons.org/licenses/by-sa/4.0/
https://en.wikipedia.org/wiki/Coulomb's_law
https://en.wikipedia.org/wiki/Shot_noise
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[m0103]

The electric field intensity associated with a
single particle bearing charge q1, located at the
origin, is (Section 5.1)

E(r) = r̂
q1

4πǫr2
(5.7)

If this particle is instead located at some position
r1, then the above expression may be written as
follows:

E(r; r1) =
r− r1
|r− r1|

q1

4πǫ |r− r1|2
(5.8)

or, combining the like terms in the denominator:

E(r; r1) =
r− r1

|r− r1|3
q1
4πǫ

(5.9)

Now let us consider the field due to multiple such
particles. Under the usual assumptions about the
permittivity of the medium (reminder:
Section 2.8), the property of superposition
applies. Using this principle, we conclude:

The electric field resulting from a set of
charged particles is equal to the sum of the
fields associated with the individual particles.

Stated mathematically:

E(r) =

N∑

n=1

E(r; rn) (5.10)

where N is the number of particles. Thus we
have

E(r) =
1

4πǫ

N∑

n=1

r− rn

|r− rn|3
qn (5.11)

5.3 Charge Distributions

[m0100]

In principle the smallest unit of electric charge
that can be isolated is the charge of a single
electron, which is ∼= 1.60× 10−19 C. This is very

small, and we rarely deal with electrons one at a
time, so it is usually more convenient to describe
charge as a quantity which is continuous over
some region of space. In particular, it is
convenient to describe charge as being
distributed in one of three ways: along a curve,
over a surface, or within a volume.

Line Charge Distribution. Imagine that
charge is distributed along a curve C through
space. Let ∆q be the total charge along a short
segment of the curve, and let ∆l be the length of
this segment. The line charge density ρl at any
point along the curve is defined as

ρl , lim
∆l→0

∆q

∆l
=
dq

dl
(C/m) (5.12)

We may then define ρl(l) to be a function of
position along the curve, parameterized by l.
Then the total charge Q along the curve is

Q =

∫

C

ρl(l) dl (C) (5.13)

In other words, line charge density integrated
over length yields total charge.

Surface Charge Distribution. Imagine that
charge is distributed over a surface. Let ∆q be
the total charge on a small patch on this surface,
and let ∆s be the area of this patch. The surface
charge density ρs at any point on the surface is
defined as

ρs , lim
∆s→0

∆q

∆s
=
dq

ds
(C/m2) (5.14)

Let us define ρs to be a function of position on
this surface. Then the total charge over a surface
S is

Q =

∫

S

ρs ds (C) (5.15)

In other words, surface charge density integrated
over a surface yields total charge.

Volume Charge Distribution. Imagine that
charge is distributed over a volume. Let ∆q be
the total charge in a small cell within this
volume, and let ∆v be the volume of this cell.
The volume charge density ρv at any point in the
volume is defined as

ρv , lim
∆v→0

∆q

∆v
=
dq

dv
(C/m3) (5.16)
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Since ρv is a function of position within this
volume, the total charge within a volume V is

Q =

∫

V

ρv dv (C) (5.17)

In other words, volume charge density integrated
over a volume yields total charge.

5.4 Electric Field Due to a
Continuous Distribution
of Charge

[m0104]

The electric field intensity associated with N
charged particles is (Section 5.2):

E(r) =
1

4πǫ

N∑

n=1

r− rn

|r− rn|3
qn (5.18)

where qn and rn are the charge and position of

the nth particle. However it is common to have a
continuous distribution of charge as opposed to a
countable number of charged particles. In this
section we extend Equation 5.18 using the
concept of continuous distribution of charge
(Section 5.3) so that we may address this more
general class of problems.

Distribution of Charge Along a Curve.
Consider a continuous distribution of charge
along a curve C. The curve can be divided into
short segments of length ∆l. Then the charge

associated with the nth segment, located at rn, is

qn = ρl(rn) ∆l (5.19)

where ρl is charge density (units of C/m) at rn.
Substituting this expression into Equation 5.18,
we obtain

E(r) =
1

4πǫ

N∑

n=1

r− rn

|r− rn|3
ρl(rn) ∆l (5.20)

Taking the limit as ∆l → 0 yields:

E(r) =
1

4πǫ

∫

C

r− r′

|r− r′|3
ρl(r

′) dl (5.21)

where r′ represents the varying position along C
with integration.

The simplest example of a curve is a straight
line. It is straightforward to use Equation 5.21 to
determine the electric field due to a continuous
distribution of charge along a straight line.
However it is much easier to analyze that
particular distribution using Gauss’ Law, as
shown in Section 5.6. The following example
addresses a charge distribution for which
Equation 5.21 is more appropriate.

Example 5.2. Electric field along the axis
of a ring of uniformly-distributed charge.

Consider a ring of radius a in the z = 0
plane, centered on the origin, as shown in
Figure 5.2 Let the charge density along this
ring be uniform and equal to ρl (C/m).
Find the electric field along the z axis.

Solution. The source charge position is
given in cylindrical coordinates as

r′ = ρ̂a (5.22)

The position of a field point along the z axis
is simply

r = ẑz (5.23)

Thus
r− r′ = −ρ̂a+ ẑz (5.24)

and
|r− r′| =

√
a2 + z2 (5.25)

Equation 5.21 becomes:

E(z) =
1

4πǫ

∫ 2π

0

−ρ̂a+ ẑz

[a2 + z2]
3/2

ρl (a dφ)

(5.26)
Pulling factors which do not vary with φ out
of the integral, and factoring into separate
integrals for the φ̂ and ẑ components, we
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Figure 5.2: Calculating the electric field along
the axis of a ring of charge.

obtain:

ρl a

4πǫ [a2 + z2]
3/2

[
−a
∫ 2π

0

ρ̂ dφ+ ẑz

∫ 2π

0

dφ

]

(5.27)
The second integral is equal to 2π. The first
integral is equal to zero: To see this, note
that the integral is simply summing values
of ρ̂ for all possible values of φ. Since
ρ̂(φ+ π) = −ρ̂(φ), the integrand for any
given value of φ is equal and opposite the
integrand π radians later. (This is one
example of a symmetry argument.) Thus we
obtain

E(z) = ẑ
ρl a

2ǫ

z

[a2 + z2]
3/2

(5.28)

It is a good exercise to confirm that this
result is dimensionally correct. Also
recommended: Confirm that when z ≫ a,
the result is approximately the same as that
expected from a particle having the same
total charge as the ring.

Distribution of Charge Over a Surface.
Consider a continuous distribution of charge over
a surface S. The surface can be divided into
small patches having area ∆s. Then the charge

associated with the nth patch, located at rn, is

qn = ρs(rn) ∆s (5.29)

where ρs is the surface charge density (units of
C/m2) at rn. Substituting this expression into
Equation 5.18, we obtain

E(r) =
1

4πǫ

N∑

n=1

r− rn

|r− rn|3
ρs(rn) ∆s (5.30)

Taking the limit as ∆s→ 0 yields:

E(r) =
1

4πǫ

∫

S

r− r′

|r− r′|3
ρs(r

′) ds (5.31)

where r′ represents the varying position over S
with integration.

Example 5.3. Electric field along the axis
of a disk of uniformly-distributed charge.

Consider a circular disk of radius a in the
z = 0 plane, centered on the origin, as shown
in Figure 5.3. Let the charge density over
this disk be uniform and equal to ρs (C/m

2).
Find the electric field along the z axis.

Solution. The source charge position is
given in cylindrical coordinates as

r′ = ρ̂ρ (5.32)

The position of a field point along the z axis
is simply

r = ẑz (5.33)

Thus
r− r′ = −ρ̂ρ+ ẑz (5.34)

and
|r− r′| =

√
ρ2 + z2 (5.35)

Equation 5.31 becomes:

E(z) =
1

4πǫ

∫ a

ρ=0

∫ 2π

φ=0

−ρ̂ρ+ ẑz

[ρ2 + z2]
3/2

ρs (ρ dρ dφ)

(5.36)
To solve this integral, first rearrange the
double integral into a single integral over φ

https://creativecommons.org/licenses/by-sa/4.0/
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followed by integration over ρ:

ρs
4πǫ

∫ a

ρ=0

ρ

[ρ2 + z2]
3/2

[∫ 2π

φ=0

(−ρ̂ρ+ ẑz) dφ

]
dρ

(5.37)
Now we address the integration over φ
shown in the square brackets in the above
expression:

∫ 2π

φ=0

(−ρ̂ρ+ ẑz) dφ = −ρ
∫ 2π

φ=0

ρ̂dφ+ẑz

∫ 2π

φ=0

dφ

(5.38)
The first integral on the right is zero, for the
following reason: As the integral progresses
in φ, the vector ρ̂ rotates. Because the
integration is over a complete revolution
(i.e., φ from 0 to 2π), the contribution from
each pointing of ρ̂ is canceled out by another
pointing of ρ̂ that is in the opposite
direction. Since there is an equal number of
these canceling pairs of pointings, the result
is zero. Thus:

∫ 2π

φ=0

(−ρ̂ρ+ ẑz) dφ = 0 + ẑz

∫ 2π

φ=0

dφ

= ẑ2πz (5.39)

Substituting this into Expression 5.37 we
obtain:

ρs
4πǫ

∫ a

ρ=0

ρ

[ρ2 + z2]
3/2

[ẑ2πz] dρ

=ẑ
ρsz

2ǫ

∫ a

ρ=0

ρ dρ

[ρ2 + z2]
3/2

(5.40)

This integral can be solved using integration
by parts and trigonometric substitution.
Since the solution is tedious and there is no
particular principle of electromagnetics
demonstrated by this solution, we shall
simply state the result:

∫ a

ρ=0

ρ dρ

[ρ2 + z2]
3/2

=
−1√
ρ2 + z2

∣∣∣∣∣

a

ρ=0

=
−1√
a2 + z2

+
1

|z| (5.41)
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Figure 5.3: Calculating the electric field along
the axis of a disk of charge.

Substituting this result:

E(z) = ẑ
ρsz

2ǫ

( −1√
a2 + z2

+
1

|z|

)

= ẑ
ρs
2ǫ

( −z√
a2 + z2

+
z

|z|

)

= ẑ
ρs
2ǫ

( −z√
a2 + z2

+ sgn z

)
(5.42)

where “sgn” is the “signum” function; i.e.,
sgn z = +1 for z > 0 and sgn z = −1 for
z < 0. Summarizing:

E(z) = ẑ
ρs
2ǫ

(
sgn z − z√

a2 + z2

)
(5.43)

It is a good exercise to confirm that this
result is dimensionally correct and yields an
electric field vector which points in the
expected direction and with the expected
dependence on a and z.

A special case of the “disk of charge” scenario
considered in the preceding example is an infinite
sheet of charge. The electric field from an infinite
sheet of charge is a useful theoretical result. We
get the field in this case simply by letting a→ ∞

https://creativecommons.org/licenses/by-sa/4.0/
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in Equation 5.43, yielding:

E(r) = ẑ
ρs
2ǫ

sgn z (5.44)

Again it is useful to confirm that this is
dimensionally correct: C/m2 divided by F/m
yields V/m. Also, note that Equation 5.44 is the
electric field at any point above or below the
charge sheet – not just on z axis. This follows
from symmetry: From the perspective of any
point in space, the edges of the sheet are the
same distance (i.e., infinitely far) away.

Distribution of Charge In a Volume.
Consider a continuous distribution of charge
within a volume V. The volume can be divided
into small cells (volume elements) having volume

∆v. Then the charge associated with the nth

cell, located at rn, is

qn = ρv(rn) ∆v (5.45)

where ρv is volume charge density (units of
C/m3) at rn. Substituting this expression into
Equation 5.18, we obtain

E(r) =
1

4πǫ

N∑

n=1

r− rn

|r− rn|3
ρv(rn) ∆v (5.46)

Taking the limit as ∆v → 0 yields:

E(r) =
1

4πǫ

∫

V

r− r′

|r− r′|3
ρv(r

′) dv (5.47)

where r′ represents the varying position over V
with integration.

5.5 Gauss’ Law: Integral
Form

[m0014]

Gauss’ Law is one of the four fundamental laws
of classical electromagnetics, collectively known
as Maxwell’s Equations. Before diving in, the
reader is strongly encouraged to review
Section 2.4. In that section Gauss’ Law emerges
from the interpretation of the electric field as a
flux density. Section 2.4 does not actually
identify Gauss’ Law, but here it is:

Gauss’ Law (Equation 5.48) states that the
flux of the electric field through a closed sur-
face is equal to the enclosed charge.

Gauss’ Law is expressed mathematically as
follows: ∮

S

D · ds = Qencl (5.48)

where D is the electric flux density ǫE, S is a
closed surface with differential surface normal ds,
and Qencl is the enclosed charge. We can see the
law is dimensionally correct: D has units of
C/m2, thus integrating D over a surface gives a
quantity with units of C/m2 · m2 = C, which are
the units of charge.

Gauss’ Law has a number of applications in
electromagnetic theory. One of them, as explored
below, is as a method to compute the electric
field in response to a distribution of electric
charge. Note that a method to do this, based on
Coulomb’s Law, is described in Sections 5.1, 5.2,
and 5.4. Gauss’ Law provides an alternative
method that is easier or more useful in certain
applications.

Example 5.4. Electric field associated with
a charged particle, using Gauss’ Law.

In this example we demonstrate the ability
of Gauss’ Law to predict the field associated
with a charge distribution. Let us do this for
the simplest possible charge distribution: A
particle of charge q located at the origin, for
which we already have the answer
(Section 5.1).

Solution. Gauss’ Law applies to any
surface that encloses the charge, so for
simplicity we chose a sphere of radius r
centered at the origin. Note that Qencl on
the right hand side is just q for any surface
having r > 0. Gauss’ Law in this case
becomes

∫ π

θ=0

∫ 2π

φ=0

D ·
(
r̂r2 sin θ dθ dφ

)
= q (5.49)
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If we can solve for D, we can get E using
D = ǫE. The simplest way to solve for D is
to use a symmetry argument, which
proceeds as follows: In this problem, the
magnitude of D can depend only on r, and
not θ or φ. This because the charge has no
particular orientation, and the sphere is
centered on the charge. Similarly, it is clear
that D must point either directly toward or
directly away from the charge. In other
words, D = r̂D(r). Substituting this in the
above equation, we encounter the dot
product r̂ · r̂, which is simply 1. Since D(r)
and r2 are constants with respect to the
integration, we obtain:

r2D(r)

∫ π

θ=0

∫ 2π

φ=0

sin θ dθdφ = q (5.50)

The remaining integral is simply 4π, thus we
obtain:

D(r) =
q

4πr2
(5.51)

Bringing the known vector orientation of D
back into the equation, we obtain

D = r̂
q

4πr2
(5.52)

and finally using D = ǫE we obtain the
expected result

E = r̂
q

4πǫr2
(5.53)

Here’s the point you should take away from the
above example:

Gauss’ Law combined with a symmetry ar-
gument may be sufficient to determine the
electric field due to a charge distribution.
Thus, Gauss’ Law may be an alternative to
Coulomb’s Law in some applications.

Additional Reading:

• “Gauss’ Law” on Wikipedia.

5.6 Electric Field Due to an
Infinite Line Charge
using Gauss’ Law

[m0149]

Section 5.5 explains one application of Gauss’
Law: That is, to find the electric field due to a
charged particle. In this section we present
another application: The electric field due to an
infinite line of charge. The result serves as a
useful “building block” in a number of other
problems, including determination of the
capacitance of coaxial cable (Section 5.24).
Although this problem can be solved using the
“direct” approach described in Section 5.4 (and
it is an excellent exercise to do so), the Gauss’
Law approach demonstrated here turns out to be
relatively simple.

Example 5.5. Electric field associated with
an infinite line charge, using Gauss’ Law.

Use Gauss’ Law to determine the electric
field intensity due to an infinite line of
charge along the z axis, having charge
density ρl (units of C/m), as shown in
Figure 5.4.

Solution. Gauss’ Law requires integration
over a surface that encloses the charge. So,
our first problem is to determine a suitable
surface. A cylinder of radius a which is
concentric with the z axis, as shown in
Figure 5.4, is maximally symmetric with the
charge distribution and so is likely to yield
the simplest possible analysis. At first
glance it seems that we may have a problem
since the charge extends to infinity in the
+z and −z directions, so it’s not clear how
to enclose all of the charge. Let’s suppress
that concern for a moment and simply
choose a cylinder of finite length l. In
principle we can solve the problem first for
this cylinder of finite size, which contains
only a fraction of the charge, and then later
let l → ∞ to capture the rest of the charge.

https://en.wikipedia.org/wiki/Gauss'_law
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(In fact we’ll find when the time comes it
will not be necessary to do that, but we
shall prepare for it anyway.)

Here’s Gauss’ Law:
∮

S

D · ds = Qencl (5.54)

where D is the electric flux density ǫE, S is
a closed surface with outward-facing
differential surface normal ds, and Qencl is
the enclosed charge.

The first order of business is to constrain
the form of D using a symmetry argument,
as follows. Consider the field of a point
charge q at the origin (Section 5.5):

D = r̂
q

4πr2
(5.55)

We can “assemble” an infinite line of charge
by adding particles in pairs. One pair is
added at a time, with one particle on the +z
axis and the other on the −z axis, with each
located an equal distance from the origin.
We continue to add particle pairs in this
manner until the resulting charge extends
continuously to infinity in both directions.
The principle of superposition indicates that
the resulting field will be the sum of the
fields of the particles (Section 5.2). Thus we
see that D cannot have any component in
the φ̂ direction, because none of the fields of
the constituent particles have a component
in that direction. Similarly we see that the
magnitude of D cannot depend on φ,
because none of the fields of the constituent
particles depends on φ and because the
charge distribution is identical (“invariant”)
with rotation in φ. Also note that for any
choice of z the distribution of charge above
and below that plane of constant z is
identical; therefore D cannot be a function
of z and D cannot have any component in
the ẑ direction. Therefore the direction of D
must be radially outward; i.e., in the ρ̂

direction, as follows:

D = ρ̂Dρ(ρ) (5.56)

Next we observe that Qencl on the right
hand side of Equation 5.54 is equal to ρll.
Thus we obtain

∮

S

[ρ̂Dρ(ρ)] · ds = ρll (5.57)

The cylinder S consists of a flat top, curved
side, and flat bottom. Expanding the above
equation to reflect this, we obtain

ρll =

∫

top

[ρ̂Dρ(ρ)] · (+ẑds)

+

∫

side

[ρ̂Dρ(ρ)] · (+ρ̂ds)

+

∫

bottom

[ρ̂Dρ(ρ)] · (−ẑds) (5.58)

Examination of the dot products indicates
that the integrals associated with the top
and bottom surfaces must be zero. In other
words, the flux through the top and bottom
is zero because D is perpendicular to these
surfaces. We are left with

ρll =

∫

side

[Dρ(ρ)] ds (5.59)

The side surface is an open cylinder of
radius ρ = a, so Dρ(ρ) = Dρ(a), a constant
over this surface. Thus:

ρll =

∫

side

[Dρ(a)] ds = [Dρ(a)]

∫

side

ds

(5.60)
The remaining integral is simply the area of
the side surface, which is 2πa · l. Solving for
Dρ(a) we obtain

Dρ(a) =
ρll

2πal
=

ρl
2πa

(5.61)

Remarkably, we see Dρ(a) is independent of
l, So the concern raised in the beginning of
this solution – that we wouldn’t be able to
enclose all of the charge – doesn’t matter.
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Figure 5.4: Finding the electric field of an infinite
line of charge using Gauss’ Law.

Completing the solution, we note the result
must be the same for any value of ρ (not
just ρ = a), so

D = ρ̂Dρ(ρ) = ρ̂
ρl
2πρ

(5.62)

and since D = ǫE:

E = ρ̂
ρl

2πǫρ
(5.63)

This completes the solution. We have found
that the electric field is directed radially
away from the line charge, and decreases in
magnitude in inverse proportion to distance
from the line charge. Suggestion: Check to
ensure that this solution is dimensionally
correct.

5.7 Gauss’ Law: Differential
Form

[m0045]

The integral form of Gauss’ Law (Section 5.5) is
a calculation of enclosed charge Qencl using the

surrounding density of electric flux:
∮

S

D · ds = Qencl (5.64)

where D is electric flux density and S is the
enclosing surface. It is also useful to do the
inverse calculation: i.e., determine electric field
associated with a charge distribution. This is
sometimes possible using Equation 5.64 if the
symmetry of the problem permits; see examples
in Section 5.5 and 5.6. If the problem does not
exhibit the necessary symmetry, then it seems
that one must fall back to the family of
techniques presented in Section 5.4 requiring
direct integration over the charge, which is
derived from Coulomb’s Law.

However even Coulomb’s Law / direct
integration approach has a limitation that is very
important to recognize: It does not account for
the presence of structures that may influence the
electric field. For example, the electric field due
to a charge in free space is different from the
electric field due to the same charge located near
a perfectly-conducting surface. In fact, these
approaches do not account for the possibility of
any spatial variation in material composition,
which rules out their use in many engineering
applications.

To address this broader scope of problems, we
require an alternative form of Gauss’ Law that
applies at individual points in space. That is, we
require Gauss’ Law expressed in the form of a
differential equation, as opposed to an integral
equation. This facilitates the use of Gauss’ Law
even in problems which do not exhibit sufficient
symmetry and which involve material boundaries
and spatial variations in material constitutive
parameters. Given this differential equation and
the boundary conditions imposed by structure
and materials, we may then solve for the electric
field in these more complicated scenarios. In this
section we derive the desired differential form of
Gauss’ Law. Elsewhere (in particular, in
Section 5.15) we use this equation as a tool to
find electric fields in problems involving material
boundaries.

There are in fact two methods to develop the

https://creativecommons.org/licenses/by-sa/4.0/
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desired differential equation. One method is via
the definition of divergence, whereas the other is
via the divergence theorem. Both methods are
presented below because each provides a different
bit of insight. Here we go with the first method:

Derivation via the Definition of
Divergence. Let the geometrical volume
enclosed by S be V, which has volume V (units
of m3). Dividing both sides of Equation 5.64 by
V and taking the limit as V → 0:

lim
V→0

∮
S
D · ds
V

= lim
V→0

Qencl
V

(5.65)

The quantity on the right hand side is the volume
charge density ρv (units of C/m3) at the point at
which we converge after letting the volume go to
zero. The left hand side is, by definition, the
divergence of D, indicated in mathematical
notation as “∇ ·D” (see Section 4.6). Thus we
have Gauss’ Law in Differential Form:

∇ ·D = ρv (5.66)

To interpret this equation, recall that divergence
is simply the flux (in this case, electric flux) per
unit volume.

Gauss’ Law in Differential Form (Equa-
tion 5.66) says that the electric flux per unit
volume originating from a point in space is
equal to the volume charge density at that
point.

Yet another way to understand this equation: It
is simply Gauss’ Law in integral form
(Equation 5.64) applied to a vanishingly small
volume.

Derivation via the Divergence Theorem.
Equation 5.66 may also be obtained from
Equation 5.64 using the Divergence Theorem
(Section 4.7), which in the present case may be
written:

∫

V

(∇ ·D) dv =

∮

S

D · ds (5.67)

From Equation 5.64 we see that the right hand
side of the equation may be replaced with the

enclosed charge:
∫

V

(∇ ·D) dv = Qencl (5.68)

Furthermore the enclosed charge can be
expressed as an integration of the volume charge
density ρv over V:

∫

V

(∇ ·D) dv =

∫

V

ρvdv (5.69)

The above relationship must hold regardless of
the specific location or shape of V. The only way
this is possible is if the integrands are equal.
Thus, ∇ ·D = ρv, and we have obtained
Equation 5.66.

Example 5.6. Determining the charge
density at a point, given the associated
electric field.

The electric field intensity in free space is

E(r) = x̂Ax2 + ŷBz + ẑCx2z

where A = 3 V/m3, B = 2 V/m2, and
C = 1 V/m4. What is the charge density at
r = x̂2− ŷ2 m?

Solution. First, we use D = ǫE to get D.
Since the problem is in free space, ǫ = ǫ0.
Thus we have that the volume charge
density is

ρv = ∇ ·D
= ∇ · (ǫ0E) = ǫ0∇ ·E

= ǫ0

[
∂

∂x

(
Ax2

)
+

∂

∂y
(Bz) +

∂

∂z

(
Cx2z

)]

= ǫ0
[
2Ax+ 0 + Cx2

]

Now calculating the charge density at the
specified location r:

ǫ0
[
2(3 V/m3)(2 m) + 0 + (1 V/m4)(−2 m)2

]

= ǫ0 (16 V/m)

= 142 pC/m3

To obtain the electric field from the charge
distribution in the presence of boundary
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conditions imposed by materials and structure,
we must enforce the relevant boundary
conditions. These boundary conditions are
presented in Sections 5.17 and 5.18. Frequently a
simpler approach requiring only the boundary
conditions on the electric potential (V (r)) is
possible; this is presented in Section 5.15.

Furthermore, the reader should note the
following: Gauss’ Law does not always
necessarily fully constrain possible solutions for
the electric field. For that we might also need
Kirchoff’s Voltage Law; see Section 5.11.

Before moving on, it is worth noting that
Equation 5.66 can be solved in the special case in
which there are no boundary conditions to
satisfy; i.e., for charge only in a uniform and
unbounded medium. In fact, no additional
electromagnetic theory is required to do this.
Here’s the solution:

D(r) =
1

4π

∫

V

r− r′

|r− r′|3
ρv(r

′) dv (5.70)

which we recognize as one of the results obtained
in Section 5.4 (after dividing both sides by ǫ to
get E). It is reasonable to conclude that Gauss’
Law (in either integral or differential form) is
fundamental, whereas Coulomb’s Law is merely a
consequence of Gauss’ Law.

Additional Reading:

• “Gauss’ Law” on Wikipedia.

• “Partial differential equation” on Wikipedia.

• “Boundary value problem” on Wikipedia.

5.8 Force, Energy, and
Potential Difference

[m0061]

The force Fe experienced by a particle at location
r bearing charge q in an electric field intensity E
is (see Sections 2.2 and/or Section 5.1)

Fe = qE(r) (5.71)

If left alone in free space, this particle would
immediately begin to move. The resulting
displacement represents a loss of potential energy
that can quantified using the concept of work,
W . The incremental work ∆W done by moving
the particle a short distance ∆l, over which we
assume the change in Fe is negligible, is

∆W = −Fe · l̂∆l (5.72)

where in this case l̂ is the unit vector in the
direction of the motion; i.e., the direction of Fe.
The minus sign indicates that potential energy of
the system consisting of the electric field and the
particle is being reduced. Like a spring that was
previously compressed and is now released, the
system is “relaxing”.

To confirm that work defined in this way is an
expression of energy, consider the units: The
product of force (units of N) and distance (units
of m) has units of N·m, and 1 N·m is 1 J of
energy.

Now: What if the motion of the particle is due to
factors other than the force associated with the
electric field? For example, we might consider
“resetting” the system to it’s original condition
by applying an external force to overcome Fe.
Equation 5.72 still represents the change in
potential energy of the system, but now l̂
changes sign. The same magnitude of work is
done, but now this work is positive. In other
words, positive work requires the application of
an external force that opposes and overcomes the
force associated with the electric field, thereby
increasing the potential energy of the system.
With respect to the analogy of a mechanical
spring used above, positive work is achieved by
compressing the spring.

It is also worth noting that the purpose of the
dot product in Equation 5.72 is to ensure that
only the component of motion parallel to the
direction of the electric field is included in the
energy tally. This is simply because motion in
any other direction cannot be associated with E,
and therefore does not increase or decrease the
associated potential energy.

We can make the relationship between work and

https://en.wikipedia.org/wiki/Gauss'_law
https://en.wikipedia.org/wiki/Partial_differential_equation
https://en.wikipedia.org/wiki/Boundary_value_problem
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the electric field explicit by substituting
Equation 5.71 into Equation 5.72, yielding

∆W = −qE(r) · l̂∆l (5.73)

Now let us try to generalize this result. For
example, Equation 5.73 gives the work only for a
short distance around r. If we wish to know the
work done over a larger distance, then we must
account for the possibility that E varies along
the path taken. To do this we may sum
contributions from each point along the path
traced out by the particle, i.e.,

W =
N∑

n=1

∆W (rn) (5.74)

where rn are positions defining the path.
Substituting Equation 5.73, we have

W = −q
N∑

n=1

E(rn) · l̂(rn)∆l (5.75)

Taking the limit as ∆l → 0 we obtain

W = −q
∫

C

E(r) · l̂(r)dl (5.76)

where C is the path (previously, the sequence of
rn’s) followed. Now omitting the explicit
dependence on r in the integrand for clarity:

W = −q
∫

C

E · dl (5.77)

where dl = l̂dl as usual. Now, we are able to
determine the change in potential energy for a
charged particle moving between any two points
in space, given the electric field.

At this point it is convenient to formally define
the electric potential difference V21 between the
start point (1) and end point (2) of C. V21 is
defined as the work done by traversing C, per
unit of charge:

V21 ,
W

q
(5.78)

This has units of J/C, which is volts (V).
Substituting Equation 5.77, we obtain:

V21 = −
∫

C

E · dl (5.79)

An advantage of analysis in terms of electrical
potential as opposed to energy is that we will no
longer have to explicitly state the value of the
charge involved.

The potential difference V12 between two
points in space, given by Equation 5.79, is
the change in potential energy of a charged
particle divided by the charge of the particle.
Potential energy is also commonly known as
“voltage” and has units of V.

Example 5.7. Potential difference in a
uniform electric field.

Consider an electric field E(r) = ẑE0 which
is constant in both magnitude and direction
throughout the domain of the problem. The
path of interest is a line beginning at ẑz1
and ending at ẑz2. What is V21? (It’s worth
noting that the answer to this problem is a
building block for a vast number of
problems in electromagnetic analysis.)

Solution. From Equation 5.79 we have

V21 = −
∫ z2

z1

(ẑE0) · ẑdz = −E0(z2 − z1)

(5.80)
In other words, V12 is simply the electric
field intensity times the distance between
the points. This may seem familiar: For
example, compare this to the findings of the
battery-charged capacitor experiment
described in Section 2.2. There too we find
that potential difference equals electric field
intensity times distance, and the signs agree.

The solution to the preceding example is simple
because the direct path between the two points is
parallel to the electric field. If the path between
the points had been perpendicular to E, then the
solution is even easier: V12 is simply zero. In all
other cases, V12 is proportional to the component
of the direct path between the start and end
points that is parallel to E, as determined by the
dot product.
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5.9 Independence of Path

[m0062]

In Section 5.8 we find that the potential
difference (“voltage”) associated with a path C in
an electric field intensity E is

V21 = −
∫

C

E · dl (5.81)

where the curve begins at point 1 and ends at
point 2. Let these points be identified using the
position vectors r1 and r2, respectively.

1 Then:

V21 = −
∫

r2

r1, along C

E · dl (5.82)

The associated work done by a particle bearing
charge q is

W21 = qV21 (5.83)

This work represents the change in potential
energy of the system consisting of the electric
field and the charged particle. So, it must also be
true that

W21 =W2 −W1 (5.84)

where W2 and W1 are the potential energies
when the particle is at r2 and r1, respectively. It
is clear from the above equation that W21 does
not depend on C; it depends only on the
positions of the start and end points, and not on
any of the intermediate points along C. That is,

V21 = −
∫

r2

r1

E · dl , independent of C (5.85)

Since the result of the integration in
Equation 5.85 is independent of the path of
integration, any path which begins at r1 and
ends at r2 yields the same value of W21 and V21.
We refer to this concept as independence of path.

The integral of the electric field over a path
between two points depends only on the lo-
cations of the start and end points, and is
independent of the path taken between those
points.

1See Section 4.1 for a refresher on this concept.

A practical application of this concept is that
some paths may be easier to use than others, so
there may be an advantage in computing the
integral in Equation 5.85 using some path other
than the path actually traversed.

5.10 Kirchoff’s Voltage Law
for Electrostatics:
Integral Form

[m0016]

As explained in Section 5.9, the electrical
potential at point r2 relative to r1 in an electric
field E (V/m) is

V21 = −
∫

r2

r1

E · dl (5.86)

where the path of integration may be any path
that begins and ends at the specified points.
Consider what happens if the selected path
through space begins and ends at the same
point; i.e., r2 = r1. In this case the path of
integration is a closed loop. Since V21 depends
only on the positions of the start and end points,
and because the potential energy at those points
is the same, we conclude:

∮
E · dl = 0 (5.87)

This principle is known as Kirchoff’s Voltage
Law for Electrostatics.

Kirchoff’s Voltage Law for Electrostatics
(Equation 5.87) states that the integral of the
electric field over a closed path is zero.

It is worth noting that this law is a
generalization of a principle of which the reader
is likely already aware: In electric circuit theory,
the sum of voltages over any closed loop in a
circuit is zero. This is also known as Kirchoff’s
Voltage Law, because it is precisely the same
principle. To obtain Equation 5.87 for an electric
circuit, simply partition the closed path into
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branches, with each branch representing one
component. Then the integral of E over each
branch is the branch voltage; i.e., units of V/m
times units of m yields units of V. Then the sum
of these branch voltages over any closed loop is
zero, as dictated by Equation 5.87.

Finally, be advised that Equation 5.87 is specific
to electrostatics. In electrostatics, it is assumed
that the electric field is independent of the
magnetic field. This is true if the magnetic field
is either zero or not time-varying. If the
magnetic field is time-varying, then
Equation 5.87 must be modified to account for
the effect of the magnetic field, which is to make
the right hand size potentially different from
zero. The generalized version of this expression
that correctly accounts for that effect is known
as the Maxwell-Faraday Equation (Section 8.8).

Additional Reading:

• “Maxwell’s Equations” on Wikipedia.

• “Kirchoff’s Circuit Laws” on Wikipedia.

5.11 Kirchoff’s Voltage Law
for Electrostatics:
Differential Form

[m0152]

The integral form of Kirchoff’s Voltage Law for
electrostatics (KVL; Section 5.10) states that an
integral of the electric field along a closed path is
equal to zero: ∮

C

E · dl = 0 (5.88)

where E is electric field intensity and C is the
closed curve. In this section we derive the
differential form of this equation. In some
applications this differential equation, combined
with boundary conditions imposed by structure
and materials (Sections 5.17 and 5.18), can be
used to solve for the electric field in arbitrarily
complicated scenarios. A more immediate reason

for considering this differential equation is that
we gain a little more insight into the behavior of
the electric field, disclosed at the end of this
section.

The equation we seek may be obtained using
Stokes’ Theorem (Section 4.9), which in the
present case may be written:

∫

S

(∇×E) · ds =
∮

C

E · dl (5.89)

where S is any surface bounded by C, and ds is
the normal to that surface with direction
determined by right-hand rule. The integral form
of KVL tells us that the right hand side of the
above equation is zero, so:

∫

S

(∇×E) · ds = 0 (5.90)

The above relationship must hold regardless of
the specific location or shape of S. The only way
this is possible for all possible surfaces is if the
integrand is zero at every point in space. Thus
we obtain the desired expression:

∇×E = 0 (5.91)

Summarizing:

The differential form of Kirchoff’s Voltage
Law for electrostatics (Equation 5.91) states
that the curl of the electrostatic field is zero.

Equation 5.91 is a partial differential equation; as
noted above this equation, combined with the
appropriate boundary conditions, can be solved
for the electric field in arbitrarily complicated
scenarios. Interestingly, it is not the only such
equation available for this purpose: Gauss’ Law
(Section 5.7) also does this. Thus we see a
system of partial differential equations emerging,
and one may correctly infer that that the electric
field is not necessarily fully constrained by either
equation alone. The complete system of
equations is commonly known as Maxwell’s
Equations.

Additional Reading:

• “Maxwell’s Equations” on Wikipedia.

• “Boundary value problem” on Wikipedia.

https://en.wikipedia.org/wiki/Maxwell's_equations
https://en.wikipedia.org/wiki/Kirchhoff's_circuit_laws
https://en.wikipedia.org/wiki/Maxwell's_equations
https://en.wikipedia.org/wiki/Boundary_value_problem
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5.12 Electric Potential Due
to Point Charges

[m0064]

The electric field intensity due to a point charge
q at the origin is (see Section 5.1 or 5.5)

E = r̂
q

4πǫr2
(5.92)

In Sections 5.8 and 5.9 it was determined that
the potential difference measured from position
r1 to position r2 is

V21 = −
∫

r2

r1

E · dl (5.93)

This method for calculating potential difference
is often a bit awkward. To see why, consider an
example from circuit theory, shown in Figure 5.5.
In this example, consisting of a single resistor and
a ground node, we’ve identified four quantities:

• The resistance R,

• The current I through the resistor,

• The node voltage V1, which is the potential
difference measured from ground to the left
side of the resistor, and

• The node voltage V2, which is the potential
difference measured from ground to the right
side of the resistor.

Let’s say we wish to calculate the potential
difference V21 across the resistor. There are two
ways this can be done:

• V21 = −IR

• V21 = V2 − V1

The advantage of the second method is that it is
not necessary to know I, R, or indeed anything
about what is happening between the nodes; it is
only necessary to know the node voltages. The
point is that it is often convenient to have a

R

IV1 Vd

fhij
ok

lmflnmj

fhij
ok

lmflnmj

c© K. Kikkeri CC BY SA 4.0

Figure 5.5: A resistor from a larger circuit, used
as an example to demonstrate the concept of node
voltages.

common datum – in this example, ground – with
respect to which the potential differences at all
other locations of interest can be defined. When
we have this, calculating potential differences
reduced to simply subtracting predetermined
node potentials.

So, can we establish a datum in general
electrostatic problems that works the same way?
The answer is yes. The datum is arbitrarily
chosen to be a sphere that encompasses the
universe; i.e., a sphere with radius → ∞.
Employing this choice of datum, we can use
Equation 5.93 to define V (r), the potential at
point r, as follows:

V (r) = −
∫

r

∞

E · dl (5.94)

The electrical potential at a point, given by
Equation 5.94, is defined as the potential dif-
ference measured beginning at a sphere of in-
finite radius and ending at the point r. The
potential obtained in this manner is with re-
spect to the potential infinitely far away.

In the particular case where E is due to the point
charge at the origin:

V (r) = −
∫

r

∞

[
r̂

q

4πǫr2

]
· dl (5.95)

The principle of independence of path
(Section 5.9) asserts that the path of integration

https://creativecommons.org/licenses/by-sa/4.0/
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doesn’t matter as long as the path begins at the
datum at infinity and ends at r. So, we should
choose the easiest such path. The radial
symmetry of the problem indicates that the
easiest path will be a line of constant θ and φ, so
we choose dl = r̂dr. Continuing:

V (r) = −
∫ r

∞

[
r̂

q

4πǫr2

]
· [r̂dr] (5.96)

= − q

4πǫ

∫ r

∞

1

r2
dr (5.97)

= +
q

4πǫ

1

r

∣∣∣∣
r

∞

(5.98)

so

V (r) = +
q

4πǫr
(5.99)

(Suggestion: Confirm that Equation 5.99 is
dimensionally correct.) In the context of the
circuit theory example above, this is the “node
voltage” at r when the datum is defined to be
the surface of a sphere at infinity. Subsequently,
we may calculate the potential difference from
any point r1 to any other point r2 as

V21 = V (r2)− V (r1) (5.100)

and that will typically be a lot easier than using
Equation 5.93.

It is not often that one deals with systems
consisting of a single charged particle. So, for the
above technique to be truly useful, we need a
straightforward way to determine the potential
field V (r) for arbitrary distributions of charge.
The first step in developing a more general
expression is to determine the result for a
particle located at a point r′ somewhere other
than the origin. Since Equation 5.99 depends
only on charge and the distance between the field
point r and r′, we have

V (r; r′) , +
q′

4πǫ |r− r′| (5.101)

where, for notational consistency, we use the
symbol q′ to indicate the charge. Now applying
superposition, the potential field due to N
charges is

V (r) =

N∑

n=1

V (r; rn) (5.102)

Substituting Equation 5.101 we obtain:

V (r) =
1

4πǫ

N∑

n=1

qn
|r− rn|

(5.103)

Equation 5.103 gives the electric potential at
a specified location due to a finite number of
charged particles.

The potential field due to continuous
distributions of charge is addressed in
Section 5.13.

5.13 Electric Potential due
to a Continuous
Distribution of Charge

[m0065]

The electrostatic potential field at r associated
with N charged particles is

V (r) =
1

4πǫ

N∑

n=1

qn
|r− rn|

(5.104)

where qn and rn are the charge and position of

the nth particle. However it is more common to
have a continuous distribution of charge as
opposed to a countable number of charged
particles. We now consider how to compute V (r)
three types of these commonly-encountered
distributions. Before beginning, it’s worth noting
that the methods will be essentially the same,
from a mathematical viewpoint, as those
developed in Section 5.4; therefore a review of
that section may be helpful before attempting
this section.

Continuous Distribution of Charge Along
a Curve. Consider a continuous distribution of
charge along a curve C. The curve can be divided
into short segments of length ∆l. Then the

charge associated with the nth segment, located
at rn, is

qn = ρl(rn) ∆l (5.105)
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where ρl is the line charge density (units of C/m)
at rn. Substituting this expression into
Equation 5.104, we obtain

V(r) =
1

4πǫ

N∑

n=1

ρl(rn)

|r− rn|
∆l (5.106)

Taking the limit as ∆l → 0 yields:

V (r) =
1

4πǫ

∫

C

ρl(l)

|r− r′|dl (5.107)

where r′ represents the varying position along C
with integration along the length l.

Continuous Distribution of Charge Over a
Surface. Consider a continuous distribution of
charge over a surface S. The surface can be
divided into small patches having area ∆s. Then

the charge associated with the nth patch, located
at rn, is

qn = ρs(rn) ∆s (5.108)

where ρs is surface charge density (units of
C/m2) at rn. Substituting this expression into
Equation 5.104, we obtain

V (r) =
1

4πǫ

N∑

n=1

ρs(rn)

|r− rn|
∆s (5.109)

Taking the limit as ∆s→ 0 yields:

V (r) =
1

4πǫ

∫

S

ρs(r
′)

|r− r′| ds (5.110)

where r′ represents the varying position over S
with integration.

Continuous Distribution of Charge in a
Volume. Consider a continuous distribution of
charge within a volume V. The volume can be
divided into small cells (volume elements) having
area ∆v. Then the charge associated with the

nth cell, located at rn, is

qn = ρv(rn) ∆v (5.111)

where ρv is the volume charge density (units of
C/m3) at rn. Substituting this expression into
Equation 5.104, we obtain

V (r) =
1

4πǫ

N∑

n=1

ρv(rn)

|r− rn|
∆v (5.112)

Taking the limit as ∆v → 0 yields:

V (r) =
1

4πǫ

∫

V

ρv(r
′)

|r− r′| dv (5.113)

where r′ represents the varying position over V
with integration.

5.14 Electric Field as the
Gradient of Potential

[m0063]

In Section 5.8, it was determined that the
electrical potential difference V21 measured over
a path C is given by

V21 = −
∫

C

E(r) · dl (5.114)

where E(r) is the electric field intensity at each
point r along C. In Section 5.12, we defined the
scalar electric potential field V (r) as the electric
potential difference at r relative to a datum at
infinity. In this section, we address the “inverse
problem”: namely, how to calculate E(r) given
V (r). Specifically, we are interested in a direct
“pointwise” mathematical transform from one to
the other. Since Equation 5.114 is in the form of
an integral, it should not come as a surprise that
the desired expression will be in the form of a
differential equation.

We begin by identifying the contribution of an
infinitessmal length of the integral to the total
integral in Equation 5.114. At point r, this is

dV = −E(r) · dl (5.115)

Although we can proceed using any coordinate
system, the following derivation is particularly
simple in Cartesian coordinates. In Cartesian
coordinates,

dl = x̂dx+ ŷdy + ẑdz (5.116)

We also note that for any scalar function of
position, including V (r), it is true that

dV =
∂V

∂x
dx+

∂V

∂y
dy +

∂V

∂z
dz (5.117)
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Note the above relationship is not specific to
electromagnetics; it is simply mathematics. Also
note that dx = dl · x̂, and so on for dy and dz.
Making these substitutions into the above
equation, we obtain:

dV =
∂V

∂x
(dl · x̂) + ∂V

∂y
(dl · ŷ) + ∂V

∂z
(dl · ẑ)
(5.118)

This equation may be rearranged as follows:

dV =

([
x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z

]
V

)
· dl (5.119)

Comparing the above equation to
Equation 5.115, we find:

E(r) = −
[
x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z

]
V (5.120)

Note that the quantity in square brackets is the
gradient operator “∇” (Section 4.5). Thus we
may write

E = −∇V (5.121)

which is the relationship we seek.

The electric field intensity at a point is the
gradient of the electric potential at that point
after a change of sign (Equation 5.121).

Using Equation 5.121 we can immediately find
the electric field at any point r if we can describe
V as a function of r. Furthermore, this
relationship between V and E has a useful
physical interpretation. Recall that the gradient
of a scalar field is a vector which points in the
direction in which that field increases most
quickly. Therefore:

The electric field points in the direction in
which the electric potential most rapidly de-
creases.

This result should not come as a complete
surprise; for example the reader should already
be aware that the electric field points away from
regions of net positive charge and toward regions
of net negative charge (Sections 2.2 and/or 5.1).
What is new here is that both the magnitude

and direction of the electric field may be
determined given only the potential field,
without having to consider the charge that is the
physical source of the electrostatic field.

Example 5.8. Electric field of a charged
particle, beginning with the potential field.

In this example we determine the electric
field of a particle bearing charge q located at
the origin. This may be done in a “direct”
fashion using Coulomb’s Law (Section 5.1).
However here we have the opportunity to
find the electric field using a different
method. In Section 5.12 we found the scalar
potential for this source was:

V (r) =
q

4πǫr
(5.122)

So we may obtain the electric field using
Equation 5.121:

E = −∇V = −∇
( q

4πǫr

)
(5.123)

Here V (r) is expressed in spherical
coordinates, so we have (Section B.2):

E = −
[
r̂
∂

∂r
+ θ̂

1

r

∂

∂θ
+ φ̂

1

r sin θ

∂

∂φ

]( q

4πǫr

)

(5.124)
In this case V (r) does not vary with φ or θ,
so the second and third terms of the
gradient are zero. This leaves

E = −r̂
∂

∂r

( q

4πǫr

)

= −r̂
q

4πǫ

∂

∂r

1

r

= −r̂
q

4πǫ

(
− 1

r2

)
(5.125)

So we find

E = +r̂
q

4πǫr2
(5.126)

as was determined in Section 5.1.
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5.15 Poisson’s and Laplace’s
Equations

[m0067]

The electric scalar potential field V (r), defined in
Section 5.12, is useful for a number of reasons
including the ability to conveniently compute
potential differences (i.e., V12 = V (r2)− V (r1))
and the ability to conveniently determine the
electric field by taking the gradient (i.e.,
E = −∇V ). One way to obtain V (r) is by
integration over the source charge distribution,
as described in Section 5.13. This method is
awkward in the presence of material interfaces,
which impose boundary conditions on the
solutions that must be satisfied simultaneously.
For example, the electric potential on a perfectly
conducting surface is constant:2 A constraint
which is not taken into account in any of the
expressions in Section 5.13.

In this section we develop an alternative
approach to calculating V (r) that accommodates
these boundary conditions, and thereby
facilitates the analysis of the scalar potential field
in the vicinity of structures and spatially-varying
material properties. This alternative approach is
based on Poisson’s Equation, which we now
derive.

We begin with the differential form of Gauss’
Law (Section 5.7):

∇ ·D = ρv (5.127)

Using the relationship D = ǫE (and keeping in
mind our standard assumptions about material
properties, summarized in Section 2.8) we obtain

∇ ·E =
ρv
ǫ

(5.128)

Next we apply the relationship (Section 5.14):

E = −∇V (5.129)

yielding

∇ · ∇V = −ρv
ǫ

(5.130)

2This fact is probably already known to the reader from
past study of elementary circuit theory; however this is es-
tablished in the context of electromagnetics in Section 5.19.

This is Poisson’s Equation, but it is not in the
form in which it is commonly employed. To
obtain the alternative form, consider the
operator ∇ · ∇ in Cartesian coordinates:

∇ · ∇ =

[
∂

∂x
x̂+

∂

∂y
ŷ +

∂

∂z
ẑ

]
·
[
∂

∂x
x̂+

∂

∂y
ŷ +

∂

∂z
ẑ

]

=
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

= ∇2 (5.131)

i.e., the operator ∇ · ∇ is identically the
Laplacian operator ∇2 (Section 4.10).
Furthermore, this is true regardless of the
coordinate system employed. Thus we obtain our
preferred form of Poisson’s Equation:

∇2V = −ρv
ǫ

(5.132)

Poisson’s Equation (Equation 5.132) states
that the Laplacian of the electric potential
field is equal to the volume charge density di-
vided by the permittivity, with a change of
sign.

Note that Poisson’s Equation is a partial
differential equation, and therefore can be solved
using well-known techniques already established
for such equations. In fact, Poisson’s Equation is
an inhomogeneous differential equation, with the
inhomogeneous part −ρv/ǫ representing, as
usual, the source of the field. In the presence of
material structure, we identify the relevant
boundary conditions at the interfaces between
materials, and the task of finding V (r) is reduced
to the purely mathematical task of solving the
associated boundary value problem (see
“Additional Reading” at the end of this section).
This approach is particularly effective when one
of the materials is a perfect conductor, or can be
modeled as such a material. This is because – as
noted at the beginning of this section – the
electric potential at all points on the surface of a
perfect conductor must be equal, resulting in a
particularly simple boundary condition.

In many other applications, the charge
responsible for the electric field lies outside the



5.16. POTENTIAL FIELD WITHIN A PARALLEL PLATE CAPACITOR 109

domain of the problem; i.e., we have non-zero
electric field (hence, potentially non-zero electric
potential) in a region which is free of charge. In
this case, Poisson’s Equation simplifies to
Laplace’s Equation:

∇2V = 0 (source-free region) (5.133)

Laplace’s Equation (Equation 5.133) states
that the Laplacian of the electric potential
field is zero in a source-free region.

Like Poisson’s Equation, Laplace’s Equation,
combined with the relevant boundary conditions,
can be used to solve for V (r), but only in regions
which contain no charge.

An interesting and occasionally-useful insight
from Laplace’s Equation is as follows: At any
point where there is no charge, the electric scalar
potential is independent of permittivity of the
medium.

Additional Reading:

• “Poisson’s equation” on Wikipedia.

• “Boundary value problem” on Wikipedia.

• “Laplace’s equation” on Wikipedia.

5.16 Potential Field Within
a Parallel Plate
Capacitor

[m0068]

This section presents a simple example that
demonstrates the use of Laplace’s Equation
(Section 5.15) to determine the potential field in
a source free region. The example, shown in
Figure 5.6, pertains to an important structure in
electromagnetic theory: The parallel plate
capacitor. Here we are concerned only with the
potential field V (r) between the plates of the

d

z

ρ

a

V-+VC

V-

Figure 5.6: A parallel plate capacitor, as a
demonstration of the use of Laplace’s Equation.

capacitor; you do not need to be familiar with
capacitance or capacitors to follow this section
(although you’re welcome to look ahead to
Section 5.22 for a preview, if desired). What is
recommended before beginning is a review of the
battery-charged capacitor experiment discussed
in Section 2.2 – In this section you’ll see a
rigorous derivation of what we figured out in an
informal way in that section.

The parallel-plate capacitor in Figure 5.6 consists
of two perfectly-conducting circular disks
separated by a distance d by a spacer material
having permittivity ǫ. There is no charge present
in the spacer material, so Laplace’s Equation
applies. That equation is (Section 5.15):

∇2V = 0 (source-free region) (5.134)

Let VC be the potential difference between the
plates, which would also be the potential
difference across the terminals of the capacitor.
The radius a of the plates is larger than d by
enough that we may neglect what is going on at
at the edges of the plates – more on this as we
work the problem. Under this assumption, what
is the electric potential field V (r) between the
plates?

This problem has cylindrical symmetry, so it
makes sense to continue to use cylindrical
coordinates with the z axis being perpendicular
to the plates. Equation 5.134 in cylindrical
coordinates is:

[
1

ρ

∂

∂ρ

(
ρ
∂

∂ρ

)
+

1

ρ2
∂2

∂φ2
+

∂2

∂z2

]
V = 0 (5.135)

https://en.wikipedia.org/wiki/Poisson's_equation
https://en.wikipedia.org/wiki/Boundary_value_problem
https://en.wikipedia.org/wiki/Laplace's_equation
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or perhaps a little more clearly written as follows:

1

ρ

∂

∂ρ

(
ρ
∂V

∂ρ

)
+

1

ρ2
∂2V

∂φ2
+
∂2V

∂z2
= 0 (5.136)

Since the problem has radial symmetry,
∂V/∂φ = 0. Since d≪ a, we expect the fields to
be approximately constant with ρ until we get
close to the edge of the plates. Therefore we
assume ∂V/∂ρ is negligible and can be taken to
be zero. Thus we are left with

∂2V

∂z2
≈ 0 for ρ≪ a (5.137)

The general solution to Equation 5.137 is
obtained simply by integrating both sides twice,
yielding

V (z) = c1z + c2 (5.138)

where c1 and c2 are constants that must be
consistent with the boundary conditions. Thus,
we must develop appropriate boundary
conditions. Let the node voltage at the negative
(z = 0) terminal be V−. Then the voltage at the
positive (z = +d) terminal is V− +VC . Therefore:

V (z = 0) = V− (5.139)

V (z = +d) = V− + VC (5.140)

These are the relevant boundary conditions.
Substituting V (z = 0) = V− into Equation 5.138
yields c2 = V−. Substituting
V (z = +d) = V− + VC into Equation 5.138 yields
c1 = VC/d. Thus, the answer to the problem is

V (z) ≈ VC
d
z + V− for ρ≪ a (5.141)

Note that the above result is dimensionally
correct and confirms that the potential deep
inside in a “thin” parallel plate capacitor changes
linearly with distance between the plates.

Further, you should find that application of the
equation E = −∇V (Section 5.14) to the solution
above yields the expected result for the electric
field intensity: E ≈ −ẑVC/d. This is precisely
the result that we arrived at (without the aid of
Laplace’s Equation) in Section 2.2.

A reasonable question to ask at this point would
be: What about the potential field close to the

edge of the plates, or, for that matter, beyond
the plates? The field in this region is referred to
as a fringing field. For the fringing field, ∂V/∂ρ
is no longer negligible and must be taken into
account. In addition it is necessary to modify the
boundary conditions to account for the outside
surfaces of the plates (that is, the sides of the
plates that face away from the dielectric) and to
account for the effect of the boundary between
the spacer material and free space. These issues
make the problem much more difficult. When an
accurate calculation of a fringing field is
necessary, it is common to resort to a numerical
solution of Laplace’s Equation. Fortunately,
accurate calculation of fringing fields is usually
not required in practical engineering applications.

5.17 Boundary Conditions
on the Electric Field
Intensity

[m0020]

In homogeneous media, electromagnetic
quantities vary smoothly and continuously. At an
interface between dissimilar media, however, it is
possible for electromagnetic quantities to be
discontinuous. These discontinuities can be
described mathematically as boundary
conditions, and used to to constrain solutions for
the associated electromagnetic quantities. In this
section we derive boundary conditions on the
electric field intensity E.

To begin, consider a region consisting of only two
media which meet at an interface defined by the
mathematical surface S, as shown in Figure 5.7.
If either one of the materials is a perfect electrical
conductor (PEC), then S is an equipotential
surface; i.e., the electric potential V is constant
everywhere on S. Since E is proportional to the
spatial rate of change of potential (recall
E = −∇V ; Section 5.14), it must be that

The component of E which is tangent to a
perfectly-conducting surface is zero.
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PEC

E

E E
E

(equipotential)

c© K. Kikkeri CC BY SA 4.0

Figure 5.7: At the surface of a perfectly-
conducting region, E may be perpendicular to the
surface (two leftmost possibilities), but may not
exhibit a component which is tangent to the sur-
face (two rightmost possibilities).

This is sometimes written or spoken informally
as follows:

Etan = 0 for PEC (5.142)

where “Etan” is understood to be the component
of E which is tangent to S. Since the tangential
component of E on the surface of a perfect
conductor is zero, the electric field at the surface
must be oriented entirely in the direction
perpendicular to the surface, as shown in
Figure 5.7.

The following equation expresses precisely the
same idea, but includes the calculation of the
tangential component as part of the statement:

E× n̂ = 0 (on PEC surface) (5.143)

where n̂ is either normal (i.e., unit vector
perpendicular to the surface) to each point on S.
This expression works because the cross product
of any two vectors is perpendicular to either
vector (Section 4.1), and any vector which is
perpendicular to either definition of n̂ is tangent
to S. For this same reason, it is not important
whether n̂ in Equation 5.143 points into or away
from the PEC region.

Now let us consider whether there is a more
general boundary condition that applies even
when neither of the media bordering S is a
perfect conductor. The desired boundary
condition can be obtained directly from

B
A w

t

c© K. Kikkeri CC BY SA 4.0

Figure 5.8: Use of KVL to determine the bound-
ary condition on E.

Kirchoff’s Voltage Law (KVL; Section 5.10):
∮

C

E · dl = 0 (5.144)

Let the closed path of integration take the form
of a rectangle centered on S, as shown in
Figure 5.8. Let the sides A, B, C, and D be
perpendicular or parallel to the surface,
respectively. Let the length of the perpendicular
sides be w, and let the length of the parallel sides
be l. From KVL we have

∮

C

E · dl =
∫

A

E · dl

+

∫

B

E · dl

+

∫

C

E · dl

+

∫

D

E · dl = 0 (5.145)

Now we let w and l become vanishingly small
while (1) maintaining the ratio l/w and (2)
keeping C centered on S.

Now let us reduce w and l together while (1)
maintaining a constant ratio w/l ≪ 1 and (2)
keeping C centered on S. In this process the
contributions from the B and D segments
become equal in magnitude but opposite in sign;
i.e., ∫

B

E · dl+
∫

D

E · dl → 0 (5.146)

This leaves
∮

C

E · dl →
∫

A

E · dl+
∫

C

E · dl → 0 (5.147)

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/


112 CHAPTER 5. ELECTROSTATICS

Let us define the unit vector t̂ (“tangent”) as
shown in Figure 5.8. When the lengths of sides A
and C become sufficiently small, we can write
the above expression as follows:

E1 · t̂∆l −E2 · t̂∆l → 0 (5.148)

where E1 and E2 are the fields evaluated on the
two sides of the boundary and ∆l → 0 is the
length of sides A and C while this is happening.
Note that the only way Equation 5.148 can be
true is if the tangential components of E1 and E2

are equal. In other words:

The tangential component of E must be con-
tinuous across an interface between dissimilar
media.

Note that this is a generalization of the result we
obtained earlier for the case in which one of the
media was a PEC – in that case the tangent
component of E on the other side of the interface
must be zero because it is zero in the PEC
medium.

As before, we can express this idea in compact
mathematical notation. Using the same idea
used to obtain Equation 5.143, we have found

E1 × n̂ = E2 × n̂ on S (5.149)

or, as it is more commonly written:

n̂× (E1 −E2) = 0 on S (5.150)

We conclude this section with a note about the
broader applicability of this boundary condition:

Equation 5.150 is the boundary condition
that applies to E for both the electrostatic
and the general (time-varying) case.

Although a complete explanation is not possible
without the use of the Maxwell-Faraday Equaion
(Section 8.8), the reason why this boundary
condition applies in the time-varying case can be
disclosed here. In the presence of time-varying
magnetic fields, the right-hand side of

PEC

D=nρs

c© K. Kikkeri CC BY SA 4.0

Figure 5.9: The component of D which is perpen-
dicular to a perfectly-conducting surface is equal
to the charge density on the surface.

Equation 5.144 may become non-zero and is
proportional to the area defined by the closed
loop. However the above derivation requires the
area of this loop to approach zero, in which case
the possible difference from Equation 5.144 also
converges to zero. Therefore the boundary
condition expressed in Equation 5.150 applies
generally.

5.18 Boundary Conditions
on the Electric Flux
Density

[m0021]

In this section we derive boundary conditions on
the electric flux density D. The considerations
are quite similar to those encountered in the
development of boundary conditions on the
electric field intensity (E) in Section 5.17, so the
reader may find it useful to review that section
before attempting this section. This section also
assumes familiarity with the concepts of electric
flux, electric flux density, and Gauss’ Law; for a
refresher Sections 2.4 and 5.5 are suggested.

To begin, consider a region at which two
otherwise-homogeneous media meet at an
interface defined by the mathematical surface S,
as shown in Figure 5.9. Let one of these regions
be a perfect electrical conductor (PEC). In
Section 5.17 we established that the tangential
component of the electric field must be zero, and

https://creativecommons.org/licenses/by-sa/4.0/
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therefore the electric field is directed entirely in
the direction perpendicular to the surface. We
further know that the electric field within the
conductor is identically zero. Therefore D at any
point on S is entirely in the direction
perpendicular to the surface, and pointing into
the non-conducting medium. However it is also
possible to determine the magnitude of D. We
shall demonstrate in this section that

At the surface of a perfect conductor, the
magnitude of D is equal to the surface charge
density ρs (units of C/m2) at that point.

The following equation expresses precisely the
same idea, but includes the calculation of the
perpendicular component as part of the
statement:

D · n̂ = ρs (on PEC surface) (5.151)

where n̂ is the normal to S pointing into the
non-conducting region. (Note that the
orientation of n̂ is now important: We have
assumed n̂ points into region 1, and we must now
stick with this choice.) Before proceeding with
the derivation, it may be useful to note that this
result is not surprising: The very definition of
electric flux (Section 2.4) indicates that D should
be equal to a surface charge density. But we can
show this rigorously, and in the process we can
generalize this result to the more-general case in
which neither of the two materials are PEC.

The desired more-general boundary condition
may be obtained from the integral form of Gauss’
Law (Section 5.5), as illustrated in Figure 5.10.
Let the surface of integration S ′ take the form of
closed cylinder centered at a point on the
interface, and for which the flat ends are parallel
to the surface and perpendicular to n̂. Let the
radius of this cylinder be a, and let the length of
the cylinder be 2h. From Gauss’ Law we have
∮

S′

D · ds =
∫

top

D · ds

+

∫

side

D · ds

+

∫

bottom

D · ds = Qencl (5.152)
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Figure 5.10: Use of Gauss’ Law to determine the
boundary condition on D.

where the “top” and “bottom” are in Regions 1
and 2, respectively, and Qencl is the charge
enclosed by S ′. Now let us reduce h and a
together while (1) maintaining a constant ratio
h/a≪ 1 and (2) keeping S ′ centered on S.
Because h≪ a, the area of the side can be made
negligible relative to the area of the top and
bottom. Then as h→ 0 we are left with

∫

top

D · ds+
∫

bottom

D · ds → Qencl (5.153)

As the area of the top and bottom sides become
infinitesimal the variation in D over these areas
becomes negligible. Now we have simply:

D1 · n̂∆A+D2 · (−n̂)∆A→ Qencl (5.154)

where D1 and D2 are the electric flux density
vectors in medium 1 and medium 2, respectively,
and ∆A is the area of the top and bottom sides.
The above expression can be rewritten

Qencl
∆A

→ n̂ · (D1 −D2) (5.155)

Note that the left side of the equation must
represent a actual, physical surface charge; this is
apparent from dimensional analysis and the fact
that h is now infinitesimally small. Therefore:

n̂ · (D1 −D2) = ρs (5.156)

where, as noted above, n̂ points into region 1.
Summarizing:

https://creativecommons.org/licenses/by-sa/4.0/
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Any discontinuity in the normal component
of the electric flux density across the bound-
ary between two material regions is equal to
the surface charge.

Now let us verify that this is consistent with our
preliminary finding, in which we assumed
Region 2 was a PEC. In that case D2 = 0, so we
see that Equation 5.151 is satisfied, as expected.
If neither Region 1 nor Region 2 is PEC and
there is no surface charge on the interface, then
we find n̂ · (D1 −D2) = 0; i.e.,

In the absence of surface charge, the normal
component of the electric flux density must
be continuous across the boundary.

Finally, we note that since D = ǫE,
Equation 5.156 implies the following boundary
condition on E:

n̂ · (ǫ1E1 − ǫ2E2) = ρs (5.157)

where ǫ1 and ǫ2 are the permittivities in
Regions 1 and 2, respectively. The above
equation illustrates one reason why we sometimes
prefer the “flux” interpretation of the electric
field to the “field intensity” interpretation of the
electric field: Comparing Equations 5.156 and
5.157, we see that former results in a simpler
boundary condition with no loss of information.

5.19 Charge and Electric
Field for a Perfectly
Conducting Region

[m0025]

In this section we consider the behavior of charge
and the electric field in the vicinity of a perfect
electrical conductor (PEC).

First, note that the electric field – both the
electric field intensity E and electric flux density
D – throughout a PEC region is zero. This is
because the electrical potential throughout a

c© K. Kikkeri CC BY SA 4.0

Figure 5.11: An infinite flat slab of PEC in the
presence of an applied electric field.

PEC region must be constant.3 Recall that the
electric field is proportional to the spatial rate of
change of electrical potential (i.e., E = −∇V ;
Section 5.14). Thus, the electric field must be
zero throughout a PEC region.

Second, the electric field is oriented directly away
from (i.e., perpendicular to) the PEC surface,
and the magnitude of D is equal to the surface
charge density ρs (C/m2) (Section 5.18).

Now we address the question of charge
distribution; i.e., the location and density of
charge. Consider the scenario shown in
Figure 5.11. Here, a flat slab of PEC material is
embedded in dielectric material.4 The thickness
of the slab is finite, whereas the length and width
of the slab is infinite. The region above the slab
is defined as Region 1 and has permittivity ǫ1.
The region below the slab is defined as Region 2
and has permittivity ǫ2. Electric fields E1 and
E2 are present in Regions 1 and 2, respectively,
as shown in Figure 5.11. To begin, let us assume
that these fields are the result of some external
stimulus that results in the direction of these
fields being generally upward, as shown in
Figure 5.11.

3This idea is explored in some depth in Section 6.3.
4For the purposes of this section, it suffices to inter-

pret “dielectric” as a “nonconducting and well character-
ized entirely in terms of its permittivity”. For more, see
Section 5.20.

https://creativecommons.org/licenses/by-sa/4.0/
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Now: What do we know about E1 and E2? First,
both fields must satisfy the relevant boundary
conditions. That is, the component of E1 which
is tangent to the upper PEC surface is zero, so
that E1 is directed entirely in a direction normal
to the surface. Similarly, the component of E2

which is tangent to the lower PEC surface is
zero, so that E2 is directed entirely in a direction
normal to the surface. At this point we have not
determined the magnitudes or signs of E1 and
E2; we have established only that there are no
non-zero components tangential to (i.e., parallel
to) the PEC surfaces.

Next, recall that the electric field must be zero
within the slab. Therefore charge is uniformly
distributed on the upper and lower surfaces with
equal surface charge density. This can be
explained as follows. First, the charge on the
upper surface must be positive, since E1 is
directed away from the slab; and the charge on
the lower surface must be negative, since E2 is
directed toward the slab. Next, recall that the
electric field associated with an infinite sheet of
charge is uniform and directed either toward or
away from the charge depending on sign
(Section 5.4). Therefore within the slab the
electric field associated with the positive charge
distribution on the top surface of the slab is
equal and opposite the electric field associated
with the negative charge distribution on the
bottom surface of the slab. As a result, these
fields cancel and the total field is zero, as is
required by the equipotential condition within a
PEC. Any other distribution of charge will result
in a non-zero electric field within the slab, which
would violate the equipotential property of the
PEC. We come to the following conclusions that
seem to apply in general:

There can be no static charge within a PEC.

and it follows that

Charge associated with a PEC lies on the sur-
face.

The same argument cannot be used to imply
that the fields outside the slab are zero, however.
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by C. Burks (modified)

Figure 5.12: Electric field lines due to a point
charge in the vicinity of PEC regions (shaded) of
various shapes.

This is because the boundary conditions on D1

and D2 in the dielectric regions require these
fields to be non-zero if the surface charge density
on the PEC is non-zero. In other words, the
surface charge supports the discontinuity in the
normal component of the electric fields. In fact,
we can now determine those values: D1 and D2

have magnitudes + |ρs| and − |ρs| respectively,
because the surface charge density on both sides
of the slab have equal magnitude. However the
electric field intensity E1 = D1/ǫ1, whereas
E2 = D2/ǫ2; i.e., these are different. That is, the
electric field intensities are unequal unless the
permittivities in each dielectric region are equal.

Finally, let us consider the structure of the
electric field in more general cases. Figure 5.12
shows field lines in a homogeneous dielectric
material in which a point charge and PEC
regions of various shapes are embedded. Note
that electric field lines now bend in the dielectric
so as to satisfy the requirement that the
tangential component of the electric field be zero
on PEC surfaces. Also note that the charge
distribution arranges itself on the PEC surfaces
so as to maintain zero electric field and constant
potential within the cube.
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5.20 Dielectric Media

[m0107]

Dielectric is particular category of materials
which exhibit low conductivity5 because their
constituent molecules remain intact when
exposed to an electric field, as opposed to
shedding electrons as is the case in good
conductors. Subsequently dielectrics do not
effectively pass current, and are therefore
considered “‘good insulators” as well as “poor
conductors”. An important application of
dielectrics in electrical engineering is as a spacer
material in printed circuit boards (PCBs),
coaxial cables, and capacitors.

Examples of dielectrics include air, glass, teflon,
and fiberglass epoxy (the material used in
common “FR4” printed circuit boards). These
and other dielectrics are listed along with values
of their constitutive parameters in Section A.1.

The primary electromagnetic characterization of
dielectric materials is relative permittivity ǫr
(Section 2.3), which ranges from very close to 1
upward to roughly 50, and less than 6 or so for
most common dry materials. The permeability of
dielectric materials is approximately equal to the
free-space value (i.e., µ ≈ µ0), and so these
materials are said to be “non-magnetic”.

Additional Reading:

• “Dielectric” on Wikipedia.

5.21 Dielectric Breakdown

[m0109]

The permittivity of an ideal dielectric is
independent of the magnitude of an applied
electric field; the material is said to be “linear”.6

However all practical dielectrics begin to fail in

5See Section 2.8 for a refresher on parameters describing
properties of materials.

6See Section 2.8 for a review of this concept.

this respect with sufficiently high electric field.
Typically the failure is abrupt, and is observed as
a sudden, dramatic increase in conductivity,
signaling that electrons are being successfully
dislodged from their host molecules. The
threshold value of the electric field intensity at
which this occurs is known as the dielectric
strength, and the sudden change in behavior
observed in the presence of an electric field
greater than this threshold value is known as
dielectric breakdown.

Dielectric strength varies from about 3 MV/m
for air to about 200 MV/m in mica (a dielectric
commonly used in capacitors).

Dielectric breakdown is typically accompanied by
“arcing”, which is a sudden flow of current
between reservoirs of charge. A well known
example of this phenomenon is lightning, which
occurs when charge is exchanged between sky
and ground when air (a dielectric) exhibits
breakdown. Dielectric breakdown in solids is
typically catastrophic to the material.

Additional Reading:

• “Electrical Breakdown” on Wikipedia.

5.22 Capacitance

[m0112]

When regions of positive and negative charge
coexist in a region of free space, Coulomb forces
(Section 5.1) will attempt to decrease the
separation between the charges. As noted in
Section 5.8, this can be interpreted as a tendency
of a system to reduce it’s potential energy. If the
charges are fixed in place, then the potential
energy remains constant. This potential energy is
proportional to the Coulomb force. Referring
back to Section 5.1, the Coulomb force is:

• Proportional to quantity of positive charge
squared,

• Inversely proportional to the separation

https://en.wikipedia.org/wiki/Dielectric
https://en.wikipedia.org/wiki/Electrical_breakdown
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between the positive and negative charges,
and

• Inversely proportional to the permittivity of
the material separating the charges.

Therefore the potential energy of the system is
similarly dependent on charge, separation, and
permittivity. Furthermore, we see that the
ability of a system to store energy in this manner
depends on the geometry of the structure and
the permittivity of the intervening material.

Now recall that the electric field intensity E is
essentially defined in terms of the Coulomb force;
i.e., F = qE (Section 2.2). So, rather than
thinking of the potential energy of the system as
being associated with the Coulomb force, it is
equally valid to think of the potential energy as
being stored in the electric field associated with
the charge distribution. It follows from findings
of the previous paragraph that the energy stored
in the electric field depends on the geometry and
permittivity of the structure under consideration.
This relationship is what we mean by
capacitance. We may fairly summarize this
insight as follows:

Capacitance is the ability of a structure to
store energy in an electric field.

The capacitance of a structure depends on its
geometry and the permittivity of the medium
separating regions of positive and negative
charge.

Note that capacitance does not depend on
charge, which we view as either a stimulus or
response from this point of view. The
corresponding response or stimulus, respectively,
is the net potential associated with this charge.
This leads to the following definition:

C ,
Q+

V
(5.158)

where Q+ (units of C) is the total positive
charge, V (units of V) is the potential associated
with this charge (defined such that it is positive),
and C (units of F) is the associated capacitance.
So:
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Figure 5.13: Electrostatic interpretation of ca-
pacitance.

In practice, capacitance is defined as the ratio
of charge present on one conductor of a two-
conductor system, to the potential difference
between the conductors (Equation 5.158).

In other words, a structure is said to have greater
capacitance if it stores more charge – and
therefore stores more energy – in response to a
given potential difference.

Figure 5.13 shows the relevant features of this
definition. Here a battery imposes the potential
difference V between two regions of
perfectly-conducting material. Q+ is the total
charge on the surface of the PEC region attached
to the positive terminal of the battery. An equal
amount of negative charge appears on the surface
of the PEC region attached to the negative
terminal of the battery (Section 5.19). This
charge distribution gives rise to the electric field
shown in Figure 5.13. Assuming the two PEC
regions are fixed in place, Q+ will increase
linearly with increasing V , at a rate determined
by the capacitance C of the structure.

A capacitor is a device which is designed to
exhibit a specified capacitance. We can now
make the connection to the concept of the
capacitor as it appears in elementary circuit
theory. In circuit theory, the behavior of devices
is characterized in terms of terminal voltage VT
in response to terminal current IT , and vice
versa. First, note that current does not normally
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flow through a capacitor,7 so when we refer to
“terminal current” for a capacitor, what we really
mean is the flow of charge arriving or departing
from one of the conductors via the circuit, which
is equal to the flow of charge departing or
arriving (respectively) at the other conductor.
This gives the appearance of current flow through
the capacitor when the current is examined from
outside the capacitor. With that settled, we
proceed as follows: Using Equation 5.158 we
express the voltage VT across the terminals of a
capacitor having capacitance C:

VT =
Q+

C
(5.159)

We seek a relationship between VT and IT .
Current is charge per unit time, so the charge on
either conductor is the integral of IT over time;
i.e., amps integrated over time is charge. If we
define IT as being positive in the direction of the
flow of positive charge as is the usual convention,
then we have:

VT (t) =
1

C

∫ t

t0

IT (τ) dτ +
1

C
Q+(t0) (5.160)

where t0 is an arbitrary start time. Again
applying Equation 5.158 we see that the second
term is simply VT (t0). This is the expected
relationship from elementary circuit theory.

Additional Reading:

• “Capacitance” on Wikipedia.

• “Capacitor” on Wikipedia.

5.23 The Thin Parallel Plate
Capacitor

[m0070]

Let us now determine the capacitance of a
common type of capacitor known as the thin
parallel plate capacitor, shown in Figure 5.14.

7If it does, it’s probably experiencing dielectric break-

down; see Section 5.21.

d

z

ρ

Figure 5.14: Thin parallel plate capacitor.

This capacitor consists of two flat plates, each
having area A, separated by distance d. To
facilitate discussion, let us place the origin of the
coordinate system at the center of the lower
plate, with the +z axis directed toward the
upper plate such that the upper plate lies in the
z = +d plane.

Below we shall find the capacitance by assuming
a particular charge on one plate, using the
boundary condition on the electric flux density D
to relate this charge density to the internal
electric field, and then integrating over the
electric field to obtain the voltage. Then
capacitance is the ratio of the assumed charge to
the resulting potential difference.

The principal difficulty in this approach is finding
the electric field. To appreciate the problem, first
consider that if the area of the plates was infinite,
then the electric field would be very simple: It
would begin at the positively-charged plate and
extend in a perpendicular direction toward the
negatively-charged plate (Section 5.19).
Furthermore, the field would be constant
everywhere between the plates. This much is
apparent from symmetry alone. However when
the plate area is finite, then we expect a fringing
field to emerge. “Fringing field” is simply a term
applied to the non-uniform field that appears at
the edge of the plates. The field is non-uniform
in this region because the boundary conditions
on the outside (outward-facing) surfaces of the
plates have a significant effect in this region. In
the central region of the capacitor, however, the
field is not much different from the field that
exists in the case of infinite plate area.

In any parallel plate capacitor of finite size, some

https://en.wikipedia.org/wiki/Capacitance
https://en.wikipedia.org/wiki/Capacitor
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fraction of the energy will be stored by the
approximately uniform field of the central region,
and the rest will be stored in the fringing field.
We can make the latter negligible relative to the
former by making the capacitor very “thin”, in
the sense that the smallest identifiable dimension
of the plate is much greater than d. Under this
condition, we may obtain a good approximation
of the capacitance by simply neglecting the
fringing field, since an insignificant fraction of
the energy is stored there.

Imposing the “thin” condition leads to three
additional simplifications. First, the surface
charge distribution may be assumed to be
approximately uniform over the plate, which
greatly simplifies the analysis. Second, the shape
of the plates becomes irrelevant: They might be
circular, square, triangular, etc.: When
computing capacitance in the “thin” case, only
the plate area A is important. Third, the
thickness of each of the plates becomes irrelevant.

We are now ready to determine the capacitance
of the thin parallel plate capacitor. Here are the
steps:

1. Assume a total positive charge Q+ on the
upper plate.

2. Invoking the “thin” condition, we assume
the charge density on the plates is uniform.
Thus the surface charge density on bottom
side of the upper plate is ρs,+ = Q+/A
(C/m2).

3. From the boundary condition on the bottom
surface of the upper plate, D on this surface
is −ẑρs,+.

4. The total charge on the lower plate, Q−,
must be equal and opposite the total charge
on the upper plate; i.e, Q− = −Q+.
Similarly the surface charge density on the
upper surface of the lower plate, ρs,−, must
be −ρs,+

5. From the boundary condition on the top
surface of the lower plate (Section 5.18), D
on this surface is +ẑρs,−. Since

+ẑρs,− = −ẑρs,+, D on the facing sides of
the plates is equal.

6. Again invoking the “thin” condition, we
assume D between the plates has
approximately the same structure as we
would see if the plate area was infinite.
Therefore we are justified in assuming
D ≈ −ẑρs,+ everywhere between the plates.
(You might also see that this is self-evident
from the definition of D as the flux density
of electric charge (Section 2.4).)

7. With an expression for the electric field in
hand, we may now compute the potential
difference V between the plates as follows
(Section 5.8):

V = −
∫

C

E · dl

= −
∫ d

0

(
1

ǫ
D

)
· (ẑdz)

= −
∫ d

0

(
−ẑ

ρs,+
ǫ

)
· (ẑdz)

= +
ρs,+ d

ǫ
(5.161)

8. Finally,

C =
Q+

V
=

ρs,+ A

ρs,+ d/ǫ
=
ǫA

d
(5.162)

Summarizing:

C ≈ ǫA

d
(5.163)

The capacitance of a parallel plate capacitor
having plate separation much less than the
size of the plate is given by Equation 5.163.
This is an approximation because the fringing
field is neglected.

It’s worth noting that this is dimensionally
correct; i.e., F/m times m2 divided by m yields
F. It’s also worth noting the effect of the various
parameters:
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Capacitance increases in proportion to per-
mittiviy and plate area, and decreases in pro-
portion to distance between the plates.

Example 5.9. Printed circuit board
capacitance.

Printed circuit boards commonly include a
“ground plane”, which serves as the voltage
datum for the board, and at least one
“power plane”, which is used to distribute a
DC supply voltage (See “Additional
Reading” at the end of this section). These
planes are separated by a dielectric material,
and so the area in common between the
planes exhibits capacitance. This
capacitance may be viewed as an equivalent
discrete capacitor in parallel with the power
supply, which may be either negligible,
significant and beneficial, or significant and
harmful. So, it is useful to know the value of
this equivalent capacitor.

For a common type of circuit board, the
dielectric thickness is about 1.6 mm and the
relative permittivity of the material is about
4.5. If the area in common between the
ground and power planes is 25 cm2, what is
the value of the equivalent bypass capacitor?

Solution. From the problem statement,
ǫ ∼= 4.5ǫ0, A ∼= 25 cm2 = 2.5 × 10−3 m2,
and d ∼= 1.6 mm. Using Equation 5.163, the
value of the equivalent capacitor is 62.3 pF.

Additional Reading:

• “Printed circuit board” on Wikipedia.

5.24 Capacitance of a
Coaxial Structure

[m0113]

Let us now determine the capacitance of
coaxially-arranged conductors, shown in

b

-
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ρ

l

V

c© K. Kikkeri CC BY SA 4.0

Figure 5.15: Determining the capacitance of
coaxial line.

Figure 5.15. The capacitance of this structure is
needed to calculate the characteristic impedance
of coaxial transmission line, as addressed in
Sections 3.4 and 3.10.

For our present purposes we may model the
structure as consisting of two concentric
perfectly-conducting cylinders of radii a and b,
separated by an ideal dielectric having
permittivity ǫs. We place the +z axis along the
common axis of the concentric cylinders so that
the cylinders may be described as
constant-coordinate surfaces ρ = a and ρ = b.

In this section we shall find the capacitance by
assuming a total charge Q+ on the inner
conductor and integrating over the associated
electric field to obtain the voltage between the
conductors. Then capacitance is computed as the
ratio of the assumed charge to the resulting
potential difference. This strategy is the similar
to that employed in Section 5.23 for the parallel
plate capacitor, so it may be useful to review
that section before attempting this derivation.

The first step is to find the electric field inside
the structure. This is relatively simple if we
assume that the structure has infinite length
(i.e., l → ∞), since then there are no fringing
fields and the internal field will be utterly
constant with respect to z. In the central region
of a finite-length capacitor, however, the field is
not much different from the field that exists in

https://en.wikipedia.org/wiki/Printed_circuit_board
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the case of infinite length, and if the energy
storage in fringing fields is negligible compared to
the energy storage in this central region then
there is no harm in assuming the internal field is
constant with z. Alternatively we may think of
the length l as pertaining to one short section of
a much longer structure, and thereby obtain the
capacitance per length as opposed to the total
capacitance. Note that the latter is exactly what
we need for the transmission line lumped-element
equivalent circuit model (Section 3.4).

To determine the capacitance, we invoke the
definition (Section 5.22):

C ,
Q+

V
(5.164)

where Q+ is the charge on the positively-charged
conductor and V is the potential measured from
the negative conductor to the positive conductor.
The charge on the inner conductor is
uniformly-distributed with density

ρl =
Q+

l
(5.165)

which has units of C/m. Now we will determine
the electric field intensity E, integrate E over the
path between conductors to get V , and then
apply Equation 5.164 to obtain the capacitance.

The electric field intensity for this scenario was
determined in Section 5.6, “Electric Field Due to
an Infinite Line Charge using Gauss’ Law”,
where we found

E = ρ̂
ρl

2πǫsρ
(5.166)

The reader should note that in that section we
were considering merely a line of charge; not a
coaxial structure. So on what basis do we claim
the field is the same? This is a consequence of
Gauss’ Law (Section 5.5)

∮

S

D · ds = Qencl (5.167)

which we used in Section 5.6 to find the field. If
in this new problem we specify the same
cylindrical surface S with radius ρ < b, then the
enclosed charge is the same. Furthermore the

presence of the outer conductor does not change
the radial symmetry of the problem, and nothing
else remains that can change the outcome. This
is worth noting for future reference:

The electric field inside a coaxial structure
comprised of concentric conductors and hav-
ing uniform charge density on the inner con-
ductor is identical to the electric field of a line
charge in free space having the same charge
density.

Next we get V using (Section 5.8)

V = −
∫

C

E · dl (5.168)

where C is any path from the negatively-charged
outer conductor to the positively-charged inner
conductor. Since this can be any such path
(Section 5.9), we may as well choose the simplest
one. This path is the one which traverses a radial
of constant φ and z. Thus:

V = −
∫ a

ρ=b

(
ρ̂

ρl
2πǫsρ

)
· (ρ̂dρ)

= − ρl
2πǫs

∫ a

ρ=b

dρ

ρ

= +
ρl

2πǫs

∫ b

ρ=a

dρ

ρ

= +
ρl

2πǫs
ln

(
b

a

)
(5.169)

Wrapping up:

C ,
Q+

V
=

ρll

(ρl/2πǫs) ln (b/a)
(5.170)

Note that factors of ρl in the numerator and
denominator cancel out, leaving:

C =
2πǫsl

ln (b/a)
(5.171)

Note that this expression is dimensionally
correct, having units of F. Also note that the
expression depends only on materials (through
ǫs) and geometry (through l, a, and b). The
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expression does not depend on charge or voltage,
which would imply non-linear behavior.

To make the connection back to lumped-element
transmission line model parameters (Sections 3.4
and 3.10), we simply divide by l to get the
per-unit length parameter:

C ′ =
2πǫs

ln (b/a)
(5.172)

Example 5.10. Capacitance of RG-59
coaxial cable.

RG-59 coaxial cable consists of an inner
conductor having radius 0.292 mm, an outer
conductor having radius 1.855 mm, and a
polyethylene spacing material having
relative permittivity 2.25. Estimate the
capacitance per length of RG-59.

Solution. From the problem statement,
a = 0.292 mm, b = 1.855 mm, and
ǫs = 2.25ǫ0. Using Equation 5.172 we find
C ′ = 67.7 pF/m.

5.25 Electrostatic Energy

[m0114]

Consider a structure consisting of two perfect
conductors, both fixed in position and separated
by an ideal dielectric. This could be a capacitor,
or it could be one of a variety of capacitive
structures which are not explicitly intended to be
a capacitor; for example, a printed circuit board.
When a potential difference is applied between
the two conducting regions, a positive charge Q+

will appear on the surface of the conductor at the
higher potential, and a negative charge
Q− = −Q+ will appear on the surface of the
conductor at the lower potential (Section 5.19).
Since the conductors are not free to move,
potential energy is stored in the electric field
associated with the surface charges
(Section 5.22).

We now ask the question: What is the energy
stored in this field? The answer to this question
has relevance in several engineering applications.
For example, when capacitors are used as
batteries, it is useful to know to amount of
energy that can be stored. Also, any system that
includes capacitors or has unintended
capacitance is using some fraction of the energy
delivered by the power supply to charge the
associated structures. In many electronic systems
– and in digital systems in particular – capacitors
are periodically charged and subsequently
discharged at a regular rate. Since power is
energy per unit time, this cyclic charging and
discharging of capacitors consumes power.
Therefore energy storage in capacitors
contributes to the power consumption of modern
electronic systems – We’ll delve into that topic in
more detail in an upcoming example.

Since capacitance C relates the charge Q+ to the
potential difference V between the conductors,
this is the natural place to start. From the
definition of capacitance (Section 5.22):

V =
Q+

C
(5.173)

From Section 5.8, electric potential is defined as
the work done (i.e., energy injected) by moving a
charged particle, per unit of charge; i.e.,

V =
We

q
(5.174)

where q is the charge borne by the particle and
We (units of J) is the work done by moving this
particle across the potential difference V . Since
we are dealing with charge distributions as
opposed to charged particles, it is useful to
express this in terms of the contribution ∆We

made to We by a small charge ∆q. Letting ∆q
approach zero we have

dWe = V dq (5.175)

Now consider what must happen to transition
the system from having zero charge (q = 0) to
the fully-charged static condition (q = Q+). This
requires moving the differential amount of charge
dq across the potential difference V = q/C,
beginning with q = 0 and continuing until
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q = Q+. Therefore the total amount of work
done in this process is:

We =

∫ Q+

q=0

dWe

=

∫ Q+

0

V dq

=

∫ Q+

0

q

C
dq

=
1

2

Q2
+

C
(5.176)

Equation 5.176 can be expressed entirely in
terms of electrical potential by noting again that
C = Q+/V , so

We =
1

2
CV 2 (5.177)

Since there are no other processes to account for
the injected energy, the energy stored in the
electric field is equal to We. Summarizing:

The energy stored in the electric field of a
capacitor (or a capacitive structure) is given
by Equation 5.177.

Example 5.11. Why multicore computing
is power-neutral.

Readers are likely aware that computers
increasingly use multicore processors as
opposed to single-core processors. For our
present purposes, a “core” is defined as the
smallest combination of circuitry that
performs computation. A multicore
processor consists of multiple identical cores
which run in parallel. Since a multicore
processor consists of N identical processors,
you might expect power consumption
increase by N relative to a single-core
processor. However this is not the case. To
see why, first realize that the power
consumption of a modern computing core is
dominated by the energy required to
continuously charge and discharge the
multitude of capacitances within the core.
From Equation 5.177, the required energy is

1
2C0V

2
0 per clock cycle, where C0 is the sum

capacitance (remember, capacitors in
parallel add) and V0 is the supply voltage.
Power is energy per unit time, so the power
consumption for a single core is

P0 =
1

2
C0V

2
0 f0 (5.178)

where f0 is the clock frequency. In a N -core
processor, the sum capacitance is increased
by N . However the frequency is decreased
by N since the same amount of computation
is being distributed among the N cores.
Therefore the power consumed by an N -core
processor is

PN =
1

2
(NC0)V

2
0

(
f0
N

)
= P0 (5.179)

In other words, the increase in power
associated with replication of hardware is
nominally offset by the decrease in power
enabled by reducing the clock rate. In yet
other words, the total energy of the N -core
processor is N times the energy of the single
core processor at any given time; however
the multicore processor needs to recharge
capacitances 1/N times as often.

Before moving on, it should be noted that
the usual reason for pursuing a multicore
design is to increase the amount of
computation that can be done; i.e., to
increase the product f0N . Nevertheless, it is
extremely helpful that power consumption is
proportional to f0 only, and is independent
of N .

The thin parallel plate capacitor (Section 5.23) is
representative of a large number of practical
applications, so it is instructive to consider the
implications of Equation 5.177 for this structure
in particular. For the thin parallel plate
capacitor,

C ≈ ǫA

d
(5.180)

where A is the plate area, d is the separation
between the plates, and ǫ is the permittivity of
the material between the plates. This is an
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approximation because the fringing field is
neglected; we shall proceed as if this is an exact
expression. Applying Equation 5.177:

We =
1

2

(
ǫA

d

)
(Ed)

2
(5.181)

where E is the magnitude of the electric field
intensity between the plates. Rearranging
factors, we obtain:

We =
1

2
ǫE2 (Ad) (5.182)

Recall that the electric field intensity in the thin
parallel plate capacitor is approximately uniform.
Therefore the density of energy stored in the
capacitor is also approximately uniform. Noting
that the product Ad is the volume of the
capacitor, we find that this energy density is

we =
1

2
ǫE2 (5.183)

which has units of energy per unit volume
(J/m3).

The above expression provides an alternative
method to compute the total electrostatic energy.
Within a mathematical volume V, the total
electrostatic energy is simply the integral of the
energy density over V; i.e.,

We =

∫

V

we dv (5.184)

This works even if E and ǫ varies with position,
so even though we arrived at this result using the
example of the thin parallel-plate capacitor, our
findings at this point apply generally.
Substituting Equation 5.183 we obtain:

We =
1

2

∫

V

ǫE2dv (5.185)

Summarizing:

The energy stored by the electric field present
within a volume is given by Equation 5.185.

It’s worth noting that this energy increases with
the permittivity of the medium, which makes
sense since capacitance is proportional to
permittivity.

[m0034]
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Chapter 6

Steady Current and Conductivity

6.1 Convection and
Conduction Currents

[m0110]

In practice, we deal with two physical
mechanisms for current: convection and
conduction. The distinction between these types
of current is important in electromagnetic
analysis.

Convection current consists of charged
particles traversing space in response to
mechanical forces, as opposed to being guided by
the Coulomb force (Sections 2.2 and/or 5.1)
exerted on particles by an electric field. An
example of a convection current is a cloud
bearing free electrons which moves through the
atmosphere driven by wind.

Conduction current consists of charged
particles moving in response to Coulomb forces,
and not merely being carried by motion of the
surrounding material. Specifically, the electric
field dislodges weakly-bound electrons from
atoms, which then subsequently travel some
distance before reassociating with other atoms.
Thus, the individual electrons in a conduction
current do not necessarily travel the full distance
over which the current is perceived to exist.

The distinction between convection and
conduction is important because Ohm’s Law
(Section 6.3) – which specifies the relationship
between electric field intensity and current –
applies only to conduction current.

Additional Reading:

• “Electric current” on Wikipedia.

6.2 Current Distributions

[m0101]

In elementary electric circuit theory, current is
the rate at which electric charge passes a
particular point in a circuit: For example, 1 A is
1 C per second. In this view current is a scalar
quantity, and there are only two possible
directions because charge is constrained to flow
along defined channels. Direction is identified by
the sign of the current with respect to a reference
direction, which is in turn defined with respect to
a reference voltage polarity. The convention in
electrical engineering defines positive current as
the flow of positive charge into the positive
voltage terminal of a passive device such as a
resistor, capacitor, or inductor. For an active
device such as a battery, positive current
corresponds to the flow of positive charge out of
the positive voltage terminal.

However this kind of thinking only holds up
when the systems being considered are
well-described as “lumped” devices connected by
infinitesimally thin, filament-like connections
representing wires and circuit board traces.
Many important problems in electrical
engineering concern situations in which current
fails to do this: Examples include wire- and

Electromagnetics Vol 1 (Beta). c© 2018 S.W. Ellingson. CC BY SA 4.0 https://doi.org/10.7294/W4WQ01ZM

https://en.wikipedia.org/wiki/Electric_current
https://doi.org/10.7294/W4WQ01ZM


6.2. CURRENT DISTRIBUTIONS 127

pin-type interconnects at radio frequencies,
circuit board and enclosure grounding, and
physical phenomena such as lightning. To
accommodate this more general class of problems
we must define current as a vector quantity.
Furthermore current in these problems spreads
out over surfaces and within volumes, so we must
also consider spatial distributions of current.

Line Current. As noted above, if a current I is
constrained to follow a particular path, then the
only other consideration is direction. Thus, a line
current is specified mathematically as l̂I, where
the direction l̂ may vary with position along the
path. For example, in a straight wire l̂ is
constant, whereas in a coil l̂ varies with position
along the coil.

Surface Current Distribution. In some cases,
current may be distributed over a surface. For
example, the radio-frequency current on a wire of
radius a made from a metal with sufficiently high
conductivity can be modeled as a uniform surface
current existing on the wire surface. In this case
the current is best described as a surface current
density Js, which is the total current I on the
wire divided by the circumference 2πa of the
wire:

Js = û
I

2πa
(units of A/m) (6.1)

where û is the direction of current flow.

Volume Current Distribution. Imagine that
current is distributed within a volume. Let û∆i
be the current passing through a small open
planar surface defined within this volume, and let
∆s be the area of this surface. The volume
current density J at any point in the volume is
defined as

J , lim
∆s→0

û∆i

∆s
= û

di

ds
(units of A/m2) (6.2)

In general J is a function of position within this
volume. Subsequently the total current passing
through a surface S is

I =

∫

S

J · ds (units of A) (6.3)

In other words, volume current density
integrated over a surface yields total current

through that surface. You might recognize this
as a calculation of flux, and it is.1

Example 6.1. Current and current density
in a wire of circular cross-section.

Figure 6.1 shows a straight wire having
cross-sectional radius a = 3 mm. A battery
is connected across the two ends of the wire
resulting in a volume current density
J = ẑ8 A/m2 which is uniform throughout
the wire. Find the net current I through the
wire.

Solution. The net current is

I =

∫

S

J · ds

We choose S to be the cross-section
perpendicular to the axis of the wire. Also,
we choose ds to point such that I is positive
with respect to the sign convention shown in
Figure 6.1 , which is the usual choice in
electric circuit analysis. With these choices,
we have

I =

∫ a

ρ=0

∫ 2π

φ=0

(
ẑ8 A/m

2
)
· (ẑρ dρ dφ)

=
(
8 A/m

2
)∫ a

ρ=0

∫ 2π

φ=0

ρ dρ dφ

=
(
8 A/m

2
)
·
(
πa2

)

= 226 µA

This answer is independent of the
cross-sectional surface S used to do the
calculation. For example, you could use an
alternative surface which is tilted 45◦ away
from the axis of the wire: In that case the
cross-sectional area would increase, but the
dot product of J and ds would be
proportionally less, and the outcome would
be the same. Since the choice of S is
arbitrary – any surface with edges at the
perimeter of the wire will do – you should

1However it is not common to refer to net current as a
flux; go figure!
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J

I

a

z

-�

ds

c© K. Kikkeri CC BY SA 4.0

Figure 6.1: Net current I and current density J
in a wire of circular cross-section.

make the choice which makes the problem as
simple as possible, as we have done above.

Additional Reading:

• “Electric current” on Wikipedia.

• “Current density” on Wikipedia.

6.3 Conductivity

[m0010]

Conductivity is one of the three primary
“constitutive parameters” that is commonly used
to characterize the electromagnetic properties of
materials (Section 2.8). The key idea is this:

Conductivity is a property of materials that
determines conduction current density in re-
sponse to an applied electric field.

Recall that conduction current is the flow of
charge in response to an electric field, via the
Coulomb force (Section 6.1). Although the
Coulomb force is straightforward to calculate
(Section 5.1), the result is merely the force
applied, not the speed at which charge moves in
response. The latter is determined by the
mobility of charge, which is in turn determined

by the atomic and molecular structure of the
material. Conductivity relates current density to
the applied field directly, without requiring one
to grapple separately with the issues of applied
force and charge mobility.

In the absence of material – that is, in a true,
perfect vacuum – conductivity is zero because
there is no charge available to form current, and
therefore the current is zero no matter what
electric field is applied. At the other extreme, a
good conductor is a material that contains a
supply of charge that is able to move freely
within the material. When an electric field is
applied to a good conductor, charge-bearing
material constituents eagerly move in the
direction determined by the electric field,
creating current flow in that direction. This
relationship is summarized by Ohm’s Law for
Electromagnetics :

J = σE (6.4)

where E is electric field intensity (V/m); J is the
volume current density, a vector describing the
current flow, having units of A/m2 (see
Section 6.2); and σ is conductivity. Since E has
units of V/m, we see σ has units of Ω−1m−1,
which is more commonly expressed as S/m,
where 1 S (“siemens”) is defined as 1 Ω−1.
Section A.3 provides values of conductivity for a
representative set of materials.

Conductivity σ is expressed in units of S/m,
where 1 S = 1 Ω−1.

It is important to note that the current being
addressed here is conduction current, and not
convection current, displacement current, or
some other form of current – see Section 6.2 for
elaboration. Summarizing:

Ohm’s Law for Electromagnetics (Equa-
tion 6.4) states that volume density of con-
duction current (A/m2) equals conductivity
(S/m) times electric field intensity (V/m).

The reader is likely aware that there is also an
“Ohm’s Law” in electric circuit theory, which

https://creativecommons.org/licenses/by-sa/4.0/
https://en.wikipedia.org/wiki/Electric_current
https://en.wikipedia.org/wiki/Current_density
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states that current I (units of A) is voltage V
(units of V) divided by resistance R (units of Ω);
i.e., I = V/R. This is in fact a special case of
Equation 6.4; see Section 6.4 for more about this.

As mentioned above, σ depends on both the
availability and mobility of charge within the
material. At the two extremes we have perfect
insulators, for which σ = 0; and perfect
conductors, for which σ → ∞. Some materials
approach these extremes, whereas others fall
midway between these conditions. Here are a few
classes of materials that are frequently
encountered:

• A perfect vacuum – “free space” – contains
no charge and therefore is a perfect insulator
with σ = 0.

• Good insulators typically have conductivities
≪ 10−10 S/m, which is sufficiently low that
the resulting currents can usually be ignored.
The most important example is air, which
has a conductivity only slightly greater than
that of free space. An important class of
good insulators is lossless dielectrics,2 which
are well-characterized in terms of
permittivity (ǫ) alone, and for which µ = µ0

and σ = 0 may usually be assumed.

• Poor insulators have conductivities which
are low, but nevertheless sufficiently high
that the resulting currents cannot be
ignored. For example, the dielectric material
which is used to separate the conductors in a
transmission line must be considered a poor
insulator as opposed to a good (effectively
lossless) insulator in order to characterize
loss per length along the transmission line,
which can be significant.3 These lossy
dielectrics are well-characterized in terms of
ǫ and σ, and typically µ = µ0 can be
assumed.

• Semiconductors such as those materials used
in integrated circuits have intermediate
conductivities; typically in the range 10−4 to
101 S/m.

2See Section 5.20 for a discussion of dielectric materials.
3Review Sections 3.4, 3.9, and associated sections for a

refresher on this issue.

• Good conductors are materials with very
high conductivities; typically greater than
105 S/m. An important category of good
conductors includes metals, with certain
metals including alloys of aluminum, copper,
and gold reaching conductivities on the
order of 108 S/m. In such materials
minuscule electric fields give rise to large
currents. There is no significant storage of
energy in such materials, and so the concept
of permittivity is not relevant for good
conductors.

The reader should take care to note that terms
such as good conductor and poor insulator are
qualitative and subject to context. What may be
considered a “good insulator” in one application
may be considered to be a “poor insulator” in
another.

One relevant category of material was not
included in the above list: perfect conductors. A
perfect conductor is a material in which σ → ∞.
It is tempting to interpret this as meaning that
any electric field gives rise to infinite current
density; however this is not plausible even in the
ideal limit. Instead, this condition is interpreted
as meaning that E = J/σ → 0 throughout the
material; i.e., E is zero independently of any
current flow in the material. An important
consequence is that the potential field V is equal
to a constant value throughout the material.
(Recall E = −∇V (Section 5.14), so constant V
means E = 0.) We refer to the volume occupied
by such a material as an equipotential volume.
This concept is useful as an approximation of the
behavior of good conductors; for example, metals
are often modeled as perfectly-conducting
equipotential volumes in order to simplify
analysis.

A perfect conductor is a material for which
σ → ∞, E → 0, and subsequently V (the
electric potential) is constant.

One final note: It is important to remain aware
of the assumptions we have made about
materials in this book, which are summarized in
Section 2.8. In particular, we continue to assume
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that materials are linear unless otherwise
indicated. For example: Whereas air is normally
considered to be an insulator and therefore a
poor conductor, anyone who has ever witnessed
lightning has seen a demonstration that under
the right conditions – i.e., sufficiently large
potential difference between earth and sky – air
can be come a very good conductor. This
particular situation is known as dielectric
breakdown (see Section 5.21). The non-linearity
of materials can become evident before reaching
the point of dielectric breakdown, so one must be
careful to consider this possibility when dealing
with strong electric fields.

Additional Reading:

• “Electrical Resistivity and Conductivity” on
Wikipedia.

• “Ohm’s Law” on Wikipedia.

6.4 Resistance

[m0071]

The concept of resistance is most likely familiar
to readers via Ohm’s Law for Devices ; i.e.,
V = IR where V is the potential difference
associated with a current I. This is correct, but
it is not the whole story. Let’s begin with a
statement of intent:

Resistance R (Ω) is a characterization of the
conductivity of a device (as opposed to a ma-
terial) in terms of Ohms Law for Devices; i.e.,
V = IR.

Resistance is a property of devices such as
resistors, which are intended to provide
resistance; as well as being a property of most
practical electronic devices, whether it is desired
or not.

Resistance is a manifestation of the conductivity
of the materials comprising the device, which
subsequently leads to the “V = IR” relationship.
This brings us to a very important point and a

common source of confusion: Resistance is not
necessarily the real part of impedance. Let’s take
a moment to elaborate. Impedance (Z) is defined
as the ratio of voltage to current; i.e., V/I; or

equivalently in the phasor domain as Ṽ /Ĩ.
Essentially any device – not just devices
exhibiting resistance – can be characterized in
terms of this ratio. Consider for example the
input impedance of a terminated transmission
line (Section 3.15). This impedance may have a
non-zero real-valued component even when the
transmission line and the terminating load are
comprised of perfect conductors. Summarizing:

Resistance results in a real-valued impedance;
but not all devices exhibiting a real-valued
impedance exhibit resistance, and the real
component of a complex-valued impedance
does not necessarily represent resistance.

Restating the main point in yet other words:
Resistance pertains to limited conductivity, not
simply to voltage-current ratio.

Also important to realize is that whereas
conductivity σ (units of S/m) is a property of
materials, resistance depends on both
conductivity and the geometry of the device. In
this section we address the question of how the
resistance of a device can be is determined. The
following example serves this purpose.

Figure 6.2 shows a straight wire of length l
centered on the z axis, forming a cylinder of a
material having conductivity σ and
cross-sectional radius a. The ends of the cylinder
are covered by perfectly-conducting plates to
which the terminals are attached. A battery is
connected to the terminals, resulting in a uniform
internal electric field E between the plates.

To calculate R for this device, let us first
calculate V , then I, and finally R = V/I. Here
we go: First, we compute the potential difference
using the following result from Section 5.8:

V = −
∫

C

E · dl (6.5)

Here we can view V as a “given” (being the
voltage of the battery), but wish to evaluate the

https://en.wikipedia.org/wiki/Electrical_resistivity_and_conductivity
https://en.wikipedia.org/wiki/Ohm's_law
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Figure 6.2: Analysis of the resistance of straight
wire of circular cross-section.

right hand side so as to learn something about
the effect of the conductivity and geometry of
the wire. The appropriate choice of C begins at
z = 0 and ends at z = l, following the axis of the
cylinder. (Remember: C defines the direction of
increasing potential, and the resulting potential
difference will be the node voltage at the end
point minus the node voltage at the start point.)
Thus, dl = ẑdz and we have

V = −
∫ l

z=0

E · (ẑdz)

We do not yet know E; however we know it is
constant throughout the device and points in the
−ẑ direction since this is the direction of current
flow and Ohm’s Law for Electromagnetics
(Section 6.3) requires the electric field to point in
the same direction. Thus we may write
E = −ẑEz where Ez is a constant. We now find:

V = −
∫ l

z=0

(−ẑEz) · (ẑdz)

= +Ez

∫ l

z=0

dz

= +Ezl

The current I is given by (Section 6.2)

I =

∫

S

J · ds

We choose the surface S to be the cross-section
perpendicular to the axis of the wire. Also, we
choose ds to point such that I is positive with
respect to the sign convention shown in
Figure 6.2. With these choices, we have

I =

∫ a

ρ=0

∫ 2π

φ=0

J · (−ẑ ρ dρ dφ)

From Ohm’s Law for Electromagnetics, we have

J = σE = −ẑσEz (6.6)

So now

I =

∫ a

ρ=0

∫ 2π

φ=0

(−ẑσEz) · (−ẑρ dρ dφ)

= σEz

∫ a

ρ=0

∫ 2π

φ=0

ρ dρ dφ

= σEz
(
πa2

)

Finally:

R =
V

I
=

Ezl

σEz (πa2)
=

l

σ (πa2)

This is a good-enough answer for the problem
posed, but it is easily generalized a bit further.
Noting that πa2 in the denominator is the
cross-sectional area A of the wire, we may write

R =
l

σA
(6.7)

i.e., the resistance of a wire having cross-sectional
area A – regardless of the shape of the
cross-section, is given by the above equation.

The resistance of a right cylinder of mate-
rial, given by Equation 6.7, is proportional
to length and inversely proportional to cross-
sectional area and conductivity.

It is important to remember that Equation 6.7
presumes that the volume current density J is
uniform over the cross-section of the wire. This is
an excellent approximation for thin wires at
“low” frequencies including, of course, DC. At
higher frequencies it may not be a good
assumption that J is uniformly-distributed over

https://creativecommons.org/licenses/by-sa/4.0/


132 CHAPTER 6. STEADY CURRENT AND CONDUCTIVITY

the cross-section of the wire, and at sufficiently
high frequencies one finds instead that the
current is effectively limited to the exterior
surface of the wire. In the “high frequency” case,
A in Equation 6.7 is reduced from the physical
area to a smaller value corresponding to the
reduced area through which almost all of the
current flows. Therefore R increases with
increasing frequency.

In order to quantify the high frequency behavior
of R (including determination of what
constitutes “high frequency” in this context)
requires concepts beyond the theory of
electrostatics, and so is addressed elsewhere.

Example 6.2. Resistance of 22 AWG
hookup wire.

A common type of wire found in DC
applications is 22AWG (“American Wire
Gauge”; see “Additional Resources” at the
end of this section) copper solid-conductor
hookup wire. This type of wire has circular
cross-section with diameter 0.644 mm.
What is the resistance of 3 m of this wire?
Assume copper conductivity of 58 MS/m.

Solution. From the problem statement, the
diameter 2a = 0.644 mm, σ = 58× 106 S/m,
and l = 3 m. The cross-sectional area is
A = πa2 ∼= 3.26× 10−7 m2. Using
Equation 6.7 we obtain R = 159 mΩ.

Example 6.3. Resistance of steel pipe.

A pipe is 3 m long and has inner and outer
radii of 5 mm and 7 mm respectively. It is
made from steel having conductivity
4 MS/m. What is the DC resistance of this
pipe?

Solution. We can use Equation 6.7 if we
can determine the cross-sectional area A
through which the current flows. This area
is simply the area defined by the outer
radius, πb2, minus the area defined by the
inner radius πa2. Thus

A = πb2 − πa2 ∼= 7.54× 10−5 m2. From the
problem statement we also determine that
σ = 4× 106 S/m and l = 3 m. Using
Equation 6.7 we obtain R ∼= 9.95 mΩ.

Additional Reading:

• “Resistor” on Wikipedia.

• “Ohm’s Law” on Wikipedia.

• “American wire gauge” on Wikipedia.

6.5 Conductance

[m0105]

Conductance, like resistance (Section 6.4), is a
property of devices. Specifically:

Conductance G (Ω−1 or S) is the reciprocal
of resistance R.

Therefore conductance depends on both the
conductivity of the materials used in the device
as well as the geometry of the device.

A natural question to ask is: Why do we require
the concept of conductance, if it simply the
reciprocal of resistance? The short answer is that
the concept of conductance is not required; or,
rather, we need only resistance or conductance,
and not both. The concept appears in
engineering analysis for two reasons:

• Conductance is sometimes considered to be a
more intuitive description of the underlying
physics in cases where the applied voltage is
considered to be the independent “stimulus”
and current is considered to be the response.
This is why conductance appears in the
lumped element model for transmission lines
(Section 3.4), for example.

• Characterization in terms of conductance
may be preferred when considering the
behavior of devices in parallel, since the

https://en.wikipedia.org/wiki/Resistor
https://en.wikipedia.org/wiki/Ohm's_law
https://en.wikipedia.org/wiki/American_wire_gauge
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conductance of a parallel combination is
simply the sum of the conductances of the
devices.

Example 6.4. Conductance of a coaxial
structure.

Let us now determine the conductance of a
structure consisting of coaxially-arranged
conductors separated by a lossy dielectric, as
shown in Figure 6.3. The conductance of
this structure is of interest in determining
the characteristic impedance of coaxial
transmission line, as addressed in
Sections 3.4 and 3.10.

For our present purposes we may model the
structure as two concentric
perfectly-conducting cylinders of radii a and
b, separated by a lossy dielectric having
conductivity σs. We place the +z axis along
the common axis of the concentric cylinders
so that the cylinders may be described as
constant-coordinate surfaces ρ = a and
ρ = b.

There are at least 2 ways to solve this
problem. One method is to follow the
procedure that was used to find the
capacitance of this structure in Section 5.24.
Adapting that approach to the present
problem, one would assume a potential
difference V between the conductors, from
that determine the resulting electric field
intensity E, and then using Ohm’s Law for
Electromagnetics (Section 6.3) determine
the density J = σsE of the current that
leaks directly between conductors. From this
one is able to determine the total leakage
current I, and subsequently the conductance
G , I/V . Although highly recommended as
an exercise for the student, in this section
we take an alternative approach so as to
demonstrate that there are a variety of
approaches available for such problems.

The method we shall use below is as follows:
(1) Assume a leakage current I between the

conductors; (2) Determine the associated
current density J, which is possible using
only geometrical considerations; (3)
Determine the associated electric field
intensity E using J/σs; (4) Integrate E over
a path between the conductors to get V .
Then as before conductance G , I/V .

The current I is defined as shown in
Figure 6.3, with reference direction
according to the engineering convention that
positive current flows out of the positive
terminal of a source. (It’s worth noting that
the opposite direction may be used for the
reference direction as well, with the
appropriate changes in sign throughout the
rest of the work.) The associated current
density must flow in the same direction, and
the circular symmetry of the problem
therefore constrains J to have the form

J = ρ̂
I

A
(6.8)

where A is the area through which I flows.
In other words, current flows radially
outward from the inner conductor to the
outer conductor, with density that
diminishes inversely with the area through
which the total current flows. (It may be
helpful to view J as a flux density and I as a
flux, as noted in Section 6.2.) This area is
simply circumference 2πρ times length l, so

J = ρ̂
I

2πρl
(6.9)

which exhibits the correct units of A/m2.

Now from Ohm’s Law for Electromagnetics
we find the electric field within the structure
is

E =
J

σs
= ρ̂

I

2πρlσs
(6.10)

Next we get V using (Section 5.8)

V = −
∫

C

E · dl (6.11)
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where C is any path from the
negatively-charged outer conductor to the
positively-charged inner conductor. Since
this can be any such path (Section 5.9), we
should choose the simplest one. The
simplest path is the one which traverses a
radial of constant φ and z. Thus:

V = −
∫ a

ρ=b

(
ρ̂

I

2πρlσs

)
· (ρ̂dρ)

= − I

2πlσs

∫ a

ρ=b

dρ

ρ

= +
I

2πlσs

∫ b

ρ=a

dρ

ρ

= +
I

2πlσs
ln

(
b

a

)
(6.12)

Wrapping up:

G ,
I

V
=

I

(I/2πlσs) ln (b/a)
(6.13)

Note that factors of I in the numerator and
denominator cancel out, leaving:

G =
2πlσs
ln (b/a)

(6.14)

Note that Equation 6.14 is dimensionally
correct, having units of S = Ω−1. Also note
that this is expression depends only on
materials (through σs) and geometry
(through l, a, and b). Notably it does not
depend on current or voltage, which would
imply non-linear behavior.

To make the connection back to
lumped-element transmission line model
parameters (Sections 3.4 and 3.10), we
simply divide by l to get the per-length
parameter:

G′ =
2πσs

ln (b/a)
(6.15)

b

a

z

ρ

l

I

�s

J

Figure 6.3: Determining the conductance of a
structure consisting of coaxially-arranged conduc-
tors separated by a lossy dielectric.

Example 6.5. Conductance of RG-59
coaxial cable.

RG-59 coaxial cable consists of an inner
conductor having radius 0.292 mm, an outer
conductor having radius 1.855 mm, and a
polyethylene spacing material exhibiting
conductivity of about 5.9× 10−5 S/m.
Estimate the conductance per length of
RG-59.

Solution. From the problem statement,
a = 0.292 mm, b = 1.855 mm, and
σs ∼= 5.9× 10−5 S/m. Using Equation 6.15
we find G′ ∼= 200 µS/m.

6.6 Power Dissipation in
Conducting Media

[m0106]

The displacement of charge in response to the
force exerted by an electric field constitutes a
reduction in the potential energy of the system
(Section 5.8). If the charge is part of a steady
current, there must be an associated loss of
energy that occurs at a steady rate since the
current itself is steady. Since power is energy per
unit time, the loss of energy associated with
current is expressible as power dissipation. In
this section we address two questions: (1) How
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much power is dissipated in this manner, and (2)
What happens to the lost energy?

First, recall that work is force times distance
traversed in response to that force (Section 5.8).
Stated mathematically:

∆W = +F ·∆l (6.16)

where the vector F is the force (units of N)
exerted by the electric field, the vector ∆l is the
direction and distance (units of m) traversed,
and ∆W is the work done (units of J) as a result.
Note that a “+” has been explicitly indicated;
this is to emphasize the distinction from the
work that being considered in Section 5.8. In
that section, the work “∆W” represented energy
from an external source that was being used to
increase the potential energy of the system by
moving charge “upstream” relative to the electric
field. Now, ∆W represents this internal energy
as it is escaping from the system in the form of
kinetic energy; therefore positive ∆W now means
a reduction in potential energy; hence the sign
change.4

The associated power ∆P (units of W) is ∆W
divided by the time ∆t (units of s) required for
the distance ∆l to be traversed:

∆P =
∆W

∆t
= F · ∆l

∆t
(6.17)

Now we’d like to express force in terms of the
electric field exerting this force. Recall that the
force exerted by an electric field intensity E
(units of V/m) on a particle bearing charge q
(units of C) is qE (Section 2.2). However we’d
like to express this force in terms of a current, as
opposed to a charge. An expression in terms of
current can be constructed as follows. First note
that the total charge in a small volume “cell” is
the volume charge density ρv (units of C/m3)
times the volume ∆v of the cell; i.e., q = ρv∆v
(Section 5.3). Therefore:

F = qE = ρv ∆v E (6.18)

4It could be argued that it is bad form to use the same
variable to represent both tallies; nevertheless it is com-
mon practice and so we simply remind the reader that it is
important to be aware of the definitions of variables each
time they are (re)introduced.

and subsequently

∆P = ρv ∆v E · ∆l

∆t
= E ·

(
ρv

∆l

∆t

)
∆v (6.19)

The quantity in parentheses has units of C/m3 ·
m · s−1, which is A/m2. Apparently this quantity
is the volume current density J, so we have

∆P = E · J ∆v (6.20)

In the limit as ∆v → 0 we have

dP = E · J dv (6.21)

and integrating over the volume V of interest we
obtain

P =

∫

V

dP =

∫

V

E · J dv (6.22)

The above expression is commonly known as
Joule’s Law. In our situation it is convenient to
use Ohm’s Law for Electromagnetics (J = σE;
Section 6.3) to get everything in terms of
materials properties (σ), geometry (V), and the
electric field:

P =

∫

V

E · (σE) dv (6.23)

which is simply

P =

∫

V

σ |E|2 dv (6.24)

Thus:

The power dissipation associated with cur-
rent is given by Equation 6.24. This power
is proportional to conductivity and propor-
tional to electric field intensity squared.

This result facilitates the analysis of power
dissipation in materials exhibiting loss; i.e.,
having finite conductivity. But what is the power
dissipation in a perfectly conducting material?
For such a material, σ → ∞ and E → 0 no
matter how much current is applied
(Section 6.3). In this case, Equation 6.24 is not
very helpful. However, as we just noted, being a
perfect conductor means E → 0 no matter how
much current is applied, so the power dissipated
in a perfect conductor must be zero.
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When conductivity is finite, Equation 6.24 serves
as a more-general version of a concept from
elementary circuit theory, as we shall now
demonstrate. Let E = ẑEz, so |E|2 = E2

z . Then
Equation 6.24 becomes:

P =

∫

V

σE2
z dv = σE2

z

∫

V

dv (6.25)

The second integral in Equation 6.25 is clearly a
calculation of volume. Let’s assume the volume is
a cylinder aligned along the z axis. The volume
of this cylinder is the cross-sectional area A times
the length l. Then the above equation becomes:

P = σE2
z A l (6.26)

For reasons that will become apparent very
shortly, let’s reorganize the above expression as
follows:

P = (σEzA) (Ezl) (6.27)

Note that σEz is the current density in A/m2,
which when multiplied by A gives the total
current. Therefore the quantity in the first set of
parentheses is simply the current I. Also note
that Ezl is the potential difference over the
length l, which is simply the node-to-node
voltage V (Section 5.8). Therefore we have
found:

P = IV (6.28)

as expected from elementary circuit theory.

Now: What happens to the energy associated
with this dissipation of power? The displacement
of charge carriers in the material is limited by
the conductivity, which itself is finite because,
simply put, other constituents of the material get
in the way. If charge is being displaced as
described in this section, then energy is being
used to displace the charge-bearing particles.
The motion of constituent particles is observed
as heat – in fact, this is essentially the definition
of heat. Therefore:

The power dissipation associated with the
flow of current in any material which is not a
perfect conductor manifests as heat.

This phenomenon is known as joule heating,
ohmic heating, and by other names. This

conversion of electrical energy to heat is the
method of operation for toasters, electric space
heaters, and many other devices that generate
heat. It is of course also the reason that
electronic devices become hot.

Additional Reading:

• “Joule Heating” on Wikipedia.

[m0057]

https://en.wikipedia.org/wiki/Joule_heating
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Chapter 7

Magnetostatics

[m0117]

Magnetostatics is the theory of the magnetic field
in conditions in which it’s behavior is
independent of electric fields, including

• The magnetic field associated with various
spatial distributions of steady current;

• The energy associated with the magnetic
field; and

• Inductance, which is the ability of a
structure to store energy in a magnetic field.

The word ending “-statics” refers to the fact that
these aspects of electromagnetic theory can be
developed by assuming that the sources of the
magnetic field are time-invariant; we might say
that magnetostatics is the study of the magnetic
field at DC. However many aspects of
magnetostatics are applicable at “AC” as well.

7.1 Comparison of
Electrostatics and
Magnetostatics

[m0115]

Students encountering magnetostatics for the
first time have usually been exposed to
electrostatics already. Electrostatics and
magnetostatics exhibit many similarities. These

are summarized in Table 7.1. The elements of
magnetostatics presented in this table are all
formally introduced in other sections; the sole
purpose of this table is to point out the
similarities.

The technical term for these similarities is
duality. Duality also exists between voltage and
current in electrical circuit theory. For more
about the concept of duality, see “Additional
Reading” at the end of this section.

Additional Reading:

• Duality (electricity and magnetism) on
Wikipedia.

• Duality (electrical circuits) on Wikipedia.

7.2 Gauss’ Law for Magnetic
Fields: Integral Form

[m0018]

Gauss’ Law for Magnetic Fields (GLM) is one of
the four fundamental laws of classical
electromagnetics, collectively known as Maxwell’s
Equations. Before diving in, the reader is
strongly encouraged to review Section 2.5. In
that section GLM emerges from the “flux
density” interpretation of the magnetic field.
GLM is not identified in that section, but now we
are ready for an explicit statement:

Electromagnetics Vol 1 (Beta). c© 2018 S.W. Ellingson. CC BY SA 4.0 https://doi.org/10.7294/W4WQ01ZM

https://en.wikipedia.org/wiki/Duality_(electricity_and_magnetism)
https://en.wikipedia.org/wiki/Duality_(electrical_circuits)
https://doi.org/10.7294/W4WQ01ZM
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electrostatics magnetostatics

Sources static charge steady current,
magnetizable material

Field intensity E (V/m) H (A/m)
Flux density D (C/m2) B (Wb/m2=T)
Material relations D = ǫE B = µH

J = σE
Force on charge q F = qE F = qv ×B
Maxwell’s Eqs.

∮
S
D · ds = Qencl

∮
S
B · ds = 0

(integral)
∮
C
E · dl = 0

∮
C
H · ds = Iencl

Maxwell’s Eqs. ∇ ·D = ρv ∇ ·B = 0
(differential) ∇×E = 0 ∇×H = J

Boundary Conditions n̂× [E1 −E2] = 0 n̂× [H1 −H2] = Js
n̂ · [D1 −D2] = ρs n̂ · [B1 −B2] = 0

Energy storage Capacitance Inductance
Energy density we =

1
2ǫE

2 wm = 1
2µH

2

Energy dissipation Resistance

Table 7.1: A summary of the duality between electrostatics and magnetostatics.

Gauss’ Law for Magnetic Fields (Equa-
tion 7.1) states that the flux of the magnetic
field through a closed surface is zero.

This is expressed mathematically as follows:

∮

S

B · ds = 0 (7.1)

where B is magnetic flux density and S is a
closed surface with outward-pointing differential
surface normal ds. It may be useful to consider
the units: B has units of Wb/m2, therefore
integrating B over a surface gives a quantity
with units of Wb, which is magnetic flux, as
indicated above.

GLM can also be interpreted in terms of
magnetic field lines. For the magnetic flux
through a closed surface to be zero, every field
line entering the volume enclosed by S must also
exit this volume: Field lines may not begin or
end within the volume. The only way this can be
true for every possible surface S is if magnetic
field lines always form closed loops. This is in
fact what we find in practice, as shown in
Figure 7.1.

c© Youming / K. Kikkeri CC BY SA 4.0

Figure 7.1: Gauss’ Law for Magnetostatics ap-
plied to a two-dimensional bar magnet: For the
surface S = SA, every field line entering S also
leaves S, so the flux through S is zero. For the
surface S = SB , every field line within S remains
in S, so the flux through S is again zero.

https://creativecommons.org/licenses/by-sa/4.0/
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Following this argument one step further, note
that GLM implies that there can be no
particular particle or structure that can be the
source of the magnetic field, since if there were,
that would be a start point for field lines. This is
one way in which the magnetic field is very
different from the electric field, for which every
field line begins at a charged particle. So, when
we say that current (for example) is the source of
the magnetic field, we mean only that the field
coexists with current, and not that the magnetic
field is somehow attached to the current.
Summarizing, there is no “localizable” quantity,
analogous to charge for electric fields, associated
with magnetic fields. This is just another way in
which magnetic fields are weird!

Summarizing:

Gauss’ Law for Magnetic Fields requires that
magnetic field lines form closed loops. Fur-
thermore, there is no particle that can be
identified as the source of the magnetic field.

Additional Reading:

• “Gauss’ Law for Magnetism” on Wikipedia.

• “Maxwell’s Equations” on Wikipedia.

7.3 Gauss’ Law for
Magnetism: Differential
Form

[m0047]

The integral form of Gauss’ Law (Section 7.2)
states that the magnetic flux through a closed
surface is zero. In mathematical form:

∮

S

B · ds = 0 (7.2)

where B is magnetic flux density and S is the
enclosing surface. Just as Gauss’s Law for
electrostatics has both integral (Sections 5.5) and
differential (Section 5.7) forms, so too does

Gauss’ Law for Magnetic Fields. Here we are
interested in the differential form for the same
reason: Given a differential equation and the
boundary conditions imposed by structure and
materials, we may then solve for the magnetic
field in very complicated scenarios.

The equation we seek may be obtained from
Equation 7.2 using the Divergence Theorem
(Section 4.7), which in the present case may be
written:

∫

V

(∇ ·B) dv =

∮

S

B · ds (7.3)

Where V is the mathematical volume bounded
by the closed surface S. From Equation 7.2 we
see that the right hand side of the equation is
zero, leaving:

∫

V

(∇ ·B) dv = 0 (7.4)

The above relationship must hold regardless of
the specific location or shape of V. The only way
this is possible is if the integrand is everywhere
equal to zero. We conclude:

∇ ·B = 0 (7.5)

In other words, the flux per unit volume of the
magnetic field is always zero. This is another
way of saying that there is no point in space that
can be considered to be the source of the
magnetic field, for if it were, then the total flux
through a bounding surface would be greater
than zero. Said yet another way: The source of
the magnetic field is not localizable.

The differential (“point”) form of Gauss’ Law
for Magnetic Fields (Equation 7.5) states that
the flux per unit volume of the magnetic field
is always zero.

Additional Reading:

• “Gauss’ Law for Magnetism” on Wikipedia.

https://en.wikipedia.org/wiki/Gauss'_law_for_magnetism
https://en.wikipedia.org/wiki/Maxwell's_equations
https://en.wikipedia.org/wiki/Gauss'_law_for_magnetism
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Iencl

c© K. Kikkeri CC BY SA 4.0

Figure 7.2: Reference directions for Ampere’s
Circuital Law (Equation 7.6).

7.4 Ampere’s Circuital Law
(Magnetostatics):
Integral Form

[m0019]

Ampere’s circuital law (ACL) relates current to
the magnetic field associated with the current. In
the magnetostatic regime the law is (see also
Figure 7.2):

∮

C

H · dl = Iencl (7.6)

That is, the integral of the magnetic field
intensity H over a closed path C is equal to the
current enclosed by that path, Iencl. Before
proceeding to interpret this law, it is useful to see
that it is dimensionally correct: That is, H (units
of A/m) integrated over a distance (units of m)
yields a quantity with units of current (i.e., A).

In general Iencl may be either positive or
negative. The direction corresponding to positive
current flow must be correctly associated with C.
The relationship follows the right-hand rule of
Stokes’ Theorem (Section 4.9) summarized as
follows: The direction of positive Iencl is the
direction in which the fingers of the right hand
intersect any surface S bordered by C when the
thumb of the right hand points in the direction of
integration. The connection to Stokes’ Theorem
is not a coincidence: See Section 7.9 for more

about this.

Also note that S can be any surface which is
bounded by C – not just the taut surface implied
in Figure 7.2.

The integral form of Ampere’s Circuital Law
for magnetostatics (Equation 7.6) relates the
magnetic field along a closed path to the total
current flowing through any surface bounded
by that path.

ACL plays a role in magnetostatics that is very
similar to the role played by the integral form of
Gauss’ Law (Section 5.5) in electrostatics. That
is, ACL provides a means calculate the magnetic
field given the source current. ACL also has a
similar limitation: Generally symmetry is
required to simplify the problem sufficiently so
that the integral equation may be solved.
Fortunately a number of important problems fall
in this category. Examples include the problems
addressed in Sections 7.5 (magnetic field of a line
current), 7.6 (magnetic field inside a straight
coil), 7.7 (magnetic field of a toroidal coil), 7.8
(magnetic field of a current sheet), and 7.11
(boundary conditions on the magnetic field
intensity). For problems in which the necessary
symmetry is not available, the differential form of
ACL may be required (Section 7.9).

Finally, be aware that the form of ACL addressed
here applies to magnetostatics only. In the
presence of a time-varying electric field, the right
side of ACL includes an additional component
known as the displacement current (Section 8.9).

Additional Reading:

• “Maxwell’s Equations” on Wikipedia.

• “Ampere’s Circuital Law” on Wikipedia.

7.5 Magnetic Field of an
Infinitely-Long Straight
Current-Bearing Wire

https://creativecommons.org/licenses/by-sa/4.0/
https://en.wikipedia.org/wiki/Maxwell's_equations
https://en.wikipedia.org/wiki/Ampere's_circuital_law
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Figure 7.3: Determination of the magnetic field
due to steady current in an infinitely-long straight
wire.

[m0119]

In this section we use the magnetostatic form of
Ampere’s Circuital Law (ACL) (Section 7.4) to
determine the magnetic field due to a steady
current I (units of A) in an infinitely-long
straight wire. The problem is illustrated in
Figure 7.3. The wire is an electrically-conducting
circular cylinder of radius a. Since the wire is a
cylinder, the problem is easiest to work in
cylindrical coordinates with the wire aligned
along the z axis.

Here’s the relevant form of ACL:

∮

C

H · dl = Iencl (7.7)

where Iencl is the current enclosed by the closed
path C. ACL works for any closed path, so to
exploit the symmetry of the cylindrical
coordinate system we choose a circular path of
radius ρ in the z = 0 plane, centered at the

origin. With this choice we have

Iencl = I for ρ ≥ a (7.8)

For ρ < a, Iencl < I. The current will be
distributed uniformly throughout the wire
(Section 6.4). Since the current is uniformly
distributed over the cross section, Iencl is less
than the total current I by the same factor that
the area enclosed by C is less than πa2, the
cross-sectional area of the wire. The area
enclosed by C is simply πρ2, so we have

Iencl = I
πρ2

πa2
= I

ρ2

a2
for ρ < a (7.9)

For the choice of C made above, Equation 7.7
becomes

∫ 2π

φ=0

H ·
(
φ̂ ρ dφ

)
= Iencl (7.10)

Note that we have chosen to integrate in the +φ
direction. Therefore the right hand rule specifies
that positive Iencl corresponds to current flowing
in the +z direction, which is consistent with the
direction indicated in Figure 7.3. (Here’s an
excellent exercise to test your understanding:
Change the direction of the path of integration
and confirm that you get the same result
obtained at the end of this section. Changing the
direction of integration should not change the
magnetic field associated with the current!)

The simplest way to solve for H from
Equation 7.10 is to use a symmetry argument,
which proceeds as follows:

• Since the distribution of current is uniform
and infinite in the z-dimension, H can’t
depend on z, and so H · ẑ must be zero
everywhere.

• The problem is identical after any amount of
rotation in φ; therefore the magnitude of H
cannot depend on φ. This is a form of radial
symmetry. Since we determined above that
H can’t depend on z either, it must be that
the magnitude of H can depend only on ρ.

https://creativecommons.org/licenses/by-sa/4.0/
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• The radial symmetry of the problem also
requires that H · ρ̂ be equal to zero. If this
were not the case, then the field would not
be radially symmetric. Since we determined
above that H · ẑ is also zero, it must be that
H is entirely ±φ̂-directed.

From the above considerations, the most general
form of the magnetic field intensity can be
written H = φ̂H(ρ). Substituting this into
Equation 7.10, we obtain

Iencl =

∫ 2π

φ=0

[
φ̂H(ρ)

]
·
(
φ̂ ρ dφ

)

= ρH(ρ)

∫ 2π

φ=0

dφ

= 2πρH(ρ) (7.11)

Therefore H(ρ) = Iencl/2πρ. Reassociating the
known direction, we obtain:

H = φ̂
Iencl
2πρ

(7.12)

Therefore the field outside of the wire is:

H = φ̂
I

2πρ
for ρ ≥ a (7.13)

whereas the field inside the wire is:

H = φ̂
Iρ

2πa2
for ρ < a (7.14)

(By the way, this is a good time for a units
check.)

Note that as ρ increases from zero to a (i.e.,
inside the wire), the magnetic field is
proportional to ρ, and therefore increases.
However as ρ continues to increase beyond a (i.e.,
outside the wire), the magnetic field is
proportional to ρ−1, and therefore decreases.

If desired, the associated magnetic flux density
can be obtained using B = µH.

Summarizing:

I

H

c© Jfmelero CC BY SA 4.0 (modified)

Figure 7.4: Right hand rule for the relationship
between the direction of current and the direction
of the magnetic field.

The magnetic field due to current in an infi-
nite straight wire is given by Equations 7.13
(outside the wire) and 7.14 (inside the wire).

The magnetic field is +φ̂-directed for current
flowing in the +z direction, so the magnetic
field lines form concentric circles perpendicu-
lar to and centered on the wire.

Finally, we point out another “right hand rule”
that emerges from this solution, shown in
Figure 7.4 and summarized below:

The magnetic field due to current in an in-
finite straight wire points in the direction of
the fingers of the right hand when the thumb
of the right hand is aligned in the direction
of current flow.

This simple rule turns out to be handy in quickly
determining the relationship between the
directions of the magnetic field and current flow
in many other problems, and so is well worth
committing to memory.

7.6 Magnetic Field Inside a
Straight Coil

[m0120]

In this section we use the magnetostatic integral

https://creativecommons.org/licenses/by-sa/4.0/
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by Zureks (public domain)

Figure 7.5: A straight coil.

Figure 7.6: Determination of the magnetic field
due to DC current in a coil.

form of Ampere’s Circuital Law (ACL)
(Section 7.4) to determine the magnetic field
inside a straight coil of the type shown in
Figure 7.5 in response to a steady (i.e., DC)
current. The result has a number of applications,
including the analysis and design of inductors,
solenoids (coils which are used as magnets,
typically as part of an actuator), and as a
building block and source of insight for more
complex problems.

The present problem is illustrated in Figure 7.6.
The coil is circular with radius a and length l,
and consists of N turns (windings) of wire wound
with uniform winding density. Since the coil
forms a cylinder, the problem is easiest to work
in cylindrical coordinates with the axis of the coil
aligned along the z axis.

To begin, let’s take stock of what we already
know about the answer, which is actually quite a
bit. The magnetic field deep inside the coil is
generally aligned with axis of the coil as shown in
Figure 7.7. This can be explained using the
result for the magnetic field due to a straight line
current (Section 7.5), in which we found that the
magnetic field follows a “right hand rule”: The

c© Geek3 CC BY SA 3.0

Figure 7.7: Magnetic field lines inside a straight
coil with closely-spaced windings. (Dotted circles
represent current flowing up/out from the page;
crossed circles represent current flowing down/into
the page.)

I

c© Chetvorno CC0 1.0 (modified)

Figure 7.8: Magnetic field due to a single loop.

magnetic field points in the direction of the
fingers of the right hand when the thumb of the
right hand is aligned in the direction of current
flow. The wire comprising the coil is obviously
not straight, but we can consider just one short
segment of one turn and then sum the results for
all such segments. When we consider this for a
single turn of the coil, the situation is as shown
in Figure 7.8. Summing the results for many
loops, we see that the direction of the magnetic
field inside the coil must be generally in the +ẑ
direction when the current I is applied as shown
in Figures 7.6 and 7.7. One caveat however: The
windings must be sufficiently closely-spaced that
the magnetic field lines can only pass through the
openings at the end of the coil, and do not take
any “shortcuts” between individual windings.

https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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Figure 7.7 also indicates that the magnetic field
lines near the ends of the coil diverge from the
axis of the coil. This is understandable given the
result from Section 7.2 that magnetic field lines
form closed loops. That is, each field line is
approximately +z directed inside the coil, but
diverges significantly from the z axis before
entering and after emerging from the ends of the
coil. The relatively complex structure of the
magnetic fields near the ends of the coil (the
“fringing fields”) and outside of the coil make
them relatively difficult to analyze. Therefore
here we shall restrict our attention to the
magnetic field deep inside the coil. This
restriction turns out to be of little consequence in
the engineering applications in which our result
is used.

Also, it is apparent from the radial symmetry of
the coil that the magnitude of the magnetic field
cannot depend on φ. Putting these findings
together, we find that the most general form for
the magnetic field intensity deep inside the coil is
H ≈ ẑH(ρ). That is, the direction of H is ±ẑ
and the magnitude of H depends, at most, on ρ.
In fact, we will soon find with the assistance of
ACL that the magnitude of H doesn’t depend on
ρ either.

Here’s the relevant form of ACL:
∮

C

H · dl = Iencl (7.15)

where Iencl is the current enclosed by the closed
path C. ACL works for any closed path that
encloses the current if interest. Also, for
simplicity, we prefer a path that lies on a
constant-coordinate surface. The selected path is
shown in Figure 7.9. The benefits of this
particular path will soon become apparent.
However, note for now that this particular choice
is consistent with the right-hand rule relating the
direction of C to the direction of positive I. That
is, when I is positive, the current in the turns of
the coil pass through the surface bounded by C
in the same direction as the fingers of the right
hand when the thumb is aligned in the indicated
direction of C.

Let’s define N to be the number of windings

z

l'

ρ2

ρ1

A

D

C

B

z1 z2

cylindrical 
form of coil

c© K. Kikkeri CC BY SA 4.0

Figure 7.9: Selected path of integration.

(equivalently, “turns” or “loops”) in the coil.
Then the winding density of the coil is N/l
(turns/m). Let the path length in the z direction
be l′, as indicated in Figure 7.9. Then the
enclosed current is

Iencl =
N

l
l′I (7.16)

That is, the number of turns per unit length
times length gives number of turns, and this
quantity times the current through the wire is
the total amount of current crossing the surface
bounded by C.

For the choice of C made above, and taking our
approximation for the form of H as exact,
Equation 7.15 becomes

∮

C

[ẑH(ρ)] · dl = N

l
l′I (7.17)

The integral consists of segments A, B, C, and
D, as shown in Figure 7.9. Let us consider the
result for each of these segments individually:

• The integral over segments B and D is zero
because dl = ρ̂dρ for these segments, and so
H · dl = 0 for these segments.

• It is also possible to make the contribution
from Segment C go to zero simply by letting

https://creativecommons.org/licenses/by-sa/4.0/
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ρ2 → ∞. The argument is as follows: The
magnitude of H outside the coil must
decrease with distance from the coil, so for ρ
sufficiently large, H(ρ) becomes negligible.
If that’s the case, then the integral over
Segment C also becomes negligible.

With ρ2 → ∞, only Segment A contributes
significantly to the integral over C and
Equation 7.17 becomes:

N

l
l′I =

∫ z2

z1

[ẑH(ρ1)] · (ẑdz)

= H(ρ1)

∫ z2

z1

dz

= H(ρ1) [z2 − z1] (7.18)

Note z2 − z1 is simply l′. Also, we have found
that the result is independent of ρ1, as
anticipated earlier. Summarizing:

H ≈ ẑ
NI

l
inside coil (7.19)

Let’s take a moment to consider the implications
of this remarkably simple result.

• Note that it is dimensionally correct; that is,
current divided by length gives units of
A/m, which are the units of H.

• We have found that the magnetic field is
simply winding density (N/l) times current.
To increase the magnetic field you can either
use more turns per unit length, or increase
the current.

• We have found that the magnetic field is
uniform inside the coil; that is, the magnetic
field along the axis is equal to the magnetic
field close to the cylinder wall formed by the
coil. However this does not apply close to
ends of the coil, since we have neglected the
fringing field.

These findings have useful applications in more
complicated and practical problems, so it is
worthwhile taking note of these now.
Summarizing:

c© Slick CC0 1.0

Figure 7.10: A toroidal coil used as a large-value
inductor in the power supply of a wireless router.

The magnetic field deep inside a straight coil
(Equation 7.19) is uniform and proportional
to winding density and current.

Additional Reading:

• “Electromagnetic Coil” on Wikipedia.

• “Solenoid” on Wikipedia.

7.7 Magnetic Field of a
Toroidal Coil

[m0049]

A toroid is a cylinder in which the ends are
joined to form a closed loop. An example of a
toroidal coil is shown in Figure 7.10. Toroidal
coils are commonly used to form inductors and
transformers. The principal advantage of toroidal
coils over straight coils in these applications is
magnetic field containment : As we shall see in
this section, the magnetic field outside of a
toroidal coil can be made negligibly small. This
reduces concern about interactions between this
field and other fields and structures in the
vicinity.

In this section we use the magnetostatic form of
Ampere’s Circuital Law (ACL) (Section 7.4) to
determine the magnetic field due to a steady
(DC) current flowing through a toroidal coil.

https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://en.wikipedia.org/wiki/Electromagnetic_coil
https://en.wikipedia.org/wiki/Solenoid
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Figure 7.11: Geometry of a toroidal coil.

The present problem is illustrated in Figure 7.11.
The toroid is circular with inner and outer radii
a and b, respectively. The coil consists of N
turns (windings) of wire wound with uniform
winding density. This problem is easiest to work
in cylindrical coordinates with the toroid
centered on the origin in z = 0 plane.

To begin, let’s take stock of what we already
know about the answer, which is actually quite a
bit. First, a review of Section 7.6 (“Magnetic
Field Inside a Straight Coil”) is recommended.
There it is shown that the magnetic field deep
inside a straight coil is aligned with axis of the
coil. This can be explained using the result for
the magnetic field due to a straight line current
(Section 7.5), in which we found that the
magnetic field follows a “right hand rule”: The
magnetic field points in the direction of the
fingers of the right hand when the thumb of the
right hand is aligned in the direction of current
flow. The wire comprising the coil is obviously
not straight, but we can consider just one short
segment of one turn and then sum the results for
all such segments. When we do this, we see that
the direction of the magnetic field inside the coil
must be in the +φ̂ direction when the current I
is applied as shown in Figure 7.11. Also: Because
the problem is identical after any amount of

rotation around the z axis, the magnitude of the
magnetic field cannot depend on φ. Putting
these findings together, we find that the most
general form for the magnetic field intensity
inside or outside the coil is H = φ̂H(ρ, z).

Here’s the relevant form of ACL:
∮

C

H · dl = Iencl (7.20)

where Iencl is the current enclosed by the closed
path C. ACL works for any closed path, but we
need one which encloses some current so as to
obtain a relationship between I and H. Also, for
simplicity, we prefer a path that lies on a
constant-coordinate surface. The selected path is
a circle of radius ρ centered on the origin in the
z = z0 plane, as shown in Figure 7.12. We
further require C to lie entirely inside the coil,
which ensures that the enclosed current includes
the current of all the wires as they pass through
the hole at the center of the toroid. We choose
the direction of integration to be in the +φ
direction, which is consistent with the indicated
direction of positive I according to the right
hand rule. That is, when I is positive, the
current in the turns of the coil pass through the
surface bounded by C in the same direction as
the fingers of the right hand when the thumb is
aligned in the indicated direction of C.

In terms of the variables we have defined, the
enclosed current is simply

Iencl = NI (7.21)

Equation 7.20 becomes

∮

C

[
φ̂H(ρ, z0)

]
· dl = NI (7.22)

Now evaluating the integral:

NI =

∫ 2π

0

[
φ̂H(ρ, z0)

]
·
(
φ̂ ρ dφ

)

= ρH(ρ, z0)

∫ 2π

0

dφ

= 2πρH(ρ, z0) (7.23)

It is now clear that the result is independent of
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Figure 7.12: Selected path of integration.

z0. Summarizing:

H = φ̂
NI

2πρ
inside coil (7.24)

Let’s take a moment to consider the implications
of this result.

• Note that it is dimensionally correct; that is,
current divided by the circumference of C
(2πρ) gives units of A/m, which are the
units of H.

• We have found that the magnetic field is
proportional to winding density (i.e.,
number of turns divided by circumference)
times current. To increase the magnetic field
you can either use more turns, or increase
the current.

• Remarkably, we have found that the
magnitude of the magnetic field inside the
coil depends only on ρ; i.e., the distance
from the central (here, z) axis. It is
independent of z.

Summarizing:

The magnetic field inside a toroidal coil
(Equation 7.24) depends only on distance
from the central axis and is proportional to
winding density and current.

Now let us consider what happens outside the
coil. For this, we consider any path of integration
(C) that lies completely outside the coil. Note
that any such path encloses no current and
therefore Iencl = 0 for any such path. In this case
we have: ∮

C

H · dl = 0 (7.25)

There are two ways this could be true: Either H
could be zero everywhere along the path, or H
could be non-zero along the path in such a way
that the integral turns out to be zero. The radial
symmetry of the problem rules out the second
possibility: If H is radially symmetric and C is
radially symmetric, then the sign of H · dl should
not change over C. Therefore:

The magnetic field everywhere outside an
ideal toroidal coil is zero.

Note the caveat signalled by the use of the
adjective “ideal”. In a non-ideal toroidal coil –
i.e., any practical device – we expect there will
be some leakage of magnetic flux between the
windings. In practice, this leakage can be made
negligibly small by using a sufficiently high
winding density, and winding the wire on
material on a toroidal form (a “core”) having
sufficiently large permeability. The use of a
high-permeability core, in particular, will
dramatically improve the already pretty-good
containment. In fact, the use of such a core
allows the spacing between windings to become
quite large before leakage becomes significant.

One final observation about toroidal coils: At no
point in the derivation of the magnetic field did
we need to consider the cross-sectional shape of
the coil: We merely needed to know whether C
was inside or outside the coil. Therefore:

The magnetic field inside an ideal toroidal coil
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Figure 7.13: Analysis of the magnetic field due
to an infinite thin sheet of current.

does not depend on the cross-sectional shape
of the coil.

Additional Reading:

• “Toroidal Inductors and Transformers” on
Wikipedia.

———————-

7.8 Magnetic Field of an
Infinite Current Sheet

[m0121]

We now consider the magnetic field due to an
infinite sheet of current, shown in Figure 7.13.
The solution to this problem is useful as a
building block and source of insight in more
complex problems, as well as being a useful
approximation to some practical problems
involving current sheets of finite extent including,
for example, microstrip transmission line and
ground plane currents in printed circuit boards.

The current sheet in Figure 7.13 lies in the z = 0
plane and the current density is Js = x̂Js (units
of A/m); i.e., the current is uniformly distributed
such that the total current crossing any segment
of width ∆y along the y direction is Js∆y.

To begin, let’s take stock of what we already
know about the answer, which is actually quite a
bit. For example, imagine the current sheet as a
continuum of strips parallel to the x axis and
very thin in the y dimension. Each of these strips
individually behaves like a straight line current
I = Js∆y (units of A), where ∆y is the width of
a strip. The magnetic field due to each of these
strips is determined by a “right hand rule”: The
magnetic field points in the direction of the
fingers of the right hand when the thumb of the
right hand is aligned in the direction of current
flow. (Section 7.5). It is apparent from this much
that H can have no ŷ component, since the field
of each individual strip has no ŷ component.
When the magnetic field due to each strip is
added to that of all the other strips, the ẑ
component of the sum field must be zero due to
symmetry. It is also clear from symmetry
considerations that the magnitude of H cannot
depend on x or y. Summarizing, we have
determined that the most general form for H is
ŷH(z), and furthermore the sign of H(z) must
be positive for z < 0 and negative for z > 0.

It’s possible to solve this problem by actually
summing over the continuum of current strips as
imagined above.1 However it’s far easier to use
Ampere’s Circuital Law (ACL; Section 7.4):
Here’s the relevant form of ACL:

∮

C

H · dl = Iencl (7.26)

where Iencl is the current enclosed by the path C.
ACL works for any closed path, but we need one
which encloses some current so as to obtain a
relationship between Js and H. Also, for
simplicity, we prefer a path that lies on a
constant-coordinate surface. A convenient path
in this problem is a rectangle lying in the x = 0
plane and centered on the origin, as shown in
Figure 7.13. We choose the direction of
integration to be counter-clockwise from the
perspective shown in Figure 7.13, which is
consistent with the indicated direction of positive
Js according to the right-hand rule. That is,
when Js is positive (current flowing in the +x̂

1In fact, this is pretty good thing to try, if for no other
reason than to see how much simpler it is to use ACL in-
stead.

https://en.wikipedia.org/wiki/Toroidal_inductors_and_transformers
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direction), the current passes through the surface
bounded by C in the same direction as the fingers
of the right hand when the thumb is aligned in
the indicated direction of C.

Let us define Ly to be the width of the
rectangular path of integration in the y
dimension, and Lz to be the width in the z
dimension. In terms of the variables we have
defined, the enclosed current is simply

Iencl = JsLy (7.27)

Equation 7.26 becomes
∮

C

[ŷH(z)] · dl = JsLy (7.28)

Note that H · dl = 0 for the vertical sides of the
path, since H is ŷ-directed and dl = ẑdz on those
sides. Therefore only the horizontal sides
contribute to the integral and we have:

∫ +Ly/2

−Ly/2

[
ŷH

(
−Lz

2

)]
· (ŷdy)

+

∫ −Ly/2

+Ly/2

[
ŷH

(
+
Lz
2

)]
· (ŷdy) = JsLy (7.29)

Now evaluating the integrals:

H

(
−Lz

2

)
Ly −H

(
+
Lz
2

)
Ly = JsLy (7.30)

Note that all factors of Ly cancel in the above
equation. Furthermore,
H(−Lz/2) = −H(+Lz/2) due to (1) symmetry
between the upper and lower half-spaces and (2)
the change in sign between these half-spaces,
noted earlier. We use this to eliminate
H(+Lz/2) and solve for H(−Lz/2) as follows:

2H(−Lz/2) = Js (7.31)

yielding

H(−Lz/2) = +
Js
2

(7.32)

and therefore

H(+Lz/2) = −Js
2

(7.33)

Furthermore, note that H is independent of Lz;
for example, the result we just found indicates

the same value of H(+Lz/2) regardless of the
value of Lz. Therefore H is uniform throughout
all space, except for the change of sign
corresponding for the field above vs. below the
sheet. Summarizing:

H = ±ŷ
Js
2

for z ≶ 0 (7.34)

The magnetic field intensity due to an infi-
nite sheet of current (Equation 7.34) is spa-
tially uniform except for a change of sign cor-
responding for the field above vs. below the
sheet.

7.9 Ampere’s Law
(Magnetostatics):
Differential Form

[m0118]

The integral form of Amperes’ Circuital Law
(ACL; Section 7.4) for magnetostatics relates the
magnetic field along a closed path to the total
current flowing through any surface bounded by
that path. In mathematical form:

∮

C

H · dl = Iencl (7.35)

where H is magnetic field intensity, C is the
closed curve, and Iencl is the total current
flowing through any surface bounded by C. In
this section we derive the differential form of this
equation. In some applications this differential
equation, combined with boundary conditions
associated with discontinuities in structure and
materials, can be used to solve for the magnetic
field in arbitrarily complicated scenarios. A more
direct reason for seeking out this differential
equation is that we gain a little more insight into
the relationship between current and the
magnetic field, disclosed at the end of this
section.

The equation we seek may be obtained using
Stokes’ Theorem (Section 4.9), which in the
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present case may be written:

∫

S

(∇×H) · ds =
∮

C

H · dl (7.36)

where S is any surface bounded by C, and ds is
the differential surface area combined with unit
vector that is perpendicular to that surface in
the direction determined by the right-hand rule.
ACL tells us that the right side of the above
equation is simply Iencl. We may express Iencl as
the integral of the volume current density J
(units of A/m2; Section 6.2) as follows:

Iencl =

∫

S

J · ds (7.37)

so we may rewrite Equation 7.36 as follows:

∫

S

(∇×H) · ds =
∫

S

J · ds (7.38)

The above relationship must hold regardless of
the specific location or shape of S. The only way
this is possible for all possible surfaces in all
applicable scenarios is if the integrands are equal.
Thus we obtain the desired expression:

∇×H = J (7.39)

that is, the curl of the magnetic field intensity at
a point is equal to the volume current density at
that point. Recalling the properties of the curl
operator (Section 4.8) – in particular, that curl
involves derivatives with respect to direction –
we conclude:

The differential form of Ampere’s Circuital
Law for magnetostatics (Equation 7.39) indi-
cates that the volume current density at any
point in space is proportional to the spatial
rate of change of the magnetic field, and is
perpendicular to the magnetic field at that
point.

Additional Reading:

• “Ampere’s circuital law” on Wikipedia.

• “Boundary value problem” on Wikipedia.
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Figure 7.14: Determination of the boundary con-
dition on B at the interface between material re-
gions.

7.10 Boundary Conditions
on the Magnetic Flux
Density (B)

[m0022]

In homogeneous media, electromagnetic
quantities vary smoothly and continuously. At an
interface between dissimilar media, however, it is
possible for electromagnetic quantities to be
discontinuous. Continuities and discontinuities in
fields can be described mathematically by
boundary conditions, and used to to constrain
solutions for fields away from these interfaces.

In this section we derive the boundary condition
on the magnetic flux density B at a smooth
interface between two material regions, as shown
in Figure 7.14.2 The desired boundary condition
may be obtained from Gauss’ Law for Magnetic
Fields (GLM; Section 7.2):

∮

S

B · ds = 0 (7.40)

where S is any closed surface. Let S take the
form of cylinder centered at a point on the
interface, and for which the flat ends are parallel
to the surface and perpendicular to n̂, as shown

2It may be helpful to note the similarity (duality, in fact)
between this derivation and the derivation of the associated
boundary condition on D presented in Section 5.18.

https://en.wikipedia.org/wiki/Ampere's_circuital_law
https://en.wikipedia.org/wiki/Boundary_value_problem
https://creativecommons.org/licenses/by-sa/4.0/
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in Figure 7.14. Let the radius of this cylinder be
a, and let the length of the cylinder be 2h. From
GLM we have

∮

S

B · ds =
∫

top

B · ds

+

∫

side

B · ds

+

∫

bottom

B · ds = 0 (7.41)

Now let us reduce h and a together while (1)
maintaining a constant ratio h/a≪ 1 and (2)
keeping S centered on the interface. Because
h≪ a, the area of the side can be made
negligible relative to the area of the top and
bottom. Then as h→ 0 we are left with

∫

top

B · ds+
∫

bottom

B · ds → 0 (7.42)

As the area of the top and bottom sides become
infinitessmal the variation in B over these areas
becomes negligible. Now we have simply:

B1 · n̂∆A+B2 · (−n̂)∆A→ 0 (7.43)

where B1 and B2 are the magnetic flux densities
at the interface but in regions 1 and 2,
respectively, and ∆A is the area of the top and
bottom sides. Note that the orientation of n̂ is
important: We have assumed n̂ points into
region 1, and we must now stick with this choice.
Thus, we obtain

n̂ · (B1 −B2) = 0 (7.44)

where, as noted above, n̂ points into region 1.

Summarizing:

The normal (perpendicular) component of B
across the boundary between two material re-
gions is continuous.

It is worth noting what this means for the
magnetic field intensity H: Since B = µH, it
must be that

r�����
�

B
A w

tn

Figure 7.15: Determining the boundary condition
onH at the smooth interface between two material
regions.

The normal (perpendicular) component of H
across the boundary between two material re-
gions is discontinuous if the permeabilities are
unequal.

7.11 Boundary Conditions
on the Magnetic Field
Intensity (H)

[m0023]

In homogeneous media, electromagnetic
quantities vary smoothly and continuously. At an
interface between dissimilar media, however, it is
possible for electromagnetic quantities to be
discontinuous. Continuities and discontinuities in
fields can be described mathematically by
boundary conditions, and used to to constrain
solutions for fields away from these interfaces. In
this section we derive boundary conditions on the
magnetic field intensity H.

To begin, consider a region consisting of only two
media which meet at a smooth interface as
shown in Figure 7.15. The desired boundary
condition can be obtained directly from
Ampere’s Circuital Law (ACL; Section 7.4):

∮

C

H · dl = Iencl (7.45)

where C is any closed path and Iencl is the
current that flows through the surface bounded
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by that path. Let C take the form of a rectangle
centered on a point on the interface as shown in
Figure 7.15, perpendicular to the direction of
current flow at that location. Let the sides A, B,
C, and D be perpendicular and parallel to the
interface. Let the length of the parallel sides be l,
and let the length of the perpendicular sides be
w. From ACL we have

∮
H · dl =

∫

A

H · dl

+

∫

B

H · dl

+

∫

C

H · dl

+

∫

D

H · dl = Iencl (7.46)

Now we let w and l become vanishingly small
while (1) maintaining the ratio l/w and (2)
keeping C centered on the interface. In this
process the contributions from the B and D
segments become equal in magnitude but
opposite in sign; i.e.,

∫

B

H · dl+
∫

D

H · dl → 0 (7.47)

This leaves
∫

A

H · dl+
∫

C

H · dl → Iencl (7.48)

Let us define the unit vector t̂ (“tangent”) as
shown in Figure 7.15. Now we have simply:

H1 · t̂∆l −H2 · t̂∆l = Iencl (7.49)

where H1 and H2 are the fields evaluated on the
two sides of the boundary, and ∆l → 0 is the
length of sides A and C while this is happening.
Note that Iencl in this situation is

Iencl = Js ·
(
t̂× n̂

)
∆l (7.50)

where n̂ is the normal to the surface, pointing
into Region 1. Now Equation 7.49 can be
written:

H1 · t̂∆l −H2 · t̂∆l = Js ·
(
t̂× n̂

)
∆l (7.51)

Eliminating the common factor of ∆l and
arranging terms on the left:

(H1 −H2) · t̂ = Js ·
(
t̂× n̂

)
(7.52)

The left side of the above equation is the
component of H1 −H2 which lies in the t̂
direction. Another way to compute this very
same quantity is to first take the cross product
with n̂, yielding a vector which is perpendicular
to both H and n̂; and then taking the dot
product with t̂× n̂ to obtain the desired scalar.
Here’s that idea expressed mathematically:

(H1 −H2) · t̂ = (H1 −H2)× n̂ ·
(
t̂× n̂

)
(7.53)

so we may rewrite Equation 7.52 as follows:

[(H1 −H2)× n̂] ·
(
t̂× n̂

)
= Js ·

(
t̂× n̂

)
(7.54)

This must be true for all possible values of t̂× n̂;
i.e. for all possible directions of current flow on
the surface. Therefore

(H1 −H2)× n̂ = Js (7.55)

This is the desired boundary condition. The left
side of the above equation is the magnitude of the
component of H1 −H2 which is tangent to the
surface. Therefore we have found the following:

A discontinuity in the tangential component
of H across a material interface must be sup-
ported by a surface current in a perpendicular
direction.

Since we frequently encounter situations in which
there is no current on the interface, it is useful to
interpret the boundary condition for the case in
which Js = 0. Here it is:

In the absence of surface current, the tan-
gential component of H must be continuous
across the interface.

7.12 Inductance

[m0123]

Current creates a magnetic field, which
subsequently exerts force on other
current-bearing structures. For example, the
current in each turn of a coil exerts a force on
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the current in every other turn of the coil. If the
windings are fixed in place, then this force is
unable to do work (i.e., move the windings), so
instead the coil stores potential energy. This
potential energy can be released by turning off
the external source: When this happens, the
remaining charge continues to flow, now
propelled by the magnetic force. As this supply
of charge diminishes, so to does the magnetic
field, until both dwindle to zero. At this point
potential energy is expended. To restore
potential energy, the external source must be
turned on, restoring the supply of charge, which
flows and thereby regenerates the magnetic field.

Now recall that the magnetic field is essentially
defined in terms of the force associated with this
potential energy; i.e., F = qv ×B where q is the
charge of a particle comprising the current, v is
the velocity of the particle, and B is magnetic
flux density (Section 2.5). So, rather than
thinking of the potential energy of the system as
being associated with the magnetic force applied
to charge, it is equally valid to think of the
potential energy as being stored in the magnetic
field associated with the current distribution.
The energy stored in the magnetic field depends
on the geometry of the current-bearing structure
and the permeability of the intervening material,
because the magnetic field depends on these
parameters.

The relationship between current applied to a
structure and the energy stored in the associated
magnetic field is what we mean by inductance.
We may fairly summarize this insight as follows:

Inductance is the ability of a structure to
store energy in a magnetic field.

The inductance of a structure depends on
the geometry of its current-bearing struc-
tures and the permeability of the intervening
medium.

Note that inductance does not depend on
current, which we view as either a stimulus or
response from this point of view. The

corresponding response or stimulus, respectively,
is the magnetic flux associated with this current.
This leads to the following definition:

L =
Φ

I
(single linkage) (7.56)

where Φ (units of Wb) is magnetic flux, I (units
of A) is the current responsible for this flux, and
L (units of H) is the associated inductance. (The
“single linkage” caveat will be explained below.)
In other words, a device with high inductance
generates a large magnetic flux in response to a
given current, and therefore stores more energy
for a given current than a device with lower
inductance.

To use Equation 7.56 we must carefully define
what we mean by “magnetic flux” in this case.
Generally, magnetic flux is magnetic flux density
(again, B, units of Wb/m2) integrated over a
specified surface S, so

Φ =

∫

S

B · ds (7.57)

where ds is the differential surface area vector,
with direction normal to S. However, this leaves
unanswered the following questions: Which S,
and which of the two possible normal directions
of ds? For a meaningful answer, S must uniquely
associate the magnetic flux to the associated
current. Such an association exists if we require
the current to form a closed loop. This is shown
in Figure 7.16. Here C is the closed loop along
which the current flows, S is a surface bounded
by C, and the direction of ds is defined according
to the right-hand rule of Stokes’ Theorem
(Section 4.9). Note that C can be a closed loop of
any shape; i.e., not just circular, and not
restricted to lying in a plane. Further note that
S used in the calculation of Φ can be any surface
bounded by C: This is because magnetic field
lines form closed loops, so any one magnetic field
line intersects any open surface bounded by C
exactly once. Such an intersection is sometimes
called a “linkage”. So there we have it: We
require the current I to form a closed loop, we
measure the magnetic flux through this loop
using the sign convention of the right-hand rule,
and the ratio is the inductance.
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Figure 7.16: Association between a closed loop
of current and the associated magnetic flux.

Many structures consist of multiple such loops –
the coil is of course one of these. In a coil, each
winding carries the same current, and the
magnetic fields of the windings add to create a
magnetic field which grows in proportion to the
number of windings (Section 7.6). The magnetic
flux density inside a coil is proportional to the
number of turns, N , so the flux Φ in
Equation 7.56 should properly be indicated as
NΦ. Another way to look at this is that we are
counting the number of times the same current is
able to generate a unique set of magnetic field
lines which intersect S. For this reason it is
common to refer to the quantity NΦ as “flux
linkage”.

Summarizing, our complete definition for
inductance is

L =
NΦ

I
(identical linkages) (7.58)

An engineering definition of inductance is
Equation 7.58, with the magnetic flux defined
to be that associated with a single closed loop
of current with sign convention as indicated
in Figure 7.16, and N defined to be the num-
ber of times the same current I is able to
create that flux.

What happens if the loops have different shapes?

For example, what if the coil is not a cylinder,
but rather cone-shaped? (Yes, there is such a
thing: See “Additional Reading” at the end of
this section.) In this case one needs a better way
to determine the flux linkage, since the flux
associated with each loop of current will be
different. However this is beyond the scope of
this section.

An inductor is a device which is designed to
exhibit a specified inductance. We can now make
the connection to the concept of the inductor as
it appears in elementary circuit theory. First we
rewrite Equation 7.58 as follows:

I =
NΦ

L
(7.59)

Taking the derivative of both sides of this
equation with respect to time, we obtain:

d

dt
I =

N

L

d

dt
Φ (7.60)

Now we need to reach beyond the realm of
magnetostatics for just a moment. It is shown
Section 8.3 (“Faraday’s Law”) that the change in
Φ associated with a change in current results in
the creation of an electrical potential equal to
−NdΦ/dt realized over the loop C. In other
words, the terminal voltage V is +NdΦ/dt, with
the change of sign intended to keep the result
consistent with the sign convention relating
current and voltage in passive devices. Therefore
dΦ/dt in Equation 7.60 is equal to V/N . Making
the substitution we find:

V = L
d

dt
I (7.61)

This is the expected relationship from
elementary circuit theory.

Another circuit theory concept related to
inductance is mutual inductance. Whereas
inductance relates changes in current to
instantaneous voltage in the same device
(Equation 7.61), mutual inductance relates
changes in current in one device to instantaneous
voltage in a different device. This can occur
when the two devices are coupled (“linked”) by
the same magnetic field. For example,
transformers (Section 8.5) typically consist of

https://creativecommons.org/licenses/by-sa/4.0/
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separate coils which are linked by the same
magnetic field lines. The voltage across one coil
may be computed as the time-derivative of
current on the other coil times the mutual
inductance.

Let us conclude this section by taking a moment
to dispel a common misconception about
inductance. The misconception pertains to the
following question: If the current does not form a
closed loop, what is the inductance? For
example, engineers sometimes refer to the
inductance of a pin or lead of an electronic
component. A pin or lead is not a closed loop, so
the formal definition of inductance given above –
ratio of magnetic flux to current – does not
apply. The broader definition of inductance – the
ability to store energy in a magnetic field – does
apply, but this is not what is meant by “pin
inductance” or “lead inductance”. What is
actually meant is the imaginary part of the
impedance of the pin or lead – i.e., the reactance
– expressed as an equivalent inductance. In other
words: The reactance of an inductive device is
positive, so any device which also exhibits a
positive reactance can be viewed from a circuit
theory perspective as an equivalent inductance.
This is not referring to the storage of energy in a
magnetic field; it merely means that the device
can be modeled as an inductance in a circuit
diagram. In the case of “pin inductance” the
culprit is not actually inductance, but rather skin
effect (see “Additional References” at the end of
this section). Summarizing:

Inductance implies positive reactance, but
positive reactance does not necessarily imply
inductance.

Additional Reading:

• “Inductance” on Wikipedia.

• “Inductor” on Wikipedia.

• T.A. Winslow,
“Conical Inductors for Broadband Applications”,
IEEE Microwave Mag., Vol. 6, No. 1, Mar
2005, pp. 68–72.

• “Skin Effect” on Wikipedia.

Figure 7.17: Determination of the inductance of
a straight coil.

7.13 Inductance of a Straight
Coil

[m0124]

In this section we determine the inductance of a
straight coil, as shown in Figure 7.17. The coil is
circular with radius a and length l, and consists
of N turns (windings) of wire wound with
uniform winding density. Since the coil forms a
cylinder, the problem is easiest to work in
cylindrical coordinates with the axis of the coil
aligned along the z axis.

Inductance L in this case is given by
(Section 7.12)

L =
NΦ

I
(7.62)

where I is current and Φ is the magnetic flux
associated with one winding of the coil. Magnetic
flux in this case is given by

Φ =

∫

S

B · ds (7.63)

where B is the magnetic flux density (units of T
= Wb/m2), S is the surface bounded by a single
current loop, and ds points in the direction
determined by the right hand rule with respect
to the direction of positive current flow.

First, let’s determine the magnetic field. The
magnetic flux density deep inside the coil is
(Section 7.6):

B ≈ ẑ
µNI

l
(7.64)

https://en.wikipedia.org/wiki/Inductance
https://en.wikipedia.org/wiki/Inductor
https://doi.org/10.1109/MMW.2005.1418000
https://en.wikipedia.org/wiki/Skin_effect
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Is it reasonable to use this approximation here?
Since inductance pertains to energy storage, the
question is really this: What fraction of the
energy is stored in a field which is well-described
by this approximation, as opposed to energy
stored in the “fringing field” close to the ends of
the coil. If we make l sufficiently large relative to
a, then presumably energy storage in the fringing
field can be sufficiently small to be negligible in
comparison. Since the alternative leads to a
much more complicated problem, we shall
assume this.

Next, we determine Φ. In this case a natural
choice for S is the interior cross-section of the
coil in a plane perpendicular to the axis. The
direction of ds must be ẑ since this is the
direction in which the fingers of the right hand
point when the current flows in the direction
indicated in Figure 7.17. Thus we have

Φ ≈
∫

S

(
ẑ
µNI

l

)
· (ẑds)

=
µNI

l

∫

S

ds

=
µNI

l
A (7.65)

where A is the cross-sectional area of the coil.

Finally from Equation 7.62 we obtain

L ≈ µN2A

l
(l ≫ a) (7.66)

Note that this is dimensionally correct; that is,
permeability (units of H/m) times area (units of
m2) divided by length (units of m) gives units of
H, as expected. Also, it is worth noting that
inductance is proportional to permeability and
cross-sectional area, and inversely proportional to
length. Interestingly the inductance is
proportional to N2 as opposed to N ; this is
because field strength increases with N , and
independently there are N flux linkages. Finally,
we note that the inductance does not depend on
the shape of the coil cross-section, but only the
area of the cross-section.

The inductance of a long straight coil is given
approximately by Equation 7.66.

Again, this result is approximate because it
neglects the non-uniform “fringing field” near the
ends of the coil. Nevertheless, this result
facilitates useful engineering analysis and design.

Additional Reading:

• “Inductance” on Wikipedia.

7.14 Inductance of a Coaxial
Structure

[m0125]

Let us now determine the inductance of coaxial
structure, shown in Figure 7.18. The inductance
of this structure is of interest for a number of
reasons; in particular, for determining the
characteristic impedance of coaxial transmission
line, as addressed in Sections 3.4 and 3.10.

For our present purposes we may model the
structure as consisting of two concentric
perfectly-conducting cylinders of radii a and b,
separated by a homogeneous material having
permeability µ. To facilitate discussion, let us
place the +z axis along the common axis of the
concentric cylinders, so that the cylinders may be
described as the surfaces ρ = a and ρ = b.

Below we shall find the inductance by assuming a
current I on the inner conductor and integrating
over the resulting magnetic field to obtain the
magnetic flux Φ between the conductors. Then
inductance can be determined as the ratio of the
response flux to the source current.

A note before we get started: The derivation we
are about to do has a number of remarkable
similarities to the derivation of the capacitance of
a coaxial structure, addressed in Section 5.24.
The reader may benefit from a review of that
section before attempting this derivation,
although a review is certainly not required.

https://en.wikipedia.org/wiki/Inductance
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H

Figure 7.18: Determining the inductance of coax-
ial line.

The first step is to find the magnetic field inside
the structure. This is relatively simple if we may
assume that the structure has infinite length
(i.e., l → ∞), since then there are no fringing
fields and the internal field will be utterly
constant with respect to z. In the central region
of a finite-length inductor, however, the field is
not much different from the field that exists in
the case of infinite length, and if the energy
storage in fringing fields is negligible compared to
the energy storage in this central region then
there is no harm in assuming the internal field is
constant with z. Alternatively we may think of
the length l as pertaining to one short section of
a much longer structure, and thereby obtain the
inductance per length as opposed to the total
inductance for the structure. Note that the latter
is exactly what we need for the transmission line
lumped-element equivalent circuit model
(Section 3.4).

To determine the inductance, we invoke the
definition (Section 7.12):

L ,
Φ

I
(7.67)

A current I flowing in the +z direction on the
inner conductor gives rise to a magnetic field
inside the coaxial structure. The magnetic field
intensity for this scenario was determined in
Section 7.5, “Magnetic Field of an Infinitely-Long
Straight Current-Bearing Wire”, where we found

H = φ̂
I

2πρ
, a ≤ ρ ≤ b (7.68)

The reader should note that in that section we
were considering merely a line of current; not a
coaxial structure. So on what basis do we claim
the field for inside the coaxial structure is the
same? This is a consequence of Amperes Law
(Section 7.4)

∮

C

H · dl = Iencl (7.69)

If in this new problem we specify the same
circular path C with radius greater than a and
less than b, then the enclosed current is the
same. Furthermore the presence of the outer
conductor does not change the radial symmetry
of the problem, and nothing else remains that
can change the outcome. This is worth noting for
future reference:

The magnetic field inside a coaxial structure
comprised of concentric conductors bearing
current I is identical to the magnetic field of
the line current I in free space.

We’re going to need magnetic flux density (B) as
opposed to H in order to get the magnetic flux.
This is simple since they are related by the
permeability of the medium; i.e., B = µH. Thus:

B = φ̂
µI

2πρ
, a ≤ ρ ≤ b (7.70)

Next we get Φ by integrating over the magnetic
flux density

Φ =

∫

S

B · ds (7.71)

where S is any open surface through which all
magnetic field lines within the structure must
pass. Since this can be any such surface, we may
as well choose the simplest one. The simplest
such surface is a plane of constant φ, since such a
plane is constant-coordinate surface and
perpendicular to the magnetic field lines. Using
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this surface we find:

Φ =

∫ b

ρ=a

∫ l

z=0

(
φ̂
µI

2πρ

)
·
(
φ̂dρdz

)

=
µI

2π

∫ b

ρ=a

∫ l

z=0

dρ

ρ
dz

=
µI

2π

(∫ l

z=0

dz

)(∫ b

ρ=a

dρ

ρ

)

=
µIl

2π
ln

(
b

a

)
(7.72)

Wrapping up:

L ,
Φ

I
=

(µIl/2π) ln (b/a)

I
(7.73)

Note that factors of I in the numerator and
denominator cancel out, leaving:

L =
µl

2π
ln

(
b

a

)
(7.74)

Note that this is dimensionally correct, having
units of H. Also note that this is expression
depends only on materials (through µ) and
geometry (through l, a, and b). Notably it does
not depend on current, which would imply
non-linear behavior.

To make the connection back to lumped-element
transmission line model parameters (Sections 3.4
and 3.10), we simply divide by l to get the
per-unit length parameter:

L′ =
µ

2π
ln

(
b

a

)
(7.75)

which has units of H/m.

Example 7.1. Inductance of RG-59 coaxial
cable.

RG-59 coaxial cable consists of an inner
conductor having radius 0.292 mm, an outer
conductor having radius 1.855 mm, and
polyethylene (a non-magnetic dielectric)
spacing material. Estimate the inductance
per length of RG-59.

Solution. From the problem statement,
a = 0.292 mm, b = 1.855 mm, and µ ∼= µ0

since the spacing material is non-magnetic.
Using Equation 7.75 we find L′ ∼= 370 nH/m.

7.15 Magnetic Energy

[m0127]

Consider a structure exhibiting inductance; i.e.,
one which is able to store energy in a magnetic
field in response to an applied current. This
structure could be a coil, or it could be one of a
variety of inductive structures which are not
explicitly intended to be an inductor; for
example, a coaxial transmission line. When
current is applied, the current-bearing elements
of the structure exert forces on each other. Since
these elements are not normally free to move, we
may interpret this force as potential energy
stored in the magnetic field associated with the
current (Section 7.12).

We now ask the question: How much energy is
stored in this field? The answer to this question
has relevance in several engineering applications.
One issue is that any system that includes
inductance is using some fraction of the energy
delivered by the power supply to energize this
inductance. In many electronic systems – in
power systems in particular – inductors are
periodically energized and de-energized at a
regular rate. Since power is energy per unit time,
this consumes power. Therefore energy storage in
inductors contributes to the power consumption
of electrical systems.

The stored energy is most easily determined
using circuit theory concepts. First, we note that
the electrical potential difference v(t) (units of
V) across an inductor is related to the current
i(t) (units of A) through the inductor as follows
(Section 7.12):

v(t) = L
d

dt
i(t) (7.76)

where L (units of H) is the inductance. The
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instantaneous power associated with the device is

p(t) = v(t)i(t) (7.77)

Energy (units of J) is power (units of J/s)
integrated over time. Let Wm be the energy
stored in the inductor. At some time t0 in the
past, i(t0) = 0 and Wm = 0. As current is
applied, Wm increases monotonically. At the
present time t, i(t) = I. Thus the present value
of the magnetic energy is:

Wm =

∫ t0+t

t0

p(τ)dτ (7.78)

Now evaluating this integral using the
relationships established above:

Wm =

∫ t+t0

t0

v(τ)i(τ)dτ

=

∫ t+t0

t0

[
L
d

dτ
i(τ)

]
i(τ)dτ

= L

∫ t+t0

t0

[
d

dτ
i(τ)

]
i(τ)dτ (7.79)

Changing the variable of integration from τ (and
dτ) to i (and di) we have

Wm = L

∫ t+t0

t0

di

dτ
i dτ

= L

∫ I

0

i di (7.80)

Evaluating the integral we obtain the desired
expression

Wm =
1

2
LI2 (7.81)

The energy stored in an inductor in response
to a steady current I is Equation 7.81. This
energy increases in proportion to inductance
and in proportion to the square of current.

The long straight coil (Section 7.13) is
representative of a large number of practical
applications, so it is useful to interpret the above
findings in terms of this structure in particular.
For this structure we found

L =
µN2A

l
(7.82)

where µ is the permeabity, N is the number of
turns, A is cross-sectional area, and l is length.
The magnetic field intensity inside this structure
is related to I by (Section 7.6):

H =
NI

l
(7.83)

Substituting these expressions into
Equation 7.81, we obtain

Wm =
1

2

[
µN2A

l

] [
Hl

N

]2

=
1

2
µH2Al (7.84)

Recall that the magnetic field inside a long coil is
approximately uniform. Therefore the density of
energy stored inside the coil is approximately
uniform. Noting that the product Al is the
volume inside the coil, we find that this energy
density is

wm =
1

2
µH2 (7.85)

which has units of energy per unit volume
(J/m3).

The above expression provides an alternative
method to compute the total magnetostatic
energy in any structure. Within a mathematical
volume V, the total electrostatic energy is simply
the integral of the energy density over V; i.e.,

Wm =

∫

V

wm dv (7.86)

This works even if the magnetic field and the
permeability vary with position. Substituting
Equation 7.85 we obtain:

Wm =
1

2

∫

V

µH2dv (7.87)

Summarizing:

The energy stored by the magnetic field
present within any defined volume is given
by Equation 7.87.

It’s worth noting that this energy increases with
the permeability of the medium, which makes
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sense since inductance is proportional to
permeability.

Finally we reiterate that although we arrived at
this result using the example of the long straight
coil, Equation 7.87 is completely general.

7.16 Magnetic Materials

[m0058]

As noted in Section 2.5, magnetic fields arise in
the presence of moving charge (i.e., current) and
in the presence of certain materials. In this
section we address these “magnetic materials”.

A magnetic material may be defined as a
substance which is exhibits permeability µ
(Section 2.6) that is different from the
permeability of free space µ0. Since the magnetic
flux density B is related to the magnetic field
intensity H via B = µH, magnetic materials
exhibit magnetic flux density in response to a
given magnetic field intensity that is significantly
greater than that of other materials. Magnetic
materials are also said to be “magnetizable”,
meaning that the application of a magnetic field
to such a material causes the material itself to
become a source of the magnetic field.

Magnetic media are typically metals or
semiconductors; or heterogeneous media
containing such materials, including ferrite,
which consists of iron particles suspended in a
ceramic. Magnetic media are commonly classified
according to the physical mechanism responsible
for their magnetizability. These mechanisms
include paramagnetism, diamagnetism, and
ferromagnetism. All three of these mechanisms
involve quantum mechanical processes operating
at the atomic and subatomic level, and are not
well-explained by classical physics. These
processes are beyond the scope of this book (but
information is available via “Additional
References” at the end of this section). However
it is possible however to identify some
readily-observable differences between these
categories of magnetic media.

Paramagnetic and diamagnetic materials
exhibit permeability which is only very slightly
different than µ0; and typically by much less
than 0.01%. These materials exhibit very weak
and temporary magnetization. The principal
distinction between paramagnetic and
diamagnetic media is in the persistence and
orientation of induced magnetic fields.
Paramagnetic materials – including aluminum,
magnesium, and platinum – exhibit a very weak
persistent magnetic field, and the magnetic field
induced in the material is aligned in the same
direction as the impressed (external) magnetic
field. Diamagnetic materials – including copper,
gold, and silicon – do not exhibit a persistent
magnetic field, and the magnetic field induced in
the material is (counter to intuition!) aligned in
the opposite direction as the impressed magnetic
field. The magnetization of paramagnetic and
diamagnetic media is typically so weak that it is
not often a consideration in engineering analysis
and design.

Paramagnetic and diamagnetic media exhibit
permeability only very slightly different than
that of free space, with little or no magneti-
zation.

Ferromagnetic materials, on the other hand,
exhibit permeability which can be many orders of
magnitude greater than µ0. (See Appendix A.2
for some example values.) These materials can
be readily and indefinitely magnetized; thus
permanent magnets are typically comprised of
ferromagnetic materials. Commonly-encountered
ferromagnetic materials include iron, nickel, and
cobalt.

Ferromagnetic materials are significantly
non-linear (Section 2.8), exhibiting saturation
and hysteresis. This is illustrated in Figure 7.19.
In this plot, the origin represents a ferromagnetic
material which is unmagnetized and in a region
free of an external magnetic field. The external
magnetic field is quantified in terms of H, plotted
along the horizontal axis. As the external field is
increased, so to is B in the material, according to
the relationship B = µH. Right away we see the
material is non-linear, since the slope of the
curve – and hence µ – is not constant.
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Figure 7.19: Non-linearity in a ferromagnetic ma-
terial manifesting as saturation and hysteresis.

Once the external magnetizing field H exceeds a
certain value, the response field B no longer
significantly increases. This is saturation. Once
saturated, further increases in the external field
result do not significantly increase the
magnetization of the material, and so there is no
significant increase in B.

From this state of saturation, let us now reduce
the external field. We find that the rate of
decrease in B with respect to H is significantly
slower than the rate that B originally increased
with respect to H. In fact, B is still greater than
zero even when H has been reduced to zero. At
this point the magnetization of the material is
apparent, and a device comprised of this material
could be used as a magnet.

If we now apply an external field in the reverse
direction, we find that we are eventually able to
zero and then redirect the response field. As we
continue to decrease H (that is, increase the
magnitude in the reverse direction), we once
again reach saturation.

The same behavior is observed when we once
again increase H: The material is eventually
demagnetized, remagnetized in the opposite
direction and then saturated in that direction.
At this point is apparent that a return to the

start condition (H = B = 0; i.e., demagnetized
when there is no external field) is not possible.

Hysteresis is the name that we apply to this
particular form of non-linear behavior. Hysteresis
has important implications in engineering
applications. First, as identified above, it is a
fundamental principle in the analysis and design
of magnets. In applications where a
ferromagnetic material is being used because
high permeability is desired – e.g., in inductors
(Section 7.12) and transformers (Section 8.5) –
hysteresis complicates the design and imposes
limits on the performance of the device.

Hysteresis may also be exploited as a form of
memory. This is apparent from Figure 7.19: If
B > 0, then recent values of H must have been
relatively large and positive. Similarly, If B < 0,
then recent values of H must have been relatively
large and negative. Furthermore, the most recent
sign of H can be inferred even if the current
value of H is zero. In this sense the material
“remembers” the past history of its
magnetization, and may thereby exhibits
memory. This is the enabling principle for a
number of digital data storage devices, including
hard drives (see “Additional Reading” at the end
of this section).

Ferromagnetic media exhibit permeability µ
that is orders of magnitude greater than that
of free space, and are readily magnetizable.
These materials are also nonlinear in µ, which
manifests as saturation and hysteresis.

Additional Reading:

• Section A.2 (“Permeability of Some
Common Materials”)

• “Magnetism” on Wikipedia.

• “Ferrite (magnet)” on Wikipedia.

• “Paramagnetism” on Wikipedia.

• “Diamagnetism” on Wikipedia.

• “Ferromagnetism” on Wikipedia.

https://creativecommons.org/licenses/by-sa/3.0/deed.en
https://en.wikipedia.org/wiki/Magnetism
https://en.wikipedia.org/wiki/Ferrite_(magnet)
https://en.wikipedia.org/wiki/Paramagnetism
https://en.wikipedia.org/wiki/Diamagnetism
https://en.wikipedia.org/wiki/Ferromagnetism
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• “Magnetic hysteresis” on Wikipedia.

• “Magnetic storage” on Wikipedia.

• “Hard disk drive” on Wikipedia.

[m0150]

https://en.wikipedia.org/wiki/Magnetic_hysteresis
https://en.wikipedia.org/wiki/Magnetic_storage
https://en.wikipedia.org/wiki/Hard_disk_drive
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Chapter 8

Time-Varying Fields

8.1 Comparison of Static
and Time-Varying
Electromagnetics

[m0013]

Students encountering time-varying
electromagnetic fields for the first time have
usually been exposed to electrostatics and
magnetostatics already. These disciplines exhibit
many similarities as summarized in Table 8.1.
The principles of time-varying electromagnetics
presented in this table are all formally introduced
in other sections; the sole purpose of this table is
to point out the differences. We can summarize
the differences as follows:

Maxwell’s Equations in the general (time-
varying) case include extra terms that do not
appear in the equations describing electro-
statics and magnetostatics. These terms in-
volve time derivatives of fields, and describe
coupling between electric and magnetic fields
that does not exist in electro- and magneto-
static conditions.

The coupling between electric and magnetic
fields in the time-varying case has one rather
profound consequence in particular: It becomes
possible for fields to continue to exist even after
their sources – i.e., charges and currents – are
turned off. What kind of field can continue to
exist in the absence of a source? Such a field is
commonly called a wave. Waves representing
signals in transmission lines and signals

propagating away from an antenna are examples.

Additional Reading:

• “Maxwell’s Equations” on Wikipedia.

8.2 Electromagnetic
Induction

[m0129]

When an electrically-conducting structure is
exposed to a time-varying magnetic field, an
electrical potential difference is induced across
the structure. This phenomenon is known as
electromagnetic induction. A convenient
introduction to electromagnetic induction is
provided by Lenz’s Law. This section explains
electromagnetic induction in the context of
Lenz’s Law and provides two examples.

Let us begin with the example depicted in
Figure 8.1, involving a cylindrical coil. Attached
to the terminals of the coil is a resistor for which
we may identify an electric potential difference V
and current I. The sign conventions indicated for
V and I are arbitrary, but it is important to be
consistent once they are established.

Now let us introduce a bar magnet as shown in
Figure 8.1. The magnet is centered along the
axis of coil, to the right of the coil, and with its
north pole facing toward the coil. The magnet is
responsible for the magnetic flux density Bimp.

Electromagnetics Vol 1 (Beta). c© 2018 S.W. Ellingson. CC BY SA 4.0 https://doi.org/10.7294/W4WQ01ZM

https://en.wikipedia.org/wiki/Maxwell's_equations
https://doi.org/10.7294/W4WQ01ZM
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Electrostatics / Time-Varying
Magnetostatics (Dynamic)

Electric & magnetic independent possibly coupled
fields are...
Maxwell’s Eqns.

∮
S
D · ds = Qencl

∮
S
D · ds = Qencl

(integral)
∮
C
E · dl = 0

∮
C
E · dl = − ∂

∂t

∫
S
B · ds∮

S
B · ds = 0

∮
S
B · ds = 0∮

C
H · ds = Iencl

∮
C
H · ds = Iencl+

∫
S
∂
∂tD · ds

Maxwell’s Eqns. ∇ ·D = ρv ∇ ·D = ρv
(differential) ∇×E = 0 ∇×E = − ∂

∂tB
∇ ·B = 0 ∇ ·B = 0
∇×H = J ∇×H = J+ ∂

∂tD

Table 8.1: Comparison of principles governing static and time-varying electromagnetic fields. Differ-
ences in the time-varying case relative to the static case are highlighted in blue.

Y. Qin (modified) CC BY 4.0

Figure 8.1: An experiment demonstrating elec-
tromagnetic induction and Lenz’s Law.

We refer to Bimp as an impressed magnetic field
because this field exists independently of any
response that may be induced by interaction
with the coil. Note that Bimp points to the left
inside the coil.

The experiment consists of three tests. We will
find in two of these tests that current flows (i.e.,
|I| > 0) and subsequently there is an induced
magnetic field Bind due to this current. It is the
direction of the current and subsequently the
direction of Bind inside the coil that we wish to
observe. The findings are summarized below and
in Table 8.2.

• When the magnet is motionless, we have the
unsurprising result that there is no current
in the coil, Therefore no magnetic field is

induced, and the total magnetic field is
simply equal to Bimp.

• When the magnet moves toward the coil, we
observe current which is positive with
respect to the reference direction indicated
in Figure 8.1. This current creates an
induced magnetic field Bind which points to
the right, as predicted by magnetostatic
considerations from the right-hand rule.
Since Bimp points to the left, it appears that
the induced current is opposing the increase
in the magnitude of the total magnetic field.

• When the magnet moves away from the coil,
we observe current which is negative with
respect to the reference direction indicated
in Figure 8.1. This current yields Bind

which points to the left. Since Bimp points
to the left, it appears that the induced
current is opposing the decrease in the
magnitude of the total magnetic field.

The first conclusion one may draw from this
experiment is that changes in the magnetic field
can induce current. This was the claim made in
the first paragraph of this section and is a
consequence of Faraday’s Law, which is tackled
in detail in Section 8.3. The second conclusion –
also associated with Faraday’s Law – is the point
of this section, and goes like this: The induced
magnetic field – that is, the one due to the

https://creativecommons.org/licenses/by/4.0/
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Magnet is ... |Bimp| in coil is ... Circuit Response Bind inside coil
Motionless constant V = 0, I = 0 none
Moving toward coil increasing V > 0, I > 0 Pointing right
Moving away from coil decreasing V < 0, I < 0 Pointing left

Table 8.2: Results of the experiment associated with Figure 8.1.

current induced in the coil – always opposes the
change in the impressed magnetic field.
Generalizing:

Lenz’s Law states that the current that is
induced by a change in an impressed mag-
netic field creates an induced magnetic field
that opposes (acts to reduce the effect of) the
change in the total magnetic field.

When the magnet moves, three things happen:
(1) A current is induced, (2) A magnetic field is
induced (which adds to the impressed magnetic
field), and (3) the value of V becomes non-zero.
Lenz’s Law does not address the following
question: Which of these are responding directly
to the change in the impressed magnetic field,
and which of these are simply responding to
changes in the other quantities? Lenz’s Law may
leave you with the incorrect impression that it is
I that is induced, and that Bind and V are
simply responding to this current. In truth, the
quantity which is induced is actually V . This can
be verified in the above experiment by replacing
the resistor with a high-impedance voltmeter,
which will indicate that V is changing even
though no current is flowing. Current flow is a
response to this potential. Nevertheless, we say I
is induced, even if indirectly through V .

So, if Lenz’s Law is not entirely forthright as an
explanation of the underlying physics, then what
is it good for? Lenz’s Law is often useful for
quickly determining the direction of current flow
in practical electromagnetic induction problems
without resorting to the mathematics associated
with Faraday’s Law. Here’s an example:

Example 8.1. Electromagnetic induction
through a transformer.

Figure 8.2 shows a rudimentary circuit
consisting of a battery and a switch on the
left, a voltmeter on the right, and a
transformer linking the two. It is not
necessary to be familiar with transformers
to follow this example; suffice it to say that
the transformer considered here consists of
two coils wound around a common toroidal
core, which serves to contain magnetic flux.
In this way the flux generated by either coil
is delivered to the other coil with negligible
loss.

The experiment begins with the switch on
the left in the open state. Thus there is no
current and no magnetic field apparent in
the coil on the left. The voltmeter reads 0 V.
When the switch is closed, what happens?

Solution. Closing the switch creates a
current in the coil on the left. Given the
indicated polarity of the battery, this
current flows counter-clockwise through the
circuit on the left, with current arriving in
the left coil through the bottom terminal.
Given the indicated direction of the winding
in the left coil, the impressed magnetic field
Bimp is oriented counter-clockwise through
the toroidal core. The coil on the right
“sees” Bimp increase from zero to some
larger value. Since the voltmeter
presumably has input high impedance, no
current flows. However if current were able
to flow, Lenz’s Law dictates that it would be
induced to flow in a counter-clockwise
direction around the circuit on the right,
since the induced magnetic field Bind would
then be clockwise-directed so as to oppose
the increase in Bimp. Therefore the
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Figure 8.2: Electromagnetic induction through a
transformer.

potential measured at the bottom of the
right coil would be higher than the potential
at the top of the right coil. The figure
indicates that the voltmeter measures the
potential at its right terminal relative to its
left terminal, so the needle will deflect to the
right. This deflection will be temporary,
since the current provided by the battery
becomes constant at a new non-zero value
and Bind responds only to the change in
Bimp. The voltmeter reading will remain at
zero for as long as the switch remains closed
and the current remains steady.

Here are some follow up exercises to test
your understanding of what is going on: (1)
Now open the switch. What happens? (2)
Repeat the original experiment, but before
starting swap the terminals on the battery.

Additional Reading:

• “Electromagnetic Induction” on Wikipedia.

• “Lenz’s Law” on Wikipedia.

8.3 Faraday’s Law

[m0055]

Faraday’s Law describes the generation of
electric potential by a time-varying magnetic
flux. This is a form of electromagnetic induction,
as discussed in Section 8.2.

V
T

� -

R

I

B

Figure 8.3: A single loop of wire in the presence
of an impressed magnetic field.

To begin, consider the scenario shown in
Figure 8.3: A single loop of wire in the presence
of an impressed magnetic field B. For reasons
explained later, we introduce a small gap and
define VT to be the potential difference measured
across the gap according to the sign convention
indicated. The resistance R may be any value
greater than zero, including infinity; i.e., a literal
gap.

As long as R is not infinite, we know from Lenz’s
Law (Section 8.2) to expect that a time-varying
magnetic field will cause a current to flow in the
wire. Lenz’s Law also tells us the direction in
which the current will flow. However Lenz’s Law
does not tell us the magnitude of the current,
and sidesteps some important physics that has
profound implications for the analysis and design
of electrical devices including generators and
transformers.

The more complete picture is given by Faraday’s
Law. In terms of the scenario of Figure 8.3,
Faraday’s Law relates the potential VT induced
by the time variation of B. VT then gives rise to
the current identified in Lenz’s Law; the
magnitude of this current is simply VT /R.
Without further ado, here’s Faraday’s Law for
this single loop scenario:

VT = − ∂

∂t
Φ (single loop) (8.1)

Here Φ is the magnetic flux (units of Wb)
associated with any open surface S bounded by

https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://en.wikipedia.org/wiki/Electromagnetic_induction
https://en.wikipedia.org/wiki/Lenz's_law
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the loop:

Φ =

∫

S

B · ds (8.2)

where B is magnetic flux density (units of T or
Wb/m2) and ds is the differential surface area
vector.

To make headway with Faraday’s Law, one must
be clear about the meanings of S and ds. If the
wire loop in the present scenario lies in a plane,
then a good choice for S is the simply the planar
area bounded by the loop. However any surface
that is bounded by the loop will work, including
non-planar surfaces that extend above and/or
below the plane of the loop: All that is requires is
that every magnetic field line that passes through
the loop also passes through S. In other words it
is only necessary that the curve C defining the
edge of the open surface S correspond to the
loop. Subsequently the magnitude of ds is the
differential surface element (ds) and the direction
of ds is a unit vector n̂ which is perpendicular to
each point on S, so ds = n̂ds.

This leaves just one issue remaining: The
orientation of n̂. This is sorted out in Figure 8.4.
There are two possible ways for a vector to be
perpendicular to a surface, and the direction
chosen for n̂ will affect the sign of VT . Therefore
n̂ must be somehow related to the polarity
chosen for VT . Here’s the relationship: Let C be
the curve that begins at the “−” terminal of VT
and follows the entire perimeter of the loop,
ending at at the “+” terminal. Then n̂ is
determined by the following “right-hand rule”: n̂
points in the direction of the fingers of the right
hand when the thumb of the right hand is aligned
in the direction of C. It’s worth noting that this
convention is precisely the convention used to
relate n̂ and C in Stokes’ Theorem (Section 4.9).

Now let us recap how Faraday’s Law is applied
to the single loop scenario of Figure 8.3:

1. Assign “+” and “−” terminals to the gap
voltage VT .

2. The orientation of n̂ is determined by the
right hand rule, taking the direction of C to

V
T

� -

R
S

n

C

Figure 8.4: Relationship between the polarity
of VT and orientations of C and n̂ in the planar
single-loop scenario.

be the perimeter of the loop beginning at
“−” and ending at “+”

3. B yields a magnetic flux Φ associated with
the loop according to Equation 8.2. S is any
open surface which intersects all the
magnetic field lines which pass through the
loop (so you might as well choose S in a way
that results in the simplest possible
integration).

4. VT is the time derivative of Φ with a change
of sign (Equation 8.1).

5. The current I flowing in the loop is VT /R,
with the reference direction (i.e., direction of
positive current) being from “+” to “−”
through the resistor. Think of the loop as a
voltage source, and you’ll get the correct
reference direction for I.

At this point let us reiterate that the
electromagnetic induction described by Faraday’s
Law induces potential (in this case, VT ), and not
current. The current in the loop is simply the
induced voltage divided by the resistance of the
loop. This point is easily lost, especially in light
of Lenz’s Law, which seems to imply that
current, as opposed to potential, is the thing
being induced.

Wondering about the significance of the minus
sign in Equation 8.1? That is specifically Lenz’s
Law: The current I that ends up circulating in
the loop generates its own magnetic field (“Bind”



170 CHAPTER 8. TIME-VARYING FIELDS

in Section 8.2) which is distinct from the
impressed magnetic field B and which tends to
oppose change in B. Thus we see that Faraday’s
Law subsumes Lenz’s Law.

Frequently one is interested in a structure which
consists of multiple identical loops. We have in
mind here something like a coil with N ≥ 1
windings tightly packed together. In this case
Faraday’s Law is

VT = −N ∂

∂t
Φ (8.3)

Note that the difference is simply that the gap
potential VT is greater by N . In other words,
each winding of the coil contributes a potential
given by Equation 8.1, and these potentials add
in series.

Faraday’s Law, given in general by Equa-
tion 8.3, states that the potential induced in
a coil is proportional to the time derivative of
the magnetic flux through the coil.

The induced potential VT is often referred to as
“emf”, which is a contraction of the term
electromotive force – a misnomer to be sure, since
no actual force is implied; only potential. The
term “emf” is nevertheless frequently used in the
context of Faraday’s Law applications for
historical reasons. Above we considered the
generation of emf by time variation of B.
However Equation 8.1 indicates that what
actually happens is that the emf is the result of
time variation of the magnetic flux, Φ. Magnetic
flux is magnetic flux density integrated over area,
so it appears that emf can also be generated
simply by varying S, independently of any time
variation of B. In other words, emf may be
generated even when B is constant, by instead
varying the shape or orientation of the coil. So,
it appears we have a variety of schemes by which
we can generate emf. Here they are:

1. Time-varying B (as we considered above).
For example, B might be due to a
permanent magnet which is moved (e.g.,
translated or rotated) in the vicinity of the

coil, as described in Section 8.2. Or, more
commonly, B might be due to a different coil
that bears a time-varying current. These
mechanisms are collectively referred to as
transformer emf, and is the underlying
principle of operation of transformers
(Section 8.5).

2. The perimeter C – and thus the surface S
over which Φ is determined – can be
time-varying. For example, a wire loop
might be rotated or changed in shape in the
presence of a constant magnetic field. This
mechanism is referred to as motional emf,
and is the underlying principle of operation
of generators (Section 8.7).

3. Transformer and motional emf can exist in
various combinations. From the perspective
of Faraday’s Law, transformer and motional
emf are the same in the sense in either case
Φ is time-varying, which is all that is
required to generate emf.

Finally, a comment on the generality of Faraday’s
Law. Above we have introduced Faraday’s Law
as if it were specific to loops and coils of wire.
However the truth of the matter is that Faraday’s
Law is fundamental physics: If you can define a
closed path – current-bearing or not – then you
can compute the potential difference achieved by
traversing that path using Faraday’s Law. The
value you compute is the potential associated
with electromagnetic induction, and exists
independently and in addition to the potential
difference associated with the static electric field
(e.g., Section 5.12). In other words:

Faraday’s Law indicates the contribution of
electromagnetic induction (the generation of
emf by a time-varying magnetic flux) to the
potential difference achieved by traversing a
closed path.

In Section 8.8 this insight is used to transform
the static form of Kirchoff’s Voltage Law
(Section 5.10) – which gives the potential
difference associated with electric field only –
into the Maxwell-Faraday Equation (Section 8.8),
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which is a general statement about the
relationship between the instantaneous value of
electric fields and the time derivative of magnetic
fields.

Additional Reading:

• “Faraday’s law of induction” on Wikipedia.

8.4 Induction in a
Motionless Loop

[m0056]

In this section we consider the problem depicted
in Figure 8.5: A single motionless loop of wire in
the presence of a spatially-uniform but
time-varying magnetic field. A small gap is
introduced in the loop, allowing us to measure
the induced potential VT . Additionally a
resistance R is connected across VT in order to
allow a current to flow. This problem was
considered in Section 8.3 as an introduction to
Faraday’s Law; in this section we shall actually
work the problem and calculate some values.
This is intended to serve as an example of the
application of Faraday’s Law, a demonstration of
transformer emf, and will serve as a first step
toward an understanding of transformers as
devices.

In the present problem, the loop is centered in
the z = 0 plane. The magnetic flux density is
B = b̂B(t); i.e., time-varying magnitude B(t)

with respect to a constant direction b̂. Because
this magnetic field is spatially uniform (i.e., the
same everywhere), we will find that only the area
of the loop is important, and not it’s specific
shape. For this reason, it will not be necessary to
specify the radius of the loop or even require that
it be a circular loop. Our task is to find
expressions for the induced potential VT and the
response current I.

To begin, remember that Faraday’s Law is a
calculation of electric potential, and not current.
So, the approach is to first find VT , and then find

V
T

-

R

I

B

Figure 8.5: A single loop of wire in the presence of
an impressed spatially-uniform but time-varying
magnetic field.

the current I that flows through the gap
resistance in response.

The sign convention for VT is arbitrary; here we
have selected “+” and “−” terminals as
indicated in Figure 8.5.1 Following the standard
convention for the reference direction of current
through a passive device, I should be directed as
shown in Figure 8.5. It is worth repeating that
these conventions for the signs of VT and I are
merely references ; for example we may well find
that I is negative, which means that current
flows in a clockwise direction in the loop.

We now invoke Faraday’s Law:

VT = −N ∂

∂t
Φ (8.4)

The number of windings N in the loop is 1, and
Φ is the magnetic flux through the loop. Thus:

VT = − ∂

∂t

∫

S

B · ds (8.5)

where S is any open surface that intersects all of
the magnetic field lines that pass through the
loop. The simplest such surface is simply the
planar surface defined by the perimeter of the
loop. Then ds = n̂ds, where ds is the differential
surface element and n̂ is the normal to the plane

1A good exercise for the student is to repeat this prob-
lem with the terminal polarity reversed; one should obtain
the same answer.

https://en.wikipedia.org/wiki/Faraday's_law_of_induction
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of the loop. Which of the two possible normals to
the loop? This is determined by the right-hand
rule of Stokes’ Theorem: From the “−” terminal,
we point the thumb of the right hand in the
direction that leads to the “+” terminal by
traversing the perimeter of the loop. When we
do this, we find the fingers of the right hand
intersect S in the manner as the n̂ vector. To
maintain the generality of results derived below,
we shall not make the substitution n̂ = +ẑ;
nevertheless we see this is the case for a loop
parallel to the z = 0 plane with the polarity of
VT indicated in Figure 8.5.

Taking this all into account, we have

VT = − ∂

∂t

∫

S

(
b̂B(t)

)
· (n̂ds)

= −
(
b̂ · n̂

) ∂

∂t

∫

S

B(t) ds

= −
(
b̂ · n̂

)( ∂

∂t
B(t)

)∫

S

ds (8.6)

The integral in the above expression is simply
the area of the loop, which is a constant; let the
symbol A represent this area. We obtain

VT = −
(
b̂ · n̂A

) ∂

∂t
B(t) (8.7)

which is the expression we seek. Note that the
quantity b̂ · n̂A is the projected area of the loop.
The projected area is equal to A when the the
magnetic field lines are perpendicular to the loop
(i.e., b̂ = n̂), and decreases to zero as b̂ · n̂ → 0.
Summarizing:

The magnitude of the transformer emf in-
duced by a spatially-uniform magnetic field
is equal to the projected area times the time
derivative of the magnetic flux density, with
a change of sign. (Equation 8.7).

A few observations about this result:

• As promised earlier, we have found that the
shape of the loop is irrelevant; i.e., a square
loop having the same area and planar
orientation would result in the same VT .

This is because the magnetic field is
spatially uniform, and because it is the
magnetic flux (Φ) and not the magnetic field
or shape of the loop alone that determines
the induced potential.

• The induced potential is proportional to A;
i.e., VT can be increased by increasing the
area of the loop.

• The peak magnitude of the induced potential
is maximized when the plane of the loop is
perpendicular to the magnetic field lines.

• The induced potential goes to zero when the
plane of the loop is parallel to the magnetic
field lines. Said another way: There is no
induction unless magnetic field lines pass
through the loop.

• The induced potential is proportional to the
rate of change of B. If B is constant in time,
then there is no induction.

Finally, the current in the loop is simply

I =
VT
R

(8.8)

Again, electromagnetic induction induces
potential, and the current flows only in response
to the induced potential as determined by Ohm’s
Law. In particular: If the resistor is removed,
then R→ ∞ and I → 0, but VT is unchanged.

One final comment: Even though the current I is
not a direct result of electromagnetic induction,
we can use I as a check of the result using Lenz’s
Law (Section 8.2). We’ll demonstrate this in the
example below.

Example 8.2. Induction in a motionless
circular loop by a linearly-increasing
magnetic field

Let the loop be planar in the z = 0 plane,
and circular with radius a = 10 cm. Let the
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magnetic field be ẑB(t) where

B(t) = 0 , t < 0

= B0t/t0 , 0 ≤ t ≤ t0

= B0 , t > t0 (8.9)

i.e., B(t) begins at zero and increases
linearly to B0 at time t0, after which it
remains constant at B0. Let B0 = 0.2 T,
t0 = 3 s, and let the loop be closed by a
resistor R = 1 kΩ. What current I flows in
the loop?

Solution. Adopting the sign conventions of
Figure 8.5 we first note that n̂ = +ẑ; this is
determined by the right-hand rule with
respect to the indicated polarity of VT .
Thus Equation 8.7 becomes

VT = −
(
b̂ · ẑA

) ∂

∂t
B(t)

Note b̂ · ẑA = A since b̂ = ẑ; i.e., because
the plane of the loop is perpendicular to the
magnetic field lines. Since the loop is
circular, A = πa2. Also

∂

∂t
B(t) = 0 , t < 0

= B0/t0 , 0 ≤ t ≤ t0

= 0 , t > t0

Putting this all together:

VT = −πa2B0

t0
= −2.09 mV , 0 ≤ t ≤ t0

and VT = 0 before and after this time, since
B is constant during those times.
Subsequently the induced current is

I =
VT
R

= −2.09 µA , 0 ≤ t ≤ t0

and I = 0 before and after this time. We
have found that the induced current is a
constant clockwise flow that exists only
while B is increasing.

Finally, let’s see if the result is consistent
with Lenz’s Law. The current induced while

B is changing gives rise to an induced
magnetic field Bind. From the “right hand
rule” that relates the direction of I to the
direction of Bind (Section 7.5), the direction
of Bind is −ẑ inside the loop. In other
words: The magnetic field associated with
the induced current opposes the increasing
impressed magnetic field that induced the
current, in accordance with Lenz’s Law.

Example 8.3. Induction in a motionless
circular loop by a sinusoidally-varying
magnetic field.

Let us repeat the previous example, but now
with

B(t) = B0 sin 2πf0t

with f0 = 1 kHz.

Solution. Now

∂

∂t
B(t) = 2πf0B0 cos 2πf0t

So
VT = −2π2f0a

2B0 cos 2πf0t

Subsequently

I =
VT
R

= −2π2f0a
2B0

R
cos 2πf0t

Substituting values, we have:

I = −(395 mA) cos [(6.28 krad/s)t]

It should be no surprise that VT and I vary
sinusoidally, since the source (B) varies
sinusoidally. A bit of useful trivia here is
that VT and I are 90◦ out of phase with the
source. It is also worth noting what happens
when B = 0. This occurs twice per period,
at t = nπ/2 where n is any integer,
including t = 0. At these times B is zero,
but VT and hence IR are decidedly non-zero;
in fact, they are at their maximum
magnitude. Again, it is the change in B that
induces voltage and subsequently current,
not B itself.
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8.5 Transformers: Principle
of Operation

[m0031]

A transformer is a device which connects two
electrical circuits through a shared magnetic
field. Transformers are used in impedance
transformation, voltage level conversion, circuit
isolation, conversion between single-ended and
differential signal modes, and other applications.2

The underlying electromagnetic principle is
Faraday’s Law (Section 8.3); in particular,
transformer emf.

The essential features of a transformer can be
derived from the simple experiment shown in
Figures 8.6 and 8.7. In this experiment, two coils
are arranged along a common axis. The winding
pitch is small, so that all magnetic field lines pass
through the length of the coil, and no lines pass
between the windings. To further contain the
magnetic field, we assume both coils are wound
on the same core, consisting of some material
exhibiting high permeability. The upper coil has
N1 turns and the lower coil has N2 turns.

In Part I of this experiment (Figure 8.6), the
upper coil is connected to a sinusoidally-varying

voltage source V
(1)
1 in which the subscript refers

to the coil and the superscript refers to “Part I”
of this experiment. The voltage source creates a
current in the coil, which in turn creates a
time-varying magnetic field B in the core.
Applying the right-hand rule that relates current
to induced magnetic field, the reference direction
for B is in the downward (−ẑ) direction.

The lower coil has N2 turns wound in the
opposite direction and is left open-circuited.
Given the closely-spaced windings and use of a
high-permeability core, we assume that the
magnetic field within the lower coil is equal to B
generated in the upper coil. The potential

induced in the lower coil is V
(1)
2 with reference

polarity indicated in the figure. From Faraday’s

2See “Additional Reading” at the end of this section for
more on these applications.

turns ¡
(1)

+

¢

  2
(1)

+

¢

N1

turnsN2

Figure 8.6: Part I of an experiment demonstrating
the linking of electric circuits using a transformer.

turns£ 1
(2)

+

¤

£ 2
(2)

+

¤

N1

turnsN2

Figure 8.7: Part II of an experiment demonstrat-
ing the linking of electric circuits using a trans-
former.
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Law we have

V
(1)
2 = −N2

∂

∂t
Φ2 (8.10)

where Φ2 is the flux through a single turn of the
lower coil. Thus:

V
(1)
2 = −N2

∂

∂t

∫

S

B · (−ẑds) (8.11)

Note that the direction of ds = −ẑds is
determined by the polarity we have chosen for

V
(1)
2 .

In Part II of the experiment (Figure 8.7), we
make changes as follows: We apply a voltage

V
(2)
2 to the lower coil and open-circuit the upper

coil. Further, we adjust V
(2)
2 such that the

induced magnetic flux density is again B – that
is, equal to the field in Part I of the experiment.
Now we have

V
(2)
1 = −N1

∂

∂t
Φ1 (8.12)

which is

V
(2)
1 = −N1

∂

∂t

∫

S

B · (+ẑds) (8.13)

For reasons that will become apparent in a
moment, let’s shift the leading minus sign into
the integral. We then have

V
(2)
1 = +N1

∂

∂t

∫

S

B · (−ẑds) (8.14)

Comparing this to Equations 8.10 and 8.11, we
see that we may rewrite this in terms of the flux
in the lower coil in Part I of the experiment:

V
(2)
1 = +N1

∂

∂t
Φ2 (8.15)

In fact, we can express this in terms of the
potential in Part I of the experiment:

V
(2)
1 =

(
−N1

N2

)(
−N2

∂

∂t
Φ2

)

=

(
−N1

N2

)
V

(1)
2 (8.16)

We have found that the potential in the upper
coil in Part II is related in a simple way to the

potential in the lower coil in Part I of the
experiment. If we had done Part II first, we
would have obtained the same result but with
the superscripts swapped. Therefore it must be
generally true – regardless of the arrangement of
terminations – that

V1 = −N1

N2
V2 (8.17)

This expression should be familiar from
elementary circuit theory – except possibly for
the minus sign. So what’s up that? The minus
sign is a consequence of the fact that the coils are
wound in opposite directions. We can make the
above expression a little more general as follows:

V1
V2

= p
N1

N2
(8.18)

where p is defined to +1 when the coils are
wound in the same direction, and −1 when coils
are wound in opposite directions. (It is an
excellent exercise to confirm that this is true by
repeating the above analysis with winding
direction changed for either the upper or lower
coil, for which p will then turn out to be +1.)
This is the “transformer law” of basic electric
circuit theory, from which all other
characteristics of transformers as two-port circuit
devices can be obtained (See Section 8.6 for
follow-up on that). Summarizing:

The ratio of coil voltages in an ideal trans-
former is equal to the ratio of turns with sign
determined by the relative directions of the
windings, per Equation 8.18.

A more familiar transformer design is shown in
Figure 8.8: Coils wound on a toroidal core as
opposed to a cylindrical core. Why do this? This
arrangement confines the magnetic field linking
the two coils to the core, as opposed to allowing
field lines to extend beyond the device. This
confinement is important in order to prevent
structures outside the transformer from
interfering with the magnetic field linking the
coils. The principle of operation is in all other
respects the same.

Additional Reading:
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c© BillC (modified) CC BY SA 3.0

Figure 8.8: Transformer implemented as coils
sharing a toroidal core. Here p = +1.

• “Transformer” on Wikipedia.

• “Balun” on Wikipedia.

8.6 Transformers as
Two-Port Devices

[m0032]

Section 8.5 explains the principle of operation of
the ideal transformer. The relationship governing
the terminal voltages V1 and V2 was found to be

V1
V2

= p
N1

N2
(8.19)

where N1 and N2 are the number of turns in the
associated coils and p is either +1 or −1
depending on the relative orientation of the
windings; i.e., whether the reference direction of
the associated fluxes is the same or opposite,
respectively.

We shall now consider ratios of current and
impedance in ideal transformers, using the
two-port model shown in Figure 8.9. By virtue of
the reference current directions and polarities

¥2

¦2

+

§

¥1

¦
1

+

§

+_ ¨2

¨1

Figure 8.9: The transformer as a two-port circuit
device.

chosen in this figure, the power delivered by the
source V1 is V1I1, and the power absorbed by the
load Z2 is −V2I2. Assuming the transformer
windings have no resistance, and assuming the
magnetic flux is perfectly contained within the
core, the power absorbed by the load must equal
the power provided by the source; i.e.,
V1I1 = −V2I2. Thus we have3

I1
I2

= −V2
V1

= −pN2

N1
(8.20)

We can develop an impedance relationship for
ideal transformers as follows: Let Z1 be the the
input impedance of the transformer; that is, the
impedance looking into port 1 from the source.
Thus we have

Z1 =
V1
I1

=
+p (N1/N2)V2
−p (N2/N1) I2

= −
(
N1

N2

)2(
V2
I2

)
(8.21)

In Figure 8.9 Z2 is the the output impedance of
port 2; that is, the impedance looking out port 2
into the load. Therefore Z2 = −V2/I2 (once
again the minus sign is a result of our choice of

3 The minus signs in this equation are a result of the
reference polarity and directions indicated in Figure 8.9.
These are more-or-less standard in electrical two-port the-
ory (see “Additional Reading” at the end of this section),
but are certainly not the only reasonable choice. If you
see these expressions without the minus signs it proba-
bly means that a different combination of reference direc-
tions/polarities is in effect.

https://creativecommons.org/licenses/by-sa/3.0/
https://en.wikipedia.org/wiki/Transformer
https://en.wikipedia.org/wiki/Balun
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sign conventions in Figure 8.9). Substitution of
this result into the above equation yields

Z1 =

(
N1

N2

)2

Z2 (8.22)

and therefore

Z1

Z2
=

(
N1

N2

)2

(8.23)

Thus we have demonstrated that a transformer
scales impedance in proportion to the square of
the turns ratio N1/N2. Remarkably, the
impedance transformation depends only on the
turns ratio, and is independent of the relative
direction of the windings (p).

The relationships developed above should be
viewed AC expressions, and are not normally
valid at DC. This is because transformers exhibit
a fundamental limitation in their low-frequency
performance. To see this, first recall Faraday’s
Law:

V = −N ∂

∂t
Φ (8.24)

If the magnetic flux Φ isn’t time-varying, then
there is no induced electric potential, and
subsequently no linking of the signals associated
with the coils. At very low but non-zero
frequencies, we encounter another problem that
gets in the way: Magnetic saturation. To see
this, note we can obtain an expression for Φ from
Faraday’s Law by integrating with respect to
time, yielding

Φ(t) = − 1

N

∫ t

t0

V (τ)dτ +Φ(t0) (8.25)

where V (t) is sinusoidally-varying and t0 is some
earlier time at which we know the value of Φ(t0).
Note the peak value of Φ after t = t0 depends on
the frequency of V (t). If the frequency of V (t) is
very low, then Φ can become very large. Since
the associated cross-sectional areas are
presumably constant, this means that the
magnetic field becomes very large. The problem
with that is that most practical
high-permeability materials suitable for use as
transformer cores exhibit magnetic saturation;
that is, the rate at which the magnetic field is

Differential
Single-
Ended

Single-
Ended

c© SpinningSpark CC BY SA 3.0 (modified)

Figure 8.10: Transformers used to convert a
single-ended (“unbalanced”) signal to a differen-
tial (balanced) signal, and back.

able to increase slows with increasing magnetic
field magnitude. The result of all this is that a
transformer may work fine at (say) 1 MHz, but
at (say) 1 Hz the transformer may exhibit an
apparent loss associated with this saturation.
Thus, practical transformers exhibit highpass
frequency response.

It should be noted that the highpass behavior of
practical transistors can be useful: For example,
a transformer can be used to isolate an undesired
DC offset and/or low-frequency noise in the
circuit attached to one coil from the circuit
attached to the other coil.

The DC-isolating behavior of a transformer also
allows the transformer to be used as a balun, as
illustrated in Figure 8.10. A balun is a two-port
device which transforms a single-ended
(“unbalanced”) signal – that is, one having an
explicit connection to a datum (e.g., ground) –
into a differential (“balanced”) signal, for which
there is no explicit connection to a datum.
Differential signals have many benefits in circuit
design, whereas inputs and outputs to devices
must often be in single-ended form. Thus a
common use of transformers is to effect the
conversion between single-ended and differential
circuits. Although a transformer is certainly not
the only device that can be used as a balun, it
has one very big advantage, namely bandwidth.

Additional Reading:

• “Transformer” on Wikipedia.

• “Two-port network” on Wikipedia.

https://creativecommons.org/licenses/by-sa/3.0/
https://en.wikipedia.org/wiki/Transformer
https://en.wikipedia.org/wiki/Two-port_network
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• “Saturation (magnetic)” on Wikipedia.

• “Balun” on Wikipedia.

• S.W. Ellingson, “Differential Circuits”
(Sec. 8.7) in Radio Systems Engineering,
Cambridge Univ. Press, 2016.

8.7 The Electric Generator

[m0030]

A generator is a device which transforms
mechanical energy into electrical energy, typically
by electromagnetic induction via Faraday’s Law
(Section 8.3). For example a generator might
consist of a gasoline engine which turns a
crankshaft, to which is attached a system of coils
and/or magnets. This rotation changes the
relative orientations of the coils with respect to
the magnetic field in a time-varying manner,
resulting in a time-varying magnetic flux and
subsequently induced electric potential. In this
case the induced potential is said to be a form of
motional emf, as it is due entirely to changes in
geometry as opposed to changes in the
magnitude of the magnetic field. Coal- and
steam-fired generators, hydroelectric generators,
wind turbines, and other energy generation
devices operate using essentially this principle.

Figure 8.11 shows a rudimentary generator which
serves as to illustrate the relevant points. The
generator consists of a planar loop which rotates
around the z axis; therefore the rotation can be
parameterized in φ. In this case the direction of
rotation is specified to be in the +φ direction.
The frequency of rotation is f0; that is, the time
required for the loop to make one complete
revolution is 1/f0. We assume a time-invariant
and spatially-uniform magnetic flux density
B = b̂B0 where b̂ and B0 are both constants.
For illustration purposes, the loop is indicated to
be circular. However because the magnetic field
is time-invariant and spatially-uniform, the
specific shape of the loop is not important, as we
shall see in a moment: Only the area of the loop
will matter.

z

y

x

V
T-

©ª«ection of
rotation

Figure 8.11: A rudimentary single-loop genera-
tor, shown at time t = 0.

The induced potential is indicated as VT with
reference polarity as indicated in the figure. This
potential is given by Faraday’s Law:

VT = − ∂

∂t
Φ (8.26)

Here Φ is the magnetic flux associated with an
open surface S bounded by the loop:

Φ =

∫

S

B · ds (8.27)

As usual S can be any surface which intersects all
magnetic field lines passing through the loop; and
also as usual the simplest choice is simply the
planar area bounded by the loop. The differential
surface element ds is n̂ds, where n̂ is determined
by the reference polarity of VT according to the
“right hand rule” convention from Stokes’
Theorem. Making substitutions, we have

Φ =

∫

S

(
b̂B0

)
· (n̂ds)

=
[
b̂ · n̂

]
B0

∫

S

ds

=
[
b̂ · n̂

]
B0A (8.28)

https://en.wikipedia.org/wiki/Saturation_(magnetic)
https://en.wikipedia.org/wiki/Balun
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where A is the area of the loop.

To make headway, an expression for n̂ is needed.
The principal difficulty here is that n̂ is rotating
with the loop, and so is time-varying. To sort
this out, first consider the situation at time t = 0,
which is the moment illustrated in Figure 8.11.
Beginning at the “−” terminal, we point the
thumb of our right hand in the direction that
leads to the “+” terminal by traversing the loop;
n̂ is then the direction perpendicular to the plane
of the loop in which the fingers of our right hand
pass through the loop. We see that at t = 0,
n̂ = +ŷ. A bit later, the loop will have rotated
by one-fourth of a complete rotation, and at that
time n̂ = −x̂. This occurs at t = 1/(4f0). Later
still, the loop will have rotated by one-half of a
compete rotation, and then n̂ = −ŷ. This occurs
at t = 1/(2f0). It is apparent that

n̂(t) = −x̂ sin 2πf0t+ ŷ cos 2πf0t (8.29)

as can be confirmed by checking the three special
cases identified above. Now applying Faraday’s
Law, we find

VT = − ∂

∂t
Φ

= − ∂

∂t

[
b̂ · n̂(t)

]
B0A

= −
[
b̂ · ∂

∂t
n̂(t)

]
B0A (8.30)

For notational convenience we make the following
definition:

n̂′(t) , − 1

2πf0

∂

∂t
n̂(t) (8.31)

which is simply the time derivative of n̂ divided
by 2πf0 so as to retain a unit vector. The reason
for including a change of sign will become
apparent in a moment. Applying this definition,
we find

n̂′(t) = +x̂ cos 2πf0t+ ŷ sin 2πf0t (8.32)

Note that this is essentially the definition of the
radial basis vector ρ̂ from the cylindrical
coordinate system (which is why we applied the
minus sign in Equation 8.31). Recognizing this,
we write

ρ̂(t) = +x̂ cos 2πf0t+ ŷ sin 2πf0t (8.33)

and finally

VT = +2πf0B0Ab̂ · ρ̂(t) (8.34)

If the purpose of this device is to generate power,
then presumably we would choose the magnetic
field to be in a direction that maximizes the
maximum value of b̂ · ρ̂(t). Therefore, power is
optimized for B polarized entirely in some
combination of x̂ and ŷ, and with B · ẑ = 0.
Under that constraint, we see that VT varies
sinusoidally with frequency f0 and exhibits peak
magnitude

max |VT (t)| = 2πf0B0A (8.35)

It’s worth noting that the maximum voltage
magnitude is achieved when the plane of the loop
is parallel to B; i.e., when b̂ · n̂(t) = 0 so that
Φ(t) = 0. Why is that? Because this is when
Φ(t) is most rapidly increasing or decreasing.
Conversely: When the plane of the loop is
perpendicular to B (b̂ · n̂(t) = 1), |Φ(t)| is
maximum but its time-derivative is zero, so
VT (t) = 0 at this instant.

Example 8.4. Rudimentary electric
generator.

The generator in Figure 8.11 consists of a
circular loop of radius a = 1 cm rotating at
1000 revolutions per second in a static and
spatially-uniform magnetic flux density of
1 mT in the +x̂ direction. What is the
induced potential?

Solution. From the problem statement,
f0 = 1 kHz, B0 = 1 mT, and b̂ = +x̂.
Therefore b̂ · ρ̂(t) = x̂ · ρ̂(t) = cos 2πf0t. The
area of the loop is A = πa2. From
Equation 8.34 we obtain

VT (t) = (2.00 mV) cos [(6.28 krad/s) t]

Finally, we note that it is not really necessary for
the loop to rotate in the presence of a magnetic
field with constant b̂; it works equally well for
the loop to be stationary and for b̂ to rotate – in
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fact this is essentially the same problem. In some
practical generators, both the
potential-generating coils and fields (generated
by some combination of magnets and coils)
rotate.

Additional Reading:

• “Electric Generator” on Wikipedia.

8.8 The Maxwell-Faraday
Equation

[m0050]

In this section we generalize Kirchoff’s Voltage
Law (KVL), previously encountered as a
principle of electrostatics in Section 5.10. KVL
states that in the absence of a time-varying
magnetic flux, the electric potential accumulated
by traversing a closed path C is zero. Here is that
idea in mathematic form:

V =

∮

C

E · dl = 0 (8.36)

Now recall Faraday’s Law (Section 8.3):

V = − ∂

∂t
Φ = − ∂

∂t

∫

S

B · ds (8.37)

Here S is any open surface that intersects all
magnetic field lines passing through C, with the
relative orientations of C and ds determined in
the usual way by the Stokes’ Theorem convention
(Section 4.9). Note that Faraday’s Law agrees
with KVL in the electrostatic case: If magnetic
flux is constant, then Faraday’s Law says V = 0.
However Faraday’s Law is very clearly not
consistent with KVL if magnetic flux is
time-varying. The correction is simple enough:
We can simply set these expressions to be equal.
Here we go:

∮

C

E · dl = − ∂

∂t

∫

S

B · ds (8.38)

This general form is known by a variety of
names; here we refer to it as the
Maxwell-Faraday Equation (MFE).

The integral form of the Maxwell-Faraday
Equation (Equation 8.38) states that the elec-
tric potential associated with a closed path C
is due entirely to electromagnetic induction,
via Faraday’s Law.

Despite the great significance of this expression
as one of the four Maxwell’s Equations, one
might argue that all we have done is simply to
write Faraday’s Law in a slightly more verbose
way. This is true. The real power of the MFE is
unleashed when it is expressed in differential, as
opposed to integral form. Let us now do this.

We can transform the left-hand side of
Equation 8.38 into a integral over S using Stokes’
Theorem. Applying Stokes’ theorem on the left,
we obtain

∫

S

(∇×E) · ds = − ∂

∂t

∫

S

B · ds (8.39)

Now exchanging the order of integration and
differentiation on the right hand side:

∫

S

(∇×E) · ds =
∫

S

(
− ∂

∂t
B

)
· ds (8.40)

The surface S on both sides is the same, and we
have not constrained S in any way: S can be any
mathematically-valid open surface anywhere in
space, having any size and any orientation. The
only way the above expression can be universally
true under these conditions is if the integrands
on each side are equal at every point in space.
Therefore:

∇×E = − ∂

∂t
B (8.41)

which is the MFE in differential form.

What does this mean? Recall that the curl of E
is a way to take a directive of E with respect to
position. Therefore the MFE constrains spatial
derivatives of E to be simply related to the rate
of change of B. Said plainly:

The differential form of the Maxwell-Faraday
Equation (Equation 8.41) relates the change
in the electric field with position to the
change in the magnetic field with time.

https://en.wikipedia.org/wiki/Electric_generator
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Now that is arguably new and useful
information: We now see that electric and
magnetic fields are coupled not only for line
integrals and fluxes, but also at each point in
space.

Additional Reading:

• “Faraday’s Law of Induction” on Wikipedia.

• “Maxwell’s Equations” on Wikipedia.

8.9 Displacement Current
and Ampere’s Law

[m0053]

In this section we generalize Ampere’s Law,
previously encountered as a principle of
magnetostatics in Section 7.4. Ampere’s Law
states that the conduction current Iencl flowing
through closed path C is equal to the line integral
of the magnetic field intensity H along C. Here is
that idea in mathematic form:

∮

C

H · dl = Iencl (8.42)

We shall now demonstrate that this equation is
unreliable if the current is not steady; i.e., not
DC.

First, consider the situation shown in Figure 8.12.
Here a conduction current I flows in the wire,
subsequently generating a magnetic field H that
circulates around the wire (Section 7.5). When
we perform the integration in Ampere’s Law
along any path C enclosing the wire, the result is
I, as expected. In this case Ampere’s Law is
working even when I is time-varying.

Now consider the situation shown in Figure 8.13,
in which we have introduced a parallel-plate
capacitor. In the DC case, this situation is
simple: No current flows, so there is no magnetic
field and Ampere’s Law is trivially true. In the
AC case, the conduction current I can be
non-zero, but we must be clear about the

I

I

S
1

H
C

C. Burks (modified)

Figure 8.12: Ampere’s Law applied to a continu-
ous line of conduction current.

physical origin of this current: What is
happening is that for one half of a period, a
source elsewhere in the circuit is moving positive
charge to one side of the capacitor and negative
charge to the other side. For the other
half-period, the source is exchanging the charge
so that negative charge appears on the previously
positively-charge side, and vice-versa. Note that
at no point is conduction current flowing directly
from one side of the capacitor to the other;
instead all conduction current must flow through
the circuit in order to arrive at the other plate.
Even though there is no conduction current
between the plates, there is conduction current in
the wire, and therefore there is also a magnetic
field associated with that current.

Now we are ready to shine a light on the
problem. Recall that from Stokes’ Theorem
(Section 4.9), the line integral over C is
mathematically equivalent to an integral over
any open surface S that is bounded by C. Two
such surfaces are shown in Figure 8.12 and
Figure 8.13, indicated as S1 and S2. In the
wire-only scenario of Figure 8.12, the choice of S

https://en.wikipedia.org/wiki/Faraday's_law_of_induction
https://en.wikipedia.org/wiki/Maxwell's_equations
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E

I

I

S
1

H
C

C. Burks (modified)

Figure 8.13: Ampere’s Law applied to a parallel
plate capacitor.

clearly doesn’t matter: Any valid surface
intersects conduction current equal to I.
Similarly in the scenario of Figure 8.13
everything seems fine if we choose S = S1. If on
the other hand we select S2 in the parallel-plate
capacitor case, then we have a problem: There is
no conduction current flowing through S2, so the
right side of Equation 8.42 is zero even though
the left side is potentially non-zero. So it appears
that something necessary for the time-varying
case is missing from Equation 8.42.

To resolve the problem, we postulate an
additional term in Ampere’s Law that is non-zero
in the above scenario. Specifically, we propose:

∮

C

H · dl = Ic + Id (8.43)

where Ic is the enclosed conduction current
(formerly identified as Iencl) and Id is the
proposed new term. If we are to accept this
postulate, then here is a list of things we know
about Id:

• Id has units of current (A).

• Id = 0 in the DC case and is potentially
non-zero in the AC case. This implies that
Id is the time derivative of some other
quantity.

• Id must be somehow related to the electric
field.

How do we know Id must be related to the
electric field? This is because the
Maxwell-Faraday Equation (Section 8.8) tells us
that spatial derivatives of E are related to time
derivatives of H; i.e., E and H are coupled in the
time-varying (here, AC) case. This coupling
between E and H must also be at work here, but
we have not yet seen E play a role. This is pretty
strong evidence that Id depends on the electric
field.

Without further ado, here’s Id:

Id =

∫

S

∂D

∂t
· ds (8.44)

where D is the electric flux density (units of
C/m2) and which is equal to ǫE as usual, and S
is the same open surface associated with C in
Ampere’s Law. Note that this expression meets
our expectations: It is determined by the electric
field, it is zero when the electric field is constant
(i.e., not time varying), and has units of current.

The quantity Id is commonly known as
displacement current. It should be noted that
this name is a bit misleading, since Id is not a
current in the conventional sense. Certainly it is
not a conduction current: Conduction current is
represented by Ic, and there is no current
conducted through an ideal capacitor. It is not
unreasonable to think of Id as current in a more
general sense, for the following reason: At one
instant charge is distributed one way, at another
it is distributed in another way, so if you define
current as a time variation in the charge
distribution relative to S – regardless of the path
taken by the charge – then Id is a current.
However this distinction is a bit philosophical, so
it may be less confusing to interpret
“displacement current” instead as a separate
electromagnetic quantity that just happens to
have units of current.
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Now we are able to write the general form of
Ampere’s Law that applies even when sources
are time-varying. Here it is:

∮

C

H · dl = Ic +

∫

S

∂D

∂t
· ds (8.45)

As is the case in the Maxwell-Faraday Equation,
most of the utility of Ampere’s Law is unleashed
when expressed in differential form. To obtain
this form the first step is to write Ic as an
integral of over S; this is simply (see Section 6.2):

Ic =

∫

S

J · ds (8.46)

where J is the volume current density (units of
A/m2). So now we have

∮

C

H · dl =
∫

S

J · ds+
∫

S

∂D

∂t
· ds

=

∫

S

(
J+

∂D

∂t

)
· ds (8.47)

We can transform the left side of the above
equation into a integral over S using Stokes’
Theorem (Section 4.9). We obtain

∫

S

(∇×H) · ds =
∫

S

(
J+

∂D

∂t

)
· ds (8.48)

The surface S on both sides is the same, and we
have not constrained S in any way: S can be any
mathematically-valid open surface anywhere in
space, having any size and any orientation. The
only way the above expression can be universally
true under these conditions is if the integrands
on each side are equal at every point in space.
Therefore:

∇×H = J+
∂

∂t
D (8.49)

which is Ampere’s Law in differential form.

What does Equation 8.49 mean? Recall that the
curl of H is a way to describe the direction and
rate of change of H with position. Therefore this
equation constrains spatial derivatives of H to be
simply related to J (conduction current) and the
time derivative of D (displacement current). Said
plainly:

The differential form of the general (time-
varying) form of Ampere’s Law (Equa-
tion 8.49) relates the change in the magnetic
field with position to the change in the elec-
tric field with time, plus conduction current.

As is the case in the Maxwell-Faraday Equation
(Section 8.8), we see that electric and magnetic
fields become coupled at each point in space
when sources are time-varying.

Additional Reading:

• “Displacement Current” on Wikipedia.

• “Ampere’s Circuital Law” on Wikipedia.

• “Maxwell’s Equations” on Wikipedia.

[m0126]

https://en.wikipedia.org/wiki/Displacement_current
https://en.wikipedia.org/wiki/Ampere's_circuital_law
https://en.wikipedia.org/wiki/Maxwell's_equations
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Chapter 9

Plane Wave Propagation in Lossless
Media

9.1 Maxwell’s Equations in
Differential Phasor Form

[m0042]

In this section we derive the phasor form of
Maxwell’s Equations from the general
time-varying form of these equations. Here we
are interested exclusively in the differential
(“point”) form of these equations. It is assumed
that the reader is comfortable with phasor
representation and its benefits; if not, a review of
Section 1.5 is recommended before attempting
this section.

Maxwell’s Equations in differential time-domain
form are Gauss’ Law (Section 5.7):

∇ ·D = ρv (9.1)

the Maxwell-Faraday Equation (MFE;
Section 8.8):

∇×E = − ∂

∂t
B (9.2)

Gauss’ Law for Magnetism (GSM; Section 7.3):

∇ ·B = 0 (9.3)

and Ampere’s Law (Section 8.9):

∇×H = J+
∂

∂t
D (9.4)

We begin with Gauss’s Law (Equation 9.1). We

define D̃ and ρ̃v as phasor quantities through the

usual relationship:

D = Re
{
D̃ejωt

}
(9.5)

and

ρv = Re
{
ρ̃ve

jωt
}

(9.6)

Substituting these expressions into Equation 9.1:

∇ ·
[
Re
{
D̃ejωt

}]
= Re

{
ρ̃ve

jωt
}

(9.7)

Divergence is a real-valued linear operator.
Therefore we may exchange the order of the
“Re” and “∇·” operations (this is “Claim 2”
from Section 1.5):

Re
{
∇ ·
[
D̃ejωt

]}
= Re

{
ρ̃ve

jωt
}

(9.8)

Next we note that the differentiation associated
with the divergence operator is with respect to
position and not with respect to time, so the
order of operations may be rearranged as follows:

Re
{[

∇ · D̃
]
ejωt

}
= Re

{
ρ̃ve

jωt
}

(9.9)

Finally we note that the equality of the left and
right sides of the above equation implies the
equality of the associated phasors (this is
“Claim 1” from Section 1.5); thus,

∇ · D̃ = ρ̃v (9.10)

In other words, the differential form of Gauss’
Law for phasors is identical to the differential

Electromagnetics Vol 1 (Beta). c© 2018 S.W. Ellingson. CC BY SA 4.0 https://doi.org/10.7294/W4WQ01ZM

https://doi.org/10.7294/W4WQ01ZM
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form of Gauss’ Law for physical time-domain
quantities.

The same procedure applied to the MFE is only
a little more complicated. First we establish the
phasor representations of the electric and
magnetic fields:

E = Re
{
Ẽejωt

}
(9.11)

B = Re
{
B̃ejωt

}
(9.12)

After substitution into Equation 9.2:

∇×
[
Re
{
Ẽejωt

}]
= − ∂

∂t

[
Re
{
B̃ejωt

}]
(9.13)

Both curl and time-differentiation are real-valued
linear operations, so we are entitled to change
the order of operations as follows:

Re
{
∇×

[
Ẽejωt

]}
= −Re

{
∂

∂t

[
B̃ejωt

]}
(9.14)

On the left, we note that the time dependence
ejωt can be pulled out of the argument of the curl
operator, since it does not depend on position:

Re
{[

∇× Ẽ
]
ejωt

}
= −Re

{
∂

∂t

[
B̃ejωt

]}

(9.15)

On the right, we note that B̃ is constant with
respect to time (because it is a phasor), so:

Re
{[

∇× Ẽ
]
ejωt

}
= −Re

{
B̃
∂

∂t
ejωt

}

= −Re
{
B̃jωejωt

}

= Re
{[

−jωB̃
]
ejωt

}
(9.16)

And so we have found:

∇× Ẽ = −jωB̃ (9.17)

Let’s pause for a moment to consider the above
result. In the general time-domain version of the
MFE, we must take spatial derivatives of the
electric field and time derivatives of the magnetic
field. In the phasor version of the MFE, the time
derivative operator has been replaced with

multiplication by jω. This is a tremendous
simplification since the equations now involve
differentiation over position only. Furthermore
no information is lost in this simplification – for
a reminder of why that is, see the discussion of
Fourier Analysis at the end of Section 1.5.
Without this kind of simplification, much of
what is now considered “basic” engineering
electromagnetics would be intractable.

The procedure for conversion of the remaining
two equations is very similar, yielding:

∇ · B̃ = 0 (9.18)

∇× H̃ = J̃+ jωD̃ (9.19)

The details are left as an exercise for the reader.

The differential form of Maxwell’s Equations
(Equations 9.10, 9.17, 9.18, and 9.19) involve
operations on the phasor representations of
the physical quantities. These equations have
the advantage that differentiation with re-
spect to time is replaced by multiplication by
jω.

9.2 Wave Equations for
Source-Free and Lossless
Regions

[m0036]

Electromagnetic waves are solutions to a set of
coupled differential simultaneous equations –
namely, Maxwell’s Equations. The general
solution to these equations includes constants
whose values are determined by the applicable
electromagnetic boundary conditions. However
this direct approach can be difficult and is often
not necessary. In unbounded homogeneous
regions which are “source free” (containing no
charges or currents), a simpler approach is
possible. In this section we reduce Maxwell’s
Equations to wave equations that apply to the
electric and magnetic fields in this simpler
approach. Before reading further, the reader
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should consider a review of Section 1.3 (noting in
particular Equation 1.1) and Section 3.6 (wave
equations for voltage and current on a
transmission line). This section seeks to develop
the analogous equations for electric and magnetic
waves.

We can get the job done using the differential
“point” phasor form of Maxwell’s Equations,
developed in Section 9.1. Here they are:

∇ · D̃ = ρ̃v (9.20)

∇× Ẽ = −jωB̃ (9.21)

∇ · B̃ = 0 (9.22)

∇× H̃ = J̃+ jωD̃ (9.23)

In a source-free region there is no net charge and
no current, hence ρ̃v = 0 and J̃ = 0 in the
present analysis. The above equations become

∇ · D̃ = 0 (9.24)

∇× Ẽ = −jωB̃ (9.25)

∇ · B̃ = 0 (9.26)

∇× H̃ = +jωD̃ (9.27)

Next we recall that D̃ = ǫẼ and that ǫ is a
real-valued constant for a medium which is
lossless, homogeneous, and isotropic
(Section 2.8). Similarly B̃ = µH̃ and µ is a
real-valued constant. Thus, under these
conditions, it is sufficient to consider either D̃ or
Ẽ, and either B̃ or H̃. The choice is arbitrary,
but in engineering applications it is customary to
use Ẽ and H̃. Eliminating the now-redundant
quantities D̃ and B̃, the above equations become

∇ · Ẽ = 0 (9.28)

∇× Ẽ = −jωµH̃ (9.29)

∇ · H̃ = 0 (9.30)

∇× H̃ = +jωǫẼ (9.31)

It is important to note that requiring the region
of interest to be source-free precludes the
possibility of loss in the medium. To see this,

let’s first be clear about what we mean by “loss”.
For an electromagnetic wave, loss is observed as
a reduction in the magnitude of the electric and
magnetic field with increasing distance. This
reduction is due to the dissipation of power in
the medium. This occurs when the conductivity
σ is greater than zero, because Ohm’s Law for
Electromagnetics (J̃ = σẼ; Section 6.3) requires
that power in the electric field be transferred into
conduction current, and is thereby lost to the
wave (Section 6.6). When we required J to be
zero above, we precluded this possibility; that is,
we implicitly specified σ = 0. The fact that the
constitutive parameters µ and ǫ appear in
Equations 9.28–9.31, but σ does not, is further
evidence of this.

Equations 9.28–9.31 are Maxwell’s Equations
for a region comprised of isotropic, homo-
geneous, and source-free material. Because
there can be no conduction current in a
source-free region, these equations apply only
to material which is lossless (i.e., having neg-
ligible σ).

Before moving on, one additional disclosure is
appropriate: It turns out that there actually is a
way to use Equations 9.28–9.31 for regions in
which loss is significant. This requires a
redefinition of ǫ as a complex-valued quantity.
We shall not consider this technique in this
section. We mention this simply because one
should be aware that if permittivity appears as a
complex-valued quantity, it is because it is being
used to represent non-zero conductivity (thus,
loss) as well as the physical permittivity.

To derive the wave equations we begin with the
MFE, Equation 9.29. Taking the curl of both
sides of the equation we obtain

∇×
(
∇× Ẽ

)
= ∇×

(
−jωµH̃

)

= −jωµ
(
∇× H̃

)
(9.32)

On the right we can eliminate ∇× H̃ using
Equation 9.31:

−jωµ
(
∇× H̃

)
= −jωµ

(
+jωǫẼ

)

= +ω2µǫẼ (9.33)
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On the left side of Equation 9.32 we apply the
vector identity

∇×∇×A = ∇ (∇ ·A)−∇2A (9.34)

which in this case is

∇×∇× Ẽ = ∇
(
∇ · Ẽ

)
−∇2Ẽ (9.35)

We may eliminate the first term on the right
using Equation 9.28, yielding

∇×∇× Ẽ = −∇2Ẽ (9.36)

Substituting these results back into
Equation 9.32 and rearranging terms we have

∇2Ẽ+ ω2µǫẼ = 0 (9.37)

This is the wave equation for Ẽ. Note that it is a
homogeneous (in the mathematical sense of the
word) differential equation, which is expected
since we have derived it for a source-free region.

It is common to make the following definition

β , ω
√
µǫ (9.38)

so that Equation 9.37 may be written

∇2Ẽ+ β2Ẽ = 0 (9.39)

Why go the the trouble of defining β? One
reason is that β conveniently captures the
contribution of the frequency, permittivity, and
permeability all in one constant. Another reason
is to emphasize the connection to the parameter
β appearing in transmission line theory: See
Section 3.8 for a reminder. It should be clear
that β is a phase propagation constant, having
units of 1/m (or rad/m, if you prefer), and
indicates the rate at which the phase of the
propagating wave progresses with distance.

The wave equation for H̃ is obtained using
essentially the same procedure, which is left as
an exercise for the reader. It should be clear
from the symmetry of Equations 9.28-9.31 that
the result will be very similar. One finds:

∇2H̃+ β2H̃ = 0 (9.40)

Equations 9.39 and 9.40 are the wave equa-
tions for Ẽ and H̃, respectively, for a region
comprised of isotropic, homogeneous, lossless,
and source-free material.

Looking ahead, note that Ẽ and H̃ are solutions
to the same homogeneous differential equation.
Consequently Ẽ and H̃ cannot be different by
more than a constant factor and a direction. In
fact we can also determine something about the
factor simply by examining the units involved:
Since Ẽ has units of V/m and H̃ has units of
A/m, this factor will be expressible in units of
the ratio of V/m to A/m, which is Ω. This
indicates that the factor will be an impedance.
This factor is known as the wave impedance, and
will be addressed in Section 9.5. This impedance
is analogous the characteristic impedance of a
transmission line (Section 3.7).

Additional Reading:

• “Wave Equation” on Wikipedia.

• “Electromagnetic Wave Equation” on
Wikipedia.

9.3 Types of Waves

[m0142]

Solutions to the electromagnetic wave equations
(Section 9.2) exist in a variety of forms,
representing different types of waves. It is useful
to identify three particular geometries for
unguided waves. Each of these geometries is
defined by the shape formed by surfaces of
constant phase, which we refer to as phasefronts.
(Keep in mind the analogy between
electromagnetic waves and sound waves
(described in Section 1.3), and to note that
sound waves also exhibit these geometries.)

A spherical wave has phasefronts that form
concentric spheres, as shown in Figure 9.1.
Waves are well-modeled as spherical when the
dimensions of the source of the wave are small

https://en.wikipedia.org/wiki/Wave_equation
https://en.wikipedia.org/wiki/Electromagnetic_wave_equation
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Figure 9.1: The phasefronts of a spherical wave
form concentric spheres.

relative to the scale at which the wave is
observed. For example, the wave radiated by an
antenna having dimensions of 10 cm, when
observed in free space over a scale of 10 km,
appears to have phasefronts which are very
nearly spherical. Note that the magnitude of the
field on a phasefront of a spherical wave may
vary significantly, but it is the shape of
phasefronts that make it a spherical wave.

A cylindrical wave exhibits phasefronts that form
concentric cylinders, as shown in Figure 9.2. Said
differently, the phasefronts of a cylindrical wave
are circular in one dimension, and planar in the
perpendicular direction. A cylindrical wave is
often a good description of the wave that
emerges from a line-shaped source.

A plane wave exhibits phasefronts that are
planar, with planes that are parallel to each
other as shown in Figure 9.3. There are two
conditions in which waves are well-modeled as
plane waves. First, some structures give rise to
waves that appear to have planar phasefronts
over a limited area; a good example is the wave
radiated by a parabolic reflector, as shown in
Figure 9.4. Second, all waves are well-modeled as

c© Y. Qin CC BY 4.0

Figure 9.2: The phasefronts of a cylindrical wave
form concentric cylinders.

plane waves when observed over a small area
located sufficiently far from the source. In
particular, spherical waves are “locally planar” in
the sense that they are well-modeled as planar
when observed over a small portion of the
spherical phasefront, as shown in Figure 9.5. (An
analogy is that the Earth seems “locally flat” to
an observer on the ground, even though it is
clearly spherical to an observer in orbit.) The
“locally planar” approximation is often employed
because it works well over limited regions and
simplifies analysis.

Most waves are well-modeled as spherical,
cylindrical, or plane waves.

Plane waves (having planar phasefronts) are
of particular importance due to wide applica-
bility of the “locally planar” approximation.

9.4 Uniform Plane Waves:
Derivation

[m0038]

https://creativecommons.org/licenses/by/4.0/
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Figure 9.3: The phasefronts of a plane wave form
parallel planes.
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Figure 9.4: Plane waves formed in the region in
front of a parabolic reflector antenna.

"locally-planar" phasefronts

spherical phasefront
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Figure 9.5: “Locally planar” approximation of a
spherical wave over a limited area.

Section 9.2 showed how Maxwell’s Equations
could be reduced to a pair of phasor-domain
“wave equations”, namely:

∇2Ẽ+ β2Ẽ = 0 (9.41)

∇2H̃+ β2H̃ = 0 (9.42)

where β = ω
√
µǫ, assuming unbounded

homogeneous, isotropic, lossless, and source-free
media. In this section we solve these equations
for the special case of a uniform plane wave. A
uniform plane wave is one for which both Ẽ and
H̃ have constant magnitude and phase in a
specified plane. Despite being a special case, the
solution turns out to be broadly applicable,
appearing as a common building block in many
practical and theoretical problems in unguided
propagation (as explained in Section 9.3) as well
as in more than a few transmission line and
waveguide problems.

To begin, let us assume that the plane over
which Ẽ and H̃ have constant magnitude and
phase is a plane of constant z, and work the
problem using the Cartesian coordinate system.
First note that we may make this assumption
with no loss of generality. For example, we could
alternatively select a plane of constant y, solve
the problem, and then simply exchange variables

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
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to get a solution for planes of constant z (or x).1

Furthermore the solution for any planar
orientation not corresponding to a plane of
constant x, y, or z may be similarly obtained by
a rotation of coordinates, since the physics of the
problem does not depend on the orientation of
this plane: If it does, then the medium is not
isotropic!

We may express the constraint that the
magnitude and phase of Ẽ and H̃ are constant
over a plane which is perpendicular to the z axis
as follows:

∂

∂x
Ẽ =

∂

∂y
Ẽ =

∂

∂x
H̃ =

∂

∂y
H̃ = 0 (9.43)

Let us identify the Cartesian components of each
of these fields as follows:

Ẽ = x̂Ẽx + ŷẼy + ẑẼz , and (9.44)

H̃ = x̂H̃x + ŷH̃y + ẑH̃z (9.45)

Now Equation 9.43 may be interpreted in detail
for Ẽ as follows:

∂

∂x
Ẽx =

∂

∂x
Ẽy =

∂

∂x
Ẽz = 0 (9.46)

∂

∂y
Ẽx =

∂

∂y
Ẽy =

∂

∂y
Ẽz = 0 (9.47)

and for H̃ as follows:

∂

∂x
H̃x =

∂

∂x
H̃y =

∂

∂x
H̃z = 0 (9.48)

∂

∂y
H̃x =

∂

∂y
H̃y =

∂

∂y
H̃z = 0 (9.49)

The wave equation for Ẽ (Equation 9.41) written
explicitly in Cartesian coordinates is

[
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

](
x̂Ẽx + ŷẼy + ẑẼz

)

+β2
(
x̂Ẽx + ŷẼy + ẑẼz

)
= 0

(9.50)

Decomposing this equation into separate
equations for each of the three coordinates, we

1By the way, this is a highly-recommended exercise for
the student.

obtain the following:

[
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

]
Ẽx + β2Ẽx = 0 (9.51)

[
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

]
Ẽy + β2Ẽy = 0 (9.52)

[
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

]
Ẽz + β2Ẽz = 0 (9.53)

Applying the constraints of Equations 9.46 and
9.47, we note that many of the terms in
Equations 9.51–9.53 are zero. We are left with:

∂2

∂z2
Ẽx + β2Ẽx = 0 (9.54)

∂2

∂z2
Ẽy + β2Ẽy = 0 (9.55)

∂2

∂z2
Ẽz + β2Ẽz = 0 (9.56)

Now we will show that Equation 9.43 also implies
that Ẽz must be zero. To show this, we use
Ampere’s Law for a source-free region
(Section 9.2):

∇× H̃ = +jωǫẼ (9.57)

and take the dot product with ẑ on both sides:

ẑ ·
(
∇× H̃

)
= +jωǫẼz

∂

∂y
H̃x −

∂

∂x
H̃y = +jωǫẼz (9.58)

Again applying the constraints of Equation 9.43,
the left side of Equation 9.58 must be zero;
therefore Ẽz = 0. The exact same procedure
applied to H̃ (using the Maxwell-Faraday
Equation; also given in Section 9.2) reveals that

H̃z is also zero.2 Here is what we have found:

If a wave is uniform over a plane, then the
electric and magnetic field vectors must lie in
this plane.

This conclusion is a direct consequence of the
fact that Maxwell’s Equations require the electric

2Showing this is a highly-recommended exercise for the
reader.
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field to be proportional to the curl of the
magnetic field, and vice-versa.

The general solution to Equation 9.54 is:

Ẽx = E+
x0e

−jβz + E−
x0e

+jβz (9.59)

where E+
x0 and E−

x0 are complex-valued
constants. The values of these constants are
determined by boundary conditions – possibly
sources – outside the region of interest. Since in
this section we are limiting our scope to
source-free and homogeneous regions, we may for
the moment consider the values of E+

x0 and E−
x0

to be arbitrary, since any values will satisfy the
associated wave equation.3

Similarly we have for Ẽy:

Ẽy = E+
y0e

−jβz + E−
y0e

+jβz (9.60)

where E+
y0 and E−

y0 are again arbitrary constants.
Summarizing, we have found

Ẽ = x̂Ẽx + ŷẼy (9.61)

where Ẽx and Ẽy are given by Equations 9.59
and 9.60, respectively.

Note that Equations 9.59 and 9.60 are essentially
the same equations encountered in the study of
waves in lossless transmission lines; for a
reminder, see Section 3.6. Specifically, factors
containing e−jβz describe propagation in the +z
direction, whereas factors containing e+jβz

describe propagation in the −z direction. We
conclude

If a wave is uniform over a plane, then possi-
ble directions of propagation are the two di-
rections perpendicular to the plane.

Since we previously established that the electric
and magnetic field vectors must lie in the plane,
we also conclude

The direction of propagation is perpendicular
to the electric and magnetic field vectors.

3The reader is encouraged to confirm that these are so-
lutions by substitution into the associated wave equation.

This conclusion turns out to be generally true;
i.e., it is not limited to uniform plane waves.
Although we will not provide a rigorous proof of
this, one way to see that this is true is to imagine
that any type of wave can be imagined as the
sum (formally, a linear combination) of uniform
plane waves, so perpendicular orientation of the
field vectors with respect to the direction of
propagation is inescapable.

The same procedure yields the uniform plane
wave solution to the wave equation for H̃, which
is

H̃ = x̂H̃x + ŷH̃y (9.62)

where

H̃x = H+
x0e

−jβz +H−
x0e

+jβz (9.63)

H̃y = H+
y0e

−jβz +H−
y0e

+jβz (9.64)

and where H+
x0, H

−
x0, H

+
y0 and H−

y0 are arbitrary
constants. Note that the solution is essentially
the same as that for Ẽ, with the sole difference
being that the arbitrary constants may
apparently have different values.

To this point, we have seen no particular
relationship between the electric and magnetic
fields, and it may appear that the electric and
magnetic fields are independent of each other.
However Maxwell’s Equations – specifically, the
two curl equations – make it clear that there
must be a more strictly-defined relationship
between these fields. Subsequently the arbitrary
constants in the solutions for Ẽ and H̃ must also
be related. In fact, there are two considerations
here:

• The magnitude and phase of Ẽ must be
related to the magnitude and phase of H̃.
Since both fields are solutions to the same
differential (wave) equation, they may differ
by no more than a multiplicative constant.
Since the units of Ẽ and H̃ are V/m and
A/m respectively, this constant must be
expressible in units of V/m divided by A/m;
i.e., in units of Ω, an impedance.

• The direction of Ẽ must be related to
direction of H̃.
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Let us now address these considerations.
Consider an electric field which points in one of
the cardinal directions – let’s say +x̂ – and make
the definition E0 , E+

x0 for notational
convenience. Then the electric field intensity may
be written as follows:

Ẽ = x̂E0e
−jβz (9.65)

Again, there is no loss of generality here since the
coordinate system could in principle be rotated
in such a way that any uniform plane could be
described in this way.

We may now calculate H̃ from Ẽ using the
Maxwell-Faraday Equation (Section 9.2):

∇× Ẽ = −jωµH̃ (9.66)

Solving this equation for H̃, we find:

H̃ =
∇× Ẽ

−jωµ =
∇×

[
x̂E0e

−jβz
]

−jωµ (9.67)

Now let us apply the curl operator. The
complete expression for the curl operator in
Cartesian coordinates is given in Section B.2.
Here let us consider one component at a time.
First the x̂ component:

x̂ ·
(
∇× Ẽ

)
=
∂Ẽz
∂y

− ∂Ẽy
∂z

(9.68)

Since Ẽy = Ẽz = 0, the above expression is zero

and subsequently H̃x = 0. Next the ŷ
component:

ŷ ·
(
∇× Ẽ

)
=
∂Ẽx
∂z

− ∂Ẽz
∂x

(9.69)

Here Ẽz = 0, so we have simply

ŷ ·
(
∇× Ẽ

)
=
∂Ẽx
∂z

(9.70)

It is not necessary to repeat this procedure for
H̃z, since we know in advance that H̃ must be
perpendicular to to the direction of propagation
and subsequently H̃z = 0. Returning to

H

E
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Figure 9.6: Relationship between the electric field
direction, magnetic field direction, and direction of
propagation.

Equation 9.67 we obtain:

H̃ = ŷ
1

−jωµ
∂

∂z
Ẽx

= ŷ
1

−jωµ
∂

∂z

(
E0e

−jβz
)

= ŷ
1

−jωµ
(
−jβE0e

−jβz
)

= ŷ
β

ωµ
E0e

−jβz (9.71)

Note that H̃ points in the +ŷ direction. So, as
expected, both Ẽ and H̃ are perpendicular to the
direction of propagation. However we have now
found a more specific relationship: Ẽ and H̃ are
perpendicular to each other. Just as x̂× ŷ = ẑ,
we see that Ẽ× H̃ points in the direction of
propagation. This is illustrated in Figure 9.6.
Summarizing:

Ẽ, H̃, and the direction of propagation (Ẽ×
H̃) are mutually perpendicular.

Now let us resolve the question of the factor
relating Ẽ and H̃. The factor is now seen to be
β/ωµ in Equation 9.71, which can be simplified
as follows:

β

ωµ
=
ω
√
µǫ

ωµ
=

1√
µ/ǫ

(9.72)
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The factor
√
µ/ǫ appearing above has units of Ω

is known variously as the wave impedance or the
intrinsic impedance of the medium. Assigning
this quantity the symbol “η”, we have:

η ,
Ẽx

H̃y

=

√
µ

ǫ
(9.73)

The ratio of the electric field intensity to
the magnetic field intensity is the wave
impedance η (Equation 9.73; units of Ω). In
lossless media, η is determined by the ratio
of permeability of the medium to the permit-
tivity of the medium.

The wave impedance in free space, assigned the
symbol η0, is

η0 ,

√
µ0

ǫ0
∼= 377 Ω. (9.74)

Wrapping up our solution, we find that if Ẽ is as
given by Equation 9.65, then

H̃ = ŷ
E0

η
e−jβz (9.75)

9.5 Uniform Plane Waves:
Characteristics

[m0039]

In Section 9.4 expressions for the electric and
magnetic fields are determined for a uniform
plane wave in lossless media. If this plane is
perpendicular to the z axis, then waves may
propagate in either the +ẑ direction of the −ẑ
direction. If we consider only the former, and
select Ẽ to point in the +x̂ direction, then we
find

Ẽ = +x̂E0e
−jβz (9.76)

H̃ = +ŷ
E0

η
e−jβz (9.77)

where β = ω
√
µǫ is the phase propagation

constant, η =
√
µ/ǫ is the wave impedance, and

E0 is a complex-valued constant associated with
the magnitude and phase of the source. This
result is in fact completely general for uniform
plane waves, since any other possibility may be
obtained by simply rotating coordinates. In fact
this is pretty easy because (as determined in

Section 9.4) Ẽ, H̃, and the direction of
propagation are mutually perpendicular, with the
direction of propagation pointing in the same
direction as Ẽ× H̃.

In this section we identify some important
characteristics of uniform plane waves, including
wavelength and phase velocity. Chances are that
much of what appears here will be familiar to the
reader; if not, a quick review of Sections 1.3
(“Fundamentals of Waves”) and 3.8 (“Wave
Propagation on a Transmission Line”) are
recommended.

First, recall that Ẽ and H̃ are phasors
representing physical (real-valued) fields, and are
not the field values themselves. The actual,
physical electric field intensity is

E = Re
{
Ẽejωt

}
(9.78)

= Re
{
x̂E0e

−jβzejωt
}

= x̂ |E0| cos (ωt− βz + ψ)

where ψ is the phase of E0. Similarly:

H = ŷ
|E0|
η

cos (ωt− βz + ψ) (9.79)

This result is illustrated in Figure 9.7. Note that
both E and H (as well as their phasor
representations) have the same phase and have
the same frequency and position dependence
cos (ωt− βz + ψ). Since β is a real-valued
constant for lossless media, we also see that
frequency affects only the phase, and not the
magnitude. If ω → 0, then β → 0 and the fields
no longer depend on z; in this case the field is
not propagating. For ω > 0, cos (ωt− βz + ψ) is
periodic in z; specifically, it has the same value
each time z increases or decreases by 2π/β. This
is, by definition, the wavelength λ:

λ ,
2π

β
(9.80)
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Figure 9.7: Relationship between the electric field
direction, magnetic field direction, and direction of
propagation (here, +ẑ).

If we observe this wave at some fixed point (i.e.,
hold z constant), we find that the electric and
magnetic fields are also periodic in time;
specifically, they have the same value each time t
increases by 2π/ω. We may characterize the
speed at which the wave travels by comparing
the distance required to experience 2π of phase
rotation at a fixed time, which is 1/β; to the
time it takes to experience 2π of phase rotation
at a fixed location, which is 1/ω. This is known
as the phase velocity4 vp:

vp ,
1/β

1/ω
=
ω

β
(9.81)

Note that vp has the units expected from its
definition, namely (rad/s)/(rad/m) = m/s. If we
make the substitution β = ω

√
µǫ, we find

vp =
ω

ω
√
µǫ

=
1√
µǫ

(9.82)

Note that vp, like the wave impedance η, depends
only on material properties. For example, the
phase velocity of an electromagnetic wave in free
space, given the special symbol c, is

c , vp|µ=µ0,ǫ=ǫ0
=

1√
µ0ǫ0

∼= 3.00× 108 m/s

(9.83)
This constant is commonly referred to as the
speed of light, but in fact it is the phase velocity

4We acknowledge that this is a misnomer, since velocity
is properly defined as speed in a specified direction, and
vp by itself does not specify direction. In fact, the phase
velocity in this case should properly be +ẑvp. Nevertheless,
we adopt the prevailing terminology.

of an electromagnetic field at any frequency (not
just optical frequencies) in free space. Since the
permittivity ǫ and permeability µ of any material
is greater than that of a vacuum, vp in any
material is less than the phase velocity in free
space. Summarizing:

Phase velocity is the speed at which any point
of constant phase appears to travel along the
direction of propagation.

Phase velocity is maximum (= c) in free
space, and slower by a factor of 1/

√
µrǫr in

any other lossless medium.

Finally, we note the following relationship
between frequency f , wavelength, and phase
velocity:

λ =
2π

β
=

2π

ω/vp
=

2π

2πf/vp
=
vp
f

(9.84)

Thus given any two of the parameters f , λ, and
vp, we may quickly solve for the remaining
quantity. Also note that as a consequence of the
inverse-proportional relationship between λ and
vp, we find:

At a given frequency, the wavelength in any
material is shorter than the wavelength in free
space.

Furthermore, note that it is wavelength and
phase velocity that is changing in response to
material properties, not frequency.

Example 9.1. Wave propagation in a
lossless dielectric.

Polyethylene is a low-loss dielectric having
ǫr ∼= 2.3. What is the phase velocity in
polyethylene? What is wavelength in
polyethylene? The frequency of interest is
1 GHz.

Solution. Low-loss dielectrics exhibit
µr ∼= 1 and σ ≈ 0. Therefore the phase

https://creativecommons.org/licenses/by-sa/3.0/
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velocity is

vp =
1√

µ0ǫrǫ0
=

c√
ǫr

∼= 1.98× 108 m/s

(9.85)
i.e., very nearly two-thirds of the speed of
light in free space. The wavelength at 1 GHz
is

λ =
vp
f

∼= 19.8 cm (9.86)

Again, about two-thirds of a wavelength at
the same frequency in free space.

Returning to polarization and magnitude, it is
useful to note that Equation 9.79 could be
written in terms of E as follows:

H =
1

η
ẑ×E (9.87)

i.e., H is perpendicular to both the direction of
propagation (here, +ẑ) and E, with magnitude
that is different from E by the wave impedance η.
This simple expression is very useful for quickly
determining H given E when the direction of
propagation is known. In fact it is so useful that
it commonly explicitly generalized as follows:

H =
1

η
k̂×E (9.88)

where k̂ (here, +ẑ) is the direction of

propagation. Similarly, given H, k̂, and η, we
may find E using

E = −ηk̂×H (9.89)

These spatial relationships can be readily verified
using Figure 9.7. We have a name for this special
relationship between the directions and
magnitudes of the electric and magnetic fields:

Equations 9.88 and 9.89 are known as the
plane wave relationships.

The plane wave relationships apply equally well
to the phasor representations of E and H; i.e.,

Ẽ = −ηk̂× H̃ (9.90)

H̃ =
1

η
k̂× Ẽ (9.91)

These equations can be readily verified by
applying the definition of the associated phasors
(e.g., Equation 9.78). It also turns out that these
relationships usually apply even if the waves are
not planar, uniform, or in lossless media.

Example 9.2. Analysis of a
radially-directed plane wave.

Consider the scenario illustrated in
Figure 9.8. Here a uniform plane wave
having frequency f = 3 GHz is propagating
along a ray of constant φ, where is φ is
known but not specified. The phase of the
electric field is π/2 radians at ρ = 0 and
t = 0. The material is an effectively
unbounded region of free space exhibiting
negligible loss. The electric field is polarized
in the +ẑ direction and has peak magnitude
of 1 mV/m. Find (a) the electric field
intensity in phasor representation, (b) the
magnetic field intensity in phasor
representation, and (c) the actual, physical
electric field along the radial.

Solution: First, realize that a
“radially-directed” plane wave is a plane
wave, and not a cylindrical wave. It may
well we be that if we “zoom out” far
enough, we are able to perceive a cylindrical
wave (for more on this idea, see Section 9.3);
or it might simply be that wave is exactly
planar, and cylindrical coordinates just
happen to be a convenient coordinate
system for this application. In either case,
the direction of propagation k̂ = +ρ̂ and the
solution to this example will be the same.

Here’s the phasor representation for the
electric field intensity of a uniform plane
wave in a lossless medium, analogous to
Equation 9.76:

Ẽ = +ẑE0e
−jβρ (9.92)

From the problem statement,
|E0| = 1 mV/m. Also from the problem
statement, the phase of E0 is π/2 radians; in
fact, we could just write E0 = +j |E0|. Thus
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the answer to (a) is

Ẽ = +ẑj |E0| e−jβρ (9.93)

where the propagation constant
β = ω

√
µǫ = 2πf

√
µ0ǫ0 ∼= 62.9 rad/m.

The answer to (b) is easiest to obtain from
the plane wave relationship:

H̃ =
1

η
k̂×E

=
1

η
ρ̂×

(
+ẑj |E0| e−jβρ

)

= −φ̂ j |E0|
η

e−jβρ (9.94)

where η here is
√
µ0/ǫ0 ∼= 377 Ω. Thus the

answer to part (b) is

H̃ = −φ̂jH0e
−jβρ (9.95)

where H0
∼= 2.65 µA/m. At this point you

should check vector directions: Ẽ× H̃ should
point in the direction of propagation +ρ.

Here we find ẑ×
(
−φ̂
)
= +ρ, as expected.

The answer to (c) is obtained by applying
the defining relationship for phasors to the
answer to part (a):

E = Re
{
Ẽejωt

}

= Re
{(

+ẑj |E0| e−jβρ
)
ejωt

}

= +ẑ |E0|Re
{
ejπ/2e−jβρejωt

}

= +ẑ |E0| cos
(
ωt− βρ+

π

2

)
(9.96)

Additional Reading:

• “Electromagnetic radiation” on Wikipedia.

9.6 Wave Polarization

[m0131]
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Figure 9.8: A radially-directed plane wave.

Polarization refers to the orientation of the
electric field vector. For waves, the term
“polarization” refers specifically to the
orientation of this vector with increasing distance
along the direction of propagation; or,
equivalently, the orientation of this vector with
increasing time at a fixed point in space. The
relevant concepts are readily demonstrated for
uniform plane waves, as shown in this section.
Therefore a review of Section 9.5 (“Uniform
Plane Waves: Characteristics”) is recommended
before reading further.

To begin, consider the following uniform plane
wave, described in terms of the phasor
representation of its electric field intensity:

Ẽx = x̂Exe
−jβz (9.97)

Here Ex is a complex-valued constant and β is
the positive real-valued propagation constant.
Therefore this wave is propagating in the +ẑ
direction in lossless media. This wave is said to
exhibit linear polarization (and “linearly
polarized”) because the electric field always
points in the same direction, namely +x̂. Now
consider the wave

Ẽy = ŷEye
−jβz (9.98)

Note that Ẽy is identical to Ẽx except that
electric field vector now points in the +ŷ
direction, and has magnitude and phase that is
different by the factor Ey/Ex. This wave too is
said to exhibit linear polarization, again because

https://en.wikipedia.org/wiki/Electromagnetic_radiation
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by RJB1 (Modified)

Figure 9.9: Linear polarization. Here Ex is shown
in blue, Ey is shown in green, and E is shown in
red with black vector symbols. In this example
the phases of Ex and Ey are zero and φ = −π/4.

the direction of the electric field is constant with
both time and position. In fact, all
linearly-polarized uniform plane waves
propagating in the +ẑ direction in lossless media
can be described as follows:

Ẽ = ρ̂Eρe
−jβz (9.99)

This is so because ρ̂ could be x̂, ŷ, or any other
direction which is perpendicular to ẑ. If one is
determined to use Cartesian coordinates, the
above expression may be rewritten using
(Section 4.3)

ρ̂ = x̂ cosφ+ ŷ cosφ (9.100)

yielding

Ẽ = (x̂ cosφ+ ŷ cosφ)Eρe
−jβz (9.101)

When written in this form, φ = 0 corresponds to
Ẽ = Ẽx, φ = π/2 corresponds to Ẽ = Ẽy, and
any other value of φ corresponds to some other
constant orientation of the electric field vector;
see Figure 9.9 for an example.

A wave is said to exhibit linear polarization if
the direction of the electric field vector does
not vary with either time or position.

Linear polarization arises when the source of the
wave is linearly polarized. A common example is
the wave radiated by a straight wire antenna,
such as a dipole or a monopole. Linear
polarization may also be created by passing a
plane wave through a polarizer ; this is
particularly common at optical frequencies (see
“Additional Reading” at the end of this section).

A commonly-encountered alternative to linear
polarization is circular polarization. For an
explanation, let us return to the
linearly-polarized plane waves Ẽx and Ẽy defined
earlier. If both of these waves exist
simultaneously, then the total electric field
intensity is simply the sum:

Ẽ = Ẽx + Ẽy

= (x̂Ex + ŷEy) e
−jβz (9.102)

If the phase of Ex and Ey is the same, then
Ex = Eρ cosφ, Ey = Eρ sinφ, and the above
expression is essentially the same as
Equation 9.101. In this case, Ẽ is linearly
polarized. But what if the phases of Ex and Ey
are different? In particular, let’s consider the
following case: Let Ex = E0, some
complex-valued constant; and let Ey = +jE0,
which is E0 phase-shifted by +π/2 radians. With

no further math, it is apparent that Ẽx and Ẽy
are different only in that one is phase-shifted by
π/2 radians relative to the other. For the
physical (real-valued) fields, this means that Ex
has maximum magnitude when Ey is zero, and
vice versa. As a result the direction of
E = Ex +Ey will rotate in the x− y plane, as
shown in Figure 9.10

The rotation of the electric field vector can also
be identified mathematically. When Ex = E0

and Ey = +jE0, Equation 9.102 can be written:

Ẽ = (x̂+ jŷ)E0e
−jβz (9.103)

Now reverting from phasor notation to the
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by Dave3457

Figure 9.10: A circularly-polarized wave (in
red, with black vector symbols) resulting from the
addition of orthogonal linearly-polarized waves
(shown in green and blue) which are are phase-
shifted by π/2 radians.

physical field:

E = Re
{
Ẽejωt

}

= Re
{
(x̂+ jŷ)E0e

−jβzejωt
}

= x̂ |E0| cos (ωt− βz) + ŷ |E0| cos
(
ωt− βz +

π

2

)

(9.104)

As anticipated, we see that both Ex and Ey vary
sinusoidally, but are π/2 radians out of phase
resulting in rotation in the plane perpendicular
to the direction of propagation.

In the example above, the electric field vector
rotates either clockwise or counter-clockwise
relative to the direction of propagation. The
direction of this rotation can be identified by
pointing the thumb of the left hand in the
direction of propagation; in this case the fingers
of the left hand curl in the direction of rotation.
For this reason, this particular form of circular
polarization is known as left circular (or
”left-hand” circular) polarization (LCP). If we
instead had chosen Ey = −jE0 = −jEx, then the
direction of E rotates in the opposite direction,
giving rise to right circular (or “right-hand”
circular) polarization (RCP). These two
conditions are illustrated in Figure 9.11.

by Dave3457

Figure 9.11: Left-circular polarization (LCP;
top) and right-circular polarization (RCP; bot-
tom).
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A wave is said to exhibit circular polariza-
tion if the electric field vector rotates with
constant magnitude. Left- and right-circular
polarizations may be identified by the direc-
tion of rotation with respect to the direction
of propagation.

In engineering applications, circular polarization
is useful when the relative orientations of
transmit and receive equipment is variable
and/or when the medium is able rotate the
electric field vector. For example, radio
communications involving satellites in
non-geosynchronous orbits typically employ
circular polarization. In particular, satellites of
the U.S. Global Positioning System (GPS)
transmit circular polarization because of the
variable geometry of the space-to-earth radio
link, and the tendency of the Earth’s ionosphere
to rotate the electric field vector through a
mechanism known Faraday rotation (sometimes
called the “Faraday effect”). If GPS were instead
to transmit using a linear polarization, then a
receiver would need to continuously adjust the
orientation of its antenna in order to optimally
receive the signal. Circularly-polarized radio
waves can be generated (or received) using pairs
of perpendicularly-oriented dipoles which are fed
the same signal but with a 90◦ phase shift, or
alternatively by using an antenna which is
intrinsically circularly-polarized, such as a helical
antenna (see “Additional Reading” at the end of
this section).

Linear and circular polarization are certainly not
the only possibilities. Elliptical polarization
results when Ex and Ey are not either in-phase
(leading to linear polarization) or ±π/2 radians
out of phase. Elliptical polarization is typically
not an intended condition, but rather is most
commonly observed as a degradation in a system
which is nominally linearly- or
circularly-polarized. For example, most antennas
which are said to be “circularly polarized” in fact
produce circular polarization only in one
direction, and various degrees of elliptical
polarization in all other directions.

Additional Reading:

• “Polarization (waves)” on Wikipedia.

• “Dipole antenna” on Wikipedia.

• “Polarizer” on Wikipedia.

• “Faraday effect” on Wikipedia.

• “Helical antenna” on Wikipedia.

9.7 Wave Power in a Lossless
Medium

[m0041]

In many applications involving electromagnetic
waves, one is less concerned with the
instantaneous values of the electric and magnetic
fields than the power associated with the wave.
In this section we address this question: How
much power is conveyed by an electromagnetic
wave in a lossless medium? The relevant
concepts are readily demonstrated in the context
of uniform plane waves, as shown in this section.
A review of Section 9.5 (“Uniform Plane Waves:
Characteristics”) is recommended before reading
further.

Consider the following uniform plane wave,
described in terms of the phasor representation
of its electric field intensity:

Ẽ = x̂E0e
−jβz (9.105)

Here E0 is a complex-valued constant associated
with the source of the wave and β is the positive
real-valued propagation constant. Therefore the
wave is propagating in the +ẑ direction in
lossless media.

The first thing that should be apparent is that
the amount of power conveyed by this wave is
infinite. The reason is as follows: If the power
passing through any finite area is greater than
zero, then the total power must be infinite
because, for a uniform plane wave, the electric
and magnetic field intensities are constant over a
plane of infinite area. In practice, we never
encounter this situation because all practical

https://en.wikipedia.org/wiki/Polarization_(waves)
https://en.wikipedia.org/wiki/Dipole_antenna
https://en.wikipedia.org/wiki/Polarizer
https://en.wikipedia.org/wiki/Faraday_effect
https://en.wikipedia.org/wiki/Helical_antenna
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plane waves are only “locally planar” (see
Section 9.3 for a refresher on this idea).
Nevertheless, we seek some way to express the
power associated with such waves.

The solution is not to seek total power, but
rather power per unit area. This quantity is
known as the spatial power density, or simply
“power density,” and has units of W/m2.5 Then
if we are interested in total power passing
through some finite area, then we may simply
integrate the power density over this area. Let’s
skip to the answer, and then consider where this
answer comes from. It turns out that the
instantaneous power density of a uniform plane
wave is the magnitude of the Poynting vector

S , E×H (9.106)

Note that this equation is dimensionally correct;
i.e. the units of E (V/m) times the units of H
(A/m) yield the units of spatial power density
(V·A/m2, which is W/m2). Also the direction of
E×H is in the direction of propagation
(reminder: Section 9.5), which is the direction in
which the power is expected to flow. Thus we
have some compelling evidence that |S| is the
power density we seek. However this is not proof
– for that, we require the Poynting Theorem,
which is a bit outside the scope of the present
section.

A bit later we’re going to need to know S for a
uniform plane wave, so let’s work that out now.
From the plane wave relationships (Section 9.5)
we find that the magnetic field intensity
associated with the electric field in
Equation 9.105 is

H̃ = ŷ
E0

η
e−jβz (9.107)

where η =
√
µ/ǫ is the real-valued impedance of

the medium. Let ψ be the phase of E0; i.e.,
E0 = |E0|ejψ. Then

E = Re
{
Ẽejωt

}

= x̂ |E0| cos (ωt− βz + ψ) (9.108)

5Be careful: The quantities spectral power density

(W/Hz) and power flux density (W/(m2·Hz)) are also
sometimes referred to as “power density”. In this section
we will limit the scope to spatial power density (W/m2).

and

H = Re
{
H̃ejωt

}

= ŷ
|E0|
η

cos (ωt− βz + ψ) (9.109)

Now applying Equation 9.106,

S = ẑ
|E0|2
η

cos2 (ωt− βz + ψ) (9.110)

As noted earlier |S| is only the instantaneous
power density, which is still not quite what we
are looking for. What we are actually looking for
is the time-average power density Save; that is,
the average value of |S| over one period T of the
wave. This may be calculated as follows:

Save =
1

T

∫ T

t=0

|S|dt

=
|E0|2
η

1

T

∫ T

t=0

cos2 (ωt− ks+ ψ) dt

(9.111)

Since ω = 2πf = 2π/T , the definite integral
equals T/2. We obtain

Save =
|E0|2
2η

(9.112)

It is useful to check units again at this point:
Note (V/m)2 divided by Ω is W/m2, as expected.

Equation 9.112 is the time-average power
density (units of W/m2) associated with a
sinusoidally-varying uniform plane wave.

Note that Equation 9.112 is analogous to a
well-known result from electric circuit theory:
Recall the time-average power Pave (units of W)

associated with a voltage phasor Ṽ across a
resistance R is

Pave =
|Ṽ |2
2R

(9.113)

which closely resembles Equation 9.112.

Here is a good point at which to identify a
common pitfall: Above, |E0| and |Ṽ | are the peak
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magnitudes of the associated real-valued physical
quantities. However, these quantities are also
routinely given as root mean square (“rms”)
quantities. When this is the case, the peak
magnitudes are greater by a factor of

√
2, and

then Equations 9.112 and 9.113 lack the factor of
1/2. Be careful!

Example 9.3. Power density of a typical
radio wave.

A radio wave transmitted from a distant
location may be perceived locally as a
uniform plane wave if there is no nearby
structure to scatter the wave; a good
example is the wave arriving at the user of a
cellular telephone in a rural area with no
significant terrain scattering. The range of
possible signal strengths varies widely, but a
typical value of the electric field intensity
arriving at the user’s location is 10 µV/m
rms. What is the corresponding power
density?

Solution: From the problem statement,
|E0| = 10 µV/m rms. We assume
propagation occurs in air, which is
indistinguishable from free space at cellular
frequencies. If we use Equation 9.112, then
we must first convert |E0| from rms to peak
magnitude, which is done by multiplying by√
2. Thus:

Save =
|E0|2
2η

∼=
(√

2 · 10× 10−6 V/m
)2

2 · 377 Ω
∼= 2.65× 10−13 W/m2

Alternatively, we can just use a version of
Equation 9.112 which is appropriate for rms
units:

Save =
|E0,rms|2

η
∼=
(
10× 10−6 V/m

)2

377 Ω
∼= 2.65× 10−13 W/m2

Either way, we obtain the correct answer,
0.265 pW/m2 (that’s picowatts per square
meter).

Considering the prevalence of phasor
representation, it is useful to have an alternative
form of the Poynting vector which yields
time-average power by operating directly on field
quantities in phasor form. This is Save, defined
as:

Save =
1

2
Re
{
Ẽ× H̃∗

}
(9.114)

(Note that the magnetic field intensity phasor is
conjugated.) The above expression gives the
expected result for a uniform plane wave: Using
Equations 9.105 and 9.107 we find

Save =
1

2
Re

{(
x̂E0e

−jkz
)
×
(
ŷ
E0

η
e−jkz

)∗}

(9.115)
which yields

Save = ẑ
|E0|2
2η

(9.116)

as expected.

Additional Reading:

• “Poynting vector” on Wikipedia.

• “Poynting’s Theorem” on Wikipedia.

[m0035]

https://en.wikipedia.org/wiki/Poynting_vector
https://en.wikipedia.org/wiki/Poynting's_theorem
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Appendix A

Constitutive Parameters of Some
Common Materials

A.1 Permittivity of Some
Common Materials

[m0135]

The values below are relative permittivity
ǫr , ǫ/ǫ0 for a few materials that are commonly
encountered in electrical engineering applications,
and for which permittivity emerges as a
consideration. Note that “relative permittivity”
is sometimes referred to as dielectric constant.

Here we consider only the physical (real-valued)
permittivity, which is the real part of the
complex permittivity (typically indicated as ǫ′ or
ǫ′r) for materials exhibiting significant loss.

Permittivity varies significantly as a function of
frequency. The values below are representative of
frequencies from a few kHz to about 1 GHz. The
values given are also representative of optical
frequencies for materials such as silica which are
used in optical applications. Permittivity also
varies as a function of temperature. In
applications where precision better than about
10% is required, primary references accounting
for frequency and temperature should be
consulted. The values presented here are
gathered from a variety of references, including
those indicated in “Additional References”.

Free Space (vacuum): ǫr , 1

Solid Dielectrics:

Material ǫr Common uses
Styrofoam1 1.1
Teflon2 2.1
Polyethylene 2.3 coaxial cable
Polypropylene 2.3
Silica 2.4 optical fiber3

Polystyrene 2.6
Polycarbonate 2.8
Rogers RO3003 3.0 PCB substrate
FR4 (glass epoxy laminate) 4.5 PCB substrate

1 Properly known as extruded polystyrene foam
(XPS).
2 Properly known as polytetrafluoroethylene
(PTFE).
3 Typically doped with small amounts of other
materials to slightly raise or lower the index of
refraction (=

√
ǫr).

Non-conducting spacing materials used in
discrete capacitors exhibit ǫr ranging from about
5 to 50.

Semiconductors commonly appearing in
electronics – including carbon, silicon, geranium,
indium phosphide, and so on – typically exhibit
ǫr in the range 5–15.

Glass exhibits ǫr in the range 4–10, depending
on composition.

Gasses, including air, typically exhibit ǫr ∼= 1 to
within a tiny fraction of a percent.

Liquid water typically exhibits ǫr in the range
72–81. Distilled water exhibits ǫr ≈ 81 at room

Electromagnetics Vol 1 (Beta). c© 2018 S.W. Ellingson. CC BY SA 4.0 https://doi.org/10.7294/W4WQ01ZM

https://doi.org/10.7294/W4WQ01ZM
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temperature, whereas sea water tends to be at
the lower end of the range.

Other liquids typically exhibit ǫr in the range
10–90, with considerable variation as a function
of temperature and frequency. Animal flesh and
blood consists primarily of liquid matter and so
also exhibits permittivity in this range.

Soil typically exhibits ǫr in the range 2.5–3.5
when dry, and higher when wet. The
permittivity of soil varies considerably depending
on composition.

Additional Reading:

• CRC Handbook of Chemistry and Physics.

• “Relative permittivity” on Wikipedia.

• “Miscellaneous Dielectric Constants” on
microwaves101.com.

A.2 Permeability of Some
Common Materials

[m0136]

The values below are relative permeability
µr , µ/µ0 for a few materials that are commonly
encountered in electrical engineering
applications, and for which µr is significantly
different from 1. These materials are
predominantly ferromagnetic metals and (in the
case of ferrites) materials containing significant
ferromagnetic metal content. Nearly all other
materials exhibit µr which is not significantly
different from that of free space.

The values presented here are gathered from a
variety of references, including those indicated in
“Additional References” at the end of this
section. Be aware that permeability may vary
significantly with frequency; values given here are
applicable to the frequency ranges for
applications in which these materials are
typically used. Also be aware that materials
exhibiting high permeability are also typically

non-linear; that is, permeability depends on the
magnitude of the magnetic field. Again, values
reported here are those applicable to applications
in which these materials are typically used.

Free Space (vacuum): µr , 1.

Iron (also referred to by the element notation
“Fe”) appears as a principal ingredient in many
materials and alloys employed in electrical
structures and devices. Iron exhibits µr which is
very high, but which decreases with decreasing
purity. 99.95% pure iron exhibits µr ∼ 200, 000.
This decreases to ∼ 5000 at 99.8% purity, and is
typically below 100 for purity less than 99%.

Steel is an iron alloy that comes in many forms,
with a correspondingly broad range of
permeabilites. Electrical steel, commonly used in
electrical machinery and transformers when high
permeability is desired, exhibits µr ∼ 4000.
Stainless steel, encompassing a broad range of
alloys used in mechanical applications, exhibits
µr in the range 750–1800. Carbon steel, including
a broad class of alloys commonly used in
structural applications, exhibits µr on the order
of 100.

Ferrites include a broad range of ceramic
materials which are chemically combined with
iron and various combinations of other metals,
and are used as magnets and magnetic devices in
various electrical systems. Common ferrites
exhibit µr in the range 16–640.

Additional Reading:

• Section 7.16 (“Magnetic Materials”)

• CRC Handbook of Chemistry and Physics .

• “Magnetic Materials” on
microwaves101.com.

• “Permeability (electromagnetism)” on
Wikipedia.

• “Iron” on Wikipedia.

• “Electrical steel” on Wikipedia.

• “Ferrite (magnet)” on Wikipedia.

http://hbcponline.com
https://en.wikipedia.org/wiki/Relative_permittivity
http://www.microwaves101.com/encyclopedias/miscellaneous-dielectric-constants
http://www.microwaves101.com
http://hbcponline.com
https://www.microwaves101.com/encyclopedias/magnetic-materials
http://www.microwaves101.com
https://en.wikipedia.org/wiki/Permeability_(electromagnetism)
https://en.wikipedia.org/wiki/Iron
https://en.wikipedia.org/wiki/Electrical_steel
https://en.wikipedia.org/wiki/Ferrite_(magnet)
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A.3 Conductivity of Some
Common Materials

[m0137]

The values below are conductivity σ for a few
materials that are commonly encountered in
electrical engineering applications, and for which
conductivity emerges as a consideration.

Note that materials in some applications are
described instead in terms of resistivity, which is
simply the reciprocal of conductivity.

Conductivity may vary significantly as a function
of frequency. The values below are representative
of frequencies from a few kHz to a few GHz.
Conductivity also varies as a function of
temperature. In applications where precise values
are required, primary references accounting for
frequency and temperature should be consulted.
The values presented here are gathered from a
variety of references, including those indicated in
“Additional References” at the end of this
section.

Free Space (vacuum): σ , 0.

Commonly encountered elements:
Material σ (S/m)
Copper 5.8× 107

Gold 4.4× 107

Aluminum 3.7× 107

Iron 1.0× 107

Platinum 0.9× 107

Carbon 1.3× 105

Silicon 4.4× 10−4

Water exhibits σ ranging from about 6 µS/m
for highly distilled water (thus, a very poor
conductor) to about 5 S/m for seawater (thus, a
relatively good conductor), varying also with
temperature and pressure. Tap water is typically
in the range 5–50 mS/m, depending on the level
of impurities present.

Soil typically exhibits σ in the range 10−4 S/m
for dry soil to about 10−1 S/m for wet soil,
varying also due to chemical composition.

Non-conductors. Most other materials which
are not well-described as conductors or
semiconductors, and are dry, exhibit
σ < 10−12 S/m. Most materials which are
considered to be insulators, including air and
common dielectrics, exhibit σ < 10−15 S/m,
often by several orders of magnitude.

Additional Reading:

• CRC Handbook of Chemistry and Physics .

• “Conductivity (electrolytic)” on Wikipedia.

• “Electrical resistivity and conductivity” on
Wikipedia.

• “Soil resistivity” on Wikipedia.

http://hbcponline.com
https://en.wikipedia.org/wiki/Conductivity_(electrolytic)
https://en.wikipedia.org/wiki/Electrical_resistivity_and_conductivity
https://en.wikipedia.org/wiki/Soil_resistivity
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Mathematical Formulas

B.1 Trigonometry

[m0138]

ejθ = cos θ + j sin θ (B.1)

cos θ =
1

2

(
ejθ + e−jθ

)
(B.2)

sin θ =
1

j2

(
ejθ − e−jθ

)
(B.3)

cos2 θ =
1

2
+

1

2
cos 2θ (B.4)

sin2 θ =
1

2
− 1

2
cos 2θ (B.5)

B.2 Vector Operators

[m0139]

This section contains a summary of vector
operators expressed in each of the three major
coordinate systems:

• Cartesian (x,y,z)

• cylindrical (ρ,φ,z)

• spherical (r,θ,φ)

Associated basis vectors are identified using a
caret (̂ ) over the symbol. The vector operand A
is expressed in terms of components in the basis
directions as follows:

• Cartesian: A = x̂Ax + ŷAy + ẑAz

• cylindrical: A = ρ̂Aρ + φ̂Aφ + ẑAz

• spherical: A = r̂Ar + θ̂Aθ + φ̂Aφ

Gradient
Gradient in Cartesian coordinates:

∇f = x̂
∂f

∂x
+ ŷ

∂f

∂y
+ ẑ

∂f

∂z
(B.6)

Gradient in cylindrical coordinates:

∇f = ρ̂
∂f

∂ρ
+ φ̂

1

ρ

∂f

∂φ
+ ẑ

∂f

∂z
(B.7)

Gradient in spherical coordinates:

∇f = r̂
∂f

∂r
+ θ̂

1

r

∂f

∂θ
+ φ̂

1

r sin θ

∂f

∂φ
(B.8)

Divergence
Divergence in Cartesian coordinates:

∇ ·A =
∂Ax
∂x

+
∂Ay
∂y

+
∂Az
∂z

(B.9)

Divergence in cylindrical coordinates:

∇ ·A =
1

ρ

∂

∂ρ
(ρAρ) +

1

ρ

∂Aφ
∂φ

+
∂Az
∂z

(B.10)
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Divergence in spherical coordinates:

∇ ·A =
1

r2
∂

∂r

(
r2Ar

)

+
1

r sin θ

∂

∂θ
(Aθ sin θ)

+
1

r sin θ

∂Aφ
∂φ

(B.11)

Curl
Curl in Cartesian coordinates:

∇×A = x̂

(
∂Az
∂y

− ∂Ay
∂z

)

+ ŷ

(
∂Ax
∂z

− ∂Az
∂x

)

+ ẑ

(
∂Ay
∂x

− ∂Ax
∂y

)
(B.12)

Curl in cylindrical coordinates:

∇×A = ρ̂

(
1

ρ

∂Az
∂φ

− ∂Aφ
∂z

)

+ φ̂

(
∂Aρ
∂z

− ∂Az
∂ρ

)

+ ẑ
1

ρ

[
∂

∂ρ
(ρAφ)−

∂Aρ
∂φ

]
(B.13)

Curl in spherical coordinates:

∇×A = r̂
1

r sin θ

[
∂

∂θ
(Aφ sin θ)−

∂Aθ
∂φ

]

+ θ̂
1

r

[
1

sin θ

∂Ar
∂φ

− ∂

∂r
(rAφ)

]

+ φ̂
1

r

[
∂

∂r
(rAθ)−

∂Ar
∂θ

]
(B.14)

Laplacian
Laplacian in Cartesian coordinates:

∇2f =
∂2f

∂x2
+
∂2f

∂y2
+
∂2f

∂z2
(B.15)

Laplacian in cylindrical coordinates:

∇2f =
1

ρ

∂

∂ρ

(
ρ
∂f

∂ρ

)
+

1

ρ2
∂2f

∂φ2
+
∂2f

∂z2
(B.16)

Laplacian in spherical coordinates:

∇2f =
1

r2
∂

∂r

(
r2
∂f

∂r

)

+
1

r2 sin θ

∂

∂θ

(
∂f

∂θ
sin θ

)

+
1

r2 sin2 θ

∂2f

∂φ2
(B.17)

B.3 Vector Identities

[m0140]

Algebraic Identities

A · (B×C) = B · (C×A) = C · (A×B)
(B.18)

A× (B×C) = B (A ·C)−C (A ·B) (B.19)

Identities Involving Differential Operators

∇ · (∇×A) = 0 (B.20)

∇× (∇f) = 0 (B.21)

∇× (fA) = f (∇×A) + (∇f)×A (B.22)

∇ · (A×B) = B · (∇×A)−A · (∇×B)
(B.23)

∇ · (∇f) = ∇2f (B.24)

∇×∇×A = ∇ (∇ ·A)−∇2A (B.25)

∇2A = ∇ (∇ ·A)−∇× (∇×A) (B.26)

Divergence Theorem: Given a closed surface
S enclosing a contiguous volume V,

∫

V

(∇ ·A) dv =

∮

S

A · ds (B.27)

where the surface normal ds is pointing out of
the volume.

Stokes’ Theorem: Given a closed curve C
bounding a contiguous surface S,

∫

S

(∇×A) · ds =
∮

C

A · dl (B.28)

where the direction of the surface normal ds is
related to the direction of integration along C by
the right hand rule.



Appendix C

Physical Constants

[m0141]

The speed of light in free space (c), which is
the phase velocity of any electromagnetic
radiation in free space, is ∼= 2.9979× 108 m/s.
This is commonly rounded up to 3× 108 m/s.
This rounding incurs error of ∼= 0.07%, which is
usually much less than other errors present in
electrical engineering calculations.

The charge of an electron (often assigned the
variable e and sometimes referred to as the
“elementary charge”) is ∼= 1.602× 10−19 C.

The permittivity of free space (ǫ0) is
∼= 8.854× 10−12 F/m.

The permeability of free space (µ0) is
4π × 10−7 H/m.

The wave impedance of free space (η0) is
the ratio of the magnitude of the electric field
intensity to that of the magnetic field intensity in
free space, and is

√
µ0/ǫ0 ∼= 376.7 Ω. This is also

sometimes referred to as the intrinsic impedance
of free space.
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