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Introduction

This book is based on a series of lectures given by the author in
his graduate class on star formation, taught from 2009 - 2014 at
UC Santa Cruz. It is intended for graduate students or advanced
undergraduates in astronomy or physics, but does not presume
detailed knowledge of particular areas of astrophysics (e.g., the
interstellar medium or galactic structure). It is intended to provide a
general overview of the field of star formation, at a level that would
enable a student to begin independent research in the area.

This course covers the basics of star formation and ending at the
transition to planet formation. The structure of the course / book is
as follows. Each chapter corresponds roughly to a single lecture. The
first two chapters begin with a discussion of observational techniques,
and the basic phenomenology they reveal. The goal is to familiarize
students with the basic techniques that will be used throughout, and
to provide a common vocabulary for the rest of the course. The next
five chapters provide a similar review of the basic physical processes
that are important for star formation. Again, the goal is to provide a
basis for what follows. The remaining chapters discuss star formation
over a variety of scales, starting with the galactic scale and working
our way down to the scales of individual stars and their disks. The
course concludes with the clearing of disks and the transition to
planet formation.

The "texts" intended to go with these notes are the review articles
"The Big Problems in Star Formation: the Star Formation Rate, Stellar
Clustering, and the Initial Mass Function", Krumholz, M. R., 2014,
Physics Reports, 539, 49, which provides a snapshot of the theoretical
literature as of the most recent time the course was given, and "Star
Formation in the Milky Way and Nearby Galaxies", Kennicutt, R. C.,
& Evans, N. J., 2012, Annual Reviews of Astronomy & Astrophysics,
50, 531, which is more focused on observations. Another extremely
useful reference is the series of review chapters from the Protostars
and Planets VI Conference, which took place in July 2013. Suggested
background readings to accompany most chapters are listed at the
chapter beginning. In addition to these background materials, most

http://adsabs.harvard.edu/abs/2014arXiv1402.0867K
http://adsabs.harvard.edu/abs/2014arXiv1402.0867K
http://adsabs.harvard.edu/abs/2012ARA%26A..50..531K
http://adsabs.harvard.edu/abs/2012ARA%26A..50..531K
http://www.mpia.de/homes/ppvi/
http://www.mpia.de/homes/ppvi/


16

chapters also include "suggested literature": papers from the recent
literature whose content is relevant to the material covered in that
chapter. These readings are included to help students engage with
the active research literature, as well as the more general reviews.

In addition to the text and reading, this book contains five prob-
lem sets, which are interspersed with the chapters at appropriate
locations. Solutions to the problems are included as an Appendix.



Part I

Introduction and
Phenomenology





1
Observing the Cold Interstellar Medium

Suggested background reading:

• Kennicutt, R. C., & Evans, N. J. 2012,
ARA&A, 50, 531, sections 1− 2

This first chapter focuses on observations of interstellar gas. Because
the interstellar clouds that form stars are generally cold, most (but
not all) of these techniques require on infrared, sub-millimeter, and
radio observations. Interpretation of the results is often highly non-
trivial. This will naturally lead us to review some of the important
radiative transfer physics that we need to keep in mind to under-
stand the observations. With this background complete, we will then
discuss the phenomenology of interstellar gas derived from these
observations.

1.1 Observing Techniques

1.1.1 The Problem of H2
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Figure 1.1: Level diagram for the
rotational levels of para- and ortho-H2,
showing the energy of each level. Level
data are taken from http://www.gemini.

edu/sciops/instruments/nir/wavecal/

h2lines.dat.

Before we dive into all the tricks we use to observe the dense ISM,
we have to mention why it is necessary to be so clever. Hydrogen is
the most abundant element, and when it is in the form of free atomic
hydrogen, it is relatively easy to observe. Hydrogen atoms have a
hyperfine transition at 21 cm (1.4 GHz), associated with a transition
from a state in which the spin of the electron is parallel to that of the
proton to a state where it is anti-parallel. The energy associated with
this transition is� 1 K, so even in cold regions it can be excited. This
line is seen in the Milky Way and in many nearby galaxies.

However, at the high densities where stars form, hydrogen tends
to be molecular rather than atomic, and H2 is extremely hard to ob-
serve directly. To understand why, we can look at an energy level
diagram for rotational levels of H2 (Figure 1.1). A diatomic molecule
like H2 has three types of excitation: electronic (corresponding to ex-
citations of one or more of the electrons), vibrational (corresponding
to vibrational motion of the two nuclei), and rotational (correspond-
ing to rotation of the two nuclei about the center of mass). Generally
electronic excitations are highest in energy scale, vibrational are next,

http://adsabs.harvard.edu/abs/2012ARA%26A..50..531K
http://adsabs.harvard.edu/abs/2012ARA%26A..50..531K
http://www.gemini.edu/sciops/instruments/nir/wavecal/h2lines.dat
http://www.gemini.edu/sciops/instruments/nir/wavecal/h2lines.dat
http://www.gemini.edu/sciops/instruments/nir/wavecal/h2lines.dat
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and rotational are the lowest in energy.
For H2, the first thing to notice is that the first excited state, the

J = 1 rotational state, is 175 K above the ground state. Since the
dense ISM where molecules form is often also cold, T ∼ 10 K (as
we will see later), almost no molecules will be in this excited state.
However, it gets even worse: H2 is a homonuclear molecule, and for
reasons of symmetry ∆J = 1 radiative transitions are forbidden in
homonuclear molecules. Indeed, there is no electronic process by
which a hydrogen molecule with odd J to turn into one with even J,
and vice versa, because the allowed parity of J is determined by the
spins of the hydrogen nuclei. We refer to the even J state as para-H2,
and the odd J state as ortho-H2.

The observational significance of this is that there is no J = 1→ 0
emission. Instead, the lowest-lying transition is the J = 2 → 0
quadrupole. This is very weak, because it’s a quadrupole. More
importantly, however, the J = 2 state is 510 K above the ground
state. This means that, for a population in equilibrium at a tem-
perature of 10 K, the fraction of molecules in the J = 2 state is
∼ e−510/10 ≈ 10−22! In effect, in a molecular cloud there are simply
no H2 molecules in states capable of emitting. The very high tem-
perature required to excite the H2 molecular is its low mass: for a
quantum oscillator or rotor the level spacing varies with reduced
mass as m−1/2. It is the low mass of the hydrogen atom that creates
our problems.

Given this result, we see that, for the most part, observations of the
most abundant species can only be done by proxy. Only in very rare
circumstances is it possible to observe H2 directly – usually when
there is a bright background UV source that allows us to see it in UV
absorption rather than in emission. Since these circumstances do not
generally prevail, we are forced to consider alternatives.

1.1.2 Dust Emission

The most conceptually straightforward proxy technique we use to
study star-forming clouds is thermal dust emission. Interstellar gas
clouds are always mixed with dust, and the dust grains emit thermal
radiation which we can observe. The gas, in contrast, does not emit
thermal radiation because it is nowhere near dense enough to reach
equilibrium with the radiation field. Instead, gas emission comes
primarily in the form of lines, which we will discuss a bit later.

Consider a cloud of gas of mass density density ρ mixed with dust
grains at a temperature T. The gas-dust mixture has an absorption
opacity κν to radiation at frequency ν. Although the vast majority of
the mass is in gas rather than dust, the opacity will be almost entirely
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due to the dust grains except for frequencies that happen to match
the resonant absorption frequencies of atoms and molecules in the
gas. Here we follow the standard astronomy convention that κν is the
opacity per gram of material, with units of cm2 g−1, i.e., we assign
the gas an effective cross-sectional area that is blocked per gram of
gas. For submillimeter observations, typical values of κν are ∼ 0.01
cm2 g−1. Figure 1.2 shows a typical extinction curve for Milky Way
dust. 101 102 103 104
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Figure 1.2: Milky Way dust absorption
opacities per unit gas mass as a func-
tion of wavelength λ and frequency
ν in the infrared and sub-mm range,
together with wavelength coverage of
selected observational facilities. Dust
opacities are taken from the model of
Draine (2003) for RV = 5.5.

Since essentially no interstellar cloud has a surface density > 100
g cm−2, absorption of radiation from the back of the cloud by gas
in front of it is completely negligible. Thus, we can compute the
emitted intensity very easily. The emissivity for gas of opacity κν is
jν = κνρBν(T), where jν has units of erg s−1 cm−3 sr−1 Hz−1, i.e. it
describes the number of ergs emitted in 1 second by 1 cm3 of gas into
a solid angle of 1 sr in a frequency range of 1 Hz and

Bν(T) =
2hν3

c2
1

ehν/kBT − 1
(1.1)

is the Planck function.
Since none of this radiation is absorbed, we can compute the inten-

sity transmitted along a given ray just by integrating the emission:

Iν =
∫

jνds = ΣκνBν(T) = τνBν(T) (1.2)

where Σ =
∫

ρds is the surface density of the cloud and τν = Σκν is
the optical depth of the cloud at frequency ν. Thus if we observe the
intensity of emission from dust grains in a cloud, we determine the
product of the optical depth and the Planck function, which is deter-
mined solely by the observing frequency and the gas temperature. If
we know the temperature and the properties of the dust grains, we
can therefore determine the column density of the gas in the cloud in
each telescope beam.

Figure 1.3 show an example result using this technique. The ad-
vantage of this approach is that it is very straightforward. The major
uncertainties are in the dust opacity, which we probably don’t know
better than a factor of few level, and in the gas temperature, which
is also usually uncertain at the factor of ∼ 2 level. The produces a
corresponding uncertainty in the conversion between dust emission
and gas column density. Both of these can be improved substantially
by observations that cover a wide variety of wavelengths, since these
allow one to simultaneously fit the column density, dust opacity
curve, and dust temperature.

Before the Herschel satellite (launched in 2009) such multi-
wavelength observations were rare, because most of the dust emis-
sion was in at far-infrared wavelengths of several hundred µm that



22 notes on star formation

Figure 1.3: Three-color composite
image of IC 5146 taken by the SPIRE
and PACS instruments aboard Herschel.
Red is SPIRE 500 µm, green is SPIRE
250 µm plus PACS 160 µm, and blue
is PACS 70 µm. Image taken from
Arzoumanian et al. (2011).

are inaccessible from the ground. Herschel was specifically targeted
at this wavelength range, and has greatly improved our knowledge of
cloud properties from dust emission.

1.1.3 Dust Absorption

A second related technique is, instead of looking at dust emission,
looking at absorption of background starlight by dust, usually in
the near infrared. The advantages of this compared to dust thermal
emission are: (1) Since stars are bright compared to interstellar dust
grains, and the observations are done in the near IR rather than the
sub-mm, the available resolution is much, much higher. (2) Since
opacity doesn’t depend on temperature, the uncertainty in converting
what we see into a column density is reduced. (3) We know the dust
opacity curve in the infrared considerably better than we know it in
the sub-mm, further reducing the uncertainty.

The major disadvantages are: (1) Due to the comparatively higher
opacity in the infrared, it is only possible to use this technique for
fairly diffuse regions; in denser regions the background stars are com-
pletely extincted. (2) One needs a good, clean field of background
stars to get something like a map, and only a few clouds have such
favorable geometry. Probably the best example of this technique is
the Pipe Nebula (Figure 1.4). In this case the calculation is even sim-
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pler. One measures the extinction of the background star and then
simply divides by the gas opacity to get a column density.

Figure 1.4: Extinction map of the Pipe
Nebula (Lombardi et al., 2006).

1.1.4 Molecular Lines

Much of what we know about star forming gas comes from observa-
tions of line emission. These are usually the most complex measure-
ments in terms of the modeling and required to understand them.
However, they are also by far the richest in terms of the information
they provide. They are also among the most sensitive, since the lines
can be very bright compared to continuum emission. Indeed, the
great majority of what we know about the ISM beyond the local
group comes from studying emission in the rotational lines of the CO
molecule, because these (plus the C ii line found in atomic regions)
are by far the easiest types of emission to detect from the cold ISM.

The simplest line-emitting system is an atom or molecule with
exactly two energy states, but this example contains most of the
concepts we will need. In practice we’re usually concerned with
molecules rather than atoms, because in the dense parts of the ISM
where stars form, most of the gas forms molecules.

Einstein Coefficients and Collision Rates Consider an atom or molecule
of species X with two states are separated by an energy E. Suppose
we have a gas of such particles with number density nX at temper-
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ature T. The number density of atoms in the ground state is n0 and
the number density in the excited state is n1. At first suppose that
this system does not radiate. In this case collisions between the atoms
will eventually bring the two energy levels into thermal equilibrium.
In that case, it is straightforward to compute n0 and n1. They just
follow a Maxwellian distribution, so n1/n0 = e−E/kT , and thus we
have n0 = nX/Z and n1 = nXe−E/kT/Z, where Z = 1 + e−E/kT is the
partition function.

Now let us consider radiative transitions between these states.
There are three processes: spontaneous emission, stimulated emis-
sion, and absorption, which are described by the three Einstein
coefficients. In the radiation and diffuse matter classes you will learn
about these in detail, but in studying star formation, we can often
ignore stimulated emission and absorption, because the ambient
radiation field is so weak that these processes occur at negligible
rates.

The main exceptions to this are (1) when lines become extremely
optically thick, so there are a lot of line photons bouncing around
trapped inside a structure; (2) when the frequency of the transition in
question is at very low energy, and interactions with CMB photons
become significant. However, we will not discuss these cases in detail,
and we’ll just focus on spontaneous emission.

An atom in the excited state can spontaneously emit a photon
and decay to the ground state. The rate at which this happens is
described by the Einstein coefficient A10, which has units of s−1. Its
meaning is simply that a population of n1 atoms in the excited state
will decay to the ground state by spontaneous emission at a rate

(
dn1

dt

)

spon. emis.
= −A10n1 (1.3)

atoms per cm3 per s, or equivalently that the e-folding time for decay
is 1/A10 seconds. For the molecules we’ll be spending most of our
time talking about, decay times are typically at most a few centuries,
which is long compared to pretty much any time scale associated
with star formation. Thus if spontaneous emission were the only
process at work, all molecules would quickly decay to the ground
state and we wouldn’t see any emission.

However, in the dense interstellar environments where stars form,
collisions occur frequently enough to create a population of excited
molecules. Of course collisions involving excited molecules can also
cause de-excitation, with the excess energy going into recoil rather
than into a photon. Since hydrogen molecules are almost always
the most abundant species in the dense regions we’re going to think
about, with helium second, we can generally only consider collisions
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between our two-level atom and those partners. For the purposes of
this exercise (and the problem sets), we’ll take an even simple and
ignore everything but H2.

The rate at which collisions cause transitions between states is a
horrible quantum mechanical problem. We cannot even confidently
calculate the energy levels of single isolated molecules except in the
simplest cases, let alone the interactions between two colliding ones
at arbitrary velocities and relative orientations. Exact calculations
of collision rates are generally impossible. Instead, we either make
due with approximations (at worst), or we try to make laboratory
measurements. Things are bad enough that, for example, we often
assume that the rates for collisions with H2 molecules and He atoms
are related by a constant factor.

Fortunately, as astronomers we generally leave these problems
to chemists, and instead do what we always do: hide our ignorance
behind a parameter. We let the rate at which collisions between
species X and H2 molecules induce transitions from the ground state
to the excited state be

(
dn1

dt

)

coll. exc.
= k01n0n, (1.4)

where n is the number density of H2 molecules and k01 has units of
cm3 s−1. In general k01 will be a function of the gas kinetic temper-
ature T, but not of n (unless n is so high that three-body processes
start to become important, which is almost never the case in the ISM).

The corresponding rate coefficient for collisional de-excitation is
k10, and the collisional de-excitation rate is

(
dn1

dt

)

coll. de−exc.
= −k10n1n. (1.5)

A little thought will convince you that k01 and k10 must have a spe-
cific relationship. Consider an extremely optically thick region where
so few photons escape that radiative processes are not significant. If
the gas is in equilibrium then we have

dn1

dt
=

(
dn1

dt

)

coll. exc.
+

(
dn1

dt

)

coll. de−exc.
= 0 (1.6)

n(k01n0 − k10n1) = 0. (1.7)

However, we also know that the equilibrium distribution is a Maxwellian,
so n1/n0 = e−E/kT . Thus we have

nn0(k01 − k10e−E/kT) = 0 (1.8)

k01 = k10e−E/kT . (1.9)

This argument applies equally well between a pair of levels even for
a complicated molecule with many levels instead of just 2. Thus, we
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only need to know the rate of collisional excitation or de-excitation
between any two levels to know the reverse rate.

Critical Density and Density Inference We are now in a position to
write down the full equations of statistical equilibrium for the two-
level system. In so doing, we will see that we can immediately use
line emission to learn a great deal about the density of gas. In equilib-
rium we have

dn1

dt
= 0 (1.10)

n1 A10 + nn1k10 − nn0k01 = 0 (1.11)
n1

n0
(A10 + k10n)− k01n = 0 (1.12)

n1

n0
=

k01n
A10 + k10n

(1.13)

= e−E/kT 1
1 + A10/(k10n)

(1.14)

This physical meaning of this expression is clear. If radiation is
negligible compared to collisions, i.e. A10 � k10n, then the ratio
of level populations approaches the Maxwellian ratio e−E/kT . As
radiation becomes more important, i.e. A10/(k10n) get larger, the
fraction in the upper level drops – the level population is sub-thermal.
This is because radiative decays remove molecules from the upper
state much faster than collisions re-populate it.

Since the collision rate depends on density and the radiative decay
rate does not, the balance between these two processes depends on
density. This make it convenient to introduce a critical density ncrit,
defined by ncrit = A10/k10, so that

n1

n0
= e−E/kT 1

1 + ncrit/n
. (1.15)

At densities much larger than ncrit, we expect the level population
to be close to the Maxwellian value, and at densities much smaller
than ncrit we expect the upper state to be under-populated relative to
Maxwellian; ncrit itself is simply the density at which radiative and
collisional de-excitations out of the upper state occur at the same
rate.

This process of thermalization has important consequences for the
line emission we see from molecules. The energy emission rate per
molecule from the line is

L
nX

=
EA10n1

nX
(1.16)

= EA10
n1

n0 + n1
(1.17)
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= EA10
n1/n0

1 + n1/n0
(1.18)

= EA10
e−E/kT

1 + e−E/kT + ncrit/n
(1.19)

= EA10
e−E/kT

Z + ncrit/n
, (1.20)

where again Z is the partition function.
It is instructive to think about how this behaves in the limiting

cases n� ncrit and n� ncrit. In the limit n� ncrit, the partition func-
tion Z dominates the denominator, and we get L/nX = EA10e−E/kTZ.
This is just the energy per spontaneous emission times the spon-
taneous emission rate times the fraction of the population in the
upper state when the gas is in statistical equilibrium. This is density-
independent, so this means that at high density you just get a fixed
amount of emission per molecule of the emitting species. The total
luminosity is just proportional to the number of emitting molecules.

For n� ncrit, the second term dominates the denominator, and we
get

L
nX
≈ EA10e−E/kT n

ncrit
. (1.21)

Thus at low density each molecule contributes an amount of light
that is proportional to the ratio of density to critical density. Note
that this is the ratio of collision partners, i.e. of H2, rather than the
density of emitting molecules. The total luminosity varies as this
ratio times the number of emitting molecules.

The practical effect of this is that different molecules tell us about
different densities of gas in galaxies. Molecules with low critical
densities reach the linear regime at low density, and since most of the
mass tends to be at lower density, they probe this widespread, low-
density component. Molecules with higher critical densities will have
more of their emission contributed by higher density gas, and thus
tell us about rarer, higher-density regions. This is all somewhat qual-
itative, since a transition between L/nX ∝ n and L/nX ∼ constant
doesn’t represent a particularly sharp change in behavior. Nonethe-
less, the luminosity ratios of lines with different critical densities are
a very important diagnostic of the overall density distribution in the
ISM.

As a caution, we should note that this is computed for optically
thin emission. If the line is optically thick, we can no longer ignore
stimulated emission and absorption processes, and not all emitted
photons will escape from the cloud. CO is usually optically thick.

Velocity and Temperature Inference We can also use molecular lines
to infer the velocity and temperature structure of gas if the line in
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question is optically thin. For an optically thin line, the width of
the line is determined primarily by the velocity distribution of the
emitting molecules. The physics here is extremely simple. Suppose
we have gas along our line of sight with a velocity distribution ψ(v),
i.e. the fraction of gas with velocities between v and v + dv is ψ(v)dv,
and

∫ ∞
−∞ ψ(v) dv = 0.

For an optically thin line, in the limit where natural and pressure-
broadening of lines is negligible, we can think of emission producing
a delta function in frequency in the rest frame of the gas. There is a
one-to-one mapping between velocity and frequency. Thus emission
from gas moving at a frequency v relative to us along our line of
sight produces emission at a frequency ν ≈ ν0(1− v/c), where ν0 is
the central frequency of the line in the molecule’s rest frame, and we
assume v/c � 1. In this case the line profile is described trivially by
φ(ν) = ψ(c(1− ν/ν0)).

We can measure φ(ν) directly, and this immediately tells us the
velocity distribution ψ(v). In general the velocity distribution of
the gas ψ(v) is produced by a combination of thermal and non-
thermal motions. Thermal motions arise from the Maxwellian ve-
locity distribution of the gas, and produce a Maxwellian profile
φ(ν) ∝ e−(ν−νcen)2/σ2

ν . Here νcen is the central frequency of the line,
which is νcen = ν0(1− v̄/c), where v̄ is the mean velocity of the gas
along our line of sight. The width is σν =

√
kT/µ/c, where T is the

gas temperature and µ is the mean mass of the emitting molecule.
This is just the 1D Maxwellian distribution.

Figure 1.5: Position-integrated velocity
distributions of 12CO (thin lines) and
13CO (thick lines) for the Ophiuchus
and Perseus clouds, measured the
COMPLETE survey (Ridge et al., 2006).
The y axis shows the beam temperature.

Non-thermal motions involve bulk flows of the gas, and can
produce a variety of velocity distributions depending how the cloud
is moving. Unfortunately even complicated motions often produce
distributions that look something like Maxwellian distributions,
just because of the central limit theorem: if you throw together a
lot of random junk, the result is usually a Gaussian / Maxwellian
distribution. Figure 1.5 shows an example of velocity distributions
measured in two nearby star-forming clouds.

Determining whether a given line profile reflects predominantly
thermal or non-thermal motion requires that we have a way of esti-
mating the temperature independently. This can often be done by
observing multiple lines of the same species. Our expression

L
nX

= EA10
e−E/kT

Z + ncrit/n
(1.22)

shows that the luminosity of a particular optically thin line is a
function of the temperature T, the density n, and the number density
of emitting molecules nX. If we observe three transitions of the same
molecule, then we have three equations in three unknowns and we
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can solve for n, nX, and T independently. Certain molecules, because
of their level structures, make this technique particularly clean. The
most famous example of this is ammonia, NH3.

Complications Before moving on it is worth mentioning some compli-
cations that make it harder to interpret molecular line data. The first
is optical depth: for many of the strongest lines and most abundant
species, the line becomes optically thick. As a result observations in
the line show only the surface a given cloud; emission from the back
side of the cloud is absorbed by the front side. One can still obtain
useful information from optically thick lines, but it requires a bit
more thought. We’ll discuss this a bit more in a few weeks when we
discuss the large-scale distribution of giant molecular clouds.

The second complication is chemistry and abundances. The for-
mation and destruction of molecules in the ISM is a complicated
problem, and in general the abundance of any given species depends
on the density, temperature, and radiation environment of the the
gas. At the edges of clouds, certain molecules may not be present
because they are dissociated by the interstellar UV field. At high
densities and low temperatures, many species freeze out onto the
surfaces of dust grains. This is true for example of CO. One often
sees that peaks in density found in dust emission maps correspond
to local minima of CO emission. This is because in the densest parts
of clouds CO goes out of the gas phase and forms CO ice on the sur-
faces of dust grains. Thus one must always be careful to investigate
whether changes in molecular line emission are due to changes in gas
bulk properties (e.g. density, temperature) or due to changes in the
abundance of the emitting species.

1.2 Observational Phenomenology

1.2.1 Giant Molecular Clouds

As we just discussed, we usually can’t observe H2 directly, so we
are forced to do so by proxy. The most common proxy is the rota-
tional lines of CO. These are useful because (1) CO is the single most
abundance molecule in the ISM after H2, (2) CO tends to be found
in the same places as H2, and (3) the CO molecule has a number
of transitions that can be excited at the low temperatures found in
molecular clouds – for example the CO J = 1 state is only 5.5 K above
the ground state. Indeed, the CO molecule is the primary coolant
of molecular gas, so its excitation in effect sets the molecular gas
temperature.

Later in the class we will discuss one infers masses from CO
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emission, and for now we’ll just take it for granted that we can do
so. By mass the Milky Way’s ISM inside the solar circle is roughly
70% H i and 30% H2. The molecular fraction rises sharply toward the
galactic center, reaching near unity in the molecular ring at ∼ 3 kpc,
then falling to ∼ 10% our where we are. In other nearby galaxies the
proportions vary from nearly all H i to nearly all H2.

In galaxies that are predominantly H i, like ours, the atomic gas
tends to show a filamentary structure, with small clouds of molecular
gas sitting on top of peaks in the H i distribution. In galaxies with
large-scale spiral structure, the molecular gas closely tracks the
optical spiral arms. Figures 1.6 and 1.7 show examples of the former
and the latter, respectively. The physical reasons for the associations
between molecular gas and H i, and between molecular clouds and
spiral arms, are an interesting point that we will discuss later.

Figure 1.6: Map of H i in M33

(grayscale), with giant molecular clouds
detected in CO(1 → 0) overlayed (cir-
cles, sized by GMC mass) (Imara et al.,
2011).

As the images show, molecular gas in galaxies that are predom-
inantly atomic tends to be organized into discreet clouds, called
giant molecular clouds (GMCs). These can have a range of masses;
in the Milky Way the most massive are a few million M�, but there
is a spectrum that seems to continue down to at least 104 M�. This
organization into GMCs is clearest where the gas is predominantly
atomic. In regions where molecules make up most of the mass, the
clouds can begin to run together into a predominantly molecular
overall ISM.
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Figure 1.7: Map of CO(1→ 0) emission
in M51, as measured by the PdBI
Arcsecond Whirlpool Survey (PAWS)
project (Schinnerer et al., 2013).

1.2.2 Internal structure of GMCs

Giant molecular clouds are not spheres. They have complex internal
structures. They tend to be highly filamentary and clumpy, with
most of the mass in low density structures and only a little bit in very
dense parts. However, if one computes a mean density by dividing
the total mass by the rough volume occupied by the 12CO gas, the
result is ∼ 100 cm−3. Typical size scales for GMCs are tens of pc – the
Perseus cloud shown is a small one by Galactic standards, but the
most massive ones are found predominantly in the molecular ring, so
our high resolution images are all of nearby small ones.

This complex structure on the sky is matched by a complex veloc-
ity structure. GMCs typically have velocity spreads that are much
larger than the thermal sound speed of ∼ 0.2 km s−1 appropriate to
10 K gas. One can use different tracers to explore the distributions
of gas at different densities in position-position-velocity space – at
every position one obtains a spectrum that can be translated into a
velocity distribution along that line of sight. The data can be slides
into different velocities.

One can also get a sense of density and velocity structure by
combining different molecular tracers. For example, the data set from
COMPLETE (see Figure 1.5) consists of three-dimensional cubes of
12CO and 13CO emission in position-position-velocity space, and
from this one can draw isosurfaces. Generally the 12CO isosurfaces
contain the 13CO ones, as expected since the 12CO traces less dense
gas and the 13CO traces more dense gas. The density increases as one
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Figure 1.8: Map of the Perseus cloud
in 13CO(2 → 1) from Sun et al. (2006).
The top panel shows the emission
integrated over all velocities, while the
bottom panel shows maps integrated
over different velocity channels. In each
sub-panel in the bottom, the numbers at
the top indicate the velocity range (in
km s−1) of the emission shown.



observing the cold interstellar medium 33

moves toward the cloud “center" in both position and velocity, but
the morphology is not simple.

1.2.3 Cores

As we zoom into yet smaller scales, the density rises to 105 − 107

cm−3 or more, while the mass decreases to a few M�. These regions,
called cores, tend to be strung out along filaments of lower density
gas. Morphologically cores tend to be closer to round than the lower-
density material around them. These objects are thought to be the
progenitors of single stars or star systems. Cores are distinguished
not just by simple, roundish density structures, but by similarly
simple velocity structures. Unlike in GMCs, where the velocity
dispersion is highly supersonic, in cores it tends to be subsonic. This
is indicated by a thermal broadening that is comparable to what one
would expect from purely thermal motion.





2
Observing Young Stars

Suggested background reading:

• Kennicutt, R. C., & Evans, N. J. 2012,
ARA&A, 50, 531, section 3

• Krumholz, M. R. 2014, Phys. Rep.,
539, 49, section 2

Having discussed how we observe interstellar gas that is forming
stars, we now turn to the phenomenology of the young stars them-
selves. In this chapter we will first discuss individual young stars,
then resolved young stellar populations, and then end by discussing
unresolved stellar populations in the Milky Way and nearby galaxies.

2.1 Individual Stars

Since we think star formation begins with a core that is purely gas,
we expect to begin with a cloud that is cold and lacks a central point
source. Once a protostar forms, it will begin gradually heating up
the cloud, while the gas in the cloud collapses onto the protostar,
reducing the opacity. Eventually enough material accretes from the
envelope to render it transparent in the near infrared and eventually
the optical, and we begin to be able to see the star directly for the
first time. The star is left with an accretion disk, which gradually
accretes and is then dispersed. Eventually the star contracts onto the
main sequence.

This theoretical cartoon has been formalized into a system of
classification of young stars based on observational diagnostics. At
one end of this sequence lies purely gaseous sources where there is
no evidence at all for the presence of a star, and at the other end lies
ordinary main sequence stars. In between, objects are classified based
on their emission in the infrared and sub-mm parts of the spectrum.
These classifications probably give more of an impression of discrete
evolutionary stages than is really warranted, but they nonetheless
serve as a useful rough guide to the evolutionary state of a forming
star.

Consider a core of mass ∼ 1 M�, seen in dust or molecular line
emission. When a star first forms at its center, the star will be very
low mass and very low luminosity, and will heat up only the dust
nearest to it, and only by a very small amount. Thus the total light

http://adsabs.harvard.edu/abs/2012ARA%26A..50..531K
http://adsabs.harvard.edu/abs/2012ARA%26A..50..531K
http://adsabs.harvard.edu/abs/2014arXiv1402.0867K
http://adsabs.harvard.edu/abs/2014arXiv1402.0867K


36 notes on star formation

output will still be dominated by the thermal emission of the dust at
its equilibrium temperature. The spectral energy distribution of the
source will therefore look just like that which prevailed before the
star formed.

Figure 2.1: An integrated intensity map
in CO(2 → 1), showing material at
velocities between ±30− 50 km s−1 (blue
and red contours, respectively) relative to
the mean (Tafalla et al., 2004). Contours
are spaced at intensities of 1 K km s−1.
The outflow shown is in the Taurus
star-forming region.

However, there might be other indicators that a star has formed.
For example, the density distribution might show a very sharp,
unresolved peak. Another sign that a star has formed might be the
presence of an outflow, which, as we discuss below, all protostars
seem to generate. Outflows coming from the center of a core can
be detected in a few ways. Most directly, one can see bipolar, high
velocity structures in molecular emission (Figure 2.1).

One can also detect indirect evidence of an outflow, from the
presence of highly excited molecular line emission that is produced
by shocks at hundreds of km s−1. One example of such a line is
SiO(2→ 1) line, which is generally seen in gas moving at several tens
of km s−1 with temperatures of several hundred K – this is taken to
be indication that emission in this line is produced in warm shocks.
Since we know of no processes other than formation of a compact
object with a & 100 km s−1 escape velocity that can accelerate gas in
molecular clouds to such speeds, the presence of such an outflow is
taken to indicate that a compact object has formed.

Fig. 1.— SEDs for a starless core (Stutz et al., 2010;
Launhardt et al., 2013), a candidate first hydrostatic
core (Pineda et al., 2011), a very low-luminosity object
(Dunham et al., 2008; Green et al., 2013b), a PACS bright red
source (Stutz et al., 2013), a Class 0 protostar (Stutz et al., 2008;
Launhardt et al., 2013; Green et al., 2013b), a Class I protostar
(Green et al., 2013b), a Flat-SED source (Fischer et al., 2010),
and an outbursting Class I protostar (Fischer et al., 2012). The +
and× symbols indicate photometry, triangles denote upper limits,
and solid lines show spectra.

Tbol begins near 20 K for deeply embedded protostars
(Launhardt et al., 2013) and eventually increases to the ef-
fective temperature of a low-mass star once all of the sur-
rounding core and disk material has dissipated. Chen et al.
(1995) proposed the following Class boundaries in Tbol: 70
K (Class 0/I), 650 K (Class I/II), and 2800 K (Class II/III).
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Fig. 2.— Comparison of Lsmm/Lbol and Tbol for the protostars
in the c2d, GB, and HOPS surveys. The PBRS (§4.2.3) are the
18 Orion protostars that have the reddest 70 to 24 µm colors,
11 of which were discovered with Herschel. The dashed lines
show the Class boundaries in Tbol from Chen et al. (1995) and in
Lsmm/Lbol from Andre et al. (1993). Protostars generally evolve
from the upper right to the lower left, although the evolution may
not be monotonic if accretion is episodic.

With the sensitivity of Spitzer, Class 0 protostars are rou-
tinely detected in the infrared, and Class I sources by α
are both Class 0 and I sources by Tbol (Enoch et al., 2009).
Additionally, sources with flat α have Tbol consistent with
Class I or Class II, extending roughly from 350 to 950 K,
and sources with Class II and IIIα have Tbol consistent with
Class II, implying that Tbol is a poor discriminator between
α-based Classes II and III (Evans et al., 2009).

Tbol may increase by hundreds of K, crossing at least
one Class boundary, as the inclination ranges from edge-on
to pole-on (Jorgensen et al., 2009; Launhardt et al., 2013;
Fischer et al., 2013). Thus, many Class 0 sources by Tbol

may in fact be Stage I sources, and vice versa. Far-infrared
and submillimeter diagnostics have a superior ability to re-
duce the influence of foreground reddening and inclina-
tion on the inferred protostellar properties. At such wave-
lengths foreground extinction is sharply reduced and obser-
vations probe the colder, outer parts of the envelope that
are less optically thick and thus where geometry is less
important. Flux ratios at λ ≥ 70 µm respond primar-
ily to envelope density, pointing to a means of disentan-
gling these effects and developing more robust estimates
of evolutionary stage (Ali et al., 2010; Stutz et al., 2013).
Along these lines, several authors have recently argued that
Lsmm/Lbol is a better tracer of underlying physical Stage
than Tbol (Young and Evans, 2005; Dunham et al., 2010a;
Launhardt et al., 2013).
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Figure 2.2: Sample spectral energy
distributions (SEDs) of protostellar
cores, together with the assigned class,
as collected by Dunham et al. (2014).

These are the earliest indications of star formation we have avail-
able to us. We call objects that show one of these signs, and do not
fall into one of the other categories, class 0 sources. The dividing line
between class 0 and class 1 is that the star begins to produce enough
heating that there is non-trivial infrared emission. Before the advent
of Spitzer and Herschel, the dividing line between class 0 and 1 was
taken to be a non-detection in the IR, but as more sensitive IR tele-
scopes became available, the detection limit went down of course. To-
day, the dividing line is taken to be a luminosity cut. A source is said
to be class 0 if more than 0.5% of its total bolometric output emerges
at wavelengths longer than 350 µm, i.e., if Lsmm/Lbol > 0.5%, where
Lsmm is defined as the luminosity considering only wavelengths of
350 µm and longer (Figure 2.2).

In practice, measuring Lsmm can be tricky because it can be hard to
get absolute luminosities (as opposed to relative ones) correct in the
sub-mm, so it is also common to define the class 0-1 divide in terms
of another quantity: the bolometric temperature Tbol. This is defined
as the temperature of a blackbody that has the same flux-weighted
mean frequency as the observed SED. That is, if Fν is the flux as a
function of frequency from the observed source, then we define Tbol

by the implicit equation
∫

νBν(Tbol) dν∫
Bν(Tbol) dν

=

∫
νFν dν∫
Fν dν

(2.1)
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The class 0-1 dividing line is also sometimes taken to be Tbol = 70 K.
In cases where Lsmm is accurately measured, Tbol is observed to be a
reasonably good proxy for Lsmm/Lbol (Figure 2.3).

Fig. 1.— SEDs for a starless core (Stutz et al., 2010;
Launhardt et al., 2013), a candidate first hydrostatic
core (Pineda et al., 2011), a very low-luminosity object
(Dunham et al., 2008; Green et al., 2013b), a PACS bright red
source (Stutz et al., 2013), a Class 0 protostar (Stutz et al., 2008;
Launhardt et al., 2013; Green et al., 2013b), a Class I protostar
(Green et al., 2013b), a Flat-SED source (Fischer et al., 2010),
and an outbursting Class I protostar (Fischer et al., 2012). The +
and× symbols indicate photometry, triangles denote upper limits,
and solid lines show spectra.

Tbol begins near 20 K for deeply embedded protostars
(Launhardt et al., 2013) and eventually increases to the ef-
fective temperature of a low-mass star once all of the sur-
rounding core and disk material has dissipated. Chen et al.
(1995) proposed the following Class boundaries in Tbol: 70
K (Class 0/I), 650 K (Class I/II), and 2800 K (Class II/III).
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Fig. 2.— Comparison of Lsmm/Lbol and Tbol for the protostars
in the c2d, GB, and HOPS surveys. The PBRS (§4.2.3) are the
18 Orion protostars that have the reddest 70 to 24 µm colors,
11 of which were discovered with Herschel. The dashed lines
show the Class boundaries in Tbol from Chen et al. (1995) and in
Lsmm/Lbol from Andre et al. (1993). Protostars generally evolve
from the upper right to the lower left, although the evolution may
not be monotonic if accretion is episodic.

With the sensitivity of Spitzer, Class 0 protostars are rou-
tinely detected in the infrared, and Class I sources by α
are both Class 0 and I sources by Tbol (Enoch et al., 2009).
Additionally, sources with flat α have Tbol consistent with
Class I or Class II, extending roughly from 350 to 950 K,
and sources with Class II and IIIα have Tbol consistent with
Class II, implying that Tbol is a poor discriminator between
α-based Classes II and III (Evans et al., 2009).

Tbol may increase by hundreds of K, crossing at least
one Class boundary, as the inclination ranges from edge-on
to pole-on (Jorgensen et al., 2009; Launhardt et al., 2013;
Fischer et al., 2013). Thus, many Class 0 sources by Tbol

may in fact be Stage I sources, and vice versa. Far-infrared
and submillimeter diagnostics have a superior ability to re-
duce the influence of foreground reddening and inclina-
tion on the inferred protostellar properties. At such wave-
lengths foreground extinction is sharply reduced and obser-
vations probe the colder, outer parts of the envelope that
are less optically thick and thus where geometry is less
important. Flux ratios at λ ≥ 70 µm respond primar-
ily to envelope density, pointing to a means of disentan-
gling these effects and developing more robust estimates
of evolutionary stage (Ali et al., 2010; Stutz et al., 2013).
Along these lines, several authors have recently argued that
Lsmm/Lbol is a better tracer of underlying physical Stage
than Tbol (Young and Evans, 2005; Dunham et al., 2010a;
Launhardt et al., 2013).

4

Figure 2.3: Bolometric temperatures
of protostellar cores as compared to
sub-mm to bolometric luminosity ratios
(Dunham et al., 2014). The samples
shown are from three different surveys
as indicated in the legend.

Once protostars reach class I, their evolution into further classes
is defined in terms of the infrared spectral energy distribution. The
motivating cartoon is a follows. At early times, the envelope of dust
around the protostar is very optically thick at visible and even near
infrared wavelengths. As a result, we don’t get to see the stellar
photosphere at all. All the radiation is absorbed by the envelope. The
dust is in thermal equilibrium, so it re-radiates that energy. Since
the radius of the sphere of dust is much larger than that of the star,
and the luminosity radiated by the dust must ultimately be equal
to that of the star, this emission must be at lower temperature and
thus longer wavelengths. Thus as the radiation propagates outward
through the dust it is shifted to longer and longer wavelengths.
However, dust opacity decreases with wavelength (for reasons that
will be / were discussed in the ISM class), and thus eventually the
radiation is shifted to wavelengths where the remaining dust is
optically thin, and it escapes. What we observe is therefore not a
stellar photosphere, but a "dust photosphere".

Given this picture, the greater the column density of the dust
around the star, the further it will have to diffuse in wavelength in
order to escape. Thus the wavelength at which the emission peaks, or,
roughly equivalently, the slope of the spectrum at a fixed wavelength,
is a good diagnostic for the amount of circumstellar dust. Objects
whose SEDs peak closer to the visible are presumed to be more
evolved, because they have lost more of their envelopes.

More formally, this classification scheme was based on fluxes as
measured by the IRAS satellite. We define

αIR =
d log(λFλ)

d log λ
, (2.2)

as the infrared spectral index, and in practice we measure αIR using
two points from the IRAS SED: 2.2 µm and 10− 25 µm. More positive
values of αIR indicate SEDs that peak at longer wavelengths, further
into the IR, while more negative values indicate SEDs that peak
closer to visible. We define sources with αIR ≥ 0.0, i.e. rising at longer
wavelengths from 2 to 25 µm, as class I sources. Alternately, in terms
of bolometric temperature, the class I to class II transition is generally
taken to be at 650 K (Figure 2.2).

As more of the envelope accretes, it eventually becomes optically
thin at the peak emitting wavelengths of the stellar photosphere. In
this case we see the stellar blackbody spectrum, but there is also ex-
cess infrared emission coming from the disk of warm, dusty gas that
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still surrounds the star. Thus the SED looks like a stellar blackbody
plus some extra emission at near- or mid-infrared wavelengths. Stars
in this class are also know as classical T Tauri stars, named for the
first object of the class, although the observational definition of a T
Tauri star is somewhat different than the IR classification scheme, so
the alignment may not be perfect.

In terms of αIR, these stars have indices in the range −1.6 <

αIR < 0. (Depending on the author, the breakpoint may be placed at
−1.5 instead of −1.6. Some authors also introduce an intermediate
classification between 0 and I, which they take to be −0.3 < αIR <

0.3.) A slope of around −1.6 is what we expect for a bare stellar
photosphere without any excess infrared emission coming from
circumstellar material. Since the class II phase is the last one during
which there is a disk of any significant mass, this is also presumably
the phase where planet formation must occur.

The final class is class III, which in terms of SED have αIR < −1.6.
Stars in this class correspond to weak line T Tauri stars. The SEDs of
these stars look like bare stellar photospheres in the optical through
the mid-infrared. If there is any IR excess at all, it is in the very far IR,
indicating that the emitting circumstellar material is cool and located
far from the star. The idea here is that the disk around them has
begun to dissipate, and is either now optically thin at IR wavelengths
or completely dissipated, so there is no strong IR excess.

However, these stars are still not mature main sequence stars. First
of all, their temperatures and luminosities do not correspond to those
of main sequence stars. Instead, they are still puffed up to larger
radii, so they tend to have either lower effective temperatures or
higher bolometric luminosities (or both) than main sequence stars of
the same mass. Second, they show extremely high levels of magnetic
activity compared to main sequence stars, producing high levels of
x-ray emission. Third, they show lithium absorption lines in their
atmospheres. This is significant because lithium is easily destroyed by
nuclear reactions at high temperatures, and no main sequence stars
with convective photospheres show Li absorption. Young stars show
it only because there has not yet been time for all the Li to burn.

2.2 Statistics of Resolved Stellar Populations

Young stars tend to be born in the presence of other stars, rather
than by themselves. This is not surprising: the gas cores from which
they form are very small fragments, ∼ 1 M�, inside much larger,
∼ 106 M� clouds. It would be surprising if only one tiny fragment
formed. In this next part of the class, we’ll pull back to somewhat
larger scales to look at the formation of stars in groups.
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2.2.1 Multiplicity

The smallest scale we can look at beyond a single star is multiple
systems. When we do so, we find that a significant fraction of stars
are members of multiple systems – usually binaries, but also some
triples, quadruples, and larger. The multiplicity is a strong function
of stellar mass. The vast majority of B and earlier stars are multiples,
while the majority of G, K, and M stars are singles. This means that
most stars are single, but that most massive stars are multiples. The
distribution of binary periods is extremely broad, ranging from
hours to Myr. The origin of the distribution of periods, and of the
mass-dependence of the multiplicity fraction, is a significant area of
research in star formation theory.

2.2.2 The Initial Mass Function

If we observe a cluster of stars, the simplest thing to do is simply
count up how many of them there are as a function of mass. The
result is one of the most important objects in astrophysics, the initial
mass function (IMF). This requires a bit of modeling, since of course
what we can actually measure is a luminosity function, not a mass
function. The problem of determining the IMF can be tackled in
two ways: either by looking at stars in the solar neighborhood, or by
looking at individual star clusters.

Looking at stars in the Solar neighborhood has the advantage that
there are a lot of them compared to what you see in a clusters, so
one gets a lot of statistical power. One also don’t have to worry about
two things that a major headache for studies of young clusters. First,
young clusters usually have remaining bits of gas and dust around
them, and this creates reddening that can vary with position and has
to be modeled. Second, for clusters younger than ∼ 10 Myr, the stars
are not on the main sequence yet. Since young stars are brighter than
main sequence stars of the same mass, this produces and age-mass
degeneracy that you have to break by obtaining more information
that just luminosities (usually temperatures or colors), and then
making pre-main sequence evolutionary models. Protostellar evolution is covered in

Chapter 18.On the other hand, if we want to talk about the IMF of massive
stars, we’re pretty much stuck looking at young clusters. The same is
also true for brown dwarfs. Since these fade with time, it is hard to
find a large number of them outside of young clusters. An additional
advantage of star clusters is that they are chemically homogenous, so
you don’t have to worry about chemical variations masquerading as
mass variations.

A big problem for either method is correction for unresolved
binaries, particularly at the low mass end, where the companions of
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brighter stars are very hard to see. When one does all this, one get
results that look like this pretty much no matter where one looks
(Figure 2.4). The basic features we see are a break peak centered There have been recent claims of IMF

variation extragalactically, but we’ll get
to that later.

around a few tenths of M�, with a fairly steep fall off at higher
masses that comes to resemble a powerlaw. There is also a fall-off at
lower masses, although some authors argue for a second peak in the
brown dwarf regime – this is still controversial, both because brown
dwarfs are hard to find, and because their evolutionary tracks are less
secure than those for more massive stars.AA48CH10-Meyer ARI 23 July 2010 15:48
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Figure 3
The derived present-day mass function of a sample of young star-forming regions (Section 2.3), open clusters spanning a large age
range (Section 2.2), and old globular clusters (Section 4.2.1) from the compilation of G. de Marchi, F. Parsesce, and S. Portegies Zwart
(submitted). Additionally, we show the inferred field star initial mass function (IMF) (Section 2.1). The gray dashed lines represent
“tapered power-law” fits to the data (Equation 6). The black arrows show the characteristic mass of each fit (mp), the dotted line indicates
the mean characteristic mass of the clusters in each panel, and the shaded region shows the standard deviation of the characteristic
masses in that panel (the field star IMF is not included in the calculation of the mean/standard deviation). The observations are
consistent with a single underlying IMF, although the scatter at and below the stellar/substellar boundary clearly calls for further study.
The shift of the globular clusters characteristic mass to higher masses is expected from considerations of dynamical evolution.

2008; Kruijssen 2009). Hence, there is an expected, and observed, correlation of mp with the cluster
relaxation time (G. de Marchi, F. Paresce, and S. Portegies Zwart, submitted).

2.3. Young Clusters and Associations
2.3.1. Primordial and dynamical mass segregation. An additional complication in IMF studies
comes from the spatial distribution of stars within a cluster or association. The most massive stars
in large, young clusters are often located in a cluster’s innermost regions. This phenomenon is
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Figure 2.4: Stellar initial mass func-
tions inferred for a wide variety of
regions in the Milky Way, with the type
of region as indicated in the legend.
The dashed lines represents powerlaw
fits to the observations in each region,
with the black arrows indicating the
best fit turnover mass.

The basic features illustrated in Figure 2.4 are a break peak cen-
tered around a few tenths of M�, with a fairly steep fall off at higher
masses that can be reasonably well-fit by a powerlaw. There is also
a fall-off at lower masses, although some authors argue for a second
peak in the brown dwarf regime – this is still controversial, both be-
cause brown dwarfs are hard to find, and because their evolutionary
tracks are less secure than those for more massive stars. See the reviews by Bastian et al. (2010)

and Offner et al. (2014) for a thorough
listing of alternate parameterizations.

The functional form shown in Figure 2.4 has been parameterized
in a number of ways. Two of the most popular are from Kroupa
(2001, 2002) and Chabrier (2003, 2005). Both of these fit the field star
data, and the data individual clusters, within the error bars. The
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functional form for Chabrier is

dn
d log m

∝





exp
[
− (log m−log 0.22)2

2×0.572

]
, m < 1

exp
[
− (− log 0.22)2

2×0.572

]
m−1.35, m ≥ 1

, (2.3)

while the functional form for Kroupa is In both equations (2.3) and (2.4) the
mass m is in units of M�.

dn
d log m

∝





(
m
m0

)−α0
, m0 < m < m1(

m1
m0

)−α0
(

m
m1

)−α1
, m1 < m < m2[

∏i=1 n
(

mi
mi−1

)−αi
] (

m
mn

)−αn
, mn−1 < m < mn

,

(2.4)
with

α0 = −0.7± 0.7, 0.01 < m/M� < 0.08
α1 = 0.3± 0.5, 0.08 < m/M� < 0.5
α2 = 1.3± 0.3, 0.5 < m/M� < 1
α3 = 1.3± 0.7, 1 < m/M�

. (2.5)

2.3 Unresolved Stellar Populations and Extragalactic Star For-
mation

What about cases where we can’t resolve the stellar population, as is
usually the case for extragalactic work? What can we learn about star
formation in that case? The answer turns out to be that the thing we
can most directly measure is the star formation rate, and that doing
so yields some very interesting results.

2.3.1 Measuring the Star Formation Rate: General Theory

The first issue here is how we distinguish young stars beyond the
Galaxy, since we can’t obtain spectra, or even colors, for individual
protostars as we can in the Milky Way. The answer is pretty much
always the same: we exploit the fact that massive stars have short
lifetimes, so if we measure the total number of massive stars in a
galaxy, or some patch of a galaxy, then we are effectively measuring
we many such stars formed there over some relatively short period.
We can formalize this theory a bit as follows.

Consider stars born with an initial mass function dn/dm. The
mean stellar mass for this IMF is m. A time t after a star is born, the
star has a luminosity L(m, t), where the luminosity can be bolometric,
or integrated over some particular filter or wavelength range. First
consider the simplest possible case, of a population of stars all born
at the same instant at time 0. A time t later, the luminosity of the
stars is

L(t) = N∗
∫ ∞

0
dm L(m, t)

dn
dm

, (2.6)
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where N∗ is the total number of stars, and we have normalized the
IMF so that

∫
(dn/dm)dm = 1. That is, we simply integrate the

luminosity per star at time t over the mass distribution of stars.
Now consider a region, e.g., a galaxy, forming stars at a rate Ṁ∗(t);

in terms of number, the star formation rate is Ṅ∗(t) = Ṁ∗(t)/m. To
find the luminosity of the stellar population that is present today, we
simply take the expression we just derived and integrate over all the
possible stellar ages. Thus we have

L =
∫ ∞

0
dt

Ṁ∗(t)
m

∫ ∞

0
dm L(m, t)

dn
dm

. (2.7)

By itself this doesn’t do us much good. The right hand side de-
pends on the full star formation history Ṁ∗(t). However, let us
assume that Ṁ∗ is constant in time. The integral still converges as
long as L(m, t) reaches 0 after a finite time. In this case the integrals
over m and t are separable, and we can rearrange them to

L =
Ṁ∗
m

∫ ∞

0
dm

dn
dm

∫ ∞

0
dt L(m, t) ≡ Ṁ∗

m

∫ ∞

0
dm

dn
dm
〈Ltlife〉m (2.8)

In the final step we defined a new quantity 〈Ltlife〉m, which has a
simple physical meaning. It is simply the total amount of radiant
energy that a star of mass m puts out over its lifetime.

Notice the expression on the right depends only on the constant
star formation rate Ṁ∗, the energy output 〈Ltlife〉m, which we can
generally calculate from stellar structure and evolution theory, and
the IMF dn/dm. Thus if we measure L and use the “known" values
of 〈Ltlife〉m and dn/dm, we can measure the star formation rate. The
physical picture to have here is that we’re looking at a stellar pop-
ulation where there is equilibrium between new stars forming and
old stars dying, so the total number of stars present and contribut-
ing to the light at any time is proportional to the rate at which they
are forming. Thus a measurement of the light tells us about the star
formation rate.

Is our assumption that Ṁ∗ is constant reasonable? That depends
on the system we’re looking it. If we’re examining an entire galaxy
that is forming stars quiescently and has not been externally per-
turbed, it is probably reasonable to assume that Ṁ∗ cannot vary on
timescales much shorter than the dynamical time of the galaxy, which
is ∼ 200 Myr for a galaxy like the Milky Way. If we choose to observe
the luminosity at a wavelength where the light is coming mostly from
stars with lifetimes shorter than this, so that L(m, t) reaches 0 (at
least to good approximation) at times much less than 200 Myr, then
assuming constant Ṁ∗ is quite reasonable.

However, it is always important to keep this constraint in mind
– we can only measure the star formation rate as long as we believe
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it to be constant on timescales long compared to the lifetimes of the
stars responsible for generating the luminosity we’re measuring. One
can actually see how the ratio of luminosity to star formation rate
behaves in systems that do not satisfy the constraint by generating
synthetic stellar populations. In the simple case of star formation that
turns on at some specific time, the luminosity just increases linearly
in time until the first stars star evolving off the main sequence, and
only becomes constant after ∼ 4 Myr.

Figure 2.5: Bolometric luminosity
versus time for stellar populations as
a function of population age. The top
panel shows the luminosity normalized
by the star formation rate, while
the bottom shows the luminosity
normalized by the total stellar mass.
Figure taken from Krumholz & Tan
(2007).

The need to satisfy this constraint generally drives us to look for
luminosities that are dominated by very massive stars, because these
have very short lifetimes. Thus we will begin by discussing what
luminosities we can measure that are particularly good at picking out
massive stars. I should mention that this is far from an exhaustive
list – people have come up with huge numbers of ways to infer star
formation rates for galaxies at different redshifts. The accuracy of
these techniques is highly variable, and in some cases is based on
little more than a purely empirical calibration. We will just focus on
the most reliable and widely used techniques which we can apply to
relatively nearby galaxies.

2.3.2 Recombination Lines

Probably the most common technique, and the only one that can be
used from the ground for most galaxies, is hydrogen recombination
lines. To illustrate why this is useful, it is helpful to look at some
galaxy spectra (Figure 2.6). As we move from quiescent E4 and SB
galaxies to actively star-forming Sc and Sm/Im galaxies, there is a
striking different in the prominence of emission lines.

In the example optical spectra, the most prominent lines are the
Hα line at 6563 Å and the Hβ at 4861 Å. These are lines produced by
the 3 → 2 and 4 → 2, respectively, electronic transitions in hydrogen
atoms. In the infrared (not shown in the figure) are the Paschen α

and β lines at 1.87 and 1.28 µm, and the Bracket α and γ lines at 4.05

and 2.17 µm. These come from the 4 → 3, 5 → 3, 5 → 4, and 7 → 4
transitions.

Why are these related to star formation? The reason is that these
lines come from H ii regions: regions of ionized gas produced
primarily by the ionizing radiation of young stars. Since only massive
stars (lager than 10 − 20 M� produce significant ionizing fluxes),
these lines indicate the presence of young stars. Within these ionized
regions, one gets hydrogen line emission because atoms sometimes
recombine to excited states rather than to the ground state. These
excited atoms then radiatively decay down to the ground state,
producing line emission in the process.
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Figure 2.6: Example spectra of galaxies
of varying Hubble type, from the atlas
of Kennicutt (1992). In each panel,
the galaxy name and Hubble type are
listed.
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Obtaining a numerical conversion between the observed lumi-
nosity in one of these lines and the star formation rate is a four-step
process. First, we do the quantum statistical mechanics calculation
to compute the yield of photons in the various lines per recombi-
nation. This can be done very precisely from first principles, using
methods discussed in the diffuse matter class. Second, we equate
the total recombination rate to the total ionization rate, and use this
to determine the total rate of emission for the line in question per
ionizing photon injected into the nebula. Third, we use stellar models
to compute 〈Liontlife〉m, the total ionizing photon production by a star
of mass m over its lifetime. Four, we evaluate the integral over the
IMF given by equation (2.8) to obtain the numerical conversion be-
tween star formation rate and luminosity. As of this writing, the most
up-to-date resource for the results of such calculations is Kennicutt &
Evans (2012).

Note that there are significant uncertainties in these numbers, the
biggest one of which is the IMF. The reason the IMF matters so much
is that the light is completely dominated by the massive stars, while
the mass is all on the low mass stars we’re not observing directly.
To give an example, for a Chabrier IMF stars more massive than 15

M� contribute 99% of the total ionizing flux for a stellar population,
but constitute less than 0.3% of the mass. Thus we are extrapolating
by at least a factor of 30 in mass, and small changes in the IMF can
produce large changes in the resulting ionizing luminosity to mass
conversion.

Another complication is that some of the line emission is likely
to be absorbed by dust grains within the source galaxy, and some
of the ionizing photons are absorbed by dust grains rather than
hydrogen atoms. Thus, one must make an extinction correction to the
luminosities.

2.3.3 Radio Free-Free

A closely related method for measuring massive stars is to use radio
free-free emission. An H ii region emits not only optical lines from
transition between energy levels of hydrogen and other atoms, it
also emits free-free radiation in the radio. This is radiation produced
by bremsstrahlung: free electrons scattering off ions, and emitting
because accelerating charges emit.

Bremsstrahlung is a topic for the radiative processes class, and its
application to H ii regions is covered in the diffuse matter class, but
the relevant point for us is that the flux from the H ii region at radio
wavelengths is proportional to neni, i.e. the product of the electron
and ion densities. Since the recombination rate is also proportional
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to nenH+ , and the recombination rate just equals the ionization rate,
this means that the free-free flux is directly proportional to the rate at
which ionizing photons are injected into the H ii region. Thus one can
also do the same trick as above with a radio atlas of Hii regions. One
converts between free-free emission rate and ionization rate based on
the physics of H ii regions, and then converts between ionization rate
and star formation rate using stellar structure and the IMF.

The free-free method is great in that radio emission is not ob-
scured by dust, so one of the dust absorption corrections goes away.
(The correction for absorption of ionizing photons by dust grains
within the H ii region remains, but this is generally only a few tens
of percent.) This makes it more reliable that recombination lines, and
also makes it the only technique we can use in the Milky Way, where
obscuration is a big problem.

The downside is that the free-free emission is quite weak, and
separating free-free from other sources of radio emission requires
the ability to resolve individual H ii regions. Thus this technique
is really only feasible for the Milky Way and a few other nearby
galaxies, since those are the only places where we can detect and
resolve individual H ii regions.

2.3.4 Infrared

The recombination line methods work well for galaxies that are
like the Milky Way, but considerably less well for galaxies that are
dustier and have higher star formation rates. This is because the
dust extinction problem becomes severe, so that the vast majority
of the Balmer emission may be absorbed. The Paschen and Bracket
emission is much less sensitive to this, since those lines are in the IR,
but even they can be extincted in very dusty galaxies, and they are
also much harder to use than Hα and Hβ because they are 1− 2 orders
of magnitude less bright intrinsically.

Instead, for dusty sources the tracer of choice is far infrared. The
idea here is that, in a sufficiently dusty galaxy, essentially all stellar
light will eventually be absorbed by dust grains. These grains will
then re-emit the light in the infrared. As a result, the SED peaks
in the IR. In this case one can simply use the total IR output of the
galaxy as a sort of calorimeter, measuring the total bolometric power
of the stars in that galaxy. In galaxies or regions of galaxies with
high star formation rates, which tend to be where Hα and other
recombination line techniques fail, this bolometric power tends to be
completely dominated by young stars. Since these stars die quickly,
the total number present at any given time is simply proportional to
the star formation rate.
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The derivation of the conversion in this case is very straightfor-
ward – the L(m, t) that is required is just the total bolometeric output
of the stars. Again, results are given in Kennicutt & Evans (2012), and
Problem Set 1 includes a calculation to be performed by the student.
Of course IR emission has its its problems too. First of all, it misses
all the optical and UV radiation from young stars that is not absorbed
within the galaxy. This is most if the output light for galaxies like
the Milky Way, so IR is not a good indicator for it, although it can
be good indicator for particular small regions that are much more
opaque.

A second problem is that if the SFR is low, then young stars may
not dominate the bolometric output, so the IR indicator can given an
artificially high SFR. A more common problem for the dusty galaxies
where IR tends to be used most is AGN contamination. If an AGN
contributes significantly to the bolometric output of a galaxy, then
that can masquerade as star formation. This can be hard to detect in
a very dusty galaxy where most of the AGN light, light most of the
starlight, is absorbed and reprocessed by dust.

2.3.5 Ultraviolet

Yet another way of measuring star formation rates is by the broad-
band UV flux at wavelengths that are longer than 912 Å (correspond-
ing to 13.6 eV, the energy required to ionized hydrogen) but shorter
than where old stars put out most of their light. This range is roughly
1250− 2500 Å. This light does not ionize hydrogen, so unlike shorter
wavelengths it can get out of a galaxy.

For galaxies in the right redshift range this light gets redshifted
into the visible, so we can see it from the ground. However, for local
galaxies these wavelengths are only accessible from space (or least a
balloon or rocket). For this reason this band was not used much until
the launch of the GALEX satellite, which has detectors operating at
1300-1800 and 1800-2800 Å(the FUV and NUV bands, respectively).
Sadly, the FUV detector on GALEX died, so, while it produced a
great data set, we won’t be getting any more of that any time soon.

Emission in these bands is dominated by stars with masses ∼ 5
M� and up, which have lifetimes of ∼ 50 Myr, so the total FUV light
measures the star formation rate integrated over this time scale.

UV suffers from the same problems with dust extinction as Hα,
and they are perhaps even more severe, since opacity increases as
frequency does. On the other hand, the UV is less sensitive to the
IMF than Hα, because ionizing photons come from hotter and thus
more massive stars than UV ones. One more potential concern with
UV is that 50 Myr is getting uncomfortably close to the typical orbital
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periods of galaxies, and so one can legitimately worry about whether
the SFR has really be constant over the required timescale. This prob-
lem becomes even worse if one looks at small-subregions of galaxies,
rather than galaxies as a whole. One also has to worry about stars
moving from their birth locations over such long timescales.

2.3.6 Combined Estimators

As one might guess from the discussion thus far, none of the indica-
tors by itself is particularly good. Recombination lines and UV get
into trouble in dusty galaxies because they miss light from young
stars that is obscured by dust, while IR gets into trouble because it
misses light from young stars that is not dust-obscured. This suggests
that the best way to proceed is to combine one or more estimators,
and this is indeed the current state of the art. A number of combined
indicators are suggested in Kennicutt & Evans (2012).
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Chemistry and Thermodynamics

Suggested background reading:

• Krumholz, M. R. 2014, Phys. Rep.,
539, 49, sections 3.1− 3.2

Suggested literature:

• Glover, S. C. O., Federrath, C., Mac
Low, M.-M., & Klessen, R. S. 2010,
MNRAS, 404, 2

Having completed our whirlwind tour of the observational phe-
nomenology, we will now devote the next four chapters to under-
standing the physical processes that govern the behavior of the
star-forming ISM and its transformation into stars. The goal here is to
develop physical intuition for how this gas behaves, and to develop
some analytic tools that we can use through the remainder of the
course. This part begins with a discussion of the microphysics of the
cold ISM.

3.1 Chemical Processes in the Cold ISM

We will begin our discussion of the microphysics of the cold ISM
with the goal of understanding something important that should be
clear from the observational discussion: the parts of the ISM asso-
ciated with star formation are overwhelmingly molecular gas. This
is in contrast to the bulk of the ISM, at least in the Milky Way and
similar galaxies, where the bulk of interstellar matter is composed
of atomic or ionized gas with few or no molecules. So why does the
ISM in some places turn molecular, and how is this transition associ-
ated with star formation? We will focus this discussion on the most
important atoms / molecules in the ISM: hydrogen / H2 and carbon
/ oxygen / CO.

3.1.1 Hydrogen Chemistry

Molecular hydrogen is a lower energy state than atomic hydrogen, so
an isolated box of hydrogen left for an infinite amount of time will
eventually become predominantly molecular. In interstellar space,
though, the atomic versus molecular fraction in a gas is determined
by a balance between formation and destruction processes.

Atomic hydrogen can turn into molecular hydrogen in the gas
phase, but this process is extremely slow. This is ultimately due to

http://adsabs.harvard.edu/abs/2014arXiv1402.0867K
http://adsabs.harvard.edu/abs/2014arXiv1402.0867K
http://adsabs.harvard.edu/abs/2010MNRAS.404....2G
http://adsabs.harvard.edu/abs/2010MNRAS.404....2G
http://adsabs.harvard.edu/abs/2010MNRAS.404....2G


52 notes on star formation

the symmetry of the hydrogen molecule. To form an H2 molecule,
two H atoms must collide and then undergo a radiative transition
that removes enough energy to leave the resulting pair of atoms in a
bound state. However, two H atoms that are both in the ground state
constitute a symmetric system, as does an H2 molecule in its ground
state. Because both the initial and final states are symmetric, one can
immediately show from symmetry considerations that the system
cannot emit dipole radiation. Formally, in semi-classical theory, the
rate of transitions from a starting state 〈ψ2H| to a final state

∣∣ψH2

〉
is

proportional to a matrix element of the form

〈ψ2H| Er
∣∣ψH2

〉
, (3.1)

where Er is the dipole radiation operator. However, one can imme-
diately see that if ψ2H and ψH2 are both symmetric, then the inner
product is anti-symmetric, and its integral over all space is therefore
zero, yielding a transition rate of zero. Transitions are possible only
if one continues to the next order of expansion of the radiation field
(which, in quantum field theory, constitutes thinking about multi-
photon processes), or if one if one considers either starting or final
states there are not symmetric (say because one of the H atoms is
in an excited state, or the final H2 molecule is in an excited state).
Neither of these routes leads to an appreciable transition rate either:
multi-photon processes are suppressed compared to single-photon
ones by high powers of the fine structure constant, and the lowest-
lying energy states of the H2 molecule are energetic enough that only
a negligible fraction of collisions have enough energy to produce
them.

Due to this limitation, the dominant formation process is instead
formation on the surfaces of dust grains. In this case the excess en-
ergy released by forming the molecule is transferred into vibrations
in the dust grain lattice, and there is no need for forbidden photon
emission. The rate of H2 formation by surface catalysis is given by

1
2

S(T, Tgr)η(Tgr)ngrnHσgrvH . (3.2)

Here S is the probability that a hydrogen molecule that hits a dust
grain will stick, which is a function of both the gas temperature and
the grain temperature. η is the probability that a grain which sticks
will migrate across the grain surface and find another H atom before
it is evaporated off the grain surface ngr and nH are the number
densities of grains and hydrogen atoms, σgr is the mean cross section
for a dust grain, and vH is the thermal velocity of the hydrogen
atoms.

The last three factors can be estimated reasonably well from
observations of dust extinction and gas velocity dispersions, while
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the former two have to be determined by laboratory measurements
and/or theoretical chemistry calculations. Since I am not a chemist,
and the literature on this problem is large and heavily dominated by
experimental atomic beam chemists, I will simply report the result:
for conditions appropriate to the edges of giant molecular clouds, the
formation rate is roughly

RnnH , (3.3)

where nH and n are the number densities of H atoms and H nuclei
(in atomic or molecular form), respectively, and R ≈ 3 × 10−17

cm3 s−1 is the rate coefficient. It may be a factor of a few lower in
warmer regions where the sticking probability is reduced. This is for
Milky Way dust content. If we go to a galaxy with less dust, the rate
coefficient is presumably reduced proportionally.

The reverse process, destruction, is mostly due to photo-destruction.
As with H2 formation, things are somewhat complicated by the sym-
metry of the H2 system. The binding energy of H2 in the ground
state is only 4.5 eV, but this doesn’t mean that 4.5 eV photons can
destroy it. A reaction of the form

H2 + hν→ H + H (3.4)

is forbidden by symmetry for exactly the same reason as its inverse.
The reaction can only occur if the H2 molecule is in an excited state
that thus asymmetric (almost never the case at molecular cloud
temperatures), or unless one of the H atoms is left in an excited state,
which would require an energy of 14.5 eV. Photons with an energy
that high are not generally available, because they can ionize neutral
hydrogen and thus all get absorbed before propagating very far.

Instead, the main H2 destruction process proceeds in two stages.
Hydrogen molecules have a series of excited electronic states with
energies of 11.2 − 13.6 eV (corresponding to 912 − 1100 Å) above
the ground state, which produce absorption features known as the
Lyman and Werner bands. Since these energies exceed the binding
energy of the H2 molecule (4.5 eV), absorptions into them undergo
radiative decay to a ground electronic state that can be unbound.
This happens roughly 10-15% of the time, depending on exactly
which excited state the absorption is into.

Photons in the LW energy range are produced by hot stars, and
the Galaxy is saturated with them, which is why most of the Galaxy’s
volume is filled with atomic or ionized rather than molecular gas.
(There are some galaxies that are mostly molecular, for reasons we
will see in a moment.)

If E∗ν is the number density of photons as a function of frequency
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ν, then the destruction rate of H2 is

∫
nH2 σH2,νcE∗ν fdiss, ˚ dν, (3.5)

where nH2 is the molecular hydrogen number density, σH2,ν is the
absorption cross-section at frequency ν, and fdiss, ˚ is the dissociation
probability when a photon of frequency ν is absorbed. The expres-
sion inside the integral is just the number of hydrogen molecule
targets times the cross-section per target times the number of photons
times the relative velocities of the photons and molecules (= c) times
the probability of dissociation per collision. The integral in frequency
goes over the entire LW band, from 912− 1100 Å.

To understand the circumstances under which H2 can form, we
can take a simple example. Suppose we have some cloud of gas,
which we will treat as a uniform slab, which has a beam of UV
radiation shining on its surface. The number density of hydrogen
nuclei in the cloud is n, and the UV radiation field shining on the
surface has a photon number density E∗0 . The photon flux is F∗ =

cE∗0 .
As a result of this radiation field, the outer parts of the cloud are

atomic hydrogen. However, when a hydrogen molecule absorbs a
photon and then re-emits that energy, the energy generally comes
out in the form of multiple photons of lower energy, which are no
longer able to excite resonant LW transitions. Thus photons are
being absorbed as hydrogen forms, and the number of photons
penetrating the cloud decreases as one moves further and further into
it. Eventually the number of photons drops to near zero, and the gas
becomes mostly molecular. This process is known as self-shielding.

We can get a rough estimate of when self-shielding is important
by writing down two equations to describe this process. First, let
us equate the rates of H2 formation and destruction, i.e. assume the
cloud is in chemical equilibrium. (This is generally true because
the reaction rates go as n2, so as long as turbulence produces high
density regions, there will be places where the reaction occurs quite
fast.) This gives

nHnR =
∫

nH2 σH2,νcE∗ν fdiss, ˚ dν ≈ fdiss

∫
nH2 σH2,νcE∗ν dν. (3.6)

In the second step we have made the approximation that fdiss is
roughly frequency-independent, which is true, since it only varies by
factors of less than order unity.

Second, let us write down the equation for photon conserva-
tion. This just says that the change in photon number density as we
move into the cloud is given by the rate at which collisions with H2



chemistry and thermodynamics 55

molecules remove photons.

dF∗ν
dx

= c
dE∗ν
dx

= −nH2 σH2,νcE∗ν (3.7)

In principle there should be a creation term at lower frequencies,
representing photons absorbed and re-emitted, but we’re going to
focus on the higher LW frequencies, where there is only photon
removal. The term on the right hand side is just the collision rate we
calculated before.

Now we can integrate the second equation over frequency over the
LW band. This gives

dE∗

dx
= −

∫
nH2 σH2,νE∗ν dν, (3.8)

where E∗ is the frequency-integrated photon number density. If we
combine this equation with the chemical balance equation, we get

dE∗

dx
= −nHnR

c fdiss
(3.9)

This just says that the rate at which photons are taken out of the
beam is equal to the recombination rate, increased by a factor of
1/ fdiss because only ∼ 1 in 10 absorptions actually have to be bal-
anced by a recombination.

If we make the further approximation that the transition from
atomic to molecular hydrogen is sharp, so that nH ≈ n throughout
the atomic layer, and we assume that R does not vary with position,
then the equation is trivial to integrate. At any depth x inside the
slab,

E∗(x) = E∗0 −
n2R
c fdiss

x. (3.10)

The transition to molecular hydrogen occurs where E∗ reaches zero,
which is at xH2 = c fdissE∗0 /(n2R). The total column of atomic hydro-
gen is

NH = nxH2 =
c fdissE∗0

nR (3.11)

It is helpful at this point to put in some numbers. In the Milky
Way, the observed interstellar UV field is E∗0 = 7.5× 10−4 LW photons
cm−3, and we’ll take n = 100 cm−3 as a typical number density
in a region where molecules might form. Plugging these in with
fdiss = 0.1 and R = 3 × 10−17 cm−3 s−1 gives NH = 7.5 × 1020,
or in terms of mass, a column of Σ = 8.4 M� pc−2. More precise
calculations give numbers closer to 2× 1020 cm−2 for the depth of
the shielding layer on one side of a GMC. (Of course a comparable
column is required on the other side, too.) Every molecular cloud
must be surrounded by an envelope of atomic gas with roughly this
column density.
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This has important implications. First, this means that molecular
clouds with column densities of 100 M� pc−2 in molecules must have
∼ 10% of their total mass in the form of an atomic shield around
them. Second, it explains why most of the Milky Way’s ISM in the
solar vicinity is not molecular. In the regions outside of molecular
clouds, the mean column density is a bit under 1021 cm−2, so the
required shielding column is comparable to the mean column density
of the entire atomic disk. Only when the gas clumps together can
molecular regions form.

This also explains why other galaxies which have higher column
densities also have higher molecular fractions. To take an extreme
example, the starburst galaxy Arp 220 has a surface density of a few
×104 M� pc−2 in its nucleus, and the molecular fraction there is at
least 90%, probably more.

3.1.2 Carbon / Oxygen Chemistry

H2 is the dominant species in molecular regions, but it is very hard
to observe directly for the reasons discussed in Chapter 1 – the
temperatures are too low for it to be excited. Moreover, as we will
discuss shortly, H2 is also not the dominant coolant for the same
reason. Instead, that role falls to the CO molecule.

Why is CO so important? The main reason is abundances: the
most abundant elements in the universe after H and He are O, C,
and N, and CO is the simplest (and, under ISM conditions, most
energetically favorable) molecule that can be made from them. More-
over, CO can be excited at very low temperatures because its mass
is much greater than that of H2, and its dipole moment is weak but
non-zero. (A weak dipole moment lowers the energy of radiation
emitted, which in turn lowers the temperature needed for excitation.)

Just as in the bulk of the ISM, hydrogen is mostly H, in the bulk of
the ISM the oxygen is mostly O and the carbon is mostly C+. It’s C+

rather than C because the ionization potential of carbon is less than
that of hydrogen, and as a result it tends to be ionized by starlight.
(This was / will be covered in the ISM class.) So how do we get from
C+ and O to CO?

The formation of CO is substantially different than that of H2

in that it is dominated by gas-phase rather than grain-surface reac-
tions. Since the temperatures in regions where this reaction is taking
place tend to be low, the key processes involve ion-neutral reactions.
As those who have taken the diffuse matter class will know (and
those who have not yet will learn), these are important because the
rate at which they occur is to good approximation independent of
temperature, while neutral-neutral reactions.
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There are two main pathways to CO. One passes through the OH
molecule, and involves a reaction chain that looks like

H2 + CR → H+
2 + e + CR (3.12)

H+
2 + H2 → H+

3 + H (3.13)

H+
3 + O → OH+ + H2 (3.14)

OH+ + H2 → OH+
2 + H (3.15)

OH+
2 + e → OH + H (3.16)

C+ + OH → CO+ + H (3.17)

CO+ + H2 → HCO+ + H (3.18)

HCO+ + e → CO + H. (3.19)

Here CR indicates cosmic ray. There are also a number of possible
variants (e.g., the OH+

2 could form OH+
3 before proceeding to OH.

The second main route is through the CH molecule, where reaction
chains tend to follow the general pattern

C+ + H2 → CH+
2 + hν (3.20)

CH+
2 + e → CH + H (3.21)

CH + O → CO + H. (3.22)

The rate at which the first reaction chain manufactures CO is limited
by the supply of cosmic rays that initiate the production of H+

2 , while
the rate at which the second reaction chain proceeds is limited by
the rate of the final neutral-neutral reaction. Which chain dominates
depends on the cosmic ray ionization rate, density, temperature, and
similar details. Note that both of these reaction chains require the
presence of H2.

CO is destroyed via radiative excitation followed by dissociation
in essentially the same manner as H2. The shielding process for CO
is slightly different however. As with H2, photons that dissociate CO
can be absorbed both by dust grains and by CO molecules. How-
ever, due to the much lower abundance of CO compared to H2, the
balance between these two processes is quite different than it is for
hydrogen, with dust shielding generally the more important of the
two. Moreover, there is non-trivial overlap between the resonance
lines of CO and those of H2, and thus there can be cross-shielding of
CO by H2.

At this point the problem is sufficiently complex that one generally
resorts to numerical modeling. The net result is that clouds tend to
have a layered structure. In poorly-shielded regions where the FUV
has not yet been attenuated, H i and C+ dominate. Further in, where
the FUV has been partly attenuated, H2 and C+ dominate. Finally a
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transition to H2 and CO as the dominant chemical states occurs at the
center.

For typical Milky Way conditions, the result is that the gas will
be mostly CO once the V-band extinction AV exceeds 1 − 2 mag.
This corresponds to a column density of a few ×1021 cm−2, or ∼ 20
M� pc−2, for Milky Way dust. In comparison, recall that typical
GMC column densities are ∼ 1022 cm−2, or ∼ 100 M� pc−2. This
means that there is a layer of gas where the hydrogen is mostly H2

and the carbon is still C+, but it constitutes no more than a few tens
of percent of the mass. However, in galaxies with lower dust to gas
ratios, the layer where H2 dominates but the carbon is not yet mostly
CO can be much larger.

3.2 Thermodynamics of Molecular Gas

Having discussed the chemistry of molecular gas, we now turn to
the problem of its thermodynamics. What controls the temperature
of molecular gas? We have already seen that observations imply
temperatures that are extremely low, ∼ 10 K or even a bit less. How
are such cold temperatures achieved? To answer this question, we
must investigate what processes heat and cool the molecular ISM.

3.2.1 Heating Processes

The dominant heating process in the atomic ISM is the grain photo-
electric effect: photons from stars with energies of ∼ 8− 13.6 eV hit
dust grains and eject fast electrons via the photoelectric effect. The
fast electrons then thermalize and deposit their energy at heat in the
gas. The rate per H nucleus at which this process deposits energy can
be written approximately (see the ISM class for justification) as

ΓPE ≈ 4.0× 10−26χFUVZ′de−τd erg s−1 (3.23)

where χFUV is the intensity of the FUV radiation field scaled to its
value in the Solar neighborhood, Z′d is the dust abundance scaled
to the Solar neighborhood value, and τd is the dust optical depth
to FUV photons. The result is, not surprisingly, proportional to the
radiation field strength (and thus the number of photons available
for heating), the dust abundance (and thus the number of targets for
those photons), and the e−τd factor by which the radiation field is
attenuated.

At FUV wavelengths, typical dust opacities are κd ≈ 500 cm2 g−1,
so at a typical molecular cloud surface density Σ ≈ 50− 100 M� pc−2,
τd ≈ 5− 10, and thus e−τd ≈ 10−3. Thus in the interiors of molecular
clouds, photoelectric heating is strongly suppressed simply because
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the FUV photons cannot get in. Typical photoelectric heating rates
are therefore of order a few ×10−29 erg s−1 per H atom deep in cloud
interiors, though they can obviously be much larger at cloud surfaces
or in regions with stronger radiation fields.

We must therefore consider another heating process: cosmic rays.
The great advantage of cosmic rays over FUV photons is that, because
they are relativistic particles, they have much lower interaction cross
sections, and thus are able to penetrate into regions where light
cannot. The process of cosmic ray heating works as follows. The first
step is the interaction of a cosmic ray with an electron, which knocks
the electron off a molecule:

CR + H2 → H+
2 + e− + CR (3.24)

The free electron’s energy depends only weakly on the CR’s energy,
and is typically ∼ 30 eV.

The electron cannot easily transfer its energy to other particles in
the gas directly, because its tiny mass guarantees that most collisions
are elastic and transfer no energy to the impacted particle. However,
the electron also has enough energy to ionize or dissociate other
hydrogen molecules, which provides an inelastic reaction that can
convert some of its 30 eV to heat. Secondary ionizations do indeed
occur, but in this case almost all the energy goes into ionizing the
molecule (15.4 eV), and the resulting electron has the same problem
as the first one: it cannot effectively transfer energy to the much more
massive protons.

Instead, there are a number of other channels that allow electrons
to dump their energy into motion of protons, and the problem is
deeply messy. The most up to date work on this is Goldsmith et
al. (2012, ApJ, 756, 157), and we can very briefly summarize it here.
A free electron can turn its energy into heat through three channels.
The first is dissociation heating, in which the electron strikes an H2

molecule and dissociates it:

e− + H2 → 2H + e−. (3.25)

In this reaction any excess energy in the electron beyond what is
needed to dissociate the molecule (4.5 eV) goes into kinetic energy
of the two recoiling hydrogen atoms, and the atoms, since they are
massive, can then efficiently share that energy with the rest of the gas.
A second pathway is that an electron can hit a hydrogen molecule
and excite it without dissociating it. The hydrogen molecule then
collides with another hydrogen molecule and collisionally de-excites,
and the excess energy again goes into recoil, where it is efficiently
shared. The reaction is

e− + H2 → H∗2 + e− (3.26)
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H∗2 + H2 → 2H2. (3.27)

Finally, there is chemical heating, in which the H+
2 ion that is created

by the cosmic ray undergoes chemical reactions with other molecules
that release heat. There are a large number of possible exothermic
reaction chains, for example

H+
2 + H2 → H+

3 + H (3.28)

H+
3 + CO → HCO+ + H2 (3.29)

HCO+ + e− → CO + H. (3.30)

Each of these reactions is exothermic, and results in heavy ions
recoiling at high speed that can efficiently share their energy via
collisions. Computing the total energy release requires summing
over all these possible reaction chains, which is why the problem is
ugly. The final results is that the energy yield per primary cosmic
ray ionization is in the range ∼ 13 eV under typical molecular cloud
conditions, but that it can be several eV higher or lower depending on
the local density, electron abundance, and similar variables.

Combining this with the primary ionization rate for cosmic rays
in the Milky Way, which is observationally-estimated to be about
∼ 10−16 s−1 per H nucleus in molecular clouds, this gives a total
heating rate per H nucleus

ΓCR ∼ 2× 10−27 erg s−1. (3.31)

The heating rate per unit volume is ΓCRn, where n is the number den-
sity of H nuclei (= 2× the density of H molecules). This is sufficient
that, in the interiors of molecular clouds, it generally dominates over
the photoelectric heating rate.

3.2.2 Cooling Processes

In molecular clouds there are two main cooling processes: molecular
lines and dust radiation. Dust can cool the gas efficiently because
dust grains are solids, so they are thermal emitters. However, dust
is only able to cool the gas if collisions between dust grains and
hydrogen molecules occur often enough to keep them thermally
well-coupled. Otherwise the grains cool off, but the gas stays hot.
The density at which grains and gas become well-coupled is around
104 − 105 cm−3, which is higher than the typical density in a GMC, so
we won’t consider dust cooling further at this point. We’ll return to it
later when we discuss collapsing objects, where the densities do get
high enough for dust cooling to be important.

The remaining cooling process is line emission, and by far the
most important molecule for this purpose is CO, for the reasons
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stated earlier. The physics is fairly simple. CO molecules are excited
by inelastic collisions with hydrogen molecules, and such collisions
convert kinetic energy to potential energy within the molecule. If the
molecule de-excites radiatively, and the resulting photon escapes the
cloud, the cloud loses energy and cools.

Let us make a rough attempt to compute the cooling rate via this
process. A diatomic molecule like CO can be excited rotationally,
vibrationally, or electronically. At the low temperatures found in
molecular clouds, usually only the rotational levels are important.
These are characterized by an angular momentum quantum number
J, and each level J has a single allowed radiative transition to level J −
1. Larger ∆J transitions are strongly suppressed because they require
emission of multiple photons to conserve angular momentum.

Unfortunately the CO cooling rate is quite difficult to calculate,
because the lower CO lines are all optically thick. A photon emitted
from a CO molecule in the J = 1 state is likely to be absorbed by
another one in the J = 0 state before it escapes the cloud, and if
this happens that emission just moves energy around within the
cloud and provides no net cooling. The cooling rate is therefore a
complicated function of position within the cloud – near the surface
the photons are much more likely to escape, so the cooling rate is
much higher than deep in the interior. The velocity dispersion of
the cloud also plays a role, since large velocity dispersions Doppler
shift the emission over a wider range of frequencies, reducing the
probability that any given photon will be resonantly re-absorbed
before escaping.

In practice this means that CO cooling rates usually have to be
computed numerically, and will depend on the cloud geometry if we
want accuracy to better than a factor of ∼ 2. However, we can get
a rough idea of the cooling rate from some general considerations.
The high J levels of CO are optically thin, since there are few CO
molecules in the J − 1 states capable of absorbing them, so photons
they emit can escape from anywhere within the cloud. However, the
temperatures required to excite these levels are generally high com-
pared to those found in molecular clouds, so there are few molecules
in them, and thus the line emission is weak. Moreover, the high J lev-
els also have high critical densities, so they tend to be sub-thermally
populated, further weakening the emission.

On other hand, low J levels of CO are the most highly populated,
and thus have the highest optical depths. Molecules in these levels
produce cooling only if they are within one optical depth the cloud
surface. Since this restricts cooling to a small fraction of the cloud
volume (typical CO optical depths are many tens for the 1→ 0 line),
this strongly suppresses cooling.
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The net effect of combining the suppression of low J transitions
by optical depth effects and of high J transitions by excitation effects
is that cooling tends to be dominated a the single line produced by
the lowest J level for which the line is not optically thick. This line is
marginally optically thin, but is kept close to LTE by the interaction
of lower levels with the radiation field. Which line this is depends on
the column density and velocity dispersion of the cloud, but typical
peak J values in Milky Way-like galaxies range from J = 2 → 1 to
J = 5→ 4.

For an optically thin transition of a quantum rotor where the
population is in LTE, the rate of energy emission per H nucleus from
transitions between angular momentum quantum numbers J and J − 1
is given by

ΛJ,J−1 = xem
(2J + 1)e−EJ /kBT

Z(T)
AJ,J−1(EJ − EJ−1) (3.32)

EJ = hBJ(J + 1) (3.33)

AJ,J−1 =
512π4B3µ2

3hc3
J4

2J + 1
. (3.34)

Here xem is the abundance of the emitting species per H nucleus, T is
the gas temperature, Z(T) is the partition function, AJ,J−1 is the Ein-
stein A coefficient from transitions from state J to state J − 1, EJ is the
energy of state J, B is the rotation constant for the emitting molecule,
and µ is the electric dipole moment of the emitting molecule. The
first equation is simply the statement that the energy loss rate is
given by the abundance of emitters multiplied by the fraction of emit-
ters in the J state in question times the spontaneous emission rate for
this state times the energy emitted per transition. Note that there is
no explicit density dependence as a result of our assumption that the
level with which we are concerned is in LTE. The latter two equations
are general results for quantum rotors.

The CO molecule has B = 57 GHz and µ = 0.112 Debye, and at
Solar metallicity its abundance in regions where CO dominates the
carbon budget is xCO ≈ 1.1× 10−4. Plugging in these two values, and
evaluating for J in the range 2− 5, typical cooling rates are of order
10−27 − 10−26 erg cm−3 when the temperature is ∼ 10 K. This is why
the equilibrium temperatures of molecular clouds are ∼ 10 K.

3.2.3 Implications

The calculation we have just performed has two critical implications
that strongly affect the dynamics of molecular clouds. First, the
temperature will be relatively insensitive to variations in the local
heating rate. The cosmic ray and photoelectric heating rates are to
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good approximation temperature-independent, but the cooling rate
is extremely temperature sensitive because, for the dominant cooling
lines of CO have level energies are large compared to kBT. Examining
equation (3.32) would seem to suggest that the cooling rate is expo-
nentially sensitive to temperature. In practice the sensitivity is not
quite that great, because which J dominates changes with temper-
ature, but numerical calculations still show that ΛCO varies with T
to a power of p ∼ 2− 3. This means that a factor f increase in the
local heating rate will only change the temperature by a factor ∼ f 1/p.
Thus we expect molecular clouds to be pretty close to isothermal,
except near extremely strong local heating sources.

A second important point is the timescales involved. The gas
thermal energy per H nucleus is

e ≈ 1
2

(
3
2

kT
)
= 10−15

(
T

10 K

)
erg (3.35)

The factor of 1/2 comes from 2 H nuclei per H2 molecule, and the
equation is only approximate because this neglects quantum me-
chanical effects that are non-negligible at these low temperatures.
However, a correct accounting for these only leads to order unity
changes in the result.

The characteristic cooling time is tcool = e/ΛCO. Suppose we
have gas that is mildly out of equilibrium, say T = 20 K instead of
T = 10 K. The heating and cooling are far out of balance, so we can
ignore heating completely compared to cooling. At the cooling rate of
ΛCO = 4× 10−26 erg s−1 for 20 K gas, tcool = 1.6 kyr. In contrast, the
crossing time for a molecular cloud is tcr = L/σ ∼ 7 Myr for L = 30
pc and σ = 4 km s−1. The conclusion of this analysis is that radiative
effects happen on time scales much shorter than mechanical ones.
Mechanical effects, such as the heating caused by shocks, simply
cannot push the gas any significant way out of radiative equilibrium.
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This chapter covers the physics of turbulence in the cold interstellar
medium. This will be something of a whirlwind tour, since turbu-
lence is an entire research discipline unto itself. Our goal is to un-
derstand the basic statistical techniques used to describe and model
interstellar turbulence, so that we will be prepared to apply them in
the context of star formation.

4.1 Characteristic Numbers for Fluid Flow

4.1.1 The Conservation Equations

To understand the origins of turbulence, both in the ISM and more
generally, we start by examining the equations of fluid dynamics and
the characteristic numbers that they define. Although the ISM is mag-
netized, we will first start with the simpler case of an unmagnetized
fluid. Fluids are governed by a series of conservation laws. The most
basic one is conservation of mass:

∂

∂t
ρ = −∇ · (ρv). (4.1)

This equation asserts that the change in mass density at a fixed point
is equal to minus the divergence of density times velocity at that
point. Physically, this is very intuitive: density at a point changes at a
rate that is simply equal to the rate at which mass flows into or out of
an infinitesimal volume around that point.

We can write a similar equation for conservation of momentum:

∂

∂t
(ρv) = −∇ · (ρvv)−∇P + ρν∇2v. (4.2)

Note that the term vv here is a tensor product. This is perhaps more
clear if we write things out in index notation:

∂

∂t
(ρvi) = −

∂

∂xj
(ρvivj)−

∂

∂xi
P + ρν

∂

∂xj

(
∂

∂xj
vi

)
(4.3)
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The intuitive meaning of this equation can be understood by examin-
ing the terms one by one. The term ρv is the density of momentum at
a point. The term ∇ · (ρvv) is, in analogy to the equivalent term in the
conservation of mass equation, the rate at which momentum is ad-
vected into or out of that point by the flow. The term ∇P is the rate
at which pressure forces acting on the fluid change its momentum. Fi-
nally, the last term, ρν∇2v, is the rate at which viscosity redistributes
momentum; the quantity ν is called the kinematic viscosity.

The last term, the viscosity one, requires a bit more discussion. All
the other terms in the momentum equation are completely analogous
to Newton’s second law for single particles. The viscous term, on
the other hand, is unique to fluids, and does not have an analog for
single particles. It describes the change in fluid momentum due to
the diffusion of momentum from adjacent fluid elements. We can
understand this intuitively: a fluid is composed of particles moving
with random velocities in addition to their overall coherent velocity.
If we pick a particular fluid element to follow, we will notice that
these random velocities cause some of the particles that make it up
diffuse across its boundary to the neighboring element, and some
particles from the neighboring element enter. The particles that
wander across the boundaries of our fluid element carry momentum
with them, and this changes the momentum of the element we’re
following. The result is that momentum diffuses across the fluid, and
this momentum diffusion is called viscosity.

Viscosity is interesting and important because it’s the only term
in the equation that converts coherent, bulk motion into random,
disordered motion. That is to say, the viscosity term is the only one
that is dissipative, or that causes the fluid entropy to change.

4.1.2 The Reynolds Number and the Mach Number

To understand the relative importance of terms in the momentum
equation, it is helpful to make order of magnitude estimates of
their sizes. Let us consider a system of characteristic size L and
characteristic velocity V; if we’re examining a molecular cloud, we
might have L ∼ 10 pc and V ∼ 5 km s−1. The natural time scale for
flows in the system is L/V, so we expect time derivative terms to
be of order the thing being differentiated divided by L/V. Similarly,
the natural length scale for spatial derivatives is L, so we expect
spatial derivative terms to be order the quantity being differentiated
divided by L. If we apply these scalings to the momentum equation,
we expect the various terms to scale as follows:

ρV2

L
∼ ρV2

L
+

ρc2
s

L
+ ρν

V
L2 , (4.4)
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where cs is the gas sound speed, and we have written the pressure as
P = ρc2

s . Canceling the common factors, we get

1 ∼ 1 +
c2

s
V2 +

ν

VL
(4.5)

From this exercise, we can derive two dimensionless numbers that
are going to control the behavior of the equation. We define the Mach
number and the Reynolds number as

M ∼ V
cs

(4.6)

Re ∼ LV
ν

. (4.7)

The meanings of these dimensionless numbers are fairly clear from
the equations. IfM � 1, then c2

s /V2 � 1, and this means that the
pressure term is important in determining how the fluid evolves. In
contrast, ifM � 1, then the pressure term is unimportant for the
behavior of the fluid. In a molecular cloud,

cs =

√
kBT
µmH

= 0.18(T/10 K)1/2, (4.8)

where µ = 2.33 is the mean mass per particle in a gas composed
of molecular hydrogen and helium in the usual cosmic abundance
ratio of 1 He per 10 H atoms. ThusMV/cs ∼ 20, and we learn that
pressure forces are unimportant.

The Reynolds number is a measure of how important viscous
forces are. Viscous forces are significant for Re ∼ 1 or less, and are
unimportant of Re � 1. We can think of the Reynolds number as
describing a characteristic length scale L ∼ ν/V in the flow. This
is the length scale on which diffusion causes the flow to dissipate
energy. Larger scale motions are effectively dissipationless, while
smaller scales ones are damped out by viscosity.

To estimate the Reynolds number in the molecular ISM, we
must know the viscosity. For an ideal gas, the kinematic viscosity
is ν = 2uλ, where u is the RMS molecular speed (which is of or-
der cs) and λ is the particle mean free-path. The mean free path is
of order the inverse of cross-section times density, λ ∼ 1/(σn) ∼
[(1 nm)2(100 cm−3)]−1 ∼ 1012 cm. Plugging this in then gives
ν ∼ 1016 cm2 s−1 and Re ∼ 109. Viscous forces are clearly unimpor-
tant in molecular clouds.

The extremely large value of the Reynolds number immediately
yields a critical conclusion: molecular clouds must be highly turbu-
lent, because flows with Re of more than ∼ 103 − 104 invariable are.
Figure 4.1 illustrates this graphically from laboratory experiments.
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Re#=#0.05# Re#=#10# Re#=#200# Re#=#3000#

Flows#at#different#Reynolds#number,#from#the#NSF#fluid#
dynamics#film#series#

Figure 4.1: Flows at varying Reynolds
number Re. In each panel, a fluid that
has been dyed red is injected from the
top into the clear fluid on the bottom.
The fluids are a glycerin-water mixture,
for which the viscosity can be changed
by altering the glycerin to water ratio.
By changing the viscosity and the
injection speed, it is possible to alter the
Reynolds number of the injected flow.
The frames show how the flow develops
as the Reynolds number is varied.
This image is a still from the National
Committee for Fluid Mechanics Film
Series (Taylor, 1964), which, once you
get past the distinctly 1960s production
values, are a wonderful resource for
everything related to fluids.

4.2 Modeling Turbulence

We have remarkably little understanding of how turbulence actually
works. However, we have developed some simple models and tools
to describe it, and we will next explore those.

4.2.1 Velocity Statistics

One quantity of interest in a turbulent medium is the structure of the
velocity field. How does the velocity change from point to point? In
a turbulent medium velocity fluctuates in time and space, and so the
best way to proceed is to study those fluctuations statistically. Many
statistical tools exist to characterize turbulent motions, and many are
used in astrophysics, but we will stick to a few of the simpler ones.
We will also make two simplifying assumptions. First we assume
that the turbulence is homogenous, in the sense that the turbulent
motions do vary only randomly, and not systematically, with position
in the fluid. Second, we assume that it is isotropic, so that turbulent
motions do not have a preferred directions. Neither of these are likely
to be strictly true in a molecular cloud, particularly the second, since
large-scale magnetic fields provide a preferred direction, but we will
start with these assumptions and relax them later.

Let v(x be the velocity at position x. To characterize how this
varies with position, we define the autocorrelation function

A(r) ≡ 1
V

∫
v(x) · v(x + r) dV ≡ 〈v(x) · v(x + r)〉, (4.9)

https://www.youtube.com/playlist?list=PL0EC6527BE871ABA3
https://www.youtube.com/playlist?list=PL0EC6527BE871ABA3
https://www.youtube.com/playlist?list=PL0EC6527BE871ABA3
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where the angle brackets indicate an average over all positions x.
Here, A(0) = 〈|v|2〉 is just the RMS velocity in the fluid. If the
velocity field is isotropic, then clearly A(r) cannot depend on the
direction, and thus must depend only on r = |r|. Thus A(r) tells us
how similar or different the velocity is at some scale r.

It is often more convenient to think about this in Fourier space
than in real space, so rather than the autocorrelation function we
often instead think about its Fourier transform. We define the Fourier
transform of the velocity field in the usual way, i.e.

ṽ(k) =
1√
2π

∫
v(x)e−ik·x dx. (4.10)

We then define the power spectrum

Ψ(k) ≡ |ṽ(k)|2. (4.11)

Again, for isotropic turbulence, the power spectrum depends only
on the magnitude of the wave number, k = |k|, not its direction, so it
is more common to talk about the power per unit radius in k-space,

P(k) = 4πk2Ψ(k). (4.12)

This is just the total power integrated over some shell from k to k + dk
in k-space. Note that Parseval’s theorem tells us that

∫
P(k) dk =

∫
|ṽ(k)|2 d3k =

∫
v(x)2 d3x, (4.13)

i.e. the integral of the power spectral density over all wavenumbers
is equal to the integral of the square of the velocity over all space, so
for a flow with constant density (an incompressible flow) the integral
of the power spectrum just tells us how much kinetic energy per unit
mass there is in the flow. The Wiener-Khinchin theorem also tells us
that P(k) is just the Fourier transform of the autocorrelation function,

Ψ(k) =
1

(2π)3/2

∫
A(r)e−ik·r dr. (4.14)

The power spectrum at a wavenumber k then just tells us what
fraction of the total power is in motions at that wavenumber, i.e. on
that characteristic length scale. The power spectrum is another way
of looking at the spatial scaling of turbulence. It tells us how much
power there is in turbulent motions as a function of wavenumber k =

2π/λ. A power spectrum that peaks at low k means that most of the
turbulent power is in large-scale motions, since small k corresponds
to large λ. Conversely, a power spectrum that peaks at high k means
that most of the power is in small-scale motions.

The power spectrum also tells us about the how the velocity
dispersion will vary when it is measured over a region of some
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characteristic size. Suppose we consider a volume of size `, and
measure the velocity dispersion σv(`) within it. Further suppose that
the power spectrum is described by a power law P(k) ∝ k−n. The
total kinetic energy per unit within the region is, up to factors of
order unity,

KE ∼ σv(`)
2, (4.15)

but we can also write the kinetic energy per unit mass in terms of the
power spectrum, integrating over those modes that are small enough
to fit within the volume under consideration:

KE ∼
∫ ∞

2π/`
P(k) dk ∝ `n−1 (4.16)

It therefore follows immediately that

σv = cs

(
`

`s

)(n−1)/2
, (4.17)

where we have normalized the relationship by defining the sonic
scale `s as the size of a region within which the velocity dispersion is
equal to the thermal sound speed of the gas.

4.2.2 The Kolmogorov Model and Turbulence Cascades

The closest thing we have to a model of turbulence is in the case
of subsonic, hydrodynamic turbulence; the basic theory for that
goes back to Kolmogorov (1941). Real interstellar clouds are neither A translation of Kolmogorov (1941)

(which is in Russian) can be found in
Kolmogorov (1991).

subsonic nor hydrodynamic (as opposed to magnetohydrodynamic),
but this theory is still useful for understanding how turbulence
works.

Kolmogorov’s theory of turbulence begins with the realization that
turbulence is a phenomenon that occurs when Re is large, so that
there is a large range of scales where dissipation is unimportant. It is
possible to show by Fourier transforming the Navier-Stokes equation
that for incompressible motion transfer of energy can only occur
between adjacent wavenumbers. Energy at a length scale k cannot be
transferred directly to some scale k′ � k. Instead, it must cascade
through intermediate scales between k and k′.

This gives a simple picture of how energy dissipates in fluids.
Energy is injected into a system on some large scale that is dissipa-
tionless, and it cascades down to smaller scales until it reaches a
small enough scale for Re ∼ 1, at which point dissipation becomes
significant. In this picture, if the turbulence is in statistical equilib-
rium, such that is neither getting stronger or weaker, the energy at
some scale k should depend only on k and on the rate of injection or
dissipation (which are equal) ψ.
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This allows us to make the following clever dimensional argument.
k has units of 1/L, i.e. one over length. The power spectrum has units
of energy per unit mass per unit radius in k-space. The energy per
unit mass is like a velocity squared, so it has units L2/T2, and this is
divided by k, so P(k) has units of L3/T2. The injection / dissipation
rate ψ has units of energy per unit mass per unit time, which is a
velocity squared divided by a time, or L2/T3.

Since P(k) is a function only of k and ψ, we can write P(k) =

Ckαψβ for some dimensionless constant C, then by dimensional
analysis we have

L3

T2 ∼ L−α

(
L2

T3

)β

(4.18)

L3 ∼ L−α+2β (4.19)

T−2 ∼ T−3β (4.20)

β =
2
3

(4.21)

α = 2β− 3 = −5
3

(4.22)

This immediately tell us three critical things. First, the power in
the flow varies with energy injection rate to the 2/3. Second, this
power is distributed such that the power at a given wavenumber k
varies as k−5/3. This means that most of the power is in the largest
scale motions, since power diminishes as k increases. Third, if we
now take this spectral slope and use it to derive the scale-dependent
velocity dispersion from equation (4.17), we find that σv ∝ `1/3, i.e.,
velocity dispersion increase with size scale as size to the 1/3 power.
This is an example of what is known in observational astronomy
as a linewidth-size relation – linewidth because the observational
diagnostic we use to characterize velocity dispersion is the width of a
line. This relationship tells us that larger regions should have larger
linewidths, with the linewidth scaling as the 1/3 power of size in the
subsonic regime.

The subsonic regime can be tested experimentally on Earth, and
Kolmogorov’s model provides an excellent fit to observations. Figure
4.2 shows one example.

4.3 Supersonic Turbulence

4.3.1 Velocity Statistics

We have seen that real interstellar clouds not only have Re� 1, they
also haveM� 1, and so the flows within them are supersonic. This
means that pressure is unimportant on size scales L � `s. Since



72 notes on star formation

The fine-scale strzcctwe of the turbulent velocity field 93 

FIGURE 14. One-dimensional energy spectra of the velocity-component fluctuations in the 
R,  = 182 wake flow. 0. u1 spectrum, F,(k,); 0 ,  u2 spectrum, F,(k,);  A, u3 spectrum, F3(kl) .  
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FIGURE 15. One-dimensional spectra of streamwise- and lateral-component velocity fluctuations 
for an nxisymmetric jet; Re = 3.7 x 106, x/d = 70, r / d  = 0. 0, F l ( k J ;  0 ,  F2(kl). 

Figure 4.2: An experimentally-
measured power spectrum for tur-
bulence generated by an air jet
(Champagne, 1978). The x axis is
the wavenumber, and the open and
filled points show the velocity power
spectrum for the velocity components
parallel and transverse to the stream,
respectively.
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viscosity is also unimportant on large scales (since Re � 1), this
means that gas tends to move ballistically on large scales.

On small scales this will produce very sharp gradients in velocity,
since fast-moving volumes of fluid will simply overtake slower ones.
Since the viscosity term gets more important on smaller scales, the
viscosity term will eventually stop the fluid from moving ballistically.
In practice this means the formation of shocks – regions where the
flow velocity changes very rapidly, on a size scale determined by the
viscosity. In real interstellar clouds the relevant

viscosity is the magnetic one, as we
shall see in Chapter 5.

We expect that the velocity field that results in this case will look
like a series of step functions. The power spectrum of a step function
is a power law P(k) ∝ k−2. One can establish this easily from direct
calculation. Let’s zoom in on the region around a shock, so that the
change in velocity on either side of the shock is small. The Fourier
transform of v in 1D is

ṽ(k) =
1√
2π

∫
v(x)e−ikx dx (4.23)

The periodic function vanishes for all periods in the regions where
v is constant. It is non-zero only in the period that includes the
shock. The amplitude of

∫
v(x)e−ikx dx during that period is simply

proportional to the length of the period, i.e. to 1/k. Thus, ṽ(k) ∝ 1/k.
It then follows that P(k) ∝ k−2 for a single shock. An isotropic system
of overlapping shocks should therefore also look approximately like
a power law of similar slope. This gives a velocity dispersion versus
size scale σv ∝ `1/2, and this is exactly what is observed. Figure 4.3
shows an example.

310 V. Ossenkopf and M.-M. Mac Low: Turbulent velocity structure in molecular clouds

Fig. 1. Size-linewidth relation for the Polaris Flare CO observations
with IRAM (smallest scales), KOSMA, and the CfA 1.2 m telescope
(largest scale, see Bensch et al. (2001a) for details). The diamonds
show the relation when the linewidth for a given scale is integrated
from the total linewidths at each point. The triangles represent the
widths when only the dispersions of the centroids of the lines are mea-
sured. The error bars do not represent true local errors but the two
extreme cases of the line windowing as discussed in Sect. 2.2.

exactly with the KOSMA result. Thus the shift is probably also
influenced by the different noise behaviour.

For the size-linewidth relation based on the velocity cen-
troids, we find one power law stretching over three orders of
magnitude connecting the three different maps. The average ve-
locity variances range from below the thermal linewidth up to
about 1 km s−1. The common slope is given by γ = 0.50±0.04.
However, the data are also consistent with a reduction of the
slope down to 0.24 at the largest scales, if the full extent of the
error bars is taken into account.

In the size-linewidth relationship integrated from the full
local linewidths, there is a transition of the slope from almost
zero at scales below 10′ to 0.2 at the full size of the flare. The
plot shows that the total linewidths are dominated by the line-
of-sight integration up to the largest scales.

Although the slopes measured with this method are very
shallow, they do appear to show the change of slope interpreted
by Goodman et al. (1998) as a transition to coherent behaviour
below about 0.5 pc. As the findings of Goodman et al. are
also based on the total linewidths this suggests that the change
might rather reflect the transition from a regime where single
separated clumps are identified, to measurements of a superpo-
sition of substructures at smaller scales.

3.2. Velocity probability distribution function

Another quantity characterising the velocity structure both in
observational data and in turbulence simulations is the prob-
ability distribution function (PDF) of velocities. Although it
contains no information on the spatial correlation in veloc-
ity space like the size-linewidth relation or the ∆-variance, it
shows complementary properties, like the degree of intermit-
tency in the turbulent structure (Falgarone & Phillips 1990).

The shape of the wings of the velocity PDF is thought to be
diagnostic of intermittency, where the increasing degrees of in-
termittency produces a transition from Gaussian to exponen-
tial wings. Two-dimensional Burgers turbulence simulations by
Chappell & Scalo (1999), neglecting pressure forces, showed
Gaussian velocity PDFs for models of decaying turbulence and
exponential wings for models driven by strong stellar winds.

Due to the limited amount of information available from
molecular lines, there is no direct way to deduce the velocity
PDF from observations. One approach to deducing the velocity
PDFs is computation of the distribution of line centroid veloci-
ties (Kleiner & Dickmann 1985; Miesch & Bally 1994; Miesch
et al. 1999). This method can also include some information
on spatial correlation as discussed in Sect. 3.3. However, the
higher moments of the centroid PDF are very sensitive to the
observational restrictions discussed in Sect. 2.2.

Another method was introduced by Falgarone & Phillips
(1990), who estimated velocity PDFs from high signal-to-noise
observations of single line profiles. Investigating the statistical
moments of profiles, Falgarone et al. (1994) found no simple
Gaussian behaviour for many observations and provided a first
comparison with three-dimensional (3D) hydrodynamic simu-
lations. Most of their PDFs could be represented by a superpo-
sition of two Gaussians where the wing component had about
three times the width of the core component. Unfortunately,
their method is only reliable for optically thin transitions at a
very high signal to noise. We test both methods here, starting
with the centroid velocity PDF.

3.2.1. Centroid velocity PDFs

In computing the centroid velocity PDF for a map one can ei-
ther assign the same weight to each point in the map, or weight
the different contributions by the intensities measured at that
point. We find that the PDFs retain similar shape and the same
wing behaviour with both methods, and therefore use inten-
sity weighting in the following analysis, as it is less influenced
by observational noise. We have also used normal histograms
here, instead of the more sophisticated Johnson PDF estimator
applied by Miesch et al. (1999) because the error bars present
from the uncertainty about the noise treatment greatly exceed
the influence of the numerical PDF estimator.

Figure 2 shows the centroid velocity PDFs for the three data
sets. We find that the IRAM and the CfA data are characterised
by an asymmetry of the velocity distribution, indicating some
kind of large-scale flow within the mapped region. Looking at
the wings of the distributions, however, all three data sets are
consistent with a Gaussian, which would appear as a parabola
in the lin-log plots shown. Only at the scale of the CfA map is
a definite conclusion not possible, due to the large error bars.

Beyond this phenomenological approach, the shape of the
PDFs can be quantified by their statistical moments. The most
frequently used moments are

⟨vc⟩ =
∫ ∞

−∞
dvcP(vc)vc (2)

σ2 =

∫ ∞

−∞
dvcP(vc)[vc − ⟨vc⟩]2 (3)

Figure 4.3: Linewidth versus size
in the Polaris Flare Cloud obtained
from CO observations (Ossenkopf
& Mac Low, 2002). Diamonds show
the total measured velocity width
within apertures of the size indicated
on the x axis, while triangles show
the dispersion obtained by taking the
centroid velocity in each pixel and
measuring the dispersion of centroids.
The three sets of points joined by lines
represent measurements from three
separate telescopes.

Note that, although the power spectrum is only slightly different
than that of subsonic turbulence (−5/3 versus about −2), there is
really an important fundamental difference between the two regimes.
Most basically, in Kolmogorov turbulence decay of energy happens
via a cascade from large to small scales, until a dissipative scale is
reached. In the supersonic case, on the other hand, the decay of
energy is via the formation of shocks, and as we have just seen a
single shock generates a power spectrum ∝ k−2, i.e. it non-locally
couples many scales. Thus, in supersonic turbulence there is no
locality in k-space. All scales are coupled at shocks.

4.3.2 Density Statistics

In subsonic flows the pressure force is dominant, and so if the gas
is isothermal, then the density stays nearly constant – any density
inhomogeneities are ironed out immediately by the strong pressure
forces. In supersonic turbulence, on the other hand, the flow is highly
compressible. It is therefore of great interest to ask about the statistics
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of the density field.
Numerical experiments and empirical arguments (but not fully

rigorous proofs) indicate that the density field for a supersonically-
turbulent, isothermal medium is well-described by a lognormal
distribution,

p(s) =
1√

2πσ2
s

exp
[
− (s− s0)

2

2σ2
s

]
, (4.24)

where s = ln(ρ/ρ) is the log of the density normalized to the mean
density ρ. This distribution describes the probability that the density
at a randomly chosen point will be such that ln(ρ/ρ) is in the range
from s to s + ds. The median of the distribution s0 and the dispersion
σs must be related to one another, because we require that

ρ =
∫

p(s)ρ ds. (4.25)

With a bit of algebra, one can show that this equation is satisfied if
and only if

s0 = −σ2
s /2. (4.26)

Instead of computing the probability that a randomly chosen
point in space will have a particular density, we can also compute
the probability that a randomly chosen mass element will have a
particular density. This more or less amounts to a simple change of
variables. Consider some volume of interest V, and examine all the
material with density such that ln(ρ/ρ) is in the range from s to s + ds.
This material occupies a volume dV = p(s)V, and thus must have a
mass

dM = ρp(s) dV (4.27)

= ρes · 1√
2πσ2

s
exp

[
− (s− s0)

2

2σ2
s

]
dV (4.28)

= ρ
1√

2πσ2
s

exp
[
− (s + s0)

2

2σ2
s

]
dV (4.29)

FIG. 8c

FIG. 8d
Figure 4.4: Volume rendering of the
density field in a simulation of super-
sonic turbulence (Padoan & Nordlund,
1999). The surfaces shown are isosur-
faces of density.

It immediately follows that the mass PDF is simply

pM(s) =
1√

2πσ2
s

exp
[
− (s + s0)

2

2σ2
s

]
, (4.30)

i.e., exactly the same as the volume PDF but with the peak moved
from −s0 to +s0. Physically, the meaning of these shifts is that the
typical volume element in a supersonic turbulent field is at a density
lower than the mean, because much of the mass is collected into
shocks. The typical mass element lives in one of these shocked
regions, and thus is at higher-than-average density. Figure 4.4 shows
an example of the density distribution produced in a numerical
simulation of supersonic turbulence.
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The lognormal functional form is not too surprising, given the cen-
tral limit theorem. Supersonic turbulence consists of an alternative
series of shocks, which cause the density to be multiplied by some
factor, and supersonic rarefactions, which cause it to drop by some
factor. The result of multiplying a lot of positive density increases
by a lot of negative density drops at random tends to produce a nor-
mal distribution in the multiplicative factor, and thus a lognormal
distribution in the density.

This argument does not, however, tell us about the dispersion of
densities, which must be determined empirically from numerical
simulations. The general result of these simulations (e.g., Federrath,
2013) is that

σ2
s ≈ ln

(
1 + b2M2 β0

β0 + 1

)
, (4.31)

where the factor b is a number in the range 1/3− 1 that depends
on how compressive versus solenoidal the velocity field is, and β0

is the ratio of thermal to magnetic pressure at the mean density and
magnetic field strength – we’ll get to the magnetic case next.

In addition to the density PDF, there are higher order statistics
describing correlations of the density field from point to point. We
will defer a discussion of these until we get to models of the IMF in
Chapter 13, where they play a major role.





Problem Set 1

1. Molecular Tracers.
Here we will derive a definition of the critical density, and use
it to compute some critical densities for important molecular
transitions. For the purposes of this problem, you will need to
know some basic parameters (such as energy levels and Einstein
coefficients) of common interstellar molecules. You can obtain
these from the Leiden Atomic and Molecular Database (LAMDA,
http://www.strw.leidenuniv.nl/~moldata). It’s also worth taking
a quick look through the associated paper (Schöier et al., 2005)1 so 1 Schöier et. al, 2005, A&A, 432, 369

you get a feel for where these numbers come from.

(a) Consider an excited state i of some molecule, and let Aij and
kij be the Einstein A coefficient and the collision rate, respec-
tively, for transitions from state i to state j. Write down expres-
sions for the rates of radiative and collisional de-excitations out
of state i in a gas where the number density of collision partners
is n.

(b) We define the critical density ncrit of a state as the density
for which the radiative and collisional de-excitation rates are
equal.2 Using your answer to the previous part, derive an 2 There is some ambiguity in this

definition. Some people define the
critical density as the density for which
the rate of radiative de-excitation equals
the rate of all collisional transitions out
of a state, not just the rate of collisional
de-excitations out of it. In practice this
usually makes little difference.

expression for ncrit in terms of the Einstein coefficient and
collision rates for the state.

(c) When a state has a single downward transition that is far more
common than any other one, as is the case for example for the
rotational excitation levels of CO, it is common to refer to the
critical density of the upper state of the transition as the critical
density of the line. Compute critical densities for the following
lines: CO J = 1 → 0, CO J = 3 → 2, CO J = 5 → 4, and
HCN J = 1 → 0, using H2 as a collision partner. Perform your
calculation for the most common isotopes: 12C, 16O, and 14N.
Assume the gas temperature is 10 K, the H2 molecules are all
para-H2, and neglect hyperfine splitting.

(d) Consider a molecular cloud in which the volume-averaged
density is n = 100 cm−3. Assuming the cloud has a lognor-

http://www.strw.leidenuniv.nl/~moldata
http://adsabs.harvard.edu/abs/2005A%26A...432..369S
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mal density distribution as given by equation (4.24), with a
dispersion σ2

s = 5.0, compute the fraction of the cloud mass
that is denser than the critical density for each of these tran-
sitions. Which transitions are good tracers of the bulk of the
mass in a cloud? Which are good tracers of the denser, and thus
presumably more actively star-forming, parts of the cloud?

2. Infrared Luminosity as a Star Formation Rate Tracer.
We use a variety of indirect indicators to measure the star

formation rate in galaxies, and one of the most common is to
measure the galaxy’s infrared luminosity. The underlying assump-
tions behind this method are that (1) most of the total radiant
output in the galaxy comes from young, recently formed stars,
and (2) that in a sufficiently dusty galaxy most of the starlight
will be absorbed by dust grains within the galaxy and then re-
radiated in the infrared. We will explore how well this conversion
works using the popular stellar population synthesis package
Starburst99 (Leitherer et al., 1999; Vázquez & Leitherer, 2005),
http://www.stsci.edu/~science/starburst99.

(a) Once you’ve read enough of the papers to figure out what
Starburst99 does, use it with the default parameters to compute
the total luminosity of a stellar population in which star forma-
tion occurs continuously at a fixed rate Ṁ∗. What is the ratio of
Ltot/Ṁ∗ after 10 Myr? After 100 Myr? After 1 Gyr? Compare
these ratios to the conversion factor between LTIR and Ṁ∗ given
in Table 1 of Kennicutt & Evans (2012)3. 3 Kennicutt & Evans, 2012, ARA&A, 50,

531(b) Plot Ltot/Ṁ∗ as a function of time for this population. Based
on this plot, how old does a stellar population have to be before
LTIR becomes a good tracer of the total star formation rate?

(c) Try making the IMF slightly top-heavy, by removing all stars
below 0.5 M�. How much does the luminosity change for a
fixed star formation rate? What do you infer from this about
how sensitive this technique is to assumptions about the form of
the IMF?

http://www.stsci.edu/~science/starburst99
http://adsabs.harvard.edu/abs/2012ARA%26A..50..531K
http://adsabs.harvard.edu/abs/2012ARA%26A..50..531K
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Magnetic Fields and Magnetized Turbulence
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In our treatment of fluid flow and turbulence in Chapter 4, we con-
centrated on the hydrodynamic case. However, real star-forming
clouds are highly magnetized. We therefore devote this chapter to the
question of how magnetic fields change the nature of molecular cloud
fluid flow.

5.1 Observing Magnetic Fields

5.1.1 Zeeman Measurements

How do we even know that magnetic field are present? There are
several methods that can be used to measure magnetic fields, but the
most direct is the Zeeman effect. The Zeeman effect is a slight shift
in energy levels of an atom or molecule in the presence of a magnetic
field. Ordinarily the energies of a level depend only the direction
of the electron spin relative to its orbital angular momentum vector,
not on the direction of the net angular momentum vector. However,
in the presence of an external magnetic field, states with different
orientations of the net angular momentum vector of the atom have
slightly different energies due to the interaction of the electron
magnetic moment with the external field. This causes a normally
single spectral line produced transitions from that level to split into
several separate lines at slightly different frequencies.

For the molecules with which we are concerned, the level is nor-
mally split into three sublevels – one at slightly higher frequency
than the unperturbed line, one at slightly lower frequency, and one at
the same frequency. The strength of this splitting varies depending
on the electronic configuration of the atom or molecule in question.
For OH, for example, the splitting is Z = 0.98 Hz/µG, where the pa-
rameter Z is called the Zeeman sensitivity, and the shift is ∆ν = BZ,
where B is the magnetic field strength. One generally wants to look
for molecules where Z is as large as possible, and these are generally

http://adsabs.harvard.edu/abs/2012ARA%26A..50...29C
http://adsabs.harvard.edu/abs/2008ApJ...684..380L
http://adsabs.harvard.edu/abs/2008ApJ...684..380L
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molecules or atoms that have an unpaired electron in their outer shell.
Examples include atomic hydrogen, OH, CN, CH, CCS, SO, and O2.

AA50CH02-Crutcher ARI 27 July 2012 9:32

Right ascension (J2000)

D
ec

lin
at

io
n 

(J
20

00
)

Jy beam–1

20h39m03s

42°22’10”

20”

30”

40”

50”

Telescope footprint

23’00”

02s 01s 39m00s 59s 58s

2

Observed
Fitted

1

St
ok

es
 I/

2 
(K

)
St

ok
es

 V
 (×

 1
0–3

) (
K)

0

0

5

–5

–0.02

–0

0.02

0.04

0.06

0.08

0.10

St
ok

es
 V

 (×
 1

0–3
) (

K)

LSR velocity (km s–1)

0

5

–5

–10 –5 0 05

b

a 7 components

4 components;
large  Z

3 components;
small Z

Figure 4
(a) CN Zeeman Stokes I and V profiles toward DR21(OH) (Crutcher et al. 1999). The two velocity components were fitted
simultaneously for the seven hyperfine CN lines to derive the independent BLOS for each velocity component. Because the hyperfine
components have different Zeeman coefficients Z, this procedure separates Zeeman splitting from instrumental effects. The middle
panel shows the observed and fitted Zeeman spectra for the four hyperfine components with large Z, whereas the bottom panel shows
the fit for the three hyperfine components with small Z. (b) CARMA map of velocity-integrated CN toward DR21(OH) (N. Hakobian,
R.M. Crutcher, in preparation). Contours are CN, color is dust continuum emission, and the dotted circle is the footprint of the CN
Zeeman IRAM 30-m telescope beam. The CN velocity component at V LSR ≈ −5 km s−1 is strongest in the DR21(OH) MM1, MM2
region (stars) in the northeast, where the strongest dust emission is found. Although the V LSR ≈ −1 km s−1 velocity component peaks
∼40 arcsec southwest of the 30-m telescope pointing position near the DR21(OH)W dust peak (star), it is widely distributed and has
about half the strength of the −5 km s−1 component within the IRAM 30-m beam. About 50% of the single-dish CN flux is detected
by CARMA, suggesting that interferometric Zeeman mapping is possible. Abbreviation: LSR, local standard of rest.

of the Arecibo telescope (3 arcmin) that was used reduced the possible effects of beam averaging
that might be important for results obtained with smaller telescopes, and the analysis used all
observations rather than just detections.

Finally, Falgarone et al. (2008) carried out a CN Zeeman survey of dense molecular cores.
Figure 4 shows an example of the data. Together with earlier CN Zeeman observations (Crutcher
et al. 1996, 1999), there were 14 positions observed with significant sensitivity and 8 CN Zeeman
detections. The analysis techniques were similar to that of the OH dark cloud survey (Troland &
Crutcher 2008). The mean M/! was supercritical by ∼3 and M A ∼ 1.5.

7.2. Analysis
In spite of a range of molecular cloud physical conditions and types being observed, the results of
all of the Zeeman studies described above are very similar: (a) the mean mass-to-flux ratio M/!
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Figure 5.1: Sample Zeeman detection
of an interstellar magnetic field using
the CN line in the region DR21(OH)
(Crutcher, 2012). The top panel shows
the observed total intensity (Stokes
I, red lines), which is well-fit by two
different velocity components (blue
lines). The CN molecule has 7 hyperfine
components, of which 4 have a large
Zeeman splitting and 3 have a small
splitting. The middle panel shows
the measured Stokes V (circularly
polarized emission) for the sum of
the 4 strong splitting components,
while the bottom panel shows the
corresponding measurement for the
3 weak components. The blue lines
show the best fit, with the line of sight
magnetic field as the fitting parameter.

The Doppler width of the line is σν = ν0(σv/c), where for the rele-
vant OH transition ν0 = 1.667 GHz. If the OH molecule has a velocity
dispersion of order 0.1 km s−1, as expected for the lowest observed
velocity dispersion even on small scales in molecular clouds, then
(σv/c) ∼ 10−6, so σν ∼ 1 kHz. This means that, unless the field is
considerably larger than 1000 µG (1 mG), which it essentially never is,
the Zeeman splitting is smaller than the Doppler line width, and we
won’t see the line split.

However, there is a trick to avoid this problem: radiation from the
different Zeeman sublevels has different polarization. If the magnetic
field is along the direction of propagation of the radiation, emission
from the higher frequency Zeeman sublevel is right circularly polar-
ized, while radiation from the lower frequency level is left circularly
polarized. The unperturbed level is unpolarized. Thus although one
cannot see the line split if one looks at total intensity (as measured
by the Stokes I parameter), one can see that the different polarization
components peak at slightly different frequencies, so that the circu-
larly polarized spectrum (as measured by the Stokes V parameter)
looks different than the total intensity spectrum. One can deduce the
magnetic field strength along the line of sight from the difference
between the total and polarized signals. Figure 5.1 shows a sample
detection.

Applying this technique to molecular line emission from molecular
clouds indicates that they are threaded by magnetic fields whose
strengths range from tens to thousands of µG, with higher density
gas generally showing stronger fields. We can attempt to determine if
this is dynamically important by a simple energy argument.

For a low-density envelope of a GMC with n ∼ 100 cm−3 (ρ ∼
10−22 g cm−3), we might have v of a few km s−1, giving a kinetic
energy density

EK ∼ ρv2 ∼ 10−22 g cm−3 × (3× 105 cm s−1)2 ∼ 10−11 erg cm−3.
(5.1)

The energy density in a magnetic field is

EB =
B2

8π
∼ (10 µG)2

8π
∼ 10−11 erg cm−3. (5.2)

Thus the magnetic energy density is comparable to the kinetic energy
density, and is dynamically significant in the flow.

5.1.2 The Chandrasekhar-Fermi Method

While the Zeeman effect provides by far the most direct method
of measuring magnetic field strengths, it is not the only method
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for making this measurement. Another commonly-used technique,
which we will not discuss in any detail, is the Chandrasekhar-Fermi
method (Chandrasekhar & Fermi, 1953). This method relies on the
fact that interstellar dust grains are non-spherical, which has two
important implications. First, a non-spherical grain acts like an
antenna, in that it interacts differently with electromagnetic waves
that are oriented parallel and perpendicular to its long axis. As a
result, grains both absorb and emit light preferentially along their
long axis. This would not matter if the orientations of grains in
the interstellar medium were random. However, there is a second
effect. Most grains are charge, and as a result they tend to become
preferentially aligned with the local magnetic field. The combination
of these two effects means that the dust in a particular region of
the ISM characterized by a particular large scale field will produce
a net linear polarization in both the light it emits and any light
passing through it. The direction of the polarization then reveals the
orientation of the magnetic field on the plane of the sky.

By itself this effect tells us nothing about the strength of the field –
in principle there should be some relationship between field strength
and degree of dust polarization, but there are enough other com-
pounding factors and uncertainties that we cannot with any con-
fidence translate the observed degree of polarization into a field
strength. However, if we have measurements of the field orientation
as a function of position, then we can estimate the field strength from
the morphology of the field. As we shall see below, the degree to
which field lines are straight or bent is strongly correlated with the
ratio of magnetic energy density to turbulent energy density, and so
the degree of alignment becomes a diagnostic of this ratio. In fact,
one can even attempt to make quantitative field strength estimates
from this method, albeit with very large uncertainties.

5.2 Equations and Characteristic Numbers for Magnetized Tur-
bulence

Now that we know that magnetic fields are present, let us discuss
some basic theory for magnetized flow. To understand how magnetic
fields affect the flows in molecular clouds, it is helpful to write
down the fundamental evolution equation for the magnetic field in a
plasma (this is derived in many places – my notation and discussion
follow Shu 1992):

∂B
∂t

+∇× (B× v) = −∇× (η∇× B) (5.3)

Here B is the magnetic field, v is the fluid velocity (understood to
be the velocity of the ions, which carry all the mass), and η is the
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electrical resistivity. If the resistivity is constant in space, we can use
the fact that ∇ · B = 0 to simplify this slightly to get

∂B
∂t

+∇× (B× v) = η∇2B. (5.4)

The last term here looks very much like the ν∇2v term we had in
the momentum equation to describe viscosity. That term described
diffusion of momentum, while the one in this equation describes
diffusion of the magnetic field.

(Note that we’re simplifying a bit here – the real dissipation mech-
anism in molecular clouds is not simple resistivity, it is something
more complex called ambipolar drift, which we’ll discuss in more
detail later. However, the qualitative point we can make is the same,
and the algebra is simpler if we use a simple scalar resistivity.)

We can understand the implications of this equation using dimen-
sional analysis much as we did for the momentum equation. Again,
we let L be the characteristic size of the system and V be the charac-
teristic velocity, so L/V is the characteristic timescale. We let B be the
characteristic magnetic field strength. Inserting the same scalings as
before, the terms vary as

BV
L

+
BV
L

∼ η
B
L2 (5.5)

1 ∼ η

VL
(5.6)

In analogy to the ordinary hydrodynamic Reynolds number, we
define the magnetic Reynolds number by

Rm =
LV
η

. (5.7)

Magnetic diffusion is significant only if Rm ∼ 1 or smaller.
What is Rm for a typical molecular cloud? As in the hydrody-

namic case, we can take L to be a few tens of pc and V to be a few
km s−1. The magnetic field B is a few tens of µG. The electrical
resistivity is a microphysical property of the plasma, which, for a
weakly ionized plasma, depends on the ionization fraction in the gas
and the ion-neutral collision rate. Its typical value for the molecular
cloud example we’ve been using, which we will calculate in a bit, is
η ∼ 1022 − 1023 cm2 s−1. Since, as we discussed earlier, LV ∼ 1025

cm2 s−1, this implies that the Rm for molecular clouds is hundreds to
thousands.

Again in analogy to hydrodynamics, this means that on large
scales magnetic diffusion is unimportant for molecular clouds –
although it is important on smaller scales. The significance of a large
value of Rm becomes clear if we write down the induction equation
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with η = 0 exactly:
∂B
∂t

+∇× (B× v) = 0. (5.8)

To understand what this equation implies, it is useful consider the
magnetic flux Φ threading some fluid element. We define this as

Φ =
∫

A
B · n̂ dA, (5.9)

where we integrate over some area A that defines the fluid element.
Using Stokes’s theorem, we can alternately write this as

Φ =
∮

C
B · dl, (5.10)

where C is the curve that bounds A. The time derivative of this is
then

dΦ
dt

=
∫

A

∂B
∂t
· n̂ dA +

∮

C
B · v× dl (5.11)

=
∫

A

∂B
∂t
· n̂ dA +

∮

C
B× v · dl (5.12)

Here the second term on the right comes from the fact that, if the
fluid is moving at velocity v, the area swept out by a unit dl per unit
time is v× dl, so the flux crossing this area is B · v× dl. Then in the
second step we used the fact that ∇ · B = 0 to exchange the dot and
cross products.

If we now apply Stokes theorem again to the second term, we get

dΦ
dt

=
∫

A

∂B
∂t
· n̂ dA +

∫

A
∇× (B× v) · n̂ dA (5.13)

=
∫

A

[
∂B
∂t

+∇× (B× v)
]
· n̂ dA (5.14)

= 0 (5.15)

The meaning of this is that, when Rm is large, the magnetic flux
through each fluid element is conserved. This is called flux-freezing,
since we can envision it geometrically as saying that magnetic field
lines are frozen into the fluid, and move along with it.

Thus on large scales the magnetic field moves with the fluid.
However, on smaller scales the magnetic Reynolds number is ∼ 1,
and the field lines are not tied to the gas. We will calculate this scale
in a bit. Before that, however, we want to calculate another important
dimensionless number describing the MHD flows in molecular
clouds.

The momentum equation including magnetic forces is

∂

∂t
(ρv) = −∇ · (ρvv)−∇P + ρν∇2v +

1
4π

(∇× B)× B, (5.16)
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and if we make order of magnitude estimates of the various terms in
this, we have

ρV2

L
∼ −ρV2

L
+

ρc2
s

L
+

ρνV
L2 +

B2

L
(5.17)

1 ∼ 1 +
c2

s
V2 +

ν

VL
+

B2

ρV2 (5.18)

The second and third terms on the right hand side we have already
defined in terms ofM = V/cs and Re = LV/ν. We now define our
fourth and final characteristic number,

MA ≡
V
vA

, (5.19)

where
vA =

B√
4πρ

(5.20)

is the Alfvén speed – the speed of the wave that, in magnetohydro-
dynamics, plays a role somewhat analogous to the sound wave in
hydrodynamics. In flows withMA � 1, the magnetic force term is
unimportant, while in those withMA � 1 it is dominant.

Using our characteristic numbers n ∼ 100 cm−3, B of a few tens of
µG, and V of a few km s−1, we see that vA is of order a few km s−1,
about the same as the velocity. Thus the flows in molecular clouds
are highly supersonic (M � 1), but only trans-Alfvénic (MA ∼ 1),
and magnetic forces have a significant influence. Simulations of
turbulence with magnetic fields confirm this, as shown in Figure 5.2.

No. 1, 1998 DISSIPATION IN COMPRESSIBLE MHD TURBULENCE L101

TABLE 1
Dissipation Characteristics of Saturated MHD Turbulence

Model b 3 2E/rL cs 3 2E /rL cK s dEB/EK tdiss/tfa aKt /tdiss f tdec/tfa aKt /tdec f

A . . . . . . 0.01 20.3 13.0 0.56 0.83 0.54 0.82 0.65
B . . . . . . 0.1 18.9 11.8 0.61 0.74 0.46 0.69 0.39
C . . . . . . 1.0 17.0 12.9 0.32 0.70 0.53 0.58 0.37
D . . . . . . ` 15.4 15.4 0 0.69 0.69 0.40 0.40

a The variables tdiss, , tf, tdec, and are defined in the text.K Kt tdiss dec

Fig. 2.—Images of the logarithm of the density (colors) on three faces of the computational volume, representative magnetic field lines (dark blue lines), and
isosurface of the passive contaminant (red) after saturation. Left: ; right: .b 5 0.01 b 5 1

the four models displayed. From the values in the table, the
change in E with b is not large, amounting to only a ª30%
increase in the E saturation amplitude as b varies from ` to
0.01. The dissipation times for saturated turbulence all lie in
the range ª0.5–0.8tf, with slightly longer dissipation times for
stronger B0 models.
The structure of driven compressible MHD turbulence

changes as the field strength is varied. Figure 2 shows the
logarithm of the density along three faces of the computational
volume, representative magnetic field lines, and an isosurface
of the passive contaminant after saturation for both b 5 0.01
and models computed at a resolution of 2563. In bothb 5 1
cases, the density is compressed into small-scale knots and
filaments; in the model, these are elongated in theb 5 0.01
direction parallel to the field. The mass-weighted (volume-
weighted) mean of in the strong magnetic field modellog (r/r )0
is 0.28 (20.29), whereas for the weak field model it is 0.20
(20.22), which indicates that the density contrasts are larger
for strong fields at fixed turbulent Mach number. The maximum
density in the strong field model is 83; for the weak field model,
it is 44. The passive contaminant is confined to a narrow range
of flux tubes for , indicating that cross-field diffusionb 5 0.01
is small; for , it diffuses isotropically.b 5 1
There is a tendency toward equipartition of kinetic and mag-

netic energy in all of the models. From Table 1, the turbulent
magnetic energy dEB is between 30% and 60% of EK. In the
weak field case, significant amplification of the magnetic field
is produced by the turbulence, so that after saturation, the en-

ergy in the fluctuations in the field is 10 times larger than that
in the mean field. In the weakly magnetized model, the field
lines are thoroughly tangled (Fig. 2, right). In the strong field
model, the field lines are relatively well ordered (Fig. 2, left),
as expected (e.g., Weiss 1966).
Next consider models of decaying turbulence. The initial

conditions are taken from the saturated driven models presented
above. Figure 1b shows the evolution of E for decay from
saturated initial conditions for various magnetic field strengths.
At late times the decay of E follows a power law in time, with
an index between 0.8 and 0.9 (consistent with the finding of
Mac Low et al. 1998). This implies that the dissipation time
varies with time. We define decay times tdec ( ) as the timeKtdec
taken for 50% of the initial energy (kinetic energy) to be lost;
values for the decay time in these decay runs are given in Table
1. For all models, the decay times are in the range 0.4–0.8tf,
comparable to the range of steady state dissipation times.
The decay rate measured here could in principle differ sub-

stantially from decay simulations that begin with unsaturated
initial conditions. To investigate this possibility, we have com-
puted the decay of supersonic turbulence from initial conditions
in which the magnetic and velocity field perturbations are taken
from the saturated, driven model A, but the density is reset to
a uniform value. The result is plotted as a dashed line in Figure
1b. The corresponding decay times are andt /t 5 0.80dec f

, nearly identical to those for model A’s decay.Kt /t 5 0.68dec f

Finally, to make contact with other studies of decayingMHD
turbulence, we have performed simulations that begin with a
uniform density and magnetic field and velocity perturbations
that follow a k22 spectrum normalized to have the same initial
energy as our driven turbulence simulations at saturation. The
result is shown as a dotted curve in Figure 1b; the decay times
for this model are and , again compa-Kt /t 5 1.0 t /t 5 0.6dec f dec f

rable to the other dissipation times that we have found. Thus,
we conclude that turbulent decay times are not strongly affected
by specifics of initial conditions. The energy decay times found
for -dimensional models (Ostriker et al. 1998) are a factor12 2

Figure 5.2: Simulations of Alfvénic
(left) and sub-Alfvénic (right) turbu-
lence. Colors on the cube surface are
slices of the logarithm of density, blue
lines are magnetic field lines, and red
surfaces are isodensity surfaces for a
passive contaminant added to the flow.

5.3 Non-Ideal Magnetohydrodynamics

We have just shown that the magnetic Reynolds number is a critical
parameter for magnetized turbulence, and that this depends on the
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resistivity η. In the final part of this Chapter we will discuss in a bit
more detail the physical origins of resistivity and related effects.

5.3.1 Ion-Neutral Drift

Molecular clouds are not very good plasmas. Most of the gas in a
molecular cloud is neutral, not ionized. The ion fraction may be
10−6 or lower. Since only ions and electrons can feel the Lorentz
force directly, this means that fields only exert forces on most of the
particles in a molecular cloud indirectly. The indirect mechanism is
that the magnetic field exerts forces on the ions and electrons (and
mostly ions matter for this purpose), and these then collide with the
neutrals, transmitting the magnetic force.

If the collisional coupling is sufficiently strong, then the gas acts
like a perfect plasma. However, when the ion fraction is very low, the
coupling is imperfect, and ions and neutrals don’t move at exactly
the same speed. The field follows the ions, since the are much less
resistive, and flux freeizing for them is a very good approximation,
but the neutrals are able to drift across field lines. This slippage
between ions and neutrals is called ion-neutral drift, or ambipolar
diffusion.

To estimate how this process works, we need to think about the
forces acting on both ions and neutrals. The ions feel the Lorentz
force we wrote down in our derivation of the virial theorem:

fL =
1

4π
(∇× B)× B (5.21)

The other force in play is the drag force due to ion-neutral collisions,
which is

fd = γρnρi(vi − vn), (5.22)

where the subscript i and n refer to ions and neutrals, respectively,
and γ is the drag coefficient, which can be computed from the micro-
physics of the plasma.

In a very weakly ionized fluid, the neutral and ions very quickly
reach terminal velocity with respect to one another, so the drag force
and the Lorentz force must balance. Equating our expressions and
solving for vd = vi − vn, the drift velocity, we get

vd =
1

4πγρnρi
(∇× B)× B (5.23)

To figure out how this affects the fluid, we write down the equa-
tion of magnetic field evolution under the assumption that the field is
perfectly frozen into the ions:

∂B
∂t

+∇× (B× vi) = 0. (5.24)
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To figure out how the field behaves with respect to the neutrals,
which constitute most of the mass, we simply use our expression for
the drift speed vd to eliminate vi.

With a little algebra, the result is

∂B
∂t

+∇× (B× vn) = ∇×
{

B
4πγρnρi

× [B× (∇× B)]
}

. (5.25)

Referring back to the MHD evolution equation,

∂B
∂t

+∇× (B× v) = −∇× (η∇× B), (5.26)

we can see that the resistivity produced by ambipolar drift isn’t a
scalar, and that it is non-linear, in the sense that it depends on B
itself.

However, our scaling analysis still applies. The magnitude of the
resistivity produced by ambipolar drift is

ηAD =
B2

4πρiρnγ
. (5.27)

Thus, the magnetic Reynolds number is

Rm =
LV

ηAD
=

4πLVρiρnγ

B2 ≈ 4πLVρ2xγ

B2 , (5.28)

where x = ni/nn is the ion fraction, which we’ve assumed is� 1 in
the last step. Ion-neutral drift will allow the magnetic field lines to
drift through the fluid on length scales L such that Rm . 1. Thus, we
can define a characteristic length scale for ambipolar diffusion by

LAD =
B2

4πρ2xγV
(5.29)

In order to evaluate this numerically, we must calculate two things
from microphysics: the ion-neutral drag coefficient γ and the ion-
ization fraction x. For γ, the dominant effect at low speeds is that
ions induce a dipole moment in nearby neutrals, which allows them
to undergo a Coulomb interaction. This greatly enhances the cross-
section relative to the geometric value. We won’t go into details of
that calculation, and will simply adopt the results: γ ≈ 9.2× 1013 cm3

s−1 g−1 (Smith & Mac Low 1997; note that Shu 1992 gives a value
that is lower by a factor of ∼ 3, based on an earlier calculation).

The remaining thing we need to know to compute the drag force
is the ion density. In a molecular cloud the gas is almost all neutral,
and the high opacity excludes most stellar ionizing radiation. The
main source of ions is cosmic rays, which can penetrate the cloud,
although nearby strong x-ray sources can also contribute if present.
We’ve already discussed them in the context of cloud heating.
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Calculating the ionization fraction requires balancing this against
the recombination rate, which is a nasty problem. That is because
recombination is dominated by different processes at different densi-
ties, and recombinations are usually catalyzed by dust grains rather
than occurring in the gas phase. Rather than trying to model all this,
which is the subject of many research papers, we will simply adopt
the results of a calculation by Tielens (2005):

ni ≈ 2× 10−3 cm−3
( nH

104 cm−3

)1/2
(

ζ

10−16 s−1

)1/2
(5.30)

Thus at a density nH ∼ 100 cm−3, we expect x ≈ 10−6.
Plugging this into our formulae, along with our characteristic

numbers L of a few tens of pc, V ∼ a few km s−1, and B ∼ 10 µG, we
find

Rm ≈ 50 (5.31)

LAD ∼ 0.5 pc. (5.32)

If we put in numbers for L and V more appropriate for cores than
entire GMCs, we get LAD ∼ 0.05 pc. Thus we expect the gas to act
like a fully ionized gas on scales larger than this, but to switch over
to behaving hydrodynamically on small scales.

5.3.2 Turbulent Reconnection

A final non-ideal MHD effect that has gotten a lot of attention lately
is turbulent reconnection. The general idea of reconnection is that, in
regions of non-zero resistivity where oppositely directed field lines
are brought into close contact, the field lines can break and the field
geometry can relax to a lower energy configuration. This may allow
the field to slip out of the matter, and it always involves a reduction
in magnetic pressure and energy density. The released energy is
transformed into heat.

The simplest model of reconnection, the Sweet-Parker model,
considers two regions of oppositely-directed field that meet at a
plane. On that plane, a large current must flow in order to maintain
the oppositely-directed fields on either side of it. Within this sheet
reconnection can occur. As with ion-neutral drift, we can define a
characteristic Reynolds-like number for this process, in this case
called the Lundqvist number:

RL =
LV
η

, (5.33)

where here η is the true microphysical resistivity, as opposed to the
term describing ambipolar diffusion.
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The rate at which reconnection can occur in the Sweet-Parker
model is dictated by geometry. Matter is brought into the thin re-
connection region, it reconnects, and then it must exit so that new
reconnecting matter can be brought in. Matter can only exit the layer
at the Alfvén speed, and since the cross-section of the reconnection
layer is small, this sets severe limits on the rate at which reconnection
can occur. It turns out that one can show that the maximum speed at
which matter can be brought into the reconnection region is of order
R1/2

L vA.
To figure out this speed, we need to know the resistivity, which is

related to the electrical conductivity σ by

η =
c2

4πη
. (5.34)

Deriving the conductivity of a plasma is beyond the scope of this
class, but it can be done in a fairly straightforward manner. Just to
sketch out the steps: the conductivity is simply the proportionality
constant between the applied electric field and the resulting current:

J = σE. (5.35)

In a plasma the current is carried by motions of the electrons, which
move much faster than the protons, and the current is simply the
electron charge times the electron number density times the mean
electron speed: J = eneve. To compute the mean electron speed, one
balances the electric force against the drag force exerted by collisions
with neutrals (which dominate in a weakly ionized plasma), in pre-
cisely the same way we derived the mean ion-neutral drift speed by
balancing the drag force against the Lorentz force. Not surprisingly
ve ends up being proportional to E, and inversely proportional to the
number density of H2 and the cross section for H2-electron collisions.
The final result of this procedure is

σ =
nee2

menH2〈σv〉e−H2

≈ 1017x s−1, (5.36)

where 〈σv〉e−H2 ≈ 10−9 cm3 s−1 is the mean cross-section times
velocity for electron-ion collisions. Plugging this into the resistivity
gives

η ≈ 103 cm2 s−1

x
(5.37)

Plugging in our typical value x ∼ 10−6 gives η ∼ 109 cm2 s−1, and
using L ∼ 10 pc and V of a few km s−1, typical molecular cloud
numbers, this implies

RL ∼ 1016. (5.38)
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Of course this makes the reconnection speed truly tiny, of order
10−8 of vA. So why is reconnection at all interesting? Why is it worth
considering? The answer turns on the word turbulent. It turns out
that the Sweet-Parker model underpredicts the observed reconnection
rate in laboratory experiments or observed in Solar flares and the
Earth’s magnetosphere. Indeed, if Sweet-Parker were right, there
would be no such things as Solar flares.

We currently lack a good understanding of reconnection, but a
rough idea is that, in a turbulent medium, reconnection sheets are
can be much wider due to turbulent broadening, and that this in
turn removes the geometric constraint that makes the reconnection
velocity much smaller than the Alfvén speed. Exactly how and when
this is important in molecular clouds is a subject of very active debate
in the literature right now.





6
Gravitational Instability and Collapse

Suggested background reading:

• Krumholz, M. R. 2014, Phys. Rep.,
539, 49, section 3.4

The previous two chapters provided a whirlwind tour of fluid dy-
namics and turbulence. However, in that discussion we completely
omitted gravity, which is obviously critical to the process of star for-
mation. We will now remedy that omission by bringing gravity back
into the discussion.

6.1 The Virial Theorem

To open this topic, we will start by proving a powerful and general
theorem about the behavior of fluids, known as the virial theorem. Like the equations of motion, there

is both an Eulerian form and a La-
grangian form of the virial theorem,
depending on which version of the
equations of motion we start with.
We’ll derive the Eulerian form here,
following the original proof by McKee
& Zweibel (1992), but the derivation
of the Lagrangian form proceeds in a
similar manner, and can be found in
many standard textbooks, for example
Shu (1992).

To derive the virial theorem, we begin with the MHD equations of
motion, without either viscosity or resistivity (since neither of these
are important for GMCs on large scales) but with gravity. We leave in
the pressure forces, even though they are small, because they’re also
trivial to include. We will omit the viscosity term, since we convinced
ourselves last time that it is truly negligible. Thus we have

∂ρ

∂t
= −∇ · (ρv) (6.1)

∂

∂t
(ρv) = −∇ · (ρvv)−∇P +

1
4π

(∇× B)× B− ρ∇φ. (6.2)

Here φ is the gravitational potential, so −ρ∇φ is the gravitational
force per unit volume. These equations are the Eulerian equations
written in conservative form.

Before we begin, life will be a bit easier if we re-write the entire
second equation in a manifestly tensorial form – this simplifies the
analysis tremendously. To do so, we define two tensors: the fluid
pressure tensor Π and the Maxwell stress tensor TM, as follows:

Π ≡ ρvv + PI (6.3)

TM ≡ 1
4π

(
BB− B2

2
I
)

(6.4)

http://adsabs.harvard.edu/abs/2014arXiv1402.0867K
http://adsabs.harvard.edu/abs/2014arXiv1402.0867K
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Here I is the identity tensor. In tensor notation, these are

(Π)ij ≡ ρvivj + Pδij (6.5)

(TM)ij ≡
1

4π

(
BiBj −

1
2

BkBkδij

)
(6.6)

With these definitions, the momentum equation just becomes

∂

∂t
(ρv) = −∇ · (Π− T)− ρ∇φ. (6.7)

The substitution for Π is obvious. The equivalence of ∇ · TM to
1/(4π)(∇× B)× B is easy to establish with a little vector manipula-
tion, which is most easily done in tensor notation:

(∇× B)× B = εijkεjmn

(
∂

∂xm
Bn

)
Bk (6.8)

= −εjikεjmn

(
∂

∂xm
Bn

)
Bk (6.9)

= (δinδkm − δimδkn)

(
∂

∂xm
Bn

)
Bk (6.10)

= Bk
∂

∂xk
Bi − Bk

∂

∂xi
Bk (6.11)

=

(
Bk

∂

∂xk
Bi + Bi

∂

∂xk
Bk

)
− Bk

∂

∂xi
Bk (6.12)

=
∂

∂xk
(BiBk)−

1
2

∂

∂xi

(
B2

k

)
(6.13)

= ∇ ·
(

BB− B2

2

)
(6.14)

To derive the virial theorem, we begin by imagining a cloud of
gas enclosed by some fixed volume V. The surface of this volume is
S. We want to know how the overall distribution of mass changes
within this volume, so we begin by writing down a quantity the
represents the mass distribution. This is the moment of inertia:

I =
∫

V
ρr2 dV. (6.15)

We want to know how this changes in time, so we take its time
derivative:

İ =
∫

V

∂ρ

∂t
r2 dV (6.16)

= −
∫

V
∇ · (ρv)r2 dV (6.17)

= −
∫

V
∇ · (ρvr2) dV + 2

∫

V
ρv · r dV (6.18)

= −
∫

S
(ρvr2) · dS + 2

∫

V
ρv · r dV (6.19)
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In the first step we used the fact that the volume V does not vary in
time to move the time derivative inside the integral. Then in the sec-
ond step we used the equation of mass conservation to substitute. In
the third step we brought the r2 term inside the divergence. Finally
in the fourth step we used the divergence theorem to replace the
volume integral with a surface integral.

Now we take the time derivative again, and multiply by 1/2 for
future convenience:

1
2

Ï = −1
2

∫

S
r2 ∂

∂t
(ρv) · dS +

∫

V

∂

∂t
(ρv) · r dV (6.20)

= −1
2

d
dt

∫

S
r2(ρv) · dS−

∫

V
r · [∇ · (Π− TM) + ρ∇φ] dV(6.21)

The term involving the tensors is easy to simplify using a handy
identity, which applies to an arbitrary tensor. This is a bit easier to
follow in tensor notation:

∫

V
r · ∇ · T dV =

∫

V
xi

∂

∂xj
Tij dV (6.22)

=
∫

V

∂

∂xj
(xiTij) dV −

∫

V
Tij

∂

∂xj
xi dV (6.23)

=
∫

S
xiTij dSj −

∫

V
δijTij dV (6.24)

=
∫

S
r · T · dS−

∫

V
Tr T dV, (6.25)

where Tr T = Tii is the trace of the tensor T.
Applying this to our result our tensors, we note that

Tr Π = 3P + ρv2 (6.26)

Tr TM = − B2

8π
(6.27)

Inserting this result into our expression for Ï give the virial theorem,
which I will write in a more suggestive form to make its physical
interpretation clearer:

1
2

Ï = 2(T − TS) + B +W − 1
2

d
dt

∫

S
(ρvr2) · dS, (6.28)

where

T =
∫

V

(
1
2

ρv2 +
3
2

P
)

dV (6.29)

TS =
∫

S
r ·Π · dS (6.30)

B =
1

8π

∫

V
B2 dV +

∫

S
r · TM · dS (6.31)

W = −
∫

V
ρr · ∇φ dV (6.32)
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Written this way, we can give a clear interpretation to what these
terms mean. T is just the total kinetic plus thermal energy of the
cloud. TS is the confining pressure on the cloud surface, including
both the thermal pressure and the ram pressure of any gas flowing
across the surface. B is the the difference between the magnetic
pressure in the cloud interior, which tries to hold it up, and the
magnetic pressure plus magnetic tension at the cloud surface, which
try to crush it. W is the gravitational energy of the cloud. If there is
no external gravitational field, and φ comes solely from self-gravity,
thenW is just the gravitational binding energy. The final integral
represents the rate of change of the momentum flux across the cloud
surface.

Ï is the integrated form of the acceleration. For a cloud of fixed
shape, it tells us the rate of change of the cloud’s expansion of con-
traction. If it is negative, the terms that are trying to collapse the
cloud (the surface pressure, magnetic pressure and tension at the
surface, and gravity) are larger, and the cloud accelerates inward. If
it is positive, the terms that favor expansion (thermal pressure, ram
pressure, and magnetic pressure) are larger, and the cloud accelerates
outward. If it is zero, the cloud neither accelerates nor decelerates.

We get a particularly simple form of the virial theorem if there is
no gas crossing the cloud surface (so v = 0 at S) and if the magnetic
field at the surface to be a uniform value B0. In this case the virial
theorem reduces to

1
2

Ï = 2(T − TS) + B +W (6.33)

with

TS =
∫

S
rPdS (6.34)

B =
1

8π

∫

V
(B2 − B2

0) dV. (6.35)

In this case TS just represents the mean radius times pressure at the
virial surface, and B just represents the total magnetic energy of the
cloud minus the magnetic energy of the background field over the
same volume.

Notice that, if a cloud is in equilibrium ( Ï = 0) and magnetic and
surface forces are negligible, then we have 2T = −W . Based on this
result, we define the virial ratio

αvir =
2T
|W| . (6.36)

For an object for which magnetic and surface forces are negligible,
and with no flow across the virial surface, a value of αvir > 1 implies
Ï > 0, and a value αvir < 1 implies Ï < 0. Thus αvir = 1 roughly
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divides clouds that have enough internal pressure or turbulence to
avoid collapse from those that do not.

6.2 Stability Conditions

Armed with the virial theorem, we are now in a position to under-
stand, at least qualitatively, under what conditions a cloud of gas will
be stable against gravitational contraction, and under what condi-
tions it will not be. If we examine the terms on the right hand side
of the virial theorem, we can group them into those that are gen-
erally or always positive, and thus oppose collapse, and those that
are generally or always negative, and thus encourage it. The main
terms opposing collapse are T , which contains parts describing both
thermal pressure and turbulent motion, and B, which describes mag-
netic pressure and tension. The main terms favoring collapse areW ,
representing self-gravity, and TS, representing surface pressure. The
final term, the surface one, could be positive or negative depending
on whether mass is flowing into our out of the virial volume. We will
begin by examining the balance among these terms, and the forces
they represent.

6.2.1 Thermal Support and the Jeans Instability

Gas pressure is perhaps the most basic force in opposing collapse.
Unlike turbulent motions, which can compress in some places even
as they provide overall support, gas pressure always tries to smooth
out the gas. Similarly, self-gravity is the most reliable promoter of
collapse. A full, formal analysis of the interaction between pressure
and self-gravity was provided by James Jeans in 1902 Jeans (1902),
and we’ll go through that in a moment. However, we can already
see what the basic result will have to look like just from the virial
theorem. We expect the dividing line between stability and instability
to lie at αvir ≈ 1. For an isolated, isothermal cloud of mass M and
radius R with only thermal pressure, we have

T =
3
2

Mc2
s (6.37)

W = −a
GM2

R
, (6.38)

where a is a factor of order unity that depends on the internal density
structure. Thus the condition αvir & 1 corresponds to

Mc2
s &

GM2

R
=⇒ R & GM

c2
s

, (6.39)
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or, rewriting in terms of the mean density ρ ∼ M/R3,

R & cs√
Gρ

. (6.40)

The formal analysis proceeds as follows. Consider a uniform,
infinite, isothermal medium at rest. The density is ρ0, the pressure
is P0 = ρ0c2

s , and the velocity is v0 = 0. We will write down the
equations of hydrodynamics and self-gravity for this gas:

∂

∂t
ρ +∇ · (ρv) = 0 (6.41)

∂

∂t
(ρv) +∇ · (ρvv) = −∇P− ρ∇φ (6.42)

∇2φ = 4πGρ. (6.43)

Here the first equation represents conservation of mass, the second
represents conservation of momentum, and the third is the Poisson
equation for the gravitational potential φ. We take the background
density ρ0, velocity v0 = 0, pressure P0, and potential φ0 to be an
exact solution of these equations, so that all time derivatives are zero
as long as the gas is not disturbed.

Note that this involves the "Jeans swindle": this assumption is
actually not really consistent, because the Poisson equation cannot be
solved for an infinite uniform medium unless ρ0 = 0. In other words,
there is no function φ0 such that ∇2φ0 is equal to a non-zero constant
value on all space. That said, we will ignore this complication, since
the approximation of a uniform infinite medium is a reasonable
one for a very large but finite uniform medium. It is possible to
construct the argument without the Jeans swindle, but doing so adds
mathematical encumbrance without physical insight, so we will not
do so.

That digression aside, now let us consider what happens if we
perturb this system. We will write the density as ρ = ρ0 + ερ1, where
ε � 1. Similarly, we write v = εv1 and φ = φ0 + εφ1. Since we can
always use Fourier analysis to write an arbitrary perturbation as a
sum of Fourier components, without loss of generality we will take
the perturbation to be a single, simple Fourier mode. The reason to
do this is that, as we will say, differential equations are trivial to solve
when the functions in question are simple plane waves.

Thus we write ρ1 = ρa exp[i(kx − ωt)]. Note that we implicitly
understand that we use only the real part of this exponential. It is
just easier to write things in terms of an ei(kx−ωt) than it is to keep
track of a bunch of sines and cosines. In writing this equation, we
have chosen to orient our coordinate system so that the wave vector
k of the perturbation is in the x direction. Again, there is no loss of
generality in doing so.
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Given this density perturbation, what is the corresponding pertur-
bation to the potential? From the Poisson equation, we have

∇2(φ0 + εφ1) = 4πG(ρ0 + ερ1). (6.44)

Since by assumption ρ0 and φ0 are exact solutions to the Poisson
equation, we can cancel the φ0 and ρ0 terms out of the equation,
leaving

∇2φ1 = 4πGρ1 = 4πGρaei(kx−ωt). (6.45)

This equation is trivial to solve, since it is just of the form y′′ = aebx.
The solution is

φ1 = −4πGρa

k2 ei(kx−ωt) (6.46)

By analogy to what we did for ρ1, we write this solution as φ1 =

φaei(kx−ωt), with

φa = −
4πGρa

k2 . (6.47)

Now that we have found the perturbed potential, let us determine
what motion this will induce in the fluid. To do so, we first take the
equations of mass and momentum conservation and we linearize
them. This means that we substitute in ρ = ρ0 + ερ1, v = εv1,
P = P0 + εP1 = c2

s (ρ0 + ερ1), and φ = φ0 + εφ1. Note that v0 = 0.
We then expand the equations in powers of ε, and we drop all the
terms that are of order ε2 or higher on the grounds that they become
negligible in the limit of small ε.

Linearizing the equation of motion we get

∂

∂t
(ρ0 + ερ1) +∇ · [(ρ0 + ερ1)(εv1)] = 0 (6.48)

∂

∂t
ρ0 + ε

∂

∂t
ρ1 + ε∇ · (ρ0v1) = 0 (6.49)

∂

∂t
ρ1 +∇ · (ρ0v1) = 0 (6.50)

In the second step, we dropped a term of order ε2. In the third step
we used the fact that ρ0 is constant, i.e. that the background density
has zero time derivative, to drop that term.

Applying the same procedure to the momentum / Euler equation,
we get

∂

∂t
[(ρ0 + ερ1)(εv1)] +∇ · [(ρ0 + ερ1)(εv1)(εv1)]

= −c2
s∇(ρ0 + ερ1)

− (ρ0 + ερ1)∇(φ0 + εφ1) (6.51)

ε
∂

∂t
(ρ0v1) = −c2

s∇ρ0 − ρ0∇φ0

− ε
(

c2
s∇ρ1 + ρ1∇φ0 + ρ0∇φ1

)
(6.52)

∂

∂t
(ρ0v1) = −c2

s∇ρ1 − ρ0∇φ1 (6.53)
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In the second step we dropped terms of order ε2, and in the third
step we used the fact that the background state is uniform to drop
terms involving gradients of ρ0 and φ0.

Now that we have our linearized equations, we’re ready to find
out what v1 must be. By analogy to what we did for ρ1 and φ1, we
take v1 to be a single Fourier mode, of the form

v1 = vaei(kx−ωt) (6.54)

Substituting for ρ1, φ1, and v1 into the linearized mass conservation
equation, we get

∂

∂t

(
ρaei(kx−ωt)

)
+∇ · (ρ0vaei(kx−ωt)) = 0 (6.55)

−iωρaei(kx−ωt) + ikρ0va,xei(kx−ωt) = 0 (6.56)

−ωρa + kρ0va,x = 0 (6.57)
ωρa

kρ0
= va,x (6.58)

where va,x is the x component of va.
We have now found the velocity perturbation in terms of ρa, ω,

and k. Similarly substituting into the momentum equation

∂

∂t

(
ρ0vaei(kx−ωt)

)
= −c2

s∇(ρaei(kx−ωt))

− ρ0∇(φaei(kx−ωt)) (6.59)

−iωρ0vaei(kx−ωt) = −ikc2
s ρax̂ei(kx−ωt)

− ikρ0φaei(kx−ωt)x̂ (6.60)

ωρ0va,x = k
(

c2
s ρa + ρ0φa

)
(6.61)

Now let us take this equation and substitute in the values for φa and
va,x that we previously determined:

ωρ0

(
ωρa

kρ0

)
= kc2

s ρa − kρ0

(
4πGρa

k2

)
(6.62)

ω2 = c2
s k2 − 4πGρ0 (6.63)

This expression is known as a dispersion relation, because it de-
scribes the dispersion of the plane wave solution we have found, i.e.
how that wave’s spatial frequency k relates to its temporal frequency
ω.

To see what this implies, let’s consider what happens when we put
in a perturbation with a short wavelength or a large spatial frequency.
In this case k is large, and c2

s k2 − 4πGρ0 > 0, so ω is a positive or
negative real number. The density is ρ = ρ0 + ρaei(kx−ωt), which
represents a uniform background density with a small oscillation
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in space and time on top of it. Since |ei(kx−ωt)| < 1 at all times and
places, the oscillation does not grow.

On the other hand, suppose that we impose a perturbation with
a large spatial range, or a small spatial frequency. In this case c2

s k2 −
4πGρ0 < 0, so ω is a positive or negative imaginary number. For an
imaginary ω, |e−iωt| either decays to zero or grows infinitely large
in time, depending on whether we take the positive or negative
imaginary root. Thus at least one solution for the perturbation will
not remain small. It will grown in amplitude without limit.

This represents an instability: if we impose an arbitrarily small am-
plitude perturbation on the density at a sufficiently large wavelength,
that perturbation will eventually grow to be large. Of course once ρ1

becomes large enough, our linearization procedure of dropping terms
proportional to ε2 becomes invalid, since these terms are no longer
small. In this case we must follow the full non-linear behavior of the
equations, usually with simulations.

We have, however, shown that there is a critical size scale beyond
which perturbations that are stabilized only by pressure must grow
to non-linear amplitude. The critical length scale is set by the value of
k for which ω = 0:

k J =

√
4πGρ0

c2
s

. (6.64)

The corresponding wavelength is

λJ =
2π

k J
=

√
πc2

s
Gρ0

. (6.65)

This is known as the Jeans length. One can also define a mass scale
associated with this: the Jeans mass, MJ = ρλ3

J .
If we plug in some typical numbers for a GMC, cs = 0.2 km s−1

and ρ0 = 100mp, we get λJ = 3.4 pc. Since every GMC we have seen
is larger than this size, and there are clearly always perturbations
present, this means that molecular clouds cannot be stabilized by gas
pressure against collapse. Of course you could have guessed this just
by evaluating terms in the virial theorem: the gas pressure term is
very small compared to the gravitational one. Ultimately, the virial
theorem and the Jeans instability analysis are just two different ways
of extracting the same information from the equations of motion.

One nice thing about the Jeans analysis, however, is that it makes
it obvious how fast we should expect the perturbation to grow. Sup-
pose we have a very unstable system, where c2

s k2 � 4πGρ0. This is
the case for GMC, for example. There are perturbations on the size
of the entire cloud, which might be 50 pc in size. This is a spatial
frequency k = 2π/(50 pc) = 0.12 pc−1. Plugging this in with cs = 0.2
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km s−1 and ρ0 = 100mp gives c2
s k2/(4πGρ) = 0.005. In this case we

have
ω ≈ ±i

√
4πGρ0. (6.66)

Taking the negative i root, which corresponds to the growing
mode, we find that

ρ1 ∝ exp([4πGρ0]
1/2t). (6.67)

Thus the e-folding time for the disturbance to grow is ∼ 1/
√

Gρ0. We
define the free-fall time as

tff =

√
3π

32Gρ0
, (6.68)

where the numerical coefficient of
√

3π/32 comes from doing the
closely related problem of the collapse of a pressureless sphere –
we’ll do that later this week. The free-fall time is the characteristic
time scale required for a medium with negligible pressure support to
collapse.

The Jeans analysis is of course only appropriate for a uniform
medium, and it requires the Jeans swindle. Problem Set 2 contains
a calculation of the maximum mass of a spherical cloud that can
support itself against collapse by thermal pressure, called the Bonnor-
Ebert mass (Ebert, 1955; Bonnor, 1956). Not surprisingly, the Bonnor-
Ebert mass is simply MJ times factors of order unity.

6.2.2 Magnetic Support and the Magnetic Critical Mass

Let us now consider another term that generally opposes collapse:
the magnetic one. Let us consider a uniform spherical cloud of ra-
dius R threaded by a magnetic field B. We imagine that B is uniform
inside the cloud, but that outside the cloud the field lines quickly
spread out, so that the magnetic field drops down to some back-
ground strength B0, which is also uniform but has a magnitude much
smaller than B.

Here it is easiest to work directly with the virial theorem. The
magnetic term in the virial theorem is

B =
1

8π

∫

V
B2 dV +

∫

S
x · TM · dS (6.69)

where

TM =
1

4π

(
BB− B2

2
I
)

. (6.70)

If the field inside the cloud is much larger than the field outside it,
then the first term, representing the integral of the magnetic pressure
within the cloud, is

1
8π

∫

V
B2 dV ≈ B2R3

6
. (6.71)
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Here we have dropped any contribution from the field outside the
cloud. The second term, representing the surface magnetic pressure
and tension, is

∫

S
x · TM · dS =

∫

S

B2
0

8π
x · dS ≈ B2

0R3
0

6
(6.72)

Since the field lines that pass through the cloud must also pass
through the virial surface, it is convenient to rewrite everything in
terms of the magnetic flux. The flux passing through the cloud is
ΦB = πBR2, and since these field lines must also pass through the
virial surface, we must have ΦB = πB0R2

0 as well. Thus, we can
rewrite the magnetic term in the virial theorem as

B ≈ B2R3

6
− B2

0R2
0

6
=

1
6π2

(
Φ2

B
R
− Φ2

B
R0

)
≈ Φ2

B
6π2R

. (6.73)

In the last step we used the fact that R � R0 to drop the 1/R0

term. Now let us compare this to the gravitational term, which is

W = −3
5

GM2

R
(6.74)

for a uniform cloud of mass M. Comparing these two terms, we find
that

B +W =
Φ2

B
6π2R

− 3
5

GM2

R
≡ 3

5
G
R

(
M2

Φ −M2
)

(6.75)

where

MΦ ≡
√

5
2

(
ΦB

3πG1/2

)
(6.76)

We call MΦ the magnetic critical mass. Since ΦB does not change as
a cloud expands or contracts (due to flux-freezing), this magnetic
critical mass does not change either.

The implication of this is that clouds that have M > MΦ always
have B +W < 0. The magnetic force is unable to halt collapse no mat-
ter what. Clouds that satisfy this condition are called magnetically
supercritical, because they are above the magnetic critical mass MΦ.
Conversely, if M < MΦ, then B +W > 0, and gravity is weaker than
magnetism. Clouds satisfying this condition are called subcritical.
For a subcritical cloud, since B +W ∝ 1/R, this term will get larger
and larger as the cloud shrinks.

In other words, not only is the magnetic force resisting collapse is
stronger than gravity, it becomes larger and larger without limit as
the cloud is compressed to a smaller radius. Unless the external pres-
sure is also able to increase without limit, which is unphysical, then
there is no way to make a magnetically subcritical cloud collapse.
It will always stabilize at some finite radius. The only way to get
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around this is to change the magnetic critical mass, which requires
changing the magnetic flux through the cloud. This is possible only
via ambipolar diffusion or some other non-ideal MHD effect that
violates flux-freezing.

Of course our calculation is for a somewhat artificial configura-
tion of a spherical cloud with a uniform magnetic field. In reality a
magnetically-supported cloud will not be spherical, since the field
only supports it in some directions, and the field will not be uniform,
since gravity will always bend it some amount. Figuring out the mag-
netic critical mass in that case requires solving for the cloud structure
numerically. A calculation of this effect by Tomisaka (1998) gives

MΦ = 0.12
ΦB

G1/2 (6.77)

for clouds for which pressure support is negligible. The numerical co-
efficient we got for the uniform cloud case is 0.17, so this is obviously
a small correction. It is also possible to derive a combined critical
mass that incorporates both the flux and the sound speed, and which
limits to the Bonnor-Ebert mass for negligible field and the magnetic
critical mass for negligible pressure.

It is not so easy to determine observationally whether the mag-
netic fields are strong enough to hold up molecular clouds. The
observations are somewhat complicated by the fact that, using the
most common technique of Zeeman splitting, one can only measure
the line of sight component of the field. This therefore gives only a
lower limit on the magnetic critical mass. Nonetheless, for a large
enough sample, one can estimate true magnetic field strengths sta-
tistically under the assumption of random orientations. When this
analysis is performed, the current observational consensus is that
magnetic fields in molecular clouds are not, by themselves, strong
enough to prevent gravitation collapse. Figure 6.1 shows a sum-
mary of the current observations. Clearly atomic gas is magnetically
subcritical, but molecular gas is supercritical.

6.2.3 Turbulent Support

There is one more positive term in the virial theorem, which is the
turbulent component of T . This one is not at all well understood,
largely because we don’t understand turbulence itself. This term
almost certainly provides some support against collapse, but the
amount is not well understood, and we will defer any further discus-
sion of this effect until we get to our discussions of the star formation
rate in Chapter 10.
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Figure 7
HI, OH, and CN Zeeman measurements of BLOS versus NH = NHI + 2NH 2 . The dashed blue line is for a
critical M/! = 3.8 × 10−21 NH /B. Measurements above this line are subcritical, those below are
supercritical.

analysis (Heiles & Troland 2003) showed that the structure of the HI diffuse clouds cannot be
isotropic but instead must be sheet-like. Heiles & Troland (2005) found B̄TOT ≈ 6 µG for the
cold HI medium, a value comparable to the field strength in lower-density components of the
warm neutral medium. Hence, although flux freezing applies almost rigorously during transitions
back and forth between the lower density warm and the higher density cold neutral medium,
the magnetic field strength does not change with density. This suggests that HI diffuse clouds
are formed by compression along magnetic fields; an alternative would posit formation of clouds
selectively from regions of lower magnetic field strength. They also find that the ratio of turbulent
to magnetic energies is ∼1.5 or approximately in equilibrium; both energies dominate thermal
energy. They suggest that this results from the transient nature of converging flows, with the
apparent equilibrium being a statistical result that is a snapshot of time-varying density fields.

A second argument that Figure 7 does not show an evolutionary sequence driven by ambipolar
diffusion is the lack of molecular clouds that are subcritical. Although the Zeeman measurements
give directly only a lower limit to BTOT , the upper envelope of the BLOS defines the maximum
value of BTOT at each NH ; for some fraction of the clouds B should point approximately along
the line of sight, so BLOS = BTOT cos θ ≈ BTOT for θ ≈ 0. For NH ! 1021 cm−2 most of the
points come from OH or CN observations; these molecular clouds are mainly self-gravitating, so
this should be the region of transition from subcritical to supercritical clouds. Yet, there are zero
definite cases of subcritical clouds for NH > 1021 cm−2! The two points that seem to be above
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Figure 6.1: Measurements of the line of
sight magnetic field strength from the
Zeeman effect, versus total gas column
density in H atoms cm−2 (Crutcher,
2012). The three clumps of points rep-
resent, from left to right, measurements
from the Zeeman splitting of H i, OH,
and CN. The dashed blue line indicates
the separation between field strengths
that are large enough to render the gas
subcritical, and those weak enough for
it to be supercritical.

6.3 Pressureless Collapse

As a final topic for this chapter, let us consider what we should
expect to happen if gas does begin to collapse. Let us consider the
simplest case of an initially-spherical cloud with an initial density
distribution ρ(r). We would like to know how the gas moves under
the influence of gravity and thermal pressure, under the assumption
of spherical symmetry. For convenience we define the enclosed mass

Mr =
∫ r

0
4πr′2ρ(r′) dr′ (6.78)

or equivalently
∂Mr

∂r
= 4πr2ρ. (6.79)

The equation of mass conservation for the gas in spherical coordi-
nates is

∂

∂t
ρ +∇ · (ρv) = 0 (6.80)

∂

∂t
ρ +

1
r2

∂

∂r
(r2ρv) = 0, (6.81)

where v is the radial velocity of the gas.
It is useful to write the equations in terms of Mr rather than ρ, so

we take the time derivative of Mr to get

∂

∂t
Mr = 4π

∫ r′

0
r′2

∂

∂t
ρ dr′ (6.82)
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= −4π
∫ r′

0

∂

∂r′
(r′2ρv) dr′ (6.83)

= −4πr2ρv (6.84)

= −v
∂

∂r
Mr. (6.85)

In the second step we used the mass conservation equation to sub-
stitute for ∂ρ∂t, and in the final step we used the definition of Mr to
substitute for ρ.

To figure out how the gas moves, we write down the Lagrangean
version of the momentum equation:

ρ
Dv
Dt

= − ∂

∂r
P− fg, (6.86)

where fg is the gravitational force. For the momentum equation, we
take advantage of the fact that the gas is isothermal to write P = ρc2

s .
The gravitational force is fg = −GMr/r2. Thus we have

Dv
Dt

=
∂

∂t
v + v

∂

∂r
v = − c2

s
ρ

∂

∂r
ρ− GMr

r2 . (6.87)

To go further, let us make one more simplifying assumption: that
the sound speed cs is zero. This is not as bad an approximation as
you might think. Consider the virial theorem: the thermal pressure
term is just proportional to the mass, since the gas sound speed stays
about constant. On the other hand, the gravitational term varies as
1/R. Thus, even if pressure starts out competitive with gravity, as the
core collapses the dominance of gravity will increase, and before too
long the collapse will resemble a pressureless one.

In this case the momentum equation is trivial:

Dv
Dt

= −GMr

r2 . (6.88)

This just says that a shell’s inward acceleration is equal to the grav-
itational force per unit mass exerted by all the mass interior to it,
which is constant. We can then solve for the velocity as a function of
position:

v = ṙ = −
√

2GMr

(
1
r0
− 1

r

)1/2
, (6.89)

where r0 is the position at which a particular fluid element starts.
The integral can be evaluated by the trigonometric substitution

r = r0 cos2 ξ. The solution, first obtained by Hunter (1962), is

− 2r0(cos ξ sin ξ)ξ̇ = −
√

2GMr

r0

(
1

cos2 ξ
− 1
)1/2

(6.90)

2(cos ξ sin ξ)ξ̇ =

√
2GMr

r3
0

tan ξ (6.91)
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2 cos2 ξ dξ =

√
2GMr

r3
0

dt (6.92)

ξ +
1
2

sin 2ξ = t

√
2GMr

r3
0

. (6.93)

We are interested in the time at which a given fluid element reaches
the origin, r = 0. This corresponds to ξ = π/2, so this time is

t =
π

2

√
r3

0
2GMr

. (6.94)

Suppose that the gas we started with was of uniform density ρ, so
that Mr = (4/3)πr3

0ρ. In this case we have

t = tff =

√
3π

32Gρ
, (6.95)

where we have defined the free-fall time tff: it is the time required for
a uniform sphere of pressureless gas to collapse to infinite density.
This is of course just the characteristic growth time for the Jeans
instability in the regime of negligible pressure, up to a factor of order
unity.

For a uniform fluid this means that the collapse is synchronized
– all the mass reaches the origin at the exact same time. A more
realistic case is for the initial state to have some level of central
concentration, so that the initial density rises inward. Let us take
the initial density profile to be ρ = ρc(r/rc)−α, where α > 0 so the
density rises inward. The corresponding enclosed mass is

Mr =
4

3− α
πρcr3

c

(
r
rc

)3−α

(6.96)

Plugging this in, the collapse time is

t =

√
(3− α)π

32Gρc

(
r0

rc

)α/2
. (6.97)

Since α > 0, this means that the collapse time increases with initial
radius r0. This illustrates one of the most basic features of a collapse,
which will continue to hold even in the case where the pressure is
non-zero. Collapse of centrally concentrated objects occurs inside-out,
meaning that the inner parts collapse before the outer parts.

Within the collapsing region near the star, the density profile
also approaches a characteristic shape. If the radius of a given fluid
element r is much smaller than its initial radius r0, then its velocity is
roughly

v ≈ vff ≡ −
√

2GMr

r
, (6.98)
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where we have defined the free-fall velocity vff as the characteristic
speed achieved by an object collapsing freely onto a mass Mr. The
mass conservation equation is

∂Mr

∂t
= −v

∂Mr

∂r
= −4πr2vρ (6.99)

If we are near the star so that v ≈ vff, then this implies that

ρ =
(∂Mr/∂t)r−3/2

4π
√

2GMr
. (6.100)

To the extent that we look at a short interval of time, over which
the accretion rate does not change much (so that ∂Mr/∂t is roughly
constant), this implies that the density near the star varies as ρ ∝
r−3/2.

What sort of accretion rate do we expect from a collapse like this?
For a core of mass Mc = [4/(3 − α)]πρcr3

c , the last mass element
arrives at the center at a time

tc =

√
(3− α)π

32Gρc
=

√
3− α

3
tff(ρc), (6.101)

so the time-averaged accretion rate is

〈Ṁ〉 =
√

3
3− α

Mc

tff(ρc)
. (6.102)

In order to get a sense of the numerical value of this, let us sup-
pose that our collapsing object is a marginally unstable Bonnor-Ebert
sphere. Such an object does not have negligible pressure, but the
pressure will only change the collapse rate at order unity. Problem
Set 2 includes a calculation of the structure of a maximum-mass
Bonnor-Ebert sphere, so we will just quote the value. The maximum
mass is

MBE = 1.18
c4

s√
G3Ps

, (6.103)

where Ps is the pressure at the surface of the sphere and cs is the
thermal sound speed in the core.

Let’s suppose that the surface of the core, at radius rc, is in thermal
pressure balance with its surroundings. Thus Ps = ρcc2

s , so we may
rewrite the Bonnor-Ebert mass as

MBE = 1.18
c3

s√
G3ρc

. (6.104)

A Bonnor-Ebert sphere doesn’t have a powerlaw structure, but if we
substitute into our equation for the accretion rate and say that the
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factor of
√

3/(3− α) is a number of order unity, we find that the
accretion rate is

〈Ṁ〉 ≈ c3
s /
√

G3ρc

1/
√

Gρc
=

c3
s

G
. (6.105)

This is an extremely useful expression, because we know the
sound speed cs from microphysics. Thus, we have calculated the
rough accretion rate we expect to be associated with the collapse
of any object that is marginally stable based on thermal pressure
support. Plugging in cs = 0.19 km s−1, we get Ṁ ≈ 2× 10−6 M� yr−1

as the characteristic accretion rate for these objects. Since the typical
stellar mass is a few tenths of M�, based on the peak of the IMF, this
means that the characteristic star formation time is of order 105 − 106

yr. Of course this conclusion about the accretion rate only applies
to collapsing objects that are supported mostly by thermal pressure.
Other sources of support produce higher accretion rates, as we will
see when we get to massive stars.
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The final piece of physics we will discuss before moving on to the
star formation process itself is the interaction of stellar radiation,
winds, and other forms of feedback with the interstellar medium.
Our goal is to understand the myriad ways that stars influence their
environments. This is particularly relevant to star formation because
for the most part these influences are exerted most strongly by young
stellar populations, and therefore constitute an important part in the
regulation of star formation.

7.1 General Formalism

7.1.1 IMF-Averaged Yields

In most cases when considering feedback, we will be averaging over
many, many stars. Consequently, it makes sense to focus not on
individual stars, but on the collective properties of stellar populations.
For this reason, a very useful first step is to consider budgets of mass,
momentum, and energy.

We’ve already encountered a formalism of this sort in our discus-
sion of galactic star formation rate indicators, and the idea is similar
here. To begin, let us fix the IMF

ξ(m) ≡ dn
d ln m

, (7.1)

with the normalization chosen so that
∫

ξ(m) dm = 1. We will assume
that this is invariant, for lack of really convincing evidence otherwise
(although this is hotly debated). The mean stellar mass is

m =

∫ ∞
−∞ mξ(m) d ln m∫ ∞
−∞ ξ(m) d ln m

=
1∫ ∞

−∞ ξ(m) d ln m
, (7.2)

where the second step follows from our choice of normalization.
The numerator here represents the total mass of the stars, and the

http://adsabs.harvard.edu/abs/2014prpl.conf..243K
http://adsabs.harvard.edu/abs/2014prpl.conf..243K
http://adsabs.harvard.edu/abs/2014prpl.conf..243K
http://adsabs.harvard.edu/abs/2010ApJ...709..191M
http://adsabs.harvard.edu/abs/2010ApJ...709..191M
http://adsabs.harvard.edu/abs/2014MNRAS.442..694D
http://adsabs.harvard.edu/abs/2014MNRAS.442..694D
http://adsabs.harvard.edu/abs/2014MNRAS.442..694D
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denominator is the number of stars. Note that ξ(m) is presumably
zero outside some finite interval in mass – we are writing the limits
of integration as −∞ to ∞ only for convenience.

We will further assume that, from stellar evolution, we know the
rate q at which stars produce some quantity Q as a function of their
starting mass and age, where Q̇ = q. For example if the quantity
Q we are concerned with is total radiant energy E, then q is the
bolometric luminosity L(m, t) of a star of mass m and age t. Now
consider a population of stars that forms in a single burst at time 0.
The instantaneous production rate for these stars is

q(t) = M
∫ ∞

−∞
d ln m ξ(m)q(m, t). (7.3)

We use this equation to define the IMF-averaged production rate,

〈 q
M

〉
=
∫ ∞

−∞
d ln m ξ(m)q(m, t). (7.4)

Note that this rate is a function of the age of the stellar population t.
We can also define a lifetime-averaged yield. Integrating over all time,
the total amount of the quantity produced is

Q = M
∫ ∞

−∞
d ln m ξ(m)

∫ ∞

0
dt q(M, t). (7.5)

We therefore define the IMF-averaged yield
〈

Q
M

〉
=
∫ ∞

−∞
d ln m ξ(m)

∫ ∞

0
dt q(M, t). (7.6)

The meaning of these quantities is that 〈q/M〉 is the instantaneous
rate at which the stars are producing Q per unit stellar mass, and
〈Q/M〉 is the total amount produced per unit mass of stars formed
over the stars’ entire lifetimes.

In practice we can’t really integrate to infinity for most quantities,
since the lifetimes of some stars may be very, very long compared
to what we’re interested in. For example the luminous output of a
stellar population will have a large contribution for ∼ 5 Myr coming
from massive stars, which is mostly what is of interest. However, if
we integrate for 1000 Gyr, we will find that the luminous output is
dominated by the vast numbers of ∼ 0.2 M� stars near the peak of
the IMF that are fully convective and thus are able to burn all of their
hydrogen to He. In reality, though, this is longer than the age of the
universe. In practice, therefore, we must define our lifetime averages
as cutting off after some finite time.

It can also be useful to define a different IMF average. The quanti-
ties we have discussed thus far are yields per unit mass that goes into
stars. Sometimes we are instead interested in the yield per unit mass
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that stays locked in stellar remnants for a long time, rather than the
mass that goes into stars for ∼ 3− 4 Myr and then comes back out in
supernovae. Let us define the mass of the remnant that a star of mass
m leaves as w(m). If the star survives for a long time, w(m) = m. In
this case, the mass that is ejected back into the ISM is

Mremnant = M
∫ ∞

−∞
d ln m ξ(m)[m− w(m)] ≡ RM, (7.7)

where we define R as the return fraction. The mass fraction that stays
locked in remnants is 1− R.

Of course “long time" here is a vague term. By convention (de-
fined by Tinsley 1980), we choose to take w(m) = m for m = 1 M�.
We take w(m) = 0.7 M� for m = 1− 8 M� and w(m) = 1.4 M�
for m > 8 M�, i.e. to assume that stars from 1− 8 M� leave behind
0.7 M� white dwarfs, and stars larger than that mass form 1.4 M�
neutron stars. If one puts this in for a Chabrier (2005) IMF, the result
is R = 0.46, meaning that these averages are larger by a factor of
1/0.56.

Given this formalism, it is straightforward to use a set of stellar
evolutionary tracks plus an IMF to compute 〈q/M〉 or 〈Q/M〉 for
any quantity of interest. Indeed, this is effectively what starburst99

and programs like it do. The quantities of greatest concern for mas-
sive star feedback are the bolometric output, ionizing photon output,
wind momentum and energy output, and supernova output.

7.1.2 Energy- versus Momentum-Driven Feedback

Before discussing individual feedback mechanisms in detail, it is
also helpful to lay out two general categories that can be used to
understand them. Let us consider a population of stars surrounded
by initially-uniform interstellar gas. Those stars eject both photons
and baryons (in the form of stellar winds) into the surrounding gas,
and these photons and baryons carry both momentum and energy.
We want to characterize how the ISM will respond.

One important consideration is that, as we have already shown,
it is very hard to raise the temperature of molecular gas (or even
dense atomic gas) because it is able to radiate so efficiently. A factor
of 10 increase in the radiative heating rate might yield only a tens
of percent increase in temperature. This is true as long as the gas is
cold and dense, but at sufficiently high temperatures or if the gas
is continuously illuminated then the cooling rate begins to drop off,
and it is possible for gas to remain hot.

A critical distinction is therefore between mechanisms that at able
to keep the gas hot for a time that is long enough to be significant
(generally of order the crossing time of the cloud or longer), and
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those where the cooling time is much shorter. For the latter case, the
energy delivered by the photons and baryons will not matter, only
the momentum delivered will. The momentum cannot be radiated
away. We refer to feedback mechanism where the energy is lost
rapidly as momentum-driven feedback, and to the opposite case
where the energy is retained for at least some time as energy-driven,
or explosive, feedback.

To understand why the distinction between the two is important,
let us consider two extreme limiting cases. We place a cluster of stars
at the origin and surround it by a uniform region of gas with density
ρ. At time t = 0, the stars “turn on" and begin emitting energy and
momentum, which is then absorbed by the surrounding gas. Let
the momentum and energy injection rates be ṗw and Ėw; it does
not matter if the energy and momentum are carried by photons or
baryons, so long as the mass swept up is significantly greater than
the mass carried by the wind.

The wind runs into the surrounding gas and causes it to begin
moving radially outward, which in turn piles up material that is fur-
ther away, leading to an expanding shell of gas. Now let us compute
the properties of that shell in the two extreme limits of all the energy
being radiated away, and all the energy being kept. If all the energy
is radiated away, then at any time the radial momentum of the shell
must match the radial momentum injected up to that time, i.e.,

psh = Mshvsh = ṗwt. (7.8)

The kinetic energy of the shell is

E = ˙p2
sh2Msh =

1
2

vsh ṗwt. (7.9)

For comparison, if none of the energy is radiated away, the energy is
simply

E = Ėwt. (7.10)

Thus the energy in the energy-conserving case is larger by a factor of

1
vsh
· 2Ėw

ṗw
. (7.11)

If the energy injected by the stars is carried by a wind of baryons,
then 2Ėw/ ṗw is simply the speed of that wind, while if it is carried
by photons, then 2Ėw/ ṗw = 2c. Thus the energy in the energy-
conserving case is larger by a factor of 2c/vsh for a photon wind,
and vw/vsh for a baryon wind. These are not small factors: observed
expanding shells typically have velocities of at most a few tens of
km s−1, while wind speeds from massive stars, for example, can be
thousands of km s−1. Thus it matters a great deal where a particular
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feedback mechanism lies between the energy- and momentum-
conserving limits.

7.2 Momentum-Driven Feedback Mechanisms

We are now ready to consider individual mechanisms by which stars
can deliver energy and momentum to the gas around them. Our
goal is to understand what forms of feedback are significant and to
estimate their relative budgets of momentum and energy.

7.2.1 Radiation Pressure and Radiatively-Driven Winds

The simplest form of feedback to consider is radiation pressure. Since
the majority of the radiant energy deposited in the ISM will be re-
radiated immediately, radiation pressure is (probably) a momentum-
driven feedback. To evaluate the momentum it deposits, one need
merely evaluate the integrals over the IMF we have written down
using the bolometric luminosities of stars. Murray & Rahman (2010)
find 〈

L
M

〉
= 1140 L� M−1

� = 2200 erg g−1, (7.12)

and the corresponding momentum injection rate is

〈 prad
M

〉
=

1
c

〈
L
M

〉
= 7.3× 10−8 cm s−2 = 23 km s−1 Myr−1 (7.13)

The physical meaning of this expression is that for every gram of
matter that goes into stars, those stars produce enough light over 1

Myr to accelerate another gram of matter to a speed of 23 km s−1.
For very massive stars, radiation pressure also accelerates winds off
the star’s surfaces; for such stars, the wind carries a bit under half
the momentum of the radiation field. Including this factor raises the
estimate by a few tens of percent. However, these winds may also be
energy conserving, a topic we will approach momentarily.

Integrated over the lifetimes of the stars, out 100 Myr the total
energy production is

〈
Erad
M

〉
= 1.1× 1051 erg M−1

� (7.14)

The majority of this energy is produced in the first ∼ 5 Myr of a
stellar population’s life, when the massive stars live and die.

It is common to quote the energy budget in units of c2, which
gives a dimensionless efficiency with which stars convert mass into
radiation. Doing so gives

ε =
1
c2

〈
Erad
M

〉
= 6.2× 10−4. (7.15)
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The radiation momentum budget is simply this over c,
〈 prad,tot

M

〉
= 190 km s−1. (7.16)

This is an interesting number, since it is not all that different than
the circular velocity a typical galaxy. It is a suggestion that the ra-
diant momentum output by stars may be interesting in pushing
matter around in galaxies – probably not by itself, but perhaps in
conjunction with other effects.

7.2.2 Protostellar Winds

A second momentum-driven mechanism, that we will discuss in
more detail when we get to disks, is protostellar jets. All accretion
disks appear to produce some sort of wind that carries away some of
the mass and angular momentum, and protostars are no exception.
The winds from these stars carry a mass flux of order a few tens of
percent of the mass coming into the stars, and eject it with a velocity
of order the Keplerian speed at the stellar surface. Note that these
winds are distinct from the radiatively-driven ones that come from
main sequence O stars. They are very different in both their driving
mechanism and physical characteristics.

Why do we expect protostellar winds to be a momentum-driven
feedback mechanism instead of an energy-driven one? The key lies in
their characteristic speeds. Consider a star of mass M∗ and radius R∗.
Its wind will move at a speed of order

vw ∼
√

GM∗
R∗

= 250 km s−1
(

M∗
M�

)1/2 ( R∗
3R�

)−1/2
, (7.17)

where the scalings are for typical protostellar masses and radii. The
kinetic energy per unit mass carried by the wind is v2

w/2, and when
the wind hits the surrounding ISM it will shock and this kinetic
energy will be converted to thermal energy. We can therefore find
the post-shock temperature from energy conservation. The thermal
energy per unit mass is (3/2)kBT/µmH, where µ is the mean particle
mass in H masses. Thus the post-shock temperature will be

T =
µmHv2

w
3kB

∼ 5× 106 K (7.18)

for the fiducial speed above. This is low enough that gas at this
temperature will be able to cool fairly rapidly, leaving us in the
momentum-conserving limit.

So how much momentum can we extract? To answer that, we
will use our formalism for IMF averaging. Let us consider stars
forming over some timescale tform. This can be a function of mass if
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we want; it doesn’t matter. Similarly, let us assume for simplicity that
the accretion rate during the formation stage is constant; again, this
assumption actually makes no different to the result, it just makes
the math easier. Thus a star of mass m accretes at a rate ṁ = m/tform

over a time tform, and during this time it produces a wind with a
mass flux f ṁ that is launched with a speed vK. Thus IMF-averaged
yield of wind momentum is

〈 pw

M

〉
=
∫ ∞

−∞
d ln m ξ(m)

∫ tform

0
dt

f mvK
tform

. (7.19)

In reality vK, f , and the accretion rate probably vary over the forma-
tion time of a star, but to get a rough answer we can assume that they
are constant, in which case the integral is trivial and evaluates to

〈 pw

M

〉
= f vK

∫ ∞

−∞
d ln m ξ(m)m = f vK (7.20)

where the second step follows from the normalization of the IMF.
Thus we learn that winds supply momentum to the ISM at a rate of
order f vK. Depending on the exact choices of f and vK, this amounts
to a momentum supply of a few tens of km s−1 per unit mass of stars
formed.

Thus in terms of momentum budget, protostellar winds carry
over the full lifetimes of the stars that produce them about as much
momentum as is carried by the radiation each Myr. Thus if one
integrates over the full lifetime of even a very massive, short-lived
star, it puts out much more momentum in the form of radiation than
it does in the form of outflows. So why worry about outflows at all,
in this case?

There are two reasons. First, because the radiative luminosities
of stars increase steeply with stellar mass, the luminosity of a stellar
population is dominated by its few most massive members. In small
star-forming regions with few or no massive stars, the radiation
pressure will be much less than our estimate, which is based on
assuming full sampling of the IMF, suggests. On the other hand,
protostellar winds produce about the same amount of momentum
per unit mass accreted no matter what stars is doing the accreting
– this is just because vK is not a very strong function of stellar mass.
(This is a bit of an oversimplification, but it’s true enough for this
purpose.) This means that winds will be significant even in regions
that lack massive stars, because they can be produced by low-mass
stars too.

Second, while winds carry less momentum integrated over stars’
lifetimes, when they are on they are much more powerful. Typical
formation times, we shall see, are of order a few times 105 yr, so
the instantaneous production rate of wind momentum is typically
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∼ 100 km s−1 Myr−1, a factor of several higher than radiation pres-
sure. Thus winds can dominate over radiation pressure significantly
during the short phase when they are on.

7.3 (Partly) Energy-Driven Feedback Mechanisms

7.3.1 Ionizing Radiation

Massive stars produce significant amounts of ionizing radiation.
From Murray & Rahman (2010), the yield of ionizing photons from a
zero-age population is

〈
S
M

〉
= 6.3× 1046 photons s−1 M−1

� . (7.21)

The corresponding lifetime-averaged production of ionizing photons
is 〈

Stot

M

〉
= 4.2× 1060 photons M−1

� (7.22)

H ii Region Expansion We will not go into tremendous detail on
how these photons interact with the ISM, but to summarize: photons
capable of ionizing hydrogen will be absorbed with a very short
mean free path, producing a bubble of fully ionized gas within which
all the photons are absorbed. The size of this bubble can be found by
equating the hydrogen recombination rate with the ionizing photon
production rate, giving

S =
4
3

πr3
i nenpαB, (7.23)

where ri is the radius of the ionized region, ne and np are the number
densities of electrons and protons, and αB is the recombination rate
coefficient for case B, and which has a value of roughly 3× 10−13

cm3 s−1. Cases A and B, what they mean, and how this quantity is
computed are all topics discussed in the class on diffuse matter, and
here we will simply take αB as a known constant. The radius of the
ionized bubble is known as the Strömgren radius after the person
who first calculated it.

If we let µH be the mean mass per hydrogen nucleus in the gas,
and ρ0 be the initial density before the photoionizing stars turn on,
then np = ρ0/µH and ne = 1.1ρ0/µH, with the factor of 1.1 coming
from assuming that He is singly ionized (since its ionization potential
is not that different from hydrogen’s) and from a ratio of 10 He
nuclei per H nucleus. Inserting these factors and solving for ri, we
obtain the Strömgren radius, the equilibrium radius of a sphere of
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gas ionized by a central source:

rS =

(
3Sµ2

H
4(1.1)παBρ2

0

)1/3

= 2.8S1/3
49 n−2/3

2 pc, (7.24)

where S49 = S/1049 s−1, n2 = (ρ0/µH)/100 cm−3, and we have used
αB = 3.46× 10−13 cm3 s−1.

The photoionized gas will be heated to ∼ 104 K by the energy
deposited by the ionizing photons. The corresponding sound speed
in the ionized gas will be

ci =

√
kBTi

µH/2.2
= 11T1/2

i,4 km s−1, (7.25)

where Ti,4 = Ti/104 K, µH = 2.3× 10−24 g is the mean mass per H
nucleus, and the factor of 2.2 arises because there are 2.2 particles
per H nucleus, and the extra particles are electrons that are essen-
tially massless. The pressure in the ionized region is ρ0c2

i , which is
generally much larger than the pressure ρ0c2

0 outside the ionized
region, where c0 is the sound speed in the neutral gas. As a result,
the ionized region is hugely over-pressured compared to the neutral
gas around it. The gas in this region will therefore begin to expand
dynamically.

The time to reach ionization balance is short compared to dynami-
cal timescales (as is demonstrated in the diffuse matter class), so we
can assume that ionization balance is always maintained as the ex-
pansion occurs. Consequently, when the ionized region has reached a
radius ri, the density inside the ionized region must obey

ρi =

(
3Sµ2

H
4(1.1)παBr3

i

)1/2

. (7.26)

At the start of expansion ρi = ρ0, but we see here that the density
drops as r−3/2

i as expansion proceeds. Since the expansion is highly
supersonic with respect to the external gas (as we will see shortly),
there is no time for sound waves to propagate away from the ioniza-
tion front and pre-accelerate the neutral gas. Instead, this gas must
be swept up by the expanding H ii region. However, since ρi � ρ0,
the mass that is swept up as the gas expands must reside not in the
ionized region interior, but in a dense neutral shell at its edges. At
late times, when ri � rS, we can neglect the mass in the shell interior
in comparison to that in the shell, and simply set the shell mass equal
to the total mass swept up. We therefore have a shell mass

Msh =
4
3

πρ0r3
i . (7.27)
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We can write down the equation of motion for this shell. If we
neglect the small ambient pressure, then the only force acting on the
shell is the pressure ρic2

i exerted by ionized gas in the H ii region
interior. Conservation of momentum therefore requires that

d
dt

(Mshṙi) = 4πr2
i ρic2

i . (7.28)

Rewriting everything in terms of ri, we arrive at an ODE for ri:

d
dt

(
1
3

r3
i ṙi

)
= c2

i r2
i

(
ri
rS

)−3/2
, (7.29)

where we have used the scaling ρi = ρ0(ri/rS)
−3/2.

This ODE is straightforward to solve numerically, but if we focus
on late times when ri � rS, we can solve it analytically. For ri � rS,
we can take ri ≈ 0 as t → 0, and with this boundary condition
the ODE cries out for a similarity solution. As a trial, consider ri =

f rS(t/tS)
η , where

tS =
rS
ci

= 240S1/3
49 n−2/3

2 T−1/2
i,4 kyr (7.30)

and f is a dimensionless constant. Substituting this trial solution in,
there are numerous cancellations, and in the end we obtain

1
4

η(4η − 1) f 4
(

t
tS

)4η−2
= f 1/2

(
t
tS

)η/2
. (7.31)

Clearly we can obtain a solution only if 4η − 2 = η/2, which requires
η = 4/7. Solving for f gives f = (49/12)2/7. We therefore have a
solution

ri = rS

(
7t

2
√

3tS

)4/7
= 9.4S1/7

49 n−2/7
2 T2/7

i,4 t4/7
6 pc (7.32)

at late times, where t6 = t/1 Myr.

Feedback Effects of H ii Regions Given this result, what can we say
about the effects of an expanding H ii region? There are several pos-
sible effects: ionization can eject mass, drive turbulent motions, and
possibly even disrupt clouds entirely. First consider mass ejection. In
our simple calculation, we have taken the ionized gas to be trapped
inside a spherical H ii region interior. In reality, though, once the
H ii region expands to the point where it encounters a low density
region at a cloud edge, it will turn into a “blister" type region, and
the ionized gas will freely escape into the low density medium. The
mass flux carried in this ionized wind will be roughly

Ṁ = 4πr2
i ρici, (7.33)
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i.e. the area from which the wind flows times the characteristic
density of the gas at the base of the wind times the characteristic
speed of the wind. Substituting in our similarity solution, we have

Ṁ = 4πr2
Sρ0ci

(
7t

2
√

3tS

)2/7
= 7.2× 10−3t2/7

6 S4/7
49 n−1/7

2 T1/7
i,4 M� yr−1.

(7.34)
We therefore see that, over the roughly 3− 4 Myr lifetime of an O star,
it can eject ∼ 103 − 104 M� of mass from its parent cloud, provided
that cloud is at a relatively low density (i.e. n2 is not too big). Thus
massive stars can eject many times their own mass from a molecular
cloud. In fact, we can use this effect to make an estimate of the star
formation efficiency in GMCs – see Matzner (2002).

We can also estimate the energy contained in the expanding shell.
This is

Esh =
1
2

Mshṙ2
i =

32
147

πρ0
r5

S
t2
S

(
7t

2
√

3tS

)6/7
= 8.1× 1047t6/7

6 S5/7
49 n−10/7

2 T10/7
i,4 erg.

(7.35)
For comparison, the gravitational binding energy of a 105 M� GMC
with a surface density of 0.03 g cm−2 is ∼ 1050 erg. Thus a single
O star’s H ii region provides considerably less energy than this.
On the other hand, the collective effects of ∼ 102 O stars, with a
combined ionizing luminosity of 1051 s−1 or so, can begin to produce
H ii regions whose energies rival the binding energies of individual
GMCs. This means that H ii region shells may sometimes be able to
unbind GMCs entirely. Even if they cannot, they may be able to drive
significant turbulent motions within GMCs.

We can also compute the momentum of the shell, for comparison
to the other forms of feedback we discussed previously. This is

psh = Mshṙi = 1.1× 105n−1/7
2 T−8/7

i,4 S4/7
49 t9/7

6 M� km s−1. (7.36)

Since this is non-linear in S49 and in time, the effects of HII regions
will depend on how the stars are clustered together, and how long
they live. To get a rough estimate, though, we can take the typical
cluster to have an ionizing luminosity around 1049, since by number
most clusters are small, and we can adopt an age of 4 Myr. This
means that (also using n2 = 1 and Ti,4 = 1) the momentum injected
per 1049 photons s−1 of luminosity is p = 3− 5× 105 M� km s−1.
Recalling that we get 6.3 × 1046 photons s−1 M−1

� for a zero-age
population, this means that the momentum injection rate for HII
regions is roughly

〈
ṗHII

M

〉
∼ 3× 103 km s−1. (7.37)
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This is obviously a very rough calculation, and it can be done with
much more sophistication, but this analysis suggests that HII regions
are likely the dominant feedback mechanism compared to winds and
HII regions.

There is one important caveat to make, though. Although in the
similarity solution we formally have vi → ∞ as ri → 0, in reality
the ionized region cannot expand faster than roughly the ionized
gas sound speed: one cannot drive a 100 km s−1 expansion using
gas with a sound speed of 10 km s−1. As a result, all of these effects
will not work in any cluster for which the escape speed or the virial
velocity exceeds ∼ 10 km s−1. This is not a trivial limitation, since
for very massive star clusters the escape speed can exceed this value.
An example is the R136 cluster in the LMC, which has a present-day
stellar mass of 5.5× 104 M� inside a radius of 1 pc. The escape speed
from the stars alone is roughly 20 km s−1. Assuming there was gas in
the past when the cluster formed, the escape speed must have been
even higher. For a region like this, H ii regions cannot be important.

7.3.2 Stellar Winds

Next let us consider the effects of stellar winds. As we alluded to
earlier, O stars launch winds with velocities of vw ∼ 1000− 2500
km s−1 and mass fluxes of Ṁw ∼ 10−7 M� yr−1. We have already
seen that the momentum carried by these winds is fairly unimportant
in comparison to the momentum of the protostellar outflows or the
radiation field, let alone the momentum provided by HII regions.
However, because of the high wind velocities, repeating the analysis
we performed for protostellar jets yields a characteristic post-shock
temperature that is closer to 108 K than 106 K. Gas at such high
temperatures has a very long cooling time, so we might end up with
an energy-driven feedback. We therefore consider that case next.

Since the winds are radiatively driven, they tend to carry momenta
comparable to that carried by the stellar radiation field. The observed
correlation between stellar luminosity and wind momentum (e.g.
Repolust et al. 2004) is that

Ṁwvw ≈ 0.5
L∗
c

, (7.38)

where L∗ is the stellar luminosity. This implies that the mechanical
luminosity of the wind is

Lw =
1
2

Ṁwv2
w =

L2∗
8Ṁwc2 = 850L2

∗,5Ṁ−1
w,−7 L�. (7.39)

This is not much compared to the star’s radiant luminosity, but that
radiation will mostly not do into pushing the ISM around. The wind,
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on the other hand might. Also notice that over the integrated power
output is

Ew = Lwt = 1.0× 1050L2
∗,5Ṁ−1

w,−7t6 erg, (7.40)

so over the ∼ 4 Myr lifetime of a massive star, the total mechani-
cal power in the wind is not much less than the amount of energy
released when the star goes supernova.

If energy is conserved, and we assume that about half the available
energy goes into the kinetic energy of the shell and half is in the hot
gas left in the shell interior, conservation of energy then requires that

d
dt

(
2
3

πρ0r3
b ṙ2

b

)
≈ 1

2
Lw. (7.41)

As with the H ii region case, this cries out for similarity solution.
Letting rb = Atη , we have

4
3

πη2(5η − 2)ρ0 A5t5η−3 ≈ Lw. (7.42)

Clearly we must have η = 3/5 and A = [25Lw/(12πρ0)]
1/5. Putting

in some numbers,

rb = 16L2/5
∗,5 Ṁ−1/5

w,−7 n−1/5
2 t3/5

6 pc. (7.43)

Note that this is greater than the radius of the comparable H ii region,
so the wind will initially move faster and drive the H ii region into a
thin ionized layer between the hot wind gas and the outer cool shell –
if the energy-driven limit is correct. A corollary of this is that the wind
would be even more effective than the ionized gas at ejecting mass
from the cloud.

However, this may not be correct, because this solution assumes
that the energy carried by the wind will stay confined within a closed
shell. This may not be the case: the hot gas may instead break out
and escape, imparting relatively little momentum. Whether this
happens or not is difficult to determine theoretically, but can be
address by observations. n particular, if the shocked wind gas is
trapped inside the shell, it should produce observable x-ray emission.
We can quantify how much x-ray emission we should see with a
straightforward argument. It is easiest to phrase this argument in
terms of the pressure of the x-ray emitting gas, which is essentially
what an x-ray observation measures.

Consider an expanding shell of matter that began its expansion
a time t ago. In the energy-driven case, the total energy within that
shell is, up to factors of order unity, Ew = Lwt. The pressure is
simply 2/3 of the energy density (since the gas is monatomic at these
temperatures). Thus,

PX =
2Ew

3[(4/3)πr3]
=

L2∗t
16πṀwc2r3 . (7.44)
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It is useful to compute the ratio of this to the pressure exerted by
the radiation, which is simply twice that exerted by the wind in the
momentum-driven limit. This is

Prad =
L∗

4πr2c
. (7.45)

We define this ratio as the trapping factor:

ftrap =
PX

Prad
=

L∗t
4Ṁwcr

≈ L∗
4Ṁwcv

, (7.46)

where in the last step we used v ≈ r/t, where v is the expansion
velocity of the shell. If we now use the relation Ṁwvw ≈ (1/2)L∗/c,
we finally arrive at

ftrap ≈
vw

2v
. (7.47)

Thus if shells expand in the energy-driven limit due to winds, the
pressure of the hot gas within them should exceed the direct ra-
diation pressure by a factor of roughly vw/v, where V is the shell
expansion velocity and vw is the wind launch velocity. In contrast, the
momentum driven gas gives PX/Prad ∼ 1/2, since the hot gas exerts
a force that is determined by the wind momentum, which is roughly
has the momentum carried by the stellar radiation field.

Lopez et al. (2011) observed the 30 Doradus H ii region, which
is observed to be expanding with v ≈ 20 km s−1, giving a predicted
ftrap = 20 for a conservative vw = 1000 km s−1. They then measured
the hot gas pressure from the x-rays and the direct radiation pressure
from the stars optical emission. The result is that ftrap is much closer
to 0.5 than 20 for 30 Doradus, indicating that the momentum-driven
solution is closer to reality there. Harper-Clark & Murray (2009)
reached a similar conclusion about the Carina Nebula.

7.3.3 Supernovae

We can think of the energy and momentum budget from supernovae
as simply representing a special case of the lifetime budgets we’ve
computed. In this case, we can simply think of q(M, t) as being a δ

function: all the energy and momentum of the supernova is released
in a single burst at a time t = tl(m), where tl(m) is the lifetime of the
star in question. We normally assume that the energy yield per star
is 1051 erg, and have to make some estimate of the minimum mass
at which a SN will occur, which is roughly 8 M�. We can also, if we
want, imagine mass ranges where other things happen, for example
direct collapse to black hole, pair instability supernova that produce
more energy, or something more exotic. These choices usually don’t
make much difference, though, because they affect very massive stars,
and since the supernova energy yield (unlike the luminosity) is not
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a sharp function of mass, the relative rarity of massive stars means
they make a small contribution. Thus it usually safe to ignore these
effects.

Given this preamble, we can write the approximate supernova
energy yield per unit mass as

〈
ESN

M

〉
= ESN

∫ ∞

mmin

d ln m ξ(m) ≡ ESN

〈
NSN

M

〉
, (7.48)

where ESN = 1051 erg is the constant energy per SN, and mmin = 8
M� is the minimum mass to have a supernova. Note that the integral,
which we have named 〈NSN/M〉, is simply the number of stars
above mmin per unit mass in stars total, which is just the expected
number of supernovae per unit mass of stars. For a Chabrier IMF
from 0.01− 120 M�, we have
〈

NSN

M

〉
= 0.011 M−1

�

〈
ESN

M

〉
= 1.1× 1049 erg M−1

� = 6.1× 10−6c2.

(7.49)
A more detailed calculation from starburst99 agrees very well with
this crude estimate. Note that this, plus the Milky Way’s SFR of ∼ 1
M� yr−1, is the basis of the oft-quoted result that we expect ∼ 1
supernova per century in the Milky Way.

The momentum yield from SN can be computed in the same way.
This is slightly more uncertain, because it is easier to measure the
SN energy than its momentum – the latter requires the ability to
measure the velocity or mass of the ejecta before they are mixed with
significant amounts of ISM. However, roughly speaking the ejection
velocity is vej ≈ 109 cm s−1, which means that the momentum is
pSN = 2ESN/vej. Adopting this value, we have

〈 pSN

M

〉
=

2
vej

〈
ESN

M

〉
= 55v−1

ej,9 km s−1. (7.50)

Physically, this means that every M� of matter than goes into stars
provides enough momentum to raise another M� of matter to a
speed of 55 km s−1. This is not very much compared to other feed-
backs, but of course supernovae, like stellar winds, may have an
energy-conserving phase where their momentum deposition grows.
We will discuss the question of supernova momentum deposition
more in the next few classes as we discuss models for regulation of
the star formation rate.
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Giant Molecular Clouds

Suggested background reading:

• Dobbs, C. L., et al. 2014, in “Proto-
stars and Planets VI", ed. H. Beuther
et al., pp. 3-26

Suggested literature:

• Colombo, D., et al. 2014, ApJ, 784, 3

We now begin our top-down study of star formation, from large to
small scales. This chapter focuses on observations of the bulk prop-
erties of giant molecular clouds (GMCs), primarily in the Milky Way
and on nearby galaxies where we can resolve individual GMCs. The
advantage of looking at the Milky Way is of course higher resolution.
The advantage of looking at other galaxies is that, unlike in the Milky
Way, we can get an unbiased view of all the GMCs, with no distance
ambiguity or confusion problems. This allows us to make statistical
inferences that are often impossible to check with confidence locally.
This study will be a preparation for the next two chapters, which
discuss the correlation of molecular clouds with star formation and
the problem of the star formation rate.

8.1 Molecular Cloud Masses

8.1.1 Mass Measurement

The most basic quantity we can measure for a molecular cloud is its
mass. However, this also turns out to be one of the trickiest quantities
to measure. The most commonly used method for inferring masses
is based on molecular line emission, because lines are bright and
easy to see even in external galaxies. The three most commonly-used
species on the galactic scale are 12CO, 13CO, and, more recently,
HCN.

Optically Thin Lines Conceptually, 13CO is the simplest, because its
lines are generally optically thin. For emitting molecules in LTE at
temperature T, it is easy to show from the radiative transfer equation
that the intensity emitted by a cloud of optical depth τν at frequency
ν is simply

Iν =
(
1− e−τν

)
Bν(T), (8.1)

http://adsabs.harvard.edu/abs/2014prpl.conf....3D
http://adsabs.harvard.edu/abs/2014prpl.conf....3D
http://adsabs.harvard.edu/abs/2014prpl.conf....3D
http://adsabs.harvard.edu/abs/2014ApJ...784....3C
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where Bν(T) is the Planck function evaluated at frequency ν and
temperature T.

Although we will not derive this equation here (you will see this in
the radiative processes class or in diffuse matter), it behaves exactly
as one would expect intuitively. In the limit of a very optically thick
cloud, τν � 1, the exponential factor becomes zero, and the intensity
simply approaches the Planck function, which is the intensity emitted
by a black body. In the limit of a very optically thin cloud, τν � 1,
the exponential factor just becomes 1− τν, so the intensity approaches
that of a black body multiplied by the (small) optical depth.

Thus the intensity is simply proportional to the optical depth,
which is proportional to the number of atoms along the line of sight.
These equations allow the following simple method of deducing the
column density from an observation of the 13CO and 12CO J = 1→ 0
lines from a molecular cloud.

If we assume that the 12CO line is optically thick, as is almost
always the case, then we can approximate 1− e−τν ≈ 1 at line center,
so Iν ≈ Bν(T). If we measure Iν, we can therefore immediately
deduce the temperature T. We then assume that the 13CO molecules
are at the same temperature, so that Bν(T) is the same for 12CO and
13CO except for the slight shift in frequency.

Then if we measure Iν for the center of the 13CO line, we can solve
the equation

Iν =
(
1− e−τν

)
Bν(T), (8.2)

for τν, the optical depth of the 13CO line. If N13CO is the column
density of 13CO atoms, then for gas in LTE the column densities of
atoms in the level 0 and 1 states are

N0 =
N13CO

Z

N1 = e−T/T1
N13CO

Z

where Z is the partition function, which is a known function of T,
and T1 = 5.3 K is the temperature corresponding to the first excited
state.

The opacity to line absorption at frequency ν is

κν =
hν

4π
(n0B01 − n1B10)φ(ν), (8.3)

where B01 and B10 are the Eintstein coefficients for spontaneous ab-
sorption and stimulated emission and φ(ν) is the function describing
the line shape. The corresponding optical depth at line center is

τν =
hν

4π
(N0B01 − N1B10)φ(ν). (8.4)
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Since we know τν from the line intensity, we can measure φ(ν) just
by measuring the shape of the line, and N0 and N1 depend only on
N13CO and the (known) temperature, we can solve for N13CO.

In practice we generally do this in a slightly more sophisticated
way, by fitting the optical depth and line shape as a function of
frequency simultaneously, but the idea is the same. We can then
convert to an H2 column density by assuming a ratio of 12CO to H2,
and of 13CO to 12CO.

This method also has some significant drawbacks that are worth
mentioning. The need to assume ratios of 13CO to 12CO and 12CO
to H2 are obvious ones. The former is particularly tricky, because
there is strong observational evidence that the 13C to 12C ratio varies
with galactocentric radius. We also need to assume that the 12CO
and 13CO molecules are at the same temperature, which may not be
true because the 12CO emission comes mostly from the cloud surface
and the 13CO comes from the entire cloud. Since the cloud surface
is usually warmer than its deep interior, this will tend to make us
overestimate the excitation temperature of the 13CO molecules, and
thus underestimate the true column density. This problem can be
even worse because the lower abundance of 13CO means that it
cannot self-shield against dissociation by interstellar UV light as
effectively at 12 CO. As a result, it may simply not be present in
the outer parts of clouds at all, leading us to miss their mass and
underestimate the true column density.

Another serious worry is the assumption that the 13CO molecules
are in LTE. As you know from your homework, the 12CO J = 1 state
has a critical density of a few thousand cm−3, which is somewhat
above the mean density in a GMC even when we take into account
the effects of turbulence driving mass to high density. The critical
density for the 13CO J = 1 state is similar. For the 12CO J = 1
state, the effective critical density is lowered by optical depth effects,
which thermalize the low-lying states. Since 13CO is optically thin,
however, there is no corresponding thermalization for it, so in reality
the excitation of the gas tends to be sub-LTE. The result is that the
emission is less than we would expect based on an LTE assumption,
and so we tend to underestimate the true 13CO column density, and
thus the mass, using this method.

A final point to mention about this method is that, since the 13CO
line is optically thin, it is simply not as bright as an optically thick
line would be. Consequently, this method is generally only used
within the Galaxy, not for external galaxies.

Optically Thick Lines Optically thick lines are nice and bright, so we
can see them in distant galaxies. The challenge for an optically thick
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line is how to infer a mass, given that we’re really only seeing the
surface of a cloud. Our standard approach here is to define an “X-
factor": a scaling between the observed frequency-integrated intensity
along a given line of sight and the column density of gas along that
line of sight.

For for example, if we see a frequency-integrated CO J = 1 → 0
intensity ICO along a given line of sight, we define XCO = N/ICO,
where N is the true column density (in H2 molecules per cm2) of
the cloud. Note that radio astronomers work in horrible units, so
the X factor is defined in terms of a velocity-integrated brightness
temperature, rather than a frequency-integrated intensity. The bright-
ness temperature corresponding to a given intensity at frequency ν

is just defined as the temperature of a blackbody that produces that
intensity at that frequency. Integrating over velocity just means that
we integrate over frequency, but that we measure the frequency in
terms of the Doppler shift in velocity it corresponds to.

The immediate question that occurs to us after defining the X
factor is: why should such a scaling exist at all? Given that the cloud
is optically thick, why should there be a relation between column
density and intensity at all? Here’s why: consider optically thick line
emission from a cloud of mass M and radius R at temperature T. The
mean column density is N = M/(µπR2), where µ = 3.9× 10−24 g is
the mass per H2 molecule. The total integrated intensity we expect to
see from the line is

∫
Iν dν =

∫
(1− e−τν)Bν(T) dν. (8.5)

Suppose this cloud is in virial balance between kinetic energy and
gravity, i.e. T = W/2 so that Ï = 0. The gravitational-self energy is
W = aGM2/R, where a is a constant of order unity that depends on
the cloud’s geometry and internal mass distribution. For a uniform
sphere a = 3/5. The kinetic energy is T = (3/2)Mσ2

1D, where σ1D is
the one dimensional velocity dispersion, including both thermal and
non-thermal components.

We define the virial ratio as

αvir =
5σ2

1DR
GM

. (8.6)

For a uniform sphere, which has a = 3/5, this definition reduces
to αvir = 2T /W , which is the virial ratio we defined previously
based on the virial theorem. Thus αvir = 1 corresponds to the ratio
of kinetic to gravitational energy in a uniform sphere of gas in virial
equilibrium between internal motions and gravity. In general we
expect that αvir ≈ 1 in any object supported primarily by internal
turbulent motion, even if its mass distribution is not uniform.
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Re-arranging this definition, we have

σ1D =

√(αvir

5

) GM
R

. (8.7)

To see why this is relevant for the line emission, consider the total
frequency-integrated intensity that the line will emit. We have as
before

Iν =
(
1− e−τν

)
Bν(T), (8.8)

so integrating over frequency we get
∫

Iν dν =
∫ (

1− e−τν
)

Bν(T) dν. (8.9)

The optical depth at line center is τν0 � 1, and for a Gaussian line
profile the optical depth at frequency ν is

τν = τν0 exp
[
− (ν− ν0)

2

2(ν0σ1D/c)2

]
(8.10)

Since the integrated intensity depends on the integral of τν over
frequency, and the frequency-dependence of τν is determined by σ1D,
we therefore expect that the integrated intensity will depend on σ1D.

To get a sense of how this dependence will work, let us adopt a
very simplified yet schematically correct form for τν. We will take the
opacity to be a step function, which is infinite near line center and
drops sharply to 0 far from line center. The frequency at which this
transition happens will be set by the condition τν = 1, which gives

∆ν = |ν− ν0| = ν0

√
2 ln τν0

σ1D

c
. (8.11)

The corresponding range in Doppler shift is

∆v =
√

2 ln τν0 σ1D. (8.12)

For this step-function form of τν, the emitted brightness temperature
is trivial to compute. At velocity v, the brightness temperature is

TB,v =

{
T, |v− v0| < ∆v
0, |v− v0| > ∆v

(8.13)

If we integrate this over all velocities of emitting molecules, we get

ICO =
∫

TB,ν dv = 2TB∆v =
√

8 ln τν0 σ1DT. (8.14)

Thus, the velocity-integrated brightness temperature is simply pro-
portional to σ1D. The dependence on the line-center optical depth is
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generally negligible, since that quantity enters only as the square root
of the log. We therefore have

X [cm−2 (K km s−1)−1] =
M/(µπR2)

ICO

= 105 (8 ln τν0)
−1/2

Tµπ

M
σ1DR2

= 105 (µ ln τν0)
−1/2

T

√
5n

6παvirG
,

where n = 3M/(4πR3) is the number density of the cloud, and the
factor of 105 comes from the fact that we’re measuring ICO in km s−1

rather than cm s−1.
To the extent that all molecular clouds have comparable volume

densities on large scales and are virialized, this suggests that there
should be a roughly constant CO X factor. If we plug in T = 10 K,
n = 100 cm−3, αvir = 1, and τν0 = 100, this gives XCO = 5× 1019 cm−2

(K km s−1)−1.
This argument is a simplified version of a more general technique

of converting between molecular line luminosity and mass called
the large velocity gradient approximation, introduced by Goldreich
& Kwan (1974). The basic idea of all these techniques is the same:
for an optically thick line, the total intensity you get out will be
determined not directly by the amount of gas, but instead by the
range in velocity / frequency that the cloud occupies.

Of course this calculation has a few problems – we have to assume
a volume density, and there are various fudge factors like a floating
around. Moreover, we had to assume virial balance between gravity
and internal motions. This implicitly assumes that both surface
pressure and magnetic fields are negligible, which they may not be.
Making this assumption would necessarily make it impossible to
independently check whether molecular clouds are in fact in virial
balance between gravity and turbulent motions.

In practice, the way we get around these problems is by deter-
mining X factors by empirical calibration. We generally do this by
attempting to measure the total gas column density by some tracer
that measures all the gas along the line of sight, and then subtract-
ing off the observed atomic gas column – the rest is assumed to be
molecular.

One way of doing this is measuring γ rays emitted by cosmic rays
interacting with the ISM. The γ ray emissivity is simply proportional
to the number density of hydrogen atoms independent of whether
they are in atoms or molecules (since the cosmic ray energy is very
large compared to any molecular energy scales). Once produced
the γ rays travel to Earth without significant attenuation, so the
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γ ray intensity along a line of sight is simply proportional to the
total hydrogen column. Using this method, Strong & Mattox (1996)
obtained X ≈ 2× 1020 cm−2 (K km s−1)−1, and more recent work
from Fermi Abdo et al. (2010) gives about the same value.

Another way is to measure the infrared emission from dust grains
along the line of sight, which gives the total dust column. This is
then converted to a mass column using a dust to gas ratio. Based on
this technique, Dame et al. (2001) obtained X ≈ 2× 1020 cm−2 (K
km s−1)−1; more recently, Draine et al. (2007) got about twice this,
X ≈ 4× 1020 cm−2 (K km s−1)−1. However, all of these techniques
give numbers that agree to within a factor of two in the Milky Way,
so we can be fairly confident that the X factor works to that level. It
is important to emphasize, however, that this is only under Milky
Way conditions. We will see in a bit that there is good evidence that it
does not work under very different conditions.

Note that we can turn the argument around. These other calibra-
tion methods, which make no assumptions about virialization, give
conversions that are in quite good agreement with what we get by
assuming virialization between gravity and turbulence. This suggests
that molecular clouds cannot be too far from virial balance between
gravity and turbulence. Neither magnetic fields nor surface pres-
sure can be completely dominant in setting their structures, nor can
clouds be very far from virial balance.

It is also worth mentioning some caveats with this method. The
most serious one is that it assumes that CO will be found wherever
H2 is, so that the mass traced by CO will match the mass traced by
H2. This seems to be a pretty good assumption in the Milky Way, but
it may begin to break down in lower metallicity galaxies due to the
differences in how H2 and CO are shielded against dissociation by
the interstellar UV field.

8.1.2 Mass Distribution
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Figure 3. Histograms of the physical properties of molecular clouds. In the top two panels, the solid line indicates the best fit to the radius and mass spectra.

mass and number) have virial parameters <1. This analysis
thus suggests that most of the molecular mass contained in
identifiable molecular clouds is located in gravitationally bound
structures.

6.3. Number Density and Surface Mass Density

The bottom left panel shows the mean density of H2 in
our sample of 750 molecular clouds, the median of which is
231 cm−3. This value is well below the critical density of the
13CO J = 1 → 0 transition, ncr = 2.7×103 cm−3, suggesting
that the gas with density n > ncr is not resolved by a 48′′ beam
(0.25 pc at d = 1 kpc), and that its filling factor is low.

The bottom right panel shows the surface mass density of the
molecular clouds, with a median of 144 M⊙ pc−2. Using the
Galactic gas-to-dust ratio ⟨NH /AV ⟩ = 1.9×1021 cm−2 mag−1

(Whittet 2003), this corresponds to a median visual extinction
of 7 mag. This value is consistent with the prediction from
photoionization dominated star formation theory (McKee 1989).
A median surface mass density of 140 M⊙ pc−2 is lower than
the median value of 206 M⊙ pc−2 derived by Solomon et al.
(1987) based on the virial masses of a sample of molecular

clouds identified in the 12CO UMSB survey. Note that Solomon
et al. (1987) originally found a median surface mass density of
170 M⊙ pc−2, assuming that the distance from the sun to the
Galactic center is 10 kpc. Assuming a Galactocentric radius of
8.5 kpc for the sun, this value becomes 206 M⊙ pc−2 (Heyer et al.
2009). The median surface density derived here is also higher
than the value of 42 M⊙ pc−2 derived by Heyer et al. (2009),
who re-examined the masses and surface mass densities of the
Solomon et al. (1987) sample using the GRS and a method
similar method to ours. Similar to our analysis, Heyer et al.
(2009) estimated the excitation temperature from the 12CO line
emission and derived the mass and surface density from 13CO
GRS measurements and the excitation temperature.

For the Solomon et al. (1987) molecular cloud sample, Heyer
et al. (2009) found a median surface density of 42 M⊙ pc−2

using the area A1 (the 1 K isophote of the 12CO line) defined
by Solomon et al. (1987) to compute masses and surface mass
densities. However, computing surface mass densities within the
half power 12CO isophote (A2) yields a median surface mass
density close to 200 M⊙ pc−2 (see Figure 4 of Heyer et al. 2009).
It is thus likely that the discrepancy between the surface densities
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Fig. 2. Cumulative luminosity distributions for the GMCs in M 33. The upper left panel includes clouds at all radii in a single luminosity function;
the upper right panel divides the cloud sample into two equal samples separating the inner disk clouds from those at larger radii. The lower panel
divides the sample into three parts (see Table 1 for numerical results). In each panel, the range in radii for each curve is indicated following
the color coding of the curves. The solid curves represent the real data, whereas the dashed lines represent the luminosity function calculated
from maximum likelihood estimation of the power-law exponent and truncation luminosity. The insets to the lower left of each panel indicate the
distribution in slope values found with the bootstrapping method. While there is substantial overlap when three radial bins are used (lower panel),
showing that randomly selected samples can yield somewhat di↵erent results, the distributions are quite separate when only two radial bins are
used. This is reflected in the uncertainties. The vertical lines indicate the completeness limit; only these clouds are used to estimate the luminosity
function parameters.

Table 2. Proportions of the di↵erent cloud types in our catalog.

Type Aa Type Bb Type Cc Other

Average (%) 17.0 32.6 48.3 2.1
Dispersion (%) 4.3 17.1 19.3 4.1

Notes. (a) GMCs without detected star formation; (b) GMCs with em-
bedded star formation; (c) GMCs with exposed star formation.

of cloud luminosities, 164 luminosities were drawn from the
164 values in Table A.1 that are above our completeness limit,
allowing the same value to be drawn more than once. Each set
of 164 values was then used to estimate Lmax and ↵ (Lmin is held
at 8 ⇥ 103 km s�1/pc2). The process of drawing values and cal-
culating Lmax and ↵ is repeated 5000 times yielding the set of
values in the inset of Fig. 2 (only ↵ is shown, Lmax is roughly
the mass of the largest cloud in the sample). The median and the

dispersion of this histogram are then used to determine Lmax and
↵ and their uncertainties (Table 2).

We varied two parameters between the CPROPS runs,
namely the threshold value to include emission (from 1.5� to
2.5�), and the minimum area for a region to be considered as a
cloud (from one to two times the beam area). Varying these op-
tions led to changes in the luminosity function estimated param-
eters that are much smaller than the estimated uncertainties. This
is because modifying CPROPS input values almost exclusively
influences the number of faint clouds well below the complete-
ness limit we have used determine the luminosity function.

4.3. The GMC CO luminosity function in M 33

The three panels of Fig. 2 show both the observed and mod-
eled cumulative luminosity functions for the entire cloud set and
for two radial binnings. Table 1 summarize the parameter val-
ues and uncertainties for these radial binnings. The first column
is the range in radii considered, the second column is the num-
ber of clouds above the completeness limit, the third column is
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Figure 8.1: Two measurements of the
GMC mass spectrum. The top panel
shows the mass spectrum for the
inner Milky Way determined from
13CO measurements by Roman-Duval
et al. (2010); the sample is complete
at masses above ∼ 105 M�. The
bottom panel shows the mass spectrum
in M33, as determined by Gratier
et al. (2012) using 12CO. Note that
these are cumulative distributions
in luminosity, whereas the top panel
shows a differential distribution in
mass. The three colors show three
different galactocentric regions: the
inner galaxy (red), the mid-disk (green),
and the outer galaxy (blue).

Armed with these techniques for measuring molecular cloud masses,
what do we actually see? The answer is that in both the Milky Way
and in a collection of nearby galaxies, the molecular cloud mass dis-
tribution in the cloud seems to be well-fit by a truncated powerlaw,

dN
dM

=

{
Nu

(
Mu
M

)γ
, M ≤ Mu

0, M > Mu
(8.15)

Here Mu represents an upper mass limit for GMCs – there are no
clouds in a galaxy larger than that mass. The number of clouds
with masses near the upper mass limit is Nu. Below Mu, the mass
distribution follows a powerlaw of alpha γ. Note that, since we have
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given this as the number per unit log mass rather than the number
per unit mass, we can think of this index as telling us the total mass
of clouds per decade in mass.

So what are Nu, Mu, and γ? It depends on where you look, as
illustrated in Figure 8.1. In the inner, H2-rich parts of galaxies, the
slope is typically γ ∼ −2 to −1.5. In the outer, molecule-poor regions
of galaxies, and in dwarf galaxies, it is −2 to −2.5. These measure-
ments imply that, since the bulk of the molecular mass is found in
regions with γ > −2, most of the molecular mass is in large clouds
rather than small ones. This is just because the mass in some mass
range is proportional to

∫
(dN/dM)MdM ∼ M2+γ.

8.2 Scaling Relations

Once we have measured molecular cloud masses, the next thing to in-
vestigate is their other large-scale properties, and how they scale with
mass. Observations of GMCs in the Milky Way and in nearby galax-
ies yield three basic results, which are known as Larson’s Laws, since
they were first pointed in Larson (1981). The physical significance of
these observational correlations is still debated today.

The first is the molecular clouds have characteristic surface den-
sities of ∼ 100 M� pc−2 (Figure 8.2. This appears to be true in the
Milky Way and in all nearby galaxies where we can resolve individ-
ual clouds. There may be some residual weak dependence on the
galactic environment – ∼ 50 M� pc−2 in low surface density, low
metallicity galaxies like the LMC, up ∼ 200 M� pc−2 in molecule-
and metal-rich galaxies like M51, but generally around that value.
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Figure 3. Histograms of the physical properties of molecular clouds. In the top two panels, the solid line indicates the best fit to the radius and mass spectra.

mass and number) have virial parameters <1. This analysis
thus suggests that most of the molecular mass contained in
identifiable molecular clouds is located in gravitationally bound
structures.

6.3. Number Density and Surface Mass Density

The bottom left panel shows the mean density of H2 in
our sample of 750 molecular clouds, the median of which is
231 cm−3. This value is well below the critical density of the
13CO J = 1 → 0 transition, ncr = 2.7×103 cm−3, suggesting
that the gas with density n > ncr is not resolved by a 48′′ beam
(0.25 pc at d = 1 kpc), and that its filling factor is low.

The bottom right panel shows the surface mass density of the
molecular clouds, with a median of 144 M⊙ pc−2. Using the
Galactic gas-to-dust ratio ⟨NH /AV ⟩ = 1.9×1021 cm−2 mag−1

(Whittet 2003), this corresponds to a median visual extinction
of 7 mag. This value is consistent with the prediction from
photoionization dominated star formation theory (McKee 1989).
A median surface mass density of 140 M⊙ pc−2 is lower than
the median value of 206 M⊙ pc−2 derived by Solomon et al.
(1987) based on the virial masses of a sample of molecular

clouds identified in the 12CO UMSB survey. Note that Solomon
et al. (1987) originally found a median surface mass density of
170 M⊙ pc−2, assuming that the distance from the sun to the
Galactic center is 10 kpc. Assuming a Galactocentric radius of
8.5 kpc for the sun, this value becomes 206 M⊙ pc−2 (Heyer et al.
2009). The median surface density derived here is also higher
than the value of 42 M⊙ pc−2 derived by Heyer et al. (2009),
who re-examined the masses and surface mass densities of the
Solomon et al. (1987) sample using the GRS and a method
similar method to ours. Similar to our analysis, Heyer et al.
(2009) estimated the excitation temperature from the 12CO line
emission and derived the mass and surface density from 13CO
GRS measurements and the excitation temperature.

For the Solomon et al. (1987) molecular cloud sample, Heyer
et al. (2009) found a median surface density of 42 M⊙ pc−2

using the area A1 (the 1 K isophote of the 12CO line) defined
by Solomon et al. (1987) to compute masses and surface mass
densities. However, computing surface mass densities within the
half power 12CO isophote (A2) yields a median surface mass
density close to 200 M⊙ pc−2 (see Figure 4 of Heyer et al. 2009).
It is thus likely that the discrepancy between the surface densities
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Figure 14. Radial distributions of ΣH2 (left), ΣSFR (center), and ΣSFE (right) of the regions observed over the disk, including both complexes and clouds. Filled black
dots represent on-arm complexes and clouds, while filled red dots illustrate the on-arm complexes and clouds located in regions 6, 7, and 11 (see Figures 2 and 15).
Open circles illustrate inter-arm complexes and clouds. Most of the on-arm structures that present higher ΣH2, ΣSFR, and ΣSFE than the other complexes or clouds,
particularly for the star formation rate, are located in regions 6, 7, and 11. These structures are inside the region enclosed by r = 3.5 kpc and r = 4.5 kpc (illustrated
by the black dashed lines, see Figure 15).
(A color version of this figure is available in the online journal.)

Figure 15. Left: map of the star formation efficiency derived for individual CO(1 → 0) complexes. The color bar is in units of Myr−1. The black contours highlight
the complexes with ΣH2 > 110 M⊙ pc−2. Right: map of the SFE for the CO(2 → 1) clouds. In this case, black contours highlight clouds with ΣH2 > 135 M⊙ pc−2.
As in the left panel, the color bar is in units of Myr−1. Circles illustrate regions where we found structures that deviate from the other identified structures in Figure 14.
Dashed lines denote radii of r = 3.5 kpc and r = 4.5 kpc (see Figure 14).
(A color version of this figure is available in the online journal.)

for the galaxy being studied in this paper, NGC 6946. They
showed that this concentration depends on the pixel fraction
attributed to arms, and can be 40% using the brightest 30%
of pixels as the arm region. A similar behavior for SFE is ob-
served in the right panel of Figure 14. Several on-arm structures
are observed to have higher SFE than other structures located
in on-arm or inter-arm regions. Those regions correspond to
the highest luminosity clouds identified in the histograms for
CO(2 → 1) shown in Figure 12. Spatially, those outliers cor-
respond to CO(1 → 0) molecular emitting complexes (and the
corresponding CO(2 → 1) resolved inside them) located in re-
gions 6, 7, and 11 illustrated in Figure 2. In order to have a clearer
view of the location of these outlier structures, in Figure 15 we
show the map of the SFE for both CO(1 → 0) complexes and
CO(2 → 1) clouds. To create these maps, we have assigned

the SFE value to the corresponding complex or cloud boundary
given by CPROPS. The black circles highlight the regions where
we found the outliers in Figures 12 and 14, with black contours
showing the CO(1 → 0) complexes with ΣH2 > 110 M⊙ pc−2,
and CO(2 → 1) clouds with ΣH2 > 135 M⊙ pc−2.

In order to quantify the difference between the structures
located in regions 6, 7, and 11 and the molecular gas in the
other parts of the regions observed, in Table 3 we show the
average of ΣH2, ΣSFR, and ΣSFE for this subgroup of clouds and
the remaining set of structures. We observe that the mean of
ΣH2 calculated over the regions located in regions 6, 7, and 11
is a factor of two higher than the average value calculated in
the remaining disk. Also, the average ΣSFR and ΣSFE for this
subgroup are a factor of four and three higher than the other
regions, respectively.
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Figure 8.2: Two measurements of GMC
surface densities. The top panel shows
the distribution of surface densities
for the inner Milky Way determined
from 13CO measurements by Roman-
Duval et al. (2010). The bottom panel
shows GMC surface density versus
galactocentric radius in NGC 6946,
measured from both 12CO and 13CO
(Rebolledo et al., 2012).

Note that the universal column density combined with the GMC
mass spectrum implies are characteristic volume density for GMCs:

n =
3M

4πR3µ
=

(
3π1/2

4µ

)√
Σ3

M
= 23Σ3/2

2 M−1/2
6 cm−2, (8.16)

where Σ2 = Σ/(100 M� pc−2) and M6 = M/106 M�. This is the
number density of H2 molecules, using a mean mass per molecule
of 3.9× 10−24 g. There is an important possible caveat to this, how-
ever, which is sensitivity bias: GMCs with surface densities much
lower than this value may be hard to detect in CO surveys. However,
there is no reason that higher surface density regions should not be
detectable, so it seems fairly likely that this is a physical and not just
observational result (though that point is disputed).

The second is the GMCs obey a linewidth-size relation. The veloc-
ity dispersion of a given cloud depends on its radius. Solomon et al.
(1997) find σ = (0.72± 0.07)R0.5±0.05

pc km s−1 in the Milky Way, where
Rpc is the cloud radius in units of pc. For a sample of a number of
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external galaxies, Bolatto et al. (2008) find σ = 0.44+0.18
−0.13R0.60±0.10

pc km
s−1. Within individual molecular clouds in the Milky Way, Heyer &
Brunt (2004) find σ = 0.9L0.56±0.02

pc km s−1 (Figure 8.3).
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Fig. 1.—Composite relationship from PCA decompositions of 12COdv, l
imaging observations of 27 individual molecular clouds. The smallJ p 1–0

scatter of points attests to the near invariance of interstellar turbulence within
molecular clouds that exhibit a large range in size, environment, and star
formation activity. The large filled circles are the global velocity dispersion
and size for each cloud derived from the first principal component. These are
equivalent to the global velocity dispersion and size of the cloud as would be
measured in the cloud-to-cloud size/line width relationship (Larson 1981; Sol-
omon et al. 1987). The light solid line shows the bisector fit to all points from
all clouds. The heavy solid line shows the bisector fit to the filled circles
exclusively. The similarity of these two power laws explains the connection
of Larson’s cloud-to-cloud scaling law to the structure functions of individual
clouds.

mental conditions. Monte Carlo models are constructed that
place upper limits to the variation of the scaling coefficient and
exponent. Finally, we discuss the consequences of an invariant
turbulent spectrum in the context of the formation of interstellar
molecular clouds, sources of turbulent energy, and star formation.

2. THE COMPOSITE STRUCTURE FUNCTION

Following Brunt & Heyer (2002), PCA is applied to spec-
troscopic data cubes of 12CO emission frommolecularJ p 1–0
clouds that are part of recent wide field imaging surveys at the
Five College Radio Astronomy Observatory (Heyer et al. 1998;
Brunt & Mac Low 2004) or targeted studies of individual giant
molecular clouds. Heyer & Schloerb (1997) and Brunt (2003)
show that there is little difference in the relationshipsdv, l
derived from 12CO emission and the lower opacity 13CO emis-
sion. For each cloud, a power-law is fitted to the pointsdv, l
to determine the PCA scaling exponent, aPCA, and coefficient,
. For the sample of 27 molecular clouds, the mean and standardvo
deviation for the scaling exponent are 0.62 and 0.09, respectively.
On the basis of models with little or zero intermittency, this PCA
scaling exponent corresponds to a structure function exponent
equal to (Brunt et al. 2003). The mean and standard0.49! 0.15
deviation of the scaling coefficient are 0.90 and 0.19 km s!1.
These rather narrow distributions of g and reemphasize thev"

results of Brunt (2003) that there is not much variation in the
structure function parameters betweenmolecular clouds. In Fig-
ure 1, we overlay the PCA points from the sample ofdv, l
clouds. The composite points reveal a near-identical form of
the inferred structure functions. The solid line shows the power-
law bisector fit to all points, . This0.65!0.01dv p (0.87! 0.02)l
PCA-derived exponent corresponds to a structure function scal-
ing exponent of .0.56! 0.02
The global velocity dispersion of each cloud and the cloud

size are determined from the scales of the first eigenvector and
eigenimage, respectively. Basically, the global velocity dis-
persion, , is the value of the velocity structure function mea-Dv
sured at the size scale, L, of the cloud. These points, marked
as filled circles within Figure 1, are equivalent to the global
values used by Larson (1981) and Solomon et al. (1987) that
define the cloud-to-cloud size/line width relationship. A power-
law bisector to this subset of points is Dv p (0.96!

. The similarity of this cloud-to-cloud relationship0.59!0.070.17)L
with that of the composite points is a consequence of the uni-
formity of the individual structure functions. Within the quoted
errors, it is also similar to the cloud-to-cloud size/line width
relationships: and . Therefore, Larson’s global ve-g ≈ G v ≈ Co
locity dispersion versus cloud size scaling law follows directly
from the near-identical functional form of velocity structure
functions for all clouds. If there were significant differences of
g or between clouds, then the cloud-to-cloud size/line widthvo
relationship would exhibit much larger scatter than is measured
by Larson (1981) and Solomon et al. (1987).

3. THE DEGREE OF TURBULENCE UNIVERSALITY

The cloud-to-cloud size/line width relationships measured
by Larson (1981) and Solomon et al. (1987) and the composite
structure functions shown in Figure 1 do exhibit some degree
of scatter about the fitted lines. The scatter is quantified by the

mean square of the velocity residuals, , for each data set2jobs
where

N G 2S (Dv ! CL )i ii2 2 !2j p km s . (2)obs N

Here N is the number of clouds in the sample, and C and G are
the parameters derived by fitting a power law to the observed

points. The value for for the sample of clouds in Larson2Dv, L jobs
(1981) using only the 12CO and 13CO measurements is 1.41 km2

s!2. The Solomon et al. (1987) sample is a larger, more homo-
geneous set of clouds and therefore provides a more accurate
measure of the variance within the cloud-to-cloud size/line width
relationship. The corresponding is 0.88 km2 s!2. The value of2jobs

for the points in Figure 1 is 1.93 and 0.35 km2 s!2 for2j Dv, Lobs
the composite collection of points.dv, l
The measured scatter, described by , of the size/line width2jobs

relationships is a critical constraint to the degree of invariance
of turbulence within the molecular interstellar medium. The
scatter arises from several sources. There are basic measure-
ment errors in the global velocity dispersion owing to the ve-
locity resolution of the measurements and the cumulative sta-
tistical error of the individual spectra. Deriving cloud sizes from
complex projected distributions of the molecular gas may also
introduce some scatter. These measurement errors are rarely
shown in any cloud size/line width plots. A secondary source
of scatter is limited or biased mapping of the molecular cloud.
If a given map was limited in angular extent and centered on
a region within the cloud that is actively forming stars, then

Figure 8.3: Measured correlation
between GMC linewidth δv and size
scale ` for Milky Way clouds (Heyer &
Brunt, 2004).

One interesting thing to notice here is that the exponents of the
observed linewidth-size relation within a single cloud is quite close to
the σ ∝ `0.5 that is a generic result of supersonic turbulence. However,
turbulence alone does not explain why all molecular clouds follow
the same linewidth-size relation, in the sense that not only is the
exponent the same, but the normalization is the same. It would be
fully consistent with supersonic turbulence for different GMCs to
have very different levels of turbulence, so that two clouds of equal
size could have very different velocity dispersions. Thus the fact that
turbulence in GMCs is universal is an important observation.

Larson’s final law is that GMCs have αvir ≈ 1, i.e. they are in rough
virial balance between gravity and internal turbulence. We have
already noted the good agreement between the value of X that we
derived from a trivial virial assumption and the value derived by γ

ray and dust observations, which suggest exactly this result.
In practice, the way we compute the virial ratio is to measure a

mass using an X factor calibrated by γ rays or dust, compute a radius
from the observed size of the cloud on the sky and its estimated
distance, and measure the velocity dispersion from the width of the
line in frequency. Using the method, Solomon et al. get αvir = 1.1 as
their mean within the Galaxy, and Bolatto et al. get a similar result
for external galaxies. This result only appears to hold for sufficiently
massive clouds. Clouds with masses below ∼ 104 M� have virial
ratios αvir � 1. The interpretation is that these objects are confined by
external pressure rather than gravity.
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where the angle brackets denote a spatial average over the
observed field. Within the inertial range, the structure function
is expected to vary as a power law relationships with τ .
For p = 1,

S1(τ ) = δv = v◦τ
γ , (14)

where γ is the scaling exponent and v◦ is the scaling coeffi-
cient. These parameters correspond to Type 4 size–line width
relationships described by Goodman et al. (1998). The velocity
dispersion1 of an individual cloud is simply the structure func-
tion evaluated at its cloud size, L, such that σv = S1(L) = v◦L

γ .
Cloud-to-cloud size–velocity dispersion relationships, defined
as Type 2 by Goodman et al. (1998), are constructed from the
endpoints of each cloud’s velocity structure function. The exis-
tence of a cloud-to-cloud size–velocity dispersion relationship
identified by SRBY necessarily implies narrow distributions of
the scaling exponent and coefficient, respectively, for all clouds
(Heyer & Brunt 2004). Large variations of v◦ and γ between
clouds would induce a large scatter of points that is inconsistent
with the observations. From Monte Carlo modeling of the scat-
ter of the SRBY size–velocity dispersion relationship, Heyer
& Brunt (2004) constrained the variation of γ and v◦ between
clouds to be less than 20% about the mean values that is indica-
tive of a universal structure function. This universality is also
reflected in the structure functions of individual clouds as de-
rived by Brunt (2003) and Heyer & Brunt (2004) using principal
component analysis.

The Larson scaling relationships are concisely represented
within the plane defined by the gas surface density, Σ, and
the quantity, σv/R

1/2, for a set of GMC properties (see
Equation (10)). This representation assumes a scaling expo-
nent of 1/2 for the structure function of each cloud so that the
ordinate, σv/R

1/2, is equivalent to the scaling coefficient, v◦.
Absolute adherence to universality and all three of Larson’s
scaling relationships for a set of clouds would be ideally repre-
sented by a single point centered at σv/R

1/2 = (πGΣ/5)1/2 for
a constant value of Σ. Given uncertainties in distance and deriv-
ing surface densities, one more realistically expects a cluster of
points at this location. In Figure 7, we show the corresponding
points derived from the GRS data within the SRBY boundaries
(area A1) and the area within the half-power isophote of NH2

(area A2). The vertical error bars displayed in the legend reflect
a 20% uncertainty in the distance to each cloud. As a reference
point, the large triangle denotes the location of the SRBY me-
dian values (σv/R

1/2 = 0.72 km s−1; Σ(H2) = 206 M⊙ pc−2).
The solid line shows the loci of points assuming gravitationally
bound clouds, σv/R

1/2 = (πG/5)1/2Σ1/2, that is nearly identi-
cal to the coefficients used by SRBY. For both considered cloud
areas, the 13CO data points are displaced from this loci of virial
equilibrium. The median virial parameter, αG = Mv,13/MLTE,
is 1.9, where Mv,13 is the virial mass derived from 13CO data
within A1. However, the LTE-derived mass could underestimate
the true cloud mass by factors of 2–3 as suggested in Section 2,
so the derived properties are consistent with a virial parameter
of unity for this sample of clouds.

Figure 7 reveals a systematic variation of v◦ = σv/R
1/2 with

Σ. This trend is separately evident for each area, A1 (open circles)
and A2 (filled circles) with Pearson correlation coefficients 0.48
and 0.65, respectively. For these sample sizes, it is improbable
that these data sets are drawn from a random population. The

4 Cloud-to-cloud size–velocity dispersion relationships use the full velocity
dispersion of the cloud but scaled to the cloud radius, R ∼ L/2. Therefore, the
respective definitions for the coefficient may differ by a factor of ∼2γ .

Figure 7. Variation of the scaling coefficient, v◦ = σv/R
1/2, with mass surface

density derived within the SRBY cloud boundaries (open circles) and the 1/2
maximum isophote of H2 column density (filled circles). The filled triangle
denotes the value derived by SRBY. The solid line shows the loci of points
corresponding to gravitationally bound clouds. There is a dependence of the
coefficient with mass surface density in contrast to Larson’s velocity scaling
relationship. The error bars in the legend reflect a 20% uncertainty of the
distance to each cloud.

dependence of σv/R
1/2 on Σ signals a departure from the uni-

versality of the velocity structure function of clouds. It implies
a necessary modification to Larson’s scaling relationships but
one that is compatible with the rather basic premise of gravita-
tional equilibrium as described in Equation (10). The measured
variation of v◦ = σv/R

1/2 is larger than the values derived by
Heyer & Brunt (2004) owing to the larger intrinsic scatter in the
size–velocity dispersion relationship determined from the GRS
data.

The dependence of σv/R
1/2 on Σ may not have been recog-

nized in previous studies owing to a limited range of surface
densities in the observed samples, or the use of a less reliable
tracer of molecular gas column density, or simply not considered
given the long-standing acceptance of Larson’s scaling relation-
ships. The fidelity of the GRS data provides an excellent relative,
if not absolute, measure of gas surface density that allows this
relationship to be recognized. We note that this relationship is
algebraically imposed when deriving surface densities from the
virial mass, Σ = Mvir/πR2 ∝ σ 2

v /R, as calculated by SRBY.
However, as shown in Figure 8, the relationship is even evident
in the SRBY defined properties when using the mean 12CO sur-
face brightness and CO to H2 conversion factor as a measure
of gas surface density, Σ = XCOLCO,SRBY/Ω1D

2, where Ω1
is the solid angle of the cloud corresponding to A1 and D is
the distance. Moreover, the scaling between σv/R

1/2 and Σ is
also present in the sample of extragalactic GMCs tabulated by
Bolatto et al. (2008; filled squares in Figure 8). The presence of
this scaling within these independent data sets offers a powerful
verification that the velocity dispersion of a cloud depends on
both the spatial scale of the emitting area and the mass surface
density.

3.2. GMC Dynamics

Descriptions of cloud dynamics must consider the nature and
origin of the observed supersonic motions in GMCs. While
much of the theoretical effort has focused on the scaling
exponent of the power spectrum or structure function of the

Figure 8.4: Correlation between GMC
surface density Σ and the combination
σv/R1/2, where σv is the velocity dis-
persion and R is the radius. The solid
line represents the relationship that has
αvir = 1. Open circles indicate values
derived with the lowest detectable con-
tour, while closed ones indicate values
derived using the half maximum CO
isophote.

It is important to realize that Larson’s three laws are not indepen-
dent. If we write the linewidth-size relation as σ = σpcR1/2

pc , then

αvir =
5σ2R
GM

=

(
5

π pc

)
σ2

pc

GΣ
= 3.7

(
σpc

1 km s−1

)2 (100 M� pc−2

Σ

)
.

(8.17)
This shows that the universality of the linewidth-size relation is
equivalent to the universality of the molecular cloud surface density,
and vice-versa. The normalization of the linewidth-size relation is
equivalent to the statement that αvir = 1, and vice-versa. This is
indeed what is observed (Figure 8.4).

It is also instructive to compute the pressure in GMCs that these
relations imply. The kinetic pressure is P = ρσ2 = 3Σσ2

pc/(4 pc)
Plugging in the observed LWS relation, this gives P/kB ≈ 3× 105

K cm−3. This is much larger than the mean pressure in the disk of
the Milky Way or similar galaxies, which is typically closer to 104 K
cm−3.
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8.3 Molecular Cloud Timescales

Perhaps the most difficult thing to observe about GMCs are the
timescales associated with their behavior. These are always long
compared to any reasonable observation time, so we must instead
infer timescales indirectly. In order to help understand the physical
implications of GMC timescales, it is helpful to compare these to the
characteristic timescales implied by Larson’s Laws.

One of these is the crossing time,

tcr ≡
R
σ

=
0.95√
αvirG

(
M
Σ3

)1/4
= 14 α−1/2

vir M1/4
6 Σ−3/4

2 Myr. (8.18)

This is the characteristic time that it will take a signal to cross a
cloud.

The other is the free-fall time. We will formally define this next
week, but intuitively it can be thought of as the time required for the
cloud to gravitationally collapse in the absence of significant support
from pressure or turbulence. This is

tff ≡
√

3π

32Gρ
=

π1/4
√

8G

(
M
Σ3

)1/4
= 7.0 M1/4

6 Σ−3/4
2 Myr (8.19)

For a virialized cloud, αvir = 1, the free-fall time is half the crossing
time, and both timescales are ∼ 10 Myr. Thus, when discussing
GMCs, we will compare our timescales to 10 Myr.

8.3.1 Depletion Time

The first timescale to think about is the one defined by the rate at
which GMCs form stars. We call this the depletion time – the time
required to turn all the gas into stars. Formally, tdep = Mgas/Ṁ∗
for a cloud, or, if we’re talking about an extra-Galactic observation
where we measure quantities over surface areas of a galactic disk,
tdep = Σgas/Σ̇∗. This is sometimes also referred to gas the gas
consumption timescale.

This is difficult to determine for individual GMCs, in large part
because stars destroy their parent clouds after they form. This means
that we don’t know how much gas mass a cloud started with, just
how much gas is left at the time when we see a certain amount of
stellar mass. If the GMC is young we might see a lot of gas and few
stars, and if it is old we might see many stars and little gas, but the
depletion time might be the same.

We can get around this problem by studying a galactic population
of GMCs. This should contain a fair sample of GMCs in all evolu-
tionary stages, and tell us what the value of the star formation rate
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is when averaged over all these clouds. Zuckerman & Evans (1974),
pointed out that for the Milky Way the depletion time is remarkably
long. Inside the Solar circle the Milky Way contains ∼ 109 M� of
molecular gas, and the star formation rate in the Milky Way is ∼ 1
M� yr−1, so tdep ≈ 1 Gyr. This is roughly 100 times the free-fall time
or crossing time of ∼ 10 Myr. Krumholz & McKee (2005) pointed
out that this ratio is a critical observational constraint for theories of
star formation, and defined the dimensionless star formation rate per
free-fall time as εff = tff/tdep.This is the fraction of a GMC’s mass
that it converts into stars per free-fall time. It is unclear what accounts for the

difference between THINGS and COLD
GASS. The samples are quite different,
in that THINGS looks at individual
patches within nearby well-resolved
galaxies, while COLD GASS only has
one data point per galaxy, and the
observations are unresolved. On the
other hand, COLD GASS has a much
broader range of galaxy morphologies
and properties. It possible that some of
the COLD GASS galaxies are in a weak
starburst, while there are no starbursts
present in THINGS.

Since 1974 these calculations have gotten more sophisticated
and have been done for a number of nearby galaxies. Probably the
cleanest, largest sample of nearby galaxies comes from the recent
THINGS survey. Surveys of local galaxies consistently find a typical
depletion time tdep = 2 Gyr for the molecular gas over. A wider
by lower resolution survey, COLD GASS (Saintonge et al., 2011a,b),
found a non-constant depletion time over a wider range of galaxies,
but still relatively little variation. Figure 8.5 summarizes the current
observations for galaxies close enough to be resolved.
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Figure 8.5: Surface density of star
formation versus surface density of gas
(Krumholz, 2014). Blue pixels show the
distribution of pixels in the inner parts
of nearby galaxies, resolved at ∼ 750
pc scales Leroy et al. (2013), while
green pixels show the SMC resolved
at 12 pc scales Bolatto et al. (2011);
other green and blue points show
various averages of the pixels. Red
points show azimuthal rings in outer
galaxies Schruba et al. (2011), in which
CO emission can be detected only by
stacking all the pixels in a ring. Gray
lines show lines of constant depletion
time tdep.

Krumholz & Tan (2007) and Krumholz et al. (2012a) performed
this analysis for a variety of tracers of mass other than CO and for a
variety of galaxies, and for individual clouds within the Milky Way,
and found that εff ∼ 0.01 for essentially all of them (Figure 8.6).
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Figure 8.6: Surface density of star
formation versus surface density of gas
normalized by free-fall time (Krumholz,
2014). Blue and green pixels are the
same as in Figure 8.5, while points
represent measurements of marginally-
resolved galaxies (∼ 1 beam per galaxy).
Points are color-coded: green indicates
local galaxies, purple indicates high-z
galaxies, and red indicates individual
Milky Way clouds. The thick black line
represents εff = 0.01, while the gray
band shows a factor of 3 scatter about
it.
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8.3.2 Lifetime

The second quantity of interest observationally is how long an in-
dividual GMC survives. This is a difficult problem in part because
clouds are filled with structures on all scales, and people are not
always consistent about talking about different clouds. When clouds
have complex, hierarchical structures, things can depend tremen-
dously on whether we say that a region consists of a single, sub-
structured, big cloud or of many small ones. This makes it particu-
larly difficult to compare Galactic and extra-galactic data. In extra-
galactic observations where resolution is limited, we tend to label
things as large clouds with smaller densities and thus longer free-fall
and crossing timescales. The same cloud placed within the Milky
Way might be broken up and assigned much shorter timescales. The
moral of this story is that, in estimating cloud lifetimes, it is impor-
tant to be consistent in defining the sample and the methods used
to estimate its lifetime. There are many examples in the literature of
people being less than careful in this regard.

Probably the best determination of GMC lifetimes comes from
extragalactic studies, where many biases and confusions can be elimi-
nated. In the LMC, the NANTEN group catalogued the positions of
all the molecular clouds Fukui et al. (2008), all the H ii regions, and all
the star clusters down to a reasonable completeness limit (∼ 104.5 M�
for the GMCs). They put the star clusters on HR diagrams, allowing
them to make estimates of their ages, and they then broke them into
different age bins. They then plot the minimum projected distance be-
tween each cluster or H ii region and the nearest GMC, and compare
the distribution to what one would expect if the spatial distribution
were random Kawamura et al. (2009, Figure 8.7).

There is clearly an excess of H ii regions and clusters in the class
SWB0, which are those with ages ≤ 10 Myr, at small separations from
GMCs. This represents a physical association between GMCs and
these objects – the clusters or H ii regions are near their parent GMCs.
There is no comparable excess for the older clusters.

This allows us to estimate the GMC lifetime as follows. First, we
note that roughly 60% of the SWB 0 clusters are in the excess spike
at small separations. This implies that, on average, 60% of their ∼ 10
Myr lifetime must be spent near their parent GMC, i.e., the phase
of a GMC’s evolution when it has a visible nearby cluster is 6 Myr.
To estimate the total GMC lifetime, we note that only a minority
of GMCs have visible nearby clusters. Kawamura et al. (2009) find
39 GMCs are associated with nearby star clusters. In contrast, 88

are associated with H ii regions but not star clusters, and 44 are
associated with neither. If we assume that we are seeing these clouds



140 notes on star formation

8 KAWAMURA ET AL. Vol. 184

Figure 5. (Continued)
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Figure 6. Frequency distribution of the projected distances of (a) the H ii regions, (b) SWB 0 clusters (τ ! 10 Myr), (b) SWB I clusters (10 Myr ! τ ! 30 Myr)
and SWB type II to VII clusters (30 Myr ! τ , Bica et al. 1996) from the nearest molecular cloud (Paper I), respectively. Lines show the frequency distribution of the
distance when the H ii regions and clusters are distributed randomly.

surface density, Σ, is derived by integrating CO luminosity over
a sector with a 20◦ width and then divided by an observed area
of the sector. The CO luminosity to mass conversion is carried
out by assuming a conversion factor, XCO of 7 × 1020 cm−2

(K km s−1)−1 (Paper I) for both Figures 10 and 11.
Figure 10 shows that the radial profile of the surface density

decreases moderately along the galactocentric distance for
Type II as is also seen in the nearby spiral galaxies (e.g.,
Wong & Blitz 2002), while those for Types II and III are rather
flat with respect to the radial distance. It is interesting to note

that the number distribution and surface density show different
radial profiles for Type I; the number increases at large radial
distances but the surface density is relatively constant. This
indicates that the more massive Type I GMCs are found at the
large radial distances. It is also notable that there is a sharp
enhancement of the number of the clouds around 1.5 kpc for
Types II and III. This enhancement is due to the molecular ridge,
N11, and N44. This enhancement is also seen in the angular
distribution, especially at about 120◦ due to the molecular
ridge.

Figure 8.7: Histogram of projected
distances to the nearest GMC in the
LMC for H ii regions, star clusters
< 10 Myr old (SWB 0), star clusters
10 − 30 Myr old (SWB I), and star
clusters older than 30 Myr (SWB II-
IV), as indicated (Kawamura et al.,
2009). In each panel, the lines show the
frequency distribution that results from
random placement of each category of
object relative to the GMCs.

are random stages in their lifetimes, then the fraction associated with
star clusters must represent the fraction of the total GMC lifetime for
which this association lasts. Thus the lifetime of each phase is just
proportional to the fraction of clouds in that phase, i.e.,

tHII =
NHII

Ncluster
tcluster (8.20)

and similarly for tquiescent. Plugging in the numbers of clouds, and
given that tcluster = 6 Myr, we obtain tquiescent = 7 Myr, tHII = 14 Myr,
and tlife = tstarless + tHII + tcluster = 27 Myr. This is ∼ 2− 3 crossing
times, or 4− 6 free-fall times.

Notice that for this argument to work is it not necessary that the
different phases be arranged in any particular sequence. Kawamura
et al. suggest that there is in fact a sequence, with GMCs without
clusters or HII regions forming the earliest phase, GMCs with HII
regions but not clusters forming the second phase, and GMCs with
both HII regions and optically visible clusters forming the third
phase. However, recent theoretical work by Goldbaum et al. (2011)
suggests that this is not necessarily the case.

Within the galaxy and on smaller scales exercises like this get
vastly trickier. If we look at individual star clusters, which we can
age-date using pre-main sequence HR diagrams, we find that they
usually cease to be embedded in gaseous envelopes by the time the
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stellar population is 2− 3 Myr old. Figure 8.8 Interpreting this as a
true cluster formation age is tricky due to numerous observational
biases, e.g., variable extinction masquerading as age spread (which
tends to raise the age estimate) and a bias against finding older stars
because they are dimmer (which tends to reduce the age estimate).
There are also uncertainties in the theoretical models themselves used
to estimate the ages, a topic to be discussed in Chapter 18.

264 PALLA & STAHLER Vol. 540

FIG. 4.ÈH-R diagrams and age distributions for IC 348 and the Orion Nebula Cluster. Isochrones are the same as in previous Ðgures. For IC 348, the
evolutionary tracks correspond to 0.1, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 5.0, and 6.0 In Orion, we show only the tracks for 0.1, 0.6, 1.0, 2.0,M

_
.

4.0, and 6.0 M
_

.

tration of low-mass objects just below the birth line is
evident. Figure 4d shows the age histogram for all 596 prob-
able members lying between the birth line and the ZAMS
that have masses greater than 0.1 Note the very steepM

_
.

acceleration in star formation toward the present epoch, far
greater than in any other region we have examined. As seen
in Figure 5 of Paper I, this rise is still present if we subtract
o† all stars that could be a†ected by the surveyÏs empirical
Ñux limit.

2.8. NGC 2264
The young cluster NGC 2264 in Monoceros has been a

prime target for the observational study of star formation
ever since the initial discovery of 84 Ha emission line stars
by Herbig (1954). The subsequent photometric study by
Walker (1956) demonstrated unequivocally a preÈmain-
sequence population in the H-R diagram.6 Walker con-
cluded that all the stars with spectral types later than A0 lie
above the main sequence and derived an age for the group

6 Although historically signiÐcant, WalkerÏs study of NGC 2264 was
not the Ðrst to Ðnd stars displaced above the ZAMS. The earlier work of
Parenago (1954) had established such a pattern in Orion.

of 5 ] 106 yr. Several hundred optically visible members are
now known. These range in mass from the O7 star S Mon
to very late type T Tauri stars. A recent determination of
the distance Ðxes it at 760 pc (Sung, Bessell, & Lee 1997),
some 20% lower than previous estimates &(Pe" rez, The" ,
Westerlund 1987 ; Lada, Young, & Greene 1993). We adopt
the newer distance for analysis of the stellar population.

The large-scale structure of the region is characterized by
a giant molecular cloud located immediately behind the
visible cluster. The entire cloud has a north-south extension
of 25 pc and a mass of 3 ] 104 (Oliver, Masheder, &M

_Thaddeus 1996). The observations of Margulis, Lada, &
Young (1989) established that star formation is proceeding
in the molecular gas, as indicated by numerous CO out-
Ñows and embedded IRAS sources. The two largest concen-
trations of stars are located in the southern portion of the
cloud complex and are associated with the brightest stars S
Mon and W178, the latter being close to the famous Cone
Nebula. The small interstellar extinction, modest di†eren-
tial reddening, and the presence of an opaque reÑection
nebula obscuring background objects have all facilitated
study of the optically visible members et al. 1987).(Pe" rez

Figure 8.8: Histogram of inferred
stellar ages in the cluster IC 348 Palla &
Stahler (2000).

However, an individual GMC generally makes many clusters.
The typical star clusters is only a few hundred M�, compared to
GMC masses of 105 − 106 M�, and we see associations made up of
many clusters with age spreads of 10− 15 Myr. This suggests that
the smaller pieces of a GMC (like the lumps we see in Perseus) clear
away their gas relatively quickly, but that their larger-scale GMCs are
not completely destroyed by this process. The small regions therefore
have lifetimes of a few Myr, but they also are much denser and thus
have shorter crossing / free-fall times. For example, if the Orion
Nebula cluster were smeared out into gas, its current stellar mass
(4600 M�) and surface density (Σ = 0.1 g cm−2) suggest a crossing
time of 0.7 Myr.

Given that the cluster has almost certainly lost some mass and
spread out to somewhat lower surface density since it dispersed its
gas, the true crossing time of the parent cloud was almost certainly
shorter. This suggests an age of several crossing times for the ONC,
but given the uncertainties in the true age spread of several crossing
times. However, this is an extremely uncertain and controversial
subject, and other authors have argued for shorter lifetimes on these
smaller scales.

8.3.3 Star Formation Lag Time

A third important observable timescale is the time between GMC
formation and the onset of star formation, defined as the lag time.
We can estimate the lag time either statistically or geometrically.
Statistically, we can do this using a technique much like what we
did for the total lifetime in the LMC: compare the number of starless
GMCs to the number with stars.

For the LMC, if we accept the Kawamura et al. (2009) age se-
quence, the quiescent phase is 7 Myr. However, there may be star
formation for some time before H ii regions detectable at extragalactic
distances begin to appear, or there may be clouds where H ii regions
appear and then go off, leading a cloud without a visible cluster or
H ii region, but still actively star-forming. This is what Goldbaum
et al. (2011) suggest.

In the solar neighborhood, within 1 kpc of the Sun, the ratio of
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clouds with star formation to clouds without is between 7 : 1 and
14 : 1, depending on the level of evidence on demands for star
formation activity. If we take the time associated with star formation
for these clouds to be ∼ 2 − 3 Myr, this suggests a lag time less
than a few tenths of a Myr in these high-density knots. Since this
is comparable to or smaller than the crossing time, this suggests
that these regions must begin forming stars while the are still in the
process of forming.

Geometric arguments provide similar conclusions. The way ge-
ometric arguments work is to look at a spiral galaxy and locate the
spiral shock in H i or CO. Generally the some tracer of star formation,
e.g. Hα emission or 24 µm IR emission, will appear at some distance
behind the spiral arm. If one can measure the pattern speed of the
spiral arm, then the physical distance between the spiral shock and
the onset of star formation, as indicated by the tracer of choice, can
be identified with a timescale. In effect, one wants to know over what
angle the green contours (tracing H i) should be rotated so that those
arms peak at the same place as the 24 µm map.

2876 TAMBURRO ET AL. Vol. 136

Figure 2. The 24 µm band image is plotted in color scale for the galaxies NGC 5194 (left) and NGC 2841 (right); the respective H i emission map is overlayed with
green contours.

χ2 is minimized by the maximization of

ccx,y(ℓ) =
∑

k

[xk yk−ℓ] , (6)

which is defined as the CC coefficient. Here we used the
normalized CC

ccx,y(ℓ) =
∑

k[(xk − x̄) (yk−ℓ − ȳ)]
√∑

k(xk − x̄)2
∑

k(yk − ȳ)2
, (7)

where x̄ and ȳ are the mean values of x and y, respectively.
Here, the slow, direct definition has been used and not the fast
Fourier transform method. The vectors are wrapped around to
ensure the completeness of the comparison. With this definition,
the CC coefficient would have a maximum value of unity for
identical patterns, while for highly dissimilar patterns it would
be much less than 1. We apply the definition in Equation (7)
using the substitutions of Equation (5) to compute the azimuthal
CC coefficient cc(ℓ) of the H i and the 24 µm images. The best
match between the H i and the 24 µm signals is realized at
a value ℓmax such that cc(ℓmax) has its peak value. Since the
expected offsets are small (only a few degrees) we search the
local maximum around ℓ ≃ 0. The method is illustrated in
Figure 3, which shows that cc(ℓ) has several peaks, as expected
due to the self-similarity of the spiral pattern.

We consider a range that encompasses the maximum of the
cc(ℓ) profile, i.e., the central ∼100–150 data points around ℓmax.
This number, depending on the angular size of the ring, is
dictated by the azimuthal spread of the spiral arms and the
number of substructures (e.g., dense gas clouds, star clusters,
etc.) per unit area. This corresponds, for example, to a width in
ℓ of a few tens of degrees at small radii (∼ 1′), depending on
the distance of the object, and a range in width of ℓ decreasing
linearly with the radius. We interpolate cc(ℓ) around ℓmax with
a fourth-degree polynomial using the following approximation:
cc(ℓ) ≃ p4(ℓ) =

∑4
n=0 an ℓn and calculate numerically (using

the Python10 package scipy.optimize) the peak value at
ℓmax, p4(ℓmax). By repeating the procedure for all radii, the
angular offset H i %→ 24 µm results in ∆φ(r) = −ℓmax(r).

10 http://www.python.org

The direction or equivalently the sign of the lag ℓmax between
two generic vectors x and y depends on the order of x and y
in the definition of the CC coefficient. Note that ccx,y(ℓ) in
Equation (6) is not commutative for interchange of x and y,
being ccy,x(ℓ) = ccx,y(−ℓ). For ℓmax = 0 the two patterns best
match at zero azimuthal phase shift. The error bars for δℓmax(r)
have been evaluated through a Monte Carlo approach, adding
normally distributed noise and assuming the expectation values
of ℓmax and δℓmax as the mean value and the standard deviation,
respectively, after repeating the determination N = 100 times.

Our analysis is limited to the radial range between low S/N
regions at the galaxy centers and their outer edges. In the H i
emission maps the S/N is low near the galaxy center, where
the H i is converted to molecular H2, whereas for the 24 µm
band the emission map has low S/N near R25 (and in most cases
already at ∼0.8 R25). Regions with S/N < 3 in either the H i or
24 µm images have been clipped. We also ignore those points
ℓmax with a coefficient cc(ℓmax) lower than a threshold cc ≃ 0.2.
We further neglect any azimuthal ring containing less than a
few hundred points, which occurs near the image center and
near R25. The resulting values ∆φ(r) are shown in Figure 4.

4.3. Disk Exponential Scale Length

We also determine the disk exponential scale length Rs for
our sample using the galfit11 algorithm (Peng et al. 2002). In
particular, we fit an exponential disk profile and a de Vaucouleurs
profile to either the IRAC 3.6 µm or to the 2MASS H band
image. As galfit underestimates the error on Rs (as recognized
by the author of the algorithm), typically δRs/Rs < 1%, we
therefore also use the IRAF task ellipse (Jedrzejewski 1987)
to derive the radial surface brightness profile and fit Rs. After
testing the procedure on a few objects, we note only small
differences (of the order of the error bars in Table 1) when
deriving Rs from the H band and the 3.6 µm band.

5. RESULTS
5.1. Angular Offset

With the angular offset ∆φ(r) ≡ ⟨φ24 µm − φH i⟩(r), where
φ increases in the direction of rotation, and the rotation curve

11 Found at URL: http://zwicky.as.arizona.edu/∼cyp/work/galfit/galfit.html

Figure 8.9: The galaxies NGC 5194

(left) and NGC 2841 (right), imaged
in H i from THINGS and 24 µm from
Spitzer (Tamburro et al., 2008).

Performing this exercise with 24µm emission indicates lag timescales
of 1− 3 Myr Tamburro et al. (2008). Performing it with Hα as the
tracer gives tlag ∼ 5 Myr Egusa et al. (2004).The difference is probably
because the Hα better traces the bulk of the star formation, what 24

µm traces the earliest phase, when the stars are still embedded in
their parent clouds. The latter is therefore probably a better estimate
of the lag time. Since this is again comparable to or smaller than the
molecular cloud crossing / free-fall timescale, we again conclude the
GMCs must start forming stars while they are still being assembled.



Problem Set 2

1. The Bonnor-Ebert Sphere.
Here we will investigate the properties of hydrostatic spheres of
gas supported by thermal pressure. These are reasonable models
for thermally-supported molecular cloud cores. Consider an
isothermal, spherically-symmetric cloud of gas with mass M
and sound speed cs, confined by some external pressure Ps on its
surface.

(a) For the moment, assume that the gas density inside the sphere
is uniform. Use the virial theorem to derive a relationship be-
tween Ps and the cloud radius R. Show that there is a maximum
surface pressure Ps,max for which virial equilibrium is possible,
and derive its value.

(b) Now we will compute the true density structure. Consider
first the equation of hydrostatic balance,

−1
ρ

d
dr

P =
d
dr

φ,

where P = ρc2
s is the pressure and φ is the gravitational poten-

tial. Let ρc be the density at r = 0, and choose a gauge such that
φ = 0 at r = 0. Integrate the equation of hydrostatic balance to
obtain an expression relating ρ, ρc, and φ.

(c) Now consider the Poisson equation for the potential,

1
r2

d
dr

(
r2 dφ

dr

)
= 4πGρ.

Use your result from the previous part to eliminate ρ, and
define ψ ≡ φ/c2

s . Show that the resulting equation can be non-
dimensionalized to give the isothermal Lane-Emden equation:

1
ξ2

d
dξ

(
ξ2 dψ

dξ

)
= e−ψ.

where ξ = r/r0. What value of r0 is required to obtain this
equation?
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(d) Numerically integrate the isothermal Lane-Emden equation
subject to the boundary conditions ψ = dψ/dξ = 0 at ξ = 0;
the first of these conditions follows from the definition of ψ, and
the second is required for the solution to be non-singular. From
your numerical solution, plot both ψ and the density contrast
ρ/ρc = e−ψ versus ξ.

(e) The total mass enclosed out to a radius R is

M = 4π
∫ R

0
ρr2 dr.

Show that this is equivalent to

M =
c4

s√
4πG3Ps

(
e−ψ/2ξ2 dψ

dξ

)

ξs

,

where

ξs ≡ R
r0

ρs ≡
(
e−ψ

)
ξ=ξs

Ps ≡ ρsc2
s .

Hint: to evaluate the integral, it is helpful to use the isothermal
Lane-Emden equation to substitute.

(f) Plot the dimensionless mass m = M/(c4
s /
√

G3Ps) versus
the dimensionless density contrast ρc/ρs. You will see that m
reaches a finite maximum value mmax at a particular value of
ρc/ρs. Numerically determine mmax, along with the density
contrast ρc/ρs at which it occurs.

(g) The existence of a finite maximum m implies that, for a given
dimensional mass M, there is a maximum surface pressure Ps

at which a cloud of that mass can be in hydrostatic equilibrium.
Solve for this maximum, and compare your result to the result
you obtained in part (a).

(h) Conversely, for a given surface pressure Ps and sound speed
cs there exists a maximum mass at which the cloud can be in
hydrostatic equilibrium, called the Bonnor-Ebert mass MBE.
Obtain an expression for MBE in terms of Ps and cs. In a typical
low-mass star-forming region, the surface pressure on a core
might be Ps/kB = 3× 105 K cm−3. Compute this mass for a
core with a temperature of 10 K, assuming the standard mean
molecular weight µ = 3.9× 10−24 g.

2. Driving Turbulence with Protostellar Outflows.
Consider a collapsing protostellar core that delivers mass to an
accretion disk at its center at a constant rate Ṁd. A fraction f of
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the mass that reaches the disk is ejected into an outflow, and the
remainder goes onto a protostar at the center of the disk. The
material ejected into the outflow is launched at a velocity equal
to the escape speed from the stellar surface. The protostar has a
constant radius R∗ as it grows.

(a) Compute the momentum per unit stellar mass ejected by
the outflow in the process of forming a star of final mass M∗.
Evaluate this numerically for f = 0.1, M∗ = 0.5 M�. and R∗ = 3
R�.

(b) The material ejected into the outflow will shock and radiate
energy as it interacts with the surrounding gas, so on large
scales the outflow will conserve momentum rather than energy.
The terminal velocity of the outflow material will be roughly
the turbulent velocity dispersion σ in the ambient cloud. If
this cloud is forming a cluster of stars, all of mass M∗, with a
constant star formation rate Ṁcluster, compute the rate at which
outflows inject kinetic energy into the cloud.

(c) Suppose the cloud obeys Larson’s relations, so its velocity
dispersion, mass M, and size L are related by σ = σ1(L/pc)0.5

and M = M1(L/pc)2, where σ1 ≈ 1 km s−1 and M1 ≈ 100
M� are the velocity dispersion and mass of a 1 pc-sized cloud.
Assuming the turbulence in the cloud decays exponentially on
a timescale tcr = L/σ, what star formation rate is required for
energy injected by outflows to balance the energy lost via the
decay of turbulence? Evaluate this numerically for L = 1, 10 and
100 pc.

(d) If stars do form at the rate required to maintain the turbulence,
what fraction of the cloud mass must be converted into stars per
cloud free-fall time? Assume the cloud density is ρ = M/L3.
Again, evaluate numerically for L = 1, 10 and 100 pc. Are these
numbers reasonable? Conversely, for what size clouds, if any,
is it reasonable to neglect the energy injected by protostellar
outflows?

3. Magnetic Support of Clouds.
Consider a spherical cloud of gas of initial mass M, radius R, and
velocity dispersion σ, threaded by a magnetic field of strength B.
In class we showed that there exists a critical magnetic flux MΦ

such that, if the cloud’s mass M < MΦ, the cloud is unable to
collapse.

(a) Show that the the cloud’s Alfvén Mach numberMA depends
only on its virial ratio αvir and on µΦ ≡ M/MΦ alone. Do not
worry about constants of order unity.
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(b) Your result from the previous part should demonstrate that, if
any two of the dimensionless quantities µΦ, αvir, andMA are
of order unity, then the third quantity must be as well. Give
an intuitive explanation of this result in terms of the ratios of
energies (or energy densities) in the cloud.

(c) Magnetized turbulence naturally produces Alfvén Mach
numbersMA ∼ 1. Using this fact plus your responses to the
previous parts, explain why this makes it difficult to determine
observationally whether clouds are supported by turbulence or
magnetic fields.



9
The Star Formation Rate at Galactic Scales: Observa-
tions

Suggested background reading:

• Kennicutt, R. C., & Evans, N. J. 2012,
ARA&A, 50, 531, sections 5− 6

Suggested literature:

• Bigiel et al., 2010, ApJ, 709, 191

• Leroy et al., 2013, ApJ, 146, 19

In the previous chapter we discussed observations of the bulk prop-
erties of giant molecular clouds. Now we will discuss the correlation
of gas with star formation, a topic known loosely as star formation
“laws". This chapter will focus on the observational situation, and
the following one will focus on theoretical models that attempt to
make sense of the observations. This is an extremely active area of
research, and much of the available data is only a few years old. Most
of the models are of similarly recent vintage. The central questions
with which all of these models and data are concerned are: what
determines the rate at which a galaxy transforms its gas content into
stars? What determines where in the galaxy, both in terms of location
and in terms of the physical state of the ISM, this transformation will
take place? What physical mechanisms regulate this transformation?

9.1 The Star Formation Rate Integrated Over Whole Galaxies

9.1.1 Methodology

Research into the star formation “law" was really kicked off by the
work of Robert Kennicutt, who wrote a groundbreaking paper in
1998 (Kennicutt, 1998) collecting data on the gas content and star for-
mation of a large number of disk and starburst galaxies in the local
Universe. This today one of the most cited papers in astrophysics,
and the relationship that Kennicutt discovered is often called the
Kennicutt Law in his honor. (It is also sometimes referred to as the
Schmidt Law, after the paper Schmidt (1959), which introduced the
conjecture that there iss a scaling between gas density and star forma-
tion rate.) Before diving into this, though, let’s pause to discuss the
methodology.

We are interested in the correlation between neutral gas and

http://adsabs.harvard.edu/abs/2012ARA%26A..50..531K
http://adsabs.harvard.edu/abs/2012ARA%26A..50..531K
http://adsabs.harvard.edu/abs/2010AJ....140.1194B
http://adsabs.harvard.edu/abs/2013AJ....146...19L
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star formation averaged over an entire galaxy. To obtain informa-
tion about the gas content, we need means of tracing the molecular
gas and the neutral hydrogen. For neutral hydrogen, the standard
technique is to measure the flux in the 21 cm line, which can be trans-
lated more or less directly into a hydrogen mass because the line is
optically thin. There are a few caveats with this conversion, mostly
involving the possibility of the line becoming optically thick in some
regions, but these are unlikely to make more then a tens of percent
difference on galactic scales. The main problem is that the line is
both weak and at a very low frequency, so in practice it can only be
observed in the local Universe. There are at present no detections of
21 cm emission at high redshift.

The molecular content requires a proxy, and in large surveys this
is almost always the J = 1 → 0 or J = 2 → 1 line of CO. This is
then converted to a total mass using the “X-factor" that we discussed
in the previous class. This is subject to non-trivial uncertainties. As
discussed in that class, the X factor depends on the volume density,
temperature, and virial ratio of the molecular gas, albeit not tremen-
dously strongly. In the Milky Way and in some nearby galaxies we
have cross-checks against other methods like gamma rays and dust
emission, and we’re starting to get dust cross-checks at high redshift,
but there is still significant uncertainty.

The star formation rate also requires a proxy. Depending on the
survey, this can be one of several things: Hα emission for nearby
galaxies with relatively modest levels of dust obscuration, FUV
continuum for either nearby or high redshift galaxies with fairly
modest dust obscuration, and infrared emission for very dusty
galaxies. The best cases combine multiple proxies for star formation
to capture both the light that is and is not reprocessed by dust.

A fourth ingredient sometimes included in these studies is a
measurement of the rotation rate of the galaxy. This can be obtained
from a map in H i or CO that is even modestly resolved, since the
difference in Doppler shift of the line across the galaxy provides a
direct measurement. One must of course choose a point at which to
measure the rotation rate and, what is usually the more interesting
parameter, the galactic rotation period, and there is some uncertainty
in this choice. The convention is to use the “outer edge of the star-
forming disk", where that definition is exactly as nebulous and
author-dependent as it sounds.

9.1.2 Nearby Galaxies

So what is the outcome of these studies? Not surprisingly, if one
simply plots something like star formation rate against total gas
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mass, there is a strong correlation (Figure 9.1). This is mostly a
matter of “the bigger they are, the bigger they are": galaxies that
are larger overall tend to have more star formation and more gas
content. Somewhat more interesting is the case where the galaxy
is at least marginally resolved, and thus we can normalize out the
projected area. In this case we can measure the relationship between
gas mass per unit area, Σgas, and star formation rate per unit area,
ΣSFR. Kennicutt (1998) was the first to assemble a large sample of
such measurements, and he found that there was a strong correlation
over a wide range in gas surface density. The data for local galaxies
were reasonably well fit by a correlation
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Figure 11
(a) Relationship between the disk-averaged surface densities of star formation and gas (atomic and molecular) for different classes of
star-forming galaxies. Each point represents an individual galaxy, with the SFRs and gas masses normalized to the radius of the main
star-forming disk. Colors are used similarly as in Figure 9: Purple points represent normal spiral and irregular galaxies, red points
infrared-selected starburst galaxies [mostly luminous and ultraluminous infrared galaxies (LIRGs and ULIRGs, respectively)], and dark
yellow points denote circumnuclear starbursts with star-formation rates (SFRs) measured from Paα measurements. The Milky Way
(black square) fits well on the main trend seen for other nearby normal galaxies. Magenta crosses represent nearby low-surface-
brightness galaxies, as described in the text. Open blue circles denote low-mass irregular and starburst galaxies with estimated metal
(oxygen) abundances less than 0.3 Z⊙, indicating a systematic deviation from the main relation. For this plot, a constant X(CO) factor
was applied to all galaxies. The light blue line shows a fiducial relation with slope N = 1.4 (not intended as a fit to these data). The
sample of galaxies has been enlarged from that studied in Kennicutt (1998b), with many improved measurements as described in the
text. (b) Corresponding relation between the total (absolute) SFR and the mass of dense molecular gas as traced in HCN. The dashed
gray line is a linear fit, which contrasts with the nonlinear fit in panel a. Figure adapted from Gao & Solomon (2004). Reproduced by
permission of the AAS.

galaxies (Section 2.4), the slope of the overall Schmidt law would increase from 1.4–1.5 to 1.7–1.9
(Narayanan et al. 2011).

Usually, the Schmidt law is parameterized in terms of the total (atomic plus molecular) gas
surface density, but one can also explore the dependences of the disk-averaged SFR densities
on the mean atomic and molecular surface densities individually. Among normal galaxies with
relatively low mean surface densities, the SFR density is not particularly well correlated with
either component, though variations in X(CO) could partly explain the poor correlation between
SFR and derived H2 densities (e.g., Kennicutt 1998b). In starburst galaxies with high gas surface
densities, however, the gas is overwhelmingly molecular, and a strong nonlinear Schmidt law is
observed (Figure 11a).

A similar nonlinear dependence is observed for total SFR (as opposed to SFR surface den-
sity) versus total molecular gas mass (e.g., Solomon & Sage 1988, Gao & Solomon 2004). This
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Figure 9.1: The observed collection
between gas surface density Σgas and
star formation surface density ΣSFR,
integrating over whole galaxies. Galaxy
classes are as indicated in the legend.
Taken from Kennicutt & Evans (2012).

ΣSFR ∝ Σ1.4
gas. (9.1)

There are a few caveats to this. This fit uses the same value of XCO

for all galaxies, but there is excellent evidence that XCO is lower for
starbursts and higher for metal-poor galaxies. Correcting for this
effect would tend to move the metal-poor galaxies that lie above
the relation back toward it (by increasing their inferred Σgas), while
steepening the relation overall (by moving the galaxies with the
highest star formation rates systematically to lower Σgas). Correcting
for this effect increases the slope from ∼ 1.4 to something more like
∼ 1.7− 1.8 (e.g., Narayanan et al., 2012), but with a significantly larger
uncertainty. For extreme but not utterly implausible scalings of XCO

with star formation rate or gas content, one can get slopes as steep as
∼ 2.
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of the gas, with N \ 1.5 expected for a constant mean scale
height, a reasonable approximation for the galaxies and
starbursts considered here. Although this is hardly a robust
derivation, it does show that a global Schmidt law with
N D 1.5 is physically plausible.

In a variant of this argument, andSilk (1997) Elmegreen
have suggested a generic form of the star formation(1997)

law, in which the SFR surface density scales with the ratio
of the gas density to the local dynamical timescale :

&

SFR
P &

gas
q

dyn

P &

gas
)

gas
, (6)

where refers in this case to the local orbital timescale ofq

dynthe disk, and ) is the angular rotation speed. Models of this
general class have been studied previously by Wyse (1986)
and & Silk though with di†erent scalings ofWyse (1989),
the gas density and separate treatment of the atomic and
molecular gas. might be expected to hold if, forEquation (6)
example, star formation triggering by spiral arms or bars
were important, in which case the SFR would scale with
orbital frequency. To test this idea, we compiled rotation
velocities for the galaxies in Tables and and used them1 2
to derive a characteristic value of for each disk. Theq

dyntimescale was deÐned arbitrarily as 2nR/V (R) \ 2n/q

dyn
)(R), the orbit time at the outer radius R of the star-forming
region. The mean orbit time in the star-forming disk is
smaller than deÐned in this way, by a factor of 1È2,q

dyndepending on the form of the rotation curve and the radial
distribution of gas in the disk. We chose to deÐne and )q

dynat the outer edge of the disk to avoid these complications.
Tables and list the adopted values, in units of 108 yr.1 2
Face-on galaxies or those with poorly determined
(rotational) velocity Ðelds were excluded from the analysis.

shows the relationship between the observedFigure 7
SFR density and for our sample. The solid line is&

gas
/q

dyn

FIG. 7.ÈRelation between the SFR for the normal disk and starburst
samples and the ratio of the gas density to the disk orbital timescale, as
described in the text. The symbols are the same as in The line is aFig. 6.
median Ðt to the normal disk sample, with the slope Ðxed at unity as
predicted by equation (7).

not a Ðt but simply a line of slope unity that bisects the
relation for normal disks. This alternate prescription for the
star formation law provides a surprisingly good Ðt to the
data, both in terms of the slope and the relatively small
scatter about the mean relation. When compared over the
entire density range, the observed law is slightly shallower
than predicted by (slope D0.9 instead of 1) ; onequation (7)
the other hand, the Ðt to the normal disk sample is as tight
as a Schmidt law. The zero point of the line corresponds to
a SFR of 21% of the gas mass per orbit at the outer edge of
the disk. Since the average orbit time within the star-
forming disk is about half that at the disk edge, this implies
a simple parametrization of the local star formation law,

&

SFR
^ 0.017&

gas
)

gas
; (7)

in other words, the SFR is D10% of the available gas mass
per orbit.

From a strictly empirical point of view, the Schmidt law
in and the kinematical law in o†erequation (4) equation (7)
two equally valid parametrizations for the global SFRs in
galaxies, and either can be employed as a recipe in models
and numerical simulations. It is unclear whether the kine-
matic model can Ðt the radial distribution of star formation
as well as a Schmidt law, and we plan to explore this in
Paper II.

The two parametrizations also o†er two distinct interpre-
tations of the observation that the star formation efficiency
in central starbursts is much higher than that found in
quiescent star-forming disks (e.g., et al.Young 1986 ;

& Sage et al. In the SchmidtSolomon 1988 ; Sanders 1991).
law picture, the higher efficiencies in starbursts are simply a
consequence of their much higher gas densities. For a given
index N, the SFR per unit gas mass will scale as and&

gas
(N~1)

hence for the law observed here roughly as The central&

gas
0.4.

starbursts have characteristic gas densities that are 100È
10,000 times higher than the average for normal disks ;
hence, we would expect the global star formation effi-
ciencies to be 6È40 times higher, as observed. In the alterna-
tive picture in which the SFR is presumed to scale with

the high SFRs and star formation efficiencies in&

gas
/q

dyn
,

starburst galaxies simply reÑect the smaller physical scales
and shorter dynamical timescales in these compact central
regions. It is difficult to di†erentiate between these alterna-
tives with disk-averaged measurements alone, and since the
global star formation law is mainly useful as an empirical
parametrization, the distinction may not be important.
Deeper insight into the physical nature of the star formation
law requires spatially resolved data for individual disks, of
the kind that will be analyzed in Paper II.
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grateful to the anonymous referee for several comments that
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Figure 9.2: The observed collection
between gas surface density divided
by galaxy orbital period Σgas/τdyn and
star formation surface density ΣSFR,
integrating over whole galaxies. Galaxy
classes are as indicated in the legend.
Taken from Kennicutt (1998).

While this is one way of plotting the data, another way is to make
use of the galactic rotation curve. The star formation rate per unit
area has units of mass per unit time per unit area, so it is natural to
compare this to the gas mass per unit area divided by the galactic
orbital period, which has the same units. Physically, this relationship
describes what fraction of the gas mass is transformed into stars per
orbital period. Making this plot yields a relationship that actually fits
the data every bit as well as the Σgas − ΣSFR plot (Figure 9.2).

9.1.3 High-Redshift Galaxies

Since Kennicutt’s initial collection, a number of other authors have
added much more data to this plot, principally but not exclusively
from the high redshift Universe. The expanded data set suggests
that there isn’t a single relationship between Σgas and ΣSFR, but that
instead “normal galaxies" and “starbursts" occupy different loci on
the Σgas − ΣSFR plane (Figure 9.3).

This result should be taken with a considerable grain of salt. In
part, the bimodality is exaggerated by the use of difference XCO
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factors for the two sequences, which spreads them further apart. If
one uses a single XCO, the bimodality is far less clear. As mentioned
above, there are excellent reasons to think that XCO is not in fact
constant, but conversely there are no good reasons to think that it
is bimodal as opposed to changing continuously. A second issue is
one of selection: the samples that occupy the two loci are selected in
different ways, and this may well lead to an artificial bimodality that
is not present in the real galaxy population.
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Figure 2. SFR density as a function of the gas (atomic and molecular) surface
density. Red filled circles and triangles are the BzKs (D10; filled) and z ∼ 0.5
disks (F. Salmi et al. 2010, in preparation), brown crosses are z = 1–2.3 normal
galaxies (Tacconi et al. 2010). The empty squares are SMGs: Bouché et al.
(2007; blue) and Bothwell et al. (2009; light green). Crosses and filled triangles
are (U)LIRGs and spiral galaxies from the sample of K98. The shaded regions
are THINGS spirals from Bigiel et al. (2008). The lower solid line is a fit to
local spirals and z = 1.5 BzK galaxies (Equation (2), slope of 1.42), and the
upper dotted line is the same relation shifted up by 0.9 dex to fit local (U)LIRGs
and SMGs. SFRs are derived from IR luminosities for the case of a Chabrier
(2003) IMF.
(A color version of this figure is available in the online journal.)

measured at a higher signal-to-noise ratio. Again, we find that
the populations are split in this diagram and are not well fit by a
single sequence. Our fit to the local spirals and the BzK galaxies
is virtually identical to the original K98 relation:

log ΣSFR/[M⊙ yr−1 kpc−2]

= 1.42 × log Σgas/[M⊙ pc−2] − 3.83. (2)

The slope of 1.42 is slightly larger than that of Equation (1),
with an uncertainty of 0.05. The scatter along the relation is
0.33 dex. Local (U)LIRG and SMGs/QSOs are consistent with
a relation having a similar slope and normalization higher by
0.9 dex, and a scatter of 0.39 dex.

Despite their high SFR ! 100 M⊙ yr−1 and ΣSFR ! 1 M⊙
yr−1 kpc−2, BzK galaxies are not starbursts, as their SFR can
be sustained over timescales comparable to those of local spiral
disks. On the other hand, M82 and the nucleus of NGC 253 are
prototypical starbursts, although they only reach an SFR of a
few M⊙ yr−1. Following Figures 1 and 2, and given the ∼1 dex
displacement of the disk and starburst sequences, a starburst
may be quantitatively defined as a galaxy with LIR (or ΣSFR)
exceeding the value derived from Equation (1) (or Equation (2))
by more than 0.5 dex.

The situation changes substantially when introducing the dy-
namical timescale (τdyn) into the picture (Silk 1997; Elmegreen
2002; Krumholz et al. 2009; Kennicutt 1998). In Figure 3,
we compare Σgas/τdyn to ΣSFR. Measurements for spirals and
(U)LIRGs are from K98, where τdyn is defined to be the rota-

Figure 3. Same as Figure 2, but with the gas surface densities divided by the
dynamical time. The best-fitting relation is given in Equation (3) and has a slope
of 1.14.
(A color version of this figure is available in the online journal.)

tion timescale at the galaxies’ outer radius (although Krumholz
et al. 2009 use the free-fall time). For the near-IR/optically se-
lected z = 0.5–2.3 galaxies, we evaluate similar quantities at the
half-light radius. Extrapolating the measurements to the outer
radius would not affect our results substantially. Quite strikingly,
the location of normal high-z galaxies is hardly distinguishable
from that of local (U)LIRGs and SMGs. All observations are
well described by the following relation:

log ΣSFR/[M⊙ yr−1 kpc−2]

= 1.14 × log Σgas/τdyn/[M⊙ yr−1 kpc−2] − 0.62, (3)

with a slope error of 0.03 and a scatter of 0.44 dex. The
remarkable difference with respect to Figures 1 and 2 is due
to the fact that the normal high-z disk galaxies have much
longer dynamical timescales (given their large sizes) than local
(U)LIRGs.

We can test if this holds also for integrated quantities by
dividing the gas masses in Figure 1 by the average (outer radius)
dynamical timescale in each population. Spirals and (U)LIRGs
(whose τdyn does not depend on luminosity) have average values
of τdyn = 370 Myr and τdyn = 45 Myr, respectively (K98). This
can be compared to τdyn = 33 Myr for SMGs (Tacconi et al.
2006; Bouché et al. 2007). For the QSOs, we use the SMG value.
Assuming a flat rotation curve for BzKs, we get an average
τdyn = 330 Myr at the outer radius, about three times longer
than at the half-light radius, given that for an exponential profile
90% of the mass is enclosed within ∼3 half-light radii. A similar
value is found for our z = 0.5 disk galaxies and the z = 1–2.3
objects from Tacconi et al. (2010). Despite this simple approach,
Figure 4 shows a remarkably tight trend:

log SFR/[M⊙ yr−1] = 1.42×log(MH2/τdyn)/[M⊙ yr−1]−0.86,
(4)

with an error in slope of 0.05 and a scatter of 0.25 dex. Figure 4
suggests that roughly 10%–50% of the gas is consumed during
each outer disk rotation for local spirals, and some 30%–100%

Figure 9.3: Kennicutt-Schmidt rela-
tion including an expanded high-
redshift sample, with two proposed
sequences (“disks" and “starbursts")
indicated Daddi et al. (2010). Points are
integrated-galaxy measurements, while
contours are spatially-resolved regions
(see below).

Nonetheless, the point remains that it is far from clear that there is
a single, uniform relationship between Σgas and ΣSFR. On the other
hand, the Σgas/trob versus ΣSFR relationship appears to persist even
in the expanded data set (Figure 9.4).
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Figure 2. SFR density as a function of the gas (atomic and molecular) surface
density. Red filled circles and triangles are the BzKs (D10; filled) and z ∼ 0.5
disks (F. Salmi et al. 2010, in preparation), brown crosses are z = 1–2.3 normal
galaxies (Tacconi et al. 2010). The empty squares are SMGs: Bouché et al.
(2007; blue) and Bothwell et al. (2009; light green). Crosses and filled triangles
are (U)LIRGs and spiral galaxies from the sample of K98. The shaded regions
are THINGS spirals from Bigiel et al. (2008). The lower solid line is a fit to
local spirals and z = 1.5 BzK galaxies (Equation (2), slope of 1.42), and the
upper dotted line is the same relation shifted up by 0.9 dex to fit local (U)LIRGs
and SMGs. SFRs are derived from IR luminosities for the case of a Chabrier
(2003) IMF.
(A color version of this figure is available in the online journal.)

measured at a higher signal-to-noise ratio. Again, we find that
the populations are split in this diagram and are not well fit by a
single sequence. Our fit to the local spirals and the BzK galaxies
is virtually identical to the original K98 relation:

log ΣSFR/[M⊙ yr−1 kpc−2]

= 1.42 × log Σgas/[M⊙ pc−2] − 3.83. (2)

The slope of 1.42 is slightly larger than that of Equation (1),
with an uncertainty of 0.05. The scatter along the relation is
0.33 dex. Local (U)LIRG and SMGs/QSOs are consistent with
a relation having a similar slope and normalization higher by
0.9 dex, and a scatter of 0.39 dex.

Despite their high SFR ! 100 M⊙ yr−1 and ΣSFR ! 1 M⊙
yr−1 kpc−2, BzK galaxies are not starbursts, as their SFR can
be sustained over timescales comparable to those of local spiral
disks. On the other hand, M82 and the nucleus of NGC 253 are
prototypical starbursts, although they only reach an SFR of a
few M⊙ yr−1. Following Figures 1 and 2, and given the ∼1 dex
displacement of the disk and starburst sequences, a starburst
may be quantitatively defined as a galaxy with LIR (or ΣSFR)
exceeding the value derived from Equation (1) (or Equation (2))
by more than 0.5 dex.

The situation changes substantially when introducing the dy-
namical timescale (τdyn) into the picture (Silk 1997; Elmegreen
2002; Krumholz et al. 2009; Kennicutt 1998). In Figure 3,
we compare Σgas/τdyn to ΣSFR. Measurements for spirals and
(U)LIRGs are from K98, where τdyn is defined to be the rota-

Figure 3. Same as Figure 2, but with the gas surface densities divided by the
dynamical time. The best-fitting relation is given in Equation (3) and has a slope
of 1.14.
(A color version of this figure is available in the online journal.)

tion timescale at the galaxies’ outer radius (although Krumholz
et al. 2009 use the free-fall time). For the near-IR/optically se-
lected z = 0.5–2.3 galaxies, we evaluate similar quantities at the
half-light radius. Extrapolating the measurements to the outer
radius would not affect our results substantially. Quite strikingly,
the location of normal high-z galaxies is hardly distinguishable
from that of local (U)LIRGs and SMGs. All observations are
well described by the following relation:

log ΣSFR/[M⊙ yr−1 kpc−2]

= 1.14 × log Σgas/τdyn/[M⊙ yr−1 kpc−2] − 0.62, (3)

with a slope error of 0.03 and a scatter of 0.44 dex. The
remarkable difference with respect to Figures 1 and 2 is due
to the fact that the normal high-z disk galaxies have much
longer dynamical timescales (given their large sizes) than local
(U)LIRGs.

We can test if this holds also for integrated quantities by
dividing the gas masses in Figure 1 by the average (outer radius)
dynamical timescale in each population. Spirals and (U)LIRGs
(whose τdyn does not depend on luminosity) have average values
of τdyn = 370 Myr and τdyn = 45 Myr, respectively (K98). This
can be compared to τdyn = 33 Myr for SMGs (Tacconi et al.
2006; Bouché et al. 2007). For the QSOs, we use the SMG value.
Assuming a flat rotation curve for BzKs, we get an average
τdyn = 330 Myr at the outer radius, about three times longer
than at the half-light radius, given that for an exponential profile
90% of the mass is enclosed within ∼3 half-light radii. A similar
value is found for our z = 0.5 disk galaxies and the z = 1–2.3
objects from Tacconi et al. (2010). Despite this simple approach,
Figure 4 shows a remarkably tight trend:

log SFR/[M⊙ yr−1] = 1.42×log(MH2/τdyn)/[M⊙ yr−1]−0.86,
(4)

with an error in slope of 0.05 and a scatter of 0.25 dex. Figure 4
suggests that roughly 10%–50% of the gas is consumed during
each outer disk rotation for local spirals, and some 30%–100%

Figure 9.4: Kennicutt-Schmidt relation
including an expanded high-redshift
sample, now including orbital time
Daddi et al. (2010). Points are the same
as in Figure 9.3, except that points
for which the orbital time τdyn are
unavailable have been omitted.

9.1.4 Dwarfs and low surface brightness galaxies

A second area in which Kennicutt’s original sample has been greatly
expanded is in the study of dwarf galaxies. There were a few dwarfs
in Kennicutt’s original sample, but not that many, due to the diffi-
culty of measuring star formation rates in low luminosity systems.
Kennicutt’s original sample used star formation rates primarily based
on Hα and infrared, but these are difficult to use on dwarfs: the Hα

is faint and hard to pick out above the sky background due to the
low overall star formation rate, and the IR is faint because dwarfs
tend to have little dust and thus reprocess little of their starlight into
the IR. The situation improved greatly with the launch of GALEX in
2003, which allowed the study of dwarfs in the FUV. The FUV has the
advantage that, from space, the background is nearly zero, and thus
much lower levels of star formation activity can be detected much
more easily.

Another problem that does remain for dwarfs is that the CO to H2

conversion factor is almost certainly different than in spirals, and the
CO is often so faint as to be undetectable. This makes it impossible to
measure the molecular gas content of many dwarfs without using a
better proxy like dust. Only with the launch of Herschel has this been
possible with even a modest sample of dwarfs; prior to that, with the
exception of the SMC (which could be mapped in dust with IRAS
due to its large size on the sky). Nonetheless, the H i can certainly be
measured, and since the H i almost certainly dominates the total gas,
the relationship between total gas content and star formation could
also be measured.

When the data are plotted, the result is that dwarfs generally lie
below the linear extrapolation of the Kennicutt relationship when one
considers their total gas content (Figure 9.5).
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9.2 The Spatially-Resolved Star Formation Rate
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(FUV − NUV ) colors become redder above an H i mass of
1010 M⊙. On average the (FUV − NUV ) colors for the LSB
galaxies in this paper are not as red as those presented in Boissier
et al. (2008). The largest difference is for Malin 1, for which
Boissier et al. (2008) measured a color of 0.84 ± 0.10. In
contrast, we find a color of 0.24 ± 0.2. Our measurements of
the total NUV magnitude agree while our FUV flux is brighter
than that measured by Boissier et al. (2008). This difference is
due in part to the difference in the GALEX calibration between
the GR1 and GR3 data releases as well as differences in the
choice of aperture and the precise sky background level. As
most of the galaxies in Boissier et al. (2008) do not have
resolved H i maps, these were not included in our sample. While
there does appear to be some LSB galaxies with redder UV
colors, particularly at higher masses, this does not appear to be
universally true.

The (FUV − NUV ) colors of galaxies can be affected
by several factors including the recent star formation history,
the metallicity, and reddening due to dust. We have argued
in Section 3.2 that LSB galaxies likely have low amounts of
UV attenuation from dust and therefore, dust probably does
not affect the (FUV − NUV ) colors of our sample. There
is some disagreement among stellar population models about
the intrinsic (FUV − NUV ) colors of galaxies. For models
with a constant SFR, no dust, solar metallicity, and a Kroupa
et al. (1993) stellar IMF reaching to 100 M⊙, Boissier et al.
(2008) predict a color of (FUV − NUV ) ≈ 0.2 mag after
about 1 Gyr. Models with lower metallicities yield slightly
bluer colors. On the other hand, the models of Bruzual &
Charlot (2003) for a similar set of parameters predict a color
of (FUV −NUV ) ≈ 0.0 mag for ages greater than 1 Gyr. With
only a couple of exceptions, the (FUV − NUV ) colors of all
of our LSB galaxies are consistent to within the errors with the
Boissier et al. models and somewhat redder than that predicted
by Bruzual & Charlot. Given the errors on the (FUV − NUV )
color and the disagreement among models, we do not find any
strong evidence from the colors of the LSB galaxies for either
variable star formation histories or a nonstandard IMF. If this
had been the case, then we would be underestimating the SFRs in
the LSB galaxies using the standard conversion factor between
UV luminosity and SFR in Equation (3).

3.4. Gas Surface Densities

We have used the H i radial surface density profiles from van
der Hulst et al. (1993), de Blok et al. (1996), and Pickering
et al. (1997) to measure the average gas surface densities for
our sample of LSB galaxies within the same aperture used
to measure the total UV flux. In order to be consistent with
measurements from Kennicutt (1998a), we did not correct the
gas densities for helium or other heavy elements.

The total gas surface density should include both the atomic
and molecular gas. Only a few LSB galaxies have molecular
gas detected from radio observations of the CO lines while most
remain undetected (de Blok & van der Hulst 1998b; O’Neil
et al. 2000, 2003; Matthews & Gao 2001; O’Neil & Schinnerer
2004; Matthews et al. 2005; Das et al. 2006; Schombert
et al. 1990; Braine et al. 2000). The few detections and many
upper limits correspond to very low molecular fractions in the
range 1%–10% for most LSB galaxies, assuming a Galactic
CO to H2 conversion factor (O’Neil et al. 2003). Among the
galaxies with molecular gas detected, CO maps of the giant
LSB galaxies LSBC F568-06 and UGC 6614 show molecular
gas clearly offset from the nucleus and only detected at certain
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Figure 17. SFR surface density as a function of the total hydrogen gas surface
density. The colored symbols indicate the sample of 19 LSB galaxies from this
paper with SFRs measured from the UV with no correction for dust attenuation.
The gas surface densities are derived from the H i data from de Blok et al.
(1996) (green circles), Pickering et al. (1997) (red triangles), and van der Hulst
et al. (1993) (blue stars) and assume that the molecular fraction is negligible.
The black pluses indicate the sample of higher surface brightness galaxies from
Kennicutt (1998a) while the solid line is the power-law fit to these points with
exponent 1.4. The dotted lines indicate lines of constant star formation efficiency
assuming a star formation time scale of 108 yr. The LSB galaxies tend to lie
below the extrapolation of the power-law fit to the higher surface brightness
sample.
(A color version of this figure is available in the online journal.)

locations, indicating that what little molecular gas they do have
is irregularly distributed (Das et al. 2006).

One critical assumption that went into determining these low
molecular fractions is that the standard Galactic conversion fac-
tor between CO luminosity and H2 mass applies to LSB galaxies.
Since LSB galaxies have on average oxygen abundances below
the Solar value (Burkholder et al. 2001; McGaugh 1994), the
ratio of CO to H2 would be expected to be lower simply due
to the overall lower metallicity. On the other hand, observations
of individual molecular clouds in nearby low metallicity dwarf
galaxies are consistent with the standard Galactic CO-to-H2
conversion factor (Leroy et al. 2006; Bolatto et al. 2008). In ad-
dition, the low dust content in LSB galaxies would be expected
to lower the CO/H2 ratio because the dust can act as a catalyst
for the formation of CO as well as shielding the molecules from
potentially damaging UV radiation (Mihos et al. 1999). Despite
these uncertainties, we assumed for the purposes of this paper
that the gas mass in LSB galaxies is dominated by the atomic
gas.

3.5. The Star Formation Law

We plot the SFR surface density as a function of the gas
surface density in Figure 17. The green circles, red triangles,
and blue stars are the galaxies with H i data from de Blok
et al. (1996), Pickering et al. (1997), and van der Hulst et al.
(1993), respectively. For comparison, we also plot the sample
of spiral and starburst galaxies from Kennicutt (1998a) as the
black pluses. The solid line is the power-law fit to the high
surface brightness sample of the form of Equation (1). Kennicutt

Figure 9.5: Kennicutt-Schmidt relation
including an expanded sample of low
surface brightness galaxies Wyder
et al. (2009). The black points are the
original Kennicutt (1998) sample, while
the colored points are the low surface
brightness sample.

The previous section summarized the observational state of play as
far as single points per galaxy goes, but what about if we start to
resolve galaxies? Starting around 2006-7, instrumentation reached the
point where it became possible to make spatially resolved maps of
the gas and star formation in galaxies. For gas, the key development
was the advent of heterodyne receiver arrays, which greatly increased
mapping speed and made it possible to produce maps of the CO
in nearby galaxies at resolutions of ∼ 1 kpc or better in reasonable
amounts of observing time. For star formation, the key was the
development of space-based infrared telescopes, first Spitzer and then
Herschel, that could make images of the dust-reprocessed light from
a galactic disk. Armed with these new technologies, a number of
groups began to make maps of the relationship between gas and star
formation within the disks of nearby galaxies, starting at ∼ 1 kpc or
better scales and eventually going in some cases to ∼ 10 pc scales.

9.2.1 Relationship to Molecular Gas

One of the most striking results to emerge from these studies has
been the strikingly-good correlation between molecular gas and star
formation when both are measured at ∼ 0.5− 1 kpc scales (Figure
9.6). The correlation between molecular gas and star formation is
noticeably tighter than the galaxy-averaged correlation first explored
by Kennicutt. In nearby galaxies, at least in the inner disks where
CO is bright enough to be detectable, there appears to be a roughly
constant depletion time tdep = ΣH2 /ΣSFR ≈ 2 Gyr. There is consid-
erable debate about whether the depletion time is actually constant,
or whether it increases or decreases slightly with ΣH2 . This debate
mostly turns on technical questions of how to handle background
subtraction and correct for contamination, and on how to properly fit
a very noisy data set. Thus indices within a few tenths of 1.0 for ΣSFR

versus ΣH2 cannot be ruled out. Nonetheless, the correlation is clear
and striking.

Also striking is the extent to which this depletion time is insensitive
to any other properties of the galaxy. Varying the stellar surface den-
sity or the local orbital timescale, or the dust to gas ratio (once a
dust to gas-dependent XCO factor has been used) appears to have
no significant effect on the star formation rate per unit molecular
gas mass. Note that the lack of dependence on the orbital time scale
is in striking contrast to the results for whole galaxy star formation
rates, where plotting things in terms of surface density does not yield
a single, simple sequence, but plotting in terms of surface density
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The Astronomical Journal, 146:19 (33pp), 2013 August Leroy et al.

Figure 1. Star formation rate surface density, ΣSFR, estimated from Hα+24 µm emission, as a function of molecular gas surface density, Σmol, derived from CO (2–1)
emission for 30 nearby disk galaxies. The top left panel shows individual points (dark gray points show upper limits) with the running median and standard deviation
indicated by red points and error bars. The red points with error bars from the first panel appear in all four panels to allow easy comparison. Dotted lines indicated
fixed H2 depletion times; the number indicates log10 τDep in yr. The top right panel shows the density of the data in the top left panel. In the bottom panels we vary
the weighting used to derive data density. The bottom left panel gives equal weight to each galaxy. The bottom right panel gives equal weight to each galaxy and each
radial bin.

Figure 1 thus illustrates our main conclusions: a first order
simple linear correlation between ΣSFR and Σmol and real second-
order variations. It also illustrates the limitation of considering
only ΣSFR–Σmol parameter space to elicit these second-order
variations. Metallicity, dust-to-gas ratio, and position in a galaxy
all play key roles but are not encoded in this plot, leading to
double-valued ΣSFR at fixed Σmol in some regimes. We explore
these systematic variations in τmol

dep and motivate our explanations
throughout the rest of the paper.

3.2. Relationship for Different SFR and Molecular Gas Tracers

Figure 1 shows our best-estimate ΣSFR and Σmol computed
from fixed αCO. Many approaches exist to estimate each quantity
(see references in Leroy et al. 2011, L12), and the recent
literature includes many claims about the effect of physical
parameter estimation on the relation between ΣSFR and Σmol. In

this section, we explore the effects of varying our approach to
estimate ΣSFR and Σmol.

3.2.1. Choice of SFR Tracer

Figure 2 and the lower part of Table 3 report the results of
varying our approach to trace the SFR. We show ΣSFR estimated
from only Hα, with a fixed, typical AHα = 1 mag (top left),
along with results combining FUV, instead of Hα, with 24 µm
emission (top right). We also show the results of varying the
approach to the IR cirrus. Our best-estimate ΣSFR combines Hα
or FUV with 24 µm after correcting the 24 µm emission for
contamination by an IR cirrus following L12. We illustrate the
impact of this correction by plotting results for two limiting
cases of IR cirrus correction: no cirrus subtraction (bottom
left) and removing double our best cirrus estimate (bottom
right), which we consider a maximum reasonable correction.

9

Figure 9.6: Kennicutt-Schmidt relation
for ∼kpc-sized lines of sight through a
sample of nearby galaxies (Leroy et al.,
2013), computed with fixed CO-H2
conversion factor. The four panels show
points individual lines of sight (top
left), contours with equal weighting per
line of sight (top right), contours with
equal weighting per galaxy (bottom left)
and contours with equal weighting per
azimuthal ring (bottom right). Dotted
lines of slope unity are lines of constant
tdep = ΣSFR/Σmol, with the number
indicating the log of the depletion time
in yr. Gray horizontal dashed lines
mark the star formation rate sensitivity
limit.
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normalized by orbital time does.
How does this compare to the free-fall time in these clouds, which

is the natural times scale on which they evolve? We have no direct
access to the volume densities in these clouds, so we cannot answer
the question directly. However, Krumholz et al. (2012a) suggest a
simple ansatz to estimate free-fall times. The idea was to exploit the
fact that observed GMCs seem to have surface densities of ∼ 100
M� pc−2 in normal galaxies. They also have characteristic masses
comparable to the galactic Toomre mass,

MGMC =
σ4

G2Σtot
, (9.2)

where σ is the galactic velocity dispersion and Σtot is the total gas
surface density. From a total mass and a surface density, one can
compute a mean density and a corresponding free-fall time:

ρGMC =
3
√

π

4

G
√

Σ3
GMCΣtot

σ2 . (9.3)

This must break down once the mean density at the mid-plane of
the galaxy rises too high, as it must in some galaxies where the total
gas surface density is� 100 M� pc−2. To be precise, the mid-plane
pressure in a galactic disk can be written

P = ρσ2 =
π

2
φPGΣ2

tot, (9.4)

where φP is a constant of order unity that depends on the ratio of
gas to stellar mass. For a pure gas disk, in the diffuse matter class we
have shown that φP = 1, but realistic values in actual galaxy disks are
∼ 3. Combining these statements, we obtain

ρmp =
πφPGΣ2

tot
2σ2 . (9.5)

The simple approximation suggested by Krumholz et al. is just to use
the larger of ρGMC and ρmp. If one does so, then it becomes possible
to estimate tff from observable quantities. The result of this exercise
is that the observed depletion times seen in external galaxies are
generally consistent with εff ≈ 0.01, with a scatter of about a factor
of 3. The same is true if we put the whole-galaxy points on the plot,
although for them the uncertainties are considerably greater (Figure
9.7).

Finally, some important caveats are in order. First, this result is
limited to the inner parts of galaxies where there is significant CO
emission. In outer disks where there is little molecular gas and CO
is faint, molecular emission can be detected only by stacking entire
rings or focusing on local patches of strong emission, so the sort of
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Figure 9.7: Kennicutt-Schmidt relation
normalized by the estimated free-fall
time Krumholz (2014). Points plotted
include resolved pixels in nearby
galaxies (blue and green rasters),
unresolved galaxies at low (green) and
high (purple) redshift, and individual
clouds within the Milky Way (red).
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pixel-by-pixel unbiased analysis done for inner galaxies is not yet
possible. Second, this sample covers a very limited range of galaxy
properties, certainly compared to the high−z data. The pixel by pixel
analysis can only be done for a large sample of local galaxies, within
∼ 20 Mpc, and this volume does not contain any of the starbursts
that form the upper part of the sequences seen in the local Kennicutt
or high−z samples.

A third and final caveat has to do with scale-dependence. Depend-
ing on the scales over which one averages, the correlation between
molecular gas and star formation can be better or worse. Generally
speaking, as one does to smaller and smaller scales, the scatter in the
ΣH2 − ΣSFR correlation increases, and systematic biases start to appear.
If one focuses on peaks of the H2 distribution, one obtains system-
atically longer depletion times than for similar apertures centered
on peaks of the inferred star formation rate distribution. Figure 9.8
illustrates the observational situation.

No. 2, 2010 SCALE DEPENDENCE OF τdep IN M33 1703

Figure 3. Scale dependence of the H2 depletion time, τdep, in M33. The y-axis
shows the logarithm of the median H2 depletion time for apertures of different
diameters (x-axis) centered on CO peaks (red) and Hα peaks (blue). Error bars
correspond to uncertainty in the median estimated via a Monte Carlo analysis.
Dashed lines show expectation for simply averaging together two populations
of regions in different evolutionary states (Section 5).
(A color version of this figure is available in the online journal.)

very short τdep (0.3 Gyr). This may not be surprising, given the
expectations that we outlined in Section 1 and the distinctness of
the bright Hα and CO distributions seen in the lower left panel
of Figure 1, but the dramatic difference as one goes from ∼kpc
to ∼100 pc scales is nonetheless striking.

A few caveats apply to Figure 3. First, in subtracting the
diffuse emission (DIG) from the Hα map, we removed ∼40%
of the flux. This could easily include faint regions associated
with CO peaks, which instead show up as zeros in our map.
Perhaps more importantly, we use the 24 µm map only to correct
the DIG-subtracted Hα map for extinction. Any completely
embedded star formation will therefore be missed. For both
of these reasons, the SFR associated with the red points,
while it represents our best guess, may be biased somewhat
low and certainly reflects emission from relatively evolved
regions—those regions that have Hα fluxes above our DIG-
cutoff value. There is no similar effect for the CO map.

Figure 3 implies that there is substantial movement of points
in the star formation law parameter space as we zoom in to
higher resolution on one set of peaks or another. Figure 4 shows
this behavior, plotting the median ΣSFR and median ΣH2 for each
set of apertures (N.B., the ratio of median ΣH2 to median ΣSFR
does not have to be identical to the median τdep; the difference
is usually !30%). We plot only medians because individual
data are extremely uncertain, include many upper limits, and
because we are primarily interested in the systematic effects of
resolution on data in this parameter space.

Apertures centered on CO peaks (red points) have approx-
imately constant ΣSFR, regardless of resolution. This can be
explained if emission in the Hα map is homogeneously dis-
tributed as compared to the position of CO peaks. Meanwhile,
there is a strong change in ΣH2 for decreasing aperture sizes on
the same peaks; ΣH2 goes up as the bright peak centered on fills

Figure 4. Scale dependence of the location of data in the star formation law
parameter space. Red points show the median ΣSFR (y-axis) and ΣH2 (x-axis)
for apertures centered on CO peaks. Blue stars show the same for apertures
centered on Hα peaks. Dashed lines as in Figure 2.
(A color version of this figure is available in the online journal.)

more and more of the aperture. A similar effect can be seen for
the Hα (blue stars), though there is more evolution in ΣH2 with
increasing resolution because most bright Hα peaks also show
some excess in CO emission.

5. DISCUSSION

Figure 3 shows that by zooming in on an individual star-
forming region, one loses the ability to recover the star formation
law observed on large scales. For apertures !300 pc in size,
the relative amounts of CO emission and Hα intensity vary
systematically as a function of scale and what type of region
one focuses on. Another simple way to put this, demonstrated
in Figure 4, is that scatter orthogonal to the SFR–H2 relation
increases with increasing resolution. Eventually this washes out
the scaling seen on large scales and the star formation law may
be said to “break down.”

What is the origin of this scale dependence? In principle, one
can imagine at least six sources of scale dependence in the star
formation law.

1. Statistical fluctuations due to noise in the maps.
2. Feedback effects of stars on their parent clouds.
3. Drift of young stars from their parent clouds.
4. Region-to-region variations in the efficiency of star forma-

tion.
5. Time evolution of individual regions.
6. Region-to-region variations in how observables map to

physical quantities.

Our observations are unlikely to be driven by any of the first
three effects. In principle, statistical fluctuations could drive
the identification of Hα and CO peaks leading to a signal
similar to Figure 3 purely from noise. However, our Monte
Carlo calculations, the overall S/R in the maps, and the match
to previous region identifications make it clear that this is not
the case.

Figure 9.8: Kennicutt-Schmidt relation
on different size scales. The points
show the median surface densities of
gas and star formation, using apertures
of 75 − 1200 pc in size, centered in
CO peaks (red) and Hα peaks (blue).
Dotted lines of slope unity are lines of
constant tdep = ΣSFR/Σmol, with the
number indicating the depletion time.

The most likely explanation for this is that, one sufficiently small
scales, the central assumption that we are looking at an “average"
piece of a galaxy begins to break down. If we look at peaks of the H2,
we’re looking at places where molecular gas is just now accumulating
and there has not yet been time for much star formation to take place.
In terms of the classification scheme discussed in Chapter 8, these
represent class I clouds. If we look at peaks in the Hα distribution
(the usual proxy for star formation rate in this sort of study), we’re
looking at H ii regions where a molecular cloud once was, and which
has since mostly been dispersed. In terms of the molecular cloud
types discussed in Chapter 8, these are class III clouds.

In this case our proxies are misleading – the CO tells us about
the instantaneous amount of molecular gas present, while the Hα

tells us about the average number of stars formed over the last ∼ 5
Myr, and those are exactly what we want to compare. We want either
to compare the instantaneous molecular mass and star formation
rate, or the averages of both molecular mass and star formation rate
over similar timescales. If we average over a large enough piece of
the galaxy, our beam encompasses clouds in all stages of evolution,
so we get a representative average, but that ceases to be true as we
go to smaller and smaller scales. Indeed, the characteristic scale at
which that ceases to be true can be used as something of a proxy for
characteristic molecular cloud lifetime, a point made recently in a
clever paper by Kruijssen & Longmore (2014).
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9.2.2 Relationship to Atomic Gas and All Neutral Gas

The results for molecular gas are in striking contrast to the results
for total gas or just atomic gas. If one considers only atomic gas, one
finds that the H i surface density reaches a maximum value which
it does not exceed, and that the star formation rate is essentially
uncorrelated with the H i surface density when it is at this maximum
(Figure 9.9). In the inner parts of galaxies, star formation does not
appear to care about H i.

No. 6, 2008 THE SF LAW IN NEARBY GALAXIES ON SUB-KPC SCALES 2861

Figure 8. Sampling data for all seven spiral galaxies plotted together. Top left: ΣSFR vs. ΣHI; top right: ΣSFR vs. ΣH2; middle right: ΣSFR vs. Σgas. The bottom-left and
right panels show ΣSFR vs. Σgas using Hα and a combination of Hα and 24 µm emission as SF tracers, respectively (for a subsample of six spirals). The sensitivity
limit of each SF tracer is indicated by a horizontal dotted line. The black contour in the bottom panels corresponds to the orange contour in the middle-right panel and
is shown for comparison. The vertical dashed lines indicate the value at which ΣHI saturates and the vertical dotted lines (top-right and middle-left panels) represent
the sensitivity limit of the CO data. The diagonal dotted lines and all other plot parameters are the same as in Figure 4. The middle-left panel shows histograms of the
distributions of H i and H2 surface densities (normalized to the total number of sampling points above the respective sensitivity limit) in the sample.

Figure 9.9: Kennicutt-Schmidt relation
for H i gas in inner galaxies, averaged
on ∼ 750 pc scales Bigiel et al. (2008).
Contours indicate the density of points.

On the other hand, if one considers the outer parts of galaxies,
there is a correlation between H i content and star formation, albeit
with a very, very large scatter. While there is a correlation, the de-
pletion time is extremely long – typically ∼ 100 Gyr (again, with a
very large scatter). It is important to point out that, while it is not
generally possible to detect CO emission over broad areas in these
outer disks, when one stacks the data, the result is that the depletion
time in molecular gas is still ∼ 2 Gyr. Thus these very long depletion
times appear to be a reflection of a very low H2 to H i ratio, but one
that does not go all the way to zero, and instead stops at a floor of
∼ 1− 2%.
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Figure 7. SFE as a function of ΣH i for spiral (left) and dwarf (right) galaxies. Methodology as Figure 6 except that the data have now been divided into three radial bins
with results for each bin plotted separately (black filled circles show radii 0.5–1 × r25, dark gray circles show 1–1.5 × r25, and light gray circles show 1.5–2 × r25). We
also plot arrows instead of error bars where the scatter exceeds the lower plot boundary. Generally, the SFE increases with ΣH i and for a given ΣH i, the SFE decreases
with increasing galactocentric radius.

Figure 8. Pixel-by-pixel distribution of FUV (right axis; left axis after conversion to ΣSFR, Equation (2)) as a function of H i in the outer disks (1–2 × r25) of spiral
(left) and dwarf (right) galaxies. Contours show the density of data after combining all galaxies in each sample with equal weight given to each galaxy. Magenta,
red, orange, and green areas show the densest 25%, 50%, 75%, and 90% of the data, respectively. Dotted lines indicate constant H i depletion times of 108–1012 yr
(taking into account heavy elements). A horizontal dashed line indicates the typical 3σ sensitivity of an individual FUV measurement. Black filled circles show our
best estimate for the true relation between FUV and H i after accounting for finite sensitivity: they represent the median FUV after binning the data by ΣH i and error
bars are the lognormal scatter that yields the best match to the data after accounting for noise (see the text). To allow easy comparison, we overplot the orange (75%)
contour for the spirals as a thick black contour in the dwarf (right) plot.

Many of the conclusions from Sections 3.3.1 and 3.3.2 are
again evident in Figure 8. Depletion times are large (lines of
constant H i depletion time appear as dotted diagonal lines in
Figure 8) and change systematically but relatively weakly with
changing ΣH i. Dwarf galaxies exhibit somewhat higher ΣH i than
spirals, leading to a lack of low-column points in the right panel
of Figure 8. At a given H i column density, the FUV one finds in
spirals and dwarfs is quite similar. This last conclusion can be
clearly seen from the right panel of Figure 8, where the orange
contour from the left panel appears as a thick black contour that
closely matches the distribution observed in dwarfs.

Sensitivity is a significant concern in this plot. The horizontal
line shows a typical 3σ sensitivity for our FUV maps. A

large fraction of our measurements lies below this line. This is
problematic for a log–log plot, where negatives are not reflected.
To robustly follow the general trend down to low ΣSFR, we
overplot median values for ΣSFR in five equally spaced ΣH i bins
as black circles. All data, including negatives, contribute to the
median, making it much more sensitive than each individual
point. Error bars on these points give our best estimate for
the intrinsic (log) scatter in ΣSFR in each H i bin. We derive
this estimate by comparing the observed data in each bin to a
series of mock data distributions. These are constructed to have
the observed median and appropriate Gaussian noise (measured
from the FUV maps) with varying degrees of lognormal scatter
(from 0.0 to 2.0 dex). We compare each mock distribution to the

Figure 9.10: Kennicutt-Schmidt relation
for H i gas in outer galaxies, averaged
on ∼ 750 pc scales Bigiel et al. (2010).
Contours indicate the density of points,
and the two panels are for spirals
and dwarfs, respectively. Black points
with error bars indicate the mean and
dispersion in bins of ΣHI.

If instead of plotting just atomic or molecular gas on the x-axis,
one plots total gas, then a clear relationship emerges. At high gas
surface density, the ISM is mostly H2, and this gas forms stars with
a constant depletion time of ∼ 2 Gyr. In this regime, the H i surface
density saturates at ∼ 10 M� pc−2, and has no relationship to the
star formation rate. This constant depletion time begins to change
at a total surface density of ∼ 10 M� pc−2, at which point the ISM
begins to transition from H2-dominated to H i-dominated. Below this
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critical surface density, the star formation rate drops precipitously,
and the depletion time increases by a factor of ∼ 50 over a very small
range in total gas surface density. Finally, below ∼ 10 M� pc−2, the
star formation rate does correlate with both the total and H i surface
densities (which are roughly the same), but the depletion time is
extremely long, and there is an extremely large amount of scatter.
Figure 9.11 summarizes the data.
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Figure 9.11: Kennicutt-Schmidt rela-
tion for all gas, atomic plus molecular
Krumholz (2014). The rasters show
lines of sight through inner and outer
galaxies and through the Small Mag-
ellanic Cloud, as indicated. Purple
points indicate individual lines of sight
through high-redshift systems, where
H i columns are measured in Lyα
absorption.

9.2.3 Additional Parameters

In the H2-dominated regime, as we have seen nothing seems to
affect the star formation rate per unit molecular mass. However, that
is not the case in the H i-dominated regime, where the scatter is
large and “second parameters" seem to have an effect. This regime
is not understood very well, and the data are still incomplete, but
two striking correlations are apparent in the data. First, in the H i-
dominated regime, the metallicity of the gas seems to matter. This
is strikingly apparent is we examine the Small Magellanic Cloud,
at metallicity 20% of solar, damped Lyman α systems (which have
∼ 10% of Solar metallicity), and other low-metallicity dwarf galaxies
(Figure 9.11). Indeed, the main effect of a low metallicity seems to be
that the characteristic value of ∼ 10 M� pc−2 at which the gas goes
from H i- to H2-dominated is shifted to higher surface densities.

Another parameter that appears to matter is the stellar surface
density. Higher stellar surface densities appear to yield higher H2
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fractions and higher star formation rates at fixed gas surface density
in the H i-dominated regime. This correlation appears to be on top of
the correlation with metallicity. Similarly, galactocentric radius seems
to matter. Since all of these quantities are correlated with one another,
it is hard to know what the driving factor(s) are.

9.3 Star Formation in Dense Gas

9.3.1 Alternatives to CO

The far all the observations we have discussed have used CO (or, in
a few cases, dust emission) as the proxy of choice for H2. This is by
far the largest and richest data set available right now. However, it is
of great interest to consider other tracers as well, in particular tracers
of gas at higher densities. Doing so makes it possible, in principle,
to map out the density distribution within the gas in another galaxy,
and thereby to gain insight into how gas at different densities is
correlated with star formation.

Moving past H2, the next-brightest molecular line (not counting
isotopologues of CO, which are generally found under the same
conditions) in most galaxies is HCN. Other bright molecules are
HCO+, CS, and HNC, but we’ll focus on HCN as a synecdoche
for all of these tracers. Like CO, the HCN molecule has rotational
transitions that can be excited at low temperatures, and is abundant
because it combines some of the most abundant elements. Thus the
data set for correlations of HCN with star formation is the second-
largest after CO. However, it is important to realize that this data set
is still quite limited, and biased toward starburst galaxies where the
HCN/CO ratio is highest. In normal galaxies HCN is ∼ 10 times
dimmer than CO, leading to ∼ 100× larger mapping times in order
to reach the same signal to noise. As a result, we are with HCN today
roughly where we were with CO back in the time of Kennicutt (1998),
though that is starting to change.

Before diving into the data, let’s pause for a moment to compare
CO and HCN. The first few excited rotational states of CO lie 5.5,
16.6, 33.3, and 55.4 K above ground; the corresponding figures for
HCN are 4.3, 12.8, 25.6, and 42.7 K. Thus the temperature ranges
probed are quite similar, and all lines are relatively easy to excite
at the temperatures typically found in molecular clouds. For CO,
the collisional de-excitation rate coefficient for the 1− 0 transition is
k10 = 3.3× 10−11 cm3 s−1 (at 10 K, for pure p-H2 for simplicity), and
the Einstein A for the same transition is A10 = 7.2× 10−8 s−1, giving a
critical density

ncrit =
A10

k10
= 2200 cm−3. (9.6)
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As we have discussed, radiative transfer effects lower the effective
critical density significantly. In contrast, the collisional de-excitation
rate coefficient and Einstein A for HCN 1− 0 are k10 = 2.4× 10−11

cm3 s−1 and 2.4× 10−5 s−1, giving ncrit = 106 cm−3. Again, this is
lowered somewhat by optical depth effects, but there is nonetheless
a large contrast with CO. In effect, CO emission switches from rising
quadratically with density to linear with density at much lower vol-
ume density than does HCN, and thus HCN emission is considerably
more weighted to denser gas. For this reason, HCN is often thought
of as a tracer of the “dense" gas in galaxies.

9.3.2 Correlations

The first large survey of HCN emission from galaxies was under-
taken by Gao & Solomon (2004a,b). This study had no spatial resolu-
tion – it was simply one beam per galaxy. They found that, while CO
luminosity measured in the same one-beam-per-galaxy fashion was
correlated non-linearly with infrared emission (which was the proxy
for star formation used in this study), HCN emission in contrast cor-
related almost linearly with IR emission. Wu et al. (2005) showed that
individual star-forming clumps in the Milky Way fell on the same
linear correlation as the extragalactic observations.

This linear correlation was at first taken to be a sign that the HCN-
emitting gas was the “dense" gas that was actively star-forming.
In this picture, the high rates of star formation found in starburst
galaxies are associated with the fact that they have high “dense"
gas fractions, as diagnosed by high HCN to CO ratios. More recent
studies, however, have shown that the correlation is not as linear
as the initial studies suggested. Partly this is a matter of technical
corrections to the existing data (e.g., observations that covered more
of the disk of a galaxy), partly a matter of obtaining more spatially-
resolved data (as opposed to one beam per galaxy), and partly a
matter of expanded samples. Figure 9.12 shows recent compilation,
from Usero et al. (2015).

Despite these revisions, it is clear that there is a generic trend
that HCN and other tracers that have higher critical densities have a
correlation with star formation that is flatter than for lower critical
density tracers – that is, a power law fit of the form

LIR ∝ Lp
line (9.7)

will recover an index p that is closer to unity for higher critical den-
sity lines and further from unity for lower critical density ones. This
has now been seen now just between HCN and CO, but also with
higher J lines of CO, and with HCO+, another fairly bright line for
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Figure 1. Top row: Total SFR (⌃SFR) as a function of the mass of molecular (left) and dense (right) molecular gas for pointings in galaxy disks (this paper,
gray points) and unresolved star-forming galaxies (red) and (U)LIRGs (blue) from GB12. Bottom row: Surface density of recent SFR (⌃SFR) as a function of
the surface density of total (left) and dense (right) molecular gas for the same data sets. The top and right-hand axes of each panel display the data in terms of
observed quantities. Open symbols indicate limits in the direction of the attached arrows. The equations in the figures report power-law fits to our data (gray
line), the GB12 sample (green line), and all the data (brown line). Errors at 1�-level in the fit parameters are indicated. For comparison, the yellow area shows a
fixed ratio (power law index 1) with a factor of 2 scatter.

mostly vigorously star-forming galaxy centers, lie right below
the least active SF galaxies (dark red circles). In terms of sur-
face densities (bottom row), there is a partial overlap between
them. Pointings at larger galactocentric radii, where the lines
are typically fainter (Sect. 4), have masses and surface den-
sities as much as two and one order of magnitude lower than
the galaxies in the GB12 sample, respectively. Recall that
we expect the surface densities estimated from the unresolved
(GB12) observations to be biased somewhat high by the lack
of an aperture correction (Sect. 2.3). Correcting by these fac-

tors, which should a↵ect both axes, would tend to increase the
GB12 overlap with our data set in terms of surface density.

The bottom-row panels of Fig. 1 might support the idea that
(U)LIRGs and SF galaxies form distinct star formation se-
quences (Genzel et al. 2010, Daddi et al. 2010, GB12). With
or without aperture correction applied to the unresolved ob-
servations, our data and the SF galaxies from GB12 align
along a continuous and monotonous sequence. In contrast, the
(U)LIRG sample lies parallel, but seemingly o↵set to higher
⌃SFR for the same (dense) gas surface density. The o↵set is

Figure 9.12: Observed correlation
between HCN luminosity (converted to
a mass of “dense" gas using an X factor)
and infrared luminosity (converted
to a star formation rate), from Usero
et al. (2015). Gray points show resolved
observations within galaxy disks, while
red and blue points show unresolved
observations of entire galaxy disks.
Open points indicate upper limits.
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which large enough data sets exist to make correlations.

9.3.3 Physical Interpretation and Depletion Times

To go beyond the sheer correlations, one must attempt to convert the
observed quantities into physical ones. For infrared emission, this
is straightforward: the galaxies where we have dense gas tracers are
almost exclusively ones with high star formation rates, gas surface
densities, and dust content. For them it is safe to assume that the
great majority of the light from young stars is reprocessed into in-
frared emission, and, conversely, that IR emission is driven primarily
by newly-formed stars.

To convert the HCN emission into a mass, we require an HCN
“X-factor" analogous to XCO. Since the HCN J = 1− 0 line (and other
low J lines) is generally optically thick, such a conversion factor can
be derived from theoretical arguments much like the ones we used
to estimate XCO. The conversion factor does not depend on the HCN
abundance, which is good, because that is not tremendously well
known. However, the resulting conversion is still significantly more
uncertain that for CO, because, unlike the case for CO, it has not been
calibrated against independent tracers of the mass like dust or γ-rays.

There is also a real physical ambiguity worth noting. For CO,
we’re essentially looking at all the gas where CO is present, because
the critical density is low enough (once radiative transfer effects
are accounted for) that we can assume that most of the gas is in the
regime where emission is linear in number of emitting molecules.
For HCN, on the other hand, we’ve got some gas in the linear regime
and some in the quadratic regime, and thus it’s not entirely clear
what mass we’re measuring. It’s going to be a complicated, density-
weighted average, which will tell us something about the mass of gas
denser than the mean, but how much is not quite certain.

If one ignores all these complications and converts an observed
HCN luminosity into a mass and an observed IR luminosity into
a star formation rate, one can then derive a depletion time for the
HCN-emitting gas. Typical depletion times are ∼ 10− 100 Myr, much
smaller than for CO. On the other hand, we’re also looking at much
denser gas. If one makes a reasonable guess at the density, one can
make a corresponding estimate of the free-fall time. At a density of
105 cm−3 (probably about the right density once one takes radiative
transfer effects into account), the free-fall time is tff = 100 kyr, so a
star formation timescale of tdep = 10 Myr corresponds to

εff =
tff

tdep
∼ 10−3 − 10−2, (9.8)

with a fairly large uncertainty. However, εff ∼ 1 is clearly ruled out.
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Chapter 9 was a brief review of the current state of the observations
describing the correlation between star formation and gas in galaxies.
This Chapter will focus on theoretical models that attempt to unify
and make sense of these observations. To recap, there are a few
broad observational results we would like any successful model to
reproduce.

• Star formation appears to be a very slow or inefficient process,
measured on both the galactic scale and the scale of individual
molecular clouds (at least for local clouds). The depletion time is
∼ 100 times larger than the free-fall time.

• In unresolved observations, the rate of star formation appears to
rise non-linearly with the total gas content.

• In the central disks of galaxies, where most star formation takes
place, star formation appears to correlate strongly with the molec-
ular phase of the ISM, and poorly or not at all with the atomic
phase.

• The depletion time in molecular gas is nearly constant in nearby,
“normal" galaxies, though a weak dependence on total gas surface
density cannot be ruled out given the observational uncertainties.
In more actively star-forming galaxies with higher gas surface
densities than any found within ∼ 20 Mpc of the Milky Way, the
depletion time does appear to be smaller.

• A correlation between star formation and atomic gas appears only
in regions where the ISM is completely dominated by atomic gas,
but with a very large scatter, and with a depletion time in the
atomic gas is ∼ 2 order of magnitude larger than that in molecular
gas. In such regions, “second parameters" such as the metallicity
or the stellar mass density appear to affect the star formation rate
in ways that they do not in inner disks.
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• If one uses tracers of higher density gas such as HCN, the deple-
tion time is shorter than for the bulk of the molecular gas, but still
remains much longer than any plausible estimate of the free-fall
time in the emitting gas.

As we shall see, there is at present no theory that is capable of fully,
self-consistently explaining all the observations. However, there are
a number of approaches that appear to successfully explain at least
some of the observations, and may serve as the nucleus for a fuller
theory in the future.

10.1 The Top-Down Approach

Theoretical attempts to explain the correlation between gas and star
formation in galaxies can be roughly divided into two categories:
those that focus on regulation by galactic scale processes, and those
that focus on regulation within individual molecular clouds. We will
generically refer to the formers as “top-down" models, and the latter
as “bottom-up" models.

10.1.1 Hydrodynamics Plus Gravity

The simplest approach to the problem of the star formation rate is to
consider no physics beyond hydrodynamics and gravity, including
no stellar feedback. Models with only these ingredients form a useful
baseline against which more sophisticated models may be compared.
A key question for such models is the extent to which large-scale
gravitational instability is important. The importance of gravitational
instability is determined by the Toomre (1964) Q parameter, where

Q =
Ωσ

πGΣ
(10.1)

where Ω is the angular velocity of the disk rotation, σ is the gas veloc-
ity dispersion, and Σ is the gas surface density. On your homework
you will show that systems with Q < 1 are unstable to axisymmetric
perturbations, while those with Q > 1 are stable. Observed galactic
disks appear to have Q ≈ 1 over most of their disks, rising to Q > 1
at the edges of the disk.

L20 LI, MAC LOW, & KLESSEN Vol. 620

TABLE 1
Galaxy Models and Numerical Parameters

Modela bfg (LT)cQsg (HT)dQsg
eNtot feg

gmg

G50-1 . . . . . . . . 1 1.22 1.45 1.0 10 0.08
G50-2 . . . . . . . . 2.5 0.94 1.53 1.0 10 0.21
G50-3 . . . . . . . . 4.5 0.65 1.52 1.0 10 0.37
G50-4 . . . . . . . . 9 0.33 0.82 1.0 10 0.75
G100-1 . . . . . . . 1 1.08 … 6.4 7 0.10
G100-1 . . . . . . . 1 … 1.27 1.0 10 0.66
G100-2 . . . . . . . 2.5 … 1.07 1.0 10 1.65
G100-3 . . . . . . . 4.5 … 0.82 1.0 10 2.97
G100-4 . . . . . . . 9 … 0.42 1.0 20 5.94
G120-3 . . . . . . . 4.5 … 0.68 1.0 20 5.17
G120-4 . . . . . . . 9 … 0.35 1.0 30 10.3
G160-1 . . . . . . . 1 … 1.34 1.0 20 2.72
G160-2 . . . . . . . 2.5 … 0.89 1.0 20 6.80
G160-3 . . . . . . . 4.5 … 0.52 1.0 30 12.2
G160-4 . . . . . . . 9 … 0.26 1.5 40 16.3
G220-1 . . . . . . . 1 0.65 … 6.4 15 1.11
G220-1 . . . . . . . 1 … 1.11 1.0 20 7.07
G220-2 . . . . . . . 2.5 … 0.66 1.2 30 14.8
G220-3 . . . . . . . 4.5 … 0.38 2.0 40 15.9
G220-4 . . . . . . . 9 … 0.19 4.0 40 16.0

a The first number is the rotational velocity in units of kilometers per second
at virial radius.

b Percentage of total halo mass in gas.
c Minimum initial for low-T model. Missing data indicate models notQsg

run at full resolution.
d Minimum initial for high-T model.Qsg
e Millions of particles in high-resolution runs.
f Gravitational softening length of gas in units of parsecs.
g Gas particle mass in units of 104 M,.

Fig. 1.—Schmidt law from fully resolved low-T (open symbols) and high-
T (filled symbols) models listed in Table 1 that showed gravitational collapse.
The colors indicate the galaxy rotational velocities, while the symbol shapes
indicate the gas fractions, as specified in the legend. The black line is the best
fit to the observations from Kennicutt (1998b), while the red line is the best
fit to the simulations.

for particle masses (Steinmetz & White 1997). Truelove et al.
(1998) suggest that a Jeans mass must be resolved with far more
than the smoothing kernels proposed by BB97. Therefore,N p 2k

we performed a resolution study of model G100-1 (LT), with
, , and , corresponding to ,5 5 6N p 10 8# 10 6.4# 10 N ≈ 0.4tot k

3.0, and 23.9, respectively. We find convergence to within 10%
of the global amount of mass accreted by sink particles between
the two highest resolutions, suggesting that the BB97 criterion is
sufficient for the problem considered here.
We performed 24 simulations satisfying all three criteria,

including six models of low-mass galaxies with low temper-
ature (T) to study the effect of changing the effective sound
speed. We also set a minimum value of particles for6N ≥ 10tot
lower mass galaxies resolved with fewer particles.

3. GLOBAL SCHMIDT LAW

To derive the Schmidt law, we average and over theS SSFR gas
star-forming region, following Kennicutt (1989), with radius a
chosen to encircle 80% of the mass in sinks. To estimate the star
formation rate, we make the assumption that individual sinks rep-
resent dense molecular clouds that form stars at some efficiency.
Observations by Rownd & Young (1999) suggest that the local
star formation efficiency (SFE) in molecular clouds remains
roughly constant. Kennicutt (1998b) shows a median SFE of 30%
in starburst galaxies dominated by molecular gas. This suggests
the local SFE of dense molecular clouds is around 30%.We there-
fore adopt a fixed local SFE of to convert the mass ofe p 30%
sinks to stars. Note that this local efficiency is different from the
global star formation efficiency in galaxies, which measures the
fraction of the total gas turned into stars. The global SFE can
range from 1 to 100% (Kennicutt 1998b), depending on the gas
distribution and the molecular gas fraction.
Figure 1 shows the Schmidt law derived from our simulations.

The best fit to the observations by Kennicutt (1998b) gives a

Schmidt law , with global efficiencyaS p AS A p (2.5!SFR gas
and a power law , where is!40.7)# 10 a p 1.4! 0.15 SSFR

given in units of M, kpc!2 yr!1 and is given in units ofSgas
M, pc!2. A least-squares fit to the models listed in Table 1 (both
low T and high T) gives and!4A p (1.4! 0.4)# 10 a p

, agreeing with the observations to within the errors.1.45! 0.07
Note that LT models tend to have slightly higher SF rates

than equivalent HT models. Thus, observations may be able
to directly measure the effective sound speed (roughly equiv-
alent to velocity dispersion) of the star-forming gas in galactic
disks and nuclei. More simulations will be needed to demon-
strate this quantitatively.
Our chosen models do not populate the lowest and highest

star formation rates observed. Interacting galaxies can produce
very unstable disks and trigger vigorous starbursts (e.g., Li et
al. 2004). Quiescent normal galaxies form stars at a rate below
our mass resolution limit. Our most stable models indeed show
no star formation in the first few billion years.

4. STAR FORMATION THRESHOLD

A threshold is clearly visible in the spatial distribution of
gas and stars in our galaxy models, as illustrated in Figure 2.
The critical value of the instability parameter at the threshold
can be quantitatively measured from the radial profile, as in-
dicated in the middle panel, which shows a sharp drop of

at . The critical values of and at the thresh-S R ∼ 2R Q QSFR d sg g

old are shown in the bottom panel of Figure 2 for all theR th

Figure 10.1: Relationship between gas
surface density Σgas and star formation
surface density ΣSFR, measured from a
series of simulations using no physics
except hydrodynamics and gravity Li
et al. (2005).

If Q ∼ 1, then gravitational instability occurring on galactic scales
might be an important driver of star formation. If this is the case,
then the rate of star formation is likely to be non-linearly sensitive to
the value of Q, and thus to the gas surface density, potentially giving
rise to the non-linear correlation between gas surface density and star
formation rate seen in the unresolved observations. Some simulations
are able to reproduce exactly this effect (Figure 10.1).
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On the other hand, star formation can also occur even if Q > 1
and gravitational instability is unimportant on large scales, because
in a multi-phase ISM there will still be places where the gas becomes
locally cold and has σ much less than the disk average. Such regions
of dense, cold gas are expected to appear wherever the density is
driven up by spiral arms or similar global structures. In this case we
might expect that the star formation timescale should be proportional
to the frequency with which spiral arms pass through the disk, and
thus we should have

ΣSFR ∝
Σ

torb
, (10.2)

consistent with one of the observed parameterizations for galaxy-
averaged star formation rates. In this approach, the key physics
driving star formation is not the self-gravity of a galactic disk, but
instead the ability of the gas to cool to low temperatures behind
spiral shocks.

As a theory for the star formation rate, these models are mainly
useful for target practice. (In fairness, they are often intended to
study things other than the star formation rate, and thus make only
minimal efforts to get this rate right.) We can identify a few obvious
failings by comparing to our observational checklist. First of all,
in these models, once gravitationally bound clouds form, there is
nothing to stop them from collapsing in a timescale comparable to
tff. As a result, the star formation rate in molecular gas that these
models predicts tends to be εff ∼ 1, rather than ∼ 0.01, unless the
models introduce an artificial means to lower the star formation rate
– in other words, this models produce rapid, efficient star formation
rather than slow, inefficient star formation as required by the data.
This is true even in the simulations with Q > 1.

A second problem is that these models do not naturally predict
any metallicity-dependence. Gravitational instability and large-scale
spiral waves do not obviously care about the metallicity of the gas,
but observations strongly suggest that metallicity does matter. It is
possible that the interaction of spiral arms with cooling might give
rise to a metallicity dependence in the star formation rate, but this
has not be been explored.

10.1.2 Feedback-Regulated Models

Derivation The usual response to the failures of gravity plus hydro-
only models has been to invoke “feedback". The central idea for
these models can be understood analytically quite simply. We begin
by considering the gas momentum equation, ignoring viscosity but
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including magnetic fields:

∂

∂t
(ρv) = −∇ · (ρvv)−∇P +

1
4π
∇ ·

(
BB− B2

2
I
)
+ ρg, (10.3)

where g is the gravitational force per unit mass, and the pressure P
includes all sources of pressure – thermal pressure plus radiation
pressure plus cosmic ray pressure. Let us align our coordinate system
so that the galactic disk lies in the xy plane. The z component of this
equation, corresponding to the vertical component, is simply

∂

∂t
(ρvz) = −∇ · (ρvvz)−

dP
dz

+
1

4π
∇ · (BBz)−

1
8π

d
dz

B2 + ρgz. (10.4)

Now let us consider some area A at constant height z, and let us
average the above equation over this area. The equation becomes

∂

∂t
〈ρvz〉 = − 1

A

∫

A
∇ · (ρvvz) dA− d〈P〉

dz
+

1
4πA

∫

A
∇ · (BBz) dA

− 1
8π

d
dz
〈B2〉+ 〈ρgz〉 , (10.5)

where for any quantity Q we have defined

〈Q〉 ≡ 1
A

∫

A
Q dA. (10.6)

We can simplify this a bit by separating the x and y components
from the z components of the divergences and making use of the
divergence theorem:

∂

∂t
〈ρvz〉 = −d〈P〉

dz
− 1

8π

d
dz
〈B2〉+ 〈ρgz〉 −

d
dz
〈ρv2

z〉+
1

4π

d
dz
〈B2

z〉

− 1
A

∫

A
∇xy · (ρvvz) dA

+
1

4πA

∫

A
∇xy · (BBz) dA (10.7)

= −d〈P〉
dz
− 1

8π

d
dz
〈B2〉+ 〈ρgz〉 −

d
dz
〈ρv2

z〉+
1

4π

d
dz
〈B2

z〉

− 1
A

∫

∂A
vzρv · n̂ d`+

1
4πA

∫

∂A
BzB · n̂ d`. (10.8)

where ∂A is the boundary of the area A, and n̂ is a unit vector nor-
mal to this boundary, which always lies in the xy plane.

Now let us examine the last two terms, representing integrals
around the edge of the area. The first of these integrals represents
the advection of z momentum ρvz across the edge of the area. If we
consider a portion of a galactic disk that has no net flow of material
within the plane of the galaxy, then this must, on average, be zero.
Similarly, the second integral is the rate at which z momentum is
transmitted across the boundary of the region by magnetic stresses.
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Again, if we are looking at a galactic disk in steady state with no net
flows or advection in the plane, this must be zero as well. Thus the
last two integrals are generally zero and can be dropped.

If we further assume that the galactic disk is approximately time
steady, the time derivative is also obviously zero. We therefore arrive
at an equation of hydrostatic balance for a galactic disk,

d
dz

〈
P + ρv2

z +
B2

8π

〉
− d

dz

〈
B2

z
4π

〉
− 〈ρgz〉 = 0 (10.9)

The first term represents the upward force due to gradients in the
total pressure, including the turbulent pressure ρv2

z and the magnetic
pressure B2/8π. The third term represents the downward force
due to gravity. The middle term represents forces due to magnetic
tension, and is usually sub-dominant because it requires a special
geometry to exert significant forces – the field would need to be
curved upward (think of a hammock) or downward (think of an arch)
over most of the area of interest. Thus we are left with balancing the
first and last terms.

The quantities in angle brackets can be thought of as forces, but
they can equivalently be thought of as momentum fluxes. Each
one represents the rate per unit area at which momentum is trans-
ported upward or downward through the disk, and in hydrostatic
equilibrium these transport rates must match. The central ansatz in
the feedback-regulated model is to equate the rate of momentum
transport represented by the first term with the rate of momentum
injection by feedback. To be precise, one approximates that

〈
P + ρv2

z +
B2

8π

〉
∼
〈 p

M

〉
ΣSFR (10.10)

where 〈p/M〉 is the momentum yield per unit mass of stars formed,
due to whatever feedback processes we think are important. The
quantity on the right hand side is the rate of momentum injection per
unit area by star formation.

What follows from this assumption? To answer that, we have to
examine the gravity term. For an infinite thin slab of material of
surface density Σ, the gravitational force per unit mass above the slab
is

gz = 2πGΣ. (10.11)

Note that Σ here should be the total mass per unit area within
roughly 1 scale height of the mid-plane, including the contribution
from both gas and stars. If we plug this in, then we get

d
dz

(〈 p
M

〉
ΣSFR

)
∼ 2πGΣ =⇒ ΣSFR ∼ 2πG

〈 p
M

〉−1
ΣΣgas,

(10.12)
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where we have taken the vertical derivative d/dz to be of order 1/h,
where h is the gas scale height, and we have taken ρh ∼ Σgas.

Thus in a feedback-regulated model, we expect a star formation
rate that scales as the product of the gas surface density and the total
surface density. In regions where gas dominates the gravity, so that
Σ ∼ Σgas, we will have a star formation law

ΣSFR ∝ Σ2
gas, (10.13)

while in regions where stars dominate we will instead have

ΣSFR ∝ ΣgasΣ∗. (10.14)

To the extent that we think we know the momentum yield from
star formation, 〈p/M〉, we can make the calculation quantitative and
predict the actual rate of star formation, not just the proportionality.
For example, estimates for the total momentum yield for supernovae
give 〈p/M〉 ∼ 3000 km s−1 by the end of the energy-conserving
phase. Using this number, we obtain

ΣSFR ∼ 0.09M� pc−2 Myr−1
(

Σ
100 M� pc−2

)2
, (10.15)

which is in the right ballpark for the observed star formation rate at
that gas surface density.

A number of simulations of models of this type have been con-
ducted, and they seem to show that one can indeed produce star
formation rates that are in rough agreement with observation, for
plausible choices of 〈p/M〉 and/or plausible implementations of
stellar feedback. Figure 10.2 shows an example.
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Figure 4. Total star formation rate for each of our galaxy models in Table 1 as a function of time, both with feedback (⌘p = ⌘v = 1) and without. The timescales
are different in each model and correspond to the characteristic dynamical timescales in each system (longer in the more stable, dark-matter dominated systems;
see Table 1). Absent feedback (red dot-dashed line) the gas collapses on a dynamical time, leading to a SFR well in excess of that observed in similar systems;
the SFR then declines as the gas is exhausted. With stellar feedback, the SFR reaches an approximate equilibrium in which feedback maintains marginal
stability to gravitational collapse (Q ⇠ 1).

relative to the effective radius (for a Q ⇠ 1 disk, �Jeans ⇠ f 2
gas Re,

so ⇠ 100 times smaller here). As a result, the individual “clumps”
are much less prominent in the image, despite the fact that most
of the mass in the star-forming disk does lie in thousands of re-
solved “clouds” with masses ⇠ 104 �106 M�. The small gas frac-
tion also causes the disk to be significantly thinner in the edge-on
image: Q ⇠ 1 implies h ⇠ fgR for weakly self-gravitating disks
(e.g., Thompson et al. 2005). In future work (in preparation), we
will investigate the detailed structural properties of the ISM and
simulated GMC-analogues to compare them to observations of the
MW and local group galaxies.

The SMC-like model behaves quite differently from the Milky
Way model, although both are dark-matter dominated. The SMC
model is completely stable to global instabilities and thus forms
stars in a more uniformly distributed fashion. The ISM on these
scales is turbulent and patchy, with an irregular or (on large scales)
featureless structure, typical of observed dwarf galaxies. Despite
the low SFR of ⇠ 0.1M� yr�1, the turbulent velocities generated
by stellar feedback are sufficient to make the system quite “puffy”
and thick (given the weaker potential depth). Figure 1 shows that
individual star-forming regions are resolved with size scales of <
10pc.

Note that because the gas in this model is quite low-density,
the cooling times are long and energy input via supernovae and
stellar winds will have a significant effect on the gas morphology.
There are plain indications here that the present model, including
momentum from radiation pressure alone, is not a complete de-
scription of the ISM. For example, the temperature of the “diffuse”
ISM in all the galaxy models tends to be much too low. We show
this explicitly in Figure 3, where we plot the phase distribution of
the gas. The volume-filling gas distributed between dense clouds
is almost entirely “warm” (104 . T . 105 K), with negligible mass

in the characteristic “hot phase” of the ISM at T & 106 K (there is
some, generated by shocks, in the stronger HiZ and Sbc cases, but
even here it is less than a percent of the total gas mass). Some ad-
ditional heating mechanisms, such as SNe and “fast” stellar winds,
are probably critical to explain the full temperature structure of the
ISM. In future work we will investigate this in detail, with explicit
models for various heating terms; for now, we simply note that the
small mass fraction in the “hot” phase, while potentially important
for phenomena such as galactic winds, is unlikely to change the
structure of cold regions as it contains little mass and, even in MW-
like galaxies, contributes only ⇠ 10% to the typical ISM pressure
(Boulares & Cox 1990). We see in Figure 3 that the turbulent veloc-
ities are much larger in all dense gas than the thermal sound speeds
(and tend to be near-virial), making the detailed thermal structure
sub-dominant on these scales.

3.2 Star Formation Histories

Figure 4 shows the star formation history (galaxy-integrated star
formation rate [SFR] as a function of time) of each of our galaxy
models for the same feedback parameters used in Figure 1; we also
compare to simulations of the same galaxy models that include
cooling and star formation, but not stellar feedback.

In the models without feedback, the SFR increases to a peak
value on a single global dynamical time; the SFR remains at this
value until the gas in the disk is exhausted. The peak SFRs in the
simulations without feedback are a factor of & 10 larger than those
observed in the systems that motivate these galaxy models – the
observed values are ⇠ (50�300, 3�20, 2�4, 0.1�0.5)M� yr�1

for high-z non-merging SMGs (Forster Schreiber et al. 2009), low-z
non-merging LIRGs (Sanders & Mirabel 1996; Evans et al. 2009a),
the MW and similar-mass spirals at z = 0, and isolated SMC-mass

c� 0000 RAS, MNRAS 000, 000–000

Figure 10.2: Star formation rates
versus time measured in simulations of
isolated galaxies performed with (blue)
and without (red) a subgrid model for
stellar feedback Hopkins et al. (2011).
One simulation shown is for a galaxy
with properties chosen to be similar to
the Milky Way (left), and one is for a
galaxy chosen to resemble the Small
Magellanic Cloud (right).

Successes and Failures of Feedback-Regulated Models Models of this sort
have a number of appealing features. They are physically-motivated
and allow quantitative calculation of the star formation rate, both
in simulations and analytically. Another virtue of these models is
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that they allow one to calculate the star formation rate independent
of any knowledge of how star formation operates within individual
molecular clouds. Only the mean momentum balance of the ISM
matters. This is particularly nice from the standpoint of simulations,
because it means that one’s choice of star formation recipe doesn’t
matter much to the results. A final virtue is that the linear scaling
between ΣSFR and Σgas expected in the regime where stars dominate
the matter, and the scaling with stellar surface density, agree pretty
well with what we see in outer galaxies.

However, there are also significant problems and omissions with
this sort of model. First of all, the quantitative prediction is only
as good as one’s estimate of 〈p/M〉. As we have seen, there are
significant uncertainties in this quantity.

Second, in models of this sort we expect to have ΣSFR ∝ Σ2
gas in the

gas-dominated regime found in starburst galaxies. This is noticeably
steeper than the observed scaling between ΣSFR and Σgas, which, as
we have seen, has an index ∼ 1.5. One can plausibly get this close to
2 by monkeying with the choice of XCO, but to push the index up to
2 requires pretty extreme choices.

Third, while this model goes a reasonable job of explaining how
things might work in outer disks and why stars matter there, its
predictions about the impact of metallicity appear to be in strong
tension with the observations. Nothing in the argument we just made
has anything to do with metallicity, and it is not at all clear how
one could possibly shoehorn metallicity into this model. Thus the
natural prediction of the feedback-regulated model is that metallicity
does not matter. In contrast, as we discussed, the available evidence
suggests quite the opposite.

A related issue is that it is not clear how atomic versus molecular
gas fit into this story. All that matters in the global model is the
weight of the ISM, which is unaffected by the chemical state of
the gas, One could plausibly say that molecular gas simply forms
wherever there is gas collapsing to stars, but then it is not clear why
the depletion time in the molecular gas should be so much longer
than the free-fall time – if molecular gas is formed en passant as
atomic gas collapses to stars, why isn’t it depleted on a free-fall time
scale?

A fourth and final issue is that the independence of the predicted
star formation rate on the local star formation law, which we praised
as a virtue above, is also a defect. Observations appear to require
that star formation be about as slow and inefficient within individual
molecular clouds and dense regions as it is within galaxies as a
whole. There are two independent lines of evidence to this effect: the
low star formation rates measured in solar neighborhood clouds, and
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the correlation between infrared and HCN luminosity. However, in
a feedback-regulated model there is no reason why this should be
the case. Indeed, one can check this explicitly using simulations by
changing the small scale star formation law used in the simulations
(Figure 10.3). If one changes the parameter describing how gas
turns to stars within individual clouds, the star formation rate in the
galaxy as a whole is unchanged, but the star formation rate within
individual clouds, and the correlation between HCN emission and IR
luminosity, changes dramatically.
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Figure 3. Dependence of dense-gas tracers on the small-scale star forma-
tion efficiency ✏⇤. We show results for a series of otherwise identical simu-
lations of the HiZ model, as in Fig. 2, but systematically vary the assumed
simulation star formation efficiency ✏⇤ in the dense gas (n > 1000cm�3),
from which the SFR is ⇢̇⇤ = ✏⇤ ⇢mol/tff (see § 2). Top: Very dense to GMC
gas mass ratio as a function of GMC gas mass (as Fig. 2). Bottom: Same
HCN(1-0) to CO(1-0) ratio, for the same simulations, as a function of the
star formation efficiency ✏⇤ assumed. The solid point does not assume a
constant ✏⇤, but adopts the model in Hopkins et al. (2011a): the efficiency
is ✏⇤ = 1 in regions which are locally self-gravitating, but ✏⇤ = 0 other-
wise. We therefore plot the time and mass-averaged efficiency h✏⇤i pre-
dicted (with its scatter), around ⇠ 0.5 � 4%. As shown in Paper I, the
total SFR, total IR luminosity, and here, total CO luminosity (GMC gas
mass) are nearly identical (insensitive to the small-scale SF law), because it
is set by the SFR needed to balance collapse via feedback. However, to
achieve the same SFR with lower (higher) efficiency, a larger (smaller)
mass of dense gas is needed. The dense-to-GMC gas ratio scales approx-
imately inversely with the mean h✏⇤i (dashed line shows a fit with slope
L[HCN]/L[CO(1�0)] / h✏⇤i�1).

nosity, ⌧0 = ⌃GMC is the mean ⌧ of the GMC as a whole, and
⌧dense = ⌃dense is the mean ⌧ of a dense clump).4 We can esti-

4 There is some debate in the literature regarding the exact form of the
⌘ ⇠ (1 + ⌧) prefix in the momentum flux ⌘L/c (see e.g. Krumholz &
Thompson 2012, but also Kuiper et al. 2012). For our purposes in this
derivation, it is simply an “umbrella” term which should include all momen-
tum flux terms (including radiation pressure in the UV and IR, stellar winds,
cosmic rays, warm gas pressure from photo-ionization/photo-electric heat-
ing, and early-time SNe). These other mechanisms will introduce slightly
different functional dependencies in our simple derivation, if they are dom-
inant, however, the total value of ⌘ ⇠a few is likely to be robust even if
IR radiation pressure is negligible, leading to the same order of magnitude
prediction. And we find that using a different form of the radiation pressure
scaling which agrees quite well with that calculated in Krumholz & Thomp-
son (2012) has only weak effects on our results (see Paper I, Appendix B,
Paper II, Appendix A2, & Hopkins et al. 2012a, Appendix A).

mate the required Lcl/Mcl for each dense clump by again equating
the force to gravity, and then L = f �1

L

P
Lcl. Using this and equat-

ing the total force on the GMC to its self-gravity (and assuming
⌧dense & 1 � ⌧0), we obtain

Mdense

MGMC
⇡ fL ⌧0

1+ fL ⌧dense + ⌧0
(3)

⇡ 0.03Nt,3 n�1/2
4 ⌃GMC,100

1+0.3Nt,3 n�1/2
4 ⌃dense,1000 +0.1⌃GMC,100

(4)

! ⌃GMC

⌃dense
(n�1/2

4 ⌃dense,1000 � 1) (5)

where Nt,3 = Nt/3, ⌃GMC,100 ⌘ ⌃GMC/100M� pc�2 (⇠ 1
for typical GMCs, i.e., in non-ULIRGs), ⌃dense,1000 ⌘
⌃dense/1000M� pc�2 (⇠ 1 for typical dense clumps), and
n4 ⌘ ndense/104 cm�3.

In simulations, we find typical Nt ⇡ 2 � 4; if we assume a
fixed SFR per free-fall time Ṁ⇤ = ✏⇤ Mdense/tfree�fall,dense and use
the above derivation to obtain the critical L/M in a dense clump,
we predict Nt ⇡ 3(0.05/✏⇤). These values agree well with obser-
vational estimates (Evans et al. 2009, and references therein). Thus
up to some “saturation” level when n�1/2

4 ⌃dense,1000 � 1, we expect
Mdense/MGMC / ✏�1

⇤ (inversely proportional to the small-scale star
formation efficiency, if it is constant); we demonstrate this explic-
itly below.

Note that one might also expect a dependence on metallicity,
since the opacities ⌧ appear; however, accounting for it properly
(assuming opacity scales linearly with metallicity), the dependence
on metallicity cancels nearly completely.

The predicted ratio Mdense/MGMC increases with ⌃GMC. We
saw in Paper II that ⌃GMC increases with average galaxy sur-
face density (hence galaxy SFR and luminosity). This drives the
trend of increasing LHCN/LCO(1�0) at higher luminosities in Fig-
ure 2. Observationally, from the baryonic Tully-Fisher relation
(Rg / M0.25�0.33

g ) (e.g. Stark et al. 2009), we expect (for Jeans-scale
clouds) average surface densities ⌃GMC / M0.3�0.5

g (which fits well
the direct estimates in Paper II). This leads to the prediction that
LHCN/LCO(1�0) / L(0.3�0.5)

CO(1�0) for “normal” galaxies (with an upper
limit when Mdense/MGMC ⇠ 1). Similar considerations can be used
to derive the observed IR-CO(1-0) scaling (Andrews & Thompson
2011).

Note that this argument assumes that ⌃dense does not increase
with average galaxy surface density, or at least not as rapidly as
⌃GMC does. There is some observational evidence that, at the high-
est clump masses, ⌃dense does not increase with increasing clump
mass (e.g. Figure 8 in Murray 2009).

This simple force argument also predicts, for example, that
in local LIRGs and ULIRGs, where enhanced star formation is
driven by extremely dense nuclear concentrations of gas, and
so ⌃GMC must be large (it must be at least the mean density),
the dense gas fraction or LHCN/LCO(1�0) will be systematically
larger. This has been observed (Gao & Solomon 2004b; Narayanan
et al. 2005; Evans et al. 2006; Bussmann et al. 2008). Moreover,
we can estimate the magnitude of this enhancement: in typical
ULIRG nuclei, where the effect will be most extreme, the sur-
face densities reach ⌃ & 103 M� pc�2, reaching the limit where
LHCN/LCO(1�0) ⇠ Mdense/MGMC ⇠ h⌃i/⌃dense ⇠ 0.1�1 (i.e. where
the dense gas fractions saturate) a factor ⇠ 10 larger than that in
normal galaxies. This agrees well with the enhancements in LHCN

observed for ULIRGs and dense relative to normal spiral galaxies
in Gao & Solomon (2004b); Juneau et al. (2009).

Finally, note that our choice to normalize the above scalings

c� 0000 RAS, MNRAS 000, 000–000

Figure 10.3: Ratio of HCN to CO lumi-
nosity computed from simulations of
galaxies that are identical except for
their subgrid model for the star forma-
tion rate in dense gas, parameterized by
ε∗ Hopkins et al. (2013).

One can sharpen the problem even more: in this story, the star
formation rate is regulated primarily by feedback from massive stars.
However, the star formation rate is observed to be low even in Solar
neighborhood clouds where there are no stars larger than a few
M�, and where there probably will never be any because the stellar
population is too small and low mass to be likely to produce any
more massive stars. Why then is the star formation rate low in these
clouds?

10.2 The Bottom-Up Approach

The alternate approach to the problem of the star formation rate has
been to focus first on what happens inside individual clouds, and
then to try to build up the galactic star formation law as simply the
result of adding up lots of independent, small star-forming regions.
The argument proceeds in two steps: first one attempts to determine
which parts of the galaxy’s ISM are “eligible" to form stars, which
under Milky Way-like conditions more or less reduces to the question
how the ISM will be partitioned between a star-forming molecular
phase and an inert atomic phase. The second step is to ask about the
star formation rate within individual molecular clouds.

10.2.1 Which Gas is Star-Forming?

Observationally, stars form primarily or exclusively in molecular
gas, and so it is natural to identify the star-forming part of the ISM
with the molecular part. However, we would like to have a physical
explanation for this correlation. The first explanation one might think
of is that the formation of H2 and CO lead to rapid cooling of the gas,
allowing it to collapse. However, while CO is a very good coolant, it
turns out that it is not much better than C+, the main coolant in the
cool atomic ISM. Moreover, in galaxies where there is a significant
amount of H2 that is not traced by CO, such as the Small Magellanic
Cloud, star formation appears to correlate with the presence of H2,
not the presence of CO. This also suggests that CO cooling is not
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important.
Instead, the explanation that appears to have become accepted

over the past few years is that H2 is associated with star formation be-
cause of the importance of shielding. Let us recall the processes that
set the thermal balance of the ISM. In a region without significant
heating due to photoionization, the main heating processes are the
grain photoelectric effect and cosmic ray heating. We can write the
summed heating rate per H nucleus from both of these as

Γ =
(

4× 10−26χFUVZ′de−τd + 2× 10−27ζ ′
)

erg s−1, (10.16)

where χFUV, Z′d, and ζ ′ are the local FUV radiation field, dust metal-
licity, and cosmic ray ionization rate, all normalized to the Solar
neighborhood value, and τd is the dust optical depth.

If we are in a region where the carbon has not yet formed CO,
the main coolant will emission in the C+ fine structure line at 92 K.
This is fairly easy to compute. Assuming the gas is optically thin
and well below the critical density (both reasonable assumptions),
then the cooling rate is simply equal to the collisional excitation rate
multiplied by the energy of the level, since every collisional excitation
will lead to a radiative de-excitation that will remove energy. Thus
we have a cooling rate per H nucleus

ΛCII = kCII−HδCECIInH, (10.17)

where kCII−H ≈ 8× 10−10e−TCII/T is the excitation rate coefficient,
TCII = 91 K is the energy of the excited state measured in K, δC ≈
1.1× 10−4Z′d is the carbon abundance relative to hydrogen, ECII =

kBTCII is the energy of the level, and nH is the hydrogen number
density.

We can obtain the equilibrium temperature by setting the heating
and cooling rates equal and solving. The result is

T = − TCII

ln
(
0.36χFUVe−τd + 0.018ζ ′/Z′d

)
− ln nH,2

, (10.18)

where nH,2 = nH/100 cm−3. Clearly there will be two possible
behaviors of this solution, depending on whether the first or the
second term in the logarithm dominates. If the first, FUV heating
term, dominates, then we have

T ≈ 91 K
1.0 + τd − ln χFUV + ln nH,2

(10.19)

while if the second, cosmic ray term dominates, we have

T ≈ 91 K
4.0− ln ζ ′/Z′d + ln nH,2

(10.20)



172 notes on star formation

The transition between the two regimes occurs when τd ∼ 3.
In the cosmic ray-dominated regime, for ζ ′/Z′d = 1 we get T = 23

K. Thus the gas can cool down to almost as low a temperature as
we would get in a CO-dominated region (which will be closer to 10

K). On the other hand, if the cosmic ray heating rate is negligible
compared to the FUV heating rate, and the optical depth is small,
will have a temperature that is an order of magnitude higher than
what we normally expect in molecular clouds. The corresponding
Jeans mass,

MJ = ρλ3
J = ρ

(
πc2

s
Gρ

)3/2

= 4.8× 103 M�n−1/2
H T3/2

2 (10.21)

where T2 = T/100 K, will differ between the two cases by a factor
of ∼ (91/23)1.5 ≈ 8. Thus the presence of a high optical depth
that suppresses FUV heating lowers the mass that can be supported
against collapse by roughly an order of magnitude (or possibly more,
if the local FUV radiation field is more intense than in the Solar
neighborhood, as we would expect closer to the galactic center).

Figure 10.4: Density-temperature
distributions measured in simulations
with different treatments of ISM
thermodynamics and chemistry Glover
& Clark (2012). All simulations use
identical initial conditions, but vary
in how the gas heating and cooling
rates are calculated. The top panel
ignores dust shielding, but includes
full chemistry and heating and cooling.
The bottom panel includes all chemistry
and cooling. The middle three panels
turn off, respectively, H2 formation, CO
formation, and CO cooling. The tail of
material proceeding to high density in
some simulations is indicative of star
formation.

The central ansatz in bottom-up models is that this dramatic
change in Jeans mass has important implications for the regulation
of star formation: in regions where the temperature is warm, the
gas will be too thermally supported to collapse to form stars, while
in regions where it gets cold star formation will proceed efficiently.
There is some evidence for this from simulations (Figure 10.4).

So what does all of this have to do with H2? To answer that, recall
that the transition to H2 also depends critically upon shielding. We
calculated earlier in the class that the shielding column of atomic
hydrogen that has to be present before a transition to H2 occurs is

NH =
c fdissE∗0

nR ≈ 7.5× 1020χFUVn−1
H,2(Z′d)

−1 cm−2, (10.22)

or, in terms of mass surface density,

Σ = NHµmH = 8.4χFUVn−1
H,2(Z′d)

−1 M� pc−2. (10.23)

It is even more illuminating to write this in terms of the dust
optical depth τd. For FUV photons, the dust cross section per H
nucleus is σd ∼ 10−21Z′d cm−2, and so the dust optical depth one
expects for the typical H i shielding column is

τd = NHσd = 7.5χFUVn−1
H,2(Z′d)

−1 (10.24)

Thus the optical depth at which the gas becomes molecular is more
or less the same optical depth at which the gas transitions from
the FUV heating-dominated regime to the cosmic ray-dominated
one. Moreover, Krumholz et al. (2009) pointed out that the quantity
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χFUVn−1
H,2 appearing in these equations is not actually a free param-

eter – in the main disks of galaxies where the atomic ISM forms a
two-phase equilibrium, the cold phase will change its characteristic
density in response to the local FUV radiation field, so that χFUVn−1

H,2
will always have about the same value (which turns out to be a few
tenths).

Thus those models provide a natural, physical explanation for why
star formation should be correlated with molecular gas, and why
there is a turn-down in the relationship between Σgas and ΣSFR at
∼ 10 M� pc−2. Gas that is cold enough to form stars is also generally
shielded enough to be molecular, and vice versa. Gas that is not
shielding enough to be molecular will also be too warm to form
stars. The physical reason behind this is simple: the photons that
dissociate H2 are the same ones that are responsible for photoelectric
heating, so shielding against one implies shielding against the other
as well. Detailed models reproduce this qualitative conclusion (e.g.,
Krumholz et al. 2011b).

This model also naturally explains the observed metallicity-
dependence of both the H i / H2 transition and the star formation.
With a bit more work, it can also explain the linear dependence of
ΣSFR and Σgas in the H i-dominated regime – in essence, once one
gets to the regime of very low star formation and weak FUV fields,
the quantity χFUVn−1

H,2 can’t stay content any more, because nH,2 can’t
fall below the minimum required to maintain hydrostatic balance.
This puts a floor on the fraction of the ISM that is dense and shielded
enough to form stars, which is linearly proportional to Σgas. Figure
10.5 shows the result.

10.2.2 The Star Formation Rate in Star-Forming Clouds

Thus far the model we have outlined explains the metallicity-dependence
and the overall shape of the relationship between total gas and star
formation, but it does not say anything about the overall rate of star
formation in molecular regions. Why is the star formation rate in
molecular gas so low?

One potential explanation focuses on the role of turbulent support.
This model was first developed quantitatively by Krumholz & McKee
(2005), and has subsequently been refined and improved by a large
number of authors (e.g., Hennebelle & Chabrier 2011; Padoan &
Nordlund 2011; Padoan et al. 2014; Federrath & Klessen 2012). The
argument is fairly simple, and it relies on the statistical properties
of the turbulence we’ve already discussed. Consider a turbulent



174 notes on star formation

Figure 10.5: Relationship between star
formation rate surface density ΣSFR
and total gas surface density Σ. Pixels
and points show observations, and are
the same as in Figure 9.11. Solid black
and green lines are theoretical models
from Krumholz (2013) for two different
combinations of metallicity normalized
to Solar, Z/Z�, and mid-plane stellar
density, ρ∗, as indicated in the legend.

medium with a linewidth-size relation

σ(l) = cs

(
l

λs

)1/2
, (10.25)

where cs is the sound speed and λs is the sonic length. We want to
know what parts of this flow will go Jeans-unstable and begin to
collapse. The maximum mass that can held up against turbulence is
the Bonnor-Ebert mass, which you will calculate for homework:

MBE = 1.18
c3

s
G3ρ

=
1.18
π3/2 ρλ3

J , (10.26)

where cs is the isothermal sound speed and ρ is the local gas den-
sity, i.e. the density at the surface of the Bonnor-Ebert sphere. The
corresponding radius is

RBE = 0.37λJ (10.27)

Let’s evaluate the various terms in the virial theorem for this object.
The gravitational energy is

W = −a
GM2

BE
RBE

= −1.06
c5

s
G3/2ρ1/2 , (10.28)

where a is a geometric factor that depends on the density distri-
bution, and for the numerical evaluation we used a = 0.73, the
numerical value for a maximum mass Bonnor-Ebert sphere. The
corresponding thermal energy is

Tth =
3
2

MBEc2
s = 1.14|W|. (10.29)
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Finally, to estimate the turbulent energy we’ll use the linewidth-size
relation, and assume that the velocity dispersion is given by σ(2RBE),
i.e. by the linewidth-size relation evaluated at a length scale equal to
diameter of the sphere. This gives

Tturb =
3
2

MBEσ(2RBE)
2 = 0.89

(
λJ

λs

)
|W|. (10.30)

More sophisticated treatments, as given in some of the papers cited
above, include magnetic support as well. For simplicity, though, we’ll
omit there here.

Now let’s turn this around and hypothesize that the collapsing
parts of the flow are those for which the density is unusually high,
such that potential energy is comparable to or larger than the turbu-
lent energy. Based on what we just calculated, for this condition to be
true it must be the case that the local Jeans length λJ is comparable to
or smaller than the sonic length λs.

As an ansatz, we therefore say that collapse will occur in any
region where λJ . λs. It is convenient to write this in terms of the
Jeans length at the mean density

λJ0 =

√
πc2

s
Gρ

, (10.31)

where ρ is the mean density. If we let x = ρ/ρ, then λJ = λJ0/
√

x.
The condition that λJ . λs therefore requires that the overdensity x
satisfy

x > xcrit ≡
(

φx
λJ0

λs

)2
, (10.32)

where we have replaced the . simply with a firm inequality, and
introduced φt, a dimensionless number of order unity.

The nice thing is that we can now determine what fraction of the
mass satisfies this condition simply from knowing the density PDF:

f =
∫ ∞

xcrit

dp
d ln x

dx (10.33)

=
1√

2πσ2
ρ

∫ ∞

xcrit

exp

[
− (ln x− ln x)2

2σ2
ρ

]
dx (10.34)

=
1
2

[
1 + erf

(
−2 ln xcrit + σ2

ρ

23/2σρ

)]
, (10.35)

where σρ ≈ [ln(1 + 3M2/4)]1/2 andM is the 1D Mach number. If we
then hypothesize that a fraction ∼ f of the cloud will collapse every
cloud free-fall time, the total star formation rate per free-fall time in
the simulations should follows

εff =
1

2φt

[
1 + erf

(
−2 ln xcrit + σ2

ρ

23/2σρ

)]
, (10.36)
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where φt is another fudge factor of order unity.
Another assumption here is that the collapse time is given by

the global free-fall time, as opposed to a density-dependent local
free-fall time. Again, this is an area where subsequent work by
Hennebelle & Chabrier and Federrath & Klessen have improved on
the original model. It turns out to be a better assumption that the
collapse happens on a local free-fall timescale instead, in which case
we instead have a star formation rate

εff =
1
φt

∫ ∞

xcrit

dp
d ln x

x1/2 dx =
1

2φt

[
1 + erf

(
− ln xcrit + σ2

ρ

21/2σρ

)]
exp

(
3
8

σ2
ρ

)
,

(10.37)
where the extra factor of x1/2 inside the integral comes from the fact
that tff ∝ ρ−1/2, so higher density regions get weighted more because
they collapse faster.

We can write the critical ratio λJ0/λs in terms of quantities that
we can determine by observations. If we have a region for which the
virial ratio is

αvir =
5σ2R
GM

, (10.38)

with σ here representing the velocity dispersion over the entire
region, then the linewidth-size relation is

σ(l) = σ2R

(
l

2R

)1/2
. (10.39)

We therefore have

λs = 2R
(

cs

σ2R

)2
. (10.40)

Similar, we can re-write the mean-density Jeans length as

λJ0 =

√
πc2

s
Gρ

= 2πcs

√
R3

3GM
. (10.41)

Putting this together, we get

xcrit =

(
φx

λJ0

λs

)2
=

π2φ2
x

15
αvirM2 ≈ 0.82αvirM2. (10.42)

Since εff is a function only of xcrit and σρ, and these are now both
known in terms of αvir andM, we have now written the star forma-
tion rate in terms of αvir andM. Numerical evaluation is straightfor-
ward, and full 3D simulations show that the theory works reasonably
well (Federrath & Klessen, 2012).

For αvir ∼ 2, comparable to observed values, the numerical value
of εff typically comes out a bit too high compared to observations,
closer to ∼ 0.1 than ∼ 0.01, but localized sources of feedback like
protostellar outflows are likely able to reduce that further. Such feed-
back would be required in any event, since without it the turbulence
would decay and the star formation rate would rise.
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10.2.3 Strengths and Weaknesses of Bottom-Up Models

Comparing the bottom-up models to our observational constraints,
we see that they do better than the top-down ones on some metrics,
not quite as well on others. As already mentioned, the bottom up
models naturally reproduce the observed dependence of star forma-
tion on the phase of the ISM, and on the metallicity. This is a major
difference from the top-down models, which struggle on these points.

A second strength of the bottom-up model, at least one in which
turbulence is assumed to regulate the star formation rate within
molecular clouds, is that it automatically reproduces the observation
that εff ∼ 0.01 on all scales, from individual clouds to small dense
regions to entire galaxies; indeed, the central assumption of the
model is that the galactic star formation law is simply a sum of local
cloud ones. Thus the local-global connection is made naturally.

However, the model has two major weaknesses as well. First, the
explanation why εff ∼ 0.01, as opposed to ∼ 0.1, is still somewhat
hazy, and relies on generalized appeals to local feedback processes
that are not tremendously well understood. The central problem is
that of dynamic range. If local feedback processes like H ii regions
or protostellar outflows are what drives the low rate of star formation
within clouds, not larger-scale things like supernovae, then the
problem is much harder to solve numerically due to the far larger
dynamic range involved. No one has ever successfully simulated an
entire galaxy, following the self-consistent formation and evolution of
molecular clouds, with enough resolution to capture the turbulence
and all the local feedback processes that drive it within individual
molecular clouds.

A second weakness is that the appeal to the thermodynamics of
the gas as an explanation for the origin of the low star formation
rate doesn’t address the question of global regulation of the ISM
and its hydrostatic balance. To put it another way, in principle one
could have a region of the ISM where the gas surface density is low
enough that almost all the gas is atomic and there is very little star
formation. In that case, however, what maintains vertical hydrostatic
balance? If thermal pressure alone is not enough to do so, where
does the required turbulent pressure come from in the absence of star
formation. This is an unsolved problem in the local model, one that is
avoided in the global model simply by adopting hydrostatic balance
as a starting assumption.
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Stellar Clustering
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The previous two chapters focused on star formation at the scale
of galaxies, with attention to what determines the overall rate at
which stars form. In this chapter we will now zoom in a bit, and ask
how star formation is arranged in space and time within a single
molecular cloud, and how these arrangements evolve over time as
star formation proceeds and eventually ceases. The central goal of
this analysis will be to understand a striking observational feature of
star formation: sometimes, but not often, it produces gravitationally-
bound clusters of stars.

11.1 Observations of Clustering

We will start our discussion with a review of the observational situ-
ation, starting with the properties of young stars and gas and then
moving on to older populations of stars that have become gas-free.

11.1.1 Spatial and Kinematic Distributions of Gas and Young Stars

Newborn stars, are like gas, distributed in a highly structured and
inhomogeneous fashion. The gas is arranged in filaments, and
young stars are largely arranged along those filaments, at least in
the youngest regions. In somewhat older regions we star to see
clusters of stars where the is no gas, but with morphologies highly
suggestive of gas being blown away by the young stars. Figure 11.1
shows an example.

Such an inhomogeneous structure calls for a statistical description,
and a number of statistical techniques have been used to describe gas
and star arrangements. For gas we have already encountered some of
these, in the form of power spectra. Power spectra can be computed
for velocity structure, but they can also be computed for density
structure. They can be computed for both 2D projected images of
density as well as true 3D data.

http://adsabs.harvard.edu/abs/2014arXiv1402.0867K
http://adsabs.harvard.edu/abs/2014arXiv1402.0867K
http://adsabs.harvard.edu/abs/2012MNRAS.426.3008K
http://adsabs.harvard.edu/abs/2012MNRAS.426.3008K
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Figure 1. Extinction map of the MonR2 cloud overlaid in red with the spatial distribution of Spitzer-identified YSOs. The inverted gray scale is a linear stretch from
AV = −1 to 10 mag. Contour overlays start at AV = 3 mag and their interval is 2 mag. The IRAC coverage is marked by the green boundary. The projected positions
of the YSOs in MonR2 closely trace almost all of the areas of detectably elevated extinction. Denser clusters of YSOs are clearly apparent in the zones of highest
extinction.
(A color version of this figure is available in the online journal.)

Figure 2. Extinction map of the CepOB3 cloud overlaid in red with the spatial distribution of Spitzer-identified YSOs. The gray-scale and contour properties are
identical to those in Figure 1. As in that figure, YSOs are predominantly projected on the elevated extinction zones within the cloud, and clusters are found in the
highest extinction zones. However, unlike MonR2, the large CepOB3b young cluster in the northwest corner of the coverage is largely offset from significant extinction.
Focused examination of this region in particular suggests that the OB stars present have dispersed much of the local natal cloud material (Getman et al. 2009; T. S.
Allen 2011, in preparation).
(A color version of this figure is available in the online journal.)
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Figure 6: Distributions of gas and young stars in two star-forming regions near the Sun: MonR2 (top) and CepOB3 (bottom). In both panels, the
inverted grayscale shows the gas column density as measured by the dust extinction; the color scale is from AV = �1 to 10 mag, linearly stretched.
(Note that negative AV is possible due to noise in the observations.) Contours start at AV = 3 mag and increase by 2 mag thereafter. Red circles
indicate projected positions of young stellar objects identified by infrared excess as by Spitzer. The green contour marks the outer edge of the
Spitzer coverage. Reprinted from Gutermuth et al. (2011), reproduced by permission of the AAS.

of the velocity distribution as a function of position.
The observational situation is that the first moment map
is qualitatively similar for the low-density gas, dense
cores, and stars. The second moment map is qualita-
tively similar for the stars and dense gas, but both stars
and dense cores have significantly smaller second mo-
ments of their velocity distribution than does the low-
density gas around them.

2.2.2. Time Evolution of Stellar Clustering

The correlations between stellar positions and be-
tween gas and stars are noticeably variable from one re-
gion to another, as is clear simply from visual inspection
of Figure 6. In MonR2, the stellar distribution is well-
correlated with the gas, while in CepOB3 the peaks of
the gas and stellar distribution are noticeably o↵set from
one another. Quantitative analysis backs up the visual
impression: Gutermuth et al. (2011) find that the Pear-
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Figure 11.1: Maps showing the distri-
bution of gas (grayscale) and young
stellar objects (YSOs, red points) in the
MonR2 (top) and CepOB3 (bottom)
clouds (Gutermuth et al., 2011). The
grayscale gas maps are measured from
dust extinction, which is plotted using a
linear stretch from extinction AV = −1
to 10 mag; contours start at AV = 3
mag, and are at 2 mag intervals.
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Stars, on the other hand, are point objects, and so one cannot com-
pute a power spectrum for them as one would for a continuous field
like the density. However, one can compute a closely-related quan-
tity, the two-point correlation function. Recall that, for a continuous
vector field (say the velocity), we defined the autocorrelation function
as

Av(r) =
1
V

∫
v(x) · v(x + r) dV. (11.1)

For a scalar field, say density ρ, we can just replace the dot product
with a simple multiplication. It is also common to slightly modify
the definition by subtracting off the mean density so that we get a
quantity that depends only on the shape of the density distribution,
not its mean value. This quantity is

ξ(r) =
1
V

∫
[ρ(x)− ρ][ρ(x + r)− ρ] dV, (11.2)

where ρ = (1/V)
∫

ρ(x) dV. If the function is isotropic, then the
autocorrelation function depends only on r = |r|.

This is still defined for a continuous field, but we can extend the
definition to the positions of a bunch of point particles by imagining
that the point particles represent samples drawn from an underlying
probability density function. That is, we imagine that there is a
continuous probability (dP(r)/dV)dV of finding a star in a volume of
size dV centered at some position r, and that the actual stars present
represent a random draw from this distribution.

In this case one can show that the autocorrelation function can
be defined by the following procedure. Imagine drawing stellar
positions from the PDF until the mean number density is n, and then
imagine choosing a random star from this sample. Now consider
a volume dV that is displaced by a distance r from this galaxy. If
dP(r)/dV were uniform, i.e., if there were no correlation, then the
probability of finding another galaxy at that point would simply be
n dV. The two-point correlation function is then the excess probability
of finding a star over and above this value. That is, if the actual
probability of finding a star is dP2(r)/dV, we define the two-point
correlation function by

dP2

dV
(r) = n [1 + ξ(r)] . (11.3)

Defined this way, the quantity ξ(r) is known as the two-point correla-
tion function. It is possible to show that, with this definition, ξ(r) is
equivalent to that given by equation (11.2) applied to the underlying
probability density function. As above, if the distribution is isotropic,
then ξ depends only on r, not r. Also note that this is a 3D distribu-
tion, but if one only has 2D data on positions (the usual condition in



182 notes on star formation

practice), one can also define a 2D version of this where the volume
is simply interpreted as representing annuli on the sky rather than
shells in 3D space.

How does one go about estimating ξ(r) in practice? There are
a few ways. The most sophisticated is to take the measured posi-
tions and randomize them to create a random catalog, measure the
numbers of galaxy pairs in bins of separation, and use the difference
between the random and true catalogs as an estimate of ξ(r). This
is the normal procedure in the galaxy community where surveys
have well-defined areas and selection functions. In the star formation
community, things are a bit more primitive, and the usual procedure
is just to count the mean surface density of neighbors as a function of
distance around a star, that is, to estimate that

Σ(r) = n [1 + χ(r)] (11.4)

where r is taken to be the projected separation. This is quite rough,
and is vulnerable to considerable biases arising from things like edge
effects (formally the correlation function is only defined over an
infinite volume, but in reality of course surveys are finite in size), but
it’s what the star formation community generally uses.

With that formal throat-clearing out of the way, we are now in
a position to look at actual data, and, since we have these clean
definitions, we can talk about gas and stars on essentially equal
footing. So what do autocorrelation functions of gas and star look
like? Figure 11.2 shows some example measurements.

L112 KRAUS & HILLENBRAND Vol. 686

Fig. 1.—Locations of stars in Taurus and Upper Sco, superimposed on 60 mm IRAS images. Members are denoted by green crosses, while the sample fields in
Upper Sco are denoted by blue circles. The field of view is 17! in Taurus and 5! in Upper Sco. Known members in Upper Sco outline the dusty clouds in the
northern field, suggesting systematic incompleteness for extincted members. [See the electronic edition of the Journal for a color version of this figure.]

Fig. 2.—Two-point correlation functions for members of Upper Sco and
Taurus. These plots show the surface density of neighbors as a function of
separation, S(v), with v in degrees (bottom axis) or in parsecs (top axis). The
observations are from our recent wide binary survey (Kraus & Hillenbrand
2008; filled circles) or membership surveys in the literature (open circles).
For each association, we have fit power laws to the small-scale regime (red;
binary systems), the large-scale regime (blue; association members distributed
according to the primordial structure), and the intermediate regime (green;
association members with a randomized spatial distribution). [See the elec-
tronic edition of the Journal for a color version of this figure.]

superimposed on archival 60 mm IRAS images. In Upper Sco,
we see evidence of incompleteness for the northern field. Most
of the known members outline the dusty regions, suggesting
that any members in these regions were too extincted to have
been identified. As we discuss later, this could affect the TPCF
on scales of !1!. In Taurus, the distribution traces the fila-

mentary dust, although there are also many filaments that do
not include any known members.

We directly measured for Taurus because our sampleS(v)
spans the entire area of the association. However, for bounded
subsets (as in Upper Sco), it is often easier to evaluate the
TPCF via a Monte Carlo–based definition, w(v) p

, where is the number of pairs with sep-N (v)/N (v) ! 1 N (v)p r p

arations in a bin centered on v and is the expected numberN (v)r

of pairs for a random distribution of objects over the bounded
area (Hewett 1982). The advantage is that this method does
not require edge corrections, unlike direct measurement of

. In both cases, we report our results as since it is aS(v) S(v)
more visually motivated quantity than . In Figure 2, wew(v)
plot for Upper Sco (top) and Taurus (bottom) spanning aS(v)
separation range of 3" to 10!.

Based on the predicted time evolution of young associations
(Bate et al. 1998), we expect that can be fit with a twice-S(v)
broken power law, corresponding to structure on three scales.
At small scales, bound binary systems yield a relatively steep
power law. At large scales (and for young ages, !1 crossing
time), intra-association clustering yields a shallower (but non-
zero) power law that corresponds to the primordial structure
of the association. Finally, at intermediate separations, the ran-
dom motion of association members acts to smooth out the
primordial structure and yield a constant surface density (and
thus a slope near zero, according to the simulations of Bate et
al. 1998). The first knee (transition between gravitationally
bound multiplicity and a smooth randomized distribution) cor-
responds to the maximum angular scale for distinguishing bi-
nary systems, while the second knee (transition between a ran-
dom distribution and primordial structure) corresponds to an
angular scale that depends on the age since members were
released from their natal gas clouds, t, and the internal velocity
dispersion, , where . Hartmann (2002) suggested thatv v ∝ tvint int

this break also could indicate the mean spacing of cores along
filaments (the Jeans length), which assumes that stars have
randomized by a smaller angular scale and that the inferred
value characteristic angular scale, the inferred value of isvint

an upper limit.
In Table 1, we summarize our weighted least-squares fits for
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Fig. 7. ∆-variance spectra of all sources where we obtained AV maps in this study. The Lag scale is in parsec.

compared to Cygnus (4 pc) could arise because the average den-
sity of clumps in Cygnus (Schneider et al. 2006) is higher than in
Rosette (Williams et al. 1995) and thus the 13CO line is saturated
on a smaller scale.

For the other sources (Perseus, Orion A/B, Mon R2, and
NGC 2264), we obtained the ∆-variance from Fig. 10 in Bensch
et al. (2001), based on 13CO 1→0 data from the Bell Labs 7m
telescope survey (Bally et al., priv. commun.). The form of the
spectrum is rather similar to those obtained from the AV-maps,
but the location of peaks and the values of β differ slightly. It
seems that the angular resolution of the maps has an influence on
the shape of the ∆-variance because its form for the extinction
maps (at 2′ resolution) corresponds well to the 1.7′ Bell Labs
data but differs from that of the 50′′ resolution FCRAO surveys.
However, Padoan et al. (2003) found for Taurus and Perseus that
the structure function of 13CO follows a power-law for linear
scales between 0.3 and 3 pc, similar to our finding that a first
characterestic scale is seen around 2.5 pc. A more recent study
of Brunt (2010) of Taurus, comparing the power spectra deter-
mined from 13CO and AV, showed that they are almost identical
and that there is a break in the column density power spectrum
around 1 pc. Below a wavenumber corresponding to a wave-
length of ∼1 pc, Brunt (2010) found a power spectrum slope of
2.1 (similar to the delta variance slope found here). At wavenum-
bers above that (smaller spatial scales), a steeper spectrum was
seen, with an index of 3.1. This power spectrum break is associ-
ated with anisotropy in the column density structure caused by
repeated filaments (Hartmann 2002), which are possibly gener-
ated by gravitational collapse along magnetic field lines.

4.2.3. The ∆-variance for all clouds

Figure 7 shows the ∆-variance spectra for all clouds in this
study obtained from the AV-maps. At small scales (below 1 pc)

most sources show a non-constant spectral index steepening
toward the resolution limit. This is consistent with decaying
turbulence dissipated at small scales (Ossenkopf & Mac Low
2002), but also with driven turbulence at small lags (Federrath
et al. 2009). However, there are three exceptions: Chameleon
and Taurus show an intermediate peak at 0.3–0.4 pc and Perseus
shows no clear indication of a steepening. The intermediate peak
could mean that the extinction map is affected by a separate,
more distant, component that is actually dominated by struc-
tures larger than assigned in the plot (see also discussion be-
low). Alternatively, it could be produced by a systematic struc-
ture of the detected size that affects the turbulence in the cloud.
Candidates for these structures are SN-shells. Expanding ioniza-
tion fronts from OB associations impact the cloud structure as
well. For example, it is known that Lupus is influenced by a sub-
group of the Sco OB2 association (Tachihara et al. 2001) both by
past SN explosions and present OB stars and their HII regions.
Cygnus is exposed to the very massive OB2 cluster (Knödlseder
et al. 2000), but lacks a significant number of SN shells. Orion
A and B are influenced by stellar-wind driven compression cen-
tered on Ori OB 1b.

At scales above 1 pc nearly all low-mass SF clouds show
a characteristic size scale as a peak of the ∆-variance spectrum
(see Sect. 4.2.4), i.e. Cor. Australis, Taurus, Perseus, Chameleon,
Pipe show a common peak scale at 2.5–4.5 pc. This indicates
the scale of the physical process governing the structure forma-
tion. This could e.g. be the scale at which a large-scale SN shock
sweeping through the diffuse medium is broken at dense clouds,
turning the systematic velocity into turbulence. The GMCs,
on the other hand, show no break of the self-similar behav-
ior at all up to the largest scales mapped. The Rosette is com-
pletely dominated by structure sizes close to the map size. At
the largest, Galactic scales, energy injection due to, e.g., spiral
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Figure 11.2: Measurements of the
stellar and gas correlations in nearby
star-forming regions. The two figures
on the left show the surface density
of neighbors around each star Σ(r)
in Upper Sco and Taurus (Kraus &
Hillenbrand, 2008). The right panel
shows measurements, for a large
number of nearby molecular clouds, of
a statistic called the ∆ variance, σ∆2,
which is related a measurement of
structure on different scales that is
related to the correlation function.

In the stellar distributions, we can identify a few features. At small
separations, we see one powerlaw distribution. This is naturally
identified as representing wide binaries. This falls off fairly steeply,
until it breaks to a shallower falloff at larger separations, which
can be interpreted as describing the distribution of stars within the
cluster. This is also a powerlaw, covering several orders of magnitude
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in separation. That fact that the distribution is well fit by a powerlaw
indicates that the stars follow a self-similar, scale-free structure.
One can interpret such a structure as a fractal, and the index of the
powerlaw is related to the dimensionality of the fractal; typical values
for that dimensionality are ∼ 1, consistent with a highly filamentary
structure.

these observations. The FWHM beam size is !3500. Obser-
vations were conducted with 64 MHz bandwidth, dual po-
larization, and 1024 channels per polarization (i.e., 62.5 kHz
per channel corresponding to 0.21 km s"1). The actual on-
source integration time varies from source to source but is
typically 10 minutes.

3. RESULTS

Our results are summarized in Tables 1 and 2. N2H
+ ve-

locities, errors, and line widths (FWHM) are reported for 41
sources; 13CO and C18O data are reported in Table 2 for 21 and
34 sources, respectively. There are a total of 34 sources for
which we have good data in both N2H

+ and at least one CO
line, allowing us to directly compare their line-center veloci-
ties. An example image of the distribution of the three mo-
lecular lines is shown in Figure 1. Sources observed with
Mopra are denoted as ‘‘SP’’ in column (5) of Table 1, as these
observations included only single pointings.

We define an N2H
+ core as ‘‘detected’’ if it has a peak in-

tegrated intensity of at least 3 ! above the noise. The bound-
aries of N2H

+ cores are defined by the contour that traces 50%
of the peak intensity, as shown by the black line in the left
panel of Figure 1. In a few cases, we need to separate multiple
cores within the same field of view. To identify separate cores,
we require that the valley of integrated intensity between the
two proposed cores be at least 3 ! below the peak of the
weakest core. Otherwise, we assume we only have one core
with an extended morphology.

For each N2H
+ core, an integrated spectrum is produced

from all the spectra within the 50% contour, and that spectrum
is then fitted using the hyperfine structure (HFS) fitting routine
in the CLASS software package (Forveille et al. 1989).3 The
line-center velocity for each core is shown in Table 2. We do
not show errors for the line widths of each spectrum, because
such errors are not useful for this paper. For a typical line width

of 0.3 km s"1 and a typical signal-to-noise ratio of 10, we
estimate a typical line width error of 0.03 km s"1.

For each 13CO and C18O map, the emission over the same
region as N2H

+ is integrated to give a single spectrum, which
is typically fitted with a single Gaussian to derive the line-
center velocity shown in Table 2. Some CO spectra show non-
Gaussian profiles, such as line wings or multiple components.
Spectra with line wings were fitted with two Gaussians, one for
the main peak and one for the line wings. Spectra with multiple
components were fitted with two or three Gaussians. If it was
clear that one of the Gaussian components was close to the
N2H

+ line-center velocity, then that component was used. In
some cases, Gaussian fits were not accurate enough to repre-
sent the spectrum, and the data were not used. Bad Gaussian
fits were identified by comparing the rms noise in the residual
to the rms noise in a line-free part of the spectrum. If the ratio
of residual noise to line-free noise was greater than

ffiffiffi
2

p
, then

the fit was deemed to be inaccurate and was therefore not used.

4. DISCUSSION

4.1. Determination of Line-Center Velocity Errors

We need to know how precisely we can measure a line-
center velocity in order to identify any significant motions.
The 1 ! velocity error in a single Gaussian fit (S ) follows
equation (1),

S ¼ 0:692
N

I

" #
(!v!x)1=2; ð1Þ

where N is the rms noise in the spectrum, I is the peak in-
tensity, !v is the line width in km s"1, and !x is the channel
width in km s"1 (Landman et al. 1982).

The case of predicting line-center velocity errors for multiple
lines, such as the hyperfine structure of N2H

+, is more com-
plicated. This is because the N2H

+ lines may be blended, which
will affect the goodness of fit. Therefore we use a Monte Carlo
method to estimate errors: we simulate an N2H

+ spectrum of

Fig. 1.—Morphology and spectra of lines in L1221. Left: Contour overlay map of 13CO (light gray), C18O (dark gray), and N2H
+ (black) for L1221. Contours are

50% of the peak for each molecule. The 50% contour is used as the defining boundary of each core. The dots represent the positions of peak integrated intensity for
each molecule. Right: Spectra of 13CO, C18O, and N2H

+ made by adding individual spectra within the N2H
+ 50% contour.

3 See http://www.iram.fr/ IRAMFR/GS/class/class.html.
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Figure 11.3: Velocity distributions
measured toward a nearby protostellar
core using three different molecular line
tracers, as indicated. The transitions
13CO, C18O, and N2H+ should be
roughly ordered from lowest to highest
in terms of the density of gas that
produces them.

For the gas, one tends to obtain a similar powerlaw structure over
a broad range of scales, with possible breaks at the high and low
end. Thus the basic conclusion is that the stars and gas are in highly
structured, fractal-like distributions. At young ages, the gas and
stellar distributions are highly correlated with one another, which is
not surprising. For older stellar populations, the correlation begins to
break down.

1114 TOBIN ET AL. Vol. 697

Figure 3. Left: PV plot of all nonbinary targets, using only Hectochelle data with R > 6.0. Right: fit to peak of stellar velocity distribution, binned in declination, of
the R.A. range of 84.◦0–83.◦6. Bins are the same as in Figure 2.
(A color version of this figure is available in the online journal.)

the entire expanse of the molecular cloud. Notably, both the
stars and gas show an abrupt shift toward greater velocities at
a declination of about −5.◦4. This velocity shift is reflected in
the histogram from −5.◦2 to −5.◦4 in Figure 2 as a broad peak in
the velocity distribution. The broad peak results from the stellar
velocities closely following the molecular gas velocity through
the velocity shift. The velocity shift takes place just north of the
Trapezium, approximately at the center of the gaseous filament.
The characteristic LSR velocity of the gas and stars before the
shift is about 8 km s−1, after the shift it is about 11 km s−1.

4. DISCUSSION

4.1. Spectroscopic Binary Population

The binary fraction of the ONC has garnered much attention
recently. The Hubble Space Telescope has made it possible to
observe binary stars in the ONC down to ∼ 0.′′15 (60 AU)
separations. The most recent of these studies find that only
∼8.8% of ONC stars are binaries; slightly deficient compared to
the field stars and a factor of 2 lower than Taurus (Reipurth et al.
2007). The leading theory for this observation is that dynamical
interactions in the dense cluster environment disrupt wide binary
systems (Reipurth et al. 2007). In order to test this explanation,
we must determine the binary frequency for all separations. This
would enable us to tell if all binary systems are deficient or if
there is a certain separation distance where the ONC becomes
deficient. However, as the visual searches are not sensitive to
close separations, a large population of binary stars could still
be present but only detectable through RV monitoring.

Presently, we have identified 89 binaries or 11.5% of the total
sample with multi-epoch coverage. However, our data set is not
complete enough to yield an accurate final estimate; our value
of 11.5% should be regarded as a lower limit. If we used a lower
R cutoff for our χ2 routine or lower probability restriction, we
would add more binaries to the sample. Further observations will
likely confirm additional systems. To characterize the binary
systems with respect to the rest of the ONC, we have plotted

the detected binaries as crosses on the V−I color–magnitude
diagram (CMD) of the ONC in Figure 4. Most of the binary
stars trace a binary sequence with magnitudes slightly greater
than the median of the ONC.

Curiously, we have found that ∼30% of our detected binary
systems also show an IR excess using the K−IRAC 3.6 µm
versus IRAC 3.6–4.5 µm color–color diagram indicating the
presence of a circumstellar disk. In Figure 1, the positions
of binary stars are plotted, and those having an IR excess
are marked with star points. Also, to assess the separation
of these systems we plot maximum velocity difference, a
surrogate for semimajor axis, versus K−[3.6] in Figure 5. The
maximum velocity difference is determined by measuring the
difference between correlation peaks for the SB2s and simply
the maximum RV minus the minimum for systems detected by
velocity variability. We see that some binaries with NIR excesses
at 3.6 µm also have velocity variations larger than 10 km s−1,
which is ∼10 AU for a system of 1 M⊙ total mass. The majority
of stars with velocity differences greater than 10 km s−1 are
binaries identified from the double-peaked correlation function.

The significant number of spectroscopic binary systems with
NIR excess is surprising. For most binary systems compact
enough to be detected spectroscopically, the companion star
is expected to have evacuated the inner disk as in Coku Tau/4
(Ireland & Kraus 2008). Thus, the binaries without a NIR excess
could be transition objects or have an inner disk hole, these
objects would then show an IR excess longward of 10 µm.
Seven others have NIR excesses but have velocity variations
less than 10 km s−1. These systems may be wider binaries with
a truncated outer disk. Perhaps there is an upper limit to the
eccentricity of the companion orbit in order to retain the inner
disk. This appears to be the case of GG Tau (McCabe et al. 2002)
which is shown to have the spectrum of a normal disk (Furlan
et al. 2006) and an eccentricity of ∼0.3. It is also possible that the
disk clearing by the companion has simply not been completed
in these relatively young systems. Mid-IR spectra and MIPS
photometry in forthcoming studies from Spitzer and further RV

Figure 11.4: Measured distributions
of 13CO (grayscale) and young stellar
objects (blue points) in velocity (x
axis) and position on the sky in one
dimension (y axis) for the Orion Nebula
Cluster.

In addition to the spatial distribution of stars and gas, one can
also ask about their kinematics. Stellar kinematics can be determined
by spectroscopy, and gas kinematics by molecular line observations.
Depending on the choice of line, one learns about the kinematics of
either lower or higher density regions of gas. These studies show
that both the dense gas and the stars show much lower velocity
dispersions than the less dense gas (Figures 11.3 and 11.4), but that
the mean velocities are quite well correlated. The lower velocity
dispersion will prove important below.

11.1.2 Time Evolution of the Stellar Distribution

As discussed in Chapter 8, stars stay associated with the gas from
which they form for only a relatively short period. One can see this
transition directly by comparing older and younger stellar popu-
lations. The younger the stellar population, the better the star-gas
correlation. By stellar ages of ∼ 5− 10 Myr, there is usually no as-
sociated gas at all. However, it is still interesting to investigate how
the stars evolve, because this contains important clues about how the
formed.

One important point to make is that the typical star-forming
environment is vastly denser than the mean of the ISM, and as a
result the stars that form are also vastly denser than the mean of
the ISM and than the mean stellar density. More than 90% of star
formation observed within 2 kpc of the Sun takes place in regions
where the stellar mass density exceeds 1 M� pc−3, corresponding to
a number density n > 30 cm−3 Lada & Lada (2003). In comparison,
the stellar mass density in the Solar neighborhood is ∼ 0.01 M� pc−3;
Holmberg & Flynn 2000).

However, these high densities do not last. If one examines stars
at an age of ∼ 100 Myr, the ratio is flipped – only ∼ 10% are in star
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clusters with a density identifiably higher than that of the field, while
∼ 90% have dispersed and can no longer be identified as members of
discrete clusters (Figure 11.5). (They can, however, still be grouped
by their kinematics, which take much longer to be randomized than
their positions. Collections of stars that are now at low density and
no longer show up as clusters, but that have very similar velocities
and thus likely share a common origin are called moving groups.)

The Astrophysical Journal, 752:96 (7pp), 2012 June 20 Fall & Chandar
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Figure 1. Mass functions of star clusters in different age intervals in different
galaxies (as indicated). These have been adapted from the references given in
the text. The absolute normalizations of the mass functions are arbitrary, but the
relative normalizations within each panel are preserved. The lines show power
laws, dN/dM ∝ Mβ , with the best-fit exponents listed in Table 1. Note that
these are all close to β = −1.9.

Lada (2003) and Chandar et al. (2010b) describe these methods
in more detail.

For ease of comparison, we have made two simple ad-
justments to the published mass and age distributions when
constructing Figures 1 and 2. First, we replotted them in a uni-
form format: log(dN/dM) against log(M/M⊙) and log(dN/dτ )
against log(τ/yr). For the solar neighborhood, the original dis-
tributions were presented in the form log(MdN/d log M) against
log(M/M⊙) and log(dN/d log τ ) against log(τ/yr). Second, we
adopted a uniform conversion from light to mass based on
stellar population models with the Chabrier (2003) IMF. For
the LMC, SMC, M51, and Antennae, the original distributions
were based on models with the Salpeter (1955) IMF, which
have ∆ log M = 0.2 and ∆ log τ = 0.0 relative to models with
the Chabrier (2003) IMF.

The observed mass and age distributions are well represented
by featureless power laws:

dN/dM ∝ Mβ, (1)

dN/dτ ∝ τ γ . (2)

We list the best-fit exponents and their formal 1σ errors for the
12 mass functions and 10 age distributions in Tables 1 and 2. The
straight lines in Figures 1 and 2 show the corresponding power
laws. Both the mean and median exponents for this sample
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Figure 2. Age distributions of star clusters in different mass intervals in different
galaxies (as indicated). These have been adapted from the references given in the
text. The absolute normalizations of the age distributions are arbitrary, but the
relative normalizations within each panel are preserved. The vertical spacing
between the age distributions depends on the adopted mass intervals, which
differ among the galaxies for practical reasons (distance, limiting magnitude,
sample size). The lines show power laws, dN/dτ ∝ τγ , with the best-fit
exponents listed in Table 2. Note that these are all close to γ = −0.8.

are β = −1.9 and γ = −0.8, and the standard deviations
of individual exponents about the means are σβ = 0.15
and σγ = 0.18 (with full ranges −2.24 ! β ! −1.70 and
−1.05 ! γ ! −0.54). As a result of stochastic fluctuations in
the luminosities and colors of clusters, the true uncertainties
(errors) in the exponents, ϵβ and ϵγ , are usually larger than
the formal 1σ errors listed in Tables 1 and 2, with typical
values ϵβ ∼ ϵγ ∼ 0.1–0.2 (Fouesneau et al. 2012).3 Since these
are similar to the dispersions σβ and σγ , we cannot tell whether
the small differences among the exponents are real, although we
do expect differences at roughly this level, as explained below.

Figures 1 and 2 show that the mass and age distributions are
essentially independent of each other. This follows from the
parallelism of the mass functions in different age intervals and
the age distributions in different mass intervals. The vertical
spacing between the age distributions differs only because the
adopted mass intervals differ, a consequence of the different
distances, limiting magnitudes, and sample sizes among the
galaxies. Thus, we can approximate the bivariate mass–age

3 In fact, these estimates are lower limits to ϵβ and ϵγ because they neglect
likely systematic uncertainties and/or variations in the adopted stellar
population models and extinction curves. When we make reasonable
allowance for these effects, the true uncertainties increase to ϵβ ∼ ϵγ ∼ 0.2.

2

Figure 11.5: Measured distributions of
star cluster ages in several galaxies (Fall
& Chandar, 2012). Clusters have been
binned in mass, and different symbols
show different mass bins, as indicated.

The exact functional form of this decline in number of star clusters,
and whether the fraction that remain in clusters after some period
of time varies with the large-scale properties of the galaxy, are both
uncertain. The answers seems to depend at least in part on how one
chooses to define “cluster" at very young ages when the stars are still
in a fractal, non-relaxed distribution. Nonetheless, the fact that the
stars disperse tells us something very important, which is that they
must have formed such that the resulting system was gravitationally
unbound. Only in very rare cases does a bound stellar system remain
after the gas is removed. This is an important constraint for theories
of star formation. The Astrophysical Journal, 752:96 (7pp), 2012 June 20 Fall & Chandar
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Figure 1. Mass functions of star clusters in different age intervals in different
galaxies (as indicated). These have been adapted from the references given in
the text. The absolute normalizations of the mass functions are arbitrary, but the
relative normalizations within each panel are preserved. The lines show power
laws, dN/dM ∝ Mβ , with the best-fit exponents listed in Table 1. Note that
these are all close to β = −1.9.

Lada (2003) and Chandar et al. (2010b) describe these methods
in more detail.

For ease of comparison, we have made two simple ad-
justments to the published mass and age distributions when
constructing Figures 1 and 2. First, we replotted them in a uni-
form format: log(dN/dM) against log(M/M⊙) and log(dN/dτ )
against log(τ/yr). For the solar neighborhood, the original dis-
tributions were presented in the form log(MdN/d log M) against
log(M/M⊙) and log(dN/d log τ ) against log(τ/yr). Second, we
adopted a uniform conversion from light to mass based on
stellar population models with the Chabrier (2003) IMF. For
the LMC, SMC, M51, and Antennae, the original distributions
were based on models with the Salpeter (1955) IMF, which
have ∆ log M = 0.2 and ∆ log τ = 0.0 relative to models with
the Chabrier (2003) IMF.

The observed mass and age distributions are well represented
by featureless power laws:

dN/dM ∝ Mβ, (1)

dN/dτ ∝ τ γ . (2)

We list the best-fit exponents and their formal 1σ errors for the
12 mass functions and 10 age distributions in Tables 1 and 2. The
straight lines in Figures 1 and 2 show the corresponding power
laws. Both the mean and median exponents for this sample
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Figure 2. Age distributions of star clusters in different mass intervals in different
galaxies (as indicated). These have been adapted from the references given in the
text. The absolute normalizations of the age distributions are arbitrary, but the
relative normalizations within each panel are preserved. The vertical spacing
between the age distributions depends on the adopted mass intervals, which
differ among the galaxies for practical reasons (distance, limiting magnitude,
sample size). The lines show power laws, dN/dτ ∝ τγ , with the best-fit
exponents listed in Table 2. Note that these are all close to γ = −0.8.

are β = −1.9 and γ = −0.8, and the standard deviations
of individual exponents about the means are σβ = 0.15
and σγ = 0.18 (with full ranges −2.24 ! β ! −1.70 and
−1.05 ! γ ! −0.54). As a result of stochastic fluctuations in
the luminosities and colors of clusters, the true uncertainties
(errors) in the exponents, ϵβ and ϵγ , are usually larger than
the formal 1σ errors listed in Tables 1 and 2, with typical
values ϵβ ∼ ϵγ ∼ 0.1–0.2 (Fouesneau et al. 2012).3 Since these
are similar to the dispersions σβ and σγ , we cannot tell whether
the small differences among the exponents are real, although we
do expect differences at roughly this level, as explained below.

Figures 1 and 2 show that the mass and age distributions are
essentially independent of each other. This follows from the
parallelism of the mass functions in different age intervals and
the age distributions in different mass intervals. The vertical
spacing between the age distributions differs only because the
adopted mass intervals differ, a consequence of the different
distances, limiting magnitudes, and sample sizes among the
galaxies. Thus, we can approximate the bivariate mass–age

3 In fact, these estimates are lower limits to ϵβ and ϵγ because they neglect
likely systematic uncertainties and/or variations in the adopted stellar
population models and extinction curves. When we make reasonable
allowance for these effects, the true uncertainties increase to ϵβ ∼ ϵγ ∼ 0.2.

2

Figure 11.6: Measured distributions
of star cluster mass in several galaxies
(Fall & Chandar, 2012). Clusters have
been binned in age, and different
symbols show different age bins, as
indicated.

A second important observational constraint is that the star clus-
ters that do remain always show mass distribution that is close to a
powerlaw of the form dN/dM ∝ M−2 (Figure 11.6), meaning equal
mass per logarithmic bin in cluster mass. This mass function is recov-
ered in essentially all galaxies that have been examined, and does not
appear to vary with large-scale galaxy properties. The origin of this
distribution is also currently debated.

11.2 Theory of Stellar Clustering

Having discussed the observational situation, we now turn to theoret-
ical models for the origin of stellar clustering. The models here are
somewhat less developed than for either the star formation rate or
the IMF, but the problem is no less important and interesting.

11.2.1 Origin of the Gas and Stellar Distributions

The origin of the spatial and kinematic distributions of gas and stars,
and the correlation between them, ultimately seems to lie in very
general behaviors of cold gas. This is driven by a few factors. First
of all, the characteristic timescale for gravitational collapse is the
free-fall time, which varies with density as tff ∝ ρ−1/2. As a result,
the densest regions tend to run away and form stars first, leading a
a highly structured distribution in which stars are concentrated in
the densest regions of gas. Quantitatively, simulations of turbulent
flows are able to reproduce the powerlaw-like two point correlation
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functions that are observed (Hansen et al., 2012).

No. 2, 2009 STELLAR KINEMATICS OF YOUNG CLUSTERS L127

Figure 3. Distributions of gradients, |∇V |, for sight lines along the x, y, and z
directions as a function of box size. The ONC stellar data have been provided
by Tobin et al. (2009). The different data sets are offset slightly for clarity.

3.3. Gas Velocities

Observations of clusters frequently find that the star and gas
velocities are correlated (e.g., Fűrész et al. 2008). We can repro-
duce such observations by making simulated observations of the
gas in particular molecular tracers. Following the procedure of
Offner et al. (2008b), we generate a position–position–velocity
cube of the gas intensity in the 13CO (J = 1 → 0) molecular
line along one line of sight in the D2 run. We solve for the line
emission, assuming that the gas is in statistical equilibrium and
that radiative pumping is negligible.4 We adopt a cloud distance
of 400 pc and 26′′ beam size. To model the telescope resolution,
we smear each velocity channel with the Gaussian beam.

Figure 4 shows the line-of-sight 13CO gas and star velocities;
following Fűrész et al. (2008, their Figure 10), to produce this
figure from the three-dimensional position–position–velocity
cube, we have integrated along one direction on the plane of
the sky, so the intensity shown in a given (x, v) pixel is the sum
over all y values for that x and v. Our simulated image shows a
strong correlation between gas and star velocities, similar to that
seen in the star and gas velocity maps presented by Fűrész et al.
(2008). For the projection shown in Figure 4, the mean stellar
velocity is ∼ −0.8 km s−1, somewhat to the left of the mean
13CO gas velocity at 0.003 km s−1. Most of the disagreement in
the histogram occurs because not all regions traced by 13CO have
formed stars. Projections along other directions show similar
correlations between gas and star velocities.

The strong correlation between gas and star velocities might
seem surprising, given that the gas and stars have such different
velocity dispersions. The explanation is that the anti-correlation
between density and velocity found in turbulent gas serves
to artificially enhance the gas–star correlation. Figure 4 is
constructed by summing over the y direction, so each pixel
represents a density-weighted average velocity. The dispersion,
however, is a density-weighted average of velocity squared,
which, since velocity and density are anti-correlated, is much
more heavily weighted toward low-density, high-velocity gas
than what is shown in Figure 4. This low-density gas is also that
which is least correlated with the stars. The bias is exacerbated
because 13CO is thermally excited only in relatively dense gas
that is closely associated with forming stars. It is subthermally

5 We obtain the molecular data from the Leiden Atomic and Molecular
database (Schöier et al. 2005).

Figure 4. Position of the stars as a function of the line-of-sight velocity (crosses)
in run D2. The gas velocity is overlaid, where the color bar indicates the relative
13CO intensity averaged over the y coordinate. We have assumed that cloud is at
a distance of 400 pc and is observed by a 26′′ beam. The histograms on the right
shows the distribution of gas (solid) and star (dashed) velocities normalized to
the total intensity and star number, respectively.

excited in the lower density gas that dominates the dispersion.
Thus, both averaging and excitation serve to improve the
correlation between 13CO emission and stellar velocities, while
at the same time obscuring the low-density gas that carries the
bulk of the kinetic energy.

4. CONCLUSIONS

In this Letter, we have investigated the kinematic properties
of stars forming in simulated turbulent self-gravitating clouds.
These calculations represent the initial conditions of stars in
clusters prior to dynamic evolution and cloud dispersal. We
demonstrate that subvirial stellar velocity dispersions arise
naturally from clouds in virial equilibrium. Thus, long-lived
clouds satisfying a quasi-steady-state are not ruled out by
observations of clusters with small stellar velocity dispersions.
We find that gas virial parameters of order unity produce a star-
to-gas velocity dispersion ratio of approximately 0.2.

We find that turbulent initial conditions easily generate stellar
velocity gradients of the magnitude observed in star-forming
regions. Using a planar fit, we demonstrate typical gradients of
1 km s−1 pc−1, similar to the observed gradient in the ONC. We
also show that for young clusters there is a strong similarity in
the simulations between the dense gas traced by 13CO and the
star velocities. Thus, trends in the stellar velocities as a function
of position may be indicative of the dominance of large-scale
turbulent modes, rather than evidence of global collapse or cloud
rotation as suggested by some authors.

Support for this work was provided by the US Department
of Energy at the Lawrence Livermore National Laboratory
under contract B-542762 (S.S.R.O., C.E.H.), the Alfred P.
Sloan Foundation (M.R.K.), NASA/JPL through the Spitzer
Theoretical Research Program (M.R.K.), and the National
Science Foundation through grants AST-0807739 (M.R.K.)
and AST-0901055 (S.S.R.O.). Computational resources were
provided by the NSF San Diego Supercomputing Center through
NPACI program grant UCB267.

Figure 11.7: Distributions of 13CO
(grayscale) and young stellar objects
(black crosses) in velocity (x axis) and
position on the sky in one dimension
(y axis) in a simulation of the Orion
Nebula Cluster (Offner et al., 2009).

The kinematics also arise from the properties of cold, turbulent
gas. One general feature of such flows is a density-velocity anti-
correlation. The densest regions of gas are produced by strong
converging shocks, and immediately after the passage of such a
shock the velocity is small because of the cancellation of opposing
fluid velocities. The stars form from these dense, shocked regions,
and so they inherit the low velocities of the dense gas out of which
they form – in some sense the stars are simply the tip of the density
distribution. Again, simulations can qualitatively and quantitatively
reproduce the observed kinematics. Figure 11.7 shows an example.

11.2.2 Gas Removal and the Transition to Gas-Free Evolution

It seems that the spatial and kinematic arrangements of young stars
are understood reasonably well. This is mainly because the physics
that is responsible for them – gravity plus hydrodynamics – is well
understood and easy to simulate. Where we start to run into trouble
is when we try to follow the transition from gas-dominated to gas-
free evolution, where stellar feedback almost certainly plays a role.

First of all, as a baseline, let us consider what happens if we
don’t include any feedback. We have already seen that this creates
star formation rates εff that are ∼ 2 orders of magnitude too high.
However, omitting feedback also leads to problems when it comes to
stellar clustering, because if one omits feedback, then order unity of
the gas is transformed into stars. The result is that, if the gas cloud
from which the stars formed was bound, the resulting stellar system
is bound, and thus all star formation occurs in bound clusters.

In fact, it’s even worse than that: even if one starts with an un-
bound gas cloud, the results is still that most of the stars are members
of bound clusters if the star formation is able to consume most of
the gas. This happens because most of the kinetic energy is on large
scales, so that, even if the entire cloud is unbound, there are plenty of
sub-regions within it that become bound as the turbulence dissipates
(Clark & Bonnell, 2004). The result is that unbound clouds wind up
fragmenting into a few clusters that are unbound from one another,
but which are at internally bound. Thus explaining the observed fact
that most stars are not members of bound clusters requires some
mechanism to truncate star formation well before the majority of the
mass is transformed to stars.

Rapid Versus Adiabatic Mass Loss To see what fraction of the gas
mass must be lost to render the system unbound, we can begin with
a simple argument. Let us consider a system of gas and stars with
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total mass M in virial equilibrium, and with negligible support from
magnetic fields. In this case, we have

2T +W = 0, (11.5)

where T is the total thermal plus kinetic energy, andW is the grav-
itational potential energy. Now let us consider what happens if we
remove mass from the system, reducing the mass from M to εM. We
can envision that this is because a fraction ε of the starting gas mass
has been turned into stars, while the remaining fraction 1− ε is in the
form of gas that is removed by some form of stellar feedback.

First suppose the removal is very rapid, on a timescale much
shorter than the crossing time or free-fall time. In this case there will
be no time for the system to adjust, and all the particles that remain
will keep the same velocity and temperature. Thus the new kinetic
energy is

T ′ = εT . (11.6)

Similarly, the positions of all particles that remain will be unchanged,
so if the mass removal is uniform (i.e., we remove mass by randomly
removing a certain fraction of the particles, without regard for their
location) then the new potential energy will be

W ′ = ε2W . (11.7)

The total energy of the system after mass removal is

E′ = T ′ +W ′ = εT + ε2W = ε(1− 2ε)T = ε

(
ε− 1

2

)
W (11.8)

Since T > 0 andW < 0, it immediately follows that the total energy
of the system after mass removal is negative if and only if ε > 1/2.
Thus the system remains bound only if we remove less than 1/2 the
mass, and becomes unbound if we remove more than 1/2 the mass.

If the system remains bound, it will eventually re-virialize at a
new, larger radius. We can solve for this radius from the equations
we have already written down. The total energy of a system in virial
equilibrium is

E =
W
2

= −a
GM2

2R
, (11.9)

so if the system re-virializes the new radius R′ must obey

E′ = −a
G(εM)2

2R′
. (11.10)

However, we also know that

E′ = ε

(
ε− 1

2

)
W = −ε

(
ε− 1

2

)
a

GM2

R
, (11.11)
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and combining these two statements we find that the new radius is

R′ =
ε

2ε− 1
R. (11.12)

Now consider the opposite limit, where mass is removed very
slowly compared to the crossing time. To see what happens in this
case, it is helpful to imagine the mass loss as occurring in very small
increments, and after each increment of mass loss waiting for the
system to re-establish virial equilibrium before removing any more
mass. Such mass loss if referred to as adiabatic. If we change the
mass by an amount dM (with the sign convention that dM < 0
indicates mass loss), we can find the change in radius dR by Taylor
expanding the equation we just derived for the new radius, recalling
that ε = 1 + dM/M:

R′ =
ε

2ε− 1
R =

1 + dM/M
1 + 2dM/M

R =

[
1− dM

M
+ O

(
dM2

M2

)]
R (11.13)

Thus
dR
R

=
R′ − R

R
= −dM

M
, (11.14)

and if we integrate both sides then we obtain

ln R = − ln M + const =⇒ R′ ∝
1
M

. (11.15)

Thus if we reduce the mass from M to εM but do it adiabatically,
the radius changes from R to R/ε. The system remains bound at all
times, and just expands smoothly.

These simple arguments would suggest that mass loss should
produce a bound cluster if the star formation efficiency is > 50%
and or the mass removal is slow, and an unbound set of stars if the
efficiency is < 50% and the mass removal is fast. In reality, life is
more complicated than these simple arguments suggest, for a few
reasons.

First, even if gas removal is rapid, some stars will still become
unbound even if ε > 1/2, and some will still remain bound even if
ε < 1/2. This is because the energy is not perfectly shared among
the stars. Instead, at any given instant, some stars are moving faster
than their average speed, and some are moving slower. Those that
are moving rapidly at the instant when mass is removed will simply
sail on out of the much-reduced potential well without sharing their
energy, and thus can be lost even if ε > 1/2. Conversely, the slowest-
moving stars will not escape even if there is a very large reduction in
the potential well, because they will not have time to acquire energy
from the faster stars that escape. Thus for rapid mass loss, there isn’t
a sharp boundary at ε = 1/2. Instead, there is more of a smooth
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transition from no stars becoming unbound at ε ∼ 1 to no stars
remaining at ε ∼ 0.

Second, we have done our calculations in a vacuum, but in reality
star clusters exist inside the galactic potential, and this creates a tidal
gravitational field. If a star wanders too far from the cluster, the tidal
field of the galaxy will pull it off. Thus our conclusion that, in the
adiabatic case, the cluster always remains bound and simply expands
must fail once the expansion proceeds too far. The outermost parts
of the cluster will start to be stripped if they expand out too far, and
if the expansion proceeds so far that the mean density of the cluster
becomes too low, the cluster will be pulled apart entirely.

Third, the calculation we have just gone through assumes that
the system stars in virial equilibrium, with the stars moving at the
speed expected for virial balance. However, as we discussed before,
this is not a good assumption: the stars have a much lower velocity
dispersion than the gas when the cluster is young, and thus are
much harder to unbind than the above argument suggests. If star
formation continues for more than a single crossing time, this should
become less and less of a problem as time passes and the stars are
able to relax and dynamically heat up in the potential well of the
gas. However, if star formation is ended very rapidly, in a crossing
time, then the efficiency will have to be even lower than the value
we have just estimated to be able to unbind the stars, since they are
starting from much lower kinetic energies than they would have in
virial balance.

The Cluster Formation Efficiency Given the theoretical modeling we
have just performed, what can we say about what fraction of star
formation will result in bound stellar clusters that will survive the
initial gas expulsion? To address this question, we must be able
to calculate the star formation efficiency, which is of course a very
difficult problem, quite analogous to the problem of understanding
what limits the rate of star formation overall. The answer almost
certainly involves some sort of stellar feedback, so let us consider a
simple model for how that might work.

Let us consider a spherical gas cloud of initial mass M and radius
R, which begins forming stars. Star formation ends when the stars
are able to inject momentum into the remaining gas at a rate high
enough to raise that gas to a speed of order the escape speed in a
time comparable to the crossing time,

ve ∼
√

GM
R

. (11.16)

If the stellar mass at any given time is εM, then the momentum
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injection rate is

ṗ =

〈
ṗ

M∗

〉
εM, (11.17)

where the quantity in angle brackets is momentum per unit time per
unit stellar mass provided by a zero age population of stars. Thus
our condition is that star formation ceases when

Mve ∼ ṗtcr ∼
〈

ṗ
M∗

〉
εM

R
ve

, (11.18)

where, since we are dropping factors of order unity, we have simply
taken tcr ∼ R/ve.

Re-arranging, we conclude that star formation should cease and
gas should be expelled when

ε ∼
〈

ṗ
M∗

〉−1 v2
e

R
∼
〈

ṗ
M∗

〉−1
GΣ, (11.19)

where Σ ∼ M/R2 is the surface density of the cloud.
Thus we expect to achieve a star formation efficiency of ε ∼ 0.5

when 〈
ṗ

M∗

〉
∼ GΣ. (11.20)

Just to give a sense of what this implies, for stellar radiation pressure
as the dominant feedback mechanism, we showed earlier in class that
〈 ṗ/M∗〉 for stellar radiation is 23 km s−1 Myr−1, and plugging this in
we obtain Σ ∼ 1 g cm−2. Thus regions with surface densities of ∼ 1 g
cm−2 should be able to form bound clusters, while those with lower
surface densities should not. This might plausibly explain why most
regions do not form bound clusters.

However, this is an extremely crude calculation, and it assumes
that one can define a well-defined “cloud" with a well-defined sur-
face density. Real clouds, of course, have complex fractal structures.
The suggested literature reading for this chapter, Kruijssen (2012), is
an attempt to develop a theory somewhat like this for a more realistic
model of the structure of a cloud.

The Cluster Mass Function As a final topic for this chapter, what are
the implications of this sort of analysis for the cluster mass function?
Again, we will proceed with a spherical cow style of analysis. Con-
sider a collection of star-forming gas clouds with an observed mass
spectrum dNobs/dMg. Each such cloud lives for a time t`(Mg) before
forming its stars and dispersing, so the cluster formation rate is

dNform
dMg

∝
1

t`(Mg)

dNobs
dMg

. (11.21)
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Now let ε be the final star formation efficiency for a cloud of mass
Mg, and let fcl(ε) be the fraction of the stars that remain bound
following gas removal. Thus the final mass of the star cluster formed
will be

Mc = fclεMg. (11.22)

From this we can calculate the formation rate for star clusters of mass
Mc:

dNform
dMc

=

(
dMc

dMg

)−1 dNform
dMg

(11.23)

∝
[

ε fcl +

(
fcl +

d fcl
d ln ε

)
dε

d ln Mg

]−1

· 1
t`(Mg)

dNobs
dMg

. (11.24)

Let’s unpack this result a bit. It tells us how to translate the ob-
served cloud mass function into a formation rate for star clusters of
different masses. This relationship depends on several factors. The
factor 1/t`(Mg) simply accounts for the fact that our observed cata-
log of clouds oversamples the clouds that stick around the longest.
The factor ε fcl just translates from gas cloud mass to cluster mass.
The remaining factor, ( fcl + d fcl/d ln ε)(dε/d ln Mg), compensates for
the way the gas cloud mass function gets compressed or expanded
due to any non-linear mapping between gas cloud mass and final star
cluster mass. The mapping will be non-linear if the star formation
efficiency is not constant with gas cloud mass, i.e., if dε/d ln Mg is
non-zero.

Since observed gas cloud mass functions are not too far from the
dN/dM ∝ M−2 observed for the final star cluster mass function, this
implies that the terms in square brackets cannot be extremely strong
functions of Mg. This is interesting, because it implies that the star
formation efficiency ε cannot be a very strong function of gas cloud
mass.
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Suggested background reading:

• Offner, S. S. R., et al. 2014, in “Proto-
stars and Planets VI", ed. H. Beuther
et al., pp. 53-75

Suggested literature:

• van Dokkum, P. G., & Conroy, C.
2010, Nature, 468, 940

• da Rio, N., et al. 2012, ApJ, 748, 14

As we continue to march downward in size scale, we now turn
from the way gas clouds break up into clusters to the way clusters
break up into individual stars. This is the subject of the initial mass
function (IMF), the distribution of stellar masses that result from
the star formation process. The IMF is perhaps the single most
important distribution in stellar and galactic astrophysics. Almost all
inferences that go from light to physical properties for unresolved
stellar populations rely on an assumed form of the IMF, as do almost
all models of galaxy formation and the ISM. For this reason, we the
next two chapters will focus on the IMF. This chapter is dedicated to
observations, and the next to theoretical modeling.

12.1 Resolved Stellar Populations

To start with, how do we go about measuring the IMF? There are two
major strategies. One is to use direct star counts in regions where we
can resolve individual stars. The other is to use integrated light from
more distant regions where we cannot.

12.1.1 Field Stars

The first attempts to measure the IMF were by Salpeter (1955) (for
those counting, nearly 5000 citations as of this writing), using stars
in the Solar neighborhood, and the use of Solar neighborhood stars
remains one of the main strategies for measuring the IMF today.
Suppose that we want to measure the IMF of the field stars within
some volume or angular region around the Sun. What steps must we
carry out?

Constructing the Luminosity Function The first step is to construct a
luminosity function for the stars in our survey volume in one or more
photometric bands. This by itself is a non-trivial task, because we

http://adsabs.harvard.edu/abs/2014prpl.conf...53O
http://adsabs.harvard.edu/abs/2014prpl.conf...53O
http://adsabs.harvard.edu/abs/2014prpl.conf...53O
http://adsabs.harvard.edu/abs/2010Natur.468..940V
http://adsabs.harvard.edu/abs/2010Natur.468..940V
http://adsabs.harvard.edu/abs/2012ApJ...748...14D
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require absolute luminosities, which means we require distances. If
we are carrying out a volume-limited instead of a flux-limited survey,
we also require distances to determine if the target stars are within
our survey volume.

The most accurate distances available are from parallax, but this
presents a challenge. To measure the IMF, we require a sample of
stars that extends down to the lowest masses we wish to measure.
As one proceeds to lower masses, the stars very rapidly become
dimmer, and as they become dimmer it becomes harder and harder
to obtain accurate parallax distances. For ∼ 0.1 M� stars, typical
absolute V band magnitudes are MV ∼ 14, and parallax catalogs
at such magnitudes are only complete out to ∼ 5− 10 pc. A survey
of this volume only contains ∼ 200− 300 stars and brown dwarfs,
and this sample size presents a fundamental limit on how well
the IMF can be measured. If one reduces the mass range being
studied, parallax catalogs can go out somewhat further, but then one
is trading off sample size against the mass range that the study can
probe. Hopefully Gaia will improve this situation significantly.
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Figure 5. Color–color diagrams of the final photometric sample with the 5 Gyr isochrones of Baraffe et al. (1998, red dashed line) and Girardi et al. (2004, yellow
dashed line) overplotted. The contours represent 0.2% of our entire sample, with contours increasing every 10 stars per 0.05 color–color bin. Note that the model
predictions fail by nearly 1 mag in some locations of the stellar locus.
(A color version of this figure is available in the online journal.)
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Figure 6. Hess diagram for objects identified as stars in the SDSS pipeline, but
as galaxies with high-resolution ACS imaging in the COSMOS footprint (red
filled circles). The black points show 0.02% of the final stellar sample used in
the present analysis. Note that galaxy contamination is the most significant at
faint, blue colors. These colors and magnitudes are not probed by our analysis,
since these objects lie beyond our 4 × 4 × 4 kpc distance cut.
(A color version of this figure is available in the online journal.)

stars, clusters, etc.), and mathematical relations are fitted to their
color (or spectral type)—absolute magnitude locus. Thus, the
color of a star can be used to estimate its absolute magnitude,
and in turn, its distance, by the well-known distance modulus
(m − M):

mλ,1 − Mλ,1(mλ,1 − mλ,2) = 5logd − 5, (1)

where d is the distance, mλ,1 is the apparent magnitude in one
filter, and mλ,1 −mλ,2 is the color from two filters, which is used
to calculate the absolute magnitude, Mλ,1.

There have been multiple photometric parallax relations,10

as shown in Figure 7, constructed for low-mass stars observed
by SDSS (Hawley et al. 2002; Williams et al. 2002; West et al.

10 Photometric parallax relations are often referred to as color–magnitude
relations. We use both names interchangeably throughout this manuscript.
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D. A. Golimowski et al. 2010, in prep.
This Study

Figure 7. Mr vs. r − i CMD. The parallax stars from the nearby star sample are
shown as filled circles, and the best-fit line from Table 4 is the solid red line.
Other existing parallax relations are plotted for comparison: West et al. (2005,
purple dash-dotted line), Jurić et al. (2008, their “bright” relation; green dash-
dotted line), Sesar et al. (2008, yellow dash-dotted line), and D. A. Golimowski
et al. (2010, in preparation, solid blue line). The original West et al. (2005)
relations have been transformed using the data from their Table 1. In addition,
the 5 Gyr isochrone from the Baraffe et al. (1998) models appears as the dashed
line.
(A color version of this figure is available in the online journal.)

2005; Jurić et al. 2008; Sesar et al. 2008; D. A. Golimowski et al.
2010, in preparation). There is a spread among the relations,
seen in Figure 8, which are valid over different color ranges.
Additional photometry in ugrizJHKs of a large sample of nearby

Figure 12.1: Color-magnitude diagram
for stars with well-measured parallax
distances Bochanski et al. (2010). The
filters used are the SDSS r and i.

For these reasons, more recent studies have tended to rely on less
accurate spectroscopic or photometric distances. These introduce
significant uncertainties in the luminosity function, but they are
more than compensated for by the vastly larger number of stars
available, which in the most recent studies can be > 106. The general
procedure for photometric distances is to construct color-magnitude
(CMD) diagrams in one or more colors for Solar neighborhood stars
using the limited sample of stars with measured parallax distances,
perhaps aided by theoretical models. Figure 12.1 shows an example
of such a CMD. Each observed star with an unknown distance is then
assigned an absolute magnitude based on its color and the CMD.
The absolute magnitude plus the observed magnitude also gives a
distance. The spectroscopic parallax method is analogous, except
that one uses spectral type - magnitude diagrams (STMD) in place
of color-magnitude ones to assign absolute magnitudes. This can
be more accurate, but requires at least low resolution spectroscopy
instead of simply photometry.

Bias Correction Once that procedure is done, one has in hand an
absolute luminosity function, either over a defined volume or (more-
commonly) a defined absolute magnitude limit. The next step is
to correct it for a series of biases. We will not go into the technical
details of how the corrections are made, but it is worth going through
the list just to understand the issues, and why this is not a trivial
task.

Metallicity bias: the reference CMDs or STMDs used to assign abso-
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lute magnitudes are constructed from samples very close to the Sun
with parallax distances. However, there is a known negative metallic-
ity gradient with height above the galactic plane, so a survey going
out to larger distances will have a lower average metallicity than the
reference sample. This matters because stars with lower metallicity
have higher effective temperature and earlier spectral type than stars
of the same mass with lower metallicity. (They have slightly higher
absolute luminosity as well, but this is a smaller effect.) As a result, if
the CMD or spectral type-magnitude diagram used to assign absolute
magnitudes is constructed for Solar metallicity stars, but an actual
star being observed is sub-Solar, then we will tend to assign too high
an absolute luminosity based on the color, and, when comparing
with the observed luminosity, too large a distance. We can correct for
this bias if we know the vertical metallicity gradient of the galaxy.

Extinction bias: the reference CMDs / STMDs are constructed
for nearby stars, which are systematically less extincted than more
distant stars because their light travels through less of the dusty
galactic disk. Dust extinction reddens starlight, which causes the
more distant stars to be assigned artificially red colors, and thus artifi-
cially low magnitudes. This in turn causes their absolute magnitudes
and distances to be underestimated, moving stars from their true
luminosities to lower values. These effects can be mitigated with
knowledge of the shape of the dust extinction curve and estimates of
how much extinction there is likely to be as a function of distance.

Malmquist bias: there is some scatter in the magnitudes of stars
at fixed color, both due to the intrinsic physical width of the main
sequence (e.g., due to varying metallicity, age, stellar rotation) and
due to measurement error. Thus at fixed color magnitudes can scatter
up or down. Consider how this affects stars that are near the distance
of magnitude limit for the survey: stars whose true magnitude
should place them just outside the survey volume or flux limit will
be artificially scatter into the survey if they scatter up but not if they
scatter down, and those whose true magnitude should place them
within the survey will be removed if they scatter to lower magnitude.
This asymmetry means that, for stars near the distance or magnitude
cutoff of the survey, the errors are not symmetric; they are much
more likely to be in the direction of positive than negative flux. This
effect is known as Malmquist bias. It can be corrected to the extent
that one has a good idea of the size of the scatter in magnitude and
understands the survey selection.

Binarity: many stars are members of binary systems, and all but
the most distant of these will be unresolved in the observations
and will be mistaken for a single star. This has a number of subtle
effects, which we can think of in two limiting cases. If the binary is
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far from equal mass, say q = M2/M1 ∼ 0.3 or less, then the colors
and absolute magnitude will not be that different from those of the
primary stuff. Thus the main effect is that we do not see the lower
mass member of the system at all. We get a reasonable estimate for
the properties of the primary, but we miss the secondary entirely,
and therefore undercount the number of low luminosity stars. On
the other hand, if the mass ratio q ∼ 1, then the main effect is that
the color stays about the same, but using our CMD we assign the
luminosity of a single star when the true luminosity is actually twice
that. We therefore underestimate the distance, and artificially scatter
things into the survey (if it is volume limited) or out of the survey (if
it is luminosity-limited). At intermediate mass ratios, we get a little
of both effects.

The main means of correcting for this is, if we have a reasonable
estimate of the binary fraction of mass ratio distribution, to guess
a true luminosity function, determine which stars are binaries, add
them together as they would be added in the observation, filter the
resulting catalog through the survey selection, and compare to the
observed luminosity function. This procedure is then repeated, ad-
justing the guessed luminosity function, until the simulated observed
luminosity function matches the actually observed one.
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Table 5
Measured Galactic Structure

Property Raw Value Uncertainty

Zo,thin 255 pc 12 pc
Ro,thin 2200 pc 65 pc
Zo,thick 1360 pc 300 pc
Ro,thick 4100 pc 740 pc
f 0.97 0.006

Table 6
Bias-corrected Galactic Structure

Property Corrected Value Uncertainty

Zo,thin 300 pc 15 pc
Ro,thin 3100 pc 100 pc
Zo,thick 2100 pc 700 pc
Ro,thick 3700 pc 800 pc
f 0.96 0.02

those from the observations and analysis, e.g., Malmquist bias.
The systematic differences manifested in different CMRs, which
vary according to stellar metallicity, interstellar extinction, and
color, are isolated and discussed in Sections 5.1 and 5.2, and
the results are used in Section 5.3 to estimate the systematic
uncertainties in the LF and GS.

Malmquist bias (Section 5.4) and unresolved binarity
(Section 5.5) were quantified using Monte Carlo (MC) models.
Each model was populated with synthetic stars that were con-
sistent with the observed GS and LF. The mock stellar catalog
was analyzed with the same pipeline as the actual observations
and the differences between the input and “observed” GS and
LF were used to correct the observed values.

5.1. Systematic CMRs: Metallicity

A star with low metallicity will have a higher luminosity
and temperature compared to its solar-metallicity counterpart
of the same mass, as first described by Sandage & Eggen
(1959). However, at a fixed color, stars with lower metallicities
have fainter absolute magnitudes. Failing to account for this
effect artificially brightens low-metallicity stars, increasing their
estimated distance. This inflates densities at large distances,
increasing the observed scale heights (e.g., King et al. 1990).

Quantifying the effects of metallicity on low-mass dwarfs
is complicated by multiple factors. First, direct metallicity
measurements of these cool stars are difficult (e.g., Woolf &
Wallerstein 2006; Johnson & Apps 2009), as current models do
not accurately reproduce their complex spectral features. Cur-
rently, measurements of metallicity-sensitive molecular band
heads (CaH and TiO) are used to estimate the metallicity of M
dwarfs at the ∼1 dex level (see Gizis 1997; Lépine et al. 2003;
Burgasser & Kirkpatrick 2006; West et al. 2008), but detailed
measurements are only available for a few stars. The effects of
metallicity on the absolute magnitudes of low-mass stars are
poorly constrained. Accurate parallaxes for nearby subdwarfs
do exist (Monet et al. 1992; Reid 1997; Burgasser et al. 2008),
but measurements of their precise metal abundances are diffi-
cult given the extreme complexity of calculating the opacity of
the molecular absorption bands that dominate the spectra of M
dwarfs. Observations of clusters with known metallicities could
mitigate this problem (Clem et al. 2008; An et al. 2008), but
there are no comprehensive observations in the ugriz system
that probe the lower main sequence.
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Figure 15. Raw r-band LF for the stellar sample, using the (Mr, r − z) CMR.
Note the smooth behavior, with a peak near Mr ∼ 11, corresponding to a spectral
type of ∼M4. The error bars (many of which are smaller than the points) are
the formal uncertainties from fitting the local densities in each 0.5 mag absolute
magnitude slice in stellar density.

To test the systematic effects of metallicity on this study, the
([Fe/H],∆Mr ) relation from Ivezić et al. (2008) was adopted.
We note that this relation is appropriate for more luminous F
and G stars, near the main-sequence turnoff, but should give us
a rough estimate for the magnitude offset. The adopted Galactic
metallicity gradient is

[Fe/H] = −0.0958 − 2.77 × 10−4|Z|. (9)

At small Galactic heights (Z ! 100 pc), this linear gradient
produces a metallicity of about [Fe/H] = −0.1, appropriate for
nearby, local stars (Allende Prieto et al. 2004). At a height of
∼2 kpc (the maximum height probed by this study), the metal-
licity is [Fe/H] ∼−0.65, consistent with measured distributions
(Ivezić et al. 2008). The actual metallicity distribution is prob-
ably more complex, but given the uncertainties associated with
the effects of metallicity on M dwarfs, adopting a more complex
description is not justified. The correction to the absolute mag-
nitude, ∆Mr , measured from F and G stars in clusters of known
metallicity and distance (Ivezić et al. 2008) is given by

∆Mr = −0.10920 − 1.11[Fe/H] − 0.18[Fe/H]2. (10)

Substituting Equation (9) into Equation (10) yields a quadratic
equation for ∆Mr in Galactic height. After initially assigning
absolute magnitudes and distances with the CMRs appropriate
for nearby stars, each star’s estimated height above the plane,
Zini, was computed. This is related to the star’s actual height,
Ztrue, through the following equation:

Ztrue = Zini10
−∆Mr (Ztrue)

5 . (11)

A star’s true height above the plane was calculated by finding
the root of this nonlinear equation. Since ∆Mr is a positive value,
the actual distance from the Galactic plane, Ztrue, is smaller
than the initial estimate, Zini. As explained above, this effect
becomes important at larger distances, moving stars inward and
decreasing the density gradient. Thus, if metallicity effects are
neglected, the scale heights and lengths are overestimated.
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Figure 20. System and single-star Mr LFs for our four different binary
prescriptions. The spread between prescriptions in each bin is used to calculate
the final uncertainty in the system and single-star LFs.
(A color version of this figure is available in the online journal.)

colors and brightnesses are calculated for each system. Scatter
is introduced in color and absolute magnitude, as described
in Section 5.4. The stellar catalog is analyzed with the same
pipeline as the data, and the output model LF is compared to
the observed LF. The input PSLF is then tweaked according to
the differences between the observed system LF and the model
system LF. This loop is repeated until the artificial system LF
matches the observed system LF. Note that the GS parameters
are also adjusted during this process, and the bias-corrected
values are given in Table 6. The thin disk scale height, which
has a strong effect on the derived LF, is in very good agreement
with previous values. As the measured thin disk scale height
increases, the density gradients decrease, and a smaller local
density is needed to explain distant structures. This change
is most pronounced at the bright end, where the majority of
the stars are many thin disk scale heights away from the Sun
(see Figure 19). The preferred model thin disk and thick disk
scale lengths were found to be similar. This is most likely due
to the limited radial extent of the survey compared to their
typical scale lengths. Upcoming IR surveys of disk stars, such
as APOGEE (Allende Prieto et al. 2008), should provide more
accurate estimates of these parameters.

SDSS observations form a sensitive probe of the thin disk
and thick disk scale heights, since the survey focused mainly on
the northern Galactic cap. Our estimates suggest a larger thick
disk scale height and smaller thick disk fraction than recent
studies (e.g., Siegel et al. 2002; Jurić et al. 2008). However,
these two parameters are highly degenerate (see Figure 1 of
Siegel et al. 2002). In particular, the differences between our
investigation and the Jurić et al. (2008) study highlight the sen-
sitivity of these parameters to the assumed CMR and density
profiles, as they included a halo in their study and we did not.
The Jurić et al. (2008) study sampled larger distances than our
work, which may affect the resulting Galactic parameters. How-
ever, the smaller normalization found in our study is in agree-
ment with recent results from a kinematic analysis of nearby
M dwarfs with SDSS spectroscopy (J. S. Pineda et al. 2010, in
preparation). They find a relative normalization of ∼5%, simi-
lar to the present investigation. The discrepancy in scale height
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Figure 21. Single-star (red filled circles) and system (black filled circles) LFs.
Note that the major differences between our system and single-star LFs occur at
low luminosities, since low-mass stars can be companions to stars of any higher
mass, including masses above those sampled here.
(A color version of this figure is available in the online journal.)

highlights the need for additional investigations into the thick
disk and suggests that future investigations should be presented
in terms of stellar mass contained in the thick disk, not scale
height and normalization.

The iterative process described above accounts for binary
stars in the sample and allows us to compare the system LF
and single-star LF in Figure 20. Most observed LFs are system
LFs, except for the local volume-limited surveys. However, most
theoretical investigations into the IMF predict the form of the
single-star MF. Note that for all binary prescriptions, the largest
differences between the two LFs are seen at the faintest Mr, since
the lowest-luminosity stars are most easily hidden in binary
systems.

6. RESULTS: LUMINOSITY FUNCTION

The final adopted system and single-star Mr LFs are presented
in Figure 21. The LFs were corrected for unresolved binarity
and Malmquist bias. The uncertainty in each bin is computed
from the spread due to CMR differences, binary prescriptions,
and Malmquist corrections. The mean LFs and uncertainties are
listed in Tables 7 and 8. The differences between the single
and system LFs are discussed below and compared to previous
studies in both Mr and MJ .

6.1. Single-star versus System Luminosity Functions

Figure 21 demonstrates a clear difference between the single-
star LF and the system LF. The single-star LF rises above
the system LF near the peak at Mr ∼ 11 (or a spectral
type ∼M4) and maintains a density about twice that of the
system LF.13 This implies that lower-luminosity stars are easily
hidden in binary systems, but isolated low-luminosity systems

13 We note that the differences between our system and single-star LFs
disagree considerably with those reported by Covey et al. (2008). These
differences were investigated, and the Covey et al. (2008) binary corrections
were found to be erroneous, with companion stars sampled from the MF
convolved with the full sample volume, which is inappropriate for companion
stars. The authors regret the error.

Figure 12.2: Luminosity function for
Milky Way stars before (top) and after
(bottom) bias correction (Bochanski
et al., 2010).

Once all these bias corrections are made, the result is a corrected
luminosity function that (should) faithfully reproduce the actual
luminosity function in the survey volume. Figure 12.2 shows an
example of raw and corrected luminosity functions.

The Mass-Magnitude Relation The next step is to convert the lumi-
nosity function into a mass function, which requires knowledge of
the mass-magnitude relation (MMR) in whatever photometric band
we have used for our luminosity function. This must be determined
by either theoretical modeling, empirical calibration, or both. Par-
ticularly at the low mass end, the theoretical models tend to have
significant uncertainties arising from complex atmospheric chemistry
that affects the optical and even near-infrared colors. For empirical
calibrations, the data are only as good as the empirical mass deter-
minations, which must come from orbit modeling. This requires the
usual schemes for measuring stellar masses from orbits, e.g., binaries
that are both spectroscopic and eclipsing and thus have known in-
clinations, or visual binaries with measured radial velocities. Figure
12.3 shows an example empirical MMR.
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Fig. 1.V, J, H and K band M/L relations. The circles are data from Henry &McCarthy (1993), Torres et al. (1999), Henry et al. (1999), Benedict
et al. (2000) and Metcalfe et al. (1996). The triangles represent our recent mesurements (Ségransan et al. 2000, in prep.; and Forveille et al.
1999). The masses and luminosities used in this figure are also listed in Table 3. The two curves represent the piecewise linear relation of Henry
& McCarthy (1993; dotted line) and our polynomial fit (solid line).

thus in principle be needed to derive V band magnitude differ-
ences. A comparison with the direct measurements of Henry et
al. (1999) for the sources in common shows maximum relative
errors of∼10% from neglecting this transformation: a 0.5 mag-
nitude contrast is in error by at most 0.05 magnitude, and a
2 magnitudes one by at most 0.2 magnitude. We have therefore
adopted the larger of 0.05 magnitude and 10% of the magnitude
difference as a conservative estimate of the standard error for
these spectroscopic magnitude differences.

3. Visible and infrared mass/Luminosity relations

The masses are listed in Table 3, with the individual absolute
magnitudes derived from Table 1 and Table 2 for the four photo-
metric bands (V, J, H and K) which have significant numbers of
measurements. Fig. 1 shows the M/L relations for these 4 pho-
tometric bands. As can be seen immediately in Fig. 1,∼20 stars
define the V and K relations, while the J and H ones still have
smaller numbers of stars. A number of systems still lack mag-
nitude difference measurements in those two bands.

Fig. 2 presents the relation between stellar mass and the V-K
colour index. This relation probably has too large an intrinsic

Fig. 2. mass-colour (V-K) relation for M dwarfs. The three curves are
5 Gyr theoretical isochrones from Baraffe et al. (1998) for two metal-
licities and our polynomial fit. The Siess et al. (2000) model are rep-
resented for 5 Gyr and solar metallicity with asterisks.

dispersions to be generally useful, and is provided here mostly
for illustration, and as a warning to potential users of similar
relations.

Figure 12.3: Empirically-measured
mass-magnitude relationship in V band
(Delfosse et al., 2000).

As with the luminosity function, there are a number of possible
biases, because the stars are not uniform in either age or metallic-
ity, and as a result there is no true single MMR. This would only
introduce a random error if the age and metallicity distribution of
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the sample used to construct the MMR were the same as that in the
IMF survey, but there is no reason to believe that this is actually
the case. The selection function used to determine the empirical
mass-magnitude sample is complex and poorly characterized, but
it is certainly biased towards systems closer to the Sun, for example.
Strategies to mitigate this are similar to those used to mitigate the
corresponding biases in the luminosity function.

Once the mass-magnitude relationship and any bias corrections
have been applied, the result is a measure of the field IMF. The
results appear to be well-fit by a lognormal distribution or a broken
powerlaw, along the lines of the Chabrier (2005) and Kroupa & Boily
(2002) IMFs introduced in Chapter 2.

Age Correction The strategy we have just described works fine
for stars up to ∼ 0.7 M� in mass. However, it fails with higher
mass stars, for one obvious reason: stars with masses larger than
this can evolve off the main sequence on timescales comparable to
the mean stellar age in the Solar neighborhood. Thus the quantity
we measure from this procedure is the present-day mass function
(PDMF), not the IMF. Even that is somewhat complicated because
stars’ luminosities start to evolve non-negligibly even before they
leave the main sequence, so there are potential errors in assigning
masses based on a MMR calibrated from younger stars.

One option in this case is simply to give up and not say anything
about the IMF at higher masses. However, there is another option,
which is to try to correct for the bias introduced by stellar evolution.
Suppose that we think we know both the star formation history of
the region we’re sampling, Ṁ∗(t), and the initial mass-dependent
main-sequence stellar lifetime, tMS(M). Let dN/dM be the IMF. In
this case, the total number of stars formed of the full lifetime of the
galaxy in a mass bin from M to M + dM is

dNform
dM

=
dN
dM

∫ 0

−∞
dt Ṁ∗(t) (12.1)

where t = 0 represents the present. In contrast, the number of stars
per unit mass still on the main sequence is

dNMS

dM
=

dN
dM

∫ 0

−tMS(M)
dt Ṁ∗(t) (12.2)

Thus if we measure the main sequence mass distribution dNMS/dM,
we can correct it to the IMF just by multiplying:

dN
dM

∝
dNMS

dM

∫ 0
−tMS(M) dt Ṁ∗(t)
∫ 0
−∞ dt Ṁ∗(t)

. (12.3)
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This simply reduces to scaling the number of observed stars by the
fraction of stars in that mass bin that are still alive today.

Obviously this correction is only as good as our knowledge of the
star formation history, and it becomes increasingly uncertain as the
correction factor becomes larger. Thus attempts to measure the IMF
from the galactic field even with age correction are generally limited
to masses of no more than a few M�.

12.1.2 Young Clusters

To measure the IMF for more massive stars requires a different
technique: surveys of young star clusters. The overall outline of
the technique is essentially the same as for the field: construct a
luminosity function, correct for biases, then use a mass-magnitude
relation to convert to a mass function. However, compared to the
field, studying a single cluster offers numerous advantages:

• If the population is young enough, then even the most massive
stars will remain on the main sequence, so there is no need to
worry about correcting from the PDMF to the IMF. Even for some-
what older clusters, one can probe to higher masses than would be
possible with the ∼ 5 Gyr old field population.

• The stellar population is generally uniform in metallicity or very
close to it, so there are no metallicity biases.

• The entire stellar population is at roughly the same distance, so
there are no Malmquist or extinction biases. Moreover, in some
cases the distance to the cluster is known to better than 10% from
radio parallax – some young stars flare in the radio, and with
radio interferometry it is possible to obtain parallax measurements
at much larger distances than would be possible for the same stars
in the optical.

• Low-mass stars and brown dwarfs are significantly more luminous
at young ages, and so the same magnitude limit will correspond to
a much lower mass limit, making it much easier to probe into the
brown dwarf regime.

These advantages also come with some significant costs.

• The statistics are generally much worse than for the field. The
most populous young cluster that is close enough for us to resolve
individual stars down to the hydrogen burning limit is the Orion
Nebula Cluster, and it contains only ∼ 103 − 104 stars, as compared
to ∼ 106 for the largest field surveys.
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• The MMR that is required to convert an observed magnitude
into a mass is much more complex in a young cluster, because a
significant fraction of the stars may be pre-main sequence. For
such stars, the magnitude is a function not just of the mass but
also the age, and one must fit both simultaneously, and with
significant theoretical uncertainty. We will discuss this issue more
later in the class. How much of a problem this is depends on the
cluster age – for a 100 Myr-old cluster like the Pleiades, all the
stars have reached the main sequence, while for a ∼ 1− 2 Myr-old
cluster like Orion, almost none have. However, there is an obvious
tradeoff here: in a Pleiades-aged cluster, the correction for stars
leaving the main sequence is significant, while for an Orion-aged
cluster it is negligible.

• For the youngest clusters, there is usually significant dust in the
vicinity of the stars, which introduces extinction and reddening
that is not the same from star to star. This introduces scatter, and
also potentially bias because the extinction may vary with position,
and there is a systematic variation between position and mass (see
next point).

• Mass segregation can be a problem. In young clusters, the most
massive stars are generally found closer to the center – whether
this is a result of primordial mass segregation (the stars formed
there), dynamical mass segregation (they formed elsewhere but
sank to the center), the result is the same. Conversely, low mass
stars are preferentially on the cluster outskirts. This means that
studies must be extremely careful to measure the IMF over the
full cluster, not just its outskirts or core; this can be hard in the
cluster center due to problems with crowding. Moreover, if the
extinction is not spatially uniform, more massive stars toward the
cluster center are likely to suffer systematically more extinction
that low-mass ones.

• Dynamical effects can also be a problem. A non-trivial fraction of
O and B stars are observed to be moving with very high spatial
velocities, above ∼ 50 km s−1. There are known as runaways. They
are likely created by close encounters between massive stars in
the core of a newly-formed cluster that lead to some stars being
ejected at speeds comparable to the orbital velocities in the en-
counter. Regardless of the cause, the fact that this happens means
that, depending on its age and how many ejections occurred, the
cluster may be missing some of its massive stars. Conversely, be-
cause low-mass stars are further from the center, if there is any
tidal stripping, that will preferentially remove low-mass stars.
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• Binary correction is harder for young stars because the binary
fraction as a function of mass is much less well known for young
clusters than it is for field stars.

Probably the best case for studying a very young cluster is the
Orion Nebula Cluster, which is 415 pc from the Sun. Its distance is
known to a few percent from radio interferometry. It contains several
thousand stars, providing relatively good statistics, and it is young
enough that all the stars are still on the main sequence. It is close
enough that we can resolve all the stars down to the brown dwarf
limit, and even beyond. However, the ONC’s most massive star is
only 38 M�, so to study the IMF at even higher masses requires the
use of more distant clusters within which we can’t resolve down to to
low masses.

For somewhat older clusters, the best case is almost certainly the
Pleiades, which has an age of about 120 Myr. It obviously has no very
massive stars left, but there are still ∼ 10 M� stars present, and it is
also close and very well-studied. The IMF inferred for the Pleiades
appears to be consistent with that measured in the ONC.

12.1.3 Globular Clusters

A final method for studying the IMF is to look at globular clusters.
Compare to young clusters, globular cluster lack the massive stars
because they are old, and suffer somewhat more from confusion
problems due to their larger distances. Otherwise they are quite
similar in terms of methodological advantages and disadvantages.

The main reason for investigating globular clusters is that they
provide us with the ability to measure the IMF in an environment
as different as possible from that of young clusters in forming in
the disk of the Milky Way today. The stars in globular clusters are
ancient and metal poor, and they provide the only means of accessing
that population which we have without resorting to integrated light
measurements. They are therefore a crucial bridge to the integrated
light methods we will discuss shortly.

The major challenge for globular clusters is that all the dynamical
effects are much worse, due to the longer time that the clusters have
had to evolve. Over long times, globular clusters systematically lose
low-mass stars due to tidal shocking and a phenomenon known
as two-body evaporation, whereby the cluster attempts to relax
to a Maxwellian velocity distribution, but, due to the fact that the
cluster is sitting in a tidal potential, the tail of that distribution keeps
escaping. This alters the IMF. There can also be stellar collisions,
which obviously move low mass stars into higher mass bins.

Accounting for all these effects is a major challenge, and the usual
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method is to adopt a proposed IMF and then try to simulate the
effects of stellar evaporation in order to predict the present-day mass
function that would be left. This is then compared to the observed
PDMF, and the underlying IMF is iteratively adjusted until they
match. This is obviously subject to considerable uncertainties.

12.1.4 General Results

The general results of these studies are that the IMF appears to
be fairly universal. There are claims for variation in the literature,
but they are generally based on statistical analyses that ignore (or
systematically underestimate) systematic errors, which are pervasive.
This is not to say that the IMF certainly is universal, just that there is
as yet no strongly convincing evidence for its variation. One possible
exception is in the nuclear star cluster of the Milky Way, where Lu
et al. (2013) report an IMF that is somewhat flatter than usual at the
high mass end. It is unclear if this is a true IMF effect resulting from
the very strange formation environment, or a dynamical effect.

12.2 Unresolved Stellar Populations

The main limitation of studying the IMF using resolved stars is that
it limits our studies to the Milky Way and, if we’re willing to forgo
observing below ∼ 1 M�, the Magellanic Clouds. This leaves us
with a very limited range of star-forming environments to study, at
least compared with the diversity of galaxies that has existed over
cosmological time, or even that exist in the present-day Universe.
To measure the IMF in more distant systems, we must resort to
techniques that rely on integrated light from unresolved stars.

12.2.1 Stellar Population Synthesis Methods

One method for working with integrated light is stellar population
synthesis: one starts with a proposed IMF, and then generates a
prediction for the stellar light from it. In the case of star clusters or
other mono-age populations, the predicted frequency-dependent
luminosity from a stellar population of mass M∗ is

Lν = M∗
∫ ∞

0

dN
dM

Lν(M, t) dM, (12.4)

where Lν(M, t) is the predicted specific luminosity of a star of mass
M and age t. For a population with a specified star formation history
(usually constant), one must further integrate over the star formation
history

Lν =
∫ ∞

0
Ṁ∗(t)

∫ ∞

0

dN
dM

Lν(M, t) dM dt (12.5)
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where Ṁ∗(t) is the star formation rate a time t in the past. The
predicted spectrum can then be compared to observations to test
whether the proposed IMF is consistent with them.

In practice when using this method to study the IMF, one selects
combinations of photometric filters or particular spectral features
that are particularly sensitive to certain regions of the IMF. One
prominent example of this is the ratio of Hα emission to emission in
other bands (or to inferred total mass). This probes the IMF because
Hα emission is a proxy for ionizing photons, because it is produced
by recombinations, and ionizing luminosity is dominated by ∼ 50
M� and larger stars. In contrast, other bands are more sensitive to
lower masses – how low depends on the choice of band, but even for
the bluest non-ionizing colors (say GALEX FUV), at most ∼ 20 M�.
Thus the ratio of Hα to other types of emission serves as a diagnostic
of the number of very massive stars per unit total mass or per unit
lower mass stars, and thus of the shape of the upper end of the IMF.

When comparing models to observations using this technique,
one must be careful to account for stochastic effects: because very
massive stars are rare, approximating the IMF using the integrals we
have written down will produce the right averages, but the disper-
sion about this average may be very large and asymmetric. In this
case Monte Carlo sampling of the IMF is required. Once one does
that, the result is a predicted PDF of ratios of Hα to other tracers, or
to total mass. One can then compare this to the observed distribution
of this ratio in a sample of star clusters in order to study whether
those star clusters’ light is consistent with a proposed IMF. One can
also use the same technique on entire galaxies (which are assumed to
have constant star formation rates) in order to check if the integrated
light from the galaxy is consistent with the proposed IMF.

This technique has been deployed in a range of nearby spirals
and dwarfs, and the results are that, when the stochastic correction
is properly included, the IMF is consistent with the same high end
slope of roughly dN/dM ∝ M−2.3 seen in resolved star counts.

A second technique has been to target two spectral features that
are sensitive to the low mass end of the IMF: the Na i doublet and
the Wing-Ford molecular FeH band. Both of these regions are useful
because they are produced by absorption by species found only in M
type stars, but they are also gravity-sensitive, so they are not found in
the spectra of M giants. They therefore filter out a contribution from
red giants, and only include red dwarfs. The strength of these two
features therefore measures the ratio of M dwarfs to K dwarfs, which
is effectively the ratio of ∼ 0.1− 3 M� stars to ∼ 0.3− 0.5 M� stars.

van Dokkum & Conroy (2010) used this technique on stacked
spectra of ellipticals in the Coma and Virgo clusters, and found that
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the spectral features there were not consistent with the IMF seen in
the galactic field and in young clusters. Instead, they found that the
spectrum required an IMF that continues to rise down to ∼ 0.1 M�
rather than having a turnover. This result was, and continues to be,
highly controversial due to concerns about unforeseen systematics
hiding in the stellar population synthesis modeling.
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Figure 1 | Detection of the Na I doublet and the Wing–Ford band. a, Spectra
in the vicinity of the l 5 8,183, l 5 8,195 Na I doublet for three stars from the
IRTF library12: a K0 giant, which dominates the light of old stellar populations;
an M6 dwarf, the (small) contribution of which to the integrated light is
sensitive to the form of the IMF at low masses; and an M3 giant, which has
potentially contaminating TiO spectral features in this wavelength range.
b, Averaged Keck/LRIS spectra of NGC 4261, NGC 4374, NGC 4472 and
NGC 4649 in the Virgo cluster (black line) and NGC 4840, NGC 4926, IC 3976
and NGC 4889 in the Coma cluster (grey line). Four exposures of 180 s were
obtained for each galaxy. The one-dimensional spectra were extracted from the
reduced two-dimensional data by summing the central 40, which corresponds
to about 0.4 kpc at the distance of Virgo and about 1.8 kpc at the distance of
Coma. We found little or no dependence of the results on the choice of aperture.

Coloured lines show stellar population synthesis models for a dwarf-deficient
‘bottom-light’ IMF14, a dwarf-rich ‘bottom-heavy’ IMF with x 5 23, and an
even more dwarf-rich IMF. The models are for an age of 10 Gyr and were
smoothed to the average velocity dispersion of the galaxies. The x 5 23 IMF
fits the spectrum remarkably well. c, Spectra and models around the dwarf-
sensitive Na I doublet. A Kroupa IMF, which is appropriate for the Milky Way,
does not produce a sufficient number of low-mass stars to explain the strength
of the absorption. An IMF steeper than Salpeter appears to be needed.
d–f, Spectra and models near the l 5 9,916 Wing–Ford band. The observed
Wing–Ford band also favours an IMF that is more abundant in low-mass stars
than the Salpeter IMF. All spectra and models were normalized by fitting low-
order polynomials (excluding the feature of interest). The polynomials were
quadratic in a, b, d and e and linear in c and f.
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Figure 2 | Constraining the IMF. a, Various stellar IMFs, ranging from a
‘bottom-light’ IMF with strongly suppressed dwarf formation14 (light blue) to
an extremely ‘bottom-heavy’ IMF with a slope x 5 23.5. The IMFs are
normalized at 1M[, because stars of approximately one solar mass dominate
the light of elliptical galaxies. b, Comparison of predicted line Na I and Wing–
Ford indices with the observed values. The indices were defined to be analogous

to those in refs 4 and 8. The Na I index has central wavelength 0.8195mm and
side bands at 0.816mm and 0.825mm. The Wing–Ford index has central
wavelength 0.992mm and side bands at 0.985mm and 0.998mm. The central
bands and side bands are all 20 Å wide. Both observed line indices are much
stronger than expected for a Kroupa IMF. The best fits are obtained for IMFs
that are slightly steeper than Salpeter.
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Figure 12.4: Top panels: sample spectra
of K and M giants and M dwarfs in the
Na i and Wing-Ford spectral regions.
Middle panels: averaged spectra
for Virgo cluster (black) and Coma
cluster (gray) ellipticals, overlayed
with predicted model spectra for four
possible IMFs, ranging from “bottom
light" (few dwarfs) to powerlaws of
increasing steepness (more dwarfs).
Bottom panels: zoom-ins on the Na i

and Wing-Ford regions in the previous
panels. Taken from van Dokkum &
Conroy (2010).

12.2.2 Mass to Light Ratio Methods

A second method of probing the IMF in unresolved stellar popu-
lations relies in measuring the mass independently of the starlight
and thereby inferring a mass to light ratio that can be compared to
models. As with the Na i and Wing-Ford methods, this is most easily
applied to old, gas-free stellar populations with no gas to complicate
the modeling. One can obtain an independent measurement of the
mass in two ways: from lensing of background objects, or from dy-
namical modeling in systems where the stellar velocity distribution
as a function of position has been determined using an IFU or similar
technique to get a spectrum at each position. Once it is obtained, the
mass map is divided by the light map to form a mass to light ratio.
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The main complication in comparing the light to mass ratio to
theoretical predictions from stellar population synthesis is that one
must account for dark matter, which can raise the mass to light ratio.
This requires some modeling, and is probably the most uncertain
part of the procedure. Of course if one allows a completely arbitrary
distribution of dark matter, then one can produce any light to mass
ratio that is heaver than one produced by the stars alone. However,
this might require extremely implausible dark matter distributions.
Thus the general procedure is to consider a set of “reasonable" dark
matter distributions and infer limits on the stellar mass to light ratio
from the extreme limiting cases.

A number of authors have used this technique and tentatively
found results consistent with those of van Dokkum & Conroy (2010),
i.e., that in giant elliptical galaxies the mass to light ratio is such that
one must have an IMF that produces less light per unit mass than the
Milky Way IMF.

12.3 Binaries

While this chapter is mostly about the IMF, the IMF is inextricably
bound up with the properties of binary star systems. This is partly
for observational reasons – the need to correct observed luminosity
functions for binarity – and partly for theoretical reasons, which we
shall discuss next time. We will therefore close with a discussion of
the observational status of the properties of binary stars, or stellar
multiples more generally.

12.3.1 Finding Binaries

Before diving in, we will briefly review how we find stellar binaries.
The history of this is interesting, because binary stars are one of the
first examples of successful use of statistical inference in astronomy.
Of course there are many stars that appear close together on the sky,
but it is non-trivial to determine which are true companions and
which are chance alignments. In the 1700s, it was not known if there
were any true binary stars. However, in 1767 the British astronomer
John Michell performed a statistical analysis of the locations of stars
on the sky, and showed that there were more close pairs than would
be expected from random placement. Here therefore concluded that
there must be true binaries. What is particularly impressive is that
this work predates a general understanding of Poisson distributions,
which were not fully understood until Poisson’s work in 1838.

Today binaries can be identified in several ways.

• Spectroscopic binaries: these are systems where the spectral lines of
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a star show periodic radial velocity variations that are consistent
with the star moving in a Keplerian orbit. Single-lined spectro-
scopic binaries are those where only one star’s moving lines are
seen, and double-lined ones are systems where two sets of lines
moving in opposite sense are seen. Spectroscopic detection is gen-
erally limited to binaries that are quite close, both for reasons of
velocity sensitivity and for reasons of timescale – wide orbits take
too long to produce a noticeable change in radial velocity.

• Eclipsing binaries: these are systems that show periodic light curve
variation consistent with one stars occulting the disk of another
star. As with spectroscopic binaries, this technique is mostly sen-
sitive to very close systems, because the probability of occultation
and the fraction of the a stellar disk blocked (and thus the strength
of the photometric variation) are higher for closer systems.

• Visual binaries: these are systems where the stars are far enough
apart to be resolved by a telescope, perhaps aided by adaptive
optics or similar techniques to improve contrast and angular reso-
lution. This technique is obviously sensitive primarily to binaries
with relatively wide orbits. Of course seeing two stars close to-
gether does not prove they are related, and so this category breaks
into sub-categories depending on how binarity is confirmed.

– One way of confirming the stars are related is measuring their
proper motions and showing that they have the same space
velocity. Systems of this sort are called common proper motions
binaries.

– Even better, if the stars have a short enough orbital period one
may be able to see the stars complete all or part of an orbit
around one another. Stars in this category are called astrometric
binaries.

– Finally, if the stars are close enough in the sky, one may simply
argue on probabilistic grounds that a chance alignment at that
small a separation is very unlikely, and therefore argue that the
stars are likely a binary on statistical grounds. I am unaware of
any particular name for binaries inferred in this manner.

Given these techniques, it is important to note that the hardest
binaries to find are usually those at intermediate separations – too
close to be visually resolved, but too distant to produce detectable
radial velocity variation, and too distant for eclipses to be likely. The
problem is exacerbated for more distant stars, since the minimum
physical separation for which it is possible to resolve a binary visu-
ally is obviously inversely proportional to distance. Massive stars,
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which are rare and therefore tend to be distant, are the worst exam-
ple of this. For example very little is known about companions to O
stars at ∼ 100 AU separations and mass ratios not near unity.

12.3.2 Binary Properties

Having reviewed the observational techniques, we now consider
what the observations reveal. There are a few basic facts about bina-
ries that any successful theory should be able to reproduce (but none
really do very well).

Figure 12.5: Multiple system fraction
versus primary star spectral type
measured for Hipparcos-identified
members of the Sco OB2 association;
different colors show different parts of
the association (Brown, 2001).

First, the binary fraction is a strong function of the mass of the
primary star. For O stars it approaches 100%, while for M and earlier
stars it is closer to 20%. Since the IMF is heavily weighted toward low
mass stars (by number), the majority of stars are single – Lada (2006)
estimates the single star fraction in the disk today as 60− 70%. Thus
the binary formation mechanism must be strongly mass-dependent.
Figure 12.5 summarizes this dependence.

Second, the binary period (or separation) distribution is extremely
broad and lacks many obvious features (Duquennoy & Mayor, 1991).
Depending on the stellar mass and the range of periods to which the
data are sensitive, this may be fit either by a lognormal in period, or
by a flat distribution in log P. The latter is known as Öpik’s Law, and
it states that there are equal numbers of binaries per logarithmic bin
in period (or in semi-major axis). That seems to break down at very
large and very small separations, but there is a broad plateau that is
close to flat.

For massive stars, there is some evidence for an excess at small
separations, indicating an excess of close binaries above what a flat
distribution would produce (Sana & Evans, 2011). However it is not
entirely clear how much weight to put on this result, since it requires
combining data sets gathered in highly different ways (i.e. putting
spectroscopic and visual binaries together), and because the selection
biases for both data sets are highly complex.

Third, close stellar companions do not appear to be drawn ran-
domly from the IMF. Instead, they are far more likely that a random
drawing from the IMF would predict to have masses close to the
mass of the primary. In contrast, long-period binaries are consistent
with random drawing from the IMF. We define the mass ratio of a
binary consisting of two stars M1 and M2 as q = M2/M1, where by
convention M1 > M2, so q runs from 0 to 1. Since that the IMF peaks
near 0.2 M�, we would expect random drawing from a sample with
primary masses well above 0.2 M� to produce many more binaries
with small q than large q. This is exactly what is seen for distant bi-
naries (> 1000 day periods), but the opposite trend is seen for closer
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binaries (Mazeh et al., 1992; Sana & Evans, 2011).





Problem Set 3

1. Toomre Instability.
Chapter 10 discusses the Toomre instability as a potentially im-
portant factor in driving star formation. It may also be relevant
to determining the maximum masses of molecular clouds. Here
we will derive the instability. We will consider a uniform infinitely
thin disk of surface density Σ occupying the z = 0 plane. The
disk has a flat rotation curve with velocity vR, so the angular ve-
locity is Ω = Ωêz, with Ω = vR/r at a distance r from the disk
center. The velocity of the fluid in the z = 0 plane is v and its
vertically-integrated pressure is Π =

∫ ∞
−∞ P dz = Σc2

s .

(a) Consider a coordinate system co-rotating with the disk, cen-
tered at a distance R from the disk center, oriented so that the
x direction is radially outward and the y direction is in the di-
rection of rotation. In this frame, we can derive the governing
equations by combining the vertically-integrated equations of
motion with the Poisson equation. This gives

∂Σ
∂t

+∇ · (Σv) = 0

∂v
∂t

+ (v · ∇)v = −∇Π
Σ
−∇φ− 2Ω× v + Ω2(xêx + yêy)

∇2φ = 4πGΣδ(z).

The last two terms in the second equation are the Coriolis
and centrifugal force terms. We wish to perform a stability
analysis of these equations. Consider a solution (Σ0, φ0) to
these equations in which the gas is in equilibrium (i.e. v = 0),
and add a small perturbation: Σ = Σ0 + εΣ1, v = v0 + εv1,
φ = φ0 + εφ1, where ε � 1. Derive the perturbed equations
by substituting these values of Σ, v, and φ into the equations of
motion and keeping all the terms that are linear in ε.

(b) The perturbed equations can be solved by Fourier analysis.
Consider a trial value of Σ1 described by a single Fourier mode
Σ1 = Σa exp[i(kx − ωt)], where we choose to orient our coor-
dinate system so that the wave vector k for this mode is in the
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x direction. As an ansatz for φ1, we will look for a solution of
the form φ1 = φa exp[i(kx − ωt) − |kz|]. (One can show that
the solution must take this form, but we will not do so here.)
Derive the relationship between φa and Σa.

(c) Now try a similar single-Fourier mode form for the perturbed
velocity: v1 = (vaxêx + vayêy) exp[i(kx − ωt)]. Derive three
equations relating the unknowns Σa, vax, and vay. You will find
it useful to expand Ω in a Taylor series around the origin of
your coordinate system, i.e., write Ω = Ω0 + (dΩ/dx)0x, where
Ω0 = vR/R and (dΩ/dx)0 = −Ω0/R.

(d) Show that these equations have non-trivial solutions only if

ω2 = 2Ω2
0 − 2πGΣ0|k|+ k2c2

s .

This is the dispersion relation for our rotating thin disk.

(e) Solutions with ω2 > 0 correspond to oscillations, while those
with ω2 < 0 correspond to pairs of modes, one of which decays
with time and one of which grows. We refer to the growing
modes as unstable, since in the linear regime they become
arbitrarily large. Show that an unstable mode exists if Q < 1,
where

Q =

√
2Ω0cs

πGΣ0
.

is called the Toomre parameter. Note that this stability condi-
tion refers only to axisymmetric modes in infinitely thin disks;
non-axisymmetric instabilities in finite thickness disks usually
appear around Q ≈ 1.5.

(f) When an unstable mode exists, we define the Toomre wave
number kT as the wave number that corresponds to mode
for which the instability grows fastest. Calculate kT and the
corresponding Toomre wavelength, λT = 2π/kT .

(g) The Toomre mass, defined as MT = λ2
TΣ0, is the characteristic

mass of an unstable fragment produced by Toomre instability.
Compute MT , and evaluate it for Q = 1, Σ0 = 12 M� pc−2 and
cs = 6 km s−1, typical values for the atomic ISM in the solar
neighborhood. Compare the mass you find to the maximum
molecular cloud mass observed in the Milky Way as reported by
Rosolowsky (2005, PASP, 117, 1403).

2. The Origin of Brown Dwarfs.
For the purposes of this problem, we will define a brown dwarf as
any object whose mass is below MBD = 0.075 M�, the hydrogen
burning limit. We would like to know if these could plausibly be
produced via turbulent fragmentation, as appears to be the case
for stars.

http://adsabs.harvard.edu/abs/2005PASP..117.1403R
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(a) For a Chabrier (2005) IMF (see Chapter 2, equation 2.3), com-
pute the fraction fBD of the total mass of stars produced that are
brown dwarfs.

(b) In order to collapse the brown dwarf must exceed the Bonnor-
Ebert mass. Consider a molecular cloud of temperature 10 K.
Compute the minimum ambient density nmin that a region of
the cloud must have in order for the thermal pressure to be
such that the Bonnor-Ebert mass is less than the brown dwarf
mass.

(c) Assume the cloud has a lognormal density distribution; the
mean density is n and the Mach number isM. Plot a curve
in the (n,M) plane along which the fraction of the mass at
densities above nmin is equal to fBD. Does the gas cloud that
formed the cluster IC 348 (n ≈ 5× 104 cm−3,M ≈ 7) fall into
the part of the plot where the mass fraction is below or above
fBD?





13
The Initial Mass Function: Theory

Suggested background reading:
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The previous chapter discussed observations of the initial mass
function, both how they are made and what they tell us. We now
turn to theoretical attempts to explain the IMF. As with theoretical
models of the star formation rate, there is at present no completely
satisfactory theory for the origin of the IMF, just different ideas that
do better or worse at various aspects of the problem. To recall, the
things we would really like to explain most are (1) the slope of the
powerlaw at high masses, and (2) the location of the peak mass.
We would also like to explain the little-to-zero variation in these
quantities with galactic environment. Furthermore, we would like to
explain the origin of the distribution of binary properties.

13.1 The Powerlaw Tail

Let us begin by considering the powerlaw tail at high masses,
dN/dm ∝ m−Γ with Γ ≈ 2.3. There are two main classes of theories
for how this powerlaw tail is set: competitive accretion, and turbu-
lence. Both are scale-free processes that could plausibly produce a
powerlaw distribution of masses comparable to what is observed.

13.1.1 Competitive Accretion

One hypothesis for how to produce a powerlaw mass distribution
is to consider what will happen in a region where a bunch of small
“seed" stars are formed, but then begin to accrete at a rate that is a
function of their current mass. Quantitatively, and for simplicity,
suppose that every star accretes at a rate proportional to some power
of its current mass, i.e.,

dm
dt

∝ mη . (13.1)

http://adsabs.harvard.edu/abs/2014arXiv1402.0867K
http://adsabs.harvard.edu/abs/2014arXiv1402.0867K
http://adsabs.harvard.edu/abs/2012MNRAS.423.2037H
http://adsabs.harvard.edu/abs/2012ApJ...754...71K
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If we start with a mass m0 and accretion rate ṁ0 at time t0, this ODE
is easy to solve for the mass at later times. We get

m(t) = m0

{
[1− (η − 1)τ]1/(1−η), η 6= 1
exp(τ), η = 1

, (13.2)

where τ = t/(m0/ṁ0) is the time measured in units of the initial
mass-doubling time. The case for η = 1 is the usual exponential
growth, and the case for η > 1 is even faster, running away to infinite
mass in a finite amount of time τ = 1/(η − 1).

Now suppose that we start with a collection of stars that all begin
at mass m0, but have slightly different values of τ at which they
stop growing, corresponding either to growth stopping at different
physical times from one star to another, to stars stopping at the same
time but having slightly different initial accretion rates ṁ0, or some
combination of both. What will the mass distribution of the resulting
population be? If dN/dτ is the distribution of stopping times, then
we will have

dN
dm

∝
dN/dτ

dm/dτ
m(τ)−η dN

dτ
. (13.3)

Thus the final distribution of masses will be a powerlaw in mass,
with index −η, going from m(τmin) to m(τmax). Thus a powerlaw
distribution naturally results.

The index of this powerlaw will depend on the index of the ac-
cretion law, η. What should this be? In the case of a point mass
accreting from a uniform, infinite medium at rest, the accretion rate
onto a point mass was worked out by Hoyle; Bondi generalized to
the case of a moving medium. In either case, the accretion rate scales
as ṁ ∝ m2, so if this process describes how stars form, then the ex-
pected mass distribution should follow dN/dm ∝ m−2, not so far
from the actual slope of −2.3 that we observe. A number of authors
have argued that this difference can be made up by considering
the effects of a crowded environment, where the feeding regions of
smaller stars get tidally truncated, and thus the growth law winds up
begin somewhat steeper than ṁ ∝ m2.

Stellar and multiple star properties from simulations 595

Figure 2. The global evolution of the rerun calculation with smaller sink particle accretion radii and no gravitational softening between sink particles. The
global evolution is very similar to the main calculation, but due to the chaotic nature of the dynamics on small scales, the detailed structure of the multiple
systems and the ejections differs. The calculation is only followed to just over one free-fall time because it is much more computationally expensive. Each
panel is 0.8 pc (165 000 au) across. Time is given in units of the initial free-fall time, tff = 1.90 × 105 yr. The panels show the logarithm of column density, N,
through the cloud, with the scale covering −1.4 < log N < 1.0 with N measured in g cm−2.

Figure 3. Histograms giving the IMF of the 1254 stars and brown dwarfs
that had been produced by the end of the main calculation. The single-
hashed region gives all objects, while the double-hashed region gives those
objects that have stopped accreting. Parametrizations of the observed IMF
by Salpeter (1955), Kroupa (2001) and Chabrier (2003) are given by the
magenta line, red broken power law and black curve, respectively. The nu-
merical IMF broadly follows the form of the observed IMF, with a Salpeter-
like slope above ∼0.5 M⊙ and a turnover at low masses. However, it clearly
overproduces brown dwarfs by a factor of ≈4.

brown dwarfs to stars exceeds 1:3. The main calculation, therefore,
overproduces brown dwarfs relative to the stars by a factor of ≈4
compared with the observed IMF.

3.1.1 The dependence of the IMF on numerical approximations
and missing physics

There are several potential causes of brown dwarf overproduc-
tion that may be divided into two categories: numerical effects
or neglected physical processes. Arguably, the main numerical ap-
proximation made in the calculations is that of the sink particles.
High-density gas is replaced by a sink particle whenever the maxi-
mum density exceeds 10−10 g cm−3, and the gas within a radius of
5 au is accreted on to the sink particle producing a gravitating point
mass containing a few Jupiter masses of material. These sink parti-
cles then interact with each other ballistically, which, for example,
might plausibly artificially enhance ejections and the production of
low-mass objects.

In order to investigate the effect of the sink particle approximation
on the results, we reran part of the main calculation with smaller
sink particles (accretion radii of 0.5 au) and without gravitational
softening between sink particles (they were allowed to merge if
they came within 4 R⊙ of each other.). This calculation was only
followed to 1.038tff due to its much more time consuming nature.
The small accretion radius calculation produced 258 stars and brown
dwarfs in the same time-period that the main calculation produced
221 objects. Because the calculations are chaotic, identical results
should not be expected. The main question to answer is whether or
not the results are statistically different.

In Figs 4 and 5, we compare the IMFs produced by the main
calculation and the smaller sink particle calculation at the same time.
The smaller sink particle calculation produces twice as many objects
with masses less than 10 Jupiter masses than the main calculation,
but overall the two IMFs are very similar. A Kolmogorov–Smirnov
(K–S) test run on the two distributions shows that they have a
13 per cent probability of being drawn from the same underlying
IMF (i.e. they are statistically indistinguishable). Removing objects
with less than 10 Jupiter masses from the K–S test results in a
38 per cent probability of the two distributions being drawn from
the same underlying IMF. We conclude that the variations in the
sink particle accretion radii and gravitational softening may have
an effect on the production of extremely low mass objects. However,
changes in the sink particle parameters do not significantly alter the
overall results and, thus, the use of sink particles is probably not
responsible for the significant overproduction of brown dwarfs.

It seems most likely that the overproduction of brown dwarfs is
related to the physical processes that are not included in the cal-
culations. Whitehouse & Bate (2006) showed that replacing the
barotropic equation of state by radiative transfer can lead to tem-
peratures up to an order of magnitude higher near young low-mass
protostars and, thus, potentially strongly inhibits fragmentation.
Krumholz (2006) made a similar argument analytically. Further-
more, in purely hydrodynamical/sink particles star cluster forma-
tion calculations, many of the brown dwarfs formed originate via
disc fragmentation (e.g. Bate et al. 2002a found that 3/4 of the
brown dwarfs originated from disc fragmentation). Rafikov (2005),
Matzner & Levin (2005), Kratter & Matzner (2006) and Whitworth
& Stamatellos (2006) have all pointed out that accurate treatments
of radiative transfer are likely to significantly decrease disc frag-
mentation. Along with the likely effect of radiative feedback on

C⃝ 2008 The Author. Journal compilation C⃝ 2008 RAS, MNRAS 392, 590–616

Figure 13.1: The IMF measured in a
simulation of the collapse of a 500 M�
initially uniform density cloud (Bate,
2009a). The single-hatched histogram
shows all objects in the simulation,
while the double-hatched one shows
objects that have stopped accreting.

This is an extremely simple model, requiring no physics but hy-
drodynamics and gravity, and thus it is easy to simulate. Simulations
done based on this model do sometimes return a mass distribution
that looks much like the IMF, as illustrated in Figure 13.1. However,
this appears to depend on the choice of initial conditions. Generally
speaking, one gets about the right IMF if one stars with something
with a viral ratio αvir ∼ 1 and no initial density structure, just veloci-
ties. Simulations that start with either supervirial or sub-virial initial
conditions, or that begin with turbulent density structures, do not
appear to grow as predicted by competitive accretion (e.g., Clark et al.
2008).
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Another potential problem with this model is that it only seems to
work in environments where there is no substantial feedback to drive
the turbulence or eject the gas. In simulations where this is not true,
there appears to be no competitive accretion. The key issue is that
competitive accretion seems to require a global collapse where all the
stars fall together into a region where they can compete, and this is
hard to accomplish in the presence of feedback.

Yet a third potential issue is that this model has trouble making
sense of the IMF peak, as we will discuss shortly.

13.1.2 Turbulent Fragmentation

A second class of models for the origin of the powerlaw slope is
based on the physics of turbulence. The first of these models was
proposed by Padoan et al. (1997), and there have been numerous
refinements since. The basic assumption in the turbulence models is
that the process of shocks repeatedly passing through an isothermal
medium leads to a broad range of density distributions, and that
stars form wherever a local region happens to be pushed to the
point where it becomes self-gravitating. We then proceed as follows.
Suppose we consider the density field smoothed on some size scale `.
The mass of an object of density ρ in this smoothed field is

m ∼ ρ`3, (13.4)

and the total mass of objects with characteristic density between ρ

and ρ + dρ is
dMtot ∼ ρp(ρ) dρ, (13.5)

where p(ρ) is the density PDF. Then the total number of objects in
the mass range from m to m + dm on size scale ` can be obtained just
by dividing the total mass of objects at a given density by the mass
per object, and integrating over the density PDF on that size scale

dN`

dm
=

dMtot

m
∼ `−3

∫
p(ρ) dρ. (13.6)

Not all of these structures will be bound. To filter out the ones that
are, we impose a density threshold, analogous to the one we used
in compute the star formation rate. We assert that an object will be
bound only if its gravitational energy exceeds its kinetic energy, that
is, only if the density exceeds a critical value given by

Gm2

`
∼ mσ(`)2 =⇒ ρcrit ∼

σ(`)2

G`2 , (13.7)

where σ(`) is the velocity dispersion on size scale `, which we take
from the linewidth-size relation, σ(`) = cs(`/`s)1/2. Thus we have a
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critical density

ρcrit ∼
c2

s
G`s`

, (13.8)

and this forms a lower limit on the integral.
There are two more steps in the argument. One is simple: just

integrate over all length scales to get the total number of objects. That
is,

dN
dm

∝
∫ dN`

dm
d`. (13.9)

The second is that we must know the functional form p(ρ) for the
smoothed density PDF. One can get this in a couple of different
ways, but there isn’t a fully rigorous calculation. Hopkins get it by
assuming that the PDF is lognormal smoothed on all size scales, with
a dispersion that is an integral over the dispersions on all smaller
scales. Hennebelle & Chabrier, in their model, assume that the den-
sity power spectrum is a powerlaw, and derive the density PDF from
that. The assumptions yield similar but not identical results.

2040 P. F. Hopkins

3 TH E C O R E M A S S F U N C T I O N : R I G O RO U S
S O L U T I O N S

We have now derived the rigorous solution for the number of bound
objects per interval in mass M, defined as the mass on the smallest
scale on which they are self-gravitating. To apply this to a phys-
ical system, we need the collapse barrier B(S) and variance S =
σ 2(R) = σ 2(M). In HC08, B(S) is defined by the Jeans overdensity
ρcrit(R) > [c2

s + v2
t (R)]/4π G, but the normalization of the back-

ground density, cs, and vt is essentially arbitrary. Moreover, S is
not derived, but a simple phenomenological model is used, and the
authors avoid uncertainties related to this by dropping terms with a
derivative in S. In H12, we show how S(R) and B(S) can be derived
self-consistently on all scales for a galactic disc. For a given turbu-
lent power spectrum, together with the assumption that the disc is
marginally stable (Q = 1), S(R) can be calculated by integrating the
contribution from the velocity variance on all scales R′ > R:

S(R) =
∫ ∞

0
σ 2

k (M[k]) |W (k, R)|2 d ln k, (23)

σ 2
k = ln

[
1 + 3

4
v2

t (k)
c2

s + κ2 k−2

]
, (24)

where W is the window function for the density smoothing (for con-
venience, we take this to be a k-space top hat inside k < 1/R). This
is motivated by and closely related to the correlation between Mach
number and dispersion in turbulent box simulations (see Padoan
et al. 1997; Passot & Vazquez-Semadeni 1998; Federrath et al.
2008; Price et al. 2011). B(R) is properly given by

B(R) = ln
(

ρcrit

ρ0

)
+ S(R)

2
, (25)

ρcrit

ρ0
≡ Q

2 κ̃

(
1 + h

R

) [
σ 2

g (R)

σ 2
g (h)

h

R
+ κ̃2 R

h

]
, (26)

where ρ0 is the mean mid-plane density of the disc, κ̃ = κ/$ =
√

2
for a constant-Vc disc and

σ 2
g (R) = c2

s + v2
A +

〈
v2

t (R)
〉
. (27)

The mapping between radius and mass is

M(R) ≡ 4 πρcrit h
3
[

R2

2 h2
+

(
1 + R

h

)
exp

(
− R

h

)
− 1

]
. (28)

It is easy to see that on small scales, these scalings reduce to the
Jeans criterion for a combination of thermal (cs), turbulent (vt) and
magnetic (vA) support, with M = (4π/3) ρcrit R

3; on large scales it
becomes the Toomre criterion with M = π%crit R

2.
Finally, we note that because the trajectories δ(x | R) defined

above sample the Eulerian volume, the MF is given by

dn

dM
= ρcrit(M)

M
fℓ(M)

∣∣∣∣
dS

dM

∣∣∣∣. (29)

It is worth noting that, with S(R) and B(R) derived above, there
are only two free parameters that together completely specify the
model in dimensionless units. These are the spectral index p of the
turbulent velocity spectrum, E(k) ∝ k−p (usually in the narrow range
p ≈ 5/3−2) and its normalization, which we parametrize as the
Mach number on large scales M2

h ≡ ⟨v2
t (h)⟩/(c2

s + v2
A). Of course,

we must specify the dimensional parameters h (or cs) and ρ0 to give
absolute units to the problem, but these simply rescale the predicted
quantities.

4 R ESULTS

Using these relations, we are now in a position to calculate the
last-crossing MF. Fig. 1 shows the results of calculating the last-
crossing distribution f ℓ(S) for typical parameters p = 2 (Burgers’
turbulence, typical of highly supersonic turbulence) and Mh = 30
(typical for GMCs). First, we can confirm our analytic derivation
in equation (14). It is easy to calculate the last-crossing distribution
by generating a Monte Carlo ensemble of trajectories δ(R) in the
standard manner of the excursion set formalism (beginning at R →
∞ and S = 0), and the details of this procedure are given in H12;
here we simply record the last downcrossing for each trajectory and
construct the MF. The result is statistically identical to the exact
solution. However, below the ‘turnover’ in the last-crossing MF, the
Monte Carlo method becomes extremely expensive and quite noisy,
because an extremely small fraction of the total galaxy volume is in
low-mass protostellar cores (sampling ≪0.1Msonic requires ∼1010

trajectories).
We compare the last-crossing MF to the predicted first-crossing

distribution – i.e. the MF of bound objects defined on the largest
scale on which they are self-gravitating. The two are strikingly
different: they have different shapes, different power-law slopes,
and the ‘characteristic masses’ are separated by more than six orders
of magnitude! Clearly, it is critical to rigorously address the ‘cloud-
in-cloud’ problem when attempting to define either.

Physically, in H12 we argue that the first-crossing distribution
should be associated with the MF of GMCs, and show that it agrees
very well with observations of the same. The last-crossing distri-
bution, on the other hand, should correspond to the protostellar

Figure 1. Predicted last-crossing mass function (distribution of bound
masses measured on the smallest scale on which they are self-gravitating)
for a galactic disc with turbulent spectral index p = 2, and Mach number at
scale ∼h of Mh = 30. In units of the sonic mass Msonic ≡ (2/3) c2

s Rsonic/G

and total disc gas mass Mgas, all other properties are completely specified
by disc stability. We calculate this with the analytic iterative solution to
equation (14); the standard Monte Carlo excursion set method gives an
identical result. We compare the first-crossing distribution – the distribution
of masses measured on the largest scale on which gas is self-gravitating,
which, as shown in H12, agrees extremely well with observed GMC mass
functions. The MF derived in HC08 by ignoring multiple crossings is also
shown. We compare the observed stellar IMF from Kroupa (2002) and
Chabrier (2003) (shifted to higher masses by a simple core-to-stellar mass
factor of 3).

C⃝ 2012 The Author, MNRAS 423, 2037–2044
Monthly Notices of the Royal Astronomical Society C⃝ 2012 RAS

Figure 13.2: The IMF predicted by an
analytic model of turbulent fragmenta-
tion by Hopkins (2012).

At this point we will cease going through the math, and simply
assert that one can at this point evaluate all the integrals to get an
IMF. The result clearly depends only on two dimensional quantities:
the sound speed cs and the sonic length `s. However, at masses much
greater than the sonic mass Ms ≈ c2

s `s/G, the result is close to a
powerlaw with approximately the right index. Figure 13.2 shows an
example prediction.

As with the competitive accretion model, this hypothesis encoun-
ters certain difficulties. First, there is the technical problem that the
choice of smoothed density PDF estimate is not at all rigorous, and
there are noticeable differences between on how the choice is made.
Second, the dependence on the sonic length is potentially prob-
lematic, because real molecular clouds do not really have constant
sonic lengths. Regions of massive star formation are observed to be
systematically more turbulent.

Third, the theory does not address the question of why gravitationally-
bound regions don’t sub-fragment as they collapse. We’ll return to
this issue when we get to massive star formation. Finally, the model
has trouble explaining the IMF peak, for the exact same reason as
competitive accretion.

13.2 The Peak of the IMF

13.2.1 Basic Theoretical Considerations

A powerlaw is scale-free, but the peak has a definite mass scale. This
mass scale is one basic observable that any theory of star forma-
tion must be able to predict. This immediately tells us something
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about the physical processes that must be involved. We have thus far
though of molecular clouds as consisting mostly of isothermal, tur-
bulent, magnetized, self-gravitating gas. However, we can show that
there must be additional processes beyond these at work in setting a
peak mass.

We can see this in a few ways. First we’ll demonstrate it in a more
intuitive but not rigorous manner, and then we can demonstrate it
rigorously. The intuitive arguments is as follows. In the system we
have described, there are four energies in the problem: thermal en-
ergy, bulk kinetic energy, magnetic energy, and gravitational potential
energy. From these energies we can define three dimensionless ratios,
and the behavior of the system will be determined by these three
ratios. As an example, we might define

M =
σ

cs
β =

8πρc2
s

B2 nJ =
ρL2

c3
s /
√

G3ρ
. (13.10)

The ratios describe the ratio of kinetic to thermal energy, the ratio of
thermal to magnetic energy, and the ratio of thermal to gravitational
energy. (This last quantity is called the Jeans number: it is the ratio of
the mass of the cloud to the Jeans mass.) Other ratios can be derived
from these, e.g. the Alfvénic Mach numberMA = M

√
β/2 is the

ratio of kinetic to magnetic energy.
Now notice the scalings of these numbers with density ρ, velocity

dispersion σ, magnetic field strength B, and length scale L:

M ∝ σ β ∝ ρB−2 nJ ∝ ρ3/2L3. (13.11)

Notice that if we scale the problem by ρ → xρ, L → x−1/2L, B →
x1/2B, all of these dimensionless numbers remain fixed. Thus the
behavior of two systems, one with density a factor of x times larger
than the other one, length a factor of x−1/2 smaller, and magnetic
field a factor of x1/2 stronger, are simply rescaled versions of one
another. If the first system fragments to make a star out of a certain
part of its gas, the second system will too. Notice, however, that the
masses of those stars will not be the same! The first star will have a
mass that scales as ρL3, while the second will have a mass that scales
as (xρ)(x−1/2L)3 = x−1/2ρL3.

We learn from this an important lesson: isothermal gas is scale-
free. If we have a model involving only isothermal gas with turbu-
lence, gravity, and magnetic fields, and this model produces stars
of a given mass M∗, then we can rescale the system to obtain an
arbitrarily different mass.

Now that we understand the basic idea, we can show this a bit
more formally. Consider the equations describing this system. For
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simplicity we will omit both viscosity and resistivity. These are

∂ρ

∂t
= −∇ · (ρv) (13.12)

∂

∂t
(ρv) = −∇ · (ρvv)− c2

s∇ρ

+
1

4π
(∇× B)× B− ρ∇φ (13.13)

∂B
∂t

= −∇× (B× v) (13.14)

∇2φ = 4πGρ (13.15)

One can non-dimensionalize these equations by choosing a character-
istic length scale L, velocity scale V, density scale ρ0, and magnetic
field scale B0, and making a change of variables x = x′L, t = t′L/V,
ρ = rρ0, B = bB0, v = uV, and φ = ψGρ0L2. With fairly minimal
algebra, the equations then reduce to

∂r
∂t′

= −∇′ · (ru) (13.16)

∂

∂t′
(ru) = −∇′ · (ruu)− 1

M2∇
′r

+
1
M2

A
(∇′ × b)× b− 1

αvir
∇′ψ (13.17)

∂b
∂t′

= −∇′ × (b× u) (13.18)

∇′2ψ = 4πr, (13.19)

where ∇′ indicates differentiation with respect to x′. The dimension-
less ratios appearing in these equations are

M =
V
cs

(13.20)

MA =
V
VA

= V
√

4πρ0

B0
(13.21)

αvir =
V2

Gρ0L2 , (13.22)

which are simply the Mach number, Alfvén Mach number, and virial
ratio for the system. These equations are fully identical to the original
ones, so any solution to them is also a valid solution to the original
equations. In particular, suppose we have a system of size scale L,
density scale ρ0, magnetic field scale B0, velocity scale V, and sound
speed cs, and that the evolution of this system leads to a star-like
object with a mass

M ∝ ρ0L3. (13.23)

One can immediately see that system with length scale L′ = yL,
density scale ρ′0 = ρ0/y2, magnetic field scale B′0 = B0/y, and velocity
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scale V′ = V has exactly the same values ofM,MA, and αvir as
the original system, and therefore has exactly the same evolution.
However, in this case the star-like object will instead have a mass

M′ ∝ ρ′L′3 = yM (13.24)

Thus we can make objects of arbitrary mass just by rescaling the
system.

This analysis implies that explaining the IMF peak requires ap-
pealing to some physics beyond that of isothermal, magnetized
turbulence plus self-gravity. This immediately shows that the com-
petitive accretion and turbulence theories we outlined to explain
the powerlaw tail of the IMF cannot be adequate to explaining the
IMF peak, at least not by themselves. Something must be added, and
models for the origin of the IMF peak can be broadly classified based
on what extra physics they choose to add.

13.2.2 The IMF From Galactic Properties

One option is hypothesize that the IMF is set at the outer scale of the
turbulence, where the molecular clouds join to the atomic ISM (in a
galaxy like the Milky Way), or on sizes of the galactic scale-height
(for a molecule-dominated galaxy). Something in this outer scale
picks out the characteristic mass of stars at the IMF peak.

This hypothesis comes in two flavors. The simplest is that charac-
teristic mass is simply set by the Jeans mass at the mean density of
the cloud, so that

Mpeak ∝
c3

s√
G3ρ

(13.25)

While simple, this hypothesis immediately encounters problems.
Molecular clouds have about the same temperature everywhere, but
they do not all have the same density – indeed, based on our result
that the surface density is about constant, the density should vary
with cloud mass as M1/2. Thus at face value this hypothesis would
seem to predict a factor of ∼ 3 difference in characteristic peak mass
between 104 and 106 M� clouds in the Milky Way. This is pretty hard
to reconcile with observations. The problem is even worse if we think
about other galaxies, where the range of density variation is much
greater and thus the predicted IMF variation is too. One can hope
for a convenient cancellation, whereby an increase in the density is
balanced by an increase in temperature, but this seems to require a
coincidence.

A somewhat more refined hypothesis, which is adopted by all the
turbulence models, is that the IMF peak is set by the sound speed
and the normalization of the linewidth-size relation. As discussed
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above, in the turbulence models the only dimensional free parameters
are cs and `s, and from them one can derive a mass in only one way:

Mpeak ∼
c2

s `s

G
. (13.26)

Hopkins calls this quantity the sonic mass, but it’s the same thing as
the characteristic masses in the other models.

This value can be expressed in a few ways. Suppose that we have
a cloud of characteristic mass M and radius R. We can write the
velocity dispersion in terms of the virial parameter:

αvir ∼
σ2R
GM

=⇒ σ ∼
√

αvir
GM

R
(13.27)

This is the velocity dispersion on the outer scale of the cloud, so we
can also define the Mach number on this scale as

M =
σ

cs
∼
√

αvir
GM
Rc2

s
(13.28)

The sonic length is just the length scale at whichM ∼ 1, so if the
velocity dispersion scales with `1/2, then we have

`s ∼
R
M2 ∼

c2
s

αvirGΣ
(13.29)

Substituting this in, we have

Mpeak ∼
c4

s
αvirG2Σ

, (13.30)

and thus the peak mass simply depends on the surface density of the
cloud. We can obtain another equivalent expression by noticing that

MJ

M ∼ c3
s√

G3ρ

√
Rc2

s
αvirGM

∼ c4
s

αvirG2Σ
∼ Mpeak (13.31)

Thus, up to a factor of order unity, this hypothesis is also equivalent
to assuming that the characteristic mass is simply the Jeans mass
divided by the Mach number.

An appealing aspect of this argument is that it naturally explains
why molecular clouds in the Milky Way all make stars at about the
same mass. A less appealing result is that it would seem to predict
that the masses could be quite different in regions of different surface
density, and we observe that there are star-forming regions where Σ
is indeed much higher than the mean of the Milky Way GMCs. This
is doubly-true if we extend our range to extragalactic environments.
One can hope that this will cancel because the temperature will be
higher and thus cs will increase, but this again seems to depend on a
lucky cancellation, and there is no a priori reason why it should.
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13.2.3 Non-Isothermal Fragmentation

The alternative to breaking the isothermality at the outer scale of
the turbulence is to relax the assumption that the gas is isothermal
on small scales. This has the advantage that it avoids any ambiguity
about what constitutes the surface density or linewidth-size relation
normalization for a “cloud".

Figure 13.3: Temperature versus density
found in a one-dimensional calculation
of the collapse of a 1 M� gas cloud,
at the moment immediately before a
central protostar forms (Masunaga &
Inutsuka, 2000).

Fixed equation of state models. The earliest versions of these models
were proposed by Larson (2005), and followed up by Jappsen et al.
(2005). The basic idea of these models is that the gas in star-forming
clouds is only approximately isothermal. Instead, there are small
deviations from isothermality, which can pick out preferred mass
scales. We’ll discuss these in more detail later, but there are two
places where significant deviations from isothermality are expected
(Figure 13.3).

At low density the main heating source is cosmic rays and UV
photons, both of which produce a constant heating rate per nucleus if
attenuation is not significant. This is because the flux of CRs and UV
photons is about constant, and the rate of energy deposition is just
proportional to the number of target atoms or dust grains for them to
interact with. Cooling is primarily by lines, either of CO once the gas
is mostly molecular, or of C ii or O where it is significantly atomic.

In both cases, at low density the gas is slightly below the critical
density of the line, so the cooling rate per nucleus or per molecule is
an increasing function of density. Since heating per nucleus is con-
stant but cooling per nucleus increases, the equilibrium temperature
decreases with density. As one goes to higher density and passes
the CO critical density this effect ceases. At that point one generally
starts to reach densities such that shielding against UV photons is
significant, so the heating rate goes down and thus the temperature
continues to drop with density.

This begins to change at a density of around 10−18 g cm−3, n ∼
105 − 106 cm−3. By this point the gas and dust have been thermally
well-coupled by collisions, and the molecular lines are extremely
optically thick, so dust is the main thermostat. As long as the gas is
optically thin to thermal dust emission, which it is at these densities,
the dust cooling rate per molecule is fixed, since the cooling rate just
depends on the number of dust grains. Heating at these densities
comes primarily from compression as the gas collapses, i.e., it is just
P dV work. If the compression were at a constant rate, the heating
rate per molecule would be constant. However, the free-fall time
decreases with density, so the collapse rate and thus the heating rate
per molecule increase with density. The combination of fixed cooling
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rate and increasing heating rate causes the temperature to begin
rising with density. At still higher densities, ∼ 10−13 g cm−3, the gas
becomes optically thick to dust thermal emission. At this point the
gas simply acts adiabatically, with all the P dV work being retained,
so the heating rate with density rises again.

Larson (2005) pointed out that deviations from isothermality are
particularly significant for filamentary structures, which dominate
in turbulent flows. It is possible to show that a filament cannot go
into runaway collapse if T varies with ρ to a positive number, while
it can collapse if T varies as ρ to a negative number. This suggests
that filaments will collapse indefinitely in the low-density regime, but
that their collapse will then halt around 10−18 g cm−3, forcing them
to break up into spheres in order to collapse further. The upshot
of all these arguments is that the Jeans or Bonnor-Ebert mass one
should be using to estimate the peak of the stellar mass spectrum is
the one corresponding to the point where there is a changeover from
sub-isothermal to super-isothermal.

In other words, the ρ and T that should be used to evaluate MJ

or MBE are the values at that transition point. Larson proposes an
approximate equation of state to represent the first break in the EOS:
Combining all these effects, Larson (2005) proposed a single simple
equation of state

T =

{
4.4 ρ−0.27

18 K, ρ18 < 1
4.4 ρ0.07

18 K, ρ18 ≥ 1
(13.32)

where ρ18 = ρ/(10−18 g cm−3). Conveniently enough, the Bonnor-
Ebert mass at the minimum temperature here is MBE = 0.067 M�,
which is not too far off from the observed peak of the IMF at M = 0.2
M�. (The mass at the second break is a bit less promising. At ρ =

10−13 g cm−3 and T = 10 K, we have MBE = 7× 10−4 M�.)
Simulations done adopting this proposed equation of state seem

to verify the conjecture that the characteristic fragment mass does
depend critically on the break on the EOS (Figure 13.4).

Radiative models. While this is a very interesting result, there are two
problems. First, the proposed break in the EOS occurs at n = 4× 105

cm−3. This is a fairly high density in a low mass star-forming region,
but it is actually quite a low density in more typical, massive star-
forming regions. For example, the Orion Nebula cluster now consists
of 4600 M� of stars in a radius of 0.8 pc, giving a mean density
n = 3.7 × 104 cm−3. Since the star formation efficiency was less
than unity and the cluster is probably expanding due to mass loss,
the mean density was almost certainly higher while the stars were
still forming. Moreover, recall that, in a turbulent medium, the bulk
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A.-K. Jappsen et al.: Mass spectrum from non-isothermal gravoturbulent fragmentation 619

Fig. 5. Mass spectra of protostellar objects for models R5..6k2b, model R7k2L and model R8k2L at 10%, 30% and 50% of total mass accreted
on these protostellar objects. For comparison we also show in the first row the mass spectra of the isothermal run Ik2b. Critical density nc, ratio
of accreted gas mass to total gas mass Macc/Mtot and number of protostellar objects are given in the plots. The vertical solid line shows the
position of the median mass. The dotted line has a slope of −1.3 and serves as a reference to the Salpeter value (Salpeter 1955). The dashed
line indicates the mass resolution limit.

The model R5k2b where the change in γ occurs below
the initial mean density, shows a flat distribution with only
few, but massive protostellar objects. They reach masses up to
10 M⊙ and the minimal mass is about 0.3 M⊙. All other mod-
els build up a power-law tail towards high masses. This is due
to protostellar accretion processes, as more and more gas gets
turned into stars (see also, Bonnell et al. 2001b; Klessen 2001;

Schmeja & Klessen 2004). The distribution becomes more
peaked for higher nc and there is a shift to lower masses. This is
already visible in the mass spectra when the protostellar objects
have only accreted 10% of the total mass. Model R8k2L has
minimal and maximal masses of 0.013 M⊙ and 1.0 M⊙, respec-
tively. There is a gradual shift in the median mass (as indicated
by the vertical line) from Model R5k2b, with Mmed = 2.5 M⊙ at

Article published by EDP Sciences and available at http://www.edpsciences.org/aa or http://dx.doi.org/10.1051/0004-6361:20042178

Figure 13.4: Measured stellar mass
distributions in a series of simulations
of turbulent fragmentation using non-
isothermal equations of state. Each row
shows a single simulation, measured
at a series of times, characterized by a
particular mass in stars as indicated in
each panel. Different rows use different
equations of state, with the vertical line
in each panel indicating the Jeans mass
evaluated at the temperature minimum
of the equation of state. Histograms
show the mass distributions measured
for the stars.
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of the mass is at densities above the volumetric mean density. The
upshot of all this is that almost all the gas in Orion was probably over
Larson (2005)’s break density while the stars were forming. Since
Orion managed to form a normal IMF, it’s not clear how the break
temperature could be relevant.

A second problem is that, in dense regions like the ONC, the
simple model proposed by Larson (2005) is a very bad representation
of the true temperature structure, because it ignores the effects of
radiative feedback from stars. In dense regions the stars that form
will heat the gas around them, raising the temperature. Figure 13.5
shows the density-temperature distribution of gas in simulations
that include radiative transfer, and that have conditions chosen to be
similar to those of the ONC.

Figure 13.5: Density-temperature dis-
tributions measured from a simulation
of the formation of an ONC-like star
cluster, including radiative transfer and
stellar feedback (Krumholz et al., 2011a).
The panels show the distribution at
different times in the simulation, char-
acterized by the fraction of mass that
has been turned into stars. Doted lines
show lines of constant Bonnor-Ebert
mass (in M�), while dashed lines show
the threshold for sink particle formation
in the simulation.

These two observations suggest that one can build a model for
the IMF around radiative feedback. There are a few numerical and
analytic papers that attempt to do so, including Bate (2009b, 2012),
Krumholz (2011), and Krumholz et al. (2012b). The central idea for
these models is that radiative feedback shuts off fragmentation at a
characteristic mass scale that sets the peak of the IMF.

The basic idea is as follows. Suppose that we form a first, small
protostellar that radiates at a rate L. The temperature of the material
at a distance R from it, assuming the gas is optically thick, will be
roughly

L ≈ 4πσR2T4. (13.33)
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Now let us compute the Bonnor-Ebert mass using the temperature T:

MBE ≈
c3

s√
G3ρ

=

√(
kBT

µmHG

)3 1
ρ

, (13.34)

where µ = 2.33 is the mean particle mass, and we are omitting the
factor of 1.18 for simplicity. Note that MBE here is a function of R. At
small R, T is large and thus MBE is large, while at larger distances the
gas is cooler and MBE falls.

Now let us compare this mass to the mass enclosed within the
radius R, which is M = (4/3)πR3ρ. At small radii, MBE greatly
exceeds the enclosed mass, while at large radii MBE is much less than
the enclosed mass. A reasonable hypothesis is that fragmentation
will be suppressed out to the point where M ≈ MBE. If we solve for
the radius R and mass M at which this condition is met, we obtain

M ≈
(

1
36π

)1/10 ( kB
GµmH

)6/5 ( L
σ

)3/10
ρ−1/5. (13.35)

To go further, we need to know the luminosity L. The good news
is that, for reasons we will discuss when we get to protostellar evo-
lution, the luminosity is dominated by accretion, and the energy
produced by accretion is simply the accretion rate multiplied by a
roughly fixed energy yield per unit mass. In other words, we can
write

L ≈ ψṀ, (13.36)

where ψ ≈ 1014 erg g−1, and can in fact be written in terms of
fundamental constants. Taking this on faith for now, if we further
assume that stars form over a time of order a free-fall time, then

Ṁ ≈ M
√

Gρ, (13.37)

and substituting this into the equation for M above and solving gives

M ≈
(

1
36π

)1/7 ( kB
GµmH

)12/7 (ψ

σ

)3/7
ρ−1/14 (13.38)

= 0.3
( n

100 cm−3

)−1/14
, (13.39)

where n = ρ/(µmH). Thus we get a characteristic mass that is a good
match to the IMF peak, and that depends only very, very weakling on
the ambient density.

Simulations including radiation seem to support the idea that
this effect can pick out a characteristic peak ISM mass. The main
downside to this hypothesis is that it has little to say by itself about
the powerlaw tail of the IMF. This is not so much a problem with
the model as an omission, and a promising area of research seems
to be joining a non-isothermal model such as this onto a turbulent
fragmentation or competitive accretion model to explain the full IMF.
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Massive Star Formation
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This chapter will focus on the particular problem of massive stars.
Massive stars are extremely rare – those above 10 M� constitute
only about 10% of all stars formed by mass, and only about 0.2% by
number – but their huge energetic output gives them an importance
disproportionate to their numbers. This energetic output also creates
unique questions regarding the process by which massive stars form,
such that the formation of massive stars in particular is really a
sub-field unto itself.

14.1 Observational Phenomenology

14.1.1 Challenges

Unfortunately, our observational knowledge of massive star forma-
tion is much more limited than our knowledge of the analogous
processes governing the formation of solar mass stars stars. The dif-
ficulty is four-fold. First, because massive stars are rare, purely on
statistical grounds locations of massive star formation are likely to
be much further from Earth than sites of low mass star formation.
Indeed, the nearest likely candidate region of massive star formation,
in the Orion cloud, is 400 pc away. Many regions of study are even
further, typically 1− 2 kpc. The largest clusters, where massive star
formation is most active, are located in the great molecular ring at
3 kpc from the galactic center, 5 kpc from us. In contrast, many of
the best studied regions of low mass star formation, such as the Tau-
rus cloud, are only ∼ 100− 150 pc from Earth. The larger distance
means that we can resolve only large physical scales, and that we
need proportionally more telescope time to do so.

This unfortunately compounds the second challenge: crowding
and confusion. Massive stars are generally found in massive star
clusters. Whether this is a physical necessity – i.e. massive stars
only form in clusters – or simply a result of statistics – the rarity of

http://adsabs.harvard.edu/abs/2014prpl.conf....3D
http://adsabs.harvard.edu/abs/2014prpl.conf....3D
http://adsabs.harvard.edu/abs/2014prpl.conf....3D
http://adsabs.harvard.edu/abs/2013ApJ...766...97M


226 notes on star formation

massive stars means that a low-mass cluster is extremely unlikely to
contain one – is a matter of hot debate. Regardless of the outcome of
that debate, the clustered environment means that extreme spatial
resolution is needed to avoid confusion. For example, at the center
of the Orion Nebula Cluster, where the Trapezium stars are located,
the stellar density is ∼ 105 pc−3, so the typical interstellar distance
is only 0.02 pc, or about 5000 AU. In terms of angular resolution, at
the 400 pc distance to Orion this is about 10”. The same cluster at the
distance of 2 kpc has a mean angular separation between stars at its
center of 2”. Such resolutions are in reach for the highest resolution
radio and sub-mm interferometers, and in the optical from HST
or ground-based systems with AO, but are not far from the limits.
This means that confusion is a constant worry, particularly when
observing young regions where radio instead of optical must be used
because the sources in question are highly obscured in the optical.

The third challenge is this obscuration. As we shall see, the typical
region of massive star formation has a surface density of ∼ 1 g
cm−2. For a standard Milky Way extinction curve, including the
effects of ice mantles on the dust grains, this corresponds to visual
extinction AV ≈ 500 mag. Even at K band, the extinction is only a
factor of ∼ 10 smaller, so AK ≈ 50 mag. Obviously this means that
optical observations are fairly useless until the tail end of the star
formation process, when the vast majority of the gas has been cleared
away. Even near-IR is essentially impossible, except in absorption.
Only far-IR or radio and sub-mm work during most of the star
formation process. This limitation to long wavelengths of course
compounds the problem of confusion, since it means that we can get
high resolution only via radio interferometers.

The final problem is timescales. As we will discuss in the next
class, the radiation from massive stars rapidly destroys the environ-
ment in which they form. For example, once they become optically
revealed, the disks around massive stars probably survive . 105 yr,
as opposed to > 106 yr for low mass stars. Thus we have a very lim-
ited window in which we can observe massive star formation under-
way. We essentially can only see massive star formation happening
when it is still in the embedded phase. In terms of our classification
scheme, massive stars only have a class 0 and a class I phase, not the
longer class II or class III phases.

14.1.2 Massive Clumps

Given these challenges, what do we know? Observational surveys
generally find sites of massive star formation by exploiting the fact
that they have huge far-IR flux, and that they also show signs of
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maser emission. The maser emission is produced by strong shocks
in high density gas, which are probably produced by the outflows of
massive stars, which can move at up to ∼ 1000 km s−1 – the escape
speed from the stellar surface.

Regions that show these characteristics are characterized by ex-
tremely surface densities, typically ∼ 0.1 − 1 g cm−2. This much
higher that the typical surface density in regions of low mass star
formation, which is generally closer to ∼ 0.01− 0.1 g cm−2. One
can also detect these regions in infrared absorption against the back-
ground starlight, for example using the 8 µm band on Spitzer. The
classes of object discovered this way are called infrared dark clouds,
IRDCs, and they seem to be about the same objects as the gas clumps
detected in mm dust emission. Figure 14.1 shows an example.

Figure 14.1: A typical infrared dark
cloud (IRDC) (Rathborne et al., 2006).
The left image shows Spitzer/IRAC
(near-IR), where the cloud is seen
in absorption agains the galactic
background, while the right image
shows Spitzer/MIPS (mid-IR), where
parts are seen in absorption and parts
in emission. The white contours, which
are the same in both panels, show mm
continuum emission.

The typical clump forming a massive star cluster, detected with
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either technique, seems to have a mass of a few thousand M�, and a
radius of ∼ 1− 2 pc. Recall from our discussion of Larson’s Laws that
the statement that GMCs have uniform surface density is equivalent
to the combination of virial balance and the linewidth-size relation.
The higher surface density of massive star-forming regions compared
to the bulk of the material in GMCs implies either that these regions
are not in virial balance, that they are not on the linewidth-size
relation, or both. When we observe these regions using a molecular
tracer, we find that these clumps do appear to be roughly virial, but
that they are off the linewidth-size relation seen for other material in
molecular clouds.

The origin of these large velocity dispersions is an interesting
problem. They could be driven by gravitational collapse, of course,
but that would only supply energy for one crossing time or so, and
then would lead to global collapse. We know from galactic-scale
surveys, however, that this gas cannot form stars rapidly any more
than can the lower density material in GMCs. Otherwise the star for-
mation rate would be too high. This suggests that these regions must
be stabilized by internal feedback, but it is by no means ironclad
evidence.

14.1.3 Massive Cores

If one zooms in a bit more using an interferometer, to ∼ 0.1 pc scales,
one can find objects that are ∼ 100 M� in mass and ∼ 0.1 pc in
radius. These are centrally concentrated, and appear to be forming
stars. Their velocity dispersions are also about one is needed for
them to be in virial balance, around 1 km s−1. As with their parent
clumps, such large velocity dispersions on such small scales puts
them well off the linewidth-size relation seen in most material in
GMCs. We refer to objects with these characteristics as massive cores.
Figure 14.2 shows an example.

The Astrophysical Journal, 754:5 (22pp), 2012 July 20 Butler & Tan

Figure 5. (a) Top left: mass surface density, ΣSMF, map in g cm−2 of IRDC Core A1, extracted from the map of IRDC A (Figure 3). The core center is marked with
a cross. Saturated pixels, for which Σ is a lower limit of the true value, are marked with small white squares. The black dashed circle shows the radius enclosing a
total mass of 60 M⊙. The red solid circle shows the extent of the core derived from the best-fit power-law (PL) core plus envelope model (see the text). (b) Bottom
left: radial profiles of Core A1: observed log Σcl/(g cm−2) (blue open squares, plotted at annuli centers) derived from the map shown in (a); total projected enclosed
mass, Mcl, (blue long-dashed line (see right axis)); core mass, Mc after clump envelope subtraction (red dashed line (see right axis)); index of core PL density profile,
kρ,c , (red crosses); −log χ2 (red triangles) of the PL plus envelope fit (best fit has a maximum or local maximum value (see the text)); the best-fit PL plus envelope
model (blue solid line; dotted line shows range affected by saturation that was not used in the fitting); log Σc/(g cm−2) of best-fit core after envelope subtraction
(red solid squares) and PL fit (red solid line; dotted line shows range affected by saturation that was not used in the fitting). (c) Top right: Σc(r), i.e., after clump
envelope subtraction for the best-fit model (red solid squares; open squares show residual, post-subtraction envelope material). PL models with various values of kρ,c

are indicated (dashed lines), including the best-fit model with kρ = 1.88 (solid line). (d) Bottom right: as for (c), but for Bonnor–Ebert (BE) plus envelope fitting.
Σc(r), i.e., after clump envelope subtraction for the best-fit model (red solid squares). Best-fit BE model (solid line) and models varying cs (long-dashed lines) and P0
(dashed lines) by factors of two from this are shown (see the text).
(A color version of this figure is available in the online journal.)

8

Figure 14.2: A massive protostellar
core seen in IR absorption (Butler &
Tan, 2012). Colors indicate the inferred
column density in g cm−2. Pixels
marked with white dots are lower
limits. The black circle shows a radius
enclosing 60 M�, and the red circle
shows the core radius inferred by fitting
a core plus envelope model to the
azimuthally-averaged surface density
distribution.

In some cases we detect no mid-IR emission from massive cores,
which indicates that any stars within them cannot yet be massive
stars. However, even in cases with no mid-IR, there are signs of active
protostellar outflows, in the form of SiO emission (e.g., Motte et al.,
2007). The statistics indicate that the starless phase for a massive
core is at most ∼ 1000 yr, i.e. that once a massive core is assembled it
starts forming star immediately, or even that star formation begins as
it is being assembled.

It is instructive to do some simple dimensional analysis for these
objects A region with a mass of 100 M� and a radius of 0.1 pc has a
mean density of about 10−18 g cm−3, or n ∼ 106 cm−3, and a free-fall
time of 5× 104 yr. Thus we should expect one of these cores to form
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stars in ∼ 105 yr, and to do so at an accretion rate Ṁ ≈ M/tff ≈ 10−3

M� yr−1. This is vastly higher than the expected accretion rates in
the regions of low mass star formation close to Earth, and much
larger than c3

s /G where cs is the thermal sound speed.
It is also useful to phrase the accretion rate in terms of a velocity

dispersion. Suppose we have a core in rough virial balance, so that

αvir =
5σ2R
GM

≈ 1, (14.1)

where the 1D velocity dispersion σ here now includes contributions
from both thermal and non-thermal motions. The density is ρ =

3M/(4πR3), so the free-fall time is

tff =

√
3π

32Gρ
=

√
πR3

8GM
. (14.2)

If the core collapses in free-fall, the accretion rate is

Ṁ ≈ M
tff

=

√
8GM3

πR3 =

√
1000
πα3

vir

σ3

G
. (14.3)

Thus, the accretion rate will be roughly ∼ 10σ3/G.

14.2 Fragmentation

14.2.1 Massive Core Fragmentation

Given that we see these massive cores, can we understand how they
turn into massive stars? The first thing that happens when one of
these cores begins to collapse is that it will be subject to fragmen-
tation. In effect, because it is so much larger than a thermal Jeans
mass, a 100 M� massive core has the potential to become a small
cluster rather than a single star or star system. On the other hand,
both radiative heating and magnetic fields are capable of suppressing
fragmentation. So what happens?

This still a very active area of research, but recent work by Com-
merçon et al. (2011) and Myers et al. (2013) that includes radiative
transfer and magnetic fields suggests that a combination of the two
is very effecting suppressing fragmentation of massive protostellar
cores. The basic mechanism is quite analogous to the way that radi-
ation feedback can shape the IMF overall: rapid accretion gives rise
to a high accretion luminosity, which in turn heats the gas and raises
the Jeans mass. Magnetic fields enhance this effect in two ways. First,
by providing a convenient way of getting rid of angular momentum
(as we’ll discuss when we get to disks), they enhance the accretion
rate. Second, they tend to stabilize the more distant, cooler parts
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of the core that are less heated by the radiation. These low-density
regions may be Jeans unstable, but they are also magnetically sub-
critical and thus cannot fragment and collapse. Figure 14.3 shows an
example simulation.

Fig. 7.— Results from three simulations by Myers et al. (2013). The color scale shows the column density, and white circles show
stars, with the size of the circle indicating mass: < 1 M� (small cirlces), 1� 8 M� (medium circles), and > 8 M� (large circles). The
panel on the left shows a simulation including radiative transfer (RT) but no magnetic fields, the middle panel shows a simulation with
magnetic fields but no radiative transfer, and the rightmost panel shows a simulation with both radiative transfer and magnetic fields. All
runs began from identical initial conditions, and have been run to 60% of the free-fall time at the initial mean density.

to match observed infrared dark cloud cores – Swift 2009),
while Peters et al. (2011) simulate much more diffuse re-
gions with ⌃ ⇡ 0.03 g cm�2, and is not clear if their cal-
culations ever evolve to produce the sorts of structures from
which Commerçon et al. and Myers et al. begin.

The combined effects of magnetic fields and thermal
feedback can even modify star formation rates. Thermal
feedback by itself reduces star formation rates by at most
tens of percent (Bate 2009b, 2012; Krumholz et al. 2010),
but adding magnetic fields can reduce the star formation
rate in low mass clusters by almost an order of magnitude
over purely hydrodynamic collapse (Price and Bate 2009),
and significantly more than magnetic fields alone.

5.2. Triggering

Thus far we have primarily focused on negative feed-
back, in the sense of restraining or terminating star forma-
tion. However, it is also possible for feedback to be positive,
in the sense of promoting or accelerating feedback. The sta-
tistical arguments outlined in Section 1.1 would tend to sug-
gest that negative feedback must predominate, but this does
not necessarily imply that positive feedback never occurs or
cannot be important in some circumstances.

Positive feedback is usually referred to as triggered or in-
duced star formation. This phrase can mean increasing the
star formation rate, increasing the star formation efficiency,
or increasing the total number of stars formed. These def-
initions can all be applied locally or globally. Dale et al.
(2007) draw a distinction between weak triggering – tem-
porarily increasing the star formation rate by inducing stars
to form earlier – and strong triggering – increasing the star
formation efficiency by causing the birth of stars that would
not otherwise form. They note that it may be very difficult
for observations to distinguish these possibilities.

Analytic studies by Whitworth et al. (1994a) suggest
that the gravitational instability operating in swept-up shells
driven into uniform gas by expanding H II regions or wind
bubbles should be an efficient triggering process. Whit-
worth et al. (1994b) extended this work to show that this
process should result in a top-heavy IMF, a result also found
in simulations of fragmenting shells by Wünsch et al. (2010)
and Dale et al. (2011). This raises the intriguing prospect
of star formation as a self-propagating process (e.g. Shore
1981, 1983). However, simulations of ionizing feedback in
fractal (Walch et al. 2013) and turbulent clouds (Dale et al.
2007; Dale and Bonnell 2012; Dale et al. 2012a, 2013a)
suggest that this is not the case. They find that, while ion-
ization feedback can modestly change the rate, efficiency
and number of stars, it does not significantly alter the IMF.

Pillars or “Elephant Trunks” are a widespread and dis-
tinctive feature of star-forming regions and have often been
invoked as signposts of triggering (e.g., Smith et al. 2000,
2005; Billot et al. 2010). Williams et al. (2001), Miao et al.
(2006), Gritschneder et al. (2010), Mackey and Lim (2011),
Tremblin et al. (2012a,b), and Walch et al. (2013) have sim-
ulated pillar formation in a wide variety of initial conditions
and provide several plausible mechanisms for their origins.
However, it is not clear to what extent these morphological
features are actually indicative of triggered star formation.

There is also large body of literature on the induced
collapse of initially-stable density configurations, such as
Bonner-Ebert spheres, by winds or by H II regions, known
as radiation-driven implosion (e.g. Sandford et al. 1982,
1984; Klein et al. 1983; Bertoldi 1989; Bertoldi and Mc-
Kee 1990; Kessel-Deynet and Burkert 2003; Bisbas et al.
2011). This process is able to produce not only single stars,
but small groups, and since the initial conditions are stable
by construction, this is a good example of strong triggering.

Establishing the occurrence of triggered star formation
analytically or numerically is relatively straightforward.
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Figure 14.3: Three simulations of the
collapse of a 300 M� massive core by
Myers et al. (2013). The color scale
shows the projected gas density, and
white points are stars, with the size
indicating the mass. The three simula-
tions use identical initial conditions, but
different physics. The left panel uses ra-
diative transfer but no magnetic fields,
the middle uses magnetic fields but no
radiation, and the right panel includes
both magnetic fields and radiation.

14.2.2 Massive Binaries

As we discussed in Chapter 12, massive stars are overwhelmingly
members of binary or higher multiple star systems. Why this should
be is obviously an interesting question, and related to the topic of
fragmentation. Binaries can form in two ways. One way of making
binaries is what we can call direct fragmentation: a collapsing gas
core breaks up into two or more pieces during collapse. This possibil-
ity is closely related to the discussion of the IMF, in that it depends
on the thermodynamics of the gas and its turbulent motions. The
opposite possibility is disk fragmentation, in which material collapse
into a disk and that disk then fragments. Direct fragmentation almost
has to be the origin for wide period binaries, those with separations
& 1000 AU, the typical size of a protostellar disk. It could also be the
origin for close ones. However, it is suggestive that the mass ratio
distribution is somewhat different for close binaries than for distant
ones.

There have been several numerical studies of the circumstances
under which a core is expected to undergo fragmentation to produce
a binary. Generally speaking, the amount of fragmentation appears
to depend on the amount of initial turbulence in the core. Two impor-
tant parameters controlling when and whether this happens are rate
of rotation and the strength of the magnetic field in the initial cloud.
A third parameter that becomes relevant in disks is the relationship
between gas density and temperature.

Machida et al. (2008) varied the rotation rate and magnetic field
strength in clouds and found that they could draw boundaries in
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parameter space determining where various types of fragmentation
occur. Higher rotation rates and weaker magnetic fields favor direct
fragmentation, while slower rotation rates and stronger magnetic
fields favor no fragmentation. Disk fragmentation appears to occur
at intermediate values. Of course real cores have some level of tur-
bulence, even if they are subsonic, and it’s not entirely clear how to
translate these conditions into probabilities of binary formation for
turbulent cores.

The nature of disk fragmentation and its relationship with the
thermal properties of the gas has been clarified in a series of papers
by Kratter & Matzner (2006); Kratter et al. (2008, 2010). These authors
point out that the behavior of a collapsing, rotating, non-magnetic
core can be described in terms of two dimensionless numbers:

ξ ≡ ṀG
c3

s
Γ =

Ṁ
M∗dΩk,in

=
Ṁ〈j〉in
G2M3

∗d
. (14.4)

Here Ṁ is the rate at which matter falls onto the edge of the disk, cs

is the sound speed in the disk, M∗d is the total mass of the disk and
the star it orbits, Ωk,in is the Keplerian angular frequency of matter
entering the disk and 〈j〉in is the mean specific angular momentum of
matter entering the disk.

The meanings of these two dimensionless numbers are straight-
forward. The first, ξ, takes the ratio of the accretion rate to the char-
acteristic thermal accretion rate c3

s /G. This is (up to factors of order
unity) the accretion rate for a singular isothermal sphere or a Bonnor-
Ebert sphere, and it is also the characteristic accretion rate through
an isothermal disk, as we will see when we discuss disks. The sec-
ond parameter, Γ, is a measure of the angular momentum content
of the accretion. The quantity Ṁ/Ωk,in is (neglecting a factor of 2π)
the amount of mass added per orbital period at the disk outer edge.
Thus Γ measures the fraction by which accretion changes the total
disk plus star mass per disk orbital period. High angular momentum
flows have large rotation periods, so they produce larger values of Γ
at the same total accretion rate.
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Figure 2. Distribution of runs in ξ–Γ parameter space. The single stars are
confined to the low ξ region of parameters space, although increasing Γ has a
small stabilizing effect near the transition around ξ = 2 due to the increasing
ability of the disk to store mass at higher values of Γ. The dotted line shows the
division between single and fragmenting disks: Γ = ξ2.5/850. As ξ increases
disks fragment to form multiple systems. At even higher values of ξ disks
fragment to make binaries. We discuss the distinction between different types
of multiples in Section 5.4. The shaded region of parameter space shows where
isothermal cores no longer collapse due to the extra support from rotation.
(A color version of this figure is available in the online journal.)

Table 1
Each Run is Labeled by ξ, Γ, Multiplicity Outcome, the Final Value of the

Disk-to-star(s) Mass Ratio, µ, and the Final Resolution, λn

Run ξ 102Γ N∗ µf λf Q2D µ λn

1 1.6 0.9 S . . . . . . . . . 0.49 99
2 1.9 0.8 S . . . . . . . . . 0.40 88
3 2.2 2.5 S . . . . . . . . . 0.56 82
4 2.4 1.0 M 0.43 77 0.69 0.16 98
5 2.9 1.8 S . . . . . . . . . 0.53 86
6 2.9 0.8 M 0.40 51 0.72 0.14 78
7 3.0 0.4 M 0.33 50 0.48 0.11 77
8 3.4 0.7 M 0.40 66 0.37 0.16 70
9 4.2 1.4 B 0.51 56 0.19 0.33 72
10 4.6 2.1 M 0.54 71 0.42 0.23 123
11 4.6 0.7 B 0.35 28 0.52 0.12 52
12 4.9 0.9 B 0.37 26 0.74 0.19 59
13 5.4 0.4 B 0.38 38 0.33 0.19 64
14 5.4 0.7 B 0.31 49 0.85 0.21 62
15 5.4 7.5 B 0.72 99 0.20 0.59 129
16* 23.4 0.8 B 0.25 5 0.83 0.10 84
17* 24.9 0.4 B 0.15 3 0.59 0.11 61
18* 41.2 0.8 B 0.13 5 1.33 0.10 58

Notes. Values of Γ are quoted in units of 10−2. For fragmenting runs the disk
resolution λf , Q2D (Equation (29)) and µf at the time of fragmentation are
listed as well. S runs are single objects with no physical fragmentation. B’s are
binaries which form two distinct objects each with a disk, and M are those with
three or more stars which survive for many orbits. * indicates runs which are
not sufficiently well resolved at the time of fragmentation to make meaningful
measures of µf and Q.

fluctuations), although Qd shows a similar trend. We use this
smoothed minimum quantity in Table 1, and compare it to the
analytic estimate Qd in Table 2 for non-fragmenting disks.

The critical values of Q at which fragmentation sets in depend
on the exact method used for calculation (e.g., Qav or Q2D). The

Figure 3. Top: Qav in a disk with ξ = 2.9, Γ = 0.018. The current disk radius,
Rk,in is shown as well. Bottom: log(Q2D) (Equation (29)) in the same disk.
While the azimuthally averaged quantity changes only moderately over the
extent of the disk, the full two-dimensional quantity varies widely at a given
radius. Q is calculated using κ derived from the gravitational potential, which
generates the artifacts observed at the edges of the disk. Here and in all figures,
we use δx to signify the resolution.
(A color version of this figure is available in the online journal.)

Table 2
Non-fragmenting Runs (Numbers as from Table 1)

Run ξ 102Γ µ Qd Q2D kΣ λn Rd

1 1.6 0.9 0.49 1.6 0.96 1.5 99 103
2 1.9 0.8 0.40 1.5 1.10 1.3 88 138
3 2.2 2.5 0.56 3.7 0.83 1.8 82 65
5 2.9 1.8 0.53 2.2 0.56 1.7 86 77

Notes. We list values for the characteristic predicted value of Toomre’s Q, Qd

(Equation (23)), as well as the measured disk minimum, Q2D Equation (29).
We also list the slope of the surface density profile, kΣ averaged over several
disk orbits, the final resolutions, and Rd at the end of the run (Equation (21)).

canonical Q = 1 boundary only indicates the instability of
axisymmetric perturbations in razor-thin disks (Toomre 1964).
As discussed by numerous authors, the instability criterion is
somewhat different for thick disks (Goldreich & Lynden-Bell
1965; Laughlin et al. 1997, 1998), and for the growth of higher
order azimuthal modes (Adams et al. 1989; Shu et al. 1990;
Laughlin & Korchagin 1996).

Because our disks are thick, the fragmentation boundary
cannot be drawn in Q-space alone. We use Q2D and µ in
Figure 4 to demarcate the fragmentation boundary. Labeled
curves illustrate that the critical Q for fragmentation depends
on the disk scale height (Equation (18)). At a given value of Q,
a disk with a larger value of µ will have a larger aspect ratio,
and will therefore be more stable. Recall from Equation (18)
that the disk aspect ratio is proportional to (ξ/Γ)1/3.

Figure 14.4: Results of a series of simu-
lations of disk fragmentation by Kratter
et al. (2010). Points show the accretion
rate parameter ξ and the rotation pa-
rameter Γ for the simulations, with the
type of point indicating the outcome:
a single star, a multiple system, or a
binary system. The shaded region is
forbidden, because cores in that region
are unable to collapse.

Intuitively, we expect that disk fragmentation is likely for high
values of ξ and low values of Γ, because both favor higher surface
densities in the disk, which tends to lower Toomre Q. High ξ favors
high disk surface density because it corresponds to matter entering
the disk faster, and low Γ favors higher surface density because it
tends to make the disk more compact (since the circularization radius
of the accreting material increases and Γ does). This is exactly what a
series of numerical simulations shows, as illustrated in Figure 14.4.

These results are very nice because they quite naturally explain
why binaries are much more common among high mass stars. As
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we discussed earlier, typical accretion rates onto massive stars are
∼ 10σ3/G, where σ is the velocity dispersion in the protostellar core.
The parameter ξ is determined by the accretion rate normalized to
c3

s /G (where cs is the disk sound speed, recall), and thus we have

ξ ∼ 10
(

σ

cs

)3
. (14.5)

For a massive core, the disk sound speed cs is enhanced compared to
that in the core due to the radiation from the star, but much less than
σ is enhanced. Typical outer disk temperatures for massive star disks
are ∼ 100 K, corresponding to cs ∼ 0.6 km s−1, whereas σ ∼ 1 km
s−1, giving ξ � 1. Thus disk fragmentation is essentially inevitable.

A second effect that enhances massive star binary is N-body pro-
cessing. Young clusters are born far from dynamically-relaxed, and
thus there is an initial period where stars may have close encounters
with one another. During this phase, encounters between binary
systems, between binaries and single stars, and between three single
stars can all serve to create or destroy binaries, or to modify their
properties. The study of exactly how this happens is a huge topic
into which we will not delve, beyond making a few general observa-
tions.

The main effects of this N-body processing are as follows: (1) wide
binaries will tend to be widened and disrupted; (2) tight binaries
will tend to get tighter; (3) three-body interactions may occur that
will tend to preferentially keep more massive stars in binaries, thus
favoring equal mass ratios. The line between close and wide binaries
depend on the velocity – binaries with orbital velocities greater than
the cluster velocity dispersion are close, others are wide. All of these
effects will tend to increase the binary fraction for more massive stars
relative to less massive ones. The third effect does so by creating new
massive binaries, and the first two favor massive binaries because
a higher mass produces a higher orbital velocity, and thus a wider
range of separations that can be considered close.

14.3 Barriers to Accretion

14.3.1 Evolution of Massive Protostars

Massive stars are not only somewhat different from low mass stars
in terms of their parent cores, but also in their internal evolution. At
accretion rates of ∼ 10−4 − 10−3 M� yr−1, forming a 10− 100 M� star
takes of order 105 yr, not that different than the time require to make
a low mass star.

However, massive stars are very different than low mass ones in
terms of the timescales that govern their thermal evolution. A more
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complete discussion of protostellar evolution appears in Chapter 18,
but for now we note that the Kelvin time in a star is

tKH =
GM2

RL
. (14.6)

Evaluating this for main sequence values of M, R, and L, for a ZAMS
star of mass M�, tKH = 50 Myr. For a protostar where RL is larger
by a factor of ∼ 100, this drops to a few times 105 yr. To put some
numbers on this for a massive star, a 50 M� ZAMS star has a radius
of 10.7 R� and a luminosity of 3.5× 105 L�. For this star tKH = 20
kyr, even without putting in a larger radius or luminosity because it
is pre-main sequence. (In fact, the radius may be somewhat larger,
but the luminosity will not be.) Since this is less than the ∼ 105 yr
required to form the star, we expect that massive stars will be able to
reach thermal equilibrium while forming. This means that the star
will reach the main sequence while it is in the process of forming.
This is quite different from low mass stars, as we will see in Chapter
18.

The rapid contraction to the main sequence has a few conse-
quences. It means that the stars will have stronger winds, since the
wind speed is linked to the Keplerian speed at the stellar surface
and massive stars are able to shrink more. It also means that massive
protostars will put out roughly the same amount of light as main
sequence stars of the same mass. This means that, for a massive pro-
tostar, even given the enhancement in accretion rate by a factor of
10− 100 compared to a low mass star, accretion luminosity does not
dominate. Instead, stellar luminosity does. A third implication of the
stars’ comparatively small radii is that the effective temperature will
be fairly high, so much of this light will emerge as ionizing radiation,
even while the star is still forming.

The fact that massive protostars settle onto the main sequence, or
come close to it, while forming raises interesting problems for how
they are able to keep accreting. This is the beginning of the problem
of massive star feedback.

14.3.2 Winds

One thing that one might worry about is that the main sequence
winds of a massive star, which are reasonably isotropic, might in-
hibit accretion. These winds may well start up while the star is still
forming. However, this worry is fairly easy to dismiss.

Main sequence O stars show wind speeds up to ∼ 1000 km s−1,
with mass fluxes that are typically ∼ 10−7 M� yr−1 or less. The mass
flux is

Ṁ = 4πr2ρv, (14.7)
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so the associated ram pressure is

Pwind = ρv2 =
Ṁwindvwind

4πr2 (14.8)

In contrast, the accretion flow has a mass flux of 10−4 − 10−3 M� yr−1,
and if it arrives at free-fall its ram pressure is

Pinfall =
Ṁaccvff

4πr2 (14.9)

Thus the ratio of the ram pressures is

Pinfall
Pwind

=
Ṁaccvff

Ṁwindvwind
. (14.10)

Since vwind ≈ vff at the stellar surface, and Ṁacc is larger than
Ṁwind by a factor of 103 − 104, the ram pressure of the infall is more
than enough to stop the wind. Even if the wind and the infall en-
counter each other further from the star, the free-fall velocity only
falls off as 1/

√
r, so the wind would need to be able to push the infall

out to ∼ 106 − 108 stellar radii before it was able to reverse the infall.
For a 50 M� ZAMS star, 106 stellar radii is roughly 1/4 of a pc, i.e.,
bigger than the initial massive core.

Thus, we generally do not expect main sequence stellar winds to
inhibit accretion as long as material is left in the protostellar core.
Of course the protostellar outflow carries much more momentum
than the main sequence wind because it is hydromagnetic rather
than radiative. However, it is also highly collimated, and so it does
not prevent accretion over 4π sr any more than protostellar outflows
from lower mass stars do. It will reduce the efficiency, but not by
more than low mass star outflows do.

14.3.3 Ionization

A second feedback one can worry about is ionizing radiation. Mas-
sive stars put out a significant fraction of their power beyond the
Lyman limit, and this can ionize hydrogen in the envelope around
them. Since when hydrogen is ionized it heats up to ∼ 10 km s−1,
gas that is ionized may be able to escape from the massive core,
which only has an escape velocity of ∼ 1 km s−1.

This does eventually happen, and it probably plays an important
role in regulating the star formation efficiency in star clusters and on
larger scales. However, one can also convince one’s self fairly easily
that, as long as the massive star is accreting quickly, this effect will
not limit its ability to continue gaining mass. Problem set 4 contains a
quantitative calculation.



massive star formation 235

Qualitatively, the result is that, at the accretion rates that we expect
in massive cores, we expect the ionizing radiation to all be trapped
within a few stellar radii. Since the escape velocity from the surface
of a 50 M� ZAMS star is about 1000 km s−1, this gas will be trapped
by the star’s gravity, and will not escape. Thus ionization is an
important feedback, but it is one that is likely most important after
the massive star has gathered most of the mass around it and has
stopped growing.

That said, this omits the fact that there is likely to be lower density
within the region cleared by the protostellar outflow, so ionizing
radiation may be able to escape in some directions even while the
star is growing. This may eventually reduce its mass supply, and
it may cause asymmetric H ii regions to form, where the ionized
gas is confined in certain directions (say close to the disk) while the
ionizing photons escape and drive an outflow in other directions (say
along the polar axis).

14.3.4 Radiation Pressure

By far the biggest potential worry for massive star formation is not
that ionizing radiation will heat the gas enough to allow it to escape,
but the pressure exerted by radiation will halt accretion. The solution
to this problem is the subject of the second paper for this week, but
we can set it up here.

Let us go back to our picture of the structure of the envelope of
dusty gas around a protostar. There is a dust destruction radius
where all direct starlight is absorbed, and outside that a diffusion re-
gion. The calculation of this radius is the same as for a low mass star,
except that the luminosity is not mostly due to accretion. Equating
heating and cooling gives

L∗
4πr2

d
πa2 = 4πa2σT4

d , (14.11)

where rd and Td are the radius and temperature at the dust destruc-
tion front. Thus

rd =

√
L∗

16πσT4
d
= 25 AU L1/2

∗,5 T−2
d,3 , (14.12)

where L∗,5 = L∗/(105 L�) and Td,3 = Td/(1000 K). The dust de-
struction radius is therefore a factor of ∼ 10 larger than it is for a low
mass star.

Note that, strictly speaking, this expression implicitly assumes that
the grain is a blackbody, which is not true for grains that are smaller
than the wavelength of light that corresponds to the temperature
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Td. Smaller grains radiate at less than the full blackbody rate, which
tends to make rd larger. For simplicity we will ignore this effect.

The dust destruction front. It is interesting to consider the force
exerted by the radiation on the gas in two different regimes. One is
at the dust destruction front, where the radiation still has a stellar
spectrum and has not yet been down-shifted in frequency by the dust.
At this front we can assume that essentially all the stellar radiation
is absorbed in a thin region, so all of the momentum carried by the
stellar radiation field will be transferred to the gas. Infall will reverse
if this change in momentum is enough to reduce the infall velocity to
zero.

Let Ṁ be the mass accretion rate onto the star. An infalling shell
of material striking the dust destruction front therefore carries an
inward momentum flux

ṗ = −Ṁv, (14.13)

where v is the material’s velocity, and we use the convention that
Ṁ > 0 and v > 0 correspond to inward motion. In comparison, the
stellar radiation field carries a momentum flux

ṗ =
L
c

(14.14)

Strictly speaking this momentum is transferred to the dust grains,
since they and not the gas absorb the radiation, but they are in turn
coupled to the gas by collisions and magnetic fields, so they will in
turn transfer it to the gas.

If we let v0 be the velocity of the material just before it encounters
the stellar radiation field and v1 be its velocity after passing through
the dust destruction front, then conservation of momentum implies
that

Ṁv1 = Ṁv0 −
L
c

. (14.15)

The condition that v1 < 0 (i.e. that the new velocity still be inward)
then requires that

Ṁv0 >
L
c

(14.16)

If we assume that the gas is arriving at free-fall before reaching the
dust destruction front, then v0 =

√
2GM/rd, and thus the mass flux

must exceed

Ṁ >
L

v0c
=

L
c

√
rd

2GM∗
= 8× 10−5 M� yr−1 L3/2

∗,5 T−1
d,3 M−1/2

∗,1 , (14.17)

where M∗,1 = M∗/(10 M�).
This is less than the accretion rates we inferred for massive stars

based on dimensional arguments, although maybe not by quite



massive star formation 237

as much as one would like. Nonetheless, this seems to imply that
matter will not be stopped at the dust destruction front if it arrives
as quickly as expected. More detailed evaluations of this condition
by McKee & Tan (2003), who in turn build off of Wolfire & Cassinelli
(1987), generally find that this is not a problem.

The envelope. The second regime to think about this the dusty enve-
lope, through which radiation must diffuse to escape. The radiation
flux F = L/(4πr2), and this applies a force per unit mass to the gas

frad =
1
c

∫
κνFν dν =

1
4πr2c

∫
κνFν dν, (14.18)

where the subscript ν indicates the frequency-dependent flux and
opacity. Since the radiation field will be close to a black body in the
envelope, we can replace the frequency integral with a Rosseland
mean opacity:

frad =
κRF

c
=

κRL∗
4πr2c

(14.19)

Since the opacity of the gas to the reprocessed radiation field is
much less than its opacity to direct stellar radiation (i.e. κR evaluated
at temperatures T < Td is much smaller than κν evaluated at the peak
frequency of stellar output), this force is much less than that applied
at the dust destruction front. Unlike at the dust destruction front,
however, this force is not applied in a quick impulse. It is applied
at every radius, and thus its cumulative effect can be much stronger
than that at the dust destruction front.

If we think of things in terms of accelerations, the force applied
in the dust envelope is much smaller, but it is applied to the gas for
a much longer time, so that the total acceleration can be larger. The
relevant comparison here is not to the momentum of the radiation
field, but to the force of gravity exerted by the star, since we want to
know whether the net acceleration is inward or outward.

The condition that gravitational force be stronger than radiative
force therefore reduces to

GM∗
r2 >

κRL∗
4πr2c

, (14.20)

or
L∗
M∗

<
4πGc

κR
. (14.21)

This is just the Eddington limit calculation, or it would be if we
plugged in the electron scattering opacity for κR. If we instead plug
in a typical infrared dust opacity of a few cm2 g−1, we get

(
L∗
M∗

)
= 1300(L�/M�) κ−1

R,1, (14.22)
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where κR,1 = κR/(10 cm2 g−1). For comparison, our standard 50

M� ZAMS star has L∗/M∗ = 7100(L�/M�), i.e. it exceeds this limit.
In fact, all ZAMS stars larger than ∼ 20 M� do, which would seem
at face value to suggest that it should not be possible to form stars
above this limit by accretion.

This argument led to all sorts of contortions trying to explain
how massive stars could form – models included trying to make
them only in regions of dramatically reduced dust opacity, trying to
make them by collisions of lower mass stars, and various other ideas.
The solution in reality is much more prosaic: the real world is not
spherically symmetric, and the argument I just made is.

Multidimensional simulations show that, contrary to this naive
calculation, radiation does not stop accretion in a real system. The
main effect is that the ram pressure and the gas pressure can both
be asymmetric, and they will conspire to be anti-correlated with
one another because the radiation will escape by the path of least
resistance. Thus it is misleading to compare the radiation and grav-
itational forces averaged over 4π sr. Accretion will continue as long
as there are significant patches of solid angle where gravity wins.
The disconnect between gravity and radiation can be created in any
number of ways, including the presence of a disk, radiation-driven
instabilities, and protostellar outflow cavities. Figure 14.5 shows an
example.
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Figure 5. Same as Figure 2 but at t = 0.8tff . Only the surface density parameter cases of Σ = 2.0 g cm−2, Σ = 10.0 g cm−2, and Σ = 2.0 g cm−2 (without winds) were
run to this time.
(A color version of this figure is available in the online journal.)

inward gravitation attraction acting on the dusty envelope of
infalling gas in the case of Σ = 10.0 g cm−2 and in the case of
Σ = 2.0 g cm−2 without outflows. In the case without outflows
this strong radiative force drives the expansion of a bubble
of circumstellar gas away from the central source. The early
development of this bubble can be seen in the lower left panel
of Figure 3 at t = 0.4tff and the radial extent of the bubble
grows to a size scale comparable to that of the initial core by
t = 0.8tff as shown in Figure 5. The radiation bubble emerges
from the initial core on the left side of the density slices in
Figure 5. This is due to the drift of the primary star away from
the center of mass of the initial core with time. The radiation
bubble emerges first from the thinnest side of the initial cloud,
relative to the position of the primary star. Accretion onto the
primary star continues through the radiatively supported bubble
via Rayleigh–Taylor unstable modes (Krumholz et al. 2009;
Jacquet & Krumholz 2011) that develop dense, radiatively self-
shielding spikes of infalling gas. The evolution of radiative
bubbles in similar simulations without winds and without initial
turbulence are discussed in detail by Krumholz et al. (2009).
The sole difference between the radiation bubbles presented

here and those in the earlier work is that the bubbles presented
here are considerably less symmetrical about the central source
owing to the turbulent ambient environment.

In the case with winds, the regions where the net force is
dominated by the outward radiation force lie within the outflow
cavity. These regions are dominated by outflow irrespective of
the radiation force. With protostellar outflow, in no case does
radiation force exceed that of gravity acting on the infalling
core gas. Consequently, no such radiation supported bubbles
form in any of the models with protostellar winds. As predicted
in Krumholz et al. (2005), the cavities evacuated by protostellar
outflows provide sufficient focusing of the radiative flux in the
poleward directions that accretion continues through the regions
of the infalling envelope onto the disk that are not disrupted by
the protostellar wind shocks, and the infalling motion of this gas
is not interrupted by the effects of radiation pressure.

3.3. Protostar Properties

The upper left panel of Figure 6 shows the time dependence
of mass accretion onto star particles for each simulation, and

10

Figure 14.5: Two simulations of the
formation of a massive star including
protostellar outflows (Cunningham
et al., 2011). The top row shows a
simulation with an outflow, while the
lower shows one without. The panels
show, from left to right, normalized
volume density in a slice, ratio of
radiation force to gravitational force,
normalized projected density, and mass-
weighted mean projected temperature.
Note the general absence of regions
with radiation force greater than
gravitational force in the simulation
with winds.
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Suggested background reading:

• Li, Z.-Y., et al. 2014, in “Protostars
and Planets VI", ed. H. Beuther et al.,
pp. 173-194, sections 1-2

Suggested literature:

• Tobin et al., 2012, Nature, 492, 83

We now zoom in even further on the star formation process, and
examine the dominant circumstellar structures found around young
stars: accretion disks. We will spend two chapters on this subject. In
the first we will discuss the observational phenomenology of disks,
including the outflows they generate. There are a wide range of
observational techniques for studying the properties of disks around
young stars, and we will certainly not exhaust the list here. We will
focus on a few of the most widely used methods, and develop an
understanding of how they work and what we can learn from them.

15.1 Observing Disks

15.1.1 Dust at Optical Wavelengths

Figure 15.1: Two disks in the Orion
Nebula seen in absorption against
the nebula using HST. Taken from
http://hubblesite.org/newscenter/

archive/releases/1995/45/image/g/.

The first idea that might occur to an astronomer who wants to study
disks would be to work in the optical. The main challenge to that
is that for the most part disks do not emit optical light, because
they are too cool. This leaves only a couple of options in the optical.
One is that we can detect the disk in scattered starlight. This is very
hard, because the light is very faint, and the geometry has to be just
right. Polarization can help in this case, since the scatter light will be
polarized. There are a few examples of this.

The other possibility for the optical is to work in absorption. This
requires a bright, extended background source against which the
disk can be detected in silhouette. Fortunately, massive young stars
produce H ii regions, which are bright diffuse sources, and can
provide a nice backlight for absorption work. The most spectacular
examples of this technique are in the Orion Nebula, as illustrated in
Figure 15.1.

In this case, since we are working in optical, we get excellent spa-
tial resolution. The disks we see in this case are typically hundreds of
AU in size. In such images we can also see very clearly that protostel-

http://adsabs.harvard.edu/abs/2014prpl.conf..173L
http://adsabs.harvard.edu/abs/2014prpl.conf..173L
http://adsabs.harvard.edu/abs/2014prpl.conf..173L
http://adsabs.harvard.edu/abs/2012Natur.492...83T
http://hubblesite.org/newscenter/archive/releases/1995/45/image/g/
http://hubblesite.org/newscenter/archive/releases/1995/45/image/g/
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lar jets are launched perpendicular to the disks, confirmed the central
role of disks in producing them, as we will discuss shortly.

While the optical offers spectacular pictures, its restriction to
the cases where we have favorable geometry, a nice backlight, or
some combination of the two limits its usefulness as a general tool
for studying disks. A further complication is that optical only lets
us study disks once their parent cores, which are optically thick at
optical wavelengths, have dissipated. This limits optical techniques to
studying the later stages of disk evolution.

15.1.2 Dust Emission in the Infrared and Sub-mm

A much more broadly used technique is to detect the dust in a disk
in the infrared or sub-mm. As discussed in Chapter 2, young stars
often show significantly more IR and sub-mm emission that would
be expected from a bare stellar photosphere. The natural candidate
for producing this emission is warm dust grains near the star. The
fact that we see the stellar photosphere at all, and that it is not hugely
reddened, implies that the grains cannot be in any sort of shell or
spherical distribution. A disk is the natural candidate geometry.

Figure 15.2: An ALMA image of
the disk around the young star
HL Tau. The image shows dust
continuum emission. Image from
https://public.nrao.edu/static/pr/

planet-formation-alma.html.

In some cases we can spatially resolve a disk in IR or sub-mm ob-
servations (Figure 15.2), and in some cases the disks are unresolved.
In either case, in order to interpret these images, we need to think
a bit about which parts of the disk we expect to see at which wave-
lengths. Consider a geometrically thin disk of material of surface
density Σ(v) and temperature T(v) beginning at a radius v0 around
the star and extending out to radius v1. The dust has opacity κλ at
wavelength λ. The entire disk is inclined relative to our line of sight
at angle θ. The flux we receive from the disk at wavelength λ is

Fλ =
∫

Iλ dΩ, (15.1)

where Iλ is the intensity emitted by a portion of the disk at wave-
length λ, and the integral goes over the solid angle Ω occupied by the
disk.

To evaluate this, note the ring of material at radius v has an area
2πv dv. It is inclined relative to the line of sight by θ, however, so
its projected area is 2πv cos θ dv. The case θ = 0 corresponds to the
ring being seen perfectly face-on, and the case θ = 1 corresponds to
perfectly edge-on, and gives 0 in the limit of an infinitely thin disk.
This is the projected area, and to covert this to a projected solid angle
we divide by D2, where D is the distance to the disk. Thus the flux is

Fλ =
2π cos θ

D2

∫ v1

v0

Iλ(v)v dv. (15.2)

https://public.nrao.edu/static/pr/planet-formation-alma.html
https://public.nrao.edu/static/pr/planet-formation-alma.html
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To make further progress we must specify the intensity, which is a
function of Σ and T. The optical depth of the disk will be

τλ =
κλΣ
cos θ

(15.3)

Note that the inclination factor cos θ appears on the bottom here, as
it should: for θ = 0, face-on, we just get the ordinary surface density,
but that gets boosted as we incline the disk. The intensity produced
by a slab of material of uniform temperature T and optical depth τλ

is

Iλ = Bλ(T)
(
1− e−τλ

)
, (15.4)

where Bλ(T) is the Planck function. Plugging this in, we have

Fλ =
2π cos θ

D2

∫ v1

v0

Bλ(T)
[

1− exp
(
− κλΣ

cos θ

)]
v dv. (15.5)

For a given disk model it is clearly straightforward to evaluate this
integral to obtain the emitted flux. However, the model is underspec-
ified, in the sense that we are fitting only one function, Fλ, and we
have two free-functions to use: T(v) and Σ(v). This is even if we
assume that the opacity is known, which we will see is not a great
assumption.

In order to deduce things like Σ and T we need to have a physical
model of how the disk behaves, and to deduce either Σ, T, or a rela-
tionship between them in order to obtain strong constraints on either
one from an observed SED. In general such models can be quite com-
plicated, because the disk’s temperature distribution depends on both
internal heating via viscous dissipation, and external illumination
due to the star. Problem set 4 contains a problem in whuch such a
model is developed. Even without such a sophisticated model, how-
ever, it is possible to learn very interesting things simply from the
behavior of the flux in certain limits.

The optically thick limit. First, suppose that the disk is optically thick
at some wavelength, i.e. τλ = κλΣ/ cos θ � 1. This is likely to be
true for shorter (e.g. near-IR) wavelengths, where the opacity is high,
and where most emission is coming form close to the star where
the surface density is highest. In this case it is reasonable to set the
exponential factor to 0, and we are simply left with the integral of the
Planck function of the disk temperature over radius.

Note that in this limit Σ drops out, which makes intuitive sense:
if the disk is optically thick then we only get to see its surface, and
adding or removing material beneath this surface won’t change the
amount of light we see. Substituting in the Planck function, in the
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optically thick case we now have

Fλ =
4π cos θ

D2
hc2

λ5

∫ v1

v0

v

exp[hc/(kBT)]− 1
dv. (15.6)

If we further assume that the temperature varies with radius as a
powerlaw, T = T0(v/v0)

−q, then we can evaluate the integral via the
substitution

x =

(
hc

λkBT0

)1/q v

v0
, (15.7)

which gives

Fλ =
4π cos θ

D2
hc2

λ5

(
v0

x0

)2 ∫ x1

x0

x
exp(xq)− 1

dx (15.8)

=
4π cos θ

D2
hc2

λ5

(
hc

λkBv
q
0T0

)−2/q ∫ x1

x0

x
exp(xq)− 1

dx, (15.9)

and x0 and x1 are obtained by plugging v0 and v1 into the expres-
sion for x.

If we look at the part of the SED where emission is dominated
neither by the inner edge of the disk nor the outer optically thin
parts, which will be the case over most of the IR, then we can set
x0 ≈ 0 and x1 ≈ ∞ in the integral. In this case the integral is simply
a numerical function of q alone. Since the integral then does not
depend on the wavelength, our expression for Fλ immediately tells us
the wavelength-dependence of the emission:

λFλ ∝ λ(2−4q)/q. (15.10)

Conversely, this means that if we observe the SED of the disk at
relatively short wavelengths, for example near-IR, we can invert the
wavelength dependence to deduce how the temperature falls with
radius. If we also know the distance D and the inclination θ, we
can also clearly deduce the combination of variables v

q
0T0 from the

observed value of Fλ.

The optically thin limit. Now let us consider the opposite limit, of an
optically thin disk. This limit is likely to hold at long wavelengths,
such as far-IR and sub-mm, where the dust opacity is low, and where
most emission comes from the outer disk where the surface density is
low. In the optically thin limit, we can take

1− exp
(
− κλΣ

cos θ

)
≈ κλΣ

cos θ
, (15.11)

and substituting this into our integral for the flux gives

Fλ =
2π

D2

∫ v1

v0

Bλ(T)κλΣv dv. (15.12)
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Note that in this case the inclination factor cos θ drops out, which
makes sense: if the disk is optically thin we see all the material in it,
so how it is oriented on the sky doesn’t matter.

Even more simplification is possible if we concentrate on emission
at wavelengths sufficiently long that we are on the Rayleigh-Jeans tail
of the Planck function. This will be true for most sub-mm work, for
example: at 1 mm, hc/(kBλ) = 14 K, and even the cool outer parts
of the disk will be warm enough for emission at this wavelength to
fall into the low-energy powerlaw part of the Planck function. In the
Rayleigh-Jeans limit

Bλ(T) ≈
2ckBT

λ4 , (15.13)

and substituting this in gives

Fλ =
4πckBκλ

D2λ4

∫ v1

v0

ΣTv dv. (15.14)

Note that, again, all the wavelength-dependent terms are now
outside the integral, and we therefore again expect to be able to
predict the wavelength-dependence of the emission without knowing
anything about the disk’s density or temperature structure. If the
dust opacity varies as κλ ∝ λ−β, then we have

λFλ ∝ λ−3−β. (15.15)

This is a particularly important result because it means that
we can use the sub-mm SED of a protostellar disk to measure the
wavelength-dependence of the dust opacity. In the ISM, β is generally
observed to be 2 in diffuse regions, going down to ∼ 1 as we go to
dense regions. The powerlaw index describing how κλ varies with
λ is determined primarily by the size distribution of the dust grains,
with larger grains giving smaller β. This means that reductions in β

indicate grain growth, an important prelude to planet formation.
One big caveat here is that this only applies in the optically thin

limit, and at shorter wavelengths one is probing closer to the star,
where the gas is closer to optically thick. This can fool us into think-
ing we’re seeing grain growth. To see why, note that for β = 1− 2, the
typical values for non-disk interstellar grains, we expect λFλ to vary
as a powerlaw with index between −4 and −5 in the optically thin
limit. Smaller β, which we expect to occur when grains grow, would
make this value shallower.

However, recall that in the optically thick limit λFλ ∝ λ(2−4q)/q,
where q is the powerlaw index describing how the temperature varies
with radius. The value of q depends on the thermal structure of the
disk, but for observed optically thick sources values of q in the range
0.5− 1 are commonly inferred. In this case λFλ varies as a powerlaw
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with index between 0 and −2. In other words, a transition from
optically thin to optically thick also causes the SED to flatten. Thus,
when we see a flattening, we have to be very careful to be sure that
it is due to changes in the grain population and not in the optical
depth.

The best way to get around this is with spatially resolved observa-
tions, which let us look at a single radius in the disk, thereby getting
rid of the effects of radial temperature variation.

Mass estimates. By combining the optically thin and optically thick
parts of these curves, it is also possible to obtain estimates of the
mass of disks, provided that we think we understand the properties
of the dust. The general procedure is to observe the disk in the
IR, where it is assumed to be optically thick. As discussed earlier,
this lets us figure out q and v

q
0T0. This means that the temperature

distribution T(v) can be considered known. If one plugs this into the
equation for the optically thin flux,

Fλ =
4πckBκλ

D2λ4

∫ v1

v0

ΣTv dv, (15.16)

then the only remaining unknowns are κλ and Σ. If one assumes a
known κλ (a questionable assumption), then Σ is the only unknown.

The problem in this case is no longer underdetermined. The
flux Fλ is one known function, and it determined the unknown
function Σ(v) uniquely through an integral equation. This can be
solved numerically to obtain Σ(v), which in turn gives the disk mass.
Typical T Tauri disk masses determined via this technique range from
10−3 − 10−1 M�, although with an obviously large uncertainty coming
from the unknown grain properties, and from the need to convert a
dust mass into a total mass.

15.1.3 Disks in Molecular Lines

The optical and IR / sub-mm continuum techniques both target the
dust, but they do not directly tell us about the gas in disks, which
dominates the mass. To observe the gas we must detect line emission.
The lines detected can be in the infrared, which will mostly tell us
about the warm portions of the disk very close to the star, or in the
radio / sub-mm, which can tell us about the cool material far from
the star.

For the former case, lines that have been detected include the
vibrational and ro-vibrational transitions of CO, OH, water, and
molecular hydrogen. These generally probe regions within a few
tenths of an AU of the star, simply because of the high temperatures
required for the upper levels to be significantly populated. One
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particularly important use of these techniques is to infer the inner
radii at which disks become truncated. Since this is line emission,
we determine the velocity of the gas. If we assume that rotation
near the star is Keplerian, and we can measure the stellar mass and
inclination by other means, then the maximum measured rotation
velocity directly tells us innermost radius at which there is a dense
disk. Using this technique suggests that disks are truncated at inner
radii of ∼ 0.04 AU (Figure 15.3).

Figure 15.3: The top panel shows inner
truncation radii of disks as inferred
from the maximum velocity of CO
vibrational emission. For comparison,
the bottom panel shows the radial dis-
tribution of the hot Jupiter expolanets
known at the time (Najita et al., 2007).

For the sub-mm and radio, detections have mostly involved CO
and its isotopologues. The main advantage of this data, as opposed
to the dust continuum, is that we obtain kinematic information. This
can then be used to determine whether the (usually) poorly-resolved
objects we see in the continuum have a velocity structure consistent
with Keplerian rotation. Figure 15.4 shows an example. Note that
higher velocity emission tends to come from closer to the star, exactly
as would be expected for a Keplerian disk. Indeed, when one fits the
data to Keplerian rotation curves, they are entirely consistent. The
number of sources for which this analysis has been done is not large,
but it is growing.
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Figure 3. 13CO emission from the disk around L1527 exhibiting a Keple-
rian rotation signature. The CARMA 1.3 mm continuum image is shown
(grayscale) with the red and blue contours showing 13CO emission integrated
at low velocities (a), intermediate velocities (b), and high velocities (c). The
white cross in all panels marks the location of the protostar. The blue and red-
shifted emission centroids show a clear signature of rotation on the size-scale
of the protostellar disk and no extension of emission along the outflow. The
low-velocity emission likely includes contributions from the envelope, while the
intermediate to high-velocity emission is dominated by the disk. The low veloc-
ity range is from 6.35 km s−1 to 7.25 km s−1 and 4.55km s−1 to 5.3 km s−1; the
intermediate velocity range is from 7.25 km s−1 to 8.0 km s−1 and 3.8 km s−1

to 4.55 km s−1; the high velocity range is from 8.0 km s−1 to 8.6 km s−1 and
3.2 km s−1 to 3.8 km s−1. The contours start and increase in intervals 3 times
noise level (σ) where σ = 0.85 K km s−1 (red) and 0.75 K km s−1 (blue). The
angular resolution of these data are given by the ellipse in the lower right
corners, 1.1′′ × 0.95′′.

Figure 15.4: Observed 13CO line
emission from the disk in the core
L1527. In each panel, grayscale shows
dust continuum emission, white plus
signs mark the location of the star, and
the red and blue contours show the
emission observed in the indicated
velocity range. Black ovals show the
observational beam, and red and blue
arrows show the axis defined by an
observed molecular outflow (Tobin
et al., 2012).

15.2 Observations of Outflows

15.2.1 Outflows in the Optical

In addition to observing the disks themselves, we can observe the
outflows that they drive. Outflows were first noticed in the 1950s
based on optical observations by Herbig and Haro, working inde-
pendently. The class of objects they discovered are known as Herbig-
Haro, or HH, objects in their honor. HH objects were first seen as
small patches of optical emission containing both continuum and a
number of lines, most prominently Hα. The Hα indicates the pres-
ence of ionization, but, unlike the large ionized regions generated by
massive stars, where all species are highly ionized, HH objects also
show signs of emission from neutral or weakly ionized species such
as O i and N ii.

The standard interpretation of this sort of ionization structure
is that we are seeing a fast shock. The shocked material is ionized,
producing Hα emission as it recombines. Both upstream and down-
stream of the shock itself, however, there is neutral material that is
warm, either because it has had a chance to recombine but not to
cool (for the downstream gas) or because it has been pre-heated by
radiation from the shock (for the upstream gas). This produces the
neutral or weakly ionized emission lines.

More sensitive measurements in the 1970s revealed that the bright
emission knots Herbig and Haro saw are in fact connected by linear
structures that also emit in optical, just with lower surface brightness.
We can also see bow shocks at the heads of jets, where the plough
into dense molecular gas (Figure 15.5).

Today our interpretation of the HH knots is that they are locations
where the jet has either encountered a dense region of interstellar
material, producing a strong shock and bright emission, or where
some variation in the velocity or mass flux being launched into the
jet has caused an internal shock. The weaker emission in between
the knots is caused by the interaction of the jet with a lower density
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Figure 15.5: Herbig-Haro jets imaged
with the Hubble Space Telescope.
Two jets are visible; one is at the tip
of the “pillar" near the top of the
image, and another is near the edge
of the structure in the middle-left part
of the image. Bow shocks from the
jets are clearly visible. Taken from
http://hubblesite.org/newscenter/

archive/releases/2010/13/image/a/.

environment. One can also detect this component in radio free-free
emission, produced by electrons in the jet plasma.

The HH objects move fast enough to produce noticeable shifts in
position and / or brightness over spans of ∼ 10 years. The inferred
velocities are typically hundreds of km s−1. These velocities are also
consistent with what we infer from Doppler shifts in cases where the
jets is partly oriented toward us.

An important point is that these HH jets are usually bipolar, mean-
ing that there is a clear driving star at the base of two HH objects
propagating in opposite directions. Sometimes the knots of emission
are even mirror symmetric, suggesting that they are produced by
variations in the outflow velocity or mass flux originating at the point
where the jet is launched.

Estimates of the density of the outflowing material based on
models of the shocks suggest mass fluxes that range from 10−6

M� yr−1 in class 0 sources, dropping to 10−8 − 10−7 M� yr−1 for
classical T Tauri stars / class I sources. The inferred momentum flux
is therefore of order 10−6 − 10−3 M� km s−1 yr−1. These estimates are
quite uncertainty however, since they are based on shock diagnostics,
and tell us relatively little about the material in between the bright

http://hubblesite.org/newscenter/archive/releases/2010/13/image/a/
http://hubblesite.org/newscenter/archive/releases/2010/13/image/a/
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HH knots.

15.2.2 Outflows in the Radio

Optical and near-IR emission traces the regions where strong shocks
heat the gas enough to excite transitions at these wavelengths. How-
ever, the jets of fast moving material only show the tip of the iceberg
as far as the outflow is concerned. Observations in molecular lines
reveal that narrow optical HH jets are accompanied by a much wider-
angle, slower-moving, and more massive molecular outflow (Figure
15.6).

ANRV320-AA45-13 ARI 26 July 2007 14:49
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Figure 3
The HH 111 jet and outflow system. The color scale shows a composite Hubble Space Telescope
image of the inner portion of the jet (WFPC2/visible) and the stellar source region
(NICMOS/IR) (Reipurth et al. 1999). The green contours show the walls of the molecular
outflow using the v = 6 km s−1 channel map from the CO J = 1–0 line, obtained with BIMA
(Lee et al. 2000). The yellow star marks the driving source position, and the grey oval marks
the radio image beam size; the total length of the outflow lobe shown is ≈0.2 pc.

low-mass stars, which have been observed in much greater detail than their high-mass
counterparts.

Recent reviews focusing on the observational properties of jets include those of
Eisloffel et al. (2000), Reipurth & Bally (2001), and Ray et al. (2007). Jets are most
commonly observed at high resolution in optical forbidden lines of O, S, and N,
as well as Hα, but recent observations have also included work in the near-IR and
near-UV. For CTTs, which are YSOs that are themselves optically revealed, observed
optical jets are strongly collimated (aspect ratio at least 10:1, and sometimes 100:1),
and in several cases extend up to distances more than a parsec from the central source
(Bally, Reipurth & Davis 2007). The jets contain both individual bright knots with
bow-shock morphology and more diffuse emission between these knots.

The emission diagnostics from bright knots are generally consistent with heating
by shocks of a few tens of kilometers per second (Hartigan, Raymond & Hartmann
1987; Hartigan, Morse & Raymond 1994), producing postshock temperatures of
Te ≈ 104 K. The electron density ne , ionization fraction xe = ne/nH, and temperature
Te can be estimated using line ratios (Bacciotti & Eislöffel 1999). Analyses of spectra
from a number of jets yields a range of parameters ne = (50 − 3 × 103) cm−3 and
xe = 0.03 − 0.6 so that n = (103 − 105) cm−3 (Podio et al. 2006). The total mass loss
rate in jets Ṁjet, and hence the total jet momentum flux, Ṁjetvjet, can be estimated
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Figure 15.6: Color shows an HST
image of the jet HH111. The green
contours superimposed show an
outflow detected as emission in the CO
J = 1 → 0 line at a velocity of 6 km
s−1 relative to the bulk of the material
in the region. The yellow star marks
the position of the driving source. The
outflow is ≈ 0.2 pc long. (McKee &
Ostriker, 2007).

Molecular observations show large masses of molecular gas mov-
ing at ∼ 10 km s−1 – the velocity is based on the Doppler shifts of
the molecular lines used to observe the outflow. Again, we generally
see a bipolar morphology. Depending on the outflow direction, this
can consist of two lobes pointing in opposite directions on the sky,
two lobes in the same position on the sky but with distinct red- and
blue-shifted components, or some combination of the two.

Despite their lower velocities, these wind components actually
contain the bulk of the outflow momentum, typically 10−4 − 10−1 M�
km s−1 yr−1, depending on the luminosity of the driving source. The
molecular outflows are thought to consist primarily not of material
ejected directly by the launching mechanism, but of ambient gas that
has been swept up by this gas as it flows outward. The interaction is
via shocks that can radiate, so energy is not conserved, but momen-
tum is. This entrainment explains why the velocities of this material
are so low compared to the material in the jets.
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Suggested background reading:

• Li, Z.-Y., et al. 2014, in “Protostars
and Planets VI", ed. H. Beuther et al.,
pp. 173-194, sections 3-6

Suggested literature:

• Seifried, D., et al., 2013, MNRAS,
432, 3320

The previous chapter introduced observations of protostellar disks
and their outflows. This companion chapter reviews theoretical
models of such disks, with particular attention to how they form,
why they accrete, and why they launch outflows.

16.1 Disk Formation

16.1.1 The Angular Momentum of Protostellar Cores

To understand why disks form, we must start with the question of
angular momentum. Stars form from protostellar cores, so we begin
our study with the question of how much angular momentum cores
typically contain. To determine this observationally, one maps a core
in an optically thin tracer and measures the mean velocity on every
line of sight through the core. If there is a systematic gradient in the
mean velocity, that is indicative of some net rotation. Doing this for a
sample of cores yields a distribution of rotation rates.

It is most convenient to express the resulting distribution di-
mensionlessly, in terms of the ratio of kinetic energy in rotation to
gravitational binding energy. If the angular velocity of the rotation is
Ω and the moment of inertia of the core is I, this is

β =
(1/2)IΩ2

aGM2/R
, (16.1)

where a is our usual numerical factor that depends on the mass
distribution. For a sphere of uniform density ρ, we get

β =
1

4πGρ
Ω2 =

Ω2R3

3GM
(16.2)

Thus we can estimate β simply given the density of a core and its
measured velocity gradient. Observed values of β typically a few
percent (e.g., Goodman et al., 1993).

http://adsabs.harvard.edu/abs/2014prpl.conf..173L
http://adsabs.harvard.edu/abs/2014prpl.conf..173L
http://adsabs.harvard.edu/abs/2014prpl.conf..173L
http://adsabs.harvard.edu/abs/2013MNRAS.432.3320S
http://adsabs.harvard.edu/abs/2013MNRAS.432.3320S
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This implies that cores are not primarily supported by rotation.
In fact, we can understand the observed rotation rates as being a
property of the turbulence. Although cores are primarily thermally-
supported, they do still have some turbulent motions present at
transsonic or subsonic levels. Since most of the power in this turbu-
lence is on large scales, there is likely to be a net gradient. When one
performs the experiment of generating random turbulent velocity
fields with a variety of power spectra and analyzing them as an ob-
server would, the result is a β distribution that agrees very well with
the observed one (Burkert & Bodenheimer, 2000).

16.1.2 Rotating Collapse: the Hydrodynamic Case

Given this small amount of rotation, how can we expect it to affect
the collapse? Let us take the simplest case of a cloud in solid body
rotation at a rate Ω. Consider a fluid element that is initially at some
distance r0 from the axis of rotation. We will consider it to be in the
equatorial plane, since fluid elements at equal radius above the plane
have less angular momentum, and thus will fall into smaller radii.

Its initial angular momentum in the direction along the rotation
axis is j = r2

0Ω. If pressure forces are insignificant for this fluid
element, it will travel ballistically, and its specific angular momentum
and energy will remain constant as it travels. At its closest approach
to the central star plus disk, its radius is rmin and by conservation of
energy its velocity is vmax =

√
2GM∗/rmin, where M∗ is the mass of

the star plus the disk material interior to this fluid element’s position.
Conservation of angular momentum them implies that j = rminvmax.

Combining these two equations for the two unknowns rmin and
vmax, we have

rmin =
r4

0Ω2

GM∗
=

4πρβr4
0

M∗
, (16.3)

where we have substituted in for Ω2 in terms of β. This tells us
the radius at which infalling material must go into a disk because
conservation of angular momentum and energy will not let it get any
closer.

We can equate the stellar mass M∗ with the mass that started off
interior to this fluid element’s position – this amounts to assuming
that the collapse is perfectly inside-out, and that the mass that col-
lapses before this fluid element’s all makes it onto the star. If we
make this approximation, then M∗ = (4/3)πρr3

0, and we get

rmin = 3βr0, (16.4)

i.e., the radius at which the fluid element settles into a disk is simply
proportional to β times a numerical factor of order unity.
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We shouldn’t take the factor too seriously, since of course real
clouds aren’t uniform spheres in solid body rotation, but the result
that rotation starts to influence collapse and force disk formation at a
radius that is a few percent of the core radius is interesting. It implies
that for cores that are ∼ 0.1 pc in size and have β values typical of
what is observed, they should start to become rotationally flattened at
radii of several hundred AU. This should be the typical size scale of
protostellar disks in the hydrodynamic regime.

16.1.3 Rotating Collapse: the Magnetohydrodynamic Case

Magnetic fields can greatly complicate this picture, due to magnetic
braking. As a core contracts, rotation wants to spin it up, but this in
turn twists up the magnetic field. This creates a tension force that
opposes the rotation rate, and tries to keep the core rotating as a solid
body.

To analyze this effect, let us work in cylindrical coordinates
(v, φ, z). Consider a fluid element in a disk at a distance v from
the star, whose dimensions are dv, dφ, dz in the v, φ, and z direc-
tions. The fluid element is rotating around the star with a velocity
vφ in the φ direction. The fluid element is threaded by a magnetic
field B = (Bv, Bφ, Bz). For future convenience we define the poloidal
component of the field to be

Bp = (Bv, Bz), (16.5)

i.e., it is the component of the field not associated with wrapping
around the rotation axis. The φ component of the field is called the
toroidal component, since it represents the part of the field that is
wrapped in the rotation direction. If you draws a two-dimensional
plot of the system in the (v, z)-plane, the poloidal component is the
one on the page, and the toroidal component is the one going into or
out of the page.

We will assume that both the fluid and the magnetic field are
axisymmetric, so that they do not vary with φ, although the field
does have a φ component. The magnetic field exerts a Lorentz force
per unit volume on the fluid element, given by

f =
1

4π
[(∇× B)× B] (16.6)

=
1

4π

[
Bv

v

∂(vBφ)

∂v
+ Bz

∂Bφ

∂z

]
φ̂ (16.7)

=
1

4πv
Bp · ∇p(vBφ)φ̂, (16.8)

where all the components except the φ one vanish by symmetry,
and in the final step we have defined the poloidal gradient as ∇p =
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(∂/∂v, ∂/∂z), i.e., it is just the components of the gradient in the v

and z directions.
The rate of change of the momentum associated with the Lorentz

force alone is
∂

∂t
(ρv) = f, (16.9)

so writing down the φ component of this equation and multiplying
on both sides by v, we have

∂

∂t
(ρvφv) =

1
4π

Bp · ∇p(vBφ) (16.10)

The left hand side of this equation just represents the time rate of
change of the angular momentum per unit volume ρvφv, while the
right hand side represents the torque per unit volume exerted by the
field.

Given this equation, how quickly can a magnetic field stop rota-
tion? We can define a magnetic braking time by

tbr =
ρvφv

∂
∂t (ρvφv)

=
4πρvφv

Bp · ∇p(vBφ)
(16.11)

To evaluate this timescale, consider the case of a fluid elements that
is part of a collapsing cloud, and is trying to rotate at a velocity vφ

equal to the Keplerian velocity, i.e.,

vφ =

√
GM
v

, (16.12)

where M is the mass interior to the fluid element.
If we started with a uniform cloud of density ρ, the mass interior

to our element is M ≈ (4π/3)ρv3, so vφ ≈
√
(4π/3)Gρv2. Plugging

this into the timescale, we get

tbr ≈
(4πρ)3/2G1/2v2

Bp · ∇p(vBφ)
(16.13)

To see what this at the order of magnitude level, let us suppose
that the poloidal and toroidal components of the field are compara-
ble, and that the characteristic length scale on which the field varies
is v, i.e. the field is fairly smooth on all scales smaller than the size of
the region that is currently collapsing. In this case Bp · ∇p(vBφ) ∼ B2,
so the time scale we wind up with is

tbr ∼ G1/2ρ3/2v2

B2 (16.14)

∼ (Gρ)1/2v2

v2
A

(16.15)

∼ t2
cr

tff
, (16.16)
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where we are dropping constants of order unity, in the second step
we wrote B in terms of the Alfven speed vA = B/

√
4πρ, and in the

final step we wrote tcr = v/vA, where tcr is the Alfven crossing time
of the cloud.

P. Hennebelle and S. Fromang: Magnetic processes in a collapsing dense core. I. 19

Fig. 12. Case µ = 2. Density and velocity fields in the xz plane.

The density and velocity fields are shown in the upper panel
of Fig. 14. The flow is similar to that obtained with a critical den-
sity equal to ρc. To study quantitatively various outflows quanti-
ties, we focus on the parts of the outflow which are close to the
equatorial plane (z/R0 ≤ 0.32). Further away from the disk mid-
plane, the outflow hits the inflowing material and its structure is
perturbed. The poloidal magnetic field lines in this inner region
are represented in Fig. 14 with dotted lines. The outflow prop-
erties are computed along one such field line, represented using
the thick solid line in Fig. 14. One of the predictions of the theo-
ries mentioned above is that poloidal velocities u p and magnetic
field Bp are aligned when the outflow is in steady state. We plot
in the upper panel of Fig. 15 the variation of the angle θ they
make as one moves along that selected field line. Apart from
the very inner part of the outflow (z ≤ 0.08, which corresponds
to the outflow launching region), θ is everywhere smaller than
10 degrees, indicating a good alignment between the velocity
and the magnetic field. In general, over the entire outflow region,
we found that this angle is always smaller than 25 degrees. This
is a good indication that the outflow has come close to reaching
steady state, which is in agreement with visual inspections of

Fig. 13. Structure of the azimuthally averaged magnetic field in the
model having µ = 2 at time t = 1.5304τff . The solid lines display the
poloidal magnetic field lines. They are overplotted on a snapshot of
the toroidal magnetic field strength.

animations of this simulation. The middle panel of Fig. 15 gives
an insight into the launching mechanism, by plotting the profile
of the forces acting on the fluid along the same field line. The
solid line shows the variation of the Lorentz force along that field
line. It is compared to the pressure force. The former is clearly
larger than the latter, by one or two orders of magnitude: the out-
flow is magnetically (as opposed to thermally) driven. Finally,
we also give the profile of the outflowing velocity along the mag-
netic field line (bottom plot of Fig. 15). Because of the magnetic
force, it increases steadily in the outflow to reach values of the
order of 1.5 km s−1.

Another important prediction of the analytical self-similar
model (Blandford & Payne 1982) is that the angle between the
magnetic field lines close to the disk and the z-axis should be
larger than 30 degrees. In Fig. 16, we show this angle as a func-
tion of the radius. It has been measured at the disk surface, de-
fined at each radius as being the altitude at which the radial fluid
velocity vanishes. It is seen that this angle is indeed always larger
than 30 degrees except in the very center and in the outer part. In
these two regions, no outflow occurs as can be seen in Fig. 14.

4.3. Mass and angular momentum fluxes

We now present quantities that characterize globally the evolu-
tion of the whole accretion-ejection structure with time. For this

20 P. Hennebelle and S. Fromang: Magnetic processes in a collapsing dense core. I.

Fig. 14. Upper panel: density and velocity field in the model hav-
ing µ = 2 and a critical density ρc/10 at time t = 1.67τff . Lower
panel: structure of the azimuthally averaged poloidal magnetic field
lines (dashed line) in the region of the outflow. The dashed lines show
the global structure of those lines, while the thick line marks the se-
lected magnetic field line along which some quantities will be plotted
in Fig. 15. Note the different scale of the plot compared to Fig. 13.

purpose we again use the simulations with the critical density,
ρc/10, since they allow us to follow the cloud evolution further.

Figures 17 and 18 display the ratio of ejected over accreted
mass and angular momentum fluxes. They are estimated on
spheres of various radius Rs, namely Rs/R0 = 0.2 (solid lines),
Rs/R0 = 0.4 (dotted lines) and Rs/R0 = 0.6 (dashed lines). Note
that for µ = 20, the first value of Rs is inside the magnetic tower
whereas the 2 other values correspond to a radius higher than the
equatorial radius of the magnetic tower.

For µ = 20 and Rs/R0 = 0.2, the ratio of ejection over ac-
cretion mass rate vanishes before t = 1.3τff, then increases until
a value of about 3–4. At this point quasi-stationarity is reached.

Fig. 15. First panel: angle θ (in degrees) between the poloidal fluid ve-
locity and the poloidal magnetic field along the particular poloidal field
line shown in Fig. 14. Note that θ is smaller than 10 degrees, showing
a good alignment between both vectors. Second panel: Lorentz force
(solid line) and pressure force (dashed line) exerted on the fluid ele-
ment along the same magnetic field line. At all positions, the former
exceeds the latter by one or two orders of magnitude, indicating that the
outflow is largely magnetically driven. Third panel: fluid velocity along
the magnetic field line shown in Fig. 14. The gas is seen to be constantly
accelerated because of the action of the Lorentz force (see Fig. 15). It
reaches a maximum outflow velocity of the order of 1.5 km s−1.

Fig. 16. Angle between the poloidal magnetic field lines and the z-axis
close to the disk surface. The analytical theory predicts that this angle
should be larger than 30 degrees in the outflow launching region.

Figure 16.1: Results from a simula-
tion of magnetized rotating collapse
(Hennebelle & Fromang, 2008). The
top panel shows the magnetic field
structure; solid lines are poloidal mag-
netic field lines, while color indicates
the azimuthally-averaged total mag-
netic field strength, on a scale from
0− 3.5 mG. The bottom panel shows
the density (color) and velocity (arrows)
structure at a slightly later time in the
simulation. The structure in the mid-
plane is a non-rotating pseudo-disk.

If a cloud starts out with a magnetic field near equipartition with
gravity and thermal energies, we expect tff ∼ tcr, so this means that
tbr ∼ tcr. This is an order of magnitude calculation, but its impli-
cation is clear: if we have a field that is even marginally wound up,
such that the poloidal and toroidal components become comparable,
this field is capable of stopping Keplerian rotation in a time scale
comparable to the collapse or crossing time. This can effectively pre-
vent formation of a Keplerian disk at all if the magnetic field is strong
enough. Indeed, this is what simulations seem to show happening
(Figure 16.1).

16.1.4 The Magnetic Braking Problem and Possible Solutions

The calculation of magnetic braking calculation we have just per-
formed presents us with a fundamental problem: it naively seems
like magnetic fields should prevent disks from forming at all, but
we observe that they do. We even observe disks present in class 0

sources, where the majority of the gas is still in the envelope. So how
can we get out of this? This is not a completely solved problem, but
we can make a few observations about what a solution might look
like.

We can first ask whether ion-neutral drift might offer a way out.
Recall in Chapter 5, we showed that, at the densities and velocities
typical of protostellar cores, ion-neutral drift should allow gas to
decouple from the magnetic field on scales below LAD ∼ 0.05 pc. One
might expect that this would make it possible to form disks below
the decoupling scale. However, simulations suggest that this solution
does not work. The flux that is released from the gas by ion-neutral
drift does not disappear. Instead, it builds up flux tubes near the star
with relatively little mass on them, and these flux tubes prevent a
disk from forming (Figure 16.2).

A more promising solution appears to be misalignment between
the rotation axis of the gas and the magnetic field, or, more generally,
the presence of turbulence in the collapsing gas. In simulations
where the gas is turbulent, the magnetic field lines tend to be bent or
misaligned relative to the disk, and this greatly reduces the efficiency
of magnetic braking. However, the problem of how disks form is still
not fully solved.
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16.2 Disk Evolution

The Astrophysical Journal, 757:77 (13pp), 2012 September 20 Krasnopolsky et al.
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Figure 2. Distribution of the logarithm of the mass density ρ (in g cm−3) and velocity field (unit vectors) on the equatorial plane, at a representative time for Model A,
which is restarted from the 2D (axisymmetric) calculation at the time shown in Figure 1. The length unit is cm.
(A color version of this figure is available in the online journal.)
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Figure 3. Distribution of the total magnetic field strength (solid line) and mass
density (in units of 10−13 g cm−3, dashed) along the positive x-axis in Figure 2.

by Zhao et al. (2011) in their 3D ideal-MHD AMR simulations
of core collapse including sink particles. As in Zhao et al. (2011),
the dense structures surrounding the expanding regions are ring-
like rather than shell-like in 3D (see their Figure 3); they are

created out of the dense equatorial pseudo-disk that is already
highly flattened to begin with (see the top-right panel of Figure 4
below).

We have carried out several variants of the above model,
including models with either a ten times weaker initial magnetic
field, a nine times lower rate of cosmic ray ionization, or a non-
zero initial rotation rate. The results are qualitatively similar,
namely, the initially axisymmetric inner protostellar accretion
flow quickly becomes unstable in the azimuthal direction in 3D.
An implication is that the assumed smooth protostellar accretion
flow is unlikely to be achievable in the first place. We now
demonstrate that this is indeed the case.

4. UNSTABLE PROTOSTELLAR ACCRETION FLOWS

In this section, we investigate the flow dynamics during the
prestellar phase of core evolution, through the formation of a
central point mass, into the protostellar mass accretion phase.
It turns out that our initially axisymmetric core remains ax-
isymmetric during the (long) prestellar phase of core evolution
even in 3D. For this phase, there is little difference between the
2D and 3D results. The agreement motivates us to follow the
prestellar core evolution in 2D, and switch to 3D simulations
shortly before the formation of a central object of significant
mass. This strategy greatly shortens the computation time, and
enables us to carry out the parameter study shown in Table 1.

4.1. Reference Model

We will first concentrate on a representative model (Model B
in Table 1), which serves as a reference for the other models
to compare with. This model is identical to Model A discussed

4

Figure 16.2: Results from a simulation
of magnetized rotating collapse includ-
ing the effects of ion-neutral drift and
Ohmic dissipation (Krasnopolsky et al.,
2012). Lengths on the axes are in units
of cm. Colors and contours show the
density in the equatorial plane, on a
logarithmic scale from 10−16.5 to 10−12.5

g cm−3. Arrows show velocity vectors.

Given that disks exist, we wish to understand how the evolve, and
how they accrete onto their parent stars. In this section we will sketch
a basic theory for how disks behave.

16.2.1 Steady Thin Disks

Evolution equations. Consider a thin disk of surface density Σ or-
biting at an angular velocity Ω. We take the disk to be cylindrically
symmetric, so that Σ and Ω are functions of the radius r only. We as-
sume it is very thin in the vertical direction, so we only need to solve
the equations in the plane z = 0. In addition to its orbital velocity
vφ = rΩ, the gas has a radial velocity vr, which we assume is much
less than vφ. This allows the gas to accrete onto a central object.

For this system, the general equation of mass conservation is

∂

∂t
ρ +∇ · (ρv) =

∂

∂t
ρ +

1
r

∂

∂r
(rρvr) = 0, (16.17)

where we have written out the divergence for cylindrical coordinates,
and we have used the cylindrical symmetry of the problem to drop
the components of the divergence in the z and φ directions. Since
we have a thin disk, the volume density is Σδ(z), i.e. it is zero off the
plane, infinite in the plane, and integrates to Σ. Integrating the mass
conservation equation over z then immediately gives

∂

∂t
Σ +

1
r

∂

∂r
(rΣvr) = 0. (16.18)

This equation just says that the change in the surface density at some
point is equal to the net rate of radial mass flow into or out of it.

It is convenient to introduce the mass accretion rate Ṁ = −2πrΣvr,
which represents the rate of inward mass flux across the cylinder
at radius r. With this definition, the mass conservation equation
becomes

∂

∂t
Σ− 1

2πr
∂

∂r
Ṁ = 0. (16.19)

Next we can write down the Navier-Stokes equation for the fluid,

ρ

(
∂

∂t
v + v · ∇v

)
= −∇p− ρ∇ψ +∇ · T, (16.20)

where p is the pressure, ψ is the gravitational potential, and T is the
viscous stress tensor. The first thing we can do is integrate over z,
which gives

Σ
(

∂

∂t
v + v · ∇v

)
= −∇P− Σ∇ψ +

∫
∇ · T dz, (16.21)



protostellar disks and outflows: theory 255

where P is the vertically-integrated pressure.
Now consider the φ component of this equation. This is particu-

larly simple, because all φ derivatives vanish due to symmetry, and
the pressure and gravitational forces therefore drop out. This gives

Σ
[

∂

∂t
vφ +

vr

r
∂

∂r
(rvφ)

]
=
∫ 1

r2
∂

∂r
(r2Trφ) dz. (16.22)

Note there is some subtlety here in writing out the gradient of a
tensor in cylindrical coordinates. Frank Shu’s fluid dynamics book
has a handy reference at the end for vector and tensor operations in
non-Cartesian coordinate systems.

If we multiply through by 2πr2, we get

2πrΣ
(

∂

∂t
j + vr

∂

∂r
j
)
=
∫

∂

∂r
(2πr2Trφ) dz =

∂

∂r
T (16.23)

where we have defined j = rvφ as the angular momentum per unit
mass of the material and

T = 2πr
∫

rTrφ dz. (16.24)

Thus we see that this represents an evolution equation for the angular
momentum of the gas. The factor 2πrΣ is just the mass per unit
radius in a thin ring, so 2πrΣj is the angular momentum in the ring.

The quantity T represents the torque exerted on the ring due to
viscosity. This is clear if we examine its components. The viscous
stress tensor component Trφ represents the force per unit area created
by viscosity. This is multiplied by r, so we have rTrφ, which is just the
torque per unit area, since it is a force times a lever arm. Finally, this
is multiplied by 2πr and integrated over z, which is just the area of
the cylindrical surface over which this torque is applied. Thus, T is
the total torque. We take its derivative with respect to r to obtain the
difference in torque between the ring immediately interior to the one
we are considering and the ring immediately exterior to it.

Suppose we look for solutions of this equation in which the angu-
lar momentum per unit mass at a given location stays constant, i.e.,
∂j/∂t = 0. This will be the case, for example, of a disk where the
azimuthal motion is purely Keplerian at all times. In this case the
evolution equation just becomes

− Ṁ
∂j
∂r

=
∂T
∂r

. (16.25)

This equation describes a relationship between the accretion rate
and the viscous torques in a disk. Its physical meaning is that the
accretion rate Ṁ is controlled by the rate at which viscous torques
remove angular momentum from material closer to the star and give
it to material further out.
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The equation is particularly useful if we demand that our disk be
in Keplerian rotation. In this case, we know j =

√
GMr, where M is

the mass of the central star, so this equation immediately tells us the
relationship between the accretion rate and the viscous torque.

To make further progress, let us write down the viscous stress Trφ

a little more specifically. We will assume that the gas in the disk is
Newtonian, meaning that the viscous stress is proportional to the
rate of strain in the fluid. We want to know Trφ, meaning the force
per unit area in the φ direction, exerted on the radial face of a fluid
element. Consider an observer in a frame comoving with the orbiting
fluid at some particular distance r from the star, and consider a fluid
element that is initially on the same radial ray as the observer, but a
distance dr further from the star.

If the rotation is solid body, then the fluid element and the ob-
server will always lie on the same radial ray, so there is no strain,
and there will be no viscous stress. On the other hand, if there is
differential rotation, such that the fluid further the star has a longer
orbital period (as we expect for Keplerian motion), the fluid element
will gradually fall behind the observer. This represents a strain in the
fluid.

How quickly does the element fall behind? The difference in
angular velocity between the observer and the fluid element is dΩ =

(dΩ/dr)dr, and so the difference in spatial velocity is r(dΩ/dr)dr.
The rate of strain is defined as one over the time it takes the fluid
element to be displaced a distance dr downstream from the observer,
i.e. the time it takes for the differential rotation to stretch the fluid
in between by an amount of order unity. Thus, the rate of strain is
r(dΩ/dr)dr/dr = r(dΩ/dr).

The viscous stress is equal to this rate of strain times the dynamic
viscosity µ, i.e.

Trφ = µr
dΩ
dr

= ρνr
dΩ
dr

, (16.26)

where ν = µ/ρ is the kinematic viscosity, which will be more conve-
nient to work with. If we plug this into our definition of the viscous
torque, we get

T = 2πr
∫

rTrφ dz = 2πr3Σν
dΩ
dr

. (16.27)

This combined with the equation giving the relationship between Ṁ
and dT /dr immediately give us the accretion rate for any steady disk
of known surface density and angular momentum profile j(r).

The most interesting case in star formation is for j and Ω corre-
sponding to Keplerian rotation, j =

√
GMr and Ω =

√
GM/r3. (If we

were interested in galactic disks, we might instead have considered a
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flat rotation curve, j ∝ r). If we now combine the continuity equation

∂

∂t
Σ− 1

2πr
∂

∂r
Ṁ = 0, (16.28)

the angular momentum equation

− Ṁ
∂j
∂r

=
∂T
∂r

, (16.29)

and plug in the Keplerian values of j and Ω, a little algebra shows
that the resulting equation is

∂Σ
∂t

=
3
r

∂

∂r

[
r1/2 ∂

∂r

(
νΣr1/2

)]
, (16.30)

and the corresponding equation for the radial drift velocity is

vr = −
3

Σr1/2
∂

∂r
(νΣr1/2). (16.31)

These equations can be solved numerically for a given value of α,
and they can be solved analytically in special cases, but it is useful
to examine their general behavior first. First, note that the equation
for Σ involves something that looks like a time derivative equals a
second spatial derivative. This is the form of a diffusion equation.
Physically, it means that if we start with a sharply peaked Σ, say a
surface density that looks like a ring, viscosity will spread it out. In
fact, the case in which ν is constant and Σ ∝ δ(r− R0) at time 0 can be
solved analytically (Figure 16.3). 0.0 0.5 1.0 1.5 2.0
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Figure 16.3: Analytic solution for the
viscous ring of material with constant
kinematic viscosity ν. At time t = 0,
the column density distribution is
Σ = Σ0δ(r − R0). Colored lines show
the surface density distribution at later
dimensionless times, as indicated in the
legend. The analytic solution shown is
that of Pringle (1981).

How quickly to do rings spread, and does mass move inward? To
answer that, we must evaluate ∂T /∂r under the assumption that Σ
and ν are relatively constant with radius, so we can take them out
of the derivative, and that the disk is in steady state. We’ll again
assume a Keplerian background rotation to evaluate Ω. Under these
assumptions

dT
dr

= 2πΣν
d
dr

(
r3 dΩ

dr

)
= −3πΣν

d
dr

(r2Ω) = −3πΣν
dj
dr

. (16.32)

In this case the angular momentum evolution equation trivially
reduces to

Ṁ = 3πΣν, (16.33)

i.e. the accretion rate is just proportional to the viscosity and the
disk surface density. The radial velocity of the material under these
assumptions is

vr = −
3
2

ν

r
. (16.34)

The time required for a given fluid element to reach the star, there-
fore, is tacc ∼ r/vr ∼ r2/ν.
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The α model. Before delving into the physical origin of the viscosity,
it is helpful to non-dimensionalize the problem a bit. We will write
down the viscosity in terms of a dimensionless number called α,
following the original model first described by Shakura & Sunyaev
(1973). The model is fairly straightforward. The viscous stress we
are trying to compute Trφ has units of a pressure, so let us normal-
ize it to the disk pressure. This is not as arbitrary as it sounds. If,
for example, the mechanism responsible for producing fast angular
momentum transport is fluctuating magnetic fields, then we would
expect the strength of this effect to scale with the energy density in
the magnetic field, which is in turn proportional to the magnetic pres-
sure. Similar arguments can be made for other plausible mechanisms.

The α-disk ansatz is simply to set

Trφ = −αp
r/Ω

dΩ/dr
, (16.35)

where the dimensionless factor r/Ω
dΩ/dr is inserted purely for conve-

nience. This is equivalent to setting

ν =
Trφ

ρr(dΩ/dr)
=

αc2
s

Ω
= αcs H, (16.36)

where cs is the sound speed in the disk and H = cs/Ω is the disk
scale height. Note that cs and H include both thermal pressure and
magnetic pressure.

If we now substitute this into our simplified expression for Ṁ, we
get an accretion rate

Ṁ = 3πΣαcsH = 3πΣα
c2

s
Ω

(16.37)

This if we know the disk thermal structure, i.e. we know cs and H,
and we know its surface density Σ, then α tells us its accretion rate.

The physical meaning of this result becomes a bit clearer if we put
in an order of magnitude estimate that Σ ≈ Md/R2

d, where Md and
Rd are the disk mass and radius. Putting this in we have

Ṁ ≈ α
Md

R2
d

c2
s

Ω
(16.38)

If we define tacc = Md/Ṁ as the accretion timescale (i.e. the charac-
teristic time to accrete the entire disk), tcross = Rd/cs as the sound
crossing time of the disk, and torb = 2π/Ω as the disk orbital pe-
riod, then with a little algebra it is easy to show that this expression
reduces to

tacc =
1
α

(
tcross

torb

)2
torb. (16.39)
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Thus this expression says that the time required to drain the disk is
of order (1/α)(tcross/torb)

2 orbits. Note that torb � tcross, because
orbital speeds are highly supersonic (as they must be for a thin disk
to form). In a disk with α = 1 it takes this ratio squared orbits to
drain the disk, and with α < 1 it takes longer.

Based on observations of the accretion rates in disks and these
properties, Hartmann et al. (1998) estimate that α ∼ 10−2 in nearby
T Tauri star disks. It is probably larger at earlier phases in the star
formation process.

16.2.2 Physical Origins of Disk Viscosity

We have established that there must be a viscous mechanism to
transport angular momentum and mass through accretion disks, and
we have even estimated its strength from observations, but we have
not yet specified what that mechanism is.

Ordinary fluid viscosity. The obvious place to start is to examine
the ordinary hydrodynamic viscosity we expect all fluids to have.
The kinematic viscosity of a diffuse gas is ν = 2uλ, where u is the
RMS particle speed and λ is the mean free path. Let us consider
a protostellar accretion disk with the typical properties density
n = 1012 cm−3 and temperature 100 K. In this case the velocity
u = 0.6 km s−1, and assuming a particle-particle cross section of
σ = (1 nm)2, the mean free path is λ ∼ 1/(nσ) = 100 cm, and
ν ∼ 108 cm−2 s.

We can put this in terms of α if we remember that ν = α(c2
s /Ω).

Just us consider material at a temperature of 100 K that is orbiting
100 AU from a 1 M� star. In this case we have cs = 0.6 km s−1 and
Ω = 6.3× 10−3 yr−1, and we have α ≈ 6× 10−12.

This obviously a problem. Suppose the gas starts out ∼ 100
AU from the star. The time required for the gas to accrete is then
tacc ∼ r2/ν ∼ (100 AU)2/ν ∼ 1022 s, or just shy of 1015 yr. In other
words, longer than the age of the universe. The obvious conclusion
from this is that ordinary hydrodynamic viscosity is completely
ineffective at producing accretion. If that were the only source of
angular momentum transport in a disk, then stars would never form.
Something else must be at work.

Turbulent hydrodynamic viscosity. One possible explanation solution
to this problem is turbulent hydrodynamic viscosity. If there are
large-scale radial motions within a disk, then the effective value
of uλ could be significantly larger than the microphysical one we
calculated. In effect, these motions will mix material from different
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radii within the disk, exchanging angular momentum between inner
and outer parts of the disk.

This would require the existence of an instability capable of gener-
ating and sustaining large radial turbulent motions. Although several
such mechanisms have been proposed, it is essentially impossible to
determine the amount of angular momentum transport that will be
produced based on purely analytic calculations. That is because the
transport will depend on the non-linear saturation amplitude of any
instability, which is not something that one can generally determine
analytically.

Numerical simulations have been attempted, and seem to find
that hydrodynamic mechanisms do not produce significant angular
momentum transport, but they may be compromised by limited res-
olution. In a numerical simulation, the maximum possible Reynolds
number is set by the ratio of the size of the computational domain to
the size of a grid cell, since flows are always smoothed on the grid
scale. Even for the largest calculations ever performed this is at most
a few thousand, whereas we have seen that the Reynolds numbers in
real astrophysical systems are typically ∼ 109. Thus, if the saturation
were Reynolds number-dependent, numerical simulations would not
get it right.

The question of whether hydrodynamic mechanisms could be
responsible for angular momentum transport is sufficiently complex
and interesting that the latest frontier is laboratory experiment. Re-
searchers construct counter-rotating cylinders filled with a fluid, and
set the cylinders rotating to produce a Keplerian-like rotation profile.
They then measure the force exerted on the inner and outer cylinders
to measure the rate of angular momentum transport. The laboratory
experiments can reach Reynolds numbers of ∼ 106, and seem to find
negligible transport, α < 10−6 (Ji et al., 2006). Given these results,
most researchers are convinced that purely hydrodynamic mech-
anisms cannot explain the observed lifetimes and rates of angular
momentum transport in disks. Instead, some other mechanism is
required.

Magneto-rotational instability. Magnetic fields offer one opportunity
for angular momentum transport. We have already mentioned mag-
netic braking as a possibility, but that requires that the matter be
well-coupled to the field, and that the field be dragged inward into
the disk so that there is a large net flux. This may not happen due to
non-ideal MHD effects, however.

Another mechanism is possible that does not require a large net
flux, and that allows weaker (although not zero) coupling. This is the
magneto-rotational instability (MRI), first discovered mathematically
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by Chandrasekhar (1961), and later re-discovered and applied to
astrophysical systems by Balbus & Hawley (1991). The full theory of
MRI has been explored extensively both analytically and numerically.

The basic idea is that magnetic field lines threading the disk con-
nect annuli at different radii. As the disk rotates and the annuli shear,
this stretches the magnetic field line connecting them. This causes an
opposing magnetic tension, which attempts to force the two points
to stay close together, and thus to force them into co-rotation. This
speeds up the outermost fluid element, which is falling behind, and
slows down the innermost one, and thus it moves angular momen-
tum outward. However, when you remove angular momentum from
a fluid element it tends to fall toward the center, so the innermost
fluid element falls even closer to the star. Similarly, the outermost
fluid element gains angular momentum, and so it wants to move
outward. This increases the tension even more, and the system goes
unstable due to this positive feedback loop.

Simulators are still working to try to come up with a general result
about the value of α produced by the MRI, but in at least some cases
α as high as 0.1 seems to be possible. This would nicely explain the
observed accretion rates and lifetimes of T Tauri star disks.

MRI is not the end of the story, however. The problem with MRI
is that it only operates as long as matter is sufficiently coupled to the
magnetic field, which in turn depends on its ionization state. MRI
will only operate if the mechanism we have described is able to gen-
erate turbulent fluctuations in the magnetic field to transport angular
momentum. In turn, this requires that no non-ideal mechanism, of
which there are several possibilities, be able to smooth out the field
over the scale of the accretion disk.

may be observable. We find that the magnetic Reynolds
number defined using the time- and volume-averaged verti-
cal magnetic field strength in the nonlinear regime, i.e.,
hhv2Az=!!ii, characterizes the saturation amplitude of the
MRI very well. Tables 1–3, 5, and 7 list hhv2Az=!!ii for all
models calculated in this paper. Figure 20 shows the satura-
tion level of the stress " ¼ hhwxyii=P0 as a function of
v2Az=!!
! "! "

for all the models. Circles, triangles, and
squares denote models started with a uniform vertical, zero
net flux vertical, and a uniform toroidal field, respectively.
Filled symbols denote models that include the Hall term.

The dependence of " on the magnetic Reynolds number
is clearly evident. A stress larger than 0.01 requires
hhv2Az=!!ii > 1. The solid arrows denote the saturation lev-
els obtained for ideal MHD (v2A=!! ! 1), where the upper
and lower arrows (" ¼ 0:29 and 0.044) are the average of
uniform Bz runs and uniform By runs, respectively, taken
from Hawley et al. (1995). The saturation level when
hhv2Az=!!ii > 1 is almost the same as the ideal MHD cases,
and thus the stress is nearly independent of the magnetic
Reynolds number in this regime. However, when
hhv2Az=!!ii < 1, the stress decreases as the magnetic Rey-
nolds number decreases. If turbulence cannot be sustained
by theMRI, the magnetic energy and stress both decrease in
time. In some models with hhv2Az=!!ii < 1, the magnetic
energy is decaying at the end of the calculation, and the sys-
tem is evolving toward the direction hhwxyii / hhv2Az=!!ii
shown by the dashed arrow in the figure.

From Figure 20, the saturation level of the stress is
approximately given by

" " "MRI min 1;
v2Az

!!

# $
; ð15Þ

where "MRI is the stress in the ideal MHD limit
(v2Az=!!41). For a vertical field with zero net flux or a
purely toroidal field, the dispersion in the saturation level is
quite small: from Tables 6 and 8 the averages of the stress
are nearly the same, "MRI ¼ 0:0395% 0:0120 and
0:0372% 0:0106, for these runs. On the other hand, when
the disk has net flux of Bz, the saturation levels are less uni-
form because they depend on the vertical field strength, the
vertical box size (Hawley et al. 1995), and the Hall parame-
ter. The stress is "MRI & 0:01 1 and can be larger than zero
net vertical flux models. The stress obtained in Fleming et
al. (2000) is shown by crosses in this figure; our results are
consistent with this earlier work.

Figure 20 shows that the vertical field is a key quantity for
predicting the saturation amplitude of the MRI. Nonaxi-
symmetric modes of the MRI are unstable when azimuthal
field is present, but because these modes have a large wave-
number in the vertical direction, they are suppressed by a
smaller resistivity than axisymmetric modes. Therefore, the
suppression of the axisymmetric instability, which depends
on the vertical field strength, determines the critical mag-
netic Reynolds number. This is true so long as the azimuthal
field gives an Alfvén speed that is subthermal, vAy < cs
(Blaes & Balbus 1994), which is always true in our calcula-
tions. Thus, the effect of nonideal MHD on the saturation
amplitude of the MRI is well characterized by a magnetic
Reynolds number defined as v2Az=!!, with a value larger
than unity required for turbulence and significant transport.

The critical value hhv2Az=!!ii & 1 is independent of the
initial field strength and geometry, as well as the Hall
parameter. The toroidal component of the magnetic energy

Fig. 20.—Saturation level of the stress hhwxyii=P0 as a function of the
magnetic Reynolds number v2Az=!!

! "! "
at the nonlinear stage. Circles,

triangles, and squares denote the models started with a uniform vertical
field, zero net flux vertical field, and a uniform toroidal field, respectively.
Filled symbols represent the results of the models including the Hall term,
and open symbols are without the Hall effect. Crosses are the results
obtained by Fleming et al. (2000). Upper and lower solid arrows indicate
the averages of the ideal MHD runs in Hawley et al. (1995) for initially
uniformBz and initially uniformBy, respectively.

Fig. 19.—Saturation level of the poloidal component of the magnetic
energy as a function of the magnetic Reynolds number ReM0 for uniform
By models (#0 ¼ 100). Open circles denote the models with only the ohmic
dissipation (X0 ¼ 0), and the other symbols are including also the Hall
effect (X0 ¼ 0:2, 0.4, 10, and 100).

No. 1, 2002 EFFECT OF HALL TERM. II. 551

Figure 16.4: Results from a series
of simulation of magneto-rotational
instability with non-ideal MHD by Sano
& Stone (2002). The y axis shows the
mean Maxwell stress measured in the
simulation once it reaches statistical
steady state, normalized by the gas
pressure. This is roughly the same as
α. Simulations are shown at a range
of magnetic Reynolds numbers ReM.
Different values of the parameter X0
correspond to different strengths of
Hall diffusivity.

The question of how well coupled the gas and the field are turns
on details of the ionization structure of the disk, and the calculation
is extremely sensitive. Turbulence requires large values of the mag-
netic Reynolds number ReM = v2

A/(ηΩ), where vA is the Alfven
speed and η is the magnetic diffusivity. Numerical experiments
suggest that MRI shuts of when ReM < 3000 (Figure 16.4).

The diffusivity, in turn, depends on the electron fraction: η =

c2/(4πσe), where σe = nee2/(meνc) is the conductivity and νc is the
frequency of electron-neutral collisions. If there are few electrons, σe

is small and η is large, making ReM small. This means that, in order
to know where and whether MRI will operate, we need to know the
ionization fraction in the disk.

This is an incredibly complex problem, because the ionization is
generally non-thermal, non-LTE, and it only takes a tiny number
of electrons to make MRI operate: an electron fraction ∼ 10−9 is
sufficient. In the very inner disk near the star, where the temperature
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is ∼ 2000 K, thermal ionization of alkali metals will provide the
necessary electrons. In regions where the disk column density is
. 100 g cm−2, x-rays from the central star and cosmic rays can
penetrate the disk, providing free electrons. However, for comparison
the estimated column density of the minimum mass Solar nebula (the
minimum mass required to make all the planets) is 1700 g cm−2 at 1

AU, and the equilibrium temperature is� 2000 K.
In such high column density, cool regions, the electron fraction

depends on such complex questions as the mean size of dust grains
(since these can absorb free electrons) and the rate of vertical trans-
port of electrons from the surface layers down to the disk midplane.
One possible result of this is that MRI would operate only at the sur-
face of disk, leaving the midplane a “dead zone". Another possibility
is that there may be radial dead zones with no MRI. Material would
move inward to such regions, but then get stuck there, potentially
making accretion bursty.

Gravitational transport mechanisms. Magnetic fields provide on
potential source of transport, but, as we have seen, they may fail
if the gas is not sufficiently ionized. If the accretion rate onto the disk
is large enough, it is also possible that MRI may operate, but not may
not provide sufficiently rapid angular momentum transport to stop
gas from building up the disk – this is likely to occur particularly for
massive stars. In this case, mass can build up in the disk, leading to
gravitational instability.

We can understand when gravitational instability is likely to set
in using our theory of disks. Recall that we showed in the previous
class that we can write the accretion rate as

Ṁ = 3παΣ
c2

s
Ω

. (16.40)

Since we are interested in gravitational stability, let us introduce the
Toomre Q parameter,

Q =
Ωcs

πGΣ
(16.41)

where we have Ω rather than 2Ω because the rotation curve is Keple-
rian rather than flat as in a galactic disk, and where we are assuming
the non-thermal velocity dispersion in the disk is subsonic. Solving
for Σ in terms of Q and re-arranging, we obtain

Ṁ =
3α

Q
c3

s
G

. (16.42)

Thus we see that, if Q > 1 (i.e. the disk is gravitationally stable)
and α < 1 (as we expect for MRI or almost any other local transport
mechanism), the maximum rate at which the disk can move matter
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inward is roughly c3
s /G. This is also the characteristic rate at which

matter falls onto the disk from a thermally-supported core, provided
that we use the sound speed in the core rather than in the disk.

Normally disks are somewhat warmer than the cores around
them, both because the star shines on the disk and because viscous
dissipation in the disk releases heat. However, what this result shows
is that, in any regions where the disk is not significantly warmer than
the core that is feeding it (e.g. the outer parts of the disk where stellar
and viscous heating are small), the disk cannot transport matter
inward as quickly as it is fed. The result will be that the surface
density will rise and Q will decrease, giving rise to gravitational
instability.

This can in turn generate transport of angular momentum via
gravitational torques. Transport of this sort comes in two flavors:
local and global. Local instability happens when the disk clumps up
on small scales due to its own gravity. This depends on the Toomre Q
of the disk. If Q ∼ 1, which can occur either if the disk is massive or
cold, it will begin to clump up. These clumps can transport angular
momentum by interacting with one another gravitationally, sending
mass inward and angular momentum outward. However, this clump-
ing will heat the gas via the release of gravitational potential energy,
which in turn tends to drive Q back to higher values.

What happens then depends on how the gas radiates away the
excess energy. If the radiation rate is too low, the gas will heat up un-
til it smoothes out, and the Toomre Q will be pushed up. If it is too
high, the gas will fragment entirely and collapse into bound objects
in the disk – something like what happens in a galactic disk. If it is in
between, the disk can enter a state of sustained gravitationally-driven
turbulence in which there is no fragmentation but the rate of heat-
ing by compression balances the rate of radiation, and there is a net
transport of mass and angular momentum.

The global variety of gravitational instability occurs when the disk
clumps up on scales comparable to the entire disk, and it can be an
outcome of the local instability if the fragments that form tend to be
massive. This occurs when the disk mass becomes comparable to
the mass of the star it is orbiting; instability sets in at disk masses of
30− 50% of the total system mass. This generally manifests as the
appearance of spiral arms.

These instabilities transport angular momentum because the disk
is no longer axisymmetric, and instead has a significant moment arm
that can exert torques, or on which torques can be exerted. Transport
of angular momentum can then occur in several ways. If there is an
envelope outside the disk, the disk can spin up the envelope, sending
angular momentum outward in that way.
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The disk can also transfer angular momentum to the star by forc-
ing the star to move away from the center of mass. In this configu-
ration the disk develops a one-armed spiral, and the star in effect
goes into a binary orbit with the overdensity in the disk. In this case
angular momentum is transported inward rather than out, with the
excess angular momentum going into orbital motion of the star. This
phenomenon is known as the Sling instability Shu et al. (1990).

16.3 Outflow Launching

The final topic for this chapter is how and why disks launch the
ubiquitous jets and winds that observations reveal. The topic of jets
is not limited to the star formation context, of course, and much of
the theory for it was originally developed in the context of active
galactic nuclei and compact objects. We will only scratch the surface
of this theory here. Our goal is just to get a general understanding of
how and why we expect winds to be launched from disks, and what
general properties we expect them to have.

16.3.1 Mechanisms

We begin by considering what mechanisms could be responsible for
launching winds. We can start by discarding the two mechanisms
that we usually invoke to explain the winds of main sequence stars.
All main sequence stars, including the Sun, produce winds. For low
mass stars like the Sun, the driving mechanism is thermal. MHD
waves propagating into the low-density solar corona heat the gas to
temperatures of up to ∼ 106 K. The high pressure in the hot region
drives flows of gas outward; for the Sun, the mass loss rate is roughly
10−14 M� yr−1, and the mechanical luminosity is ∼ 10−4 L�.

In contrast, the mechanical power input required to explain the
observed outflows from young stars is closer to ∼ 0.1 L�. This is
far greater than the thermal energy available in the hot x-ray corona
of the star – a corona capable of providing this much power would
exceed the total stellar bolometric output.

For massive main sequence stars, the main driving mechanism
is the pressure exerted by stellar photons on the gas. The problem
with this mechanism for protostellar outflows is apparent from the
outflow momentum plot: the outflow momentum is generally 1− 2
orders of magnitude larger than L/c. In contrast, for the winds of
main sequence stars the outflow momentum flux is always . L/c.
Thus the stellar photon field does not have enough momentum to
drive the observed outflows of young stars.

As a further point, neither the thermal winds of low mass main
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sequence stars, nor the radiatively-driven winds of massive ones,
show highly collimated features like the HH jets.

Having discarded these two mechanisms, we must seek an alter-
native source of energy. The most natural one is the gravitational
potential energy being liberated by the accretion flow, which, com-
bined with magnetic fields, can produce highly collimated outflows.
The question then becomes exactly how the combination of gravita-
tional power and magnetic fields produces the observed outflows.

16.3.2 Stability Analysis for Magnetocentrifugal Winds

There are a range of theoretical models for the exact mechanism
by which winds are launched. However, the general picture of all
of these mechanisms is to combine centrifugal force with magnetic
fields. Consider a disk of material in Keplerian orbit, and consider
an open field line passing through the disk; here by “open" we mean
that the field line does not loop back into the disk, but instead goes
out, formally to infinity. We write the field in the vicinity of the disk
as the sum of a poloidal and a toroidal component,

B = Bp + Bφ êφ (16.43)

The field exerts negligible forces within the disk, but for the much
lower-density region above the disk (the corona), magnetic forces are
non-negligible.

Let us consider a test fluid element that is, for whatever reason,
lofted slightly above the disk, into the corona. We will assume ideal
MHD, so the fluid element is constrained to move only along the
field line. We can think of the test fluid element as a bead stuck on a
wire. We will further assume that the density of material above the
disk is very small, so that magnetic forces dominate and the field
simply rotates as a rigid body. Now let us consider how this fluid
element will evolve in time.

In a frame co-rotating with the launch point of the fluid element,
there are two potentials to worry about: the gravitational potential
of the central star, and the centrifugal potential that arises from the
fact that we have chosen to work in a rotating reference frame. The
former is simply the usual

Vg = − GM∗√
v2 + z2

, (16.44)

where M∗ is the star’s mass, and we are working in cylindrical
coordinates. For the latter, we are working in a frame rotating at an
angular velocity equal to the Keplerian value at the fluid element’s

launch point v0, which is Ω =
√

GM∗/v3
0. The centrifugal potential
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is therefore

Vc = −
1
2

Ω2v2 = −1
2

GM∗
v2

v3
0

. (16.45)

Thus the total potential is

V = −GM∗
v0

[
1
2

(
v

v0

)2
+

v0√
v2 + z2

]
. (16.46)

To determine the evolution of the test fluid element, we must
consider the forces associated with this potential. The force per unit
mass is simply minus the gradient of the potential, and thus we have

f = −∇V = −GM∗

{
v

[
1

(v2 + z2)3/2 −
1

v3
0

]
êv +

z
(v2 + z2)3/2 êz

}

(16.47)
If we plug in our starting point, v = v0 and z = 0, we see that
the gradient is exactly zero, which is what we expect: the starting
point is, by assumption, in equilibrium between centrifugal and
gravitational forces.

Now let us consider our perturbed fluid element. It has been
moved a distance ds from its starting point, and it is moving along
the field line, which has radial and vertical components Bv and Bz.
For convenience, let us define the angle of the field line relative to the
horizontal by

cos θ =
Bv√

B2
v + B2

z

, (16.48)

so that the coordinates of the displaced fluid elements are v =

v0 + cos θ ds and z = sin θ ds. To determine the force experienced
by the fluid element, we simply plug these coordinates into f and
expand to first order:

df =
GM∗
v3

0
(3 cos θ êv − sin θ êz) ds (16.49)

We are interested in the component of this force parallel to the
field line, since the fluid element is constrained to move along the
field line. That is, we are interested in

d f‖ = df · (cos θ êv + sin θ êz) =
GM∗
v3

0

(
3 cos2 θ − sin2 θ

)
ds. (16.50)

The force is therefore positive, indicating that it is pushing the fluid
element further away from the launch point, if

3 cos2 θ − sin2 θ > 0 =⇒ tan θ <
√

3 =⇒ θ < 60◦

(16.51)
We have therefore derived a condition under which a disk threaded

by open field lines will be unstable to the formation of a wind. If the
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field lines make an angle of < 60◦ off the plane, then any fluid el-
ement that is lofted infinitesimally above the disk will be forced
further down the field line by the centrifugal force, forming a wind.

16.3.3 Properties of the Wind

We have shown that disks threaded by open field lines are unstable
to wind formation if the open field lines make an angle of 60◦ or less
relative to the disk plane. What are the properties of the wind that is
launched by this process?

We can derive many properties of the wind from the following
elementary consideration. We have thus far assumed that the field
lines above and below the disk are perfectly rigid, but of course
that cannot be strictly true out to infinite radius. If we choose a
large enough radius, then maintaining perfect solid body rotation
would require a velocity larger than the speed of light, which is
obviously forbidden by special relativity. However, there is an even
more restrictive limit: the field line can remain rigid only as long as
the matter attached to it has negligible inertia. If the inertia of the
material is significant, it will slow down the field lines, causing them
to deviate from rigid rotation.

Recalling our dimensional analysis of the MHD equations, the
relative importance of the terms describing inertia and magnetic force
is determined by the Alfvén Mach number,

MA ∼
v

vA
, (16.52)

where vA = B/
√

4πρ is the Alfvén speed. The material starts at zero
velocity, and accelerates as it moves outward, so thatMA increases
along any given field line. We expect that the field lines will cease
to be rigid once the material along them is accelerated to a velocity
such thatMA ∼ 1. This transition between sub- and super-Alfvénic
motion will occur at a critical radius vA (which is not necessarily the
same along every field line), called the Alfvén radius.

Once the field line starts to unwind at vA, it will no longer be
able to impart significant angular momentum or energy to the fluid
parcels that travel along it – it’s like the rigid wires that are acceler-
ating the beads beginning to bend. We therefore expect the terminal
velocity of the wind to be of order the wind speed at vA, which is

v∞ ∼ Ω0vA ∼ vK,0
vA
v0

, (16.53)

where Ω0 is the angular velocity at the launch point, and vK,0 is the
Keplerian velocity at that point. Thus the wind speed is comparable
to the Keplerian speed times a factor of order the ratio of the Alfvén
radius to the launch radius.
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The specific angular momentum of the material ejected in the
wind will be

jw ∼ vAv∞ ∼ vK,0
v2

A
v0

. (16.54)

For comparison, the specific angular momentum of the material that
remains in the disk is

jd = vK,0v0. (16.55)

Thus the specific angular momentum of wind material exceeds that
of disk material by a factor of

jw
jd
∼ v2

A
v0

2

. (16.56)

One factor of vA/v0 comes from the greater level arm of the mate-
rial being launched into the wind, and the second factor comes from
the greater velocity.

If the wind is predominantly responsible for removing the angular
momentum of the disk and allowing accretion, this implies that the
rates of mass accretion and wind launch must be related by

Ṁa ∼
v2

A
v2

0
Ṁw. (16.57)

Thus wind launching provides an efficient means to allow accretion,
since for even a relatively modest Alfvén radius, say vA/v0 ∼ 3,
it will enable accretion to occur using only ∼ 1/10 of the available
accreting mass.

Of course we have not self-consistently calculated vA, and we will
not do so in class. Schematically, one must do so by taking a wind
mass launching rate (called the mass loading) as a function of radius,
and then self-consistently solving for the structure of the magnetic
field and the velocity above the disk. The Alfvén radius then appears
as a critical point of the solution along each streamline / magnetic
field line. The first such self-consistent calculation was provided by
Blandford & Payne (1982), although this calculation still had to leave
the mass loading as a free parameter.



Problem Set 4

1. HII Region Trapping.
Consider a star of radius R∗ and mass M∗ with ionizing lumi-
nosity S photons s−1 at the center of a molecular cloud. For the
purposes of this problem, assume that the ionized gas has constant
sound speed ci = 10 km s−1 and case B recombination coefficient
αB = 2.6× 10−13 cm−3 s−1.

(a) Suppose the cloud is accreting onto the star at a constant rate
Ṁ∗. The incoming gas arrives at the free-fall velocity, and the
accretion flow is spherical. Compute the equilibrium radius
ri of the ionized region, and show that there is a critical value
of Ṁ∗ below which ri � R∗. Estimate this value numerically
for M∗ = 30 M� and S = 1049 s−1. How does this compare to
typical accretion rates for massive stars?

(b) The H ii region will remain trapped by the accretion flow
as long as the ionized gas sound speed is less than the escape
velocity at the edge of the ionized region. What accretion rate is
required to guarantee this? Again, estimate this numerically for
the values given above.

2. Self-Similar Viscous Disks.
Consider a protostellar disk orbiting a star, governed by the usual
viscous evolution equation

∂Σ
∂t

=
3
v

∂

∂v

[
v1/2 ∂

∂v

(
νΣv1/2

)]
,

where Σ is the surface density, v is the radius in cylindrical coordi-
nates, and ν is the viscosity. Suppose that the viscosity is linearly
proportional to the radius, ν = ν1(v/v1).

(a) Non-dimensionalize the evolution equation by making a
change of variables to the dimensionless position, time, and
surface density x = v/v1, T = t/ts, S = Σ/Σ1, where
ts = v2

1/(3ν1).
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(b) Use your non-dimensionalized equation to show that

Σ =

(
C

3πν1

)
e−x/T

xT3/2

is a solution of the equation for an arbitrary constant C.

(c) Calculate the total mass in the disk in terms of C, ts, and t, and
calculate the time rate of change of this mass. Based on your
result, give a physical interpretation of what the constant C
means. (Hint: what units does C have?)

(d) Plot S versus x at T = 1, 1.5, 2, and 4. Give a physical interpre-
tation of the results.

3. A Simple T Tauri Disk Model.
In this problem we will construct a simple model of a T Tauri
star disk in terms of a few parameters: the midplane density and
temperature ρm and Tm, the surface temperature Ts, the angular
velocity Ω, and the specific opacity of the disk material κ. We
assume that the disk is very geometrically thin and optically thick,
and that it is in thermal and mechanical equilibrium.

(a) Assume that the disk radiates as a blackbody at tempera-
ture Ts. Show that the surface and midplane temperatures are
related approximately by

Tm ≈
(

3
8

κΣ
)1/4

Ts,

where Σ is the disk surface density.

(b) Suppose the disk is characterized by a standard α model,
meaning that the viscosity ν = αcsH, where H is the scale
height and cs is the sound speed. For such a disk the rate per
unit area of the disk surface (counting each side separately)
at which energy is released by viscous dissipation is Fd =

(9/8)νΣΩ2. Derive an estimate for the midplane temperature
Tm in terms of Σ, Ω, and α.

(c) Calculate the cooling time of the disk in terms of the orbital
period. Should the behavior of the disk be closer to isothermal
or adiabatic?

(d) Consider a disk with a mass of 0.03 M� orbiting a 1 M� star,
which has κ = 3 cm2 g−1 and α = 0.01. The disk runs from 1 to
20 AU, and the surface density varies as R−1. Use your model
to express ρm, Tm, and Ts as functions of the radius, normalized
to 1 AU; i.e., derive results of the form ρm = ρ0(r/AU)p for
each of the quantities listed. Is your numerical model disk
gravitationally unstable (i.e., Q < 1) anywhere?
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Suggested background reading:

• Dunham, M. M., et al. 2014,
in “Protostars and Planets VI",
ed. H. Beuther et al., pp. 195-218,
sections 1-4

Suggested literature:

• Tomida, K., et al., 2013, ApJ, 763, 6

The next two chapters focus on the structure and evolution of proto-
stars. Our goal will be to understand when and why collapse stops
to form a pressure-supported object, and how those objects subse-
quently evolve into main sequence stars. This chapter focuses on
the dynamics and thermal behavior of the material at the center of a
collapsing core as it settles into something we can describe as a star,
and on the structure of the envelope around this protostar. Chapter
18 is focused on the evolution of this object, both internally and in its
appearance on the HR diagram.

17.1 Thermodynamics of a Collapsing Core

We will begin by considering what happens at the center of a col-
lapsing core where the density in the center is rising rapidly as it
collapses. We would like to understand the structure forming at the
center of this collapsing object.

17.1.1 The Isothermal-Adiabatic Transition

The first important point to make is the assumption of isothermality
for cores that we have been making must break down at some point.
Even at low density there are minor deviations from isothermality
that result from the changeover in heating and cooling processes,
but these are fairly minor, in the sense that they are unable to sig-
nificantly affect collapse. For example, the proposed Larson (2005)
EOS only gets as stiff as T ∝ ρ0.07 at high density, corresponding to
a polytrope P ∝ ργ with γ = 1.07. Since γ = 4/3 is the dividing
line between equations of state that are and are not stable against
collapse, γ = 1.07 is still in the unstable regime.

In contrast, if the gas is not able to radiate at all, it will behave
adiabatically. This means it will approach a polytrope with γ =

7/5 or 5/3, depending on whether the gas temperature is high

http://adsabs.harvard.edu/abs/2014prpl.conf..173L
http://adsabs.harvard.edu/abs/2014prpl.conf..173L
http://adsabs.harvard.edu/abs/2014prpl.conf..173L
http://adsabs.harvard.edu/abs/2013ApJ...763....6T


272 notes on star formation

enough to excite the internal quantum mechanical states of H2 or
not. (In actuality the γ for H2 is more complicated than that, but that
doesn’t really matter for our purposes.) Either one is > 4/3, and thus
sufficient to halt collapse.

Let us make some estimates of when deviations from isothermality
that are significant enough to put us into this regime will occur.
Since we are dealing with the collapse of the first region to fall in, we
can probably safely assume that this material has very low angular
momentum and treat the collapse as spherical – higher angular
momentum material will only fall in later, since removal of angular
momentum by the disk takes a while. The behavior of this material
has been studied by a number of authors, going all the way back to
Larson (1969), but the treatment here follows that of Masunaga et al.
(1998) and Masunaga & Inutsuka (2000).

Let e be the thermal energy per unit mass of a particular gas
parcel, and let Γ and Λ be the rates of change in e due to heating and
cooling processes, i.e.

de
dt

= Γ−Λ. (17.1)

At high densities inside a core immediately before a central star
forms and begins to radiate, the dominant source of energy is adia-
batic compression of the gas. The first law of thermodynamics tells
us that the heating rate due to compression is

Γ = −p
d
dt

(
1
ρ

)
, (17.2)

where p and ρ are the gas pressure and density. Since 1/ρ is the
specific volume, meaning the volume per unit mass occupied by the
gas, this term is just p dV, the work done on the gas in compressing
it. If the gas is collapsing in free-fall, the compression time scale is
about the free-fall timescale tff ∼ 1/

√
Gρ, so we expect

d
dt

(
1
ρ

)
= C1

√
4πG

ρ
, (17.3)

where C1 is a number of order unity that will depend on the exact
collapse solution, and the factor of

√
4π has been inserted for future

convenience. Writing p = ρc2
s and plugging this into the heating rate,

we get
Γ = C1c2

s
√

4πGρ. (17.4)

The main cooling source is thermal emission by dust grains, which
at the high densities with which we are concerned are thermally very
well coupled to the gas. Let us first consider the gas where the gas is
optically thin to this thermal radiation. In this case the cooling rate
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per unit mass is simply given by the rate of thermal emission,

Λthin = 4κPσT4, (17.5)

where σ is the Stefan-Boltzmann constant and κP is the Planck mean
opacity of the dust grains. As long as Λ & Γ, the gas will remain
isothermal. (Strictly speaking if Λ > Γ the gas will cool, but that’s
because we’ve left out other sources of heating, such as cosmic rays
and the fact that the protostar is bathed in a background IR radiation
field from other stars.)

If we equate the heating and cooling rates, using for T the temper-
ature in the isothermal gas, we therefore will obtain a characteristic
density beyond which the gas can no longer remain isothermal.
Doing so gives

ρthin =
4
π

κ2
Pσ2µ2T4

C2
1Gk2

B
(17.6)

= 5× 10−15 g cm−3 C−2
1

(
100κP

cm2 g−1

)2 ( T
10 K

)6
, (17.7)

where µ is the mean mass per particle and we have set cs
√

kBT/µ.
Thus we find that compressional heating and optically thin cooling to
balance at about 10−14 g cm−3.

A second important density is the one at which the gas starts
to become optically thick to its own re-emitted infrared radiation.
Suppose that the optically thick region at the center of our core has
some mean density ρ and radius R. The condition that the optical
depth across it be unity then reduces to

2κρR ≈ 1. (17.8)

If this central region corresponds to the size of the region that is
no longer in free-fall collapse and is instead thermally supported,
then its size must be comparable to the Jeans length at its lowest
temperature, i.e. R ∼ λJ =

√
πc2

s /(Gρ). Thus we set

R = C2
2πcs√
4πGρ

, (17.9)

where C2 is again a constant of order unity, and Masunaga et al. find
based on numerical results that C2 ≈ 0.75.

Plugging this into the condition for optical depth unity, we derive
the characteristic density at which the gas transitions from optically
thin to optically thick:

ρτ∼1 =
1

4π
C−2

2
µG

κ2
PkBT

(17.10)

= 1.5× 10−13 g cm−3 C−2
2

(
100κP

cm2 g−1

)−2 ( T
10 K

)−1
(17.11)
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This is not very different from the value for ρthin, so in general for
reasonable collapse conditions we expect that cores transition from
isothermal to close to adiabatic at a density of ∼ 10−13 − 10−14 g
cm−3.

It is worth noting that ratio of ρthin to ρτ∼1 depends extremely
strongly on both κP (to the 4th power) and T (to the 7th), so any
small change in either can render them very different. For example,
if the metallicity is super-solar then κP will be larger, which will
increase ρthin and decrease ρτ∼1. Similarly, if the region is somewhat
warmer, for example due to the presence of nearby massive stars,
then ρthin will increase and ρτ∼1 will decrease.

If ρτ∼1 < ρthin, the collapsing gas will become optically thick
before heating becomes faster than optically thin cooling. In this
case we must compare the heating rate due to compression with the
cooling rate due to optically thick cooling instead of optically thin
cooling. Optically thick cooling is determined by the rate at which
radiation can diffuse out of the core. If we have a central region of
optical depth τ � 1, the effective speed of the radiation moving
through it is c/τ, so the time required for the radiation to diffuse out
is

tdiff =
lτ
c

=
κPρl2

c
(17.12)

where l is the characteristic size of the core.
Inside the optically thick region matter and radiation are in ther-

mal balance, so the radiation energy density approaches the black-
body value aT4. The radiation energy per unit mass is therefore
aT4/ρ. Putting all this together, and taking l = 2R as we did before
in computing ρτ∼1, the optically thick cooling rate per unit mass is

Λthick =
aT4/ρ

tdiff
=

σT4

κPρ2R2 , (17.13)

where σ = ca/4. If we equate Λthick and Γ, we get the characteristic
density where the gas becomes non-isothermal in the optically thick
regime

ρthick =

(
C2

1Gσ2µ4T4

4π3C4
2k4

Bκ2
P

)1/3

(17.14)

= 5× 10−14 g cm−3 C2/3
1

C4/3
2

(
100κP

cm2 g−1

)−2/3 ( T
10 K

)4/3
.(17.15)

This is much more weakly dependent on κP and T, so we can now
make the somewhat more general statement that, even for supersolar
metallicity or warmer regions, we expect a transition from isothermal
to adiabatic behavior somewhere in the vicinity of 10−14 − 10−13 g
cm−3.
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17.1.2 The First Core

The transition to an adiabatic equation of state, with γ > 4/3, means
that the collapse must at least temporarily halt. The result will be a
hydrostatic object that is supported by its own internal pressure. This
object is known as the first core, or sometimes a Larson’s first core,
after Richard Larson, who first predicted this phenomenon.

We can model the first core reasonably well as a simple polytrope,
with index n defined by n = 1/(γ − 1). At low mass when the
temperature in the first core is low γ ≈ 5/3 and n ≈ 3/2, and for a
more massive, warmer core γ ≈ 7/5 (n ≈ 5/2). Since you have seen
polytropes treated in stellar structure, we will simply quote the result.
For a polytrope of central density ρc, the radius and mass are

R = aξ1 (17.16)

M = −4πa3ρc

(
ξ2 dθ

dξ

)

1
, (17.17)

where ξ = r/a is the dimensionless radius, θ = (ρ/ρc)1/n is the
dimensionless density, the subscript 1 refers to the value at the edge
of the sphere (where θ = 0), the factors ξ1 and (ξ dθ/dξ)1 can be
determined by integrating the Lane-Emden equation, and the scale
factor a is defined by

a2 =
(n + 1)K

4πG
ρ

1−n
n

c . (17.18)

The factor K = p/ργ is the polytropic constant, which is determined
by the specific entropy of the gas.

For our first core, the specific entropy will just be determined by
the density at which the gas transitions from isothermal to adiabatic.
If we let ρad be the density at which the gas becomes adiabatic, then
the pressure at this density is p = ρadc2

s0, where cs0 is the sound
speed in the isothermal phase, and K = c2

s0ρ
1−γ
ad . For γ = 5/3

(n = 1.5) we have ξ1 = 3.65 and (ξ dθ/dξ)1 = −2.71, and plugging in
we get

R = 2.2 AU
(

1010ρc

g cm−3

)1/6 ( T
10 K

)1/2 (1013ρad

cm−3

)−1/3

(17.19)

M = 0.059M�

(
1010ρc

g cm−3

)7/6 ( T
10 K

)1/2 (1013ρad

g cm−3

)−1/3

.(17.20)

The choice of ρc will be justified in a moment.
We can obtain very similar numbers by plugging in for γ = 7/5

(n = 2.5). These results show that the first core is an object a few AU
in size, with a mass of a few hundredths of a solar mass.
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17.1.3 Second Collapse

The first core is a very short-lived phase in the evolution of the pro-
tostar. To see why, let us estimate its temperature. The temperature
inside the sphere rises as T ∝ ργ−1, so the central temperature is

Tc = T0

(
ρc

ρad

)γ−1
, (17.21)

where T0 is the temperature in the isothermal phase. Thus the central
temperature will be higher than the boundary temperature by a
factor that is determined by how high the central density has risen,
which in turn will be determined by the amount of mass that has
accumulated on the core.

In general we have M ∝ ρ
(3+n)/(2n)
c , or M ∝ ρ

(3γ−2)/2
c . We also have

Tc ∝ ρ
γ−1
c . Combining these results, we get

Tc ∝ M(2γ−2)/(3γ−2). (17.22)

The exponent is 0.44 for γ = 5/3 and 0.36 for γ = 7/5.
Plugging in some numbers, M = 0.06M�, ρad = 10−13 g cm−3, and

γ = 5/3 gives ρc = 10−10 g cm−3 and Tc = 1000 K. Thus we see that
by the time anything like 0.1 M� of material has accumulated on the
first core, compression will have caused its central temperature to rise
to 1000 K or more.

This causes yet another change in the thermodynamics of the gas,
because all the hydrogen is still molecular, and molecular hydrogen
has a binding energy of 4.5 eV. In comparison, the kinetic energy per
molecule for molecular hydrogen at a temperature T is 3kBT = 0.26T3

eV, where T3 = T/(1000 K). At 1000 K this means that the mean
molecule still has only ∼ 5% of the kinetic energy that would be
required to dissociate it. However, there is a non-negligible tail of the
Maxwellian distribution that is moving fast enough for collisions to
produce dissociation. Each of these dissociative collisions removes 4.5
eV from the kinetic energy budget of the gas and puts it into chem-
ical energy instead. Since dissociations are occurring on the tail of
the Maxwellian, any slight increase in the temperature dramatically
increases the dissociation rate, moving even more kinetic energy into
chemical energy.

This effectively acts as a thermostat for the gas, in much the same
way that a boiling pot of water stays near the boiling temperature of
water even when energy is added, because all the extra energy that
is provided goes into changing the chemical state of the water rather
than raising its temperature. Detailed numerical calculations of this
effect show that at temperatures above 1000− 2000 K, the equation of
state becomes closer to T ∝ ρ0.1, or γ = 1.1. This is again below the
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critical value of γ = 4/3 required to have a hydrostatic object, and
as a result the center of the first core again goes into something like
free-fall collapse.

This is called the second collapse. The time required for it is set by
the free-fall time at the central density of the first core, which is only
a few years. This collapse continues until all the hydrogen dissociates.
The hydrogen also ionizes during this collapse, since the ionization
potential of 13.6 eV isn’t very different from the dissociation potential
of 4.5 eV. Only once all the hydrogen is dissociated and ionized can a
new hydrostatic object form.

At this point the gas is warmer than ∼ 104 K, is fully ionized,
and the new hydrostatic object is a true protostar. It is supported by
degeneracy pressure at first when its mass is low, and then as more
mass arrives it heats up and becomes supported by thermal pressure.

An important point to make there is that this discussion implies
that brown dwarfs, at least those of sufficiently low mass, do not
undergo a prompt second collapse. Instead, their first cores never
accumulate enough mass to dissociate the molecules at their center.
This isn’t to say that dissociation never happens in them, and that
second collapse never occurs. A brown dwarf-mass first core will
still radiate from its surface and, lacking any internal energy source,
this energy loss will have to be balanced by compression. As the gas
compresses the temperature and entropy will rise, and, if the object
does not become supported by degeneracy pressure first, the central
temperature will eventually rise enough to produce second collapse.
The difference for a brown dwarf is that this will only occur once
slow radiative losses cause a temperature rise, which may take a
very long time compared to formation. For stars, in contrast, there is
enough mass to reach the critical temperature by compression during
formation.

17.2 The Protostellar Envelope

Once a protostar is born at the center of a collapsing cloud, we can
ask both about the structure immediately around it and about its
internal structure. We defer the latter to Chapter 18, and focus here
on the envelope around the newborn protostar.

17.2.1 Accretion Luminosity

The central driver of the behavior of the gas around the protostar is
the radiation that it emits. At early times the star has not reached
the main sequence or ignited any nuclear burning, so gravity is
the only important energy source in the problem. Even if nuclear
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burning does start, we will see that it is negligible for low mass stars.
The protostar is a hydrostatic object, although it undergoes secular
contraction, so that gas striking its surface comes to a halt in an
accretion shock. In this shock its kinetic energy is converted to heat,
which is then radiated away.

The detailed structure of the accretion shock was first worked out
by Stahler et al. (1980a,b). The summary is that the energy radiated
away at the shock is roughly

Lacc =
GM∗Ṁ∗

R∗
, (17.23)

where M∗, Ṁ∗, and R∗ are the mass, accretion rate, and radius for the
protostar.

We will see in Chapter 18 that R∗ is typically a few R� (and in-
deed this is consistent with the observed radii of T Tauri stars). We
have previously calculated typical accretion rates of Ṁ∗ ∼ 10−5 M�
yr−1 for low mass stars. Plugging in these numbers, we find

Lacc = 30L� Ṁ∗,−5M∗,0R−1
∗,1 , (17.24)

where Ṁ∗,−5 = Ṁ∗/(10−5M� yr−1), M∗,0 = M∗/M�, and R∗,1 =

R∗/(10R�). Thus a typical low mass protostar can easily put out
many tens of L� in accretion power, far greater than what it would
produce from nuclear burning on the main sequence.

We can also estimate the effective temperature of the stellar surface
due to accretion. The infalling gas arrives in free-fall at a velocity

vff =

√
2GM∗

R∗
= 200 km s−1 M1/2

∗,0 R−1/2
∗,1 . (17.25)

The vastly exceeds the sound speed of a few km s−1 in gas at a
temperature of ∼ 103 − 104 K, so the gas must decelerate in a strong
shock with a Mach number of order 100. For a strong shock, one
where the Mach numberM � 1, the Rankine-Hugoniot jump
conditions tell us that the post-shock temperature is

T2 =
2γ(γ− 1)
(γ + 1)2 M

2T1 =
2γ(γ− 1)
(γ + 1)2

v2
shock
c2

1
T1 =

2(γ− 1)
(γ + 1)2

µ

kB
v2

shock,

(17.26)
where c1 is the adiabatic sound speed in the pre-shock gas.

Taking vshock = vff, γ = 5/3 for a monatomic gas, and µ = 2.3×
10−24 g for the pre-shock gas (assuming it to be neutral hydrogen),
and plugging in we get

T2 = 1.2× 106 M∗,0R−1
∗,1 K. (17.27)

In other words, the post-shock gas is heated to temperatures such
that it emits in UV and x-rays. The incoming gas will be extremely
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opaque to this radiation due to the opacity provided by both free-
electrons and numerous lines of multiply ionized metal atoms such
as iron. As a result all the radiation emitted by the post-shock gas
will be absorbed in a small region immediately outside the shock and
reprocessed until it becomes blackbody emission. The stellar surface
therefore emits as a blackbody, whose temperature we can calculate
in the standard way:

Lacc = 4πR2
∗σT4

∗ (17.28)

T∗ = 4300Ṁ1/4
∗,−5M1/4

∗,0 R−3/4
∗,1 K (17.29)

Thus the star is effectively a blackbody at a surface temperature
comparable to that of a main sequence star.

17.2.2 The Dust Destruction Front

Now let us consider the effect of this luminosity on the gas around
the protostar. Consider a spherical black dust grain of radius a some
distance r from the star. It absorbs radiation at a rate

Γ =
Lacc

4πr2 πa2 = πa2σT4
∗

(
R∗
r

)2
(17.30)

and radiates it at a rate
Λ = 4πa2σT4

d , (17.31)

where Td is the dust grain’s temperature. Equating these two, the
temperature of the grain is

Td =

(
R∗
2r

)1/2
T∗ (17.32)

Even the most refractory materials out of which interstellar dust is
made, such as graphite and silicate grains, will vaporize at tempera-
tures larger than ∼ 1000− 1500 K. The exact temperature depends on
the chemical composition of the grains. Thus when r/R∗ is too large
grains cannot survive. They get vaporized. We therefore expect the
protostar to be surrounded by dust-free region.

Since the ionizing radiation produced at the shock at the stellar
surface all gets absorbed close to the shock, and the star is shining
into this dust-free region as a blackbody at a temperature of only a
few thousand K, the gas in this region is primarily neutral. Neutral
atomic gas with no dust in it is essentially transparent to visible
radiation, so in this region the opacity is tiny, and stellar radiation is
able to free-stream outward. The dust-free neutral region is called the
opacity gap.

As one moves away from the star the equilibrium grain tempera-
ture drops, and eventually one reaches a surface where dust grains
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can exist. This is called the dust destruction radius, since incoming
gas that reaches this radius has its grains destroyed. If we plug the
grain destruction temperature into our equation for Td, we can solve
for the dust destruction radius:

rd =
R∗
2

(
T∗
Td

)2
= 0.4 T−2

d,3 Ṁ1/2
∗,−5M1/2

∗,0 R−1/2
∗,1 AU, (17.33)

where Td,3 = Td/(1000 K) is the dust destruction temperature in
units of 1000 K. Thus the dust-free region extends to ∼ 1 AU around
an accreting protostar.

17.2.3 Temperature Structure and Observable Properties

Now let us consider the material beyond the dust destruction front.
At the front the gas density is given roughly by the condition

Ṁ∗ = 4πr2
dρvff (17.34)

ρ =
Ṁ∗√

8π2GMr3
d

(17.35)

= 4× 10−13 Ṁ1/4
∗,−5M−7/4

∗,0 R3/4
∗,1 T3

d,3 g cm−3. (17.36)

Just inside the front, the stellar spectrum is nearly a blackbody at a
temperature of a few thousand Kelvin, so the peak wavelength is

λ ≈ hc
4kT

= 440 Ṁ−1/4
∗,−5 M−1/4

∗,0 R3/4
∗,1 nm, (17.37)

in the visible.
The opacity of gas with Milky Way dust composition at 440 nm is

roughly κ = 8000 cm2 g−1, so the mean free-path of a stellar photon
moving through the dust destruction front is (κρ)−1 ≈ 3× 108 cm.
This is a tiny length scale compared to any other scale in the problem,
such as the size of the core, the size of the opacity gap, or even the
radius of the protostar.

Thus all the starlight that strikes the dust destruction front will
immediately be absorbed by the dust grains. They will re-emit it
as thermal radiation with a peak wavelength determined by their
blackbody temperature, which will be a factor of ∼ 4 lower than the
stellar surface temperature. At around 1.8 µm, a factor of 4 longer
wavelength than the 440 nm we started with, the opacity is drops
to around 1000 cm2 g−1, so the mean free path is a factor of 8 larger.
Nonetheless, this is still tiny, so all the re-emitted radiation will also
be absorbed.

Since we are in a situation where all the radiation is absorbed
and re-emitted many times, it is reasonable to treat this as a diffu-
sion problem. Protostellar radiation free-streams from the surface,
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through the opacity gap, and is absorbed and thermalized at the dust
destruction front. Then it must diffuse out through the dust envelope.
This is essentially the same calculation that is made for radiation
diffusing outward through a star, and the equation describing it is the
same:

F = − c
3ρκR

∇E, (17.38)

where F is the radiation flux, E is the radiation energy density, and
κR here is the Rosseland mean opacity, meaning the mean of the
frequency-dependent opacity using a weighting function that is equal
to the temperature derivative of the Planck function. Note here that
κR is a function of T.

The repeated absorption and re-emission of radiation forces it into
thermal equilibrium with the gas, so E is simple the energy density
of a thermal radiation field at the gas temperature: E = aT4, where
a is the radiation constant and T is the temperature. Since no energy
is added or removed from the radiation field as it diffuses outward
through the envelope, F = Lacc/(4πr2). Putting this together, we
have

Lacc = −
16πcar2

3ρκR
T3 dT

dr
(17.39)

For a given density structure and a model of dust grains that
specifies κR(T), this equation allows us to estimate the temperature
structure in the protostellar envelope. For reasonable grain models
we expect κR ∝ Tα with α ≈ 0.8 in the temperature range of a
few hundred K. Let us suppose that the density distribution in the
envelope looks something like a powerlaw, so ρ ∝ r−kρ . Finally, let
us also suppose that the temperature also behaves like a powerlaw
in radius, T ∝ r−kT . The left hand side of the equation is a constant,
and we have now worked out how the right hand side varies with r.
Plugging in all the radial dependences on the RHS, and knowing that
they must sum to zero since the LHS is a constant, we get

kT =
kρ + 1
4− α

. (17.40)

Thus in the freely-falling part of the envelope, where kρ ≈ 3/2,
we have kT ≈ 0.8. In our fiducial example, where the temperature
is 1000 K at 0.4 AU, we would expect the temperature to drop to
300 K at around 2 AU, to 100 K at around 8 AU, and back to the
background temperature of 10 K at around 150 AU. In the outer part
of the envelope the falloff in temperature can be either steeper or
shallower depending on how the density falls off – sharper density
falloffs (larger kρ) lead to sharper temperature falls (larger kT) as
well.
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Of course this approximation only applies as long as the radiation
is trapped by the dust, and the dust opacity is highest for high
frequency radiation. Once the dust temperature falls off to less than
∼ 100 K, depending on the size of the core, the radiation is free to
escape instead. Even further in where the dust temperature is higher,
long wavelength radiation can escape freely.

As a result the spectrum inside the core is never truly a blackbody,
since radiation at long wavelengths never reaches thermal equilib-
rium. The emitted spectrum is also complicated by this behavior. We
can think of this as follows: for a star, there is something close to a
single well-defined photosphere at all frequencies because the density
drops off sharply. For a dust cloud, on the other hand, the density
drop is not sharp, and so the photosphere, the surface of optical
depth unity (or 2/3 if you prefer) is in different places at different
frequencies. At high frequencies it is near the core surface because
the opacity is high, and at low frequencies the low opacity allows it
to be much farther in. For this reason, centrally-heated cores do not
emit as blackbodies.

In order to truly determine the temperature distribution within
a core it is necessary to either use a more sophisticated analytic
treatment (for example one is given in Chakrabarti & McKee 2005)
or to proceed numerically. If one wants a more sophisticated density
structure that is not spherical, numerical methods are also required.
Of course all of this only applies as long as a great deal of mass
remains in the envelope, so that it is optically thick to both the star’s
direct radiation and to the re-radiated thermal radiation from the
dust destruction front. In terms of our evolutionary classes, all of this
applies to class 0 and class I sources.
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Protostellar Evolution

Suggested background reading:

• Dunham, M. M., et al. 2014,
in “Protostars and Planets VI",
ed. H. Beuther et al., pp. 195-218,
sections 5-9

Suggested literature:

• Hosokawa, T., Offner, S. S. R., &
Krumholz, M, R., 2011, ApJ, 738, 140

This chapter considers the behavior of the stellar objects that form
at the centers of collapsing clouds. Our goal is to extend the theory
of stellar structure to the case of protostars that are not yet on the
main sequence. This calculation is not fundamentally different than
the stellar structure calculations that we normally perform for main
sequence stars. Indeed, as we will demonstrate in a moment, the
same basic assumptions of hydrostatic balance and diffusion of
energy through the star are valid in the pre-main sequence and main
sequence cases. There are only two significant differences. First,
the boundary conditions are obviously different, since protostars
are gaining mass from the outside. Second, although the star is in
hydrostatic balance, it need not be in long-term thermal balance.
Given these points, let us discuss how we calculate the evolution of a
protostar.

18.1 Fundamental Theory

18.1.1 Time Scales

Let us begin by justifying the statement that we can treat protostars
using the same techniques we use for main sequence stars. The way
we can check this is by evaluating two time scales: the mechanical
time scale over which the star will reach mechanical equilibrium,
and the Kelvin-Helmholtz time scale over which it reaches thermal
equilibrium.

The time to reach mechanical equilibrium is the sound crossing
time, ts ∼ R/cs. From the virial theorem we know that the RMS
velocity inside the star must be of order

√
GM/R, and, since gas

should be subsonic after it shocks at the stellar surface, this RMS
velocity must be mostly thermal motion. Thus, cs ∼

√
GM/R, and

ts ∼
√

R3

GM
= 35 M−1/2

0 R3/2
1 hours, (18.1)

http://adsabs.harvard.edu/abs/2014prpl.conf..173L
http://adsabs.harvard.edu/abs/2014prpl.conf..173L
http://adsabs.harvard.edu/abs/2014prpl.conf..173L
http://adsabs.harvard.edu/abs/2011ApJ...738..140H
http://adsabs.harvard.edu/abs/2011ApJ...738..140H
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where M0 = M∗/M� and R∗,1 = R/(10R�).
In contrast, the time required to reach thermal equilibrium is

the Kelvin-Helmholtz time, which is defined as roughly the time
required for the star to radiate away its own binding energy:

tKH =
GM2

RL
= 3× 105 M2

0R−1
1 L−1

1 yr, (18.2)

where L1 = L/(10L�). Thus the star reaches mechanical equilibrium
essentially instantaneously compared to the time required to reach
thermal equilibrium. It is therefore reasonable to assume that at
all times the star is in hydrostatic balance, and then to describe
its subsequent evolution movement from one hydrostatic state to
another, with the change in state dictated by the evolution of the
energy and entropy of the gas.

For future reference, it is also useful to think about how long accre-
tion will last. At an accretion rate of 10−5 M� yr−1, the formation of
a 1 M� star takes 105 yr. Thus, the accretion time is generally shorter
than the KH time, so that stars will cease accreting before they reach
thermal equilibrium. Note that this is true only for low mass stars,
not high mass ones as we discussed previously.

18.1.2 Evolution Equations

Now that we have shown that we can treat protostars as hydrostatic
equilibrium objects, let us proceed to write down the evolution
equations that govern the protostar. These should be familiar from
stellar structure. An important caveat is that what we cover here
represents an extremely simple approach to stellar structure, and that
all of the complications that arise in real stellar structure calculations
(e.g., rotation, convective overshooting, real stellar atmospheres, etc.)
apply equally-well to protostellar evolution. The goal here is simply
to sketch the basic theory, so that we can understand how it changes
for protostars as opposed to main sequence stars.

As in other stellar structure calculations, it is most convenient
to work in Lagrangian coordinates, where we let Mr be the mass
interior to radius r, and then solve for stellar properties as a function
of Mr. The first equation is the standard definition of mass in terms
of density and radius:

∂r
∂Mr

=
1

4πr2ρ
. (18.3)

The second equation is the equation of hydrostatic balance. In Eule-
rian coordinates it is

∂P
∂r

= −GMrρ

r2 , (18.4)
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and converting to Lagrangian coordinates by dividing by the relation-
ship between r and Mr gives

∂P
∂Mr

= −GMr

4πr4 (18.5)

Note that we have ignored radiation pressure in writing this equa-
tion, since it is significant only for very massive stars. I can be in-
cluded in exactly the same manner as for massive main sequence
stars.

The third equation is the equation of radiation diffusion:

F =
L

4πr2 = − c
3ρκ

∂E
∂r

, (18.6)

where F is the radiation flux, L is the luminosity passing through
radius r, and κ is the Rosseland mean opacity of the gas. Writing
E = aT4 = σT4/(4c) and again converting to Lagrangian coordinates
by dividing by ∂r/∂Mr gives

T3 ∂T
∂Mr

= − 3κL
256π2σr4 . (18.7)

This applies only as long as the protostar is stable against convection,
∂s/∂Mr > 0, i.e. the entropy increases outward. If it is unstable to
convection, we instead have

∂s
∂Mr

= 0, (18.8)

or some more sophisticated treatment of convection based on mixing-
length theory.

Finally, the last equation describes how the internal energy of the
fluid evolves:

ρT
∂s
∂t

= ρε− 1
r2

∂

∂r
(r2F), (18.9)

where s is the entropy per unit mass of the gas and ε is the rate of
nuclear energy generation per unit mass. Substituting Lr = 4πr2F
gives

∂L
∂r

= 4πr2ρ

(
ε− T

∂s
∂T

)
, (18.10)

and dividing once more by ∂r/∂Mr gives

∂L
∂Mr

= ε− T
∂s
∂t

. (18.11)

This is the only equation that is different from the case of a main
sequence star. For a main sequence star, we simply assume that the
entropy per unit mass is constant, so we drop the ∂s/∂t term.

This constitutes four equations in the four unknowns r, P, T, and
L. We also require functions specifying the equation of state P(ρ), the



286 notes on star formation

opacity κ(ρ, T), the energy generation rate ε(ρ, T), and the entropy
s(ρ, T). The equation of state is just the ideal gas law

P =
ρkBT

µ
, (18.12)

where µ is the mean mass for particle. For fully ionized gas µ =

0.61mH , but in numerical calculations we generally use a numerically
tabulated value of µ(ρ, T). Similarly, for constant µ the entropy is

s =
k
µ

ln

(
T3/2

ρ

)
+ const, (18.13)

but, again, when µ is not constant s must be tabulated numerically.

18.1.3 Boundary Conditions

The four structure equations require four boundary conditions to
solve. Two are obvious: at Mr = 0

r(0) = 0 (18.14)

L(0) = 0. (18.15)

The remaining two are less obvious. Thus far everything we have
written down is completely identical to the case of a main sequence
star, except for the time derivative in the heat equation, but the
remaining two boundary conditions, describing the pressure and
luminosity at the edge of the star, are different.

The pressure at the edge of the star is set by requiring that the
star’s pressure be sufficient to bring the incoming mass flow to a halt
at the stellar surface. The mass flux onto the star is

Ṁ = 4πr2ρv, (18.16)

and the pressure at the stellar surface is therefore

P(M∗) = ρv2 =
Ṁv

4πr2 , (18.17)

where the right hand side is to be evaluated at r = R∗. If the incom-
ing gas is in free-fall, then we can set v = vff =

√
2GM∗/R∗, which

gives

P(M∗) =
Ṁ
4π

√
2GM∗

R5∗
, (18.18)

where M∗ is the total stellar mass.
The final boundary condition is on the luminosity. For a non-

accreting star it is simple: we require that L(M∗) = 4πR∗σT(M∗)4,
i.e. that the star radiate as a black body from its surface, or something



protostellar evolution 287

somewhat more complicated involving a table lookup of a stellar
atmosphere. For an accreting star it is more complicated, however,
because the accreting gas carries energy, and the question becomes
what fraction of this energy will be radiated away at the stellar
surface and what fraction will be advected or radiated into the stellar
interior.

We will not derive these results in detail, just sketch out the issues.
The boundary condition must take the form

L(M∗) = Lacc + Lbb − Lin, (18.19)

where Lacc = GM∗Ṁ∗/R∗ is the kinetic energy of the accreting gas,
Lbb = 4πR2∗σT(M∗)4 represents the blackbody radiation from the
stellar surface, and Lin represents the inward flux of energy due to
advection and radiation from the shocked gas. One way to think
about Lin is that it specifies what fraction of the kinetic energy of
the accreting gas escapes promptly as radiation, with the remaining
portion assumed to be advected into the stellar interior with the
accreting gas.

The correct value of Lin is a subtle question, since it depends on
the structure of the shock at the stellar surface, and on its geometry.
For spherical accretion, Stahler et al. (1980a,b, 1981) show that Lin ≈
3Lacc/4. However, if the accretion is confined to a small portion of
the stellar surface, for example by a magnetic field, some radiation
may escape out the sides of the accretion shock, and Lin can be larger.
Different authors make different assumptions about this, with those
adopting values closer to the spherical case generally referred to as
"hot accretion" models, and those adopting value with Lin = Lacc or
close to it referred to as "cold accretion" models. The hot versus cold
terminology refers to the thermal energy content of the accreting gas.
Whichever assumption one adopts, this constitutes the final boundary
condition fully specifies the problem for an accreting protostar.

The last two boundary conditions apply only as long as the star
is accreting. After accretion stops, the boundary conditions change
to their free-space forms, identical to what we would use for a main
sequence star. To remind you of the pressure boundary condition,
we start by noting that we can integrate the equation of hydrostatic
balance to obtain

P(M∗) =
GM∗

R∗

2 ∫ ∞

R∗
ρ dr. (18.20)

If κ changes relatively little past the stellar photosphere, then
∫ ∞

R∗
ρ dr ≈

τphot

κphot
, (18.21)

where τphot is the optical depth from infinity to the photosphere and
κphot is the opacity at the edge of the photosphere. Since the edge
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of the star is roughly where τphot = 2/3, the boundary condition
becomes

P(M∗) =
2GM∗

3R2∗κphot
. (18.22)

In the non-accreting case the temperature boundary condition is
simply that

L(M∗) = 4πR2
∗σT(M∗)4. (18.23)

18.1.4 Deuterium Burning

Before discussing how the structure equations can be solved numeri-
cally, it is worth delving a little further into the term ε, representing
nuclear energy generation. For a main sequence star, ε comes from
fusion of hydrogen into helium, either via the pp-chain or the CNO
cycle. However, hydrogen burning doesn’t occur until just before the
star reaches the main sequence.

There is, however, an energetically-important nuclear reaction that
can occur at lower temperatures, before the star is hot enough to
burn hydrogen: fusion of deuterium, via the reaction

2H +1 H→3 He + γ. (18.24)

This reaction begins to occur at an appreciable rate once the tempera-
ture reaches 106 K, and the reaction releases 5.5 MeV per deuterium
nucleus burned. The energy generation rate from deuterium fusion is
reasonably well-approximated by

ε ≈
{

0, T < 106 K
4.19× 107 [D/H]ρ0T11.8

6 erg g−1 s−1 T > 106 K,
(18.25)

where [D/H] ≈ 2 × 10−5 is the ratio of D to H in the gas, ρ0 =

ρ/(1 g cm−3), and T6 = T/(106 K).
Strictly speaking the expression we have for T > 106 K is only

valid for temperatures near 106 K, but, as we shall see, this good
enough for our purposes. If we wish to run a model past the start of
H burning, we need an analogous expression for it, which is the same
as one used for normal main sequence stellar structure calculations.

18.1.5 Numerical Solution

We have now fully specified the equations describing our protostar.
To construct a numerical model, we need to specify the accretion
rate Ṁ that appears in the boundary condition equations (18.18) and
(18.19) describing the pressure and luminosity at the stellar surface.
In general Ṁ can be a function of time, although usually it is taken to
be constant until accretion halts at some specified final stellar mass
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M∗, at which point we switch to boundary conditions (18.22) and
(18.23) for the boundary pressure and luminosity.

We must also start with an initial condition, which we usually take
to be a simple polytrope. This gives us initial profiles of r, P, T, and
L, from which we can obtain other derived variables like ρ and s, as a
function of Mr. The choice of initial condition might matter a little or
a lot, depending on the choice of boundary conditions, as we will see.

Given these boundary conditions, we construct the solution at each
time using a shooting method in much the same way as we would
for a main sequence star. We first guess a central temperature T and
pressure P, which of course also gives us the central density ρ and
entropy s. Usually a good first guess is the value of ρ and s at the
last time step. Then we integrate equations (18.3) - (18.11) outward in
radius until we reach the outer mass shell M∗ (which is a function of
time).

To obtain the time derivative of the entropy term that appears in
the internal energy equation (18.11), we just compute the difference
between the entropy s(Mr, t) for mass shell Mr at the current time t
and the value for s(Mr, t− ∆t) that we had in the previous time step.
In general the solution we have constructed will not satisfy the outer
boundary conditions (18.18/18.22) and (18.19/18.23), so we must
modify our guesses for T and P in the center and try again.

We repeat this until we converge, and then we proceed to the next
time step, adding new mass shells on the outside as necessary to
account for new material deposited by accretion. We continue the
calculation until the star’s radius converges to its main sequence
value. In this manner, we can generate a full evolutionary track for a
given accretion rate.

18.2 Evolutionary Phases for Protostars

We have now outlined the basic equations describing protostellar
evolution, as well as the numerical method used to solve them. We
will now discuss the results of these calculations. There are generally
a few distinct stages though with forming stars pass, which can be
read off from how the radius evolves as the star gains mass. We will
use as our primary example the case of a star undergoing hot accre-
tion at 10−5 M� yr−1, as illustrated in Figure 18.1. However, note
that the ordering of these phases we describe below can vary some-
what depending on the accretion rate and the boundary conditions
assumed. Moreover, for low mass stars, some of the later phases may
not occur at all, or occur only after the end of accretion.
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Figure 6. Upper panel: Positions of the accretion shock front (solid line), and
photosphere (dotted line) of a growing protostar with Ṁ∗ = 10−3M⊙ yr−1

(run MD3). The layer between the accretion shock front and photosphere
corresponds to the radiative precursor. Lower panel: The optical depth within the
radiative precursor τrec, and effective temperatures at the photosphere Tph and
accretion shock front Tsh ≡ (L∗/4πR2

∗σ )1/4. The temperatures are normalized
as T4 = (T/104 K). The shaded background shows the four evolutionary phases,
as in Figure 2.

20 M⊙ the maximum temperature reaches 107K and the nu-
clear fusion of hydrogen begins (Figure 2). Although the hy-
drogen burning is initially dominated by the pp-chain reactions,
energy generation by the CN-cycle reactions immediately over-
come this. The energy production by the CN-cycle compensates
radiative loss from the surface at M∗ ≃ 30 M⊙ (Figure 4, mid-
dle), where the KH contraction terminates. A convective core
emerges owing to the rapid entropy generation near the center.
The stellar radius increase after that, obeying the mass–radius
relation of main-sequence stars.

Evolution of the Radiative Precursor. Figure 6 shows the evolu-
tion of protostellar (R∗) and photospheric (Rph) radii. Except in a
short duration, the photosphere is formed outside the stellar sur-
face: the radiative precursor persists throughout most of the evo-
lution. In the adiabatic accretion phase, the photospheric radius
is slightly outside the protostellar radius and increases gradu-
ally with the relation Rph ≃ 1.4 R∗, which is derived analytically
by SPS86. Although the precursor temporarily disappears in the
swelling phase around M∗ ≃ 10 M⊙, it emerges again in the sub-
sequent KH contraction phase. In the KH contraction phase, the
precursor extends spatially and becomes more optically thick.
Due to the extreme temperature sensitivity of H− bound-free
absorption opacity, the region in the accreting envelope with
temperature ! 6000 K becomes optically thick. Thus, the pho-
tospheric temperature Tph remains at 6000–7000 K throughout
the evolution (Figure 6, lower panel). Since the photospheric

Figure 7. Same as Figure 2 but for the lower accretion rate of Ṁ∗ =
10−5 M⊙ yr−1 (run MD5). In the lower panel, deuterium concentration in the
convective layer fd,cv is also presented. In both upper and lower panels, the
shaded background shows the four evolutionary phases: (I) convection, (II)
swelling, (III) Kelvin–Helmholtz contraction, and (IV) main-sequence accretion
phases.

radius is related to the total luminosity by

Rph =
(
Ltot

/
4πσT 4

ph

)1/2
, (18)

for the constant Tph, the rapid increase in the luminosity in the
contraction phase causes the expansion of the photosphere.

3.2. Case with Low Accretion Rate Ṁ∗ = 10−5 M⊙ yr−1

Next, we revisit the evolution of an accreting protostar under
the lower accretion rate of Ṁ∗ = 10−5 M⊙ yr−1 (run MD5).
Although this case has been extensively studied by previous
authors, a brief presentation should be helpful to underline
the effects of different accretion rates on protostellar evolution.
Different properties of the protostar even at the same accretion
rate owing to updates from the previous works, e.g, initial
models and opacity tables, will also be described. For a thorough
comparison between our and some previous calculations, see
Appendix B.

The lower accretion rate means the longer accretion timescale
tacc ∝ 1/Ṁ∗: even at the same protostellar mass M∗, the evolu-
tionary timescale is longer in the case of low Ṁ∗. Therefore, the
protostar has ample time to lose heat before gaining more mass.
This results in the lower entropy and thus a smaller radius at the
same protostellar mass in the low Ṁ∗ case as shown in the upper
panel of Figure 7. Although with the smaller value, the overall
evolutionary features of the high and low Ṁ∗ radii are similar.

Again, the protostellar evolution can be divided into four
characteristic stages, i.e., (I) convection (M∗ " 3 M⊙), (II)
swelling (3 M⊙ " M∗ " 4 M⊙), (III) KH contraction (4 M⊙ "
M∗ " 7 M⊙), and (IV) main-sequence accretion (M∗ ! 7 M⊙)
phases. Note that the first phase is now the convection phase

Figure 18.1: Kippenhahn and composi-
tion diagrams for a protostar accreting
at 10−5 M� yr−1 (Hosokawa & Omukai,
2009). In the top panel, the thick curve
shows the protostellar radius as a
function of mass, and gray and white
bands show convective and radiative
regions, respectively. Hatched areas
show regions of D and H burning, as
indicated. Thin dotted lines show the
radii containing 0.1, 0.3, 1, 3, and 10
M�, as indicated. Shaded regions show
four evolutionary phases: (I) convection,
(II) swelling, (III) KH-contraction, and
(IV) the main sequence. In the lower
panel, the solid line shows the mean
deuterium fraction in the star, normal-
ized to the starting value, while the
dashed line shows the D fraction only
considering the convective parts of the
star. The dot-dashed line shows the
maximum temperature.
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18.2.1 Initial Contraction

The initial phase of evolution is visible in Figure 18.1 as what takes
place up to a mass of ≈ 0.2 M� for the example shown. The first
thing that happens during this phase is that the star reaches a radius
that is a function solely of M∗ and Ṁ∗. This occurs regardless of
the initial radius with which we initiate the model, as long as we
are using the hot accretion boundary condition. The physical rea-
son for this behavior is easy to understand. The radius of the star
is determined by the entropy profile s(Mr). High entropy leads to
high radius. Since the internal energy generated by the star is small
compared to the accretion power when the stellar mass is low (i.e.,
Lbb � Lacc), once gas is incorporated into the star it does not lose
significant energy by radiation. The only entropy it loses is due to
the radiation that occurs at the shock on the star’s surface. We could
have guessed this result from the large value of tKH compared to
the accretion time – in effect, this means that, once a fluid element
reaches the stellar surface it will be buried and reach a nearly con-
stant entropy quite quickly. Consequently, we can treat the material
falling onto the star during this phase as having an entropy per unit
mass that depends only on two factors: (1) the entropy it acquires by
striking the stellar surface, and (2) how much it radiates before being
buried.

The latter factor is just determined by the accretion rate. Higher
accretion rates bury accreted material more quickly, leaving it with
higher entropy and producing larger radii. The former depends
on the velocity of the infalling material just before it strikes the
stellar surface, and thus on vff ∝

√
M∗/R∗. However, this second

factor self-regulates. If at fixed M∗, R∗ is very large, then vff is small,
and the incoming material gains very little entropy in the shock.
Small entropy leads to a smaller radius. Conversely, if R∗ is very
small, then vff and the post-shock entropy will be large, and this will
produce rapid swelling of the protostar. This effect means that the
radius rapidly converges to a value that depends only on M∗ and
Ṁ∗.

This self-regulation does not happen if the material is assumed
to accretion cold. In this case, the radial evolution of the star is
determined solely by the amount of entropy that is assumed to
remain in the accretion flow when it joins onto the star. One common
practice is to assume that the entropy of the accreting material is
equal to the entropy of the gas already in the star, and, under this
assumption, the choice of initial condition completely determines
the subsequent evolution, since the choice of initial condition then
determines the entropy content of the star thereafter.
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Regardless of the boundary condition assumed, during this phase
there is no nuclear burning in the star, as the interior is too cold
for any such activity. Since there is no nuclear burning, and this
phase generally lasts much less than the Kelvin-Helmholtz timescale
on which radiation changes the star’s structure, during this phase
the entropy content of the star is nearly constant. This phase can
therefore be referred to as the adiabatic stage in the star’s evolution.

18.2.2 Deuterium Ignition and Convection

In Figure 18.1, the next evolutionary phase begins at ≈ 0.25 M�,
and continues to ≈ 0.7 M�. This stage is marked by two distinct but
interrelated phenomena: the onset of nuclear burning and the onset
of convection. The driving force behind both phenomena is that, as
the protostar gains mass, its interior temperature rises. Recall the
results of our calculation from Chapter 17: for a polytrope, which is
not an unreasonable description of the accreting protostar, the central
temperature rises with mass to the Tc ∝ M(2γ−2)/(3γ−2). Thus even
at fixed entropy the central temperature must rise as the star gains
mass.

Once Tc reaches ∼ 106 K, deuterium will ignite at the center of the
protostar. This generally happens at a mass of hundredths to tenths
of M�, depending on the choice of accretion rate and boundary
condition. This has two significant effects. The first is that deuterium
acts as a thermostat for the star’s center, much as hydrogen does
in a main sequence star. Because the energy generation rate is so
incredibly sensitive to T, any slight raise in the temperature causes
it to jump enough to raise the pressure and adiabatically expand the
star, reducing T. Thus, Tc becomes fixed at 106 K – which is part of
the reason we didn’t need an expression for ε that would work at
higher temperatures. The star adjusts its radius accordingly, which
generally requires that the radius increase to keep Tc nearly constant
as the mass rises. Thus deuterium burning temporarily halts core
contraction. Both effects are visible in Figure 18.1. The halting of
core contraction is apparent from the way the dotted lines showing
constant mass enclosed bend upward at ≈ 0.3 M�, and the nearly
constant core temperature is visible from the fact that, between
≈ 0.25 M� and 3− 4 M�, a factor of more than 10 in mass, the central
temperature stays within a factor of 2 of 106 K.

The second effect of deuterium burning that it causes a rapid rise
in the entropy at the center of the star: looking at the heat equation
(18.11), we can see that if ε is large, then ∂s/∂t will be as well. This
has the effect of starting up convection in the star. Before deuterium
burning the star is generally stable against convection. That is be-
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cause the entropy profile is determined by infall, and since shells that
fall onto the star later arrive at higher velocities (due to the rising
M∗), they have higher entropy. Thus s is an increasing function of Mr,
which is the condition for convective stability. Deuterium burning
reverses this, and convection follows, eventually turning much of
the star convective. This also ensures the star a continuing supply of
deuterium fuel, since convection will drag gas from the outer parts of
the star down to the core, where they can be burned.

An important caveat here is that, although D burning encourages
convection, it is not necessary for it. In the absence of D, or for very
high accretion rates, the onset of convection is driven by the increas-
ing luminosity of the stellar core as it undergoes KH contraction.
This energy must be transported outwards, and as the star’s mass
rises and the luminosity goes up, eventually the energy that must be
transported exceeds the ability of radiation to carry it. Convection
results. For very high accretion rates, this effect drives the onset of
convection even before the onset of D burning.

A third effect of the deuterium thermostat is that it forces the
star to obey a nearly-linear mass-radius relation, and thus to obey a
particular relationship between accretion rate and accretion luminos-
ity. One can show that for a polytrope the central temperature and
surface escape speed are related by

ψ =
GM

R
=

1
2

v2
esc = Tn

kBTc

µmH
, (18.26)

where Tc is the core temperature, Tn is a dimensionless constant of
order unity that depends only on the polytropic index, and µ is the
mean mass per particle in units of hydrogen masses. For n = 3/2,
expected for a fully convective star, Tn = 1.86. Plugging in this value
of Tn, µ = 0.61 (the mean molecular weight for a fully ionized gas
of H and He in the standard abundance ratio), and Tc = 106 K, one
obtains ψ = 2.5× 1014 erg g−1 as the energy yield from accretion.

18.2.3 Deuterium Exhaustion and Formation of a Radiative Barrier

The next evolutionary phase, which runs from ≈ 0.6− 3 M� in Figure
18.1, is marked by the exhaustion of deuterium in the stellar core.
Deuterium can only hold up the star for a finite amount of time. The
reason is simply that there isn’t that much of it. Each deuterium
burned provides 5.5 MeV of energy, comparable the 7 MeV per
hydrogen provided by burning hydrogen, but there are only 2× 10−5

D nuclei per H nuclei. Thus, at fixed luminosity the “main sequence"
lifetime for D burning is shorter than that for H burning by a factor
of 2× 10−5 × 5.5/7 = 1.6× 10−5.
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We therefore see that, while a main sequence star can burn hydro-
gen for ∼ 1010 yr, a comparable pre-main sequence star of the same
mass and luminosity burning deuterium can only do it for only a
few times 105 yr. To be more precise, the time required for a star to
exhaust its deuterium is

tD =
[D/H]∆EDM∗

mH L∗
= 1.5× 106 yr M∗,0L−1

∗,0 . (18.27)

Thus deuterium burning will briefly hold up a star’s contraction,
but cannot delay it for long. However, a brief note is in order here:
while this delay is not long compared to the lifetime of a star, it is
comparable to the formation time of the star. Recall that typical
accretion rates are of order a few times 10−6 M� yr−1, so a 1 M� star
takes a few times 105 yr to form. Thus stars may burn deuterium for
most of the time they are accreting.

The exhaustion of deuterium does not mean the end of deuterium
burning, since fresh deuterium that is brought to the star as it con-
tinues accreting will still burning. Instead, the exhaustion of core
deuterium happens for a more subtle reason. As the deuterium
supply begins to run out, the rate of energy generation in the core be-
comes insufficient to prevent it from undergoing further contraction,
leading to rising temperatures. The rise in central temperature lowers
the opacity, which is govern by a Kramers’ law: κ ∝ ρT−3.5. This in
turn makes it easier for radiation to transport energy outward. Even-
tually this shuts off convection somewhere within the star, leading to
formation of what is called a radiative barrier.

The formation of the barrier ends the transport of D to the stellar
center. The tiny bit of D left in the core is quickly consumed, and,
without D burning to drive an entropy gradient, convection shuts
off through the entire core. This is the physics behind the nearly-
simultaneous end of central D burning and central convection that
occurs near 0.6 M� in Figure 18.1. After this transition, the core is
able to resume contraction, and D continues to burn as fast as it
accretes. However, it now does so in a shell around the core rather
than in the core.

18.2.4 Swelling

The next evolutionary phase, which occurs from ≈ 3 − 4 M� in
Figure 18.1, is swelling. This phase is marked by a marked increase
in the star’s radius over a relative short period of time. The physical
mechanism driving this is the radiative barrier discussed above.
The radiative barrier forms because increasing temperatures drive
decreasing opacities, allowing more rapid transport of energy by
radiation. The decreased opacity allows the center of the star to
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lose entropy rapidly, and the entropy to be transported to the outer
parts of the star via radiation. The result is a wave of luminosity and
entropy that propagates outward through the star.
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Figure 13. Same as Figure 6 but for the lower accretion rate of Ṁ∗ =
10−5 M⊙ yr−1 (run MD5). The shaded background shows the four characteristic
phases, as in Figure 7.

For easier comparison, the mass–radius relations in the no-
deuterium cases are also shown by thin lines in Figure 14. The
deuterium burning enhances the stellar radius, in particular, in
low Ṁ∗ cases (see in this section below). Nevertheless, the trend
of larger R∗ for higher Ṁ∗ remains valid even without the deu-
terium burning. For simplicity, we do not include the effect of
deuterium burning in the following argument. The origin of this
trend is higher specific entropy for higher accretion rate. Recall
that the stellar radius is larger with the high entropy in the stellar
interior as shown by Equation (12). The entropy distributions at
M∗ = 1 M⊙ for the no-D runs are shown in Figure 15, which
indeed demonstrates that the entropy is higher for the higher
Ṁ∗ cases. The interior entropy is set in the postshock settling
layer where radiative cooling can reduce the entropy from the
initial postshock value as observed in spiky structures near the
surface (e.g., the case of Ṁ∗ ! 10−5 M⊙ yr−1 in Figure 15).
For efficient radiative cooling, the local cooling time tcool,s in
the settling layer must be shorter than the local accretion time
tacc,s, as explained in Sections 3.1 and 3.2. Figure 16 shows that
the ratio tcool,s/tacc,s is smaller for lower Ṁ∗ and becomes less
than unity for ! 10−5 M⊙ yr−1. Thus the accreted gas cools
radiatively in the settling layer in low Ṁ∗ (! 10−5 M⊙ yr−1)
cases, while in the higher Ṁ∗ cases, the gas is embedded into
the stellar interior without losing the postshock entropy. The
difference in entropy among high Ṁ∗ (" 10−4 M⊙ yr−1) cases
comes from the higher postshock entropy for higher Ṁ∗. In those
cases, the protostar is enshrouded with the radiative precursor,
whose optical depth is larger for the higher accretion rate (see
Figures 6 and 13, bottom). Consequently, more heat is trapped
in the precursor, which leads to the higher postshock entropy.

Figure 14 shows not only the swelling of the stellar radius
occurs even in the “no-D” runs, but also that their timings are

Figure 14. Evolution of the protostellar radii (upper panel) and the maximum
temperatures within the stars (lower panel) for different mass accretion rates.
The cases of Ṁ∗ = 10−6 (run MD6; solid), 10−5 (MD5; dashed), 10−4 (MD4;
dot-dashed), and 10−3 M⊙ yr−1 (MD3; dotted line) are depicted. Also shown
by the thin lines are the runs without deuterium burning (“noD” runs) for the
same accretion rates. In both panels, all the curves finally converge to single
lines, which is the relations for the main-sequence stars. The filled and open
circles on the lines indicate the epoch when the total energy production rate by
hydrogen burning reaches 80% of the interior luminosity L∗.

almost the same as in the cases with D. This supports our view
that the cause of the swelling is outward entropy transport by
the luminosity wave rather than the deuterium shell-burning
(Section 3.1 and 3.2). Also, in all cases, the epoch of the swelling
obeys Equation (16), which is derived by equating the accretion
time tacc and the KH time tKH,lmax.

Another clear tendency is that the deuterium burning begins at
higher stellar mass for higher accretion rate. Similarly, the onset
of hydrogen burning and subsequent arrival at the ZAMS are
postponed until higher protostellar mass for the higher accretion
rate. For example, the ZAMS arrival is at M∗ ≃ 4 M⊙ (40 M⊙)
for 10−6 (10−3, respectively) M⊙ yr−1. These delayed nuclear
ignitions reflect the lower temperature within the protostar
for the higher Ṁ∗ at the same M∗ (Figure 14, lower panel).
Since R∗ is larger with higher Ṁ∗ at a given M∗, typical
temperature is lower within the star. Substituting numerical
values in Equation (14), we obtain

Tmax ∼ 107 K
(

M∗

M⊙

) (
R∗

R⊙

)−1

, (20)

which is a good approximation for our numerical results.
Finally, we consider the significance of deuterium burning

for protostellar evolution. Comparing with “no-D” runs, we
find that the effect of deuterium burning not only appears
later, but also becomes weaker with increasing accretion rates.
At the low accretion rates Ṁ∗ # 10−5 M⊙ yr−1, convection
spreads into a wide portion of the star owing to the vigorous
deuterium burning. In addition, the thermostat effect works

Figure 18.2: Radius versus mass (top
panel) and maximum temperature
versus mass (bottom panel) for proto-
stars accreting at different rates. The
accretion rate is indicated by the line
style, as illustrated in the top panel.
For each accretion rate there are two
lines, one thick and one thin. The thick
line is for the observed Milky Way deu-
terium abundance, while the thin line
is the result assuming zero deuterium
abundance.

Once the wave of luminosity and entropy gets near the stellar sur-
face, which is not confined by the weight of overlying material, the
surface undergoes a rapid expansion, leading to rapid swelling. The
maximum radius, and the mass at which the swelling phase occurs,
is a strong function of the accretion rate (Figure 18.2). However, even
at very low accretion rates, swelling does not occur until the mass
exceeds 1 M�.

18.2.5 Contraction to the Main Sequence

The final stage of protostellar evolution is contraction to the main
sequence. Once the entropy wave hits the surface, the star is able
to begin losing energy and entropy fairly quickly, and it resumes
contraction. This marks the final phase of protostellar evolution,
visible above ≈ 4 M� in Figure 18.1. Contraction ends once the core
temperature becomes hot enough to ignite hydrogen, landing the star
at least on the main sequence.

18.3 Observable Evolution of Protostars

We have just discussed the interior behavior of an evolving protostar.
While this is important, it is also critical to predict the observable
properties of the star during this evolutionary sequence. In particular,
we wish to understand the star’s luminosity and effective temper-
ature, which dictate its location in the HR diagram. The required
values can simply be read off from the evolutionary models (Figure
18.3), giving rise to a track of luminosity versus effective temperature
in the HR diagram.
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3. Pre-Main sequence computations

3.1. Initial models

Our initial models are polytropic stars that have already con-
verged once with the code. The central temperature of all our
initial models is below 106 K so deuterium burning has not
yet taken place. The stars are completely convective except for
M ≥ 6M⊙ where a radiative core is already present. For solar
metallicity (Z = 0.02), we use the Grevesse and Noels (1993)
metal distribution. For different Z, we scale the abundances of
the heavy elements in such a way that their relative abundances
are the same as in the solar mixture.

3.2. The grids

Our extended grids of models includes 29 mass tracks spanning
the mass range 0.1 to 7.0M⊙. Five grids were computed for
four different metallicities encompassing most of the observed
galactic clusters (Z = 0.01, 0.02, 0.03 and 0.04) and, for the
solar composition (Z = 0.02), we also computed a grid with
overshooting, characterized by d = 0.2Hp, where d represents
the distance (in units of the pressure scale height Hp measured
at the boundary of the convective region) over which the con-
vective region is artificially extended. An illustration of these
grids is presented in Fig. 2. Our computations are standard in
the sense that they include neither rotation nor accretion. The
Schwarzschild criterion for convection is used to delimit the
convective boundaries and we assume instantaneous mixing in-
side each convective zone at each iteration during the conver-
gence process.

During the PMS phase, the completely convective star con-
tracts along its Hayashi track until it develops a radiative core
and finally, at central temperatures of the order of 107 K,Hburn-
ing ignites in its center. The destruction of light elements such
as 2H, 7Li and 9Be also occurs during this evolutionary phase.
Deuterium is the first element to be destroyed at temperatures
of the order of 106 K. The nuclear energy release through the
reaction 2H(p,γ)3He temporarily slows down the contraction of
the star. Then, 7Li is burnt at ∼ 3 × 106 K shortly followed by
9Be. For a solar mixture, our models indicate that stars with
mass≤ 0.4M⊙ remain completely convective throughout their
evolution. We also report that in the absence of mixing mech-
anisms, stars with M > 1.1M⊙ never burn more than 30% of
their initial 7Li.

The account of a moderate overshooting characterized by
d = 0.20Hp, significantly increases the duration of the main se-
quence (MS) for stars possessing a convective core and provides
additional Li depletion during the PMS phase. More quantita-
tively, theMS lifetime of a 1.2M⊙ star is increased by 25%, this
percentage then decreases to level off at around a 15% increase
forM >∼ 3M⊙. Surface depletion of Li occurs only in stars with
0.4 < M <∼ 1.3 for which the temperature at the base of the
convective envelope can reach 3×106 K. Our models including
overshooting indicates that Li is much more efficiently depleted
around 0.8M⊙, where its abundance is ∼ 3 × 105 smaller than
in a standard evolution.

Fig. 2. Evolutionary tracks from 7.0 to 0.1M⊙ for a solar metallicity
(Z=0.02 and Y =0.28). Isochrones corresponding to 106, 107 and 108

(dashed lines) are also represented. This figure has been generated
using our internet server

3.3. Our fitted solar model

With the above physics, we have fitted the solar radius, luminos-
ity and effective temperature to better than 0.1% with the MLT
parameterα = 1.605 and an initial composition Y = 0.279 and
Z/X = 0.0249 that is compatible with observations. The val-
ues used for this fit are quite similar to those obtained by other
modern stellar evolution codes (see e.g. Brun et al. 1998). Our
sun, computed in the standard way, i.e. without the inclusion of
any diffusion processes, has the following internal features

– at the center: Tc = 1.552 × 107 K, ρc = 145.7 g cm−3,
Yc = 0.6187 and the degeneracy parameter ηc = −1.527;

– at the base of the convective envelope: Mbase =
0.981999M⊙, Rbase = 0.73322R⊙, Tbase = 1.999 ×
106 K and ρbase = 1.39610−2 g cm−3.

These numbers are in very close agreement with other recently
published standard models (see e.g. Brun et al. 1998, Morel et
al. 1999, Bahcall & Pinsonneault 1996).

In our grid computed with overshooting, we found that
the 1 M⊙ model maintains a small convective core of ∼
0.05M⊙during the central H burning phase. This would conse-
quently be the case for the fitted sun but present day helioseismic
observations cannot exclude this possibility (e.g. Provost et al.
2000).

4. Comparison with other studies

In this section we compare our PMS tracks with the compu-
tations made available by the groups listed in Table 1. These
comparisons show the accuracy of the EOS and the pertinence
of our models in the domain of VLMS.

Pre-main sequence tracks differ from one group to another
due to differences in the constitutive physics (EOS, convection),
but also in the treatment of the surface boundary conditions. In
the last decade, a tremendous amount of work has been done to

Figure 18.3: Solid lines show tracks
taken by stars of varying masses, from
0.1 M� (rightmost line) to 7.0 M�
(leftmost line) in the theoretical HR
diagram of luminosity versus effective
temperature. Stars begin at the upper
right of the tracks and evolve to the
lower left; tracks end at the main
sequence. Dashed lines represent
isochrones corresponding to 106, 107,
and 108 yr, from top right to bottom left.
Figure from Siess et al. (2000).

The two most important applications of models of this sort is
in determining the mass and age distributions of young stars. The
former is critical to determining the IMF, as discussed in Chapter 13,
while the latter is critical to questions of both how clusters form, and
to the problems of disk dispersal and planet formation (Chapters 19

and 20).

18.3.1 The Birthline

Before delving into the tracks themselves, we have to ask what is
actually observable. As long as a star is accreting from its parent core,
it will probably not be visible in the optical, due to the high opacity
of the dusty gas in the core. Thus we are most concerned with stars’
appearance in the HR diagram only after they have finished their
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main accretion phase. We refer to stars that are still accreting and
thus not generally optically-observable as protostars, and those that
are in this post-accretion phase as pre-main sequence stars.

For stars below ∼ 1 M�, examining Figure 18.1, we see that the
transition from protostar to pre-main sequence star will occur some
time after the onset of deuterium burning, either during the core or
shell burning phases depending on the mass and accretion history.
More massive stars will become visible only during KH contraction,
or even after the onset of hydrogen burning. The lowest mass stars
might be observable even before the start of deuterium burning.
However, for the majority of the pre-main sequence stars that we can
observe, they first become visible during the D burning phase.
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Figure 18.4: Thin lines show tracks
taken by stars of varying masses
(indicated by the annotation, in M�)
in the theoretical HR diagram of
luminosity versus effective temperature.
Stars begin at the upper right of the
tracks and evolve to the lower left;
tracks end at the main sequence. The
thick line crossing the tracks is the
birthline, the point at which the stars
stop accreting and become optically
visible. Squares and circles represent
the properties of observed young stars.
Figure taken from Palla & Stahler
(1990).

Since there is a strict mass-radius relation during core deuterium
burning (with some variation due to varying accretion rates), there
must be a corresponding relationship between L and T, just like
the main sequence. We call this line in the HR diagram, on which
protostars first appear, the birthline; it was first described by Palla &
Stahler (1990) (Figure 18.4). Since young stars are larger and more
luminous that main sequence stars of the same mass, this line lies at
higher L and lower T than the main sequence.

18.3.2 The Hayashi Track

Now that we understand what is observable, let us turn to the tracks
themselves. The tracks shown in Figures 18.3 and 18.4 show several
distinct features. One is that, for low mass stars, the initial phases
of evolution in the HR diagram are nearly vertically, i.e., at constant
Teff. The vertical tracks for different masses are very close together.
This vertical part of the evolution is called the Hayashi track, after
its discoverer, who predicted it theoretically (Hayashi, 1961). For low
mass stars, the majority of the Hayashi track lies after the birthline, so
it is directly observable.

The origin of the Hayashi track is in the physics of opacity in stel-
lar atmospheres at low temperature. At temperatures below about
104 K, hydrogen becomes neutral, and the only free electrons avail-
able come from metal atoms with lower ionization energies. Some
of these electrons become bound with hydrogen atoms, forming
H−, and this ion is the dominant source of opacity. Thus the opacity
depends on the number of free electrons provided by metal atoms,
which in turn depends extremely sensitively on the temperature.

If the temperature falls too low, the opacity will be so low that,
even integrating through the rest of the star’s mass, the optical depth
to infinity will be < 2/3. Since the photosphere must always be
defined by a surface of optical depth unity, this effectively establishes
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a minimum surface temperature for the star required to maintain τ ≈
1. This minimum temperature depends weakly on the star’s mass
and radius, but to good approximation it is simply Tmin = TH = 3500
K, where TH is the Hayashi temperature. Low mass protostars, due to
their large radii, wind up right against this limit, which is why they
all contract along vertical tracks that are packed close together in Teff.

We can make this argument a bit more quantitative as follows.
Let us approximate the stellar photosphere at radius R as producing
blackbody emission and obeying a simple ideal gas law equation of
state. In this case we have

log L = 4 log TR − 2 log R + constant (18.28)

log PR = log ρR + log TR + constant, (18.29)

where the subscript R indicates that a quantity is to be evaluated at
the stellar outer radius, and we are writing things in terms of loga-
rithms rather than powerlaw scalings for future convenience. Now let
us consider a star that is a polytrope, following P ∝ KPρ(n+1)/n. The
polytropic constantKP is related to the stellar mass and radius by

KP ∝ M(n−1)/nR(3−n)/n. (18.30)

Thus we have

log KP =

(
n− 1

n

)
log M +

(
3− n

n

)
log R + constant, (18.31)

and the pressure scales with M and R as

log P =

(
n− 1

n

)
log M +

(
3− n

n

)
log R +

(
n + 1

n

)
log ρ + constant.

(18.32)
Hydrostatic balance at the photosphere requires

dP
dr

= ρR
GM
R2 =⇒ PR =

GM
R2

∫ ∞

R
ρ dr, (18.33)

where PR is the pressure at the photosphere and we are approximat-
ing the GM/R2 is essentially constant through the photosphere. The
photosphere is defined by the condition

κ
∫ ∞

R
ρ dr ≈ 1, (18.34)

where we are also approximating κ as constant, so putting this to-
gether we have

PR ≈
GM
R2κ

=⇒ log PR ≈ log M− 2 log R− log κ. (18.35)

To make further progress, we will assume that we can approx-
imate the opacity as some powerlaw in density and temperature,
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κ ∝ ρTb. For a Kramers opacity, for example, a = 1 and b = −3.5.
Substituting this into the equation for PR, we have

log PR = log M− 2 log R− log ρR − b log TR + constant. (18.36)

Equations (18.28), (18.29), (18.32) and (18.36) constitute a system of
four linear equations in the four unknowns log PR, log ρR, log TR, and
log L. Solving this linear system yields the result

log L =

(
9− 2n + b

2− n

)
log TR −

(
2n− 1
2− n

)
log M + constant. (18.37)

This equation describes the shape of a track in the HR diagram,
because it relates log L to log TR, the photospheric temperature. To
see what it implies, we can assume that young low mass stars will be
fully convective thanks to D burning, so n ≈ 1.5.

This leaves only b. As mentioned previously, the H− opacity has
the property that it rises sharply with temperatures of a few thou-
sand K, because at these temperatures collisional velocities are not
high enough to dissociate H−, but they are able to dissociate other
atoms, which in turn produces free electrons that can yield H−. The
higher the temperature, the more free electrons available, and thus
the higher the H− opacity. The net result is that, in this temperature
range, b takes on a fairly large value: ∼ 4− 9 depending on exactly
where in the temperature range we are. Note that this is the opposite
of the normal behavior for stellar opacities (e.g. Kramer’s opacity),
where the opacity falls with increasing temperature.

If we plug b = 9 and n = 1.5 into the equation we have just
derived, we find obtain

log L = 30 log TR − 4 log M + constant. (18.38)

Using b = 4 changes the 30 to a 20. Either way, we conclude that
log L changes extremely steeply with log TR, which implies that the
HR diagram track for stars with this low Teff must be nearly vertical –
hence the Hayashi track. We also see that the location of the Hayashi
tracks for stars of different masses will be slightly offset, because
of the 4 log M term. This qualitatively explains what the numerical
models produce.

18.3.3 The Heyney Track

Contraction at nearly constant Teff continues until the star contracts
enough to raise its surface temperature above TH. This increase in
temperature also causes the star to transition from convective to
radiative, since the opacity drops with temperature at high tempera-
tures, and a lower opacity lets radiation rather than convection carry
the energy outward.
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In the HR diagram, the contraction and increase in Teff produces
a vaguely horizontal evolutionary track. This is called the Heyney
track. The star continues to contract until its center becomes warm
enough to allow H burning to begin. At that point it may contract
a small additional amount, but the star is essentially on the main
sequence. The total time required depends on the stellar mass, but it
ranges from several hundred Myr for 0.1 M� stars to essentially zero
time for very massive stars, which reach the main sequence while still
accreting.
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Late-Stage Stars and Disks
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The last two chapters of this book are concerned with the fate of the
left-over material from the star formation process, which is mostly
collected into accretion disks around them. This chapter discusses
how this material is dispersed, and the final one introduces the
process by which it can begin to form planets.

19.1 Stars Near the End of Star Formation
Historically the objects discussed in
this section have been divided into two
classes, T Tauri stars and Herbig Ae/Be
stars. Roughly speaking, T Tauri stars
are objects below 2 M�, of spectral type
G0 or later, and Herbig Ae/Be stars are
more massive objects of earlier spectral
types. We have studied a lot more T
Tauri stars, with much higher spectral
resolution, than Herbig Ae/Be stars
simply because they are more common
and thus on average they are closer.
However, there do not appear to be
significant differences in the physical
nature or history of these objects. What
differences we do see between them are
a result of the shorter Kelvin-Helmholtz
times and stronger winds and radiation
fields produced by the higher mass
objects. Consequently we will deal treat
these objects as a single class.

We will begin our study of the final stages of star formation with a
discussion of the stars themselves. The stars we want to study are
ones that fall into the class II and class III category, in that they no
longer have envelopes of material around them that are sufficient to
obscure the stellar photosphere. However, they are young enough
that they still exhibit various signs of youth. The presence of a disk is
one of these signs.

19.1.1 Optical Properties

The main observational signature that has been used historically
to define the T Tauri and Herbig Ae/Be classes is the presence of
excess optical spectral line emission beyond that expected for a main
sequence star of the same spectral class. The most prominent such
line is Hα, the n = 3 → 2 line for hydrogen (Figure 19.1). Hα is
particularly striking because in almost all main sequence objects Hα

is seen in absorption rather than emission. The strength of the Hα

ranges form booming lines with equivalent widths (EW) of ∼ 100
Å down to stars that show essentially no feature at Hα (as opposed
to absorption for main sequence stars). For T Tauri stars, we divide
them into classical, those with Hα EW & 10 Å, and weak-lined, those
with Hα EW . 10 Å. These lines often show variability on periods of
hours or days.

A large number of other optical and UV emission lines are also

http://adsabs.harvard.edu/abs/2014prpl.conf..475A
http://adsabs.harvard.edu/abs/2014prpl.conf..475A
http://adsabs.harvard.edu/abs/2014prpl.conf..475A
http://adsabs.harvard.edu/abs/2001ApJ...560..957D
http://adsabs.harvard.edu/abs/2001ApJ...560..957D
http://adsabs.harvard.edu/abs/2009ApJ...700.1502A
http://adsabs.harvard.edu/abs/2009ApJ...700.1502A
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seen from these stars, and their strength generally correlates with
that of the Hα line. In addition to optical and ultraviolet line emis-
sion, these stars also exhibit the property of continuum veiling. What
this means is that, in addition to excess line emission, these stars
show excess continuum emission beyond what would be expected
for a bare stellar photosphere. This excess emission arises from above
the photospheric region where absorption occurs, so these photons
are not absorbed. As a result they can partially or completely fill
in normal photospheric absorption lines, reducing their equivalent
width – hence the name veiling.
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Figure 19.1: Observed line profiles for
three Balmer lines from the T Tauri star
S Cr A taken on two nights in July, 1983.
Figure from Appenzeller & Mundt
(1989).

19.1.2 Infall Signatures

The Hα is particularly interesting, because it tells us something about
the star’s immediate environment. For main sequence stars, the
Hα line profile is a result of absorption at the stellar photosphere
and emission from the chromosphere. At the photosphere there is a
population of neutral hydrogen atoms in the n = 2 level that absorbs
photons at Hα frequencies, producing absorption. Above that in the
chromosphere is an optically thin, hot gas, which contains atoms in
the n = 3 level. Some of these emit Hα photons, partially filling in the
absorption trough, but leaving the line overall in absorption.

Producing Hα in emission is tricky, however. The emitting material
must be above the stellar photosphere, so it can fill in the absorption
trough created there. This gas must be at temperatures of 5, 000−
10, 000 K to significantly populate the n = 3 level. However, in order
to produce enough Hα photons to fill in the trough and produce net
emission, this gas must also be dense enough for the collision rate to
be high enough to force the n = 3 level close to LTE.

Ordinary stellar chromospheres have densities that are much
too low to meet this requirement. Thus Hα emission implies the
presence of material around the star at temperatures of 5, 000− 10, 000
K, but at densities much higher than found in an ordinary stellar
chromosphere. Moreover, the width of the Hα emission requires
that this material be moving at velocities of hundreds of km s−1

relative to the stellar surface, i.e., comparable to the free-fall velocity.
This cannot be thermal broadening, because this would require
temperatures of ∼ 106 K, high enough to completely ionize hydrogen.
It must therefore be bulk motion.

The standard inference is that this indicates the presence of gas
infalling onto the stellar surface. Such gas would provide the high
densities required to produce Hα in emission. The infall of this
material would provide the requisite bulk motion. Internal shocks
and the shocking of this gas against the stellar surface could easily
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heat gas to the required temperatures. Finally, this hot material
would also produce continuum emission, explaining the continuum
veiling.

Quantitative radiative transfer calculations that attempt to fit the
observed veiling and line emission can be used to infer the densities
and velocities of the circumstellar gas, thereby constraining the
accretion rate (Figure 19.2). The inferred accretion rates depend on
the strength of the Hα emission, and are typically 10−8 M� yr−1.
There is a broad range, however, running from 10−11 − 10−6 M� yr−1,
with a very rough correlation Ṁ∗ ∝ M2∗.

only the high-velocity line wings unaffected by absorption were
considered.

Our best model matches are shown in Figure 4, with param-
eters listed in Table 2. The accretion rates for these objects
and the limits for the remainder of our sample are also pro-
vided in Table 1. We do not include the results for KPNO 4, as
the best model match does not agree particularly well in terms
of profile shape—the observed profile is quite symmetric, with

a central absorption reversal strongly suggestive of chromo-
spheric emission. The V10 width and EW for this object are
marginal for accretion and could also be explained by chro-
mospheric emission broadened by rapid rotation; unfortunately,
our spectrum does not have a good enough S/N to measure
v sin i.

As mentioned in M03, there is a systematic uncertainty in
our model-derived Ṁ -values of about a factor of 3–5. This is
mainly due to uncertainties in the size of the accretion flow,
which is not well constrained for our particular sample. How-
ever, observations of infrared excesses around brown dwarfs in
general infer inner disk hole sizes of roughly 2 5R!, similar to
our adopted value (Natta et al. 2002; Liu et al. 2003; Mohanty
et al. 2004).

4. DISCUSSION

Our results more than triple the number of known substellar
accretors (those with spectral types later than M6) to 16 and ex-
tend measurements of mass accretion rates down to the lowest
masses yet identified. The new accretion rates for our sample
of low-mass stars and brown dwarfs, combined with previous
estimates for other brown dwarfs and more massive stars, are
plotted as a function of mass in Figure 5. The accretion rates for
substellar objects are extremely small, mostly<10"10 M# yr"1,
several of which are among the lowest values measured to date
at Ṁ ¼ 4" 5 ;10"12 M# yr"1. These data continue a trend that
we have noted previously for the more massive objects in which
mass accretion rates depend steeply on mass; here we find a cor-
relation of Ṁ / M 2:1. In addition, the change in accretion rate
with mass is fairly continuous across 6 orders of magnitude in
Ṁ andmore than 2 orders of magnitude in mass, which suggests

Fig. 4.—Comparisons of observed (solid ) and model (dashed ) H! emission-line profiles for objects in our sample that have profiles indicative of accretion (Table 2).

TABLE 2

H! Model Parameters for Accretor Subsample

ID

M*

(M#)

R*

(R#)

Teff
(K)

i

(deg)

log Ṁ

(M# yr"1)

KPNO 12 ........................................ 0.025 0.25 2600 45 "11.4

KPNO 6 .......................................... 0.025 0.25 2600 60 "11.4

KPNO 7 .......................................... 0.025 0.25 2600 75 "11.4

2MASS J04414825+2534304......... 0.025 0.25 2600 60 "11.3

Cha H! 1........................................ 0.025 0.25 2600 45 "11.3

2MASS J04390396+2544264......... 0.025 0.25 2600 70 "11.3

2MASS J04381486+2611399......... 0.05 0.5 3000 60 "10.8

Cha H! 11...................................... 0.05 0.5 3000 30 "11

CFHT 4........................................... 0.025 0.25 2600 55 "11.3

ISO 217........................................... 0.05 0.5 3000 65 "10a

2MASS J04141188+2811535......... 0.05 0.5 3000 55 "10

CHSM 7869.................................... 0.15 1.0 3000 85 "10

KPNO 3 .......................................... 0.15 1.0 3000 60 "10

ISO 252........................................... 0.15 1.0 3000 45 "10

2MASS J10561638"7630530........ 0.05 0.5 3000 60 "10.8

Note.—All models calculated with magnetospheric radii Rmag ¼ 2:2 3R#
and maximum temperature Tmax ¼ 12;000 K.

a Calculated with modified temperature distribution; see text.

ACCRETION IN YOUNG SUBSTELLAR OBJECTS 911No. 2, 2005

Figure 19.2: Comparisons between
observed (solid) and model (dashed)
Hα line profiles for a sample of T Tauri
stars (Muzerolle et al., 2005). The x axis
shows velocity in km s−1. Each model
curve is a fit in which the accretion rate
is one of the free parameters.

These accretion rates are generally low enough so that accretion
luminosity does not dominate over stellar surface emission. However,
the estimated accretion rates are extremely uncertain, and the models
used to make these estimates are very primitive. In general they
simply assume that a uniform density slab of material arrives at
the free-fall velocity, and covers some fraction of the stellar surface,
and the accretion rate is inferred by determining the density of this
material required to produce the observed spectral characteristics.

Despite this caveat, though, the Hα line and other optical prop-
erties do seem to indicate that there must be some dense infalling
material even around these stars that lack obvious envelopes. This
in turn requires a reservoir of circumstellar material not in the form
of an envelope, which is most naturally provided by a disk. Indeed,
before the advent of space-based infrared observatories, optical indi-
cators like this were the only real evidence we had for disks around T
Tauri and Herbig Ae/Be stars.

19.1.3 FU Orionis Outbursts

There are many other interesting phenomena associated with these
young stars, such as radio and x-ray flaring, but one in particular
deserves mention both as a puzzle and a potential clue about disks.
This is the FU Orionis phenomenon, named after the star FU Orionis
in which it was first observed. In 1936 this star, an object in Orion,
brightened by ∼ 5 magnitudes in B band over a few months. After
peaking, the luminosity began a very slow decline – it is still much
brighter today than in its pre-outburst state (Figure 19.3). Since then
many other young stars have displayed similar behavior. When
available, the spectra of these stars in the pre-outburst state generally
look like ordinary T Tauri stars.

Some simple population statistics imply that this must be a peri-
odic phenomenon. The rate of FU Ori outbursts within ∼ 1 kpc of
the Sun is roughly one per 5 years. The star formation rate in the
same region is roughly 1 star per 50 years, so this implies that the
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Figure 19.3: A light curve of the star
FU Orionis, from the 1930s to 1970s
(Herbig, 1977). The y axis shows the
apparent magnitude in B band, or from
photographic observations prior to filter
standardization.

mean number of FU Ori outbursts per young star is ∼ 10.
The stellar brightening is accompanied by a rise in effective tem-

perature, indicating the presence of hot emitting material. It is also
accompanied by spectral features indicating both an outflowing wind
and the presence of rapid rotation. Although a number of models
have been proposed to explain exactly what is going on, and the
problem is by no means solved, the most popular general idea is that
outbursts like this are caused by a sudden rise in the accretion rate.
For whatever reason, the disk dumps a lot of material onto the star,
briefly raising the accretion rate from the tiny 10−8 M� yr−1 typical
of classical T Tauri stars up to values closer to those expected for still-
embedded sources. The accreted material produces a large accretion
luminosity, and the subsequent decay in the emission is associated
with the cooling time of the gas that has undergone rapid infall. If
this model is correct, the mystery then becomes what can set off the
disk.

19.2 Disk Dispersal: Observation

We now turn to the disks that surround T Tauri and similar stars.
Prior to the 2000s, we had very little direct information about such
objects, since they are not visible in the optical. That changed dra-
matically with the launch of space-based infrared observatories, and
the developed of ground-based millimeter interferometers. These
new techniques made it possible to observe disks directly for the first
time.
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19.2.1 Disk Lifetimes

One of the most interesting properties of disks for those who are
interested in planets is their lifetimes. This sets the limit on how long
planets have to form in a disk before it is dispersed. In discussing
disk lifetimes, it is important to be clear on how the presence or
absence of a disk is to be inferred, since different techniques probe
different parts and types of disks. Our discussion of disk lifetimes
will therefore mirror our discussion of disk detection methods in
Chapter 15. In general what all these techniques have in common
is that one uses some technique to survey young star clusters for
disks. The clusters can be age-dated using pre-main sequence or
main sequence HR diagrams, as discussed in Chapter 18. One then
plots the disk fraction against age.

D. Fedele et al.: Accretion Timescale in PMS stars

Table 2. Adopted age, spectral type range, facc and fIRAC (when available) in Figs. 3 and 4.

Cluster Age Sp.T range facc fIRAC Age ref. facc ref. fIRAC ref.
[Myr] [%] [%]

rho Oph 1 K0–M4 50 ± 16 M05 M05
Taurus 1.5 K0–M4 59 ± 9 62 M05 M05 Ha05
NGC 2068/71 2 K1–M5 61 ± 9 70 FM08 FM08 FM08
Cha I 2 K0–M4 44 ± 8 52–64 Lu08 M05 Lu08
IC348 2.5 K0–M4 33 ± 6 47 L06 M05 L06
NGC 6231 3 K0–M3 15 ± 5 S07 this work
σ Ori 3 K4–M5 30 ± 17 35 C08 this work He07
Upper Sco 5 K0–M4 7 ± 2 19 C06 M05 C06
NGC 2362 5 K1–M4 5 ± 5 19 D07 D07 D07
NGC 6531 7.5 K4–M4 8 ± 5 P01 this work
η Cha 8 K4–M4 27 ± 19 50 S09 JA06 S09
TWA 8 K3–M5 6 ± 6 D06 JA06
NGC 2169 9 K5–M6 0+3 JE07 JE07
25 Ori 10 K2–M5 6 ± 2 B07 B07
NGC 7160 10 K0–M1 2 ± 2 4 SA06 SA05 SA06
ASCC 58 10 K0–M5 0+5 K05 this work
β Pic 12 K6–M4 0+13 ZS04 JA06
NGC 2353 12 K0–M4 0+6 K05 this work
Collinder 65 25 K0–M5 0+7 K05 this work
Tuc-Hor 27 K1–M3 0+8 ZS04 JA06
NGC 6664 46 K0–M1 0+4 S82 this work

References. Schmidt (1982, S82), Park et al. (2001, P01), Hartmann et al. (2005, Ha05), Kharchenko et al. (2005, K05), Mohanty et al.
(2005, M05), Sicilia-Aguilar et al. (2005, SA05), Carpenter et al. (2006, C06), Lada et al. (2006, L06), Jayawardhana et al. (2006, JA06),
Sicilia-Aguilar et al. (2006, SA06), Dahm & Hillenbrand (2007, D07), Briceño et al. (2007, B07), Jeffries et al. (2007, JE07), Hernández et al.
(2007, He07), Sana et al. (2007, S07), Caballero (2008, C08), Flaherty & Muzerolle (2008, FM08), Luhman et al. (2008, L08), Sicilia-Aguilar
et al. (2009, S09), Zuckerman & Song (2004, ZS04).

Fig. 3. Accreting stars-frequency as a function of age. New data (based
on the VIMOS survey) are shown as (red) dots, literature data as (green)
squares. Colored version is available in the electronic form.

He I 5876 Å in emission (EW = −0.5 Å, –0.6 Å respectively).
The evidence of large Hα10% together with the He I emission is
most likely due to ongoing mass accretion, and these two stars
are classified as accreting stars. We estimate a fraction of accret-
ing stars in NGC 6231 of 11/75 or 15 (±5%). We warn the reader
that this might be a lower limit to the actual fraction of accret-
ing stars; further investigation is needed to disentagle the nature
(accretion vs binarity/rapid rotation) of the systems with large
Hα10% (>300 km s−1) but low EW [Hα].

Fig. 4. facc (dots) versus fIRAC (squares) and exponential fit for facc (dot-
ted line) and for fIRAC (dashed line).

NGC 6531

We identified 26 cluster members in NGC 6531 based on the
presence of Hα emission and presence of Li. 13 other sources
show presence of Li 6708 Å, but have Hα in absorption. As in
the case of NGC 6231, these might be cluster members with no
or a reduced chromospheric activity. We measured the EW of Li
6708 Å of these 13 sources and compared them with the typi-
cal EW of the 26 stars in NGC 6531 showing also Hα emission
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Figure 19.4: Fraction of stars that show
evidence of accretion, as indicated
by Hα line emission, for clusters of
different ages (indicated on the x axis).
The names of individual clusters are
marked. Figure from Fedele et al.
(2010).

One signature of disks we have already discussed: optical line
emission associated with accretion in T Tauri stars, particularly
Hα. Surveys of nearby groups find that Hα line emission usually
disappears at times between 1 and 10 Myr (Figure 19.4). This tells us
that the inner parts of disks, . 1 AU, which feed stars disappear over
this time scale. In contrast, ground-based near infrared observations
tell us about somewhat more distant parts of the disk, out to a few
AU. The timescales implied by these results are very similar those
obtained from the Hα: roughly half the systems loose their disks
within ∼ 3 Myr (Figure 19.5).

No. 2, 2001 HAISCH, LADA, & LADA L155

Fig. 1.—JHKL excess/disk fraction as a function of mean cluster age. Ver-
tical error bars represent the statistical errors in our derived excess/disk!N
fractions. For all star-forming regions except NGC 2024 and NGC 2362, the
horizontal error bars represent the error in the mean of the individual source
ages derived from a single set of PMS tracks. The age error for NGC 2362
was adopted from the literature. Our estimate of the overall systematic un-
certainty introduced in using different PMS tracks is plotted in the upper right
corner and is adopted for NGC 2024. The decline in the disk fraction as a
function of age suggests a disk lifetime of 6 Myr.

isochrone fitting as discussed earlier. For comparison we also
plot excess fractions in Taurus and Chamaeleon I (open trian-
gles), derived from similar JHKL observations in the literature
(i.e., Kenyon & Hartmann 1995; Kenyon & Gómez 2001). The
ages for Taurus and Cha I were obtained from Palla & Stahler
(2000). NGC 1960 is not included in the figure since our ob-
servations of this cluster extend only to greater than 1 M, stars,
whereas in the other clusters we are complete to ≤1.0 M,.
The dot-dashed line in Figure 1 represents a least-squares

fit to the data obtained in our L-band survey (filled triangles).
Vertical error bars represent the statistical errors in our!N
derived excess/disk fractions. Horizontal error bars show rep-
resentative errors of our adopted ages. The error bars for the
ages of the Trapezium, Taurus, IC 348, Cha I, and NGC 2264
represent the error in the mean of the individual source ages
derived from a single set of PMS tracks. In order to estimate
the overall systematic uncertainty introduced in using different
PMS tracks, we calculated the mean age and the standard de-
viation of the mean age for NGC 2264 ( Myr) from2.6! 1.2
five different PMS models (Park et al. 2000; Palla & Stahler
2000). This latter quantity illustrates the likely systematic un-
certainty introduced by the overall uncertainties in the PMS
models. This is plotted in Figure 1. For stars with M,M ≤ 1
and ages ≤5 Myr, the overall uncertainty in the ages for all
regions is likely within about 1–1.2 Myr. The plotted error for
NGC 2024 reflects this uncertainty. The age error for NGC
2362 was adopted from the literature (Balona & Laney 1996).

5. DISCUSSION

We have completed the first sensitive L-band survey of a
sample of young clusters that span a sufficient range in age

(0.3–30 Myr) to enable a meaningful determination of the time-
scale for disk evolution within them. Clusters appear to be
characterized by a very high initial disk frequency (≥80%),
which then sharply decreases with cluster age. One-half the
disks in a cluster population are lost in only about 3 Myr, and
the timescale for essentially all the stars to lose their disks
appears to be about 6 Myr.
The precise value of this latter timescale to some extent

depends on the derived parameters for the NGC 2362 cluster.
Our quoted timescale of 6 Myr could be somewhat of a lower
limit for two reasons. First, it is possible that a slightly higher
disk fraction for NGC 2362 could be obtained with deeper L-
band observations that better sample the cluster population
below 1 M,. Our earlier observations of IC 348 and the Tra-
pezium cluster show that the disk lifetime appears to be a
function of stellar mass (HLL01), with higher mass stars losing
their disks faster than lower mass stars. However, we note that
much deeper JHK observations (Alves et al. 2001) that sample
the cluster membership down to the hydrogen-burning limit
yield a JHK disk fraction of essentially 0%, giving us confi-
dence in the very low disk fraction derived from our present
L-band observations. Second, the age of NGC 2362 is depen-
dent on the turnoff age assigned to only one star, the O star
t CMa. This star is a multiple system, and its luminosity as-
signment on the H-R diagram is somewhat uncertain (van Leeu-
wen & van Genderen 1997). Correction for multiplicity would
lead to a slightly older age. However, the quoted 1 Myr error
in its age likely reflects the magnitude of this uncertainty (Bal-
ona & Laney 1996). On the other hand, if, for example, the
errors were twice as large as quoted, the cluster could have an
age between 3 and 7 Myr. The corresponding age and the
overall disk lifetime derived from a least-squares fit to the data
would be between 4 and 8 Myr. Even if the timescale for all
disks to be lost was as large as 8 Myr, our survey data would
still require that one-half the stars lose their disks on a timescale
less than 4 Myr. Finally, an even older age for NGC 2362
would likely indicate that the decrease in disk fraction with
time does not follow a single linear fit; that is, after a rapid
decline during which most stars lost their disks, the disk fraction
in clusters would decrease more slowly, with a small number
of stars (∼10%) retaining their disks for times comparable to
the cluster age. On the other hand, we estimate the dynamical
age of the S310 H ii region, which surrounds and is excited
by t CMa, to be ∼ yr for pc and6r /v ∼ 5# 10 r p 50H ii H iiexp

km s!1 (e.g., Lada & Reid 1978; Jonas, Baart, &v p 10exp
Nicolson 1998). This is consistent with the turnoff age of the
cluster derived from the H-R diagram and supports our estimate
of ∼6 Myr for the overall disk lifetime.
We point out that our L-band observations directly measure

the excess caused by the presence of small (micron-sized), hot
(∼900 K) dust grains in the inner regions of the circumstellar
disk and these observations are sensitive to very small amounts
(∼1020 g) of dust. We expect that, if there is gas in the disk,
turbulent motions will always keep significant amounts of small
dust particles mixed with the gas (Ruden 1999); thus, dust
should remain a good tracer of gas in the disks as they evolve
to form planets. Indeed, recent observations of H2 in older
debris disks appear to confirm this assertion (Thi et al. 2001).
Consequently, stars that did not show infrared excesses are
likely to be significantly devoid of gas as well as dust. There
is also evidence that the presence of dust in the inner disk
regions is linked with the presence of dust in the outer disk
regions (i.e., AU) where most planet formation is likelyr 1 1
to occur. Earlier, HLL01 noted a strong correlation between

Figure 19.5: Fraction of stars that show
near-infrared excess emission versus
cluster age. The names of individual
clusters are marked. Figure from
Haisch et al. (2001).

These observations are sensitive primarily to the inner disk, and
the infrared techniques are generally sensitive only in cases where
the dust in these regions is optically thick. Some optically thin mate-
rial could still be present and would not have been detected. Observa-
tions at longer wavelengths, such as Spitzer’s 24 µm band and in the
mm regime from ground-based radio telescopes, probe further out in
disks, at distances of ∼ 10− 100 AU. They are also sensitive to much
lower amounts of material. Interestingly, unlike the shorter wave-
length observations, these measurements indicate that a small but
non-zero fraction of systems retain some disks out to times of ∼ 108

yr. The amounts of mass needed to explain the long wavelength ex-
cess are only ∼ 10−5 M⊕ in dust. Thus in the older systems are likely
looking at an even later evolutionary phase than T Tauri disks, one in
which almost all the gas and inner disk material is gone. These are
debris disks, which are thought to originate from collisions between
larger bodies rather than to be made up of dust from interstellar gas.

19.2.2 Transition Disks

The observation that accreting disks and inner optically thick disks
disappear on a few Myr timescales, but that some fraction leave
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behind very small amounts of mass in the outer disk is a very inter-
esting one. We will discuss theoretical models for how this happens
shortly. In the meantime, though, we can talk a bit more about the
transition from gaseous, accreting T Tauri disks to low-mass debris
disks.

Figure 19.6: The spectral energy dis-
tribution of the star LkHα 330 (Brown
et al., 2008). Plus signs indicate mea-
surements. The black line is a model for
a stellar photosphere. The blue line is
a model for a star with a disk going all
the way to the central star, while the red
line is a model in for a disk with a 40

AU hole in its center.

Observationally, we would like to get some constraints on how
this process occurs. For this purpose, there is an intriguing class
of objects known as transition disks. Spectrally, these are defined
as objects that have a significant 24 µm excess (or excess at even
longer wavelengths), but little or no IR excess (Figure 19.6). This
SED suggests a natural physical picture: a disk with a hole in its
center. The short wavelength emission normally comes from near
the star, and the absence of material there produces the lack of short
wavelength excess. Indeed, it is possible to fit the SEDs of some stars
with models with holes.

Figure 19.7: Dust continuum image of
the disk around LkHα 330, taken at 340

GHz by the SMA (Brown et al., 2008).
Colors show the detected signal, and
contours show the signal to noise ratio,
starting from S/N of 3 and increasing
by 1 thereafter. The green plus marks
the location of the star. The blue circle
is the SMA beam.

In the last decade it has become possible to confirm the presence
of inner holes in transition disks directly, at least cases where the
inferred hole is sufficiently large (Figure 19.7). The sizes of the holes
inferred by the observations are generally very good matches to the
values inferred by modeling the SEDs. The holes are remarkably
devoid of dust: upper limits on the masses of small dust grains
within the hole are often at the level of ∼ 10−6 M�. The sharp edges
of the holes indicate that the effect driving them isn’t simply the
growth of dust grains to larger sizes, which should produce a more
gradual transition. Instead, something else is at work. However, in
some transition disks gas is still seen within the gap in molecular line
emission, which also suggests that whatever mechanism is removing
the dust does not necessarily get rid of all the gas as well.

19.3 Disk Dispersal: Theory

We have seen the observations suggest that disks are cleared in a few
Myr. We would like to understand what mechanism is responsible
for this clearing.

19.3.1 Setting the Stage: the Minimum Mass Solar Nebula

Before diving into the theoretical models, let’s pause for a moment
to obtain some typical numbers, which we can use below to plug
in an evaluate timescales. Imagine spreading the mass in the Solar
System’s observed planets into an annulus that extends from its ob-
served orbit to halfway to the next planet in each direction. Then
add enough hydrogen and helium so that metal content matches
that observed in the Sun. This is the mass distribution that the pro-
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toplanetary disk of the Sun must have had if all the metals in the
disk wound up in planets, and if the planets were formed at their
present-day locations.

Neither of these assumptions is likely to be strictly true, but they
are a reasonable place to begin thinking about initial conditions.
Performing this exercise gives a mass of ∼ 0.01 M� and a surface
density Σ that varies as roughly r−3/2. The “standard" modern value
for the minimum mass solar nebula’s surface density is Σ = Σ0v−3/2,
where Σ0 ≈ 1700 g cm−2 and v = r/AU. The true surface density
was probably higher than this.

If solar illumination is the principal factor determining the disk
temperature structure and we neglect complications like flaring of the
disk, we expect the temperature to be T = 280v−1/2 K. True tempera-
tures are probably also higher by a factor of ∼ 2, as a result of flaring
and viscous dissipation providing extra heat. The corresponding disk
scale height is

H =
cg

Ω
=

√
kBT

µ

√
v3

GM
= 0.03v5/4 AU, (19.1)

where cg is the gas sound speed.
For solar metallicity, heavy elements will constitute roughly 2%

of the total mass, but much of this mass is in the form of volatiles
which will be in the gas phase in part of all of the disk. For example
a significant fraction of the carbon is in the form of CO, and at the
pressures typical of protoplanetary disks this material will not freeze
out into ices until the temperature drops below 20− 30 K. Such low
temperatures are found, if anywhere, in the extreme outer parts of
disks. Similarly, water, which is a repository for much of the oxygen,
will be vapor rather than ice at temperatures above 170 K. This
temperature will be found only outside several AU.

A rough approximation to the mass in “rocks", things that are
solid at any radius, and “ices", things that are solid only at compara-
tively low temperatures, is

Σrock ≈ 7v−3/2 (19.2)

Σice ≈
{

0 T > 170 K
23v−3/2 T < 170 K

(19.3)

In other words, rocks are about 0.4% of the mass, and ices, where
present, are about 1.3%. Typical densities for icy material are ∼ 1 g
cm−3, and for rocky material they are ∼ 3 g cm−3.

19.3.2 Viscous Evolution

Now that we have a setting, let us consider the first and most obvious
mechanism for getting rid of disks: having them accrete onto their
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parent star. The basic process governing movement of mass in a
late-stage disk is the same as during the protostellar period: viscous
evolution. The difference at late stages is that there is no more mass
being supplied to the disk edge, so accretion onto the star, rather
than occurring in steady state, tends to drain the disk and reduce its
surface density. Recall that the typical accretion rates we infer during
the T Tauri phase are ∼ 10−9 − 10−8 M� yr−1. Since typical disk
masses are ∼ 0.01 M�, this would imply that the time required to
drain the disk completely into the star is ∼ 1− 10 Myr, not far off the
observed disk dispersal lifetime.

We can make this argument more quantitative. Recall that the evo-
lution equation for the surface density of a viscous disk is (Chapter
16)

∂Σ
∂t

=
3
v

∂

∂v

[
v1/2 ∂

∂v
(νΣv1/2)

]
, (19.4)

where ν is the viscosity, Σ is the surface density, and v is the ra-
dius. To see how this will affect protoplanetary disks, it is useful
to consider some simple cases that we can solve analytically. Let us
suppose that the viscosity follows a powerlaw form ν = ν1(v/v1)

γ.
The equations in this case admit a similarity solution; the case γ = 1
was on the homework. For arbitrary γ, it is easy to verity that in this
case the evolution equation above has a similarity solution

Σ =
C

3πν1xγ
T−(5−2γ)/(4−2γ) exp

(
− x2−γ

T

)
, (19.5)

where C is a constant with units of mass over time that determines
the total mass in the disk and the accretion rate, x = v/v1, and T is
a dimensionless time defined by

T =
t
ts
+ 1 ts =

1
3(2− γ)

r2
1

ν1
. (19.6)

In this similarity solution, at any given time the disk surface density
has two regions. For x2−γ � T, the exponential term is negligible,
and the surface density is simply follows a powerlaw profile x−γ.
For x2−γ � T, the exponential term imposes an exponential cutoff.
As time goes on and T increases, the powerlaw region expands, but
its surface density also declines (at least for γ < 2, which is what
most physically-motivated models produce). The quantity ts is the
characteristic viscous evolution time. For times t � ts, T is about
constant, so there is no evolution. Evolution becomes significant after
t > ts.

If we adopt a simple α model with constant α, then recall that
ν = αcsH. As discussed above the the MMSN, T ≈ 280v−1/2 K and
H ≈ 0.03v5/4 K. Since cs ∝ T1/2, this implies ν ∝ v:

ν ≈ 5× 1016αv cm2 s−1, (19.7)
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where we have plugged in the MMSN values. This corresponds
to γ = 1. Plugging this value into the similarity solution gives
ts = 0.024α−1

−2 Myr, where α−2 = α/0.01. Thus we would expect the
disk to drain into the star in ∼ 1 Myr if it had values of α expected
for the MRI.

This might seem like an appealing explanation for why disks
disappear, but it faces two serious objections. The first is that, as dis-
cussed earlier, MRI seems unlikely to be able to operate everywhere
in the late-stage disks. The surface will be kept ionized by stellar radi-
ation and possibly cosmic rays, but the midplane will be too neutral
for strong magnetic coupling. This should reduce the accretion rate.

A second, more serious objection is that it does not reproduce the
observation that disks drain inside-out (or at least some of them do).
In this model, the surface density everywhere inside the powerlaw in-
ner region decreases with time as t−3/2, meaning that the disk would
fade uniformly rather than from the inside out. While this result is
for the particular similarity solution we used, it is a generic statement
that, in any model where α is constant with radius, the disk will tend
to drain uniformly rather than inside-out. Thus something more
sophisticated is needed.

19.3.3 Photoevaporation Models

One mechanism that has been proposed for disk clearing is pho-
toevaporative winds. We will not discuss this quantitatively here,
because a basic model of this process is left as an exercise in Problem
Set 5. The qualitative picture is simply that the surface of the disk is
heated to temperatures of ∼ 100− 200 K by stellar FUV radiation out
to a fairly large region, and is heated to ∼ 104 K by ionizing radiation
closer in to the star. If the heated gas is far enough from the star for
this temperature increase to raise its sound speed above the escape
speed, it will flow away from the disk in a thermally-driven wind.

This tends to produce maximum mass loss from a region near
where the sound speed equals the escape speed, since that is where
there is the most gas and the radiation is most intense, but the gas
can still escape. If the radiation is intense enough, a gap in the disk
will open at this radius, and mass will not be able to pass through it –
any gas that gets to the gap is lost in the wind. As a result the inner
disk drains viscously, and is not replenished, leaving a hole like we
observe.

19.3.4 Rim Accretion Models

A second mechanism that could produce an inner hole is rim accre-
tion. In this picture, MRI operates only on the inner rim of the disk
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where the gas is exposed to direct stellar radiation. Material from this
rim accretes inward while the rest of the disk remains static. As the
rim accretes, more disk material is exposed to stellar radiation and
the MRI-active region grows. Thus the disk drains inside-out.

In this picture, we let N∗ be the column (in H atoms per cm2) of
material in the rim that is sufficiently ionized for MRI to operate. In
this case the mass in the MRI-active rim at any time is

Mrim = 4πN∗µHrrimH, (19.8)

where rrim is the rim radius, H is the scale height at the rim, and
µH is the mass per H nucleus. The time required for this material to
accrete is the usual value for viscous accretion:

tacc =
r2

rim
ν

=
r2

rim
αcsH

, (19.9)

where cs is the sound speed in the irradiated rim, which is presum-
ably higher than in the shielded disk interior. Putting these together,
we expect an accretion rate ∼ Mrim/tacc. Chiang & Murray-Clay
(2007), solving the problem a bit more exactly, get

Ṁ ≈ 4πN∗µHαc3
s r2

rim
GM

. (19.10)

One can estimate N∗ and cs from the thermal and ionization balance
of the irradiated rim, and Chiang & Murray-Clay (2007)’s result is
N∗ ≈ 5× 1023 cm−2 and cs ≈ 0.9 km s−1, giving

Ṁ = 1.4× 10−11α−2M−1
0 r−2

rim,0 M� yr−1, (19.11)

where M0 is the stellar mass in units of M� and rrim is the rim radius
in units of AU.

This model nicely explains why disks will drain inside out. More-
over, it produces the additional result that any grains left in the disk
that reach the rim will not accrete, and are instead blown out by
stellar radiation pressure. This produces an inner hole with a small
amount of gas on its way in to the star, as is required to explain the
molecular observations, but with no dust.

19.3.5 Grain Growth and Planet Clearing Models

The final possible mechanism for getting rid of the disk is the for-
mation of planets. If the dust in a disk agglomerates to form larger
bodies, then the opacity per unit mass will drop dramatically, and
as a result the disk will appear to disappear as far as observational
techniques that are looking for dust emission, which is all the IR
and sub-mm continuum measurements. If the planetesimals further
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agglomerate into planets with significant gravitational effects, these
can begin to clear the gas as well. We will therefore end this Chapter
with a discussion of how grains might begin to agglomerate together,
starting the process of getting rid of a disk by planet formation that
will be the subject of Chapter 20.

Consider a population of solid particles radius s, each of which
individually has density ρs. The number density of particles (i.e. the
number of particles per cm3) is n, so the total mass density of the
population of solids is

ρd =
4
3

πρss3n (19.12)

If the collection of solids has a velocity dispersion cs, the mean time
between collisions between them is

tcoll = (nπs2σs)
−1 =

4
3

ρss
ρdcs

(19.13)

We will see in a little while that grains of interstellar sizes will have
about the same scale height as the gas. Thus, within one scale height
of the disk midplane, we may take

ρd ≈
Σd
H

=
ΣdΩ

cg
, (19.14)

where Σd = Σrock +Σice is the total surface density of “dust", including
both rocky and icy components.

For the velocity dispersion, in the case of small grains this will
simply be the typical velocity imparted by Brownian motion in the
fluid, which is

cs =

√
3
2

kBT =

√
3µ

2ms
cg ≈ 0.1v−1/4s−3/2

−4 ρ−1/2
s,0 cm s−1 (19.15)

where ms = (4/3)πs3ρs is the mass of the solid particle, ρs,0 =

ρs/(1 g cm−3), s−4 = s/(1 µm), and we have used our fiducial
MMSN to estimate cg. Plugging n and cs into the collision time, we
have

tcoll ≈
4
√

2
3
√

3
sρs

ΣdΩ

√
ms

µ
=

8
√

2π

9

√
ρ3

s s5

Σ2
dΩ2µ

= (2.6, 0.6)v3ρ3/2
s,0 s5/2

−4 yr,

(19.16)
where the two coefficients refer to the cases of rock only, or rock plus
ice.

The bottom line of this calculation is that the small particles that
are inherited from the parent molecular cloud will very rapidly
collide with one another in the disk: a 1 µm-sized particle can expect
to run into another one roughly 1 million times over the lifetime
of the disk. As the particles grow in size, collisions will rapidly
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become much less rapid, and will reach one collision per Myr at
around 0.25 mm. Of course this assumes that the particles remain
distributed with the same scale height as the gas, which is not a good
assumption for larger particles, as we will see.

Before moving on, though, we must consider what happens when
the particles collide. This is a complicated question, which is ex-
perimentally difficult enough that some groups have constructed
dust-launching crossbows to shoot dust particles at one another in an
attempt to answer experimentally. For very small particles, those of
micron sizes, the answer is fairly easy. Such particles will be attracted
to one another by van der Waals forces, and when they collide they
will dissipate energy via elastic deformation. Theoretical models and
experiments indicate that two particles will stick when they collide
if the collisions velocity is below a critical value, and will bound or
shatter if the velocity is above that value.

For 1 µm particles, estimated sticking velocities are ∼ 1− 100 cm
s−1, depending on the composition of the body, and that this declines
as ∼ s−1/2. Since this is much less than the Brownian speed, 1− 10
µm particles will very quickly grow to large sizes. We are clearly able
to understand why grains should grow in disks. We will return to the
question of how far this growth goes in the next chapter.



20
The Transition to Planet Formation

Suggested background reading:
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722, 1437

In this final Chapter, we will finish our discussion of the transition
from star formation to planet formation. We have already seen in
Chapter 19 that the interstellar dust grains that are captured in a
star’s disk will begin to collide with one another and grow, and
that they will reach macroscopic size on time scales shorter than the
observed disk lifetime. We now see to sharpen our understanding of
how these solids will evolve. We will continue to make use of fiducial
numbers from the minimum mass Solar nebula that we introduced in
Chapter 19.

20.1 Dynamics of Solid Particles in a Disk

20.1.1 Forces on Solids

We begin our discussion by attempting to determine the dynamics
of solid particles orbiting in a protoplanetary disk. Consider such a
particle. Because the mass of the disk is very small compared that of
the star, we can neglect the gravitational force it exerts in the radial
direction, and thus the radial gravitational acceleration felt by the
particle is simply gr = GM/r2, where M is the star’s mass and r is
the distance from the star.

In the vertical direction we have the gravitational pull of both the
star and the disk itself, and we have to think a bit more. However, it
isn’t hard to convince one’s self that, for material distributed with
the thermal scale height of the disk, the star’s vertical gravity must
dominate as well. The star’s vertical gravitational force is

gz,∗ =
z
r

gr = Ω2z, (20.1)

where z is the distance above the disk midplane and Ω is the angular
velocity of a Keplerian orbit. We can approximate the disk as an
infinite slab of surface density Σ; the gravitational force per unit mass

http://adsabs.harvard.edu/abs/2014prpl.conf..475A
http://adsabs.harvard.edu/abs/2014prpl.conf..475A
http://adsabs.harvard.edu/abs/2014prpl.conf..475A
http://adsabs.harvard.edu/abs/2010ApJ...722.1437B
http://adsabs.harvard.edu/abs/2010ApJ...722.1437B
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exerted by such a slab is

gz,d = 2πGΣ. (20.2)

The ratio of the stellar force to the disk force at a distance H off the
midplane, the typical disk height, is

gz,∗
gz,d

=
Ω2H

2πGΣ
=

cgΩ
2πGΣ

=
Q
2

, (20.3)

where in the last step we substituted in the Toomre Q = Ωcg/(πGΣ)
for a Keplerian disk.

Thus the vertical gravity of the disk is negligible as long as it
is Toomre stable, Q � 1. For our minimum mass solar nebula,
Q = 55v−1/4, so unless we are very far out, stellar gravity com-
pletely dominates. As a caveat, it is worth noting that we implicitly
assumed that the scale height H applies to both the gas and the dust,
even though we calculated it only for the gas. In fact, the motion of
the dust is more complex, and, as we will see shortly, the assump-
tion that the dust scale height is the same as that of the gas is not a
good one. Nonetheless, neglecting the self-gravity of the disk is a
reasonable approximation until significant gas-dust separation has
occurred.

The other force on the solids that we have to consider is drag.
Aerodynamic drag is a complicated topic, but we can get an estimate
of the drag force for a small, slowly moving particle that is good
to order unity fairly easily. Consider a spherical particle of size s
moving through a gas of density ρ and sound speed cg at a velocity
v relative to the mean velocity of the gas. First note that for small
particles the mean free path of a gas molecule is larger than the
particle size – Problem Set 5 contains a computation of the size scale
up to which this remains the case.

For such small grains it is a reasonable approximation to neglect
collective behavior of the gas and view it as simply a sea of particles
whose velocity distribution doesn’t change in response to the dust
grain moving through it. If the particle is moving slowly compared to
the molecules, which will be the case for most grains, then the rate at
which molecules strike the grain surface will be

collision rate ≈ 4πs2 ρ

µ
cg, (20.4)

where µ is the mean mass per molecule, so ρ/µ is the number density.
This formula simply asserts that the collision rate is roughly equal
to the grain area times the number density of molecules times their
mean speed.

If the grain were at rest the mean momentum transferred by these
collisions would be zero. However, because it is moving, collisions on
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the forward face happen at a mean velocity of ∼ cg + v, and those on
the backward face have a mean velocity ∼ cg − v. Thus, averaging over
many collisions, there will be a net momentum transfer per collision
of µv. The net rate of momentum transfer, the drag force, is therefore
the product of this with the collision rate:

FD = CDs2ρvcg, (20.5)

where CD is a constant of order unity.
Integrating over the Boltzmann distribution and assuming that all

collisions are elastic and that the reflectance is in random directions
(so-called diffuse reflection), appropriate for a rough surface, gives
CD = 4π/3. With this value of CD, this formula is known as the
Epstein drag law. It becomes exact in the limit s � mean free path,
v � cg, and for pure elastic, diffuse reflection. Larger bodies expe-
rience Stokes drag, in which the dependence changes from s2ρvcg

to s2ρv2, but we will not worry about that for now. Finally, note that
solid particles will not experience significant pressure forces, since
they are so much more massive than the molecules that provide
pressure.

20.1.2 Settling

Now let us consider what the combination of vertical gravity and
drag implies. The vertical equation of motion for a particle is

d2z
dt2 = −gz −

FD
4
3 πs3ρs

= −Ω2z− ρcg

ρss
dz
dt

(20.6)

where ρs is the density of the solid particle. This ODE represents
a damped harmonic oscillator: the gravitational term is the linear
restoring force, and the drag term is the damping term. Within
one gas scale height of the midplane ρ is roughly constant, ρ ≈
Σ/H = 3× 10−9v−11/4 g cm−3. For constant ρ the ODE can be solved
analytically:

z = z0e−t/τ , (20.7)

where

τ = 2
ρss
ρcg


1−

(
1− 4s2ρ2

s Ω2

ρ2c2
g

)1/2


−1

. (20.8)

If the term in the square root is negative, which is the case when
s is large, the damping is not strong enough to stop particles before
they reach the midplane, and they instead perform a vertical oscil-
lation of decreasing magnitude. If it is positive, they simply drift
downward, approaching the midplane exponentially. The minimum
time to reach the midplane occurs when the particles are critically
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damped, corresponding to the case where the square root term van-
ishes exactly. Critical damping occurs for particles of size

sc =
ρcg

2ρsΩ
= 850v−3/2ρ−1

s,0 cm, (20.9)

where ρs,0 = ρs/(1 g cm−3).
Thus all objects smaller than ∼ 10 m boulders will slowly drift

down to the midplane without oscillating. For s� sc, we can expand
the square root term in a series to obtain

τ ≈ 4
ρss
ρcg

(
s
sc

)−2
=

ρcg

ρsΩ2s
= 270v11/4ρ−1

s,0 s−1
0 yr, (20.10)

where s0 = s/(1 cm).
Thus 1 cm grains will settle to the midplane almost immediately,

while interstellar grains, those ∼ 1 µm in size, will take several Myr
to reach the midplane. Of course these very small grains will also
collide with one another and grow to larger sizes, which will let them
sediment more rapidly. In practice coagulation and sedimentation
occur simultaneously, and each enhances the other: growth helps
particle sediment faster, and sedimentation raises the density, letting
them collide more often.

20.1.3 Radial Drift

We have just considered the consequences of the forces acting on
solid particles in the vertical direction. Next let us consider the radial
direction. The homework includes a detailed solution to this problem
for small particles, so we will not go through the calculation, just
the qualitative result. The basic idea is that gas in the disk is mostly
supported by rotation, but it also has some pressure support. As a
result, it orbits at a slightly sub-Keplerian velocity. Solid bodies, on
the other hand, do not feel gas pressure, so they can only remain in
orbit at constant radius if they orbit at the Keplerian velocity. The
problem is that this means that they are moving faster than the gas,
and thus experience a drag force.

Problem Set 5 contains a calculation showing that the difference
in velocity between the Keplerian speed and the speed with which a
particle orbits is

∆v =
2nc2

s
vK

= ηv2
K (20.11)

where the pressure in the disk is assumed to vary with distance from
the star as P ∝ r−n, cg is the gas sound speed, and the dimensionless
quantity η = 2nc2

s /v2
K, which depends only on the local properties of

the disk, has been defined for future convenience. At 1 AU for our
minimum mass solar nebula model, this velocity is about 70n m s−1.
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Drag takes away angular momentum, in turn causing the bodies
to spiral inward. We can parameterize this effect in terms of the
stopping time

ts =
mv
FD

, (20.12)

where m and v are the body’s mass and velocity, and FD is the drag
force it experiences. The stopping time is simply the characteristic
time scale required for drag to stop the body.

Consider a spherical solid body of size s. For the Epstein law,
which we discussed last time, FD ∝ s2, while for Stokes drag, which
describes larger bodies, FD ∝ s2 at low Reynolds and s at high
Reynolds number. On the other hand, for a body of fixed density the
mass varies as s3, so the acceleration produced by drag must be a
decreasing function of s. The stopping time is therefore an increasing
function of s. Intuitively, big things have a lot of inertia per unit area,
so they are hard to stop. Little things have little inertia per unit area,
so they are easy to stop.

Now consider two limiting cases. Very small bodies will have
stopping times ts much smaller then their orbital periods tp, so they
will always be forced into co-rotation with the gas. Since this makes
their rotation sub-Keplerian, they will want to drift inward. The rate
at which they can drift, however, will also be limited by gas drag,
since to move inward they must also move through the gas. Thus
we expect that the inward drift velocity will also decrease as the
stopping time decreases, and thus as the particle size decreases. To
summarize, then, for ts/tp � 1, we expect vdrift ∝ sp, where p is a
positive number. Small particles drift inward very slowly, and the
drift speed increases with particle size for small s.

Now consider the opposite limit, ts � tp. In this case, the drag is
unable to force the solid body into co-rotation on anything like the
orbital period, so the body is always in a near-Keplerian orbit, and
just slowly loses angular momentum to drag. Clearly in this case the
rate at which this causes the particle to drift inward will decrease as
the stopping time increases, and thus as the particle size increases.
Summarizing this case, then, for ts/tp � 1, we expect vdrift ∝ s−q,
where q is a positive number.

Since the inward drift speed rises with particle size at small sizes
and decreases with particle size at large sizes, there must be some
intermediate size with it reaches a maximum. Conversely, the time
required for drag to take away all of a body’s angular momentum,
so that it spirals into the star, must reach a minimum at some inter-
mediate size. On your homework you will show that even for 1 cm
pebbles the loss time is a bit shorter than the disk lifetime, and 1 cm
pebbles are in the regime where ts � tp. The drift rate reaches a
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maximum for ∼ 1 m radius objects, and for them the loss time can be
as short as ∼ 100 yr. For km-sized objects the drift rate is back down
to the point where the loss time is ∼ 105 to 106 yr.

20.2 From Pebbles to Planetesimals

The calculation we have just completed reveals a serious problem in
how we can continue the process of growing the solids to larger sizes,
forming planets and clearing away disks: it seems that once growth
reaches ∼ 1 m sizes, all those bodies should be dragged into the star
in a very short amount of time. We therefore next consider how to
overcome this barrier.

20.2.1 Gravitational Growth

One solution is to skip over this size range using a mechanism that
allows particles to go directly from cm to km sizes, while spending
essentially no time at intermediate sizes. A natural candidate mecha-
nism for this is gravitational instability, so we begin with a discussion
of whether this might work. As we saw earlier in our discussion of
the minimum mass Solar Nebula, the gas disk is very Toomre stable,
Q ∼ 50. However, we also saw that solids will tend to settle toward
the midplane, and the solids have a much smaller velocity dispersion
than the gas. The Toomre Q for the solid material alone is

Qs =
Ωcs

πGΣs
(20.13)

where cs and Σs are the velocity dispersion and surface density of the
solid material. To see what velocity dispersion is required, note that
this definition of Q lets use write Qs in terms of Qg as

Qs = Qg

(
Σs

Σg

)(
cg

cs

)
≈ (240, 60)Qg

(
cg

cs

)
, (20.14)

where the factors of 240 or 60 are for regions with and without solid
ices, respectively.

Recall that we estimated that for the MMSN at 1 AU, Qg ≈ 55 and
cg ≈ 1 km s−1. Thus, gravitational instability for the solids, Qs < 1,
requires that cs . (30, 7) cm s−1, depending on whether ice is present
or not. If such an instability were to occur, the characteristic mass of
the resulting object would be set by the Toomre mass

MT =
4c4

s
G2Σs

= (2× 1019, 3× 1017) g, (20.15)

where the two numbers are again for the cases with and without ices
in solid form. If we adopt ρi,r = (1, 3) g cm−3 as the characteristic
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densities of (icy, rocky) material, the corresponding sizes of spheres
with this mass are (20, 3) km. This is large enough to avoid the size
range where rapid loss occurs.

To see whether this condition can be met, it is more convenient
to phrase the instability criterion in terms of a density. If we use
Hs = cs/Ω in the Toomre condition, where Hs is the scale height
of the solids, and we take the midplane density of the solids to be
ρs ≈ Σs/Hs, then we have

Qs =
Ω2Hs

πGΣs
≈ M∗

r3ρs
, (20.16)

where M∗ is the mass of the star. A detailed stability analysis by
Sekiya (1983) of the behavior of a stratified self-gravitating disk show
that the instability condition turns out to be

ρ > 0.62
M∗
r3 = 4× 10−7M∗,0v−3 g cm−3, (20.17)

where ρ = ρs + ρg is the total (gas plus solid) surface density, M∗,0 =

M∗/M� and v = r/AU. For our minimum mass solar nebula, recall
that the midplane density of the gas is roughly 3× 10−9 g cm−3, a
factor of 100 too small for instability to set in. The question then is
whether the density of solids at the midplane can rise to 100 times
that of the gas.

The discussion followed here closely follows that of Youdin &
Shu (2002). We have seen that settling causes solid particles to drift
down in to the midplane, and if this were the only force acting on
them, then the density could rise to arbitrarily high values. However,
there is a countervailing effect that will limit how high the midplane
density can rise. If the midplane density of solids is large enough
so that the solid density greatly exceeds the gas density, then the
solid-dominated layer will rotate at the Keplerian speed rather than
the sub-Keplerian speed that results from gas pressure. It is fairly
straightforward to show (and a slight extension of one of the prob-
lems in Problem Set 5) that the rotation velocity required for radial
hydrostatic balance is

vφ =

(
1− η

ρg

ρ

)
vK, (20.18)

where ρ = ρg + ρs which approaches vK for ρg � ρs, and (1− η)vK for
ρg � ρs. Since ρs/ρg rises toward the midplane, this velocity profile
has shear in it, with vφ reaching a maximum at the midplane and
dropping above it.

The shear can generate Kelvin-Helmholtz instability, which will in
turn create turbulence that will dredge up the dust out of the mid-
plane, halting settling and preventing the density from continuing to
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rise. A useful analogy to think about, which I borrow from Youdin
& Shu (2002), is a sandstorm in the desert. Since the midplane full of
dust is trying to rotating faster than the gas-dominated layer above
it, there is effectively a wind blowing above the dusty midplane layer,
like a wind blowing over the desert. If the wind blows too fast, it will
start picking up dust, preventing it from falling back to the desert
floor.

In the case of a disk, this process will self-regulate, since reducing
the amount of dust in the midplane brings its rotation velocity closer
to that of the gas, thereby reducing the strength of the wind. This
process of self-regulation can be calculated in terms of the condition
required for KH instability. To understand how the criterion for KH
instability is set, it is easiest to think about the case of a physical
interface – the results aren’t significantly different for a continuous
medium. The most common example is a pond of water with wind
blowing across its surface. Imagine that there is a small ripple in the
water that causes the surface to rise a little. The wind will strike the
bit of the water above the surface and try to push it horizontally. At
the same time gravity will try to drag the water downward.

If the wind is strong, it will push the water horizontally faster
than gravity can drag it downward. The moving water will displace
the surface even more, creating a growing wave, the signature of
KH instability. If it is weak, gravity will drag the ripple downward
before the wind is able to displace it significantly. Thus we expect the
critical condition for KH instability to involve a balance between the
restoring force of gravity and the destabilizing force of shear. For a
continuous medium, it turns out that the condition for instability can
be stated in terms of the Richardson number

Ri =
(gz/ρ)(∂ρ/∂z)
(
∂vφ/∂z

)2 < Ric, (20.19)

where z is the vertical distance, gz is the gravitational acceleration in
the vertical direction, and the critical Richardson number for insta-
bility Ric ≈ 1/4. Just for reference the quantity on the top has units
of one over time squared, so it is the square of a frequency. In fact,
it’s a frequency with which you are probably familiar from stellar
structure: (gz/ρ)(∂ρ/∂z) is the square of the Brunt-Väisälä frequency,
the characteristic oscillation frequency for vertical displacements in a
stratified medium, such as stellar atmosphere.

The numerator here represents the stabilizing effects of gravity,
which depends on both the gravitational acceleration and high
quickly the density drops with height. The gravitational acceleration
is

gz = Ω2z + 4πG
∫ z

0
ρ(z′) dz′, (20.20)
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where the first term represents the gravitational pull of the star and
the second represents the self-gravity of the disk. The denominator
represents the amount of destabilizing velocity shear.

A reasonable approximation is that the KH instability will stop
any further settling once it turns on, so the density of the solids
will become as centrally peaked as possible while keeping the disk
marginally stable against KH. Thus, we expect the equilibrium den-
sity profile for the solids to be the one that gives Ri = 1/4. If ρg(z)
is known at a given radius, then the condition Ri = 1/4 fully spec-
ifies the total density profile ρ(z), since both gz and vφ are known
function of ρ and ρg. Given ρ(z), it is obviously trivial to deduce the
density of solids ρs(z). The equation can be solved numerically fairly
easily, but we can gain additional insight by proceeding via analytic
approximations.

First, note that we are interested in whether a self-gravitating layer
of particles can develop at all, and that until one does then we can
ignore the self-gravity of the disk in gz. Thus, we can set gz ≈ Ω2z
for our analytic approximation. If we now differentiate the velocity
profile vφ with respect to z, we get

∂vφ

∂z
= −η

(
1
ρ

∂ρg

∂z
− ρg

ρ2
∂ρ

∂z

)
vK. (20.21)

Substituting this into the Richardson number equation, and noting
the vK = rΩ, we have

Ric =
1
4

=
z

η2r2
ρ3(∂ρ/∂z)

[
ρ(∂ρg/∂z)− ρg(∂ρ/∂z)

]2 (20.22)

=
z

η2r2
ρ3(∂ρ/∂z)

[
ρs(∂ρg/∂z)− ρg(∂ρs/∂z)

]2 . (20.23)

Now we make our second approximation: if we focus our atten-
tion near the midplane where solids are trying to sediment out, and
are being stirred up by KH instability, the density of solids should
be changing much more quickly than the density of gas. In other
words, we will focus our attention at heights z much smaller than the
gas scale height, so we can set ∂ρ/∂z ≈ ∂ρs/∂z, and drop ∂ρg/∂z in
comparison to ∂ρs/∂z. Doing that in the Richardson number equation
reduces it to

Ric ≈
z

η2r2
ρ3

ρ2
g(∂ρs/∂z)

(20.24)

To see what this implies, consider a layer of solids with scale
height Hs and surface density Σs that marginally satisfies this equa-
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tion. Plugging in z ∼ Hs and ρs ∼ Σs/Hs gives

Ric ∼
Hs

η2r2
(ρg + Σs/Hs)3

ρ2
g(Σs/H2

s )
=

(ρg Hs + Σs)3

(ηrρg)2Σs
(20.25)

Clearly this equation cannot be satisfied for arbitrarily large Σs,
since the RHS scales as Σ2

s in this case. Physically, this indicates that
our assumption that the KH instability can keep the Richardson
number at the critical value must break down if the surface density
of solids is too high. If we think about it, it makes sense that there is
a maximum amount of solid material that the gas can keep aloft. To
continue the sandstorm analogy, the wind can only keep a certain
amount of sand aloft in the desert. It cannot pick up the entire desert.

Thus, we expect there to be a critical column density Σp at which
it becomes impossible to satisfy the condition that the Richardson
number is 1/4. If Σp exceeds this critical value, the surface density at
the midplane will rise arbitrarily, and gravitational instability become
inevitable. For the case Σs � ρgHs, this critical value is clearly given
by

Σs ∼
√

Ricηrρg = 2n
√

Ric

(
cs

vK

)2
rρg. (20.26)

For the conditions of our MMSN at 1 AU, using n = 1 and Ric = 1/4,
this evaluates to 70 g cm−2. The numerical solution for the critical
surface density is Σs = 94 g cm−2; the increase relative to our simple
analytic estimate mostly comes from the self-gravity of the dust,
which increases the shear and thus strengthens the KH instability.

This is clearly larger than the surface density of solids we have
available in the MMSN, even using ices. Moreover, just increasing
the total mass of the disk doesn’t help any, because ρg will rise along
with Σs, and thus the condition won’t get any easier to meet. We
therefore conclude that gravitational instability cannot be a viable
mechanism to jump from cm to km sizes unless a way can be found
to enhance the solid to gas ratio in the disk by a factor of ∼ 3 in the
icy part of the disk, of ∼ 10 in the rocky part.

20.2.2 Hydrodynamic Concentration Mechanisms

We have found that gravitational instability by itself won’t solve
the problem of the meter-size barrier, but that it potentially can if a
mechanism can be found to increase the solid-to-gas ratio by a factor
of ∼ 3− 10. Exactly what mechanism this might be is still under
a great deal of investigation. We will discuss two here. The first of
these is concentration of small particles by eddies in a disk (Figure
20.1).

Consider a rotating eddy in a disk, defined as structures where
the gas moves on circular trajectories in the frame co-rotating with
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Eddies

l ~ η ~ 1 km, St ~ 10−5−10−4

Pressure bumps / vortices

l ~ 1−10 H, St ~ 0.1−10

Streaming instabilities

l ~ 0.1 H, St ~ 0.01−1

Fig. 6.— The three main ways to concentrate particles in protoplanetary discs. Left panel: turbulent eddies near the smallest scales
of the turbulence, η, expel tiny particles to high-pressure regions between the eddies. Middle panel: the zonal flow associated with
large-scale pressure bumps and vortices, of sizes from one scale height up to the global scale of the disc, trap particles of Stokes number
from 0.1 to 10. Right panel: streaming instabilities on intermediate scales trap particles of Stokes number from 0.01 to 1 by accelerating
the pressure-supported gas to near the Keplerian speed, which slows down the radial drift of particles in the concentration region.

4.1.1. Isotropic turbulence

On the smallest scales of the gas flow, where the Coriolis
force is negligible over the turn-over time-scale of the ed-
dies, the equation governing the structure of a rotating eddy
is

dvr

dt
= −1

ρ

∂P

∂r
≡ fP . (16)

Here fP is the gas acceleration caused by the radial pressure
gradient of the eddy. We use r as the radial coordinate in a
frame centred on the eddy. The pressure must rise outwards,
∂P/∂r > 0, to work as a centripetal force. In such low-
pressure eddies the rotation speed is set by

fP = −v2
e

ℓ
. (17)

Very small particles with τf ≪ te reach their terminal ve-
locity

vp = −τffP (18)

on a time-scale much shorter than the eddy turn-over time-
scale. This gives

vp = −τffP = τf
v2
e

ℓ
=

τf

te
ve . (19)

The largest particles to reach their terminal velocity in the
eddy turn-over time-scale have τf ∼ te. This is the op-
timal particle size to be expelled from small-scale eddies
and cluster in regions of high pressure between the eddies.
Larger particles do not reach their terminal velocity before
the eddy structure breaks down and reforms with a new
phase, and thus their concentration is weaker.
Numerical simulations and laboratory experiments have

shown that particles coupling at the turn-over time-scale of
eddies at the Kolmogorov scale of isotropic turbulence ex-
perience the strongest concentrations (Squires and Eaton,

1991; Fessler et al., 1994). In an astrophysics context, such
turbulent concentration of sub-mm-sized particles between
small-scale eddies has been put forward to explain the nar-
row size ranges of chondrules found in primitive meteorites
(Cuzzi et al., 2001), as well as the formation of asteroids
by gravitational contraction of rare, extreme concentration
events of such particles (Cuzzi et al., 2008). This model was
nevertheless criticised by Pan et al. (2011) who found that
efficiently concentrated particles have a narrow size range
and that concentration of masses sufficiently large to form
the primordial population of asteroids is hard to achieve.

4.1.2. Turbulence in rigid rotation

On larger scales of protoplanetary discs, gas and parti-
cle motion is dominated by Coriolis forces and shear. We
first expand our particle-trapping framework to flows dom-
inated by Coriolis forces and then generalise the expression
to include shear.
In a gas rotating rigidly at a frequencyΩ, the equilibrium

of the eddies is now given by

2Ωve − 1

ρ

∂P

∂r
= −v2

e

ℓ
. (20)

For slowly rotating eddies with ve/ℓ ≪ Ω we can ignore
the centripetal term and get

ve = − fP

2Ω
. (21)

High pressure regions have ve < 0 (clockwise rotation),
while low pressure regions have ve > 0 (counter-clockwise
rotation).
The terminal velocity of inertial particles can be found

11

Figure 20.1: Schematic diagram of
three mechanisms to concentrate
particles in a protoplanetary disk.
The left panel shows how small-scale
turbulent eddies expel particles to
their outskirts. The middle panel
shows how zonal flows associated
with large-scale pressure bumps
concentrate particles. The right panel
shows concentration by streaming
instabilities. In each panel, black arrows
show the velocity field, and the caption
indicates the characteristic length scale
of the structures shown, where H is the
disk scale height.

the disk at angular velocity Ω. Suppose that the gas at some distance
r from the center of an eddy is rotating at some speed ve. In the
rotating reference frame, there are two forces acting on the gas:
pressure gradients and Coriolis forces. For the eddy to remain static,
the sum of these two forces must produce an acceleration per unit
mass equal to the centripetal acceleration associated with the circular
motion of the eddy. Specifically, we must have

2Ωve −
1
ρ

dP
dr

= −v2
e

r
, (20.27)

where the first term is the Coriolis force per unit mass, the second
is the pressure force per unit mass, and the right hand side is the
centripetal acceleration. For a slowly-rotating eddy, ve/r � Ω, we
can ignore the right hand side, and simply approximate that the sum
of the two terms on the left is zero. Thus for slow eddies, the eddy
rotation speed is given by

ve =
1

2ρΩ
dP
dr

. (20.28)

We see that if the eddy is associated with a pressure maximum,
dP/dr < 0, then ve < 0 as well, indicating that rotation is clockwise;
eddies associated with pressure minima, dP/dr > 0, produce counter-
clockwise rotation.

Now let us consider the dynamics of a solid particle moving
through the eddy. Returning to the inertial frame, if the eddy is
rotating clockwise, ve < 0, then the material that is further from
the star is orbiting somewhat more slowly, while the material that
is closer to the star is orbiting somewhat more rapidly. This means
that the material further from the star will have a smaller velocity
difference with the sub-Keplerian solids, while the material that is
closer to the star will have a somewhat larger velocity difference. The
drag force is therefore smaller on the far side of the eddy, and larger
on the near side. The net effect is that, as solids drift from large radii



324 notes on star formation

inward and encounter the eddy, their rate of drift slows down, and
they tend to pile up at the location of the eddy. This is a potential
mechanism to raise the local ratio of solids to gas, and thus to set of
gravitational instability.

The final step in this argument is to have something that provides
a pressure jump and thus can produce clockwise eddies. There are a
number of possible mechanisms, including a build-up of gas at the
edge of a dead zone where MRI shuts off, or simply the turbulence
driven by the MRI itself. Whether this actually happens in practice is
still an unsolved problem, but the mechanism is at least potentially
viable.

Another possible mechanism to concentrate particles is known as
the streaming instability. We will not derive this rigorously, but we
can describe it qualitatively. Streaming instability operates as follows:
suppose that, in some region of the disk, for whatever reason, the
local density of solids relative to gas is slightly enhanced. Because
we are in a mid-plane layer that is at least partly sedimented, the
inertia of the solids is non-negligible. Thus while we have focused
on the drag force exerted by the gas on the solids, the corresponding
force on gas is not entirely negligible. This force tries to make the gas
rotate faster, and thus closer to Keplerian. This in turn reduces the
difference in gas and solid velocities.

Now consider the implications of this: where the solid to gas ratio
is enhanced, the solids force the gas to rotate closer to their velocity,
which in turn reduces the draft force and thus the inward drift speed.
Thus if solid particles are drifting inward, when the encounter a
region of enhanced solid density, they will slow down and linger
in that region. This constitutes an instability, because the slowing
down of the drift enhances the solid density even further, potentially
leading to a runaway.



Problem Set 5

1. A Simple Protostellar Evolution Model.
Consider a protostar forming with a constant accretion rate Ṁ.
The accreting gas is fully molecular, arrives at free-fall, and radi-
ates away a luminosity Lacc = faccGMṀ/R at the accretion shock,
where M and R are the instantaneous protostellar mass and ra-
dius, and facc is a numerical constant of order unity. At the end
of contraction the resulting star is fully ionized, all its deuterium
has been burned to hydrogen, and it is in hydrostatic equilibrium.
The ionization potential of hydrogen is ψI = 13.6 eV per amu, the
dissociation potential of molecular hydrogen is ψM = 2.2 eV per
amu, and the energy released by deuterium burning is ψD ≈ 100
eV per amu of total gas (not per amu of deuterium).

(a) First consider a low-mass protostar whose internal structure
is well-described by an n = 3/2 polytrope. Compute the total
energy of the star, including thermal energy, gravitational
energy, and the chemical energies associated with ionization,
dissociation, and deuterium burning.

(b) Use your expression for the total energy to derive an evolution
equation for the radius for a star. Assume the star is always
on the Hayashi track, which for the purposes of this problem
we will approximate as having a fixed effective temperature
TH = 3500 K.

(c) Numerically integrate your equation and plot the radius as a
function of mass for Ṁ = 10−5 M� yr−1 and facc = 3/4. As
an initial condition, use R = 2.5 R� and M = 0.01 M�, and
stop the integration at a mass of M = 1.0 M�. Plot the radius
and luminosity as a function of mass; in the luminosity, include
both the the accretion luminosity and the internal luminosity
produced by the star.

(d) Now consider two modifications we can make to allow the
model to work for massive protostars. First, since massive stars
are radiative, the polytropic index will be roughly n = 3 rather
than n = 3/2. Second, the surface temperature will in general
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be larger than the Hayashi limit, so take the luminosity to be
L = max[LH, L�(M/M�)3], where LH = 4πR2σT4

H and R
is the stellar radius. Modify your evolution equation for the
radius to include these effects, and numerically integrate the
modified equations up to M = 50 M� for Ṁ = 10−4 M� yr−1

and facc = 3/4, using the same initial conditions as for the low
mass case. Plot R and L versus M.

(e) Compare your result to the fitting formula for the ZAMS
radius of solar-metallicity stars as a function of M in Tout et al.
(1996)1. Find the mass at which the massive star would join the 1 Tout et al., 1996, MNRAS 281, 257

main sequence. Your plots for R and L are only valid up to this
mass, because this simple model does not include hydrogen
burning.

2. Disk Dispersal by Photoionization.
Consider a disk around a T Tauri star of mass M∗ that produces an
ionizing flux Φ photons s−1. The flux ionizes the disk surface and
raises the gas temperature to 104 K, leading to a wind leaving the
disk surface.

(a) Close to the star the ionized gas remains bound due to the
star’s gravity. Estimate the gravitational radius rg at which the
ionized gas becomes unbound.

(b) Inside rg, we can think of the trapped ionized gas as forming
a cloud of characteristic density n0. Assuming this region is
roughly in ionization balance, estimate n0.

(c) At rg, a wind begins to flow off the disk surface. Because the
ionizing photons are attenuated quickly as one moves away
from the star, most of the mass loss comes from radii ∼ rg.
Make a rough estimate for the mass flux in the wind.

(d) Evaluate the mass flux numerically for a 1 M� star with an
ionizing flux of 1041 s−1. How long would this take to evaporate
a 0.01 M� disk around this star? Given the observed lifetimes
of T Tauri star disks, are photoionization-induced winds a
plausible candidate for the primary disk removal mechanism?

3. Aerodynamics of Small Solids in a Disk.
Consider a solid sphere of radius s and density ρs, orbiting a star
of mass M at a distance r. The sphere is embedded in a protoplan-
etary disk, whose density and temperature where the particle is
orbiting are ρd and T. The gas pressure in the disk varies with
distance from the star as P ∝ r−n.

(a) Because it is partially supported by gas pressure, gas in the
disk orbits at a velocity slightly below the Keplerian velocity.

http://adsabs.harvard.edu/abs/1996MNRAS.281..257T
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Show that the difference between the gas velocity vg and the
Keplerian velocity vK is

∆v = vK − vg ≈
nc2

s
2vK

,

where cs is the isothermal sound speed of the gas. You may
assume that the deviation from Keplerian rotation is small.

(b) For a particle so small that the mean free path of gas atoms is
> s (which is the case for grains smaller than ∼ 10 cm), the drag
force it experiences as it moves through the gas at a relative
velocity v is

FD =
4π

3
s2ρdvcs.

This is called the Epstein drag law. We define the stopping
time ts as the ratio of the particle’s momentum to FD; this is the
time required to reduce the particle velocity by one e-folding.
Compute ts for a particle governed by Epstein drag.

(c) For small particles ts is much less than orbital period of a par-
ticle rotating at the Keplerian speed. In this case drag will force
the particle’s orbital velocity to match the sub-Keplerian orbital
velocity of the gas, and since the particle is not supported by
pressure as the disk is, it will drift inward. Estimate the equilib-
rium drift velocity, and the time required for the particle to drift
into the star.

(d) Consider a particle of size s = 1 cm and density ρs = 3 g
cm−3 orbiting at r = 1 AU in a protoplanetary disk of density
ρd = 10−9 g cm−3, temperature T = 600 K, and pressure index
n = 3. Verify that this particle is in the regime where ts is much
less than the orbital period, and then numerically evaluate the
time required for the particle to drift into the star. How does
this compare to the observed time scale of planet formation and
disk dissipation?
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Solutions to Problem Set 1

1. Molecular Tracers.

(a) The radiative de-excitation rate is
(

dni
dt

)

spon. emiss.
= −ni ∑

j<i
Aij.

The collisional de-excitation rate is
(

dni
dt

)

coll.
= −nni ∑

j<i
kij.

(b) Setting the results from the previous part equal and solving,
we obtain

ni ∑
j<i

Aij = ncritni ∑
j<i

kij =⇒ ncrit =
∑i<j Aij

∑i<j kij
.

(c) Using numbers taken from the LAMBDA website for the Aij

and γij values, we have

Line ncrit [cm−3]
CO(J = 1→ 0) 2.2× 103

CO(J = 3→ 2) 1.9× 104

CO(J = 5→ 4) 7.6× 104

HCN(J = 1→ 0) 1.0× 106

(d) The fraction of the mass above some specified density ρc can
be obtained by integrating the PDF for mass:

fM(ρ > ρ0) =

∫ ∞
sc

pM(s) ds
∫ ∞
−∞ pM(s) ds

(A.1)

where sc = ln(ρc/ρ) and the mass PDF is

pM =
1√

2πσ2
s

exp
[
− (s + s0)

2

2σ2
s

]
(A.2)

with s0 = −σ2
s /2. Using the critical densities obtained in the

previous part to compute sc, and then to evaluate the integral,
we obtain

http://www.strw.leidenuniv.nl/~moldata
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Line sc fM(n > ncrit)

CO(J = 1→ 0) 3.1 0.39

CO(J = 3→ 2) 5.2 0.11

CO(J = 5→ 4) 6.6 0.032

HCN(J = 1→ 0) 9.2 0.0013

It appears that CO(J = 1→ 0) and (to some extent) CO(J = 3→
2) are good tracers of the bulk of the mass, while CO(J = 5→ 4)
and HCN(J = 1→ 0) are better tracers of the denser parts of the
cloud.

2. Inferring Star Formation Rates in the Infrared.

(a) This problem can be done by using the default parameters
with starburst99 and writing out the bolometric luminosity on a
logarithmic grid from 0.1 Myr to 1 Gyr, for continuous star for-
mation at a rate of 1 M� yr−1. Taking the output luminosities,
the results are

SFR[M� yr−1] = 4.3× 10−44Ltot[erg s−1] (10 Myr)

SFR[M� yr−1] = 2.9× 10−44Ltot[erg s−1] (100 Myr)

SFR[M� yr−1] = 2.2× 10−44Ltot[erg s−1] (1 Gyr).

In comparison, the corresponding coefficient given by Kennicutt
(1998) is 3.9× 10−44, the same to within a factor of 2.

(b) The plot of the starburst99 output is shown in Figure A.1. The
solid line is the output with a normal IMF, and the dashed line
is the output with a top-heavy IMF, for part (c).

Figure A.1: Luminosity normalized
by star formation rate for a normal
IMF (solid line) and a top-heavy IMF
(dashed line).

http://www.stsci.edu/~science/starburst99
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(c) To generate this IMF, I told starbust99 to use a 1 section IMF
with a slope of −2.3 running from 0.5 to 100 M�. At equal ages,
the numbers change to

SFR[M� yr−1] = 3.2× 10−44Ltot[erg s−1] (10 Myr)

SFR[M� yr−1] = 2.1× 10−44Ltot[erg s−1] (100 Myr)

SFR[M� yr−1] = 1.6× 10−44Ltot[erg s−1] (1 Gyr).

These are a few tens of percent lower, because the IMF contains
fewer low mass stars that contribute little light. The effect
is mild, but that is partly because the change in IMF is mild.
These results do suggest that the IR to SFR conversion does
depend on the IMF.





Solutions to Problem Set 2

1. The Bonnor-Ebert Sphere.

(a) For a uniform-density sphere with constant surface pressure,
the terms that appear in the virial theorem are

W = −3
5

GM2

R

T =
3
2

Mc2
s

TS = 4πR3Ps.

All other terms are zero. Virial equilibrium requires

0 = 2(T − TS) +W

= 3Mc2
s − 8πR3Ps −

3
5

GM2

R

Ps =
3Mc2

s
8π

[
1

R3 −
(

GM
5c2

s

)
1

R4

]
.

Notice that the first, positive, term in brackets dominates at
large R, while the second, negative, one dominates at small R.
Thus there must be a maximum at some intermediate value of
R. To derive this maximum, we can take the derivative with
respect to R. This gives

dPs

dR
=

3Mc2
s

8π

[
− 3

R4 +

(
4GM
5c2

s

)
1

R5

]
.

Setting this equal to zero and solving, we find that the maxi-
mum occurs at

R =
4GM
15c2

s
.

Plugging this in for Ps, we obtain

Ps =
10125
2048π

c8
s

G3M2 ≈ 1.57
c8

s
G3M2 .

(b) Since the gas is isothermal, we can substitute for P to obtain

−c2
s

1
ρ

d
dr

ρ =
d
dr

φ
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The left-hand side can be re-written as

−c2
s

d
dr

ln ρ =
d
dr

φ,

which makes the equation trivial to integrate:

−c2
s ln ρ = φ + const.

Fixing the constant of integration by the requirement that ρ = ρc

and φ = 0 at the origin, we have

ρ = ρce−φ/c2
s

(c) Substituting into the Poisson equation, we have

1
r2

d
dr

(
r2 dφ

dr

)
= 4πGρce−φ/c2

s

Now define ψ ≡ φ/c2
s , giving

1
r2

d
dr

(
r2 dφ

dr

)
=

4πGρc

c2
s

e−ψ.

Finally, let

ξ ≡ r
r0

,

where
r0 =

cs√
4πGρc

.

Substituting this in, we arrive at the desired equation:

1
ξ2

d
dξ

(
ξ2 dψ

dξ

)
= e−ψ.

(d) For the purposes of numerical integration, it is most conve-
nient to recast the problem as two first-order ODEs rather than
a single second-order one. Let ψ′ = dψ/dξ, and the system
becomes

dψ

dξ
= ψ′

dψ′

dξ
= −2

ψ′

ξ
+ e−ψ.

The only tricky part of the numerical solution to this system is
the presence of a singularity in the equations at ξ = 0, which
will cause numerical methods to choke. In this particular case
it’s not terrible to avoid this problem simply by starting the
integration from a small but non-zero value of ξ and setting
ψ = ψ′ = 0 at this point. However, this approach can run
into problems for some equations, where the solution depends
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critically on the ratio of ψ to ψ′ near the singular point. A better,
more general method is to use a series expansion to solve
the equation near the singularity, and then using that series
expansion to numerically integrate starting from a small but
non-zero value of ξ. Let ψ = a2ξ2 + a3ξ3 + a4ξ4 + . . . in the
vicinity of ξ = 0. Note that we know there is no constant or
linear term due to the boundary conditions ψ(0) = ψ′(0) = 0.
Substituting into the ODE and expanding, we obtain

6a2 + 12a3ξ + O(ξ2) = 1 + O(ξ2).

Since the equation must balance, we learn that a2 = 1/6 and
a3 = 0, so the behavior of ψ near ξ = 0 is ψ = ξ2/6 + O(ξ4).
Armed with this information, it is straightforward to integrate
the equation numerically. Below is a simple Python code that
can solve the problem:

import numpy as np

import matplotlib.pyplot as plt

from scipy.integrate import odeint

# definition of the derivatives

def derivs(y, x):

return( [y[1], -2*y[1]/x+exp(-y[0])] )

# starting points

x0 = 1e-4

y0 = [x0**2/6, x0/3]

# solve the ode

x = np.linspace(x0, 8, 200)

ysol = odeint(derivs, y0, x)

# plot psi and exp(-psi) vs. x

plt.plot(x, ysol[:,0], lw=2, label=r’$\psi$’)

plt.plot(x, np.exp(-ysol[:,0]), lw=2,

label=r’$\rho/\rho_c$’)

plt.legend(loc=’upper left’)

plt.xlabel(r’$\xi$’)
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Figure A.2: Dimensionless potential
ψ and density ρ/ρc = e−ψ found by
solving the isothermal Lane-Emden
equation.

The output produced by this code is shown in Figure A.2.

(e) As a first step, we can substitute in the dimensionless variables
from the numerical solution:

M = 4π
∫ R

0
ρr2 dr = 4πr3

0ρc

∫ ξs

0
e−ψξ2 dξ
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The integral can be evaluated by plugging using the isother-
mal Lane-Embden equation and then using the fundamental
theorem of calculus:

∫ ξs

0
e−ψξ2 dξ =

∫ ξs

0

d
dξ

(
ξ2 dψ

dξ

)
dξ =

(
ξ2 dψ

dξ

)

ξs

.

Note that the term coming from the endpoint at ξ = 0 vanishes
because ξ and dψ/dξ are both 0 there. The remainder of the
problem is just a matter of substitution and manipulation:

M = 4πr3
0ρc

(
ξ2 dψ

dξ

)

ξs

= 4π
c3

s
(4πGρc)3/2 ρc

(
ξ2 dψ

dξ

)

ξs

=
c4

s√
4πG3ρcPs/ρs

(
ξ2 dψ

dξ

)

ξs

=
c4

s√
4πG3Ps

(
e−ψ/2ξ2 dψ

dξ

)

ξs

.

(f) Using the numerical results from above, and recalling that
ρc/ρ = eψ, this is a fairly simple addition to the program. To get
a bit more range on the density contrast, it is helpful to extend
the range of ξ a bit further than for the previous problem. A
simple solution, to be executed after the previous code, is

# solve the ode on a slightly larger grid

x = np.linspace(x0, 1e3, 500000)

ysol = odeint(derivs, y0, x)

# Get density constrast and m

contrast = np.exp(ysol[:,0])

m = (x**2 * np.exp(-ysol[:,0]/2) * ysol[:,1]) \

/ np.sqrt(4.0*np.pi)

# Plot

plt.clf()

plt.plot(contrast, m, lw=2)

plt.xscale(’log’)

plt.xlabel(r’$\rho_c/\rho_s$’)

plt.ylabel(’m’)

plt.xlim([1,1e4])
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Figure A.3: Dimensionless mass m
versus dimensionless density contrast
ρc/ρs found by solving the isothermal
Lane-Emden equation.

The output produced by this code is shown in Figure A.3.
The maximum value of m (obtained via np.amax(m)) is 1.18.
The maximum is at (found via contrast[np.argmax(m)-1])
ρc/ρs = 14.0.
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(g) The dimensionless and dimensional mass are related by

m =
P1/2

s G3/2M
c4

s
,

so the maximum surface pressure is

Ps,max = m2
max

c8
s

G3M2 ,

where mmax is the maximum value of m produced by the nu-
merical solution in the previous part. Plugging this in, we have

Ps,max ≈ 1.40
c8

s
G3M2 ,

which is only slightly different than the result we got for the
uniform sphere value in part (a) – a coefficient of 1.40 instead of
1.57.

(h) The maximum mass is

MBE = mmax
c4

s

P1/2
s G3/2

≈ 1.18
c4

s

P1/2
s G3/2

At T = 10 K, a gas with µ = 3.9× 10−24 g has a sound speed
cs = 0.19 km s−1. Plugging this in, together with the given
value of Ps, we find MBE = 0.67 M�.

(a) The escape speed at the stellar surface, and thus the launch
velocity of the wind, is vw =

√
2GM∗(t)/R∗, where M∗(t) is the

star’s instantaneous mass. The momentum flux associated with
the wind is therefore ṗw = f Ṁdvw. The accretion rate onto the
star is Ṁ∗ = (1− f )Ṁd. Thus at a time t after the star has started
accreting, we have M∗(t) = (1− f )Ṁdt, and

ṗw = f (1− f )1/2Ṁ3/2
d

(
2G
R∗

)1/2
t1/2.

The time required to accrete up to the star’s final mass is t f =

M∗/Ṁ∗ = (1− f )−1M∗/Ṁd, where M∗ is the final mass. To
obtain the wind momentum per unit stellar mass, we must
integrate ṗw over the full time it takes to build up the star, then
divide by the star’s mass. Thus we have

〈pw〉 =
1

M∗

∫ (1− f )−1 M∗/Ṁd

0
f (1− f )1/2Ṁ3/2

d

(
2G
R∗

)1/2
t1/2 dt

=
2
3

f
1− f

√
2GM∗

R∗
.

Evaluating numerically for the given values of f , M∗, and R∗
gives 〈pw〉 = 19 km s−1 M−1

� .
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(b) Each outflow carries momentum 〈pw〉M∗, and thus when it
decelerates to terminal velocity σ the mass it has swept-up must
be Mw = (〈pw〉/σ)M∗. The associated kinetic energy of a single
outflow is

Tw =
1
2

Mwσ2 =
1
2

M∗〈pw〉σ.

If the total star formation rate is Ṁcluster, then the rate at which
new stars form is Ṁcluster/M∗. The rate of kinetic energy injec-
tion is therefore

Ṫ =
Ṁcluster

M∗
Tw

=
1
2

Ṁcluster〈pw〉σ

=
1
3

(
f

1− f

)
Ṁclusterσ

√
2GM∗

R∗
.

(c) The decay time is L/σ, to the decay rate must be the cloud
kinetic energy (3/2)Mσ2 divided by this time. Thus

Ṫdec = −
3
2

Mσ3

L
.

If we now set Ṫw = −Ṫdec, we can solve for Ṁcluster. Doing so
gives

Ṁcluster =
9
2

(
1− f

f

)√
R∗

2GM∗
σ2

L
M.

Using the Larson relations to evaluate this, note that σ2/L =

σ2
1 /pc ≡ ac = 3.2× 10−9 cm s−1 is constant, and we are left with

Ṁcluster =
9
2

(
1− f

f

)√
R∗

2GM∗
ac M1

(
L

pc

)2
.

Evaluating numerically for the given values of L produces the
results below:

L = 1 pc L = 10 pc L = 100 pc
Ṁcluster [M� yr−1] 1.6× 10−5 1.6× 10−3 1.6× 10−1

(d) The mass converted into stars in 1 free-fall time is Ṁclustertff,
so the quantity we want to compute is

f =
Ṁcluster

M
tff ≡

tff
t∗

,

where t∗ is the star formation timescale. From the previous part,
we have

t−1
∗ =

Ṁcluster
M

=
9
2

(
1− f

f

)√
R∗

2GM∗
ac = 0.16 Myr−1.
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The free-fall time is

tff =

√
3π

32Gρ
=

√
3πL3

32GM
=

√
3πL3

1
32GM1

(
L
L1

)1/2

= 0.81
(

L
L1

)1/2
Myr,

where L1 = 1 pc. Thus we have

f =
tff
t∗

= 0.13
(

L
L1

)1/2
.

Evaluating for L = 1, 10, and 100 pc, we get f = 0.13, 0.42, and
1.3, respectively. We therefore conclude that protostellar out-
flows may be a significant factor in the driving the turbulence
on ∼ 1 pc scales, and cannot be ignored there. However, they
become increasingly less effective at larger size scales, and can
probably be neglected at the scales of entire GMCs, ∼ 10− 100
pc.

(a) The virial ratio is (omitting constant factors of order unity)

αvir ∼
σ2R
GM

.

The Alfvén Mach number is the ratio of the velocity dispersion
to the Alfvén speed

vA ∼
B√
ρ
∼ BR3/2

M1/2 .

Thus

MA ∼
σM1/2

BR3/2 .

To rewrite this in terms of MΦ, we can eliminate B from this
expression by writing

B ∼ MΦG1/2

R2 ,

giving

MA ∼
σ

MΦ

√
MR
G

Similarly, we can eliminate σ using the definition of the virial
ratio:

σ ∼
√

αvir
GM

R
,

and substituting this in gives

MA ∼ α1/2
vir µΦ.
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(b) The expression derived in part (a) does indeed show that, if
any of two of the three quantitiesMA, αvir, and µΦ are of order
unity, the third one must be as well. Intuitively, this is because
the various quantities are measures of energy ratios. Roughly
speaking,M2

A measures the ratio of kinetic (including thermal)
energy to magnetic energy; αvir measures the ratio of kinetic to
gravitational energy; and µ2

Φ represents the ratio of gravitational
to magnetic energy. If any two of these are of order unity, then
this implies that gravitational, kinetic, and magnetic energies
are all of the same order. However, this in turn implies that the
third dimensionless ratio should also be of order unity as well.
For example, ifMA ∼ αvir ∼ 1, then this implies that kinetic
energy is comparable to magnetic energy, and kinetic energy is
also comparable to gravitational energy. In turn, this means that
gravitational and mantic energy are comparable, in which case
µΦ ∼ 1.

(c) If we have a cloud that is supported, it must have αvir ∼ 1.
However, if the cloud is turbulent then it will naturally also go
toMA ∼ 1. This means that we are likely to measure µΦ ∼ 1
even if the cloud is magnetically supercritical and not supported
by its magnetic field. We would only ever expect to get µΦ � 1,
indicating a lack of magnetic support, if the cloud were either
non-virialized (αvir � 1 or� 1) or non-turbulent.



Solutions to Problem Set 3

1. Toomre Instability.

(a) Substituting in the perturbed terms for Σ, v, and φ, the lin-
earized equation of mass conservation is

∂

∂t
(Σ0 + εΣ1) +∇ · [(Σ0 + εΣ1) (v0 + εv1)] = 0

∂

∂t
Σ1 + Σ0∇ · v1 +∇ · (Σ1v0) = 0.

In going from the first line to the second, we dropped terms of
order ε2, we used the fact that Σ0 is constant in time to drop the
term ∂Σ0/∂t, and we used the fact that it is constant in space
(since the unperturbed state is uniform) to take the Σ0 factor out
of the divergence. Note that v0 and Σ1 are not constant in space,
so they cannot be taken out of the divergence.

The linearized momentum equation is

∂

∂t
(v0 + εv1) + (v0 + εv1) · ∇ (v0 + εv1)

= −∇(Σ0 + εΣ1)

Σ0 + εΣ1
c2

s −∇(φ0 + εφ1)

− 2Ω× (v0 + εv1) + Ω2(xêx + yêy).

To simplify this, we recall that, since the equilibrium is an exact
solution, it must be the case that

∂

∂t
v0 + v0 · ∇v0 = −c2

s
∇Σ0

Σ0
−∇φ0 − 2Ω× v0 + Ω2(xêx + yêy),

and we can therefore cancel these terms. Doing so, and drop-
ping terms of order ε2, we are left with

∂

∂t
v1 + v0 · ∇v1 + v1 · ∇v0 = −∇Σ1

Σ0
c2

s −∇φ1 − 2Ω× v1.

Finally, the linearized Poisson equation is

∇2(φ0 + εφ1) = 4πG(Σ0 + εΣ1)δ(z)

∇2φ1 = 4πGΣ1δ(z).
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In deriving the second line we used the fact that the unper-
turbed state is an exact solution to cancel ∇2φ0 with 4πGΣ0δ(z).

(b) First, we plug the Fourier mode trial solutions into the Poisson
equation:

φa∇2ei(kx−ωt)−|kz| = 4πGΣaei(kx−ωt)δ(z).

To eliminate the δ(z), we now integrate both sides in z over a
range [−ζ, ζ] and evaluate in the limit ζ → 0. This gives

φa

∫ ζ

−ζ

(
∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2

)
ei(kx−ωt)−|kz| dz

= 4πGΣaei(kx−ωt)
∫ ζ

−ζ
δ(z) dz

= 4πGΣaei(kx−ωt).

To evaluate the left-hand side, note that the ∂2/∂y2 term van-
ishes because there is no y-dependence, and the ∂2/∂x2 term
will also vanish when we take the limit ζ → 0, because the
integrand is finite. Only the ∂2/∂z2 term will survive. Thus we
have

4πGΣa = φa lim
ζ→0

∫ ζ

−ζ

∂2

∂z2 e−|kz| dz

= φa lim
ζ→0

[(
d
dz

e−|kz|
)

z=ζ

−
(

d
dz

e−|kz|
)

z=−ζ

]

= −2φa|k|

Thus we have
φa = −

2πGΣa

|k| .

(c) As a first step, let us rewrite the terms involving v0 in a more
convenient form; this is the Taylor expansion part. Recall that
we are in a frame that is co-rotating with the disk, and where
x is the distance from the center of our co-rotating reference
frame in the radial direction. In the lab frame, the velocity is
v′0 = vRêφ, and the velocity of the co-rotating reference frame at
a distance r from the origin is vrot = Ω0rêφ. The unperturbed
velocity in the rotating frame is the difference between these
two, i.e.,

v0 = v′0 − vrot

= (vR −Ω0r) êy

= [Ω0R−Ω0 (R + x)] êy

= −Ω0xêy,
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where we have used the fact that êφ in the lab frame is the same
as êy in our co-rotating frame.

With this result in hand, we can now begin to make substitu-
tions into the perturbed equations. The perturbed equation of
mass conservation becomes

−iωΣa + ikΣ0vax = 0.

The momentum equation becomes

−iω
(
vaxêx + vayêy

)
−Ω0vaxêy

= −ik
Σa

Σ0
c2

s êx − ikφ0êx − 2Ω×
(
vaxêx + vayêy

)
.

Since Ω = Ωêz, we can write out the two components of this
equation as

−iωvax = −ikc2
s

Σa

Σ0
+ ik

2πGΣa

|k| + 2Ω0vay

−iωvay = −Ω0vax,

where we have evaluated the equation at x = 0 and thus we
have Ω = Ω0, and in the first equation we have substituted in
for φa. We now have three equations in the three unknowns Σ0,
vax, and vay.

(d) The easiest way to demonstrate the desired result is to write
the system of three equations in standard form:

ik
(

2πG
|k| −

c2
s

Σ0

)
Σa + iωvax + 2Ω0vay = 0

−Ω0vax + iωvay = 0

−iωΣa + ikΣ0vax = 0.

We can write this system as a matrix equation:

A ≡




ik
(

2πG
|k| −

c2
s

Σ0

)
iω 2Ω0

0 −Ω0 iω
−iω ikΣ0 0




A




Σa

vax

vay


 =




0
0
0


 .

This matrix equation has a non-trivial solution if and only
if A is non-invertible, i.e., it has zero determinant. Thus the
condition for there to be non-trivial solutions we require

0 = det(A)
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= iωk2Σ0

(
2πG
|k| −

c2
s

Σ0

)
+ iω3 − 2iωΩ2

0

= k2Σ0

(
2πG
|k| −

c2
s

Σ0

)
+ ω2 − 2Ω2

0

ω2 = 2Ω2
0 − 2πGΣ0|k|+ k2c2

s .

This is the desired dispersion relation.

(e) Instability requires that ω2 < 0, which requires

0 > 2Ω2
0 − 2πGΣ0|k|+ k2c2

s .

We therefore want to find the value of k that produces the
minimum value of the right-hand side. The RHS is quadratic in
|k|, and its minimum occurs at

|k| = πGΣ0

c2
s

.

Plugging this in, we see that the minimum value of the RHS is
given by

2Ω2
0 − 2πGΣ0

πGΣ0

c2
s

+

(
πGΣ0

c2
s

)2
c2

s .

Instability exists only if there is a value of |k| that makes the
RHS negative, so the condition is

2Ω2
0 − 2πGΣ0

(
πGΣ0

c2
s

)
+

(
πGΣ0

c2
s

)2
c2

s < 0

2Ω2
0 <

(
πGΣ0

c2
s

)

(√
2Ω0cs

πGΣ0

)2

< 1

Q < 1.

(f) The Toomre mass is

MT = λ2
TΣ0 =

4c4
s

G2Σ0
.

Plugging in the given values of cs and Σ0, we obtain MT =

2.3× 107 M�. This is a bit larger than the truncation masses
reported by Rosolowsky, but only by a factor of a few.

2. The Origin of Brown Dwarfs.

(a) The Chabrier IMF is

dn
d log m

≡ ξ(m) =

{
A exp

[
− (log m−log mc)2

2σ2

]
, m < 1.0 M�

B(m/M�)−x, m > 1.0 M�
,
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where mc = 0.22 M�, σ = 0.57, x = 1.3, A is a normalization
constant, and the fact that ξ(m) is continuous at m = 1 M�
implies that

B = A exp
[
− log(mc/M�)2

2σ2

]
.

To compute the fraction of mass in brown dwarfs, m < mBD =

0.075 M�, we simply evaluate the integral of ξ(m) over all
masses below mBD and divide by the integral over all masses,
i.e.

fBD =

∫ mBD
mmin

ξ(m) dm
∫ mmax

mmin
ξ(m) dm

.

Note that we want to integrate with respect to m and not log m,
because ∫ dn

d log m
dm ∝

∫ dn
dm

m dm

is the mass, which is what we want. The integrals can be eval-
uated analytically in terms of error functions, but it is more
convenient just to evaluate them numerically from this point.
Some simple python code to do so is:

import numpy as np

from scipy.integrate import quad

def xi(m, mc=0.22, sigma=0.57, x=1.3):

dndlogm = np.exp( -(np.log10(m)-np.log10(mc))**2 /

(2.0*sigma**2) )

idx = np.where(m > 1)[0]

if len(idx) > 0:

b = np.exp( -np.log10(mc)**2 / (2.0*sigma**2) )

if type(dndlogm) is np.ndarray:

dndlogm[idx] = b*m[idx]**-x

else:

dndlogm = b*m**-x

return dndlogm

fBD = quad(xi, 0.0, 0.075)[0] / quad(xi, 0.0, 120)[0]

print("f_BD = {:f}".format(fBD))

Using mmin = 0 and mmax = 120 M� gives fBD = 0.014.

(b) The Bonnor-Ebert mass is

MBE = 1.18
c4

s√
G3P

= 1.18
c3

s√
G3ρ

,

where we have taken P = ρc2
s . Solving for ρ, we have

ρ =
(1.18c3

s )
2

G3M2
BE

.
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Evaluating this for a gas with µ = 3.9× 10−24 g cm−3, we have
cs =

√
kBT/µ = 0.19 km s−1 and ρ = 9.3× 10−18 g cm−3. This

corresponds to nmin = ρ/µ = 2.4× 106 molecules cm−3.

(c) First we want to derive an expression for the fraction of the
mass above a given density. For a lognormal mass distribution,

dP
dx

=
1√

2πσ2
exp

[
− (x− x)2

2σ2
x

]
,

where x = ln(ρ/ρ), we can obtain this by integrating:

f (> x0) =
∫ ∞

x0

dP
dx

dx =
1
2

erfc
(

x0 − x√
2σx

)
,

where erfc is the complementary error function. For a lognor-
mal turbulent density distribution, we have σx ≈

√
ln(1 +M2/4)

and x = σ2
x /2. The curve we want is the one defined implicitly

by the equation f (> x0) = fBD with x0 = nmin/n. Thus we wish
to solve

1
2

erfc

[
ln(nmin/n)− ln(1 +M2/4)/2√

2 ln(1 +M2/4)

]
= fBD.

For a given n it is straightforward to solve this algebraic equa-
tion numerically to obtainM. Some simple python code to do
so is

from scipy.special import erfc

from scipy.optimize import brentq

import matplotlib.pyplot as plt

def resid(mach, nbar, fBD):

nmin = 2.4e6

x0 = np.log(nmin / nbar)

sigmax = np.sqrt(np.log(1.0 + mach**2/4.0))

xbar = sigmax**2 / 2.0

return fBD - 0.5*erfc( (x0 - xbar) / (np.sqrt(2)*sigmax) )

def machsolve(nbar, fBD):

if hasattr(nbar, ’__iter__’):

mach = np.zeros(len(nbar))

for i, n in enumerate(nbar):

mach[i] = brentq(resid, 1e-3, 100, args=(n, fBD))

return mach

else:

return brentq(resid, 1e-3, 100, args=(nbar, fBD))
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nbar = np.logspace(4,6,50)

mach = machsolve(nbar, fBD)

plt.fill_between(nbar, mach, alpha=0.5)

plt.plot([5e4], [7], ’ro’)

plt.text(5.5e4, 7, ’IC 348’)

plt.xscale(’log’)

plt.xlabel(r’$\overline{n}$’)

plt.ylabel(r’$\mathcal{M}$’)
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Figure A.4: Mach numberM versus
mean density n, separating the region
where f (> x0) < fBD (shaded) from the
region where f (> x0) > fBD. The red
point shows the properties of IC 348.

The result is shown as Figure A.4. The shaded region is the
region where f (> x0) < fBD. Clearly IC 348 (shown as the red
dot in the figure) falls into the region where the mass fraction
large enough to create brown dwarfs is larger than the brown
dwarf mass fraction.
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1. HII Region Trapping.

(a) The density profile of the accretion flow is given implicitly by

Ṁ∗ = 4πr2ρvff,

where vff =
√

2GM∗/r. Thus we have

ρ =
Ṁ∗

4π
√

2GM∗
r−3/2.

Recombinations happen in the region between R∗ and ri. The
recombination rate per unit volume is αBnenp = 1.1αB(ρ/µH)

2,
where µH = 2.3× 10−24 g is the mass per H nucleus assuming
standard composition. Thus the total recombination rate within
the ionized volume is

Γ =
∫ ri

R∗
4πr2(1.1αB)

(
Ṁ∗

4πµH
√

2GM∗
r−3/2

)2

dr

=
1.1αB Ṁ2∗

8πµ2
HGM∗

ln
ri
R∗

.

Since this must equal the ionizing photon production rate
(Γ = S), we can solve for ri:

ri = R∗ exp

(
8πµ2

HGM∗S
1.1αB Ṁ2∗

)
.

The condition that ri � R∗ is satisfied if the term inside paren-
theses is & 1, which in turn requires

Ṁ∗ .
(

8πµ2
HGM∗S

1.1αB

)1/2

.

Plugging in the given values M∗ = 30 M� and S = 1049 s−1,
we obtain Ṁ∗ . 7× 10−5 M� yr−1. This is lower (though not
by a huge amount) than the typical accretion rates inferred for
massive stars.



352 notes on star formation

(b) The escape velocity at a distance r from the star is vesc =√
2GM∗/r. Thus the condition that vesc < ci at ri implies that

2GM∗
c2

i
< ri = R∗ exp

(
8πµ2

HGM∗S
1.1αB Ṁ2∗

)
.

Solving for Ṁ∗, we find

Ṁ∗ >

[
8πµ2

HGM∗S
2.2αB ln(vesc,∗/ci)

]1/2

,

where vesc,∗ =
√

2GM∗/R∗ is the escape speed from the stellar
surface. Using R∗ = 7.7 R� (the radius of a 30 M� ZAMS star)
and plugging in the other input values gives Ṁ∗ > 2.2× 10−5

M�.

2. Self-Similar Viscous Disks.

(a) First let us plug in the given form for ν:

∂Σ
∂t

=
ν1

v1

3
v

∂

∂v

[
v1/2 ∂

∂v

(
Σv3/2

)]
.

Next, let’s make the change of variables v = v1x. Note that
this also implies that ∂/∂v = (1/v1)∂/∂x. With this change, we
have

∂Σ
∂t

=
ν1

v2
1

3
x

∂

∂x

[
x1/2 ∂

∂x

(
Σx3/2

)]
.

The third step is to make the change of variables t = Tts,
∂/∂t = (1/ts)∂/∂T, then simplify:

3ν1

v2
1

∂Σ
∂T

=
ν1

v2
1

3
x

∂

∂x

[
x1/2 ∂

∂x

(
Σx3/2

)]

∂Σ
∂T

=
1
x

∂

∂x

[
x1/2 ∂

∂x

(
Σx3/2

)]
.

The last step is to substitute in for Σ, which is trivial:

∂S
∂T

=
1
x

∂

∂x

[
x1/2 ∂

∂x

(
Sx3/2

)]
.

This is the non-dimensional equation we wanted.

(b) We can show that the given form is a solution simply by
plugging in the equivalent non-dimensional solution for S,
which is

S =
e−x/T

xT3/2 .
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Plugging this into the two sides of the non-dimensional equa-
tion, we get

∂S
∂T

=

(
2x− 3T
2xT7/2

)
e−x/T

1
x

∂

∂x

[
x1/2 ∂

∂x

(
Sx3/2

)]
=

1
x

∂

∂x

[(
T − 2x
2T5/2

)
e−x/T

]

=

(
2x− 3T
2xT7/2

)
e−x/T .

Since the two sides match, this suffices to show that S =

e−x/T/(xT3/2) is a solution. Since we have made no assump-
tions about the value of Σ1 in this argument, we are free to
choose its value to be whatever we want. In particular, if we
choose Σ1 = C/3πν1, then we immediately obtain the solution

Σ =

(
C

3πν1

)
1

xT3/2 e−x/T .

(c) The disk mass is simply given by

Md =
∫ ∞

0
2πvΣ dv

= v2
1

∫ ∞

0
2πxΣ dx

=

(
2Cv2

1
3ν1

)
1

T3/2

∫ ∞

0
e−x/T dx

=
2Cv2

1
3ν1T1/2

= 2Cts

(
t
ts

)−1/2
.

The time rate of change of the disk mass is just

Ṁd = −C
(

t
ts

)−3/2
.

Looking at the equation, and noting that C has units of mass
per time, it is clear that C controls the accretion rate of the disk
onto the point mass in the center.
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Figure A.5: S versus x at dimensionless
times T = 1, 1.5, 2, and 4.

(d) Figure A.5 shows the required plot. We see that the disk
surface density profile follows S ∝ x−1 for x < T, and is
exponentially truncated at x > T. We can think of the inner part
as the “main disk", and the outer part as the material pushed
outward by viscosity in order to compensate for the angular
momentum lost as other gas moves inwards. As time passes,
the inner, main disk drains onto the star, and its surface density
decreases. At the same time, the outer, exponentially truncated
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segment of the disk grows to larger and larger radii as more
and more angular momentum is extracted from the inner disk.

3. A Simple T Tauri Disk Model.

(a) The disk interior is optically thick, so the vertical radiation flux
F is given by the diffusion approximation:

F =
c

3κρ

d
dz

E =
ca

3κρ

d
dz

(T4) =
4σ

3κρ

d
dz

(T4)

where E is the radiation energy density and T is the gas tem-
perature. In thermal equilibrium the flux does not vary with
z, so we can re-arrange this equation and integrate from the
midplane at z = 0 to the surface at z = zs:

F
∫ zs

0
ρ dz =

4σ

3κ

∫ Ts

Tm

d
dz

T4 dz

F
Σ
2

=
4σ

3κ

(
T4

m − T4
s

)

F ≈ 8σ

3κΣ
T4

m,

where the factor of 2 in the denominator on the LHS in the
second step comes from the fact that Σ is the column density
of the entire disk, and we integrated over only half of it. In the
third step we assumed that T4

m � T4
s , which will be true for any

optically thick disk. Note that this is the flux carried away from
the disk midplane in both the +z and −z directions – formally
the flux changes direction discontinuously at z = 0 in this
simple model, so the total flux leaving the midplane is twice
this value. If the disk radiates as a blackbody, the radiation flux
per unit area leaving each side of the disk surface is σT4

s , and
this must balance the flux that is transported upward through
the disk by diffusion. Thus we have

8σ

3κΣ
T4

m ≈ σT4
s ,

where the expressions on either side of the equality represent
the fluxes in either the +z or −z directions either; the total
fluxes are a factor of 2 greater, but the factors of 2 obviously
cancel. Solving for Tm gives the desired result:

Tm ≈
(

3
8

κΣ
)1/4

Ts.

(b) Equating the dissipation rate Fd per unit area with the radia-
tion rate per unit area σT4

s

σT4
s =

9
8

νΣΩ2
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Ts =

(
9
8

νΣΩ2

σ

)1/4

=

(
9
8

α
c2

s ΣΩ
σ

)1/4

In turn, plugging this into the relation we just derived between
the surface and midplane temperatures gives

Tm ≈
(

27
64

νκΣ2Ω2

σ

)1/4

≈
(

27
64

ακc2
s Σ2Ω
σ

)1/4

Substituting c2
s = kBTm/µ, where µ is the mean particle mass,

and solving for Tm gives

Tm ≈
(

27
64

αkBκΣ2Ω
σµ

)1/3

.

Note that it makes much more sense to compute cs from the
midplane temperature than from the surface temperature, since
the vast majority of the viscous dissipation is occurring near the
midplane, not at the disk surface.

(c) The cooling time is the thermal energy divided by the energy
radiation rate. The thermal energy per unit area is

Eth ≈
Σc2

s
γ− 1

=
kBΣTm

(γ− 1)µ
,

where γ is the ratio of specific heats for the gas, which for
molecular hydrogen will be somewhere between 5/3 and 7/5
depending on the gas temperature. The radiation rate is 2σT4

s ,
so the cooling time is

tcool =
Eth

2σT4
s

≈ ΣkBTm

2(γ− 1)µσT4
s

≈ 3κΣ2kB

16(γ− 1)µσT3
m

≈ 4
9(γ− 1)αΩ

The orbital period is torb = 2π/Ω, so the ratio of cooling time to
orbital period is

tcool
torb
≈ 2

9π(γ− 1)α
.
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For the typical values of α expected due to MRI or similar
mechanisms, ∼ 0.01 or less, this number is significantly bigger
than unity, so the cooling time is longer than the orbital period.
Under these conditions the disk is likely to act adiabatically
rather than isothermally. Only if α gets quite large, ∼ 0.1 or
more, do we approach the isothermal regime.

(d) Let the disk surface density be Σ = Σ0(r/r0)
−1, and let r0 = 1

AU and r1 = 20 AU be the inner and outer radii. The mass in
the disk is

Mdisk =
∫ r1

r0

Σ0

(
r
r0

)−1
2πr dr = 2πΣ0r0(r1 − r0),

so

Σ =
Mdisk

2πr0(r1 − r0)

(
r
r0

)−1
= 2.2× 103

( r
1 AU

)−1
g cm−2.

For a 1 M� star, the angular velocity of the orbit is

Ω =

√
GM
r3 = 2.0× 10−7

( r
1 AU

)−3/2
s−1

Plugging in κ = 3 cm−2 g−1 and α = 0.01, taking µ = 3.9× 10−24

as the mean particle mass, and plugging into the expression for
Tm derived in part (b) gives

Tm ≈ 1980
( r

1 AU

)−7/6
K,

and plugging this into the relation between Tm and Ts derived
in part (a) gives

Ts ≈ 370
( r

1 AU

)−11/12
K.

The midplane density is ρm ≈ Σ/H, where H is the scale height
is H = cs/Ω = Ω−1

√
kBT/µ. If we use T ≈ Tm to compute the

scale height, then we have

ρm ≈
ΣΩ√

kBTm/µ
= 1.7× 10−9

( r
1 AU

)−23/12
g cm−3.

Finally, the Toomre Q of the disk computed using the midplane
temperature (which is the most reasonable one to use, since it is
the temperature of most of the mass) is

Q =
Ωcs

πGΣ
=

Ω
√

kBTm/µ

πGΣ
= 110

( r
1 AU

)−13/12
.

This reaches a minimum value of 4.4 at r = 20 AU. Thus the
disk is gravitationally stable.
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1. A Simple Protostellar Evolution Model.

(a) The star is a polytrope, and for a polytrope of index n the
gravitational energy is (e.g., see Kippenhahn & Weigert 1994)

W = − 3
5− n

GM2

R
.

The virial theorem tells us that the thermal energy is half the
absolute value of the potential energy, so

T =
3

2(5− n)
GM2

R
.

Finally, the change in internal energy associated with dissocia-
tion, ionization, and deuterium burning is (ψI + ψM − ψD)M.
Note the opposite signs: ψI and ψM are positive, meaning that
the final state (ionized, atomic) is higher energy than the initial
one, while ΨD is negative, indicating that the final state (all the
deuterium converted to He) is a lower energy state than the
initial one. Putting this all together, the total energy of the star
is

E = − 3
2(5− n)

GM2

R
+ (ψI + ψM − ψD)M.

(b) First we can compute the time rate of change of the star’s
energy,

Ė =
3

2(5− n)
GM

R

(
M

Ṙ
R
− 2Ṁ

)
+ (ψI + ψM − ψD)Ṁ.

Now consider conservation of energy. The star’s luminosity
L represents the rate of change of the energy "at infinity", i.e.,
the energy removed from the system. Since the total energy
of the star plus infinity must remain constant, we require that
Ė + L = 0. Writing down this condition and solving for Ṙ, we
obtain

Ṙ = 2R
Ṁ
M
− 2(5− n)

3
R2

GM2

[
(ψI + ψM − ψD)Ṁ + L

]
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It is convenient to divide through by Ṁ in order to recast this as
an equation for the evolution of R with M:

dR
dM

= 2
R
M
− 2(5− n)

3
R2

GM2

(
ψI + ψM − ψD +

L
Ṁ

)
.

If we further divide by R/M on both sides, we obtain

d ln R
d ln M

= 2− 2(5− n)
3

R
GM

(
ψI + ψM − ψD +

L
Ṁ

)
.

Next, we must compute the total luminosity, which contains
contributions from the star’s intrinsic, internal luminosity,
and from the accretion luminosity. Since the star is on the
Hayashi track, we can compute the intrinsic luminosity by
taking its effective temperature to be fixed at TH . Thus the total
luminosity is

L = Lacc + LH = facc
GMṀ

R
+ 4πR2σT4

H .

Substituting this in, we have

d ln R
d ln M

= 2− 2(5− n)
3

[
facc +

(
R

GM

)(
ψI + ψM − ψD +

4πR2σT4
H

Ṁ

)]
.

This is our final evolution equation.

(c) The ODE can be integrated by standard techniques. Below is
an example python program to do so, and plot the result:

import numpy as np

import matplotlib.pyplot as plt

from scipy.integrate import odeint

# Define some constants in cgs

G = 6.67e-8

eV = 1.6e-12

amu = 1.66e-24

sigma = 5.67e-5

Msun = 1.99e33

Rsun = 6.96e10

Lsun = 3.83e33

yr = 365.25*24.*3600.

# Problem parameters

psiI = 13.6*eV/amu

psiM = 2.2*eV/amu

psiD = 100*eV/amu
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tH = 3500.0

# Default parameters

n = 1.5

facc = 0.75

Mdot = 1e-5*Msun/yr

# Define the derivative function

def dlnRdlnM(lnR, lnM, n=n, facc=facc, Mdot=Mdot):

R = np.exp(lnR)

M = np.exp(lnM)

return(2.0-2.0*(5.0-n)/3.0 *
(facc+(R/(G*M))*
(psiI+psiM-psiD+

4.0*np.pi*R**2*sigma*tH**4/Mdot)))

# Integrate

lnM = np.log(np.logspace(-2, 0, 500)*Msun)

lnR = odeint(dlnRdlnM, np.log(2.5*Rsun), lnM,

args=(n, facc, Mdot))

R = np.exp(lnR[:,0])

M = np.exp(lnM)

# Get luminosity

L = facc*G*M*Mdot/R + 4.0*np.pi*R**2*sigma*tH**4

# Plot radius

p1,=plt.plot(M/Msun, R/Rsun, ’b’, lw=2)

plt.xscale(’log’)

plt.xlabel(r’$M/M_\odot$’)

plt.ylabel(r’$R/R_\odot$’)

# Plot luminosity

plt.twinx()

p2,=plt.plot(M/Msun, L/Lsun, ’r’, lw=2)

plt.ylabel(r’$L/L_\odot$’)

plt.legend([p1,p2], [’Radius’, ’Luminosity’],

loc=’lower right’)
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Figure A.6: Radius (blue) and lumi-
nosity (red) for the simple protostellar
evolution model.

The resulting output is shown as Figure A.6. Note that the
radius is too large by a factor of ∼ 3 compared to more sophis-
ticated models, mainly due to the incorrect assumption that
all the accreted deuterium burns as quickly as it accretes. In
reality the D luminosity should be significantly lower, because
D burning lasts longer than accretion.
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(d) This problem can be solved using the same basic structure as
the previous part. The derivative of radius with respect to mass
now becomes

d ln R
d ln M

= 2− 2(5− n)
3

[
facc +

(
R

GM

)
·

(
ψI + ψM − ψD +

max[4πR2σT4
H , L�(M/M�)3]

Ṁ

)]
.

This can be integrated via a simple python program as in the
previous part:

# Define the derivative function for the second part

def dlnRdlnM2(lnR, lnM, n=n, facc=facc, Mdot=Mdot):

R = np.exp(lnR)

M = np.exp(lnM)

LH = 4.0*np.pi*R**2*sigma*tH**4

Lstar = Lsun*(M/Msun)**3

return(2.0-2.0*(5.0-n)/3.0 *
(facc+(R/(G*M))*
(psiI+psiM-psiD+np.maximum(Lstar,LH)/Mdot)))

# Integrate

Mdot2 = 1.0e-4*Msun/yr

lnM2 = np.log(np.logspace(-2, np.log10(50), 500)*Msun)

lnR2 = odeint(dlnRdlnM2, np.log(2.5*Rsun), lnM2,

args=(3.0, facc, Mdot2))

R2 = np.exp(lnR2[:,0])

M2 = np.exp(lnM2)

# Get luminosity

L2 = facc*G*M*Mdot/R + np.maximum(

4.0*np.pi*R2**2*sigma*tH**4,

Lsun*(M2/Msun)**3)

# Plot radius

clf()

p1,=plt.plot(M2/Msun, R2/Rsun, ’b’, lw=2)

plt.xlabel(r’$M/M_\odot$’)

plt.ylabel(r’$R/R_\odot$’)

# Plot luminosity

plt.twinx()

p2,=plt.plot(M2/Msun, L2/Lsun, ’r’, lw=2)

plt.ylabel(r’$L/L_\odot$’)

plt.yscale(’log’)
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plt.xlim([0,50])

plt.legend([p1,p2], [’Radius’, ’Luminosity’],

loc=’center right’)
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Figure A.7: Radius (blue) and lumi-
nosity (red) for the simple protostellar
evolution model for a massive star.

The resulting output is shown as Figure A.7.

2. Disk Dispersal by Photoionization.

(a) The gas will escape when the sound speed becomes compara-
ble to the escape speed from the star. Thus

cs ≈
√

2GM∗
rg

rg ≈ 2GM∗
c2

s
=

2GM∗µ
kBT

The mean particle mass depends on whether the helium is
ionized or not, but for a relatively cool star like a T Tauri star it
is probably reasonable to assume that it is not, so the number
of electrons equals the number of hydrogen atoms. The mean
mass per particle for neutral hydrogen is 2.34× 10−24 g, and
by number hydrogen represents 93% of all nuclei in the Milky
Way, so the mean mass per particle in gas where the hydrogen
is ionized is µ = 1.2× 10−24 g. Plugging this in gives a sound
speed cs = 10.7 km s−1.

(b) Ionization balance requires that recombinations equal ioniza-
tions. If the density is n0 inside rg, the recombination rate per
unit volume is α(B)n2

0, where α(B) = 2.59× 10−13 cm−3 s−1 is
the case B recombination coefficient, and this expression implic-
itly assumes that the gas is fully ionized. The recombination
rate is simply this times the volume, so equating this with the
ionization rate produced by the star give

Φ =
4
3

πr3
gα(B)n2

0

n0 =

√
3Φ

4πα(B)r3
g

=

√
3Φk3

BT3

32πα(B)G3M3∗µ3

(c) The wind will have a density of ∼ n0 and will leave a velocity
∼ cs, and it will be lost from an area of order r2

g. Thus an order
of magnitude estimate for the wind mass flux is

Ṁ ∼ n0mHcsr2
g

=

√
3Φrg

4πα(B)
mHcs
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=

√
3ΦGM∗m2

H
2πα(B)

(d) Plugging in the given numerical values gives Ṁ ∼ 10−10 M�
yr−1. Thus it would take ∼ 100 Myr to evaporate a 0.01 M�
star. This is much longer than the observed ∼ 2 Myr lifetime
of T Tauri disks. This indicates that photoionization by itself
cannot the the primary disk removal mechanism. Instead, it is
a plausible disk destruction mechanism only if it operates in
tandem with some other mechanism, like accretion of the disk
onto the star.

3. Aerodynamics of Small Solids in a Disk.

(a) The force per unit mass in the radial direction that a parcel of
gas of density ρ experiences due to the combined effects of gas
pressure and stellar gravity is

fr = −
GM
r2 −

1
ρ

∂P
∂r

= −GM
r2 +

n
ρ

P
r
= −GM

r2 +
nc2

s
r

.

This also gives the acceleration of the gas parcel toward the star.
If we equate this with the centripetal acceleration required to
maintain circular motion at velocity vg, then we have

v2
g

r
=

GM
r2 −

nc2
s

r
=

v2
K
r
− nc2

s
r

,

where vK =
√

GM/r is the Keplerian velocity. If we solve this
for vg and subtract the result from vK, then we have

∆v = vK − vg = vK −
√

v2
K − nc2

s

= vK

(
1−

√
1− nc2

s

v2
K

)

≈ nc2
s

2v2
K

,

where the last step results from taking the Taylor expansion of
the square root term in the limit nc2

s � v2
K, which is equivalent

to the assumption that the deviation from Keplerian rotation is
small.

(b) The mass of the solid particle is ms = (4/3)πs3ρs, so its
momentum is p = (4/3)πs3ρsv. Dividing this by the drag force
we have

ts =
p

FD
=

s
cs

ρs

ρd
.
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i.e. the stopping time is just the sound crossing time of the
particle’s radius multiplied by the ratio of solid density to gas
density.

(c) In the frame co-rotating with the gas, the dust particle expe-
riences a net radial force which contains contributions from
inward stellar gravity, outward centrifugal force, and outward
drag force resisting inward motion. The total force is

F = −GMms

r2 +
msv2

g

r
− 4π

3
s2ρdvcs

= −v2
K
r

ms +

(
v2

K
r
− nc2

s
r

)
md −

4π

3
s2ρdvcs

=
cs

ms

(
−ncs

r
− v

s
ρd
ρs

)
,

where ms = (4/3)πs3ρs is the mass of the solid. The terminal
velocity of the grain is determined by the condition that the net
force be zero, so if we set the right-hand side of this equation
equal to zero and solve, we find that the terminal velocity is

v = −ncs
s
r

ρs

ρd
.

The time required for the solid particle to drift into the star is
roughly

tdrift ≈
r0

−v
=

r2
0

ncss
ρd
ρs

,

(d) First let’s evaluate the stopping time:

ts =
s
cs

ρs

ρd
=

s√
kBT/µ

ρs

ρd
= 2.1× 104 s.

The orbital period at 1 AU is torb = 1 yr = 3.1× 107 s, so we do
have ts � torb. The timescale required for the particle to drift
into the star is

tdrift =
r2

0
ncss

ρd
ρs

= 1.7× 1011 s = 5400 yr.

This is much, much smaller than the inferred timescale of ∼ 1
Myr for planet formation and disk dissipation.
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