\echanics and relativity

Timon Idema




MECHANICS AND RELATIVITY

TIMON IDEMA

This work is licensed under CC BY-NC-SA 4.0

Delft
e t University of
Technology






MECHANICS AND RELATIVITY

TIMON IDEMA

First publication: October 2018
Edition: 09-10-2018

Cover image: Close-up of the Prague astronomical clock [1].

Copyright © 2018 T. Idema / TU Delft Open
ISBN 978-94-6366-087-7 (hardcopy) / 978-94-6366-085-3 (ebook)

This work can be redistributed in unmodified form, or in modified form with proper attribution and un-
der the same license as the original, for non-commercial uses only, as specified by the Creative Commons
Attribution-Noncommercial-ShareAlike 4.0 License (creativecommons.org/licenses/by-nc-sa/4.0/).

The latest edition of this book is available for online use and for free download from the TU Delft Open Text-
book repository at textbooks.open.tudelft.nl.


https://creativecommons.org/licenses/by-nc-sa/4.0/
https://textbooks.open.tudelft.nl/index.php/textbooks




CONTENTS

Preface ix
I Classical mechanics 1
1 Introduction to classical mechanics 3
1.1 Dimensionsandunits. . . . . . . . . . .. Lo Lo e e e e e e e e 3
1.2 Dimensionalanalysis. . . . . . . . . . o i e e e e e e e e e e e e e e e e 4
1.2.1 Worked example: Dimensional analysis of the harmonic oscillator . . . . . . .. . ... 4

1.3 Problems . . . . . . . L e e e e e e 6

2 Forces 9
2.1 Newton’slawsofmotion . . . . . . . . . . . . . . e e e 9
22 Forcelaws. . . . . . . . L e e e e e e 10
221 Springs:Hooke'slaw . . . . . . . . ... L e 10

2.2.2 Gravity: Newtonslawofgravity . . . . . . .. ... . o o oo 11

2.2.3 Electrostatics: Coulomb’slaw . . . . . . . . .. ... L Lo oL oo 12

224 Frictionanddrag. . . . . . . . ... Lo e e e e e e e e e e e e 12

2.3 Equationsofmotion . . . . . . . . . . e e e e e e e e e e e e e e e e e 13
2.3.1 Worked example: falling stonewithdrag. . . . . . . . .. ... ... ... ....... 15

24 Multipleforces . . . . . .« o e e e e e e e e e e e e e e e e e e e e e 15
25 StatiCs. . . . v . L e e e e e e e e e e e e e e 16
25.1 Worked example: Suspendedsign . . . . . . . ... Lo Lo Lo 17

2.6 Solving the equations of motion in three specialcases*. . . . . . . .. . ... ... ... ... 18
26.1 Case L' F=F(0) . . . . o o it e e e e e e e e 18

262 Case2iF=F). . « v v v i et e e e e e e 18

263 Case3:iF=F[V). . « . o o it e e e e e 19

2.6.4 Worked example: velocity of the harmonic oscillator . . . . . . . . ... ... .. ... 19

27 Problems . . . . . Lo e e e 20

3 Energy 25
3.1 Work . oL e e e e 25
3.2 KinetiCenergy. . . . . v v v v v v v i e e e e e e e e e e e e e e e e e e e e e 26
3.3 Potential energy. . . . . . . . L L L e e e e e e e e e e e e e e e e e e e e e 28
3.3.1 Gravitational potentialenergy . . . . . . . . .. .. . Lo L 28

3.3.2 Springpotentialenergy . . . . . . . . . ..o e e e e e 29

3.3.3 General conservativeforces . . . . . . . .. Lo Lo e 29

3.4 Conservationofenergy . . . . . . . . . . . i i e e e e e e e e e e e e e 30
3.5 Energylandscapes . . . . . . . .. Lol e e e e e e e e e e e e e e 31
3.5.1 Worked example: The Lennard-Jones potential . . . . . .. ... ... ... ...... 31

3.6 Problems . . . . . e e 33

4 Momentum 39
4.1 Centerofmass . . . . . . . . o i i e e e e e e e e e e e e e 39
4.1.1 Center of mass of a collection of particles . . . . . . .. ... ... ... ........ 39

4.1.2 Centerof massofanobject . . . . . . . . . . . . . e 39

4.1.3 Worked example: center of mass of a solid hemisphere . . . . . ... ... ... .... 40

4.2 Conservationofmomentum . . . . . . . . . . . . L0 e e e e e 40
4.3 Referenceframes . . . . . . . . . L. e e e e e e e e e e e e 41
4.3.1 Centerofmassframe . . . . . . . . . . . . e e e 41

4.3.2 Galilean transformations and inertial frames . . . . . . ... ... ... ... ... .. 41

4.3.3 Kinetic energy ofa collection of particles . . . . . .. ... ... .. ... .. ... .. 42



CONTENTS

4.4 RocketsCienCe™ . . . . . . . . . . e e e e e e e e e e e e e e e e e e e e e 42
4.4.1 Rocketequation . . . . . . . . . . .. L e e e e 42
4.4.2 Multi-stagerockets. . . . . . . ... Lo e e e e e e e e e e 43
443 Tmpulse . . . o e e e e e e e e e e e 43

45 Collisions . . . . . . . o o e e e e e e e e 45

4.6 Totallyinelasticcollisions. . . . . . . . . . . . 0 0 i i e e e e e e e e e e e e 45
4.6.1 Worked example: bikecrash . . . . . .. ... Lo Lo oo o 45

4.7 Totallyelasticcollisions. . . . . . . . . . L L L e e e e e e e e 46

4.8 Elasticcollisionsinthe COMframe. . . . . . . . . . . . . .0 i i it v it vt 47

49 Problems . . . . . . L L e e e e e e e 48

Rotational motion, torque and angular momentum 51

5.1 Rotationbasics . . . . . . . . . L e e e e e e e e e e e e 51

5.2 Centripetalforce . . . . . . . . . . e e e e e e 52

53 Torque . . . . .. e e e e e e e e e e e 52

54 Momentofinertia. . . . . . . . .. Lo L e e e e e e e e e e 53

5.5 Kineticenergyofrotation. . . . . . . . . . . . . i i e e e e e e e e e e e e e e e 54

5.6 Angularmomentum . . . . . . . . . ..t h e e e e e e e e e e e e e e e e e e e e e e e 55

5.7 Conservationofangularmomentum . . . . . . . . . ... Lo Lo oo 55

5.8 Rollingandslippingmotion. . . . . . . . . .. .. L e e e 55
5.8.1 Worked example: A cylinder rollingdownaslope . . . . . .. ... ... ... ..... 57

5.9 Precessionandnutation . . . . . . . .. Lo Lo Lo e e e e e e e e e 58

5.10 Problems . . . . . oL e e e 60

General planar motion 67

6.1 Projectilemotion . . . . . . . . L L e e e e e e e e e e 67

6.2 General planar motion in polar coordinates . . . . . . . . . . . . .00 e e e e 67

6.3 Motion under the action ofacentralforce . . . . . .. ... ... ... ... .. ... 68

6.4 Kepler'slaws . . . . . . . . . L e e e e e e e e e e e e e e e e e e 70

6.5 Problems . . . . . Lo e 72

General rotational motion* 73

7.1 Linearandangularvelocity . . . . . . . . . . . L L e e e 73

7.2 Rotatingreferenceframes. . . . . . . . . . L. Lo L e 73

7.3 Rotations about an arbitraryaxis . . . . . . . . . ... L e e e e e 75
7.3.1 Momentofinertiatensor . . . . . . . . . . ... Lo e e e e e e e e e 75
7.3.2 Euler'sequations. . . . . . . . . . . . e e e e e e e e e e e 77

74 Problems . . . . .. L e e e e e e e 79

Oscillations 83

8.1 Oscillatorymotion . . . . . . . . . . . e e e e e e e e e e e e e e e 83
8.1.1 Harmonicoscillator . . . . . . . . . . . . e e e 83
8.1.2 Torsionaloscillator. . . . . . . . . . .. L e e e 83
8.1.3 Pendulum . . . . . .. e e e e 84
8.1.4 Oscillations in a potential energylandscape . . . . . . . . . .. ... Lo 84

8.2 Damped harmonicoscillator . . . . . . . . . . . .. e e e e e 84

8.3 Driven harmonicoscillator . . . . . . . . . ... L e e e e e 86

8.4 Coupledoscillators . . . . . . . . . L e e e e e e e e e e e 87
8.4.1 Twocoupledpendulums. . . . . . . . . . . . . e 87
84.2 Normalmodes. . . . . . . . . . o i it i e e e e e e e e e e 88

8.5 Problems . . . . .. e 90

Waves 93

9.1 Sinusoidalwaves . . . . . . . . L L L e e e e e e e e e e 93

9.2 Thewaveequation . . . . . . . . . . v v i i i it e e e e e e e e e e e e e e e e e e 94

9.3 Solution of the one-dimensional wave equation . . . . . . . . . . . ... v v 96

9.4 Wave superposition. . . . . . . . . . . e e e e e e e e e e e e e e e e e e e e e 96

9.5 Amplitude modulation . . . . . . . . . L e e e e e e e e e e e e 98

9.6 SOUNAWAVES . . . . v v v i e i e e e e e e e e e e e e e e e e e e e e e e e e 98



CONTENTS vii

9.7 TheDopplereffect . . . . . . . . . . o e e e e e e e e e e 99
9.8 Problems . . . . .. 102

IT Special relativity 105
10 Einstein’s postulates 107
10.1 Anoldandanewaxiom. . . . . . . . . . . ..o Lo e e e e e e e e e e e e 107
10.2 Consequences of Einstein's postulates . . . . . . . . . . . . ... Lo Lo oo 108
10.2.1 Lossof simultaneity . . . . . . . . . . . .. e e e e e 108

10.2.2 Timedilation. . . . . . . . . . e e e e e e e e e e e e e 109

10.2.3 Lorentz contraction . . . . . . . . . . .o o e e e e e e e e e e e e e e 111

10.3 Problems . . . . Lo e e e e e e e e 113

11 Lorentz transformations 115
11.1 Classical case: Galilean transformations . . . . . . . . . . . .. .. .. 0o . 115
11.2 Derivation of the Lorentz transformations . . . . . . . . . . . . . . .. ..o . 115
11.3 Some consequences of the Lorentz transformations . . . . . . . . . ... ... ... ..... 118
11.3.1 Lossof simultaneity . . . . . . . . . . . . L L e 118

11.3.2 Time dilation and Lorentz contraction. . . . . . . . . . . . . . . .. ... ... ... 119

11.3.3 Velocityaddition. . . . . . . . . . . ... L e 119

11.3.4 Example application: relativistic headlighteffect . . . . ... ... ... ... ... .. 119

11.4 Rapdity and repeated Lorentz transformations®. . . . . . . . . . .. ... ... oL 119
115 Problems . . . . L o L e e e e e e e e e e 122

12 Spacetime diagrams 125
12.1 Time dilation and space contractionrevisited. . . . . . . . . . . ... .. ... .o oL 126
12.2 Aninvariant measureoflength . . . . . . . . . . ... Lo Lo o o o 127
12.2.1 Worked example: Causal connections . . . . . . . . . . . . . .00 oo 129

12.2.2 The invariant interval and the orderingofevents . . . . . . . . .. .. ... ... ... 129

12.2.3 Units in spacetime diagramsrevisited . . . . . . . . . . . . ... ... oo 130

12.3 Worldlines and propertime. . . . . . . . . . . o i i i e e e e e e e e e e e e e e e e e 130
12.4 Problems . . . . . . L e e e e 132

13 Position, energy and momentum in special relativity 135
13.1 The position four-vector . . . . . . . . . . . . 0 i e e e e e e e e e e e e e 135
13.2 Lorentz transformation matrix and metric tensor* . . . . . . . . . .. . ... ... L. 136
13.3 Velocity and momentum four-vectors. . . . . . . . v v v vt ot v e e e e e e e e e e e e e e 137
13.4 RelativiStiC €nergy. . . . . . . v v v v i i e e e e e e e e e e e e e e e e e e e e e e e e 137
13.5 Conservation of energy and momentum . . . . . . . . . . . ... .0 oo e 138
13.6 Problems . . . . . . Lo e e e 139

14 Relativistic collisions 141
14.1 PhOtONS. « L v v v o ot e e e e e e e e e e e e e e e e e e e e e e e 141
14.2 Totally inelastic collision . . . . . . . . . . . . o o i i e e e e e e e e e e e e 142
14.3 Radioactive decay and the center-of-momentum frame . . . . . . . . . .. ... ... .. .. 143
14.4 Totally elastic collision: Compton scattering . . . . . . . . . . . . . v vt v vt v 144
145 Problems . . . . . . L e e e e e 146

15 Relativistic forces and waves 149
15.1 Theforce four-vector . . . . . . . . . . . . . . e e e 149
15.2 The four-acceleration. . . . . . . . . . . . . . . L e e e 150
15.3 Relativisticwaves . . . . . . . . . . . L e e e e e e e e e e 151
15.4 Problems . . . . . . L L e e e e e e 154
Appendices 155
A Math 157
Al Vectorbasics . . . . . . . . L e e e e e 157

A2 Polarcoordinates . . . . . . . . . . .. e e e e e e e e e e e e e e e e e e e e e e 159



viii CONTENTS

A3 Solvingdifferentialequations. . . . . . . . ... . Lo Lo L o e 160
A3.1 First-order linear ordinary differential equations . . . . . . . ... ... ... ... .. 160

A.3.2 Second-order linear ordinary differential equations with constant coefficients . . . . . . 162

A.3.3 Second-order linear ordinary differential equations of Eulertype . . . . . . . . ... .. 163

A3.4 Reductionoforder. . . . . . . . . . . .. L L 164

A.3.5 Powerseriessolutions . . . . . . . . ..o o oo 165

A3.6 Problems. . . . ... e 167

B Some equations and constants 169
B.1 Physicalconstants . . . . . . . . . . .o it e e e e e e e e e e e e e e e e 169
B.2 Momentsofinertia . . . . . . . ... L L e 169
B.3 Solarsystemobjects . . . . . . ... . e e e e e e e e e e e e e e e e 170
B4 Equations. . . . . . . . e e e e e e e e e e e 171
B.4.1 Vectorderivatives . . . . . . . . . . . e e e e e e e e e e e 171

B.4.2 Specialrelativity . . . . . . . . L L. e e e e e e e e e 171

C Image, data and problem credits 173
C.l IMages . . . . v v v i e e e e e e e e e e e e e e e e e e e e e e e 173
C2 Data. . . . . o e e e 174
C.3 Problems . . . . . . . e e e e e e e e e 174

D Summary and author biograpy 175
Dl Summary . . . .o oo o e e e e e e e e e e e e e e e e 175
D.2 Abouttheauthor . . . . . . . . . . L e 175

Index 177



PREFACE

In this book, you'll find an introduction into two key parts of physics: mechanics and special relativity. The
material in the book has evolved from lecture notes on courses in introductory physics and relativity I have
taught at TU Delft since 2012. In most cases, not all of the material covered in the book were discussed in
the lectures. In particular sections indicated with a star are extra material, for those interested in learning
more. In the first part on classical mechanics, the chapters do not necessarily be taught or read in the order
I have presented them. Many of the concepts of chapter 8 can be understood based on the material covered
in chapters 1-3. In the second part we discuss the special theory of relativity, for which especially chapters 3
on energy and 4 on momentum from the first part are important. There are thus multiple paths you can take,
and I encourage you to look ahead sometimes to see how what is yet to come ties in with what is discussed at
agiven point in the book. If you need refresher on some of the mathematical techniques, appendix A contains
some useful background maths. Throughout, I've tried to alternate theory with worked examples, to give you
an idea about what you can actually do with the theory just developed.

Students often ask me how to best study for an exam. Here are three key steps to successfully completing
any course in physics (or probably any field of study), which for maximum effect, are best taken throughout
the course:

* Prepare: Read the assigned sections before the class, look at the problems before the tutorial.

* Participate: Attend class, join in any quizzes / problem sessions offered, ask questions whenever you
don’t understand.

 Practice: Make all problems, both in practice sessions and in homework. Try yourself before an exam
by doing last year’s exam. Resist the urge to look up the answers.

Like learning maths, or playing the piano, learning to do physics takes practice. There are no quick fixes.
This especially goes for doing problems: looking up the solution is not equivalent to finding the solution
yourself! Of course I understand you want to check your answer, which is fine - but do not look for the solution
method, as you'll only fool yourself into thinking you understand. You only really understand if you've found
the solution yourself, and can explain to someone else why it gives the right answer. The numerical value
of that answer is of little interest - it's the method that counts! In fact, you should avoid putting in numbers
altogether (only do so in the final step if a number is asked for), as a symbolic answer will tell you much
more: whether the dimensions match, whether limit cases make sense, and whether the answer itself can be
understood from scaling.

Now if you find you do not understand something - no worries, that’s what teachers are for! By all means,
ask. Of course, you can also ask another student - you'd actually be doing them a favor, as by explaining it
to you, they get better understanding themselves. Moreover, whenever you find in class or during a problem
session you do not understand, there are likely others who don’t understand either - and you'd be helping the
teachers by asking a question.

My goal, as a teacher, is to help you get a feeling for the basic principles that govern the physical world
both at the everyday level and in the exotic world of relativity. However, I cannot do this without your active
participation, nor without your feedback in the form of questions. I expect a lot from you, and you can expect
alot from me too. In particular, I will keep working on improving this text, and so any questions or comments
you may have are very welcome - I love interaction! So please don’t be shy, but by all means let me know what
you think of the book, and whether it helped you understand physics better.

HOW TO TACKLE A PROBLEM: THE IDEA METHOD

Americans love acronyms (apparently these are a good way of getting things stuck in people’s head), so they
call the three key steps in the previous section the ‘PPP’ method, and have likewise come up with a nice
one for a very useful way to tackle a physics problem: Identify, Develop, Evaluate, and Assess, or IDEA. This
method is especially helpful for the often feared first step: how do you translate a problem into a set of equa-
tions that you can solve? The first thing to do is usually quite simple: identify which kind of problem you're
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dealing with. You may be asked about a minimal force to keep things stable, the amount of work necessary
to perform a certain task, or the velocities of two billiard balls after a collision. We'll cover such cases in the
worked examples and problems, where the identification step has already been taken (it’s the topic under
discussion) - but in the end you should be able to classify the problem yourself. There is a huge bonus to that
classification, as it immediately tells you which laws apply - see the mind-map in figure 1. I encourage you
to make a similar scheme for both the mechanics and the relativity part of the course for yourself - it’s a great
way of summarizing the material.

inelastica» conservation of momentum

collisions <
conservation of momentum

elastic = and
conservation of (kinetic) energy
forces and torques sum to zero

. . . forces sum to zero
statics constant linear motion =» .
conservation of momentum

A

PROBLEM constant rotational motion

\

torques sum to zero
conservation of angular momentum

accelerated linear motion

/

Newton’s second law
conservation of energy
equation of motion

\ accelerated rotational motion
oscillations l

rotational version of Newton’s second law
conservation of energy
equation of motion

Figure 1: (Simplified) schematic overview of a classification of mechanics problems, with the relevant laws indicated.

Once you have identified the type of problem, you can go ahead and develop it. First, make a sketch of
the situation, and collect all necessary information, which you can put in the sketch (for example drawing all
relevant forces in a free body diagram, see section 2.4). Second, write down the relevant laws in the form that
applies to the case at hand. In some cases, this is simply one equation, while in others, you may end up with a
system of equations - so the evaluation step can be quite complicated. In either case, you will find your sketch
helpful in identifying all relevant laws, and thus equations. Now that you have developed the problem, the
next step is to evaluate it, i.e., solve the equations for the quantity asked for in the problem. To simplify the
evaluation, it is often easier not to plug in any numbers - except of course when the numbers are very simple
or hugely simplify your system (such as crossing out terms that are zero). Exactly because the evaluation step
can be tricky, it is always a good idea to assess your answer. Does the number you get in the end make sense?
Does your answer have the right dimensions (see section 1.2)? Does it behave in the way you'd expect if you
take the value of one of the parameters to zero, or infinity? We'll practice with this explicitly in the problems,
and I encourage you to keep on doing it - it will save you from some embarrassing mishaps in the end.
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HEROS OF PHYSICS

All of the material discussed in this book is classical physics - not just the mechanics as developed in the
17th century, but also the special relativity of the early 20th century (now well over 100 years ago). Of course,
physics, or rather the physicists, have not been idle since, and many new physical principles have been dis-
covered since Einstein, but the ones discussed here remain valid. In fact, they remain extremely useful, not
only in many applications (including engineering, architecture, and spaceflight), but also in ongoing physics
research. For example, in my own field of biophysics, a key process is cell division, in which the pulling apart
of the two copies of the DNA is a crucial step. Forces generated by small molecular motors are central players
in that process, and they obey Newton’s laws just like the (probably apocryphal) apple falling on Newton’s
head did.

In doing research or applications today, we are, in Newton’s words, standing on the shoulders of the gi-
ants who came before us. I've added the stories of some of these giants throughout the book, though with
a somewhat double feeling. On the one hand, these giants definitely deserve the credit for the work they’ve
done, and some of them were examples of dedication and diligence. On the other hand, the list of people can
never be inclusive (there are many others who contributed as well), and the list has the distinct disadvantage
of being very un-diverse: these people are all white, almost all men, and almost all from Europe. The reason
for this limited variety of course is that up until the early 20th century, only white European men had any
chance of being in a position privileged enough to be able to dedicate a significant amount of their time to
research. That is not to say that they never met trouble (both Einstein and Noether had to flee Germany when
the Nazi’s seized power in 1933), but that others simply never got the chance. Fortunately, although we're still
far from a perfect world, things on that front have improved tremendously, and so please take these people
for what they were: dedicated, curious people who were interested in finding out how the world works. I hope
the same goes for you, and that with this book, I can help you a bit on the path towards becoming a physicist
yourself.

Timon Idema
Delft, September 2018
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INTRODUCTION TO CLASSICAL MECHANICS

Classical mechanics is the study of the motion of bodies under the action of physical forces. A force is any
influence that can cause an object to change its velocity. The object can be anything from an elementary
particle to a galaxy. Of course anything larger than an elementary particle is ultimately a composite of el-
ementary particles, but fortunately we usually don’t have to consider all those, and can coarse-grain to the
scale of the objects at hand. As is true for any physical model, classical mechanics is an approximation and
has its limits - it breaks down at very small scales, high speeds and large gravitational fields - but within its
range of applicability (which includes pretty much every single phenomenon in everyday life) it is extremely
useful.

Classical mechanics is based on a small number of physical laws, which are mathematical formulations
of a physical observation. Some laws can be derived from others, but you cannot derive all of them from
scratch. Some laws are axioms, and we’ll assume they are valid. The laws we’ll encounter can be divided up in
three classes: Newton’s laws of motion, conservation laws and force laws. As we'll see, the three conservation
laws of classical mechanics (of energy, momentum and angular momentum) can be derived from Newton’s
second and third laws of motion, as can Newton’s first law. The force laws give us the force exerted by a
certain physical system - a compressed spring (Hooke’s law) or two charged particles (Coulomb’s law) for
example. These also feed back into Newton’s laws of motion, although they cannot be derived from these and
are axioms by themselves.

In addition to the physical laws, there is a large number of definitions - which should not be confused with
the laws. Definitions are merely convenient choices. A good example is the definition of the number n: half
the ratio of the circumference to the radius of a circle. As you have no doubt noticed, it is very convenient that
this number has gotten its own symbol that is universally recognized, as it pops up pretty much everywhere.
However, there is no axiom here, as we are simply taking a ratio and giving it a name.

1.1. DIMENSIONS AND UNITS

In physics in general, we are interested in relating different physical quantities to one another - we want to
answer questions like ‘how much work do I need to do to get this box up to the third floor'? In order to be
able to give an answer, we need certain measurable quantities as input - in the present case, the mass of the
box and the height of a floor. Then, using our laws of physics, we will be able to produce another measurable
quantity as our answer - here the amount of work needed. Of course, you could check this answer, and thus
validate our physical model of reality, by measuring the quantity in question.

Measurable (or ‘physical’, or ‘observational’) quantities aren’t just numbers - the fact that they correspond
to something physical matters, and 10 seconds is something very different from 10 meters, or 10 kilograms.
The term we use to express this is, rather unfortunately, to say that physical quantities have a dimension - not
to be confused with length, height and width. Anything that has a dimension can be measured, and to do
so we use units - though there may be different units in which we measure the same quantity, such as cen-
timeters and inches for length. When measuring the same quantity in different units, you can always convert

1At the time of writing, the unit of mass is still determined using a prototype in Paris, however, a redefined unit based on the value of
Planck’s constant is expected to be adopted on May 20, 2019.
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quantity symbol | unit symbol | based on

length L meter m speed of light

time T second s caesium atom oscillation
mass M kilogram kg Planck’s constant!
current I Ampere A electron charge
temperature T Kelvin K Boltzmann’s constant
luminosity J candela cd monochromatic radiation
particle count N mole mol Avogadro’s constant

Table 1.1: Overview of the SI quantities and units, and the physical constants they are (or are proposed to be) based on.

$ [l

Figure 1.1: A harmonic oscillator: a mass m suspended on a spring with spring constant k, oscillating with a frequency w.

between them - there are 2.54 centimeters in an inch - but it’s meaningless to try to convert centimeters into
seconds, because length and time are different quantities - they have different dimensions.

We will encounter only three different basic quantities, which have the dimensions of length (L), time
(T), and mass (M). Thanks to the Napoleonic conquest of Europe in the early 1800s, we have a basic unit
for each of these: meters (m) for length, seconds (s) for time, and kilograms (kg) for mass. Although we
won't encounter them here, the standard system of units (called the Systéme International, or SI) has four
more of these basic pairs: (electric) current I, measured in Amperes (A), temperature T, measured in Kelvin
(K), luminosity J, measured in candelas (cd), and ‘amount of stuff’, measured in moles (mol), see table 1.1.
Unfortunately, although this system is commonly used in (continental) Europe and in many other parts of
the world, it is not everywhere, notably in the US, where people persist in using such things as inches and
pounds, so you'll often have to convert between units.

From the seven basic quantities in the SI, all others can be derived. For example, speed is defined as the
distance traveled (length) divided by the time it took, so speed has the dimension of L/ T and is measured in
units of m/s. Note that in order to be able to compare two quantities, they must have the same dimension.
This simple observation has an important consequence: in any physics equation, the dimensions on both
sides of the equality sign always have to be the same. There’s no bargaining on this point: equating two
quantities with different dimensions does not make any kind of sense, so if you find that that’s what you're
doing at any point, backtrack and find where things went wrong.

1.2. DIMENSIONAL ANALYSIS

Although you will of course need a complete physical model (represented as a set of mathematical equations)
to fully describe a physical system, you can get surprisingly far with a simple method that requires no detailed
knowledge at all. This method is known as dimensional analysis, and based on the observation in the previ-
ous section that the two sides of any physical equation have to have the same dimension. You can use this
principle to qualitatively understand a system, and make predictions on how it will respond quantitatively
if you change some parameter. To understand how dimensional analysis works, an example is probably the
most effective - we'll take one that is ubiquitous in classical mechanics: a mass oscillating on a spring (known
as the harmonic oscillator), see figure 1.1.

1.2.1. WORKED EXAMPLE: DIMENSIONAL ANALYSIS OF THE HARMONIC OSCILLATOR
Consider the harmonic oscillator consisting of a mass of magnitude m, suspended on a spring with spring
constant k. If you pull down the mass a bit and release, it will oscillate with a frequency w. Can we predict
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how this frequency will change if we double the mass?

There are two ways to answer this question. One is to consider all the forces acting on the mass, then
use Newton’s second law to derive a differential equation (known as the equation of motion) for the mass,
solve it, and from the solution determine what happens if we change the mass. The second is to consider the
dimensions of the quantities involved. We have a mass, which has dimension of mass (M), as it is one of our
basic quantities. We have a spring with spring constant k, which has dimensions of force per unit length, or
mass per unit time squared:

(k] = F/L=MLT /L= M/T>. (1.1)

Note the notation [k] for the dimension of k. For the frequency, we have [w] = 1/T. Now we know that the
frequency is a function of the spring constant and the mass, and that both sides of that equation must have
the same sign. Since there is no mass in the dimension of the frequency, but it exists in the dimension of
both the spring constant and the mass, we know that w must depend on the ratio of k and m: w ~ k/m. Now
[k/m] =1/T2, and from [w] = 1/ T, we conclude that we must have

w~Vkim. 1.2)

Equation (1.2) allows us to answer our question immediately: if we double the mass, the frequency will de-
crease by a factor v/2.

Note that in equation (1.2) I did not write an equals sign, but a ‘scales as’ sign (~, sometimes also written
as «). That is because dimensional analysis will not tell us about any numerical factor that may appear in
the expression, as those numerical factors have no unit (or, more correctly, have no dimension - they are
dimensionless).

You may object that there might be another factor at play: shouldn’t gravity matter? The answer is no, as
we can also quickly see from dimensional analysis. The force of gravity is given by mg, introducing another
parameter g (the gravitational acceleration) with dimension [g] = L/ T?. Now if the frequency were to depend
on g, there has to be another factor to cancel the dependence on the length, as the frequency itself is length-
independent. Neither m nor k has a length-dependence in its dimension, and so they cannot ‘kill’ the L in the
dimension of g; the frequency therefore also cannot depend on g - which we have now figured out without
invoking any (differential) equations!

Above, I've sketched how you can use dimensional analysis to arrive at a physical scaling relation through
inspection: we've combined the various factors to arrive at the right dimension. Such combinations are not
always that easy to see, and in any case, you may wonder if you've correctly spotted them all. Fortunately,
there is a more robust method, that we can also use to once again show that the frequency is independent
of the gravitational acceleration. Suppose that in general w could depend on k, m and g. The functional
dependence can then be written as’

[w] = [k*mP g’ = MITH*MP (LI T?)Y = M**PT2@N Y, (1.3)

which leads to three equations for the exponents:

a+p=0,
—2(a+y)=-1,
Y=0,

which you can easily solve to find & = 1/2, § = —1/2, y = 0, which gives us equation (1.2). This method” will
allow you to get dimensional relations in surprisingly many different cases, and is used by most physicist as a
first line of attack when they first encounter an unknown system.

2The actual function may of course contain multiple terms which are summed, but all those must have the same dimension. Operators
like sines and exponentials must be dimensionless, as there are no dimensions of the form sin(M) or el. The only allowable dimensional
dependencies are thus power laws.

3The method is sometimes referred to as the Rayleigh algorithm, after John William Strutt, Lord Rayleigh (1842-1919), who applied it,
among other things, to light scattering in the air. The result of Rayleigh’s analysis can be used to explain why the sky is blue.




1. INTRODUCTION TO CLASSICAL MECHANICS

1.3. PROBLEMS

1.1

1.2

1.3

Harmonic oscillator revisited Suppose you have a small object of mass m, which you attach to a spring
of spring constant k (which itself is fixed to a wall at its other end, figure 1.1). Above, we derived an
expression for the frequency of oscillation of the mass. We also argued that it should be the same for both
a horizontally-positioned and a vertically-positioned oscillator, i.e., that the frequency is independent of
the gravitational acceleration g.

(a) Show that the frequency of oscillation is also independent of its amplitude A (the maximum distance
from the equilibrium position the oscillating mass reaches).

(b) Use dimensional analysis to derive an expression for the maximum velocity of the mass during the
oscillation, as a function of m, k, and A.

In physics, we assume that quantities like the speed of light (¢) and Newton’s gravitational constant (G)
have the same value throughout the universe, and are therefore known as physical constants. A third
such constant from quantum mechanics is Planck’s constant (%, an h with a bar). In high-energy physics,
people deal with processes that occur at very small length scales, so our regular SI-units like meters and
seconds are not very useful. Instead, we can combine the fundamental physical constants into different
basis values.

(a) Combine ¢, G and 7 into a quantity that has the dimensions of length.

(b) Calculate the numerical value of this length in SI units (this is known as the Planck length). You can
find the numerical values of the physical constants in appendix B.

(c) Similarly, combine ¢, G and 7 into a quantity that has the dimensions of energy (indeed, known as
the Planck energy) and calculate its numerical value.

Reynolds numbers Physicists often use dimensionless quantities to compare the magnitude of two phys-
ical quantities. Such numbers have two major advantages over quantities with numbers. First, as di-
mensionless quantities carry no units, it does not matter which unit system you use, you'll always get the
same value. Second, by comparing quantities, the concepts ‘big’ and ‘small’ are well-defined, unlike for
quantities with a dimension (for example, a distance may be small on human scales, but very big for a
bacterium). Perhaps the best known example of a dimensionless quantity is the Reynolds number in fluid
mechanics, which compares the relative magnitude of inertial and drag forces acting on a moving object:

_ inertial forces  pvL

= 1.4
drag forces n (1.4)
where p is the density of the fluid (either a liquid or a gas), v the speed of the object, L its size, and 7 the
viscosity of the fluid. Typical values of the viscosity are 1.0 mPa- s for water, 50 mPa - s for ketchup, and
1.0 pyPa- s for air.

(a) Estimate the typical Reynolds number for a duck when flying and when swimming (you may assume
that the swimming happens entirely submerged). NB: This will require you looking up or making
educated guesses about some properties of these birds in motion. In either case, is the inertial or the
drag force dominant?

(b) Estimate the typical Reynolds number for a swimming bacterium. Again indicate which force is dom-
inant.

(c) Oil tankers that want to make port in Rotterdam already put their engines in reverse halfway across
the North sea. Explain why they have to do so.

(d) Express the Reynolds number for the flow of water through a (circular) pipe as a function of the ra-
dius R of the pipe, the volumetric flow rate (i.e., volume per second that flows through the pipe) Q,
and the kinematic viscosity v = n/p.

(e) For low Reynolds number, fluids will typically exhibit so-called laminar flow, in which the fluid par-
ticles all follow paths that nicely align (this is the transparent flow of water from a tap at low flux).
For higher Reynolds number, the flow becomes turbulent, with many eddies and vortices (the white-
looking flow of water from the tap you observe when increasing the flow rate). The maximum Rey-
nolds number for which the flow is typically laminar is experimentally measured to be about 2300.
Estimate the flow velocity and volumetric flow rate of water from a tap with a 1.0 cm diameter in the
case that the flow is just laminar.
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1.4 The escape velocity of a planet is defined as the minimal initial velocity an object must have to escape
its gravitational pull completely (and thus go fast enough to defy the rule that ‘what goes up must come
down).

(a) From Newton’s universal law of gravitation (equation 2.9), determine the dimension of the gravita-
tional constant G.

(b) Use dimensional analysis to show that for a planet of mass M and radius R, the escape velocity scales

asv~vVvVMG/R.

(c) A more detailed calculation shows that in fact we have vescape = V2GM/R. Express this value of the
escape velocity in terms of the (mass) density p of the planet, instead of its mass M.

(d) The average density of the moon is about 6/10th that of the Earth, and the Moon’s radius is about
11/40 times that of the Earth. From these numbers and your answer at (c), calculate the ratio of the
escape velocities of the Moon and the Earth, and explain why the Apollo astronauts needed a huge
rocket to get to the Moon, and only a tiny one to get back.






FORCES

2.1. NEWTON’S LAWS OF MOTION

As described in chapter 1, classical mechanics is based on a set of axioms, which in turn are based on (re-
peated) physical observations. In order to formulate the first three axioms, we will need to first define three
quantities: the (instantaneous) velocity, acceleration and momentum of a particle. If we denote the position
of a particle as x(f) - indicating a vector' quantity with the dimension of length that depends on time, we
define its velocity as the time derivative of the position:

dx(r)

v(H)=x(t) = az

(2.1)

Note that we use an overdot to indicate a time derivative, we will use this convention throughout these notes.
The acceleration is the time derivative of the velocity, and thus the second derivative of the position:

dv()  d*x(1)

H=x(()= = 2.2
a(t) =x(1) az a2 2.2)
Finally the momentum of a particle is its mass times its velocity:

p(t) = mv(t) = mx(1). (2.3)

We are now ready to give our next three axioms. You may have encountered them before; they are known as
Newton'’s three laws of motion.

Axiom 1 (Newton’s first law of motion). As long as there is no external action, a particle’s velocity will remain
constant.

Note that the first law includes particles at rest, i.e., v = 0. We will define the general ‘external action’ as a
force, therefore a force is now anything that can change the velocity of a particle. The second law quantifies
the force.

Axiom 2 (Newton’s second law of motion). If there is a net force acting on a particle, then its instantaneous
change in momentum due to that force is equal to that force:

dp(1)
F(t)= ——. 2.4
() az 2.4
Now since p = mv and a = dv/ dt, if the mass is constant we can also write (2.4) as F = ma, or
F(t) = mi(1), (2.5)

which is the form in we will use most. Based on the second law, we see that a force has the physical dimen-
sion of a mass times a length divided by a time squared - since this is quite a lot to put in every time, we

1 Appendix A.1 lists some basic properties of vectors that you may find useful.
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Isaac Newton (1642-1727) was a British physicist, astronomer and mathe-
matician, who is widely regarded as one of the most important scientists in
history. Newton was a professor at Cambridge from 1667 till 1702, where
he held the famous Lucasian chair in mathematics. Newton invented in-
finitesimal calculus to be able to express the laws of mechanics that now
bear his name (section 2.1) in mathematical form. He also gave a mathe-
matical description of gravity (equation 2.9), from which he could derive
Kepler’s laws of planetary motion (section 6.4). In addition to his work
on mechanics, Newton made key contributions to optics and invented the
reflection telescope, which uses a mirror rather than a lens to gather light.
Having retired from his position in Cambridge, Newton spend most of the
second half of his life in London, as warden and later master of the Royal
mint, and president of the Royal society.

Figure 2.1: Portrait of Isaac New-
ton by Godfrey Kneller (1689) [2].

define the dimension of force as such: F = MLT 2. Likewise, we define a unit, the Newton (N), as a kilogram
times a meter per second squared: N = kg-m/s?. Therefore, in principle Newton’s second law of motion can
also be used to measure forces, though we will often use it the other way around, and calculate changes in
momentum due to a known force.

Note how Newton’s first law follows from the second: if the force is zero, there is no change in momentum,
and thus (assuming constant mass) a constant velocity. Note also that although the second law gives us a
quantification of the force, by itself it will not help us achieve much, as we at present have no idea what the
force is (though you probably have some intuitive ideas from experience) - for that we will use the force laws
of the next section. Before we go there, there is another important observation on the nature of forces in
general.

Axiom 3 (Newton’s third law of motion). Ifa body exerts a force F; on a second body, the second body exerts an
equal but opposite force F,, on the first, i.e., the forces are equal in magnitude but opposite in direction:

F, =-F. (2.6)

2.2. FORCE LAWS

Newton'’s second law of motion tells us what a force does: it causes a change in momentum of any particle it
acts upon. It does not tell us where the force comes from, nor does it care - which is a very useful feature, as
it means that the law applies to all forces. However, we do of course need to know what to put down for the
force, so we need some rule to determine it independently. This is where the force laws come in.

2.2.1. SPRINGS: HOOKE’S LAW

One very familiar example of a force is the spring force: you need to exert a force on something to compress
it, and (in accordance with Newton’s third law), if you press on something you'll feel it push back on you. The
simplest possible object that you can compress is an ideal spring, for which the force necessary to compress
it scales linearly with the compression itself. This relation is known as Hooke’s law:

F; = —kx, (2.7)

where x is now the displacement (from rest) and k is the spring constant, measured in newtons per meter.
The value of k depends on the spring in question - stiffer springs having higher spring constants.

Hooke’s law gives us another way to measure forces. We have already defined the unit of force using
Newton'’s second law of motion, and we can use that to calibrate a spring, i.e., determine its spring constant,
by determining the displacement due to a known force. Once we have k, we can simply measure forces by
measuring displacements - this is exactly what a spring scale does.
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Robert Hooke (1635-1703) was a British all-round natural scientist and ar- Sl e
chitect. He discovered the force law named after him in 1660, which he
published first as an anagram: ‘ceiiinosssttuv’, so he could claim the dis-
covery without actually revealing it (a fairly common practice at the time);
he only provided the solution in 1678: ‘ut tensio, sic vis’ (‘as the exten-
sion, so the force’). Hooke made many contributions to the development
of microscopes, using them to reveal the structure of plants, coining the
word cell for their basic units. Hooke was the curator of experiments of
England’s Royal Society for over 40 years, combining this position with a
professorship in geometry and the job of surveyor of the city of London
after the great fire of 1666. In the latter position he got a strong reputation
for a hard work and great honesty. At the same time, he was frequently at
odds with his contemporaries Isaac Newton and Christiaan Huygens; it is
not unlikely that they independently developed similar notions on, among Figure 2.2: Drawing of the cell

others on the inverse-square law of gravity. structure of cork by Hooke, from
his 1665 book Micrographia [3].
No portraits of Hooke survive.

2.2.2. GRAVITY: NEWTON’S LAW OF GRAVITY

A second and probably even more familiar example is force due to gravity, at the local scale, i.e., around you,
in the approximation that the Earth is flat. Anything that has mass attracts everything else that has mass,
and since the Earth is very massive, it attracts all objects in the space around you, including yourself. Since
the force of gravity is weak, you won't feel the pull of your book, but since the Earth is so massive, you do
feel its pull. Therefore if you let go of something, it will be accelerated towards the Earth due to its attracting
gravitational force. As demonstrated by Galilei (and some guys in spacesuits on a rock we call the moon?),
the acceleration of any object due to the force of gravity is the same, and thus the force exerted by the Earth
on any object equals the mass of that object times this acceleration, which we call g:

F,=mg. (2.8)

Because the Earth’s mass is not exactly uniformly distributed, the magnitude of g varies slightly from place to
place, but to good approximation equals 9.81 m/s?. It always points down.

Although equation (2.8) for local gravity is handy, its range of application is limited to everyday objects at
everyday altitudes - say up to a couple thousand kilograms and a couple kilometers above the surface of the
Earth, which is tiny compared to Earth’s mass and radius. For larger distances and bodies with larger mass
- say the Earth-Moon, or Earth-Sun systems - we need something else, namely Newton’s law of gravitation
between two bodies with masses m; and m, and a distance r apart:

Py 2.9)

F;=-G =
where 7 is the unit vector pointing along the line connecting the two masses, and the proportionality constant
G = 6.67-10""1 N-m?/kg? is known as the gravitational constant (or Newton’s constant). The minus sign
indicates that the force is attractive. Equation (2.9) allows you to actually calculate the gravitational pull that
your book exerts on you, and understand why you don't feel it. It also lets you calculate the value of g - simply
fill in the mass and radius of the Earth. If you wish to know the value of g on any other celestial body, you
can put in its particulars, and compare with Earth. You'll find you'd ‘weigh’ 3 times less on Mars and 6 times
less on the Moon. Most of the time we can safely assume the Earth is flat and use (2.8), but in particular for
celestial mechanics and when considering satellites we'll need to use (2.9).

2To be precise, astronaut David Scott of the Apollo 15 mission in 1971, who dropped both a hammer and a feather and saw them fall at
exactly the same rate, as shown in this NASA movie.



https://moon.nasa.gov/resources/331/the-apollo-15-hammer-feather-drop/
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Galileo Galilei (1564-1642) was an Italian physicist and astronomer, who
is widely regarded as one of the founding figures of modern science. Un-
like classical philosophers, Galilei championed the use of experiments and
observations to validate (or disprove) scientific theories, a practice that is
the cornerstone of the scientific method. He pioneered the use of the tele-
scope (newly invented at the time) for astronomical observations, leading
to his discovery of mountains on the moon an the four largest moons of
Jupiter (now known as the Galilean moons in his honor). On the theo-
retical side, Galilei argued that Aristotle’s argument that heavy objects fall
faster than light ones is incorrect, and that the acceleration due to grav-
ity is equal for all objects (equation 2.8). Galilei also strongly advocated
the heliocentric worldview introduced by Copernicus in 1543, as opposed
to the widely-held geocentric view. Unfortunately, the Inquisition thought
otherwise, leading to his conviction for heresy with a sentence of life-long

Figure 2.3: Portrait of Galileo

. .. . Galilei by Justus Sustermans
house arrest in 1633, a position that was only recanted by the church in (1636) [ 4].y

1995.

2.2.3. ELECTROSTATICS: COULOMB’S LAW
Like two masses interact due to the gravitational force, two charged objects interact via Coulomb’s force.
Because charge has two possible signs, Coulomb’s force can both be attractive (between opposite charges)
and repulsive (between identical charges). Its mathematical form strongly resembles that of Newton’s law of
gravity:

Fc= keql—ng*, (2.10)

r

where ¢, and g, are the signed magnitudes of the charges, r is again the distance between them, and k. =
8.99-10% N-m?/C? is Coulomb’s constant. For everyday length and force scales, Coulomb's force is much
larger than the force of gravity.

2.2.4. FRICTION AND DRAG

Why did it take the genius of Galilei and Newton to uncover Newton’s first law of motion? Because everyday
experience seems to contradict it: if you don’t exert a force, you won’t keep moving, but gradually slow down.
You know of course why this is: there’s drag and friction acting on a moving body, which is why it's much
easier (though not necessarily handier) for a car to keep moving on ice than on a regular tarmac road (less
friction on ice), and why walking through water is so much harder than walking through air (more drag in
water). The medium in which you move can exert a drag force on you, and the surface over which you move
exerts friction forces. These of course are the forces responsible for slowing you down when you stop exerting
force yourself, so the first law doesn’t apply, as there are forces acting.

For low speeds, the drag force typically scales linearly with the velocity of the moving object. Drag forces
for objects moving through a (fluid) medium moreover depend on the properties of the medium (its viscosity
1) and the cross-sectional area of the moving object. For a sphere of radius R moving at velocity v, the drag
force is given by Stokes’ law:

Fq=-67nRv. (2.11)

The more general version for an object of arbitrary shape is F; = (v, where ( is a proportionality constant.
Stokes’ law breaks down at high velocities, for which the drag force scales quadratically with the speed:

1
Fy= Epchuz, (2.12)

where p is the density of the fluid, A the cross-sectional area of the object, v it’s speed, and cq it’s dimension-
less drag coefficient, which depends on the object’s shape and surface properties. Typical values for the drag
coefficient are 1.0 for a cyclist, 1.2 for a running person, 0.48 for a Volkswagen Beetle, and 0.19 for a modern
aerodynamic car. The direction of the drag force is still opposite that of the motion.

Frictional forces are due to two surfaces sliding past each other. It should come as no surprise that the
direction of the frictional force is opposite that of the motion, and its magnitude depends on the properties of
the surfaces. Moreover, the magnitude of the frictional force also depends on how strongly the two surfaces
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Charles-Augustin de Coulomb (1736-1806) was a French physicist and
military engineer. For most of his working life, Coulomb served in the
French army, for which he supervised many construction projects. As part
of this job, Coulomb did research, first in mechanics (leading to his law
of kinetic friction, equation 2.13), and later in electricity and magnetism,
for which he discovered that the force between charges (and those be-
tween magnetic poles) drops off quadratically with their distance (equa-
tion 2.10). Near the end of his life, Coulomb participated in setting up the
SI system of units.

Figure 2.4: Portrait of Charles de
Coulomb [5].

are pushed against each other - i.e., on the forces they exert on each other, perpendicular to the surface. These
forces are of course equal (by Newton’s third law) and are called normal forces, because they are normal (that
is, perpendicular) to the surface. If you stand on a box, gravity exerts a force on you pulling you down, which
you ‘transfer’ to a force you exert on the top of the box, and causes an equal but opposite normal force exerted
by the top of the box on your feet. If the box is tilted, the normal force is still perpendicular to the surface (it
remains normal), but is no longer equal in magnitude to the force exerted on you by gravity. Instead, it will
be equal to the component of the gravitational force along the direction perpendicular to the surface (see
figure 2.6). We denote normal forces as F;,. Now according to the Coulomb friction law (not to be confused
with the Coulomb force between two charged particles), the magnitude of the frictional force between two
surfaces satisfies

Fy < piFy. (2.13)

Here u is the coefficient of friction, which of course depends on the two surfaces, but also on the question
whether the two surfaces are moving with respect to each other or not. If they are not moving, i.e., the con-
figuration is static, the appropriate coefficient is called the coefficient of static friction and denoted by u;.
The actual magnitude of the friction force will be such that it balances the other forces (more on that in sec-
tion 2.4). Equation (2.13) tells us that this is only possible if the required magnitude of the friction force is
less than usF;,. When things start moving, the static friction coefficient is replaced by the coefficient of kinetic
friction pg, which is usually smaller than pg; also in that case the inequality in equation (2.13) gets replaced
by an equals sign, and we have Fy = p Fy,.

2.3. EQUATIONS OF MOTION

Now that we have set our axioms - Newton’s laws of motion and the various force laws - we are ready to
start combining them to get useful results, things that we did not put into the axioms in the first place but
follow from them. The first thing we can do is write down equations of motion: an equation that describes
the motion of a particle due to the action of a certain type of force. For example, suppose you take a rock of
a certain mass m and let go of it at some height % above the ground, then what will happen? Once you've let
go of the rock, there is only one force acting on the rock, namely Earth’s gravity, and we are well within the
regime where equation (2.8) applies, so we know the force. We also know that this net force will result in a
change of momentum (equation 2.4), which, because the rock won't loose any mass in the process of falling,
can be rewritten as (2.5). By equating the forces we arrive at an equation of motion for the rock, which in this
case is very simple:

mg = mx. (2.14)

We immediately see that the mass of the rock doesn’t matter (Galilei was right! - though of course he was in
our set of axioms, because we arrived at them by assuming he was right...). Less trivially, equation (2.14) is
a second-order differential equation for the motion of the rock, which means that in order to find the actual
motion, we need two initial conditions - which in our present example are that the rock starts at height # and
zero velocity.




14 2. FORCES

Figure 2.5: Dropping under the force of gravity. (a and b) A ball released from rest drops with a constant acceleration, resulting in a
constantly increasing velocity. Images in (a) are taken every 0.05 s; distances are multiples of 12 mm. In (b), the trajectory of the ball
resulting from repeated bounces is shown with intervals of 0.04 s [6], CC BY-SA 3.0. (c) Paragliders need to balance the force of gravity
and that of drag to stop accelerating and fall at a continuous speed (known as their terminal velocity) [7], CC BY-SA 3.0.

Equation (2.14) is essentially one-dimensional - all motion occurs along the vertical line. Solving it is
therefore straightforward - you simply integrate over time twice. The general solution is:

1
x(1) = X(0)+ v(0)t + g1, (2.15)
which with our boundary conditions becomes
1
x(0) = (h- 812, (2.16)

where g is the magnitude of g (which points down, hence the minus sign). Of course equation (2.16) breaks
down when the rock hits the ground at = \/2h/g, which is easily understood because at that point gravity is
no longer the only force acting on it.

We can also immediately write down the equation of motion for a mass on a spring (no gravity at present),
in which the net force is given by Hooke’s law. Equating that force to the net force in Newton’s second law of
motion gives:

— kx(t) = mi(1). (2.17)

Of course, we find another second-order differential equation, so we again need the initial position and veloc-
ity to specify a solution. The general solution of (2.17) is a combination of sines and cosines, with a frequency
o =V k/m (as we already know from the dimensional analysis in section 1.2):

v(0) .
x(t) = x(0) cos(wt) + T sin(wt). (2.18)

We'll study this case in more detail in section 8.1.

In general, the force in Newton’s second law may depend on time and position, as well as on the first
derivative of the position, i.e., the velocity. For the special case that it depends on only one of the three vari-
ables, we can write down the solution formally, in terms of an integral over the force. These formal solutions
are given in section 2.6. To see how they work in practice, let’s consider a slightly more involved problem, that
of a stone falling with drag.
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2.3.1. WORKED EXAMPLE: FALLING STONE WITH DRAG

Suppose we have a spherical stone of radius a that you drop from a height # at £ = 0. At what time, and with
which velocity, will the stone hit the ground? We already solved this problem in the simple case without drag
above, but now let’s include drag. There are then two forces acting on the stone: gravity (pointing down) with
magnitude mg, and drag (pointing in the direction opposite the motion, in this case up) with magnitude
6nnav = bv, as given by Stokes’ law (equation 2.11). Our equation of motion is now given by (with x as the
height of the particle, and the downward direction as positive):

mi=—-bx+mg. (2.19)

We see that our force does not depend on time or position, but only on velocity - so we have case 3 of ap-
pendix 2.6. We could invoke either equation (2.33) or (2.34) to write down a formal solution, but there is an
easier way, which will allow us to evaluate the relevant integrals without difficulty. Since our equation of mo-
tion is linear, we know that the sum of two solutions is again a solution. One of the terms on the right hand
side of equation (2.19) is constant, which means that our equation is not homogeneous (we can rewrite it to
mX + bx = mg to see this), so a useful thing to do is to split our solution in a homogeneous and a particular
part. Rewriting our equation in terms of v = X instead of x, we get mv+ bv = mg, from which we can immedi-
ately get a particular solution: v, = mg/b, as the time derivative of this constant v}, vanishes. Subtracting vy,
we are left with a homogeneous equation: mvy, + by, which we now solve by separation of variables. First we
write 0, = dvy/ dt, then re-arrange so that all factors containing vy, are on one side and all factors containing
t are on the other, which gives —(m/b)(1/v,) dvy = dt. We can now integrate to get:

m (V1

m v
—3 " FdU,:—EIOg(U—O): r— 1y, (220)

which is an example of equation (2.33). After rearranging and setting f = 0:

Vh (1) = voexp (—%I). (2.21)

Note that this homogeneous solution fits our intuition: if there is no extra force on the particle, the drag force
will slow it down exponentially. Also note that we didn’t set vy = 0, as the homogeneous solution does not
equal the total solution. Instead vy is an integration constant that we’ll need to set once we've written down
the full solution, which is:

V(1) = vp () + vp (1) = vy ex (—bt)+mg (2.22)
=Unh pll) = Vg €Xp m b .
Now setting v(0) = 0 gives vy = —mg/b, so
mg b
v(t)=——|1-exp|——1]]|. (2.23)
b m
To get x(t), we simply integrate v(t) over time, to get:
mg m b
x()=—|t+—exp|——1]|]. (2.24)
b b m

We can find when the stone hits the ground by setting x(z) = & and solving for ¢; we can find how fast it is
going at that point by substituting that value of  back into v(#).

2.4. MULTIPLE FORCES

In the examples in section 2.3 there was only a single force acting on the particle of interest. Usually there
will be multiple forces acting at the same time, not necessarily pulling in the same direction. This is where
vectors come into play.

Suppose you put a book on a table. The Earth’s gravity pulls it down with a force of magnitude Fg. Conse-
quently the book exerts a normal force down on the table with the same magnitude, and the table reciprocates
with an identical but oppositely directed normal force of magnitude F,, = Fy. Now suppose you push against
the book from the side with a force of magnitude F. As we've seen in section 2.2, there will then be a fric-
tion force between the book and the table in the opposite direction, which, as long as it doesn’t exceed i Fj,,
equals the force you push with. However, once F is larger than uF,, there will be a net force acting on the
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Figure 2.6: Free body diagram of the forces acting on a book on a slanted table. Gravity always points down, normal forces always
perpendicular to the surface, and frictional forces always parallel to the surface. The force of gravity can be decomposed in directions
perpendicular and parallel to the surface as well.

book. It is the net force that we substitute into Newton's second law, and from which the book will get a net
acceleration.

In the situation described above, things are still simple - you get the net force by subtracting the kinetic
friction Fy = usF, from the force F you exert on the book, because these are horizontal and thus perpen-
dicular to the vertical normal and gravitational forces. But what happens if you lift the table on one end, so
that it becomes slanted? To help organize our thoughts, we’ll draw a free body diagram, shown in figure 2.6.
Gravity still acts downward, and the mass of the book stays the same, so F; doesn’t change. However, the
orientation of the contact plane between the book and table does change, so the normal force (remember,
normal to the surface) changes as well. It’s direction will remain perpendicular to the surface, and as long
as you don’t push on the book (or push along the surface only), the only other force having a component
perpendicular to the surface is gravity, so the magnitude of the normal force better be equal to that (or the
book would either spontaneously start to float, or fall through the table). You can find this component by
decomposing the gravitational force along the directions perpendicular and parallel to the slanted surface.
The remaining component of the gravitational force points downward along the surface of the table, and is
comparable to the force you were exerting on the book in the flat case. Up to some point it is balanced by a
static frictional force, but once it gets too large (because the slant angle of the table gets too large), friction
reaches its maximum and gravity results in a net force on the book, which will start to slide down (as you no
doubt guessed already).

2.5. STATICS

When multiple forces act on a body, the (vector) sum of those forces gives the net force, which is the force we
substitute in Newton’s second law of motion to get the equation of motion of the body. If all forces sum up to
zero, there will be no acceleration, and the body retains whatever velocity it had before. Statics is the study of
objects that are neither currently moving nor experiencing a net force, and thus remain stationary. You might
expect that this study is easier than the dynamical case when bodies do experience a net force, but that just
depends on context. Imagine, for example, a jar filled with marbles: they aren’'t moving, but the forces acting
on the marbles are certainly not zero, and also not uniformly distributed.

Even if there is no net force, there is no guarantee that an object will exhibit no motion: if the forces are
distributed unevenly along an extended object, it may start to rotate. Rotations always happen around a
stationary point, known as the pivot. Only a force that has a component perpendicular to the line connecting
its point of action to the pivot (the arm) can make an object rotate. The corresponding angular acceleration
due to the force depends on both the magnitude of that perpendicular component and the length of the arm,
and is known as the moment of the force or the torque tau. The magnitude of the torque is therefore given by
Frsin@, where F is the magnitude of the force, r the length of the arm, and 6 the angle between the force and
the arm. If we write the arm as a vector r pointing from the pivot to the point where the force acts, we find
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that the magnitude of the torque equals the cross product of r and F:
T=rxF. (2.25)

The direction of rotation can be found by the right-hand rule from the direction of the torque: if the thumb
of your right hand points along the direction of 7, then the direction in which your fingers curve will be the
direction in which the object rotates due to the action of the corresponding force F.

We will study rotations in detail in chapter 5. For now, we're interested in the case that there is no motion,
neither linear nor rotational, which means that the forces and torques acting on our object must satisfy the
stability condition: for an extended object to be stationary, both the sum of the forces and the sum of the
torques acting on it must be zero.

2.5.1. WORKED EXAMPLE: SUSPENDED SIGN

Figure 2.7: A suspended sign (example of a calculation in statics). (a) Problem setting. (b) Free-body diagram.

A sign of mass M hangs suspended from a rod of mass m and length L in a symmetric way and such
that the centers of mass of the sign and rod nicely align (figure 2.7a). One end of the rod is anchored to a
wall directly, while the other is supported by a wire with negligible mass that is attached to the same wall a
distance h above the anchor. (a) If the maximum tension the wire can support is 7, find the minimum value
of h. (b) For the case that the tension in the wire equals the maximum tension, find the force (magnitude and
direction) exerted by the anchor on the rod.

SOLUTION

(a) We first draw a free-body diagram, figure 2.7b. Force balance on the sign tells us that the tensions in
the two lower wires sum to the gravitational force on the sign. The rod is stationary, so we know that
the sum of the torques on it must vanish. To get torques, we first need a pivot; we pick the point where
the rod is anchored to the wall. We then have three forces contributing a clockwise torque, and one
contributing a counterclockwise torque. We're not told exactly where the wires are attached to the rod,
but we are told that the configuration is symmetric and that the center of mass of the sign aligns with
that of the rod. Let the first wire be a distance aL from the wall, and the second a distance (1 — a)L.
The total (clockwise) torque due to the gravitational force on the sign and rod is then given by: 7, =
%mgL + %MgaL + %Mg(l -a)L= %(m + M) gL. The counterclockwise torque comes from the tension in

the wire, and is given by Tire = FrsinfL = Fr(h/v h? + L2) L. Equating the two torques allows us to solve
for h as a function of Fr, as requested, which gives:

_ (m+M)gL
VAF2 = (m+ M)2g?

W2 = (1_(’"+M)g

2
)(h2+L2) -~ h
2 Fr

We find the minimum value of h by substituting Fr = Tinax-
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(b) As the rod is stationary, all forces on it must cancel. In the horizontal direction, we have the horizontal
component of the tension, Tax cos6 to the left, which must equal the horizontal component of the force
exerted by the wall, F,, cos¢. In the vertical direction, we have the gravitational force and the two forces
from the wires on which the sign hangs in the downward direction, and the vertical component of the
tension in the wire in the upward direction, the sum of which must equal the vertical component of the
force exerted by the wall (which may point either up or down). We thus have

Fyycos¢ = TpaxcosH,
Fysing = (m+ M) g+ Tnaxsing,

where tan6 = h/L and h is given in the answer to (a). We find that

F2 = T2 +2(m+ M) g Tnaxsinf + (m + M)* g2,
B Taxcos6
(M4 M)g + Taxsing’

tan¢

Note that the above expressions give the complete answer (magnitude and direction). We could eliminate
h and 6, but that'd just be algebra, leading to more complicated expressions, and not very useful in itself.
If we'd been asked to calculate the height or force for any specific values of M, m, and L, we could get the
answers easily by substituting the numbers in the expressions given here.

2.6. SOLVING THE EQUATIONS OF MOTION IN THREE SPECIAL CASES*

In section 2.3 we saw some examples of equations of motion originating from Newton’s second law of motion.
For the quite common case that the mass of our object of interest is constant, its trajectory will be given as
the solution of a second-order ordinary differential equation, with time as our variable. In general, the force
in Newton’s second law may depend on time and position, as well as on the first derivative of the position,
i.e., the velocity. In one dimension, we thus have

mi=F(x, x,1). (2.26)

Equation (2.26) can be hard to solve for complicated functions F. However, in each of the special cases that
the force only depends on one of the three variables, we can write down a general solution - albeit as an
integral over the force, which we may or may not be able to calculate explicitly.

2.6.1. CASE 1: F = F(1)
If the force only depends on time, we can solve equation (2.26) by direct integration. Using that v = X, we
have mv = F(¢), which we integrate to find

t v
f F(hdt' = mf dv' = mlv(t) — vol, (2.27)
1 Vo

0

where at the initial time ¢ = f; the object has velocity v = vy. We can now find the position by integrating the
velocity:

t
x(1) =f v(thdt'. (2.28)
1

0

2.6.2. CASE 2: F = F(x)

If the force depends only on the position in space (as is the case for the harmonic oscillator), we cannot
integrate over time, as to do so we would already need to know x(¢). Instead, we invoke the chain rule to
rewrite our differential equation as an equation in which the position is our variable. We have:

_dv_gg dv

_dv_ _,dv 2.2
T T drdr Vdx (2.29)

and so our equation of motion becomes

dv
mv— = F(x), (2.30)
dx
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which we again solve by direct integration:
X v m
f F(x)dx' = mf v'dv' = —[v*(x) - v3l. (2.31)
X0 Vo 2

To get x(t), we use the relation that dx/df¢ = v(x). Separation of variables gives dx/v(x) = /ddt, which we

can integrate to get
ro1
t—to= f —dx, (2.32)
x V(X)

which gives us #(x). In principle we can invert this expression to give us x(#), although in practice this may
not be easy.

2.6.3. CASE 3: F=F(v)
If the force depends only on the velocity, there are two ways we can proceed. We can write the equation of
motion as mdv/d¢ = F(v) and use separation of variables to get:

v

dv/, 2.33
o F@n 7 (2.33)

I—thy=m

from which we can get v(¢) after inverting, and x(¢) after integrating v(t) as in equation (2.28). Alternatively,
we could again rewrite our equation of motion as an equation in space instead of time, and arrive at:

UV/

vy F(V)

X—Xg=m dv'. (2.34)
From equation (2.34) we can get v(x) by inverting, and x(¢) from equation (2.32). Note that equation (2.34)
does not give us x(#) directly, as x is the variable in that equation.

2.6.4. WORKED EXAMPLE: VELOCITY OF THE HARMONIC OSCILLATOR

It may seem that what we've done so far in this section has hardly helped matters: the ‘solutions’ we found
contain integrals and often need to be inverted to get our desired function x(#) (or, depending on the problem
we're studying, v(#) or v(x)). To show you how these solutions may be useful, let’s consider a specific example:
aharmonic oscillator, consisting of a mass on a Hookean spring, with F = F(x) = —kx. We already wrote down
the equation of motion (2.17) and its general solution (2.18). The general solution can be found through the
substitution of exponentials, as we’ll do in section 8.1. However, we can also learn something useful from
writing the equation of motion in the form (2.30). Its solution, formally given by equation (2.31), can be
calculated explicitly for our force as

X
%[vz(x)— V2] :f (—kx)dx' = —g[xz—xz], (2.35)
X

which gives
k
v(x) =1/ Vi - - (x2 - x2) (2.36)

for v(x). Although x(¢) and v(#) are more easily obtained from the solution given in equation (2.18), that
solution will not give you v(x), and deriving it is tricky. Here we get it almost for free. Moreover, as you
have probably noted, equation (2.35) relates the kinetic to the potential energy of the harmonic oscillator - a
special case of conservation of energy, which we’ll discuss in the next section.
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2.7. PROBLEMS

2.1

2.2

The terminal velocity is the maximum (constant) velocity a dropping object reaches. In this problem, we
use equation (2.12) for the drag force.

(a) Use dimensional analysis to relate the terminal velocity of a falling object to the various relevant
parameters.

(b) Estimate the terminal velocity of a paraglider (figure 2.5c).

(c) Use the concept of terminal velocity to predict whether a mouse (without parachute) is likely to sur-

vive a fall from a high tower.

When you cook rice, some of the dry grains always stick to the measuring cup. A common way to get
them out is to turn the measuring cup upside-down and hit the bottom (now on top) with your hand so
that the grains come off [32].

(a) Explain why static friction is irrelevant here.

(b) Explain why gravity is negligible.

(c) Explain why hitting the cup works, and why its success depends on hitting the cup hard enough.

2.3 A ball is thrown at speed v from zero height on level ground. We want to find the angle 6 at which it

2.4

2.5

2.6

2.7

should be thrown so that the area under the trajectory is maximized.

(a) Sketch of the trajectory of the ball.

(b) Use dimensional analysis to relate the area to the initial speed v and the gravitational acceleration g.
(c) Write down the x and y coordinates of the ball as a function of time.

(d) Find the total time the ball is in the air.

(e) The area under the trajectory is given by A = [ ydx. Make a variable transformation to express this
integral as an integration over time.

(f) Evaluate the integral. Your answer should be a function of the initial speed v and angle 6.
(g) From your answer at (f), find the angle that maximizes the area, and the value of that maximum area.

Check that your answer is consistent with your answer at (b).

If a mass m is attached to a given spring, its period of oscillation is T. If two such springs are connected
end to end, and the same mass m is attached, find the new period 7”, in terms of the old period T.

Two blocks, of mass m and 2m, are connected by a massless string and slide down an inclined plane at
angle 0. The coefficient of kinetic friction between the lighter block and the plane is u, and that between
the heavier block and the plane is 2. The lighter block leads.

(a) Find the magnitude of the acceleration of the blocks.

(b) Find the tension in the taut string.

A 1000 kg boat is traveling at 100 km/h when its engine is shut off. The magnitude Fy of the drag force

between the boat and the water is proportional to the speed v of the boat, with a drag coefficient { =
70 N -s/m. Find the time it takes the boat to slow to 45 km/h.

Two particles on a line are mutually attracted by a force F = —ar, where a is a constant and r the distance
of separation. At time ¢ = 0, particle A of mass m is located at the origin, and particle B of mass m/4 is
located at r =5.0 cm.

(a) Ifthe particles are at rest at ¢ = 0, at what value of r do they collide?

(b) What is the relative velocity of the two particles at the moment the collision occurs?
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2.8 In drag racing, specially designed cars maximize the friction with the road to achieve maximum acceler-
ation. Consider a drag racer (or ‘dragster’) as shown in figure 2.8, for which the center of mass is close to
the rear wheels.

Figure 2.8: A drag racer or dragster [8], CC BY-SA 3.0.

(a)

(b)
(©

(d)
(e

Draw a free-body diagram of the dragster in side view. Draw the wheels as circles, and approximate
the shape of the dragster body as a triangle with a horizontal line between the wheels, a vertical line
going up from the rear axis, and a diagonal line connecting the top to the front wheels. NB: consider
carefully the direction of the friction force!

On which of the wheels is the frictional force the largest?

The frictional force is maximized if the wheels just don't slip (because, as usual, the coefficient of
kinetic friction is smaller than that of static friction). Find the maximal possible frictional force on
the rear wheels.

Find the maximal possible acceleration of the dragster.

For a coefficient of (static) friction of 1.0 (a fairly realistic value for rubber and concrete) and a track of
500 m, find the maximal velocity a drag racer can achieve at the end of the track when starting from
rest.

2.9 Blocks A, B and C are placed as shown in the figure, and connected by ropes of negligible mass. Both
A and B weigh 20.0 N each, and the coefficient of kinetic friction between each block and the surface is
0.3. The slope’s angle 6 equals 42.0°. The disks in the pulleys are of negligible mass. After the blocks are
released, block C descends with constant velocity.

(@)
(b)
(c)

O]

Find the tension in the rope connecting blocks A and B.
What is the weight of block C?

If the rope connecting blocks A and B were cut, what would be the acceleration of C?
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2.10 The figure below shows a common present-day seesaw design. In addition to a beam with two seats, this
seesaw also contains two identical springs that connect the beam to the ground. The distance between
the pivot and each of the springs is 30.0 cm, the distance between the pivot and each of the seats is 1.50 m.

3.00 m

(a) A4-year-old weighing 20.0 kg sits on one of the seats, causing it to drop by 20.0 cm. Draw a free-body
diagram of the seesaw with the child, in which you include all relevant forces (to scale).

(b) Use your diagram and the provided data to calculate the spring constant of the two springs present
in the seesaw.

2.11 Two marbles of identical mass m and radius r are dropped in a cylindrical container with radius 3r, as
shown in the figure. Find the force exerted by the marbles on points A, B and C, and the force the marbles
exert on each other.

B

<>
3r

2.12 Round fruits like oranges and mandarins are typically stacked in alternating rows, as shown in figure 2.9.
Suppose you have a crate with a square base that is exactly five oranges wide. You stack 25 oranges in the
crate, then put another 16 on top in the holes, and then add a second layer of 25 oranges, held in place
by the sides of the crate. Find the total force on the sides of the crate in this configuration. Assume all
oranges are spheres with a diameter of 8.0 cm and a mass of 250 g.

Figure 2.9: Stacked fruit. (a) Stacked mandarins at a fruit stand [9]. (b) Cross-section of stacked oranges in a crate.
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2.13 Objects with densities less than that of water float, and even objects that have higher densities are ‘lighter’
in the water. The force that’s responsible for this is known as the buoyancy force, which is equal but
opposite to the gravitational force on the displaced water: Fyyoyancy = Pwg Vi, Where py is the water’s
density and V;y the displaced volume. In parts (a) and (b), we consider a block of wood with density
p < pw which is floating in water.

(a) Which fraction of the block of wood is submerged when floating?

(b) You push down the block somewhat more by hand, then let go. The block then oscillates on the
surface of the water. Explain why, and calculate the frequency of the oscillation.

(c) You take out the piece of wood, and now float a piece of ice in a bucket of water. On top of the ice, you
place a small stone. When everything has stopped moving, you mark the water level. Then you wait
till the ice has melted, and the stone has dropped to the bottom of the bucket. What has happened
to the water level? Explain your answer (you can do so either qualitatively through an argument or
quantitatively through a calculation).

(d) Rubber ducks also float, but, despite the fact that they have a flat bottom, they usually do not stay
upright in water. Explain why.

(e) You drop a 5.0 kg ball with a radius of 10 cm and a drag coefficient c¢; of 0.20 in water (viscosity
1.002 mPa-s). This ball has a density higher than that of water, so it sinks. After a while, it reaches a
constant velocity, known as its terminal velocity. What is the value of this terminal velocity?

(f) When the ball in (e) has reached terminal velocity, what is the value of its Reynolds number (see
problem 1.3)?

2.14 A uniform stick of mass M and length L = 1.00 m has a weight of mass m hanging from one end. The
stick and the weight hang in balance on a force scale at a point x = 20.0 cm from the end of the stick. The
measured force equals 3.00 N. Find both the mass M of the stick and m of the weight.

>
X

o

2.15 A uniform rod with a length of 4.25 m and a mass of 47.0 kg is attached to a wall with a hinge at one end.
The rod is held in horizontal position by a wire attached to its other end. The wire makes an angle of 30.0°
with the horizontal, and is bolted to the wall directly above the hinge. If the wire can support a maximum
tension of 1250 N before breaking, how far from the wall can a 75.0 kg person sit without breaking the
wire?

2.16 A wooden bar of uniform density but varying thickness hangs suspended on two strings of negligible
mass. The strings make angles 8, and 6, with the horizontal, as shown. The bar has total mass m and
length L. Find the distance x between the center of mass of the bar and its (thickest) end.
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2.17 Abicycle wheel of radius R and mass M is at rest against a step of height 3R/4, as shown in the figure.Find
the minimum horizontal force F that must be applied to the axle to make the wheel start to rise over the
step.

2.18 A block of mass M is pressed against a vertical wall, with a force F applied at an angle 6 with respect to
the horizontal (-7/2 < 8 < /2), as shown in the figure. The friction coefficient of the block and the wall
is u. We start with the case 8 =0, i.e., the force is perpendicular to the wall.

(a)
(b)

(©
()]
(e

t9)

Draw a free-body diagram showing all forces.

If the block is to remain stationary, the net force on it should be zero. Write down the equations
for force balance (i.e., the sum of all forces is zero, or forces in one direction equal the forces in the
opposite direction) for the x and y directions.

From the two equations you found in (b), solve for the force F needed to keep the book in place.
Now repeat the steps you took in (a)-(c) for a force under a given angle 6, and find the required force F.
For what angle 6 is this minimum force F the smallest? What is the corresponding minimum value of
F?

What is the limiting value of 8, below which it is not possible to keep the block up (independent of
the magnitude of the force)?

2.19 Aspherical stone of mass m = 0.250 kg and radius R = 5.0 cm is launched vertically from ground level with
an initial speed of vy = 15.0 m/s. As it moves upwards, it experiences drag from the air as approximated
by Stokes drag, F = 6xnRv, where the viscosity 7 of air is 1.002 mPa-s.

(a)
(b)

(©
(d)
(e

¢y

(g
(h)

Which forces are acting on the stone while it moves upward?

Using Newton’s second law of motion, write down an equation of motion for the stone (this is a dif-
ferential equation). Be careful with the signs. Hint: Newton’s second law of motion relates force and
acceleration, and the drag force is in terms of the velocity. What is the relation between the two?
Simplify the equation by introducing the characteristic time 7 = %.

Find a particular solution vy (f) of your inhomogeneous differential equation from (19b).

Find the solution vy, () of the homogeneous version of your differential equation.

Use the results from (19¢) and (19d) and the initial condition to find the general solution v(t) of your
differential equation.

From (19¢), find the time at which the stone reaches its maximum height.

From v(t), find h(¢) for the stone (height as a function of time).

Using your answers to (19f) and (19g), find the maximum height the stone reaches.
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3.1. WORK

How much work do you need to do to move a box? Well, that depends on two things: how heavy the box is,
and how far you have to move it. Multiply the two, and you've got a good measure of how much work will be
required. Of course, work can be done in other contexts as well - pulling a spring from equilibrium, or cycling
against the wind. In each case, there’s a force and a displacement. To be fair, we will only count the part of the
force that is in the direction of the displacement (when cycling, you don’t do work due to the fact that there’s
a gravitational force pulling you down, since you don’t move vertically; you do work because there’s a drag
force due to your moving through the air). We define work as the product of the component of the force in
the direction of the displacement, times the displacement itself. We calculate this component by projecting
the force vector on the displacement vector, using the dot product (see appendix A.1 for an introduction in to
vector math):

W=F-x. (3.1

Note that work is a scalar quantity - it has a magnitude but no direction. Work is measured in Joules (J), with
one Joule being equal to one Newton times one meter.

Of course the force acting on our object need not be constant everywhere. Take for example the extension
of a spring: the further you pull, the larger the force gets, as given by Hooke’s law (2.7). To calculate the work
done when extending the spring, we chop up the path (here a straight line) into many small pieces. For each
piece, we approximate the force by the average value on that piece, then multiply with the length of the piece
and sum. In the limit that we have infinitely many pieces, this approximation becomes exact, and the sum
becomes an integral: for one dimension, we thus have:

x2
W= f F(x)dx. (3.2)

X1
Likewise, the path along which we move need not be a straight line. If the path consists of multiple straight
segments, on each of which the force is constant, we can calculate the total work by adding the work done

on the different segments. Taking the limit to infinitely many infinitesimally small segments dr, on each of
which the force is given by the value F(r), the sum again becomes an integral:

r
W:f F(r)-dr. (3.3)
n

Equation (3.3) is the most general version of the definition of work; it simplifies to (3.2) for movement along
a straight line, and to (3.1) if both the path is straight and the force constant'.

11f you feel intimidated by the vector form of equation (3.3), it may help to rewrite it in terms of the magnitudes of the force F(r) and
the (infinitesimal) displacement dr, and the angle 8 between them. In terms of F = |F|, dr = |dr and 6, we have F - dr = Fcosfdr, an
expression you may have seen before for a force not pointing in the same direction as the displacement. If we now make the force and
displacements functions of the position r, then so become the magnitude of the force and the angle, so we can also write equation (3.3)
as

I
W:f ’ F(r)cosO(r)-dr. (3.4)
r
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In general, the work done depends on the path taken - for example, it’s more work to take a detour when
biking from home to work, assuming the air drag is the same everywhere. However, in many important cases
the work done in getting from one point to another depends on the endpoints only. Forces for which this is
true are called conservative forces. As we'll see below, the force exerted by a spring and that exerted by gravity
are both conservative.

Sometimes we will not be interested in how much work is done in generating a certain displacement, but
over a certain amount of time - for instance, a generator generates work by getting something to move, like
a wheel or a valve, but we don't typically care about those details, we want to know how much work we can
expect to get out of the generator, i.e., how much power it has. Power is defined as the amount of work per

unit time, or
P= d—W (3.5)
dr
Power is measured in Joules per second, or Watts (W). To find out how much work is done by an engine that
has a certain power output, we need to integrate that output over time:

szPdt. (3.6)

3.2. KINETIC ENERGY

Newton’s first law told us that a moving object will stay moving unless a force is acting on it - which holds
for moving with any speed, including zero. Now if you want to start moving something that is initially at
rest, you'll need to accelerate it, and Newton’s second law tells you that this requires a force - and moving
something means that you're displacing it. Therefore, there is work involved in getting something moving.
We define the kinetic energy (K) of a moving object to be equal to the work required to bring the object from
rest to that speed, or equivalently, from that speed to rest:

1
K= 5muz. (3.7)

Because the kinetic energy is equal to an amount of work, it is also a scalar quantity, has the same dimension,
and is measured in the same unit. The factor v? is the square of the magnitude of the velocity of the moving
object, which you can calculate with the dot product: v? = v-v. You may wonder where equation (3.7) comes
from. Newton’s second law tells us that F = mdwv/dt, relating the force to an infinitesimal change in the
velocity. In the definition for work, equation (3.3), we multiply the force with an infinitesimal change in the
position dr. That infinitesimal displacement takes an infinitesimal amount of time d¢, which is related to
the displacement by the instantaneous velocity v: dr = vdt. We can now calculate the work necessary to
accelerate from zero to a finite speed:

d d 1
Ksz'drzfm—vmdt:fmlb—vdtzfmv-dvzﬂfd(v-v)z—mvz, (3.8)
dt dt 2 2

where we used that the dot product is commutative and the fact that the integral over the derivative of a
function is the function itself.

Of course, now that we know that the kinetic energy is given by equation (3.7), we no longer need to use a
complicated integral to calculate it. However, because the kinetic energy is ultimately given by this integral,
which is equal to a net amount of work, we arrive at the following statement, sometimes referred to as the
Work-energy theorem: the change in kinetic energy of a system equals the net amount of work done on or
by it (in case of increase/decrease of K):

AK = Whet. 3.9)
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Figure 3.1: Examples of high power resulting in high kinetic energy. (a) Running cheetah, the fastest land animal, which can reach speeds
over 100 km/h in 2-3 seconds, corresponding to an enormous increase in its kinetic energy [10], CC BY-SA 3.0. (b) Allyson Felix running
second in the women’s 4 x 400 relay of the 2012 London Summer Olympics [11], CC BY-SA 3.0. (c) Robert Garrett preparing to throw the
discus at the 1896 Athens Summer Olympics [12]. Unlike the runners, the goal of discus throwing is to maximize the distance, not the
speed, but to get the largest possible distance, the discus must still get the maximal possible kinetic energy.
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3.3. POTENTIAL ENERGY

We already encountered conservative forces in section 3.1. The work done by a conservative force is (by defi-
nition) path-independent; that means that in particular the work done when moving along any closed path”
must be zero:

fF- dr =0. (3.10)

For a conservative force, we can thus define a potential energy difference between points 1 and 2 as the work
necessary to move an object from point 1 to point 2:

r
AUlzz—f F-dr. (3.11)
r

1

Note the minus sign in the definition - this is a choice of course, and you'll see below why we made this choice.
Note also that the potential energy is defined only between two points. Often we will choose a convenient
reference point and calculate the potential energy at any other point with respect to that point. The reference
point is typically either the origin or infinity, if the force happens to be zero at either of these. Let’s suppose
we have set such a point, and know the potential energy difference with that point at any other point in space
- this defines a (scalar) function U(r). If we now want to know the force acting on a particle at r, all we need
to do is take the derivative of U(r) - that is to say the gradient in three dimensions (which simplifies to the
ordinary derivative in one dimension):

F(r)=-VU(r). (3.12)

Equation (3.12) is extremely useful, as it gives us a means to calculate the force, which is a vector quantity,
from the potential energy function, which is a scalar quantity - and therefore much simpler to work with.
For instance, since energies are scalars, they can simply be added, as we’ll do in the next section, whereas
for forces you need to do vector addition. Equation (3.12) also reflects that we are free to choose a reference
point for the potential energy, since the force does not change if we add a constant to the potential energy.

3.3.1. GRAVITATIONAL POTENTIAL ENERGY

We saw in section 2.2.2 that for low altitudes, the gravitational force is given by F; = mg, where g is a vector
of constant magnitude g ~ 9.81m/s? and always points down. Therefore, the gravitational force does no work
when you move horizontally, and if you first move up and then the same amount down again, it doesn’'t do
any net work either, as the two contributions exactly cancel. Fg is therefore an example of a conservative
force, and we can define and calculate the gravitational potential energy Ug between a point at height 0 (our
reference point) and one at height h:

z=h
Ug(h) = —f m(-g)dz=mgh. (3.13)
Z

Note that by choosing a minus sign in the definition of the potential energy, we end up with a positive value
of the energy here.

What about larger distances, i.e., Newton’s law of gravity, equation (2.9)? Well, there the distances are
measured radially, so any movement perpendicular to the radial direction doesn’t matter, and if you move out
and back in again, the net work done is zero, so by the same reasoning as before we again have a conservative
force. This force vanishes at infinity, so it makes sense to set that as a reference point - though notice that that
will make our potential energy always negative in this case:

GMm
Ug(r) = —T (3.14)

where r is the distance between m and M, and M sits at the origin. Of course we can also calculate gravita-

tional potential differences between two distances r; and r, from M: AUG(r1,12) = GMm (ril - riz)

2The integral sign with the circle in equation (3.10) represents an integral over a closed path.
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Emmy Noether (1882-1935) was a German mathematician, who made key
contribution both to the development of abstract algebra and to ideas in
theoretical physics. In physics, she uncovered a deep connection between
symmetry and conservation laws (now known as Noether’s theorem, con-
sidered by many as the most important theorem for the development of
modern physics): for every continuous symmetry of a system, there exists
a conserved quantity. A continuous symmetry is one that leaves a sys-
tem invariant for an arbitrarily large given transformation; for example,
the rotation of a circle under any angle. Applications of Noether’s theorem
include conservation of energy (corresponding to invariance under time
translation, i.e., it doesn't matter where you set ¢ = 0, section 3.4), conser-
vation of momentum (invariance under space translation, i.e., it doesn’t
matter where you put the origin, section 4.2) and conservation of angu-
lar momentum (invariance under space rotation, i.e., it doesn’t matter in
which direction you choose your x-axis, section 5.7). Similar conserva-
tion laws are found in special and general relativity, quantum mechan- Figure 3.2: Emmy Noether [13].
ics, and quantum field theory. Unfortunately, even in the early 20th cen-

tury, women were still excluded from most academic positions. Noether

therefore initially worked for free at the university of Erlangen, getting a

paid position in Goéttingen in 1915 at the invitation of Hilbert and Klein,

who had both been convinced by the quality of her work. Her fame grew

through the 1910s and 1920s, gaining worldwide recognition. Due to her

Jewish descent, she was dismissed from her academic position by the Nazi

government in 1933, and moved to the United States, where she died two

years later at age 53. Various institutes and scholarship programs, mostly

in Germany, are now named in her honor.

3.3.2. SPRING POTENTIAL ENERGY

Like the gravitational force, the Hookean spring force (2.7) also depends on displacement alone, and by the
same reasoning is conservative (notice the pattern?). Calculating its associated potential energy is straight-
forward, and taking the equilibrium position of the spring as the reference point, we find:

Us(x) = %kxz. (3.15)

The minus sign in Hooke’s Law gives us a positive spring potential energy. Note that x stands for displacement
here; as we only consider one-dimensional springs the 1D-version is sufficient.

3.3.3. GENERAL CONSERVATIVE FORCES

In the case of the gravitational and spring force it was easy to reason that they had to be conservative. It is also
easy to see that the friction force is not conservative: if you take a longer path, you need to do more net work
against friction, which you can moreover never recover as mechanical energy. For more complicated systems,
especially in three dimensions, it may not be so easy to see whether a force is conservative. Fortunately, there
is an easy test you can perform: if the curl of a force is zero everywhere, it will be a conservative force, or
expressed mathematically:

VxF=0 < fF-drzO < F=-VU. (3.16)

Is is straightforward to show that if a force is conservative, its curl must vanish: a conservative force can be
written as the gradient of some scalar function U(x), and V x VU (x) = 0 for any function U(x), as you can
easily check for yourself. The proof the other way around is more complicated, and can be found in advanced
mechanics textbooks.
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3.4. CONSERVATION OF ENERGY

Work, kinetic energy and potential energy are all quantities with the same dimension - so we can do arith-
metic with them. One particularly useful quantity is the total energy E of a system, which is simply the sum
of the kinetic and potential energy:

E=K+U. (3.17)

Theorem 3.1 (Law of conservation of energy). Ifall forces in a system are conservative, the total energy in that
system is conserved.

Proof. For simplicity, we'll look at the 1D case (3D goes analogously). Conserved means not changing in
time, so in order to prove the statement, we only need to calculate the time derivative of E and check that it
is always zero.

4 _dk v
dt dr dr
_d(zmv®)  dU dx
ST dar dxdr

—mvdy Fv
- dr

= (F m dv) v
- dr
= 0 by Newton’s second law. (3.18)

O

Conservation of energy means that the total energy of a system cannot change, but of course the potential
and kinetic energy can - and by conservation of total energy we know that they get converted directly into one
another. Exploiting this fact will allow us to analyze and easily solve many problems in classical mechanics -
this conservation law is an immensely useful tool.

Note that conservation of energy is not the same as the work-energy theorem of section 3.2. For the total
energy to be conserved, all forces need to be conservative. In the work-energy theorem, this is not the case.
You can therefore calculate changes in kinetic energy due to the work done by non-conservative forces using
the latter.

U(x)

15[

Figure 3.3: An example of a potential energy landscape. In this figure, the total energy would be represented by a horizontal line; the
kinetic energy by the distance between the potential and total energy. Equlibrium points (dots) occur at extrema of the potential energy,
when its derivative (the force) is zero. The green dots indicate unstable equilibrium points (maxima, where the second derivative is
negative), the orange points metastable equilibria (local minima) and the red point the single globally stable equilibrium of this system.
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3.5. ENERGY LANDSCAPES

In the previous section we proved that the total energy is conserved. In the section before that, we looked at
potential energies. Typically, the potential energy is a function of your position in space. When we plot it as
a function of spatial coordinates, we get an energy landscape, measuring an amount of energy on the vertical
axis. Of course we can also plot the total energy of the system - and since that is conserved, it is the same
everywhere, and thus becomes a horizontal line or plane. Because kinetic energy cannot be negative, any
point where the potential energy is higher than the total energy is not allowed: the system cannot reach this
point. When the potential energy equals the total energy, the kinetic energy (and thus the speed) has to be
zero. Whenever the potential energy is lower than the total energy, there is a positive kinetic energy and thus
a positive speed.

Probably the simplest energy landscape is that of the harmonic oscillator (mass on a spring) - it’s a simple
parabola. The point at which the horizontal line representing the total energy crosses the parabola corre-
sponds to the extrema of the oscillation: these are its turning points. The bottom of the parabola is its mid-
point, and you can immediately see that that’s where the kinetic energy (and thus the speed) will be highest.

Of course you can have more complex energy landscapes than that. In particular, you can have a land-
scape with multiple extrema, see for example figure 3.3. A particle that is being acted upon by forces described
by this potential energy, follows a trajectory in this landscape, which can be visualized as a ball rolling over
the hills and valleys of the landscape. Think back to the harmonic oscillator example. If we let go of a ball in a
parabolic vase at some point on the slope, the ball will roll down and pick up speed, then roll up the opposite
slope and loose speed, until it reaches the same height where its speed will again be zero. The same is true
in more complicated landscapes. Particularly interesting are local maxima. If you put a ball exactly on top of
one of them, it will stay there - itis a fixed point, but an unstable one, as any arbitrarily small perturbation will
push it down. If you let go of a ball at a level above a local maximum, it may hop over it to the next minimum,
but if your initial position (your initial energy) was too low, your ball can get stuck oscillating about a local
minimum - a metastable point.

Energy landscapes are even useful when the total energy is not conserved - for example because of friction
terms. Friction causes energy to dissipate from the system, which is equivalent to having your ball move in
the landscape with friction. For low friction, your ball will oscillate, but get less high every time, until it comes
to rest at the minimum. For high friction, it won't even oscillate, but just get to the minimum - exactly what
an overdamped system in real life does.

3.5.1. WORKED EXAMPLE: THE LENNARD-JONES POTENTIAL
The Lennard-Jones potential energy is a commonly used model to describe the interactions between un-
charged atoms and molecules. This potential energy can be written in two equivalent ways:

a=te|(5)- (3

A
UL](r):m——:‘lE y (319)
where r is the distance between the atoms or molecules, and A, B, € and ¢ are positive constants.

16

(a) Find the dimensions of A, B, € and o.
(b) Express ¢ and o in A and B.

(c) Sketch the potential (in its second form) as a function of r/o, and use this sketch to give a physical inter-
pretation of € and o.

(d) Does the Lennard-Jones potential lead to attractive or repulsive forces at short distances? And what about
long distances?

(e) Find all equilibrium points of this potential energy, and determine their stability.

SOLUTION
(@) [U]=Energy = [U]=M x % X = MT_gz
[A] = Energy x Length12 = [A] = M]{}M

[B] = Energy x Length® = [A] = MT_QS
Because the powers of the terms ((7) 12) and ((%)6) are different, while we add them together, they have

to be dimensionless, so [0] = L and [e] = [U] = MT—éz
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(b)

4¢0'? = Aand 4ec® =B
A_ 6 _(A)I/G
—=0’=0=|— .
B B

By substituting o in the expressions for either A or B we can derive an expression for &:

46% =B
2
_n2 _B
4deA=B" " —>¢e=—.
4A
5 T T T
Ure
al i
3, -
2, -
1, |
Irm = 2160
O Y
_1 T . -
0 1 2

r/'c

Figure 3.4: Sketch of the Lennard-Jones potential energy.

(9]

(d)

(e)

See figure 3.4. Interpretation: € is a measure for the depth of the potential well. o sets the length scale and
therefore the position of the equilibrium point.

Method 1: We calculate the force as minus the derivative of the potential energy:

ou (12012 606)
F=-=1=

_ —48 -
or ri3 r?

For small r we have r~13 >> r~7, so F is positive and therefore repulsive. Conversely, for large r we have
r* B <«<r7 soFis negative and therefore attractive.

Method 2: Use the sketch in (c) to to see that the slope of the potential is negative for small r, which
implies a repulsive force, and the slope of the potential is positive for large r, which implies an attractive
force.

For an equilibrium point we have:
02U _, (12012 606) , ea® (206 1) (3.20)
=—=4|—" "1 = |7 — y .
or ris r’ r\ r6
so there is only one equilibrium point, at
Feq =2"%0. (3.21)
To determine the stability at this point, we consider the second derivative of U(r):
*y =4e (4206 156 12) —4e( 12 156 )— 36-223 5 <0 (3.22)
012 r:req_ 8 14 r:req_ 24/352  271352) g2 :

which means that the equilibrium point is stable. Alternatively, we could have determined the stability
by considering the graph drawn at (c), from which we can see that the equilibrium point corresponds to
a global minimum of the potential energy and hence is stable.
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3.6. PROBLEMS

3.1

3.2

3.3

3.4

(a) Show that, if you ignore drag, a projectile fired at an initial velocity vy and angle 6 has arange R given
by
vj sin26
R=———. (3.23)
g
(b) A target is situated 1.5 km away from a cannon across a flat field. Will the target be hit if the firing
angle is 42° and the cannonball is fired at an initial velocity of 121 m/s? (Cannonballs, as you know,
do not bounce).

(c) To increase the cannon’s range, you put it on a tower of height /. Find the maximum range in this
case, as a function of the firing angle and velocity, assuming the land around is still flat.

You push a box of mass m up a slope with angle 6 and kinetic friction coefficient y. Find the minimum
initial speed v you must give the box so that it reaches a height h.

A uniform board of length L and mass M lies near a boundary that separates two regions. In region 1, the
coefficient of kinetic friction between the board and the surface is ¢, and in region 2, the coefficient is
U2. Our objective is to find the net work W done by friction in pulling the board directly from region 1 to
region 2, under the assumption that the board moves at constant velocity.

Before L
H, H,
region 1 region 2
During IL|
H, H,
After
H, H,

(a) Suppose that at some point during the process, the right edge of the board is a distance x from the
boundary, as shown. When the board is at this position, what is the magnitude of the force of fric-
tion acting on the board, assuming that it's moving to the right? Express your answer in terms of all
relevant variables (L, M, g, x, u1, and u»).

(b) Aswe've seeninsection 3.1, when the force is not constant, you can determine the work by integrating
the force over the displacement, W = [ F(x)dx. Integrate your answer from (a) to get the net work
you need to do to pull the board from region 1 to region 2.

The government wishes to secure votes from car-owners by increasing the speed limit on the highway
from 120 to 140 km/h. The opposition points out that this is both more dangerous and will cause more
pollution. Lobbyists from the car industry tell the government not to worry: the drag coefficients of the
cars have gone down significantly and their construction is a lot more solid than in the time that the
120 km/h speed limit was set.

(a) Suppose the 120 km/h limit was set with a Volkswagen Beetle (c; = 0.48) in mind, and the lobbyist’s
car has a drag coefficient of 0.19. Will the new car need to do more or less work to maintain a constant
speed of 140 km/h than the Beetle at 120 km/h?

(b) What is the ratio of the total kinetic energy released in a full head-on collision (resulting in an imme-
diate standstill) between two cars both at 140 km/h and two cars both at 120 km/h?

(c) The government dismisses the opposition’s objections on safety by stating that on the highway, all
cars move in the same direction (opposite direction lanes are well separated), so if they all move at
140 km/h, it would be just as safe as all at 120 km/h. The opposition then points out that running a




34 3. ENERGY

Beetle (those are still around) at 120 km/h is already challenging, so there would be speed differences
between newer and older cars. The government claims that the 20 km/h difference won’t matter, as
clearly even a Beetle can survive a 20 km/h collision. Explain why their argument is invalid.

3.5 Nuclear fusion, the process that powers the Sun, occurs when two low-mass atomic nuclei fuse together
to make a larger nucleus, releasing substantial energy. Fusion is hard to achieve because atomic nuclei
carry positive electric charge, and their electrical repulsion makes it difficult to get them close enough for
the short-range nuclear force to bind them into a single nucleus. The figure below shows the potential-
energy curve for fusion of two deuterons (heavy hydrogen nuclei, consisting of a proton and a neutron).
The energy is measured in million electron volts (MeV, 1 eV = 1.6 - 10719 J), a unit commonly used in
nuclear physics, and the separation is in femtometers (1 fm = 1071°> m).

U (MeV)
56 7 8 9 10
Ax (fm)

(a) Find the position(s) (if any) at which the force between two deuterons is zero.

(b) Find the kinetic energy two initially widely separated deuterons need to have to get close enough to
fuse.

(c) The energy available in fusion is the energy difference between that of widely separated deuterons
and the bound deutrons after they’ve ‘fallen’ into the deep potential well shown in the figure. About
how big is that energy?

(d) Determine whether the force between two deuterons that are 4 fm apart is repulsive, attractive, or
zero.

3.6 A pigeon in flight experiences a drag force due to air resistance given approximately by F = bv?, where v
is the flight speed and b is a constant.

(a) What are the units of b?
(b) What is the largest possible speed of the pigeon if its maximum power output is P?

(c) By what factor does the largest possible speed increase if the maximum power output is doubled?
3.7 (a) For which value(s) of the parameters «a, § and y is the force given by
F= (xg’y3 + azz,ﬁx4y2,yxz)
conservative?
(b) Find the force for the potential energy given by U(x, y,2) = xy/z—xz/y.

3.8 A point mass is connected to two opposite walls by two springs, as shown in the figure. The distance
between the walls is 2L. The left spring has rest length I; = L/2 and spring constant k; = k, the right
spring has rest length I, = 3L/4 and spring constant k; = 3k.

2L
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3.9

3.10

(a) Determine the magnitude of the force acting on the point mass if it is at x = 0.
(b) Determine the equilibrium position of the point mass.

(c) Find the potential energy of the point mass as a function of x. Use the equilibrium point from (b) as
your point of reference.

(d) If the point mass is displaced a small distance from its equilibrium position and then released, it
will oscillate. By comparing the equation of the net force on the mass in this system with a simple
harmonic oscillator, determine the frequency of that oscillation. (We'll return to systems oscillating
about the minimum of a potential energy in section 8.1.4, feel free to take a sneak peak ahead).

A block of mass m = 3.50 kg slides from rest a distance d down a frictionless incline at angle 8 = 30.0°,
where it runs into a spring of spring constant 450 N/m. When the block momentarily stops, it has com-
pressed the spring by 25.0 cm.

(a) Find d.

(b) What is the distance between the first block-spring contact and the point at which the block’s speed
is greatest?

Playground slides frequently have sections of varying slope: steeper ones to pick up speed, less steep
ones to loose speed, so kids (and students) arrive at the bottom safely. We consider a slide with two steep
sections (angle @) and two less steep ones (angle B). Each of the sections has a width L. The slide has a
coefficient of kinetic friction p.

(a) Kids start at the top of the slide with velocity zero. Calculate the velocity of a kid of mass m at the end
of the first steep section.

(b) Now calculate the velocity of the kid at the bottom of the entire slide.

(c) fL=1.0m, a =30°and u = 0.5, find the minimum value 8 must have so that kids up to 30 kg can
enjoy the slide (Hint: what is the minimum requirement for the slide to be functional)?

(d) A given slide has @ =30°, § =20° and p = 0.5. A young child of 10 kg slides down, while its cousin of
20 kg sits at the bottom. When the sliding kid reaches the end, the two children collide, and together
slide further over the ground. The coefficient of kinetic friction with the ground is 0.70. How far do
the two children slide before they come to a full stop?

In this problem, we consider the anharmonic potential given by
a 2, b 3
Ux) = E(x— X0)" + g(x— X0)°, (3.24)

where a, b and x, are positive constants.

(a) Find the dimensions of a, b and xg.

(b) Determine whether the force on a particle at a position x >> x; is attractive or repulsive (taking the
origin as your point of reference).

(c) Find the equilibrium point(s) (if any) of this potential, and determine their stability.

(d) For b =0, the potential given in equation (3.24) becomes harmonic (i.e., the potential of a harmonic
oscillator), in which case a particle that is initially located at a non-equilibrium point will oscillate.
Are there initial values for x for which a particle in this anharmonic potential will oscillate? If so,
find them, and find the approximate oscillation frequency; if not, explain why not. (NB: As the prob-
lem involves a third order polynomial function, you may find yourself having to solve a third order
problem. When that happens, for your answer you can simply say: the solution x to the problem X).
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3.12

3.13

3.14

3.15

After you have successfully finished your mechanics course, you decide to launch the book into an orbit
around the Earth. However, the teacher is not convinced that you do not need it anymore and asks the
following question: What is the ratio between the kinetic energy and the potential energy of the book in
its orbit?

Let m be the mass of the book, Mg and Ry the mass and the radius of the Earth respectively. The gravita-
tional pull at distance r from the center is given by Newton’s law of gravitation (equation 2.9):

mMeg

Fy(n)=-G—5"F

(a) Find the orbital velocity v of an object at height & above the surface of the Earth.
(b) Express the work required to get the book at height A.
(c) Calculate the ratio between the kinetic and the potential energy of the book in its orbit.

(d) What requires more work, getting the book to the International Space Station (orbiting at /2 = 400 km)
or giving it the same speed as the ISS?

Using dimensional arguments, in problem 1.4 we found the scaling relation of the escape velocity (the
minimal initial velocity an object must have to escape the gravitational pull of the planet/moon/other
object it’'s on completely) with the mass of the radius of the planet. Here, we'll re-derive the result, in-
cluding the numerical factor that dimensional arguments cannot give us.

(a) Derive the expression of the gravitational potential energy, Ug, of an object of mass m due to a gravi-
tational force Fg given by Newton’s law of gravitation (equation 2.9):

GmM |
F;=- 2 r.

Set the value of the integration constant by Ug — 0 as r — oo.

(b) Find the escape velocity on the surface of a planet of mass M and radius R by equating the initial
kinetic energy of your object (when launched from the surface of the planet) to the total gravitational
potential energy it has there.

A cannonball is fired upwards from the surface of the Earth with just enough speed such that it reaches
the Moon. Find the speed of the cannonball as it crashes on the Moon’s surface, taking the gravity of both
the Earth and the Moon into account. Table B.3 contains the necessary astronomical data.

The draw force F(x) of a Turkish bow as a function of the bowstring displacement x (for x < 0) is approx-
imately given by a quadrant of the ellipse

st

Finax X

In rest, the bowstring is at x = 0; when pulled all the way back, it'’s at x = —d.

(a) Calculate the work done by the bow in accelerating an arrow of mass m = 37 g, for d = 0.85 m and
Fmax =360 N.

(b) Assuming that all of the work is converted to kinetic energy of the arrow, find the maximum distance
the arrow can fly. Hint: which variable can you control when shooting? Maximize the distance with
respect to that variable.

(c) Compare the result of (b) with the range of a bow that acts like a simple (Hookean) spring with the
same values of F5x and d. How much further does the arrow shot from the Turkish bow fly than that
of the simple spring bow?
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3.16 A massive cylinder with mass M and radius R is connected to a wall by a spring at its center (see figure).

The cylinder can roll back-and-forth without slipping.

A

(a) Determine the total energy of the system consisting of the cylinder and the spring.

(b) Differentiate the energy of problem (16a) to obtain the equation of motion of the cylinder and spring
system.

(c) Find the oscillation frequency of the cylinder by comparing the equation of motion at (16b) with that
of a simple harmonic oscillator (a mass-spring system).

3.17 A small particle (blue dot) is placed atop the center of a hemispherical mount of ice of radius R (see

3.18

figure). It slides down the side of the mount with negligible initial speed. Assuming no friction between
the ice and the particle, find the height at which the particle loses contact with the ice.

Hint: To solve this problem, first draw a free body diagram, and combine what you know of energy and
forces.

Pulling membrane tubes
The (potential) energy of a cylindrical membrane tube of length L and radius R is given by

Kk 1
Ewbe(R, L) =27RL (E Y + 0) . (3.25)

Here « is the membrane’s bending modulus and o its surface tension.

(a) Find the dimensions of the bending modulus and the surface tension.
(b) Find the forces acting on the tube along its radial and axial direction.

(c) Membrane tubes are often pulled by membrane motors pulling along the axial direction, as sketched
in figure 3.5. For that case, we add the work done by the motors to the total energy of the tube, so we
get:

x 1
Ewbe(R, L) =21RL (E 2 + o) —FL. (3.26)

Show that for a stable tube, the motors need to exert a force of magnitude F = 2xv/2x0.

(d) Can the force of (c) be considered to be an effective spring force? If so, find its associated spring
constant. If not, explain why not.




38

3. ENERGY

mmn%mmmm%mm@

SUULRLLLLLRRLRULLLLRLLLL

<«—F

T =

e

microtubule

G

f departure

Figure 3.5: Cartoon of molecular motors together pulling a membrane tube.



MOMENTUM

4.1. CENTER OF MASS

4.1.1. CENTER OF MASS OF A COLLECTION OF PARTICLES

So far we've only considered two cases - single particles on which a force is acting (like a mass on a spring),
and pairs of particles exerting a force on each other (like gravity). What happens if more particles enter the
game? Well, then we have to calculate the total force, by vector addition, and total energy, by regular addition.
Let’s label the particles with a number a, then the total force is given by:

d? (Za MqTg ) d?

F, =) Fy=) myig=M— =M——rcm, 4.1
total ; a ; ala dr? M dr? cm 4.1)

where we've defined the fotal mass M =Y, m, and the center of mass

1
Fem = A_/I;marw (4.2)

4.1.2. CENTER OF MASS OF AN OBJECT

Equation (4.2) gives the center of mass of a discrete set of particles. Of course, in the end, every object is
built out of a discrete set of particles, its molecules, but summing them all is going to be a lot of work. Let’s
try to do better. Consider a small sub-unit of the object of volume dV (much smaller than the object, but
much bigger than a molecule). Then the mass of that sub-unit is dm = pdV, where p is the density (mass
per unit volume) of the object. Summation over all these masses gives us the center of mass of the object, by
equation (4.2). Now taking the limit that the volume of the sub-units goes to zero, this becomes an infinite
sum over infinitesimal volumes - an integral. So for the center of mass of a continuous object we find:

1
rcm:vap-rdV. (4.3)

Note that in principle we do not even need to assume that the density p is constant - if it depends on the
position in space, we can also absorb that in the discussion above, and end up with the same equation, but
now with p(r). That will make the integral a lot harder to evaluate, but not necessarily impossible. Also note
that the total mass M of the object is simply given by p - V, where V is the total volume, if the density is
constant, and by [, p(r) dV otherwise. Therefore, if the density is constant, it drops out of equation (4.3), and
we can rewrite it as

1
Fem = v f rdv for constant density p. (4.4)
v

Unfortunately, many textbooks introduce the confusing concept of a infinitesimal mass element dmz, instead
of a volume element dV with mass pdV. This strange habit often throws students off, and the concept is
wholly unnecessary, so we won't adapt it here.

Equation (4.3) holds for any continuous object, but it might be confusing if you consider a linear or planar
object - as you may wonder how the density p and volume element dV are defined in one and two dimen-
sions. There are two ways out. One is to say that all physical objects are three-dimensional - even a very
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thin stick has a cross section. If you say that cross section has area A (which is constant along the stick, or
the thin stick approximation would be invalid), and the coordinate along the stick is x, the volume element
simply becomes dV = Adx, and the integral in equation (4.3) reduces to a one-dimensional integral. You can
approach two-dimensional objects in the same way, by giving them a small thickness Az and writing the vol-
ume element as dV = AzdA. Alternatively, you can define one- and two-dimensional analogs of the density:
the mass per unit length A and mass per unit area o, respectively. With those, the one- and two-dimensional
equivalents of equation (4.3) are given by

1 (L 1
Xem = Mfo Axdx, and re, = A—/Ipr-rdA,
where M is still the total mass of the object.

4.1.3. WORKED EXAMPLE: CENTER OF MASS OF A SOLID HEMISPHERE

H
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Figure 4.1: Coordinate system for the calculation of the center of mass for a solid hemisphere.

By symmetry, the center of mass of a solid sphere must lie at its center. The center of mass of a hemisphere
cannot be guessed so easily, so we must calculate it. Of course, it must still lie on the axis of symmetry, but to
calculate where on that axis, we'll use equation 4.4. To carry out the integral, we’ll make use of the symmetry
the system still has, and chop our hemisphere up into thin slices of equal thickness dz, see figure 4.1. The
volume of such a slice will then depend on its position z, and be given by dV = 7r(z)%dz, where r(z) is the
radius at height z. Putting the origin at the bottom of the hemisphere, we easily obtain r(z) = VR? — 22,
where R is the radius of the hemisphere. The position vector r in equation 4.4 simply becomes (0,0, z), so we

get:

1 1 ,]R
“RR2_ A

2 4

—§R (4.5)
=gt .

Zem =

R” — dz= —
fozn( z)z23

2 p3
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The center of mass of the solid hemisphere thus lies at r¢p, = (0,0,3R/8).

4.2. CONSERVATION OF MOMENTUM

In equation (4.1), what is the total force acting on all the particles? Well, that’s the sum of all the forces the
particles exert on each other, plus all external forces: Fiotal = Y. Fint,i + 2.; Fext,i- Now Newton’s third law of
motion tells us that the internal forces come in opposite pairs, so when we sum them, they all cancel, and
the total net force acting on the particles is equal to the sum of the external forces acting on the particles.
Therefore, by equation (4.1), the center of mass of a system of particles obeys Newton’s second law of motion.

What about the momentum of the center of mass? Like the force, the total momentum of the system of
the system is given by the vector sum of the individual particle momenta:

) d d
Ptotalzzpazzmara:d_Zmara:_Mrcm, (4.6)
a a [ dr

so the total momentum of the system equals that of the center of mass. Moreover, as long as the mass of the
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system is conserved, we can rewrite equation (4.1) as

dpP total
dr

Not only does the center of mass of a system of particles obey Newton’s second law of motion, its total mo-
mentum does too. Moreover, unlike in the single-particle case, equation (4.7) has an important consequence
for the case that there is no external force acting on the system. For one particle, that would simply mean that
the momentum does not change - Newton’s first law of motion. But for multiple particles, equation (4.7) tells
us that no external forces means that the tofal momentum does not change. We have therefore arrived at our
second conservation law:

Fiota1 = 4.7

Theorem 4.1 (Law of conservation of momentum). When no external forces act on a system of particles, the
total momentum of the system is conserved.

We derived the law of conservation of momentum by applying both Newton’s second and third laws of
motion, so like conservation of energy, it is not an independent result, but follows from our axioms. Note that
the law allows for the momenta of the individual particles in the system to change, as long as their total stays
the same - this is what happens when you play billiards, and why the number of balls bouncing in a Newton’s
cradle is fixed.

4.3. REFERENCE FRAMES

4.3.1. CENTER OF MASS FRAME

The center of mass need not be fixed in space, so it can have a nonzero velocity, which of course is simply
given by v¢y = Fem- For each of the particles in a multi-particle system, we can decompose its velocity by
writing it as the sum of the center of mass velocity and a velocity relative to the center of mass:

Vg = Vcm + Vg rel- (4.8)

In many applications, the information is in the velocity component relative to the center of mass. After all,
conservation of momentum implies that for a system with no external forces acting on it, the center of mass
velocity cannot change, even if all the individual momenta do change (as happens in collisions). Therefore,
it is often convenient to analyze your system in a frame that moves with the center of mass, known (unsur-
prisingly), as the center of mass frame. In this frame, the center of mass velocity is identically zero, and again
because of conservation of momentum, all other velocities in this frame must sum to zero. The ‘real-world’
frame with nonzero center of mass velocity is referred to as the lab frame.

4.3.2. GALILEAN TRANSFORMATIONS AND INERTIAL FRAMES

As equation (4.8) shows, if you know a particle’s velocity in the center of mass frame, you can easily calculate
the velocity in the lab f