Version 1.0

How to Achieve Open Source License Compliance

Open Source Software and Reverse
Engineering

Karsten Reincke*

March 2, 2015

Sometimes, it is stated that software using LGPL licensed components,
may only be distributed by permitting reverse engineering of the soft-
ware using the LGPL components. By reading the licenses strictly,
this article proves in detail that we are not obliged to allow reverse
engineering as long as we distribute our open source based work in
form of dynamically linkable files. Particularly, the article shows, that
we also can compliantly distribute our compiled, but still not linked
work without permitting reverse engineering, if it uses LGPL licensed
components.

1 Preface

Reverse Engineering is a challenging issue: Sometimes, developers must protect
their business relevant work. Thus, they only incorporate open source components
published under a permissive or a weak copyleft license: Of course, they want to
use the open source software compliantly. But nevertheless, they want be able
to distribute their own work as closed software for not exposing their secrets.
So, being obliged by the embedded components to permit reverse engineering of
the work using the components, would subvert this strategie. Unfortunately, it
is often said, that one of the most important weak copyleft licenses, the LGPL,
requires to permit reverse engineering.

*) Deutsche Telekom AG, Products & Innovation, T-Online-Allee 1, 64295 Darmstadt

Contents

During the last two years, I was repeatedly asked to explain and defend my
viewpoint in respect of reverse engineering and open source software: I am
profoundly convinced that there is no problem at all as long as we distribute
dynamically linkable programs. This position had often astonished my collocutors.
Some of them were still looking for an exit of the dilemma, while the others already
had given up and could rather believe that there was such a simple solution. So, —
at the end of our discussions — they encouraged me to prove my position in detail.

For example, my capable colleague Helene Tamer constantly insisted, that
Deutsche Telekom AG could not give up her restrictions to use LGPL libraries until
I had offered a reliable proof that the LGPL does not require reverse engineering.
Or I could enthousiasticly discuss the permission of reverse engineering with the
knowledgable German open source attorney Hendrik Schottle! who boosted me to
understand that I had to argue more subtler than I had done in my first answers.
And last but not least also Karen Copenhaver® considered my arguments and
emphatically asked me to share my thoughts with the community.

So, I thankfully® can now offer a thoroughly elaborated proof for the assertion
that there - in general - is a way to distribute open source software compliantly
without permitting reverse engineering, and that this way — in particular — is also
usable to compliantly distribute LGPL licensed software without allowing reverse
engineering.

Contents

1 Preface 1
2 Reverse Engineering and Open Source as Challenge 3
3 Reverse Engineering in the LGPL-v2 8
3.1 Linguistical Clarification o 8
3.2 Logical Clarification e 12
3.3 Empirical Clarification 15
3.4 Final Conclusion 17

3.4.0.1 Distributing works with manually copied portions of the Library
evokes the copyleft effect: 0oL 18
3.4.0.2 Distributing scripts does not need reverse engineering: 20

3.4.0.3 Distributing statically combined bytecode requires the permis-
sion of reverse engineering: oL L. 20

U — http://www.osborneclarke.com /lawyers /schottle-hendrik/

2) - http://www.choate.com/people/karen-copenhaver

3) Following the spirit of the open source movement, this article is published under the terms of
CC-BY-SA 3.0 (— p. 37). But as a document concerning legal issues, it must be published
under a specific proviso: (— p. 36). And finally, it is first and foremost developed as a
chapter of the Open Source License Compendium (— http://www.oslic.org/). But for
offering a version which can more simply be distributed, we also produced this extract.

2 Reverse Engineering and Open Source as Challenge

3.4.0.4 Distributing statically combined binaries require the permission

of reverse engineering: oL oL 21
3.4.0.5 Distributing dynamically combinable bytecode and linkable ob-

ject code does not require the permission of reverse engineering: 23
3.4.0.6 LGPL-v2 compliance with or without permitting reverse engi-

NEering: 24

3.5 Final Securing oL e 25

4 Reverse Engineering in the LGPL-v3 28
5 Reverse Engineering in the other Open Source Licenses 33
6 Reverse Engineering in Open Source Licenses: Summary 36
7 Disclaimer 37
8 License 37
References 38

2 Reverse Engineering and Open Source as Challenge

Beyond any doubt, the LGPL mentions “reverse engineering” literally” for indicat-
ing that reverse engineering in any respect must be allowed to use and distribute
LGPL software compliantly:

“...] you may [...] distribute a work (containing portions of the
Library) under terms of your choice, provided that the terms permit

s

[...] reverse engineering [...]” ?

There are three strategies for dealing with such provisions: one can try to fully
honor its meaning, one can mitigate its meaning, or one can avoid to discuss this
requirement altogether:

A first group of well known open source experts take the sentence of the LGPL-v2
as a strict rule which requires that one has to allow reverse engineering of the
whole software product if one embeds any LGPL licensed component into that

4) For the LGPL-v2 cf. Open Source Initiative: The GNU Lesser General Public License,
version 2.1 (LGPL-2.1); 1999 [n.y. of the html page itself] (URL: http://opensource.
org/licenses/LGPL-2.1) — reference download: 2013-03-06, wp., §6; for the LGPL-v3 cf.
Open Source Initiative: The GNU Lesser General Public License, version 3.0 (LGPL-3.0);
2007 [n.y. of the html page itself] (URL: http://opensource.org/licenses/LGPL-3.0) —
reference download: 2013-03-06, wp., §4

5 ¢f. Open Source Initiative: The LGPL-2.1 License (OSI), 1999, wp, §6. The LGPL-v2 uses
the capitalized word “Library” for denoting a library which “[...] has been distributed
under (the) terms” of the LGPL-v2. (cf. id., l.c., wp, §0). Inside of our LGPL chapter(s) we
follow this interpretation.

http://opensource.org/licenses/LGPL-2.1
http://opensource.org/licenses/LGPL-2.1
http://opensource.org/licenses/LGPL-3.0

2 Reverse Engineering and Open Source as Challenge

product®.

A second group of well known and knowledgeable open source experts signify that
the LGPL-v2 indeed literally contains a strict rule, but that this rule actually is
not meant as it sounds: For example, two of these experts explain that “these
requirements on the licensed combination require that the license chosen not
prohibit the customer’s modification and reverse engineering for debugging these
modifications in the work as a whole”. But then they directly add the limitation,
that “in practice, enforcement history suggests, it means that the license terms
chosen may not prohibit modification and reverse engineering for debugging of
modification in the LGPL’d code included in the combination””.

6) For example, a very trustworthy German expert states that the LGPL-2.1 generally requires

7

—

that a distributor of a program which accesses a LGPL-2.1 licensed library, must grant his
customer also the right to modify the accessing program and hence also the right to execute
reverse engineering. Literally the German text says:

“Ziffer 6 LGPLv2.1 kniipft die Erlaubnis, das zugreifende Programm unter beliebi-
gen Lizenzbestimmungen verbreiten zu driifen, an eine Reihe von Verpflichtungen,
die in der Praxis oft iibersehen werden: Zunéchst muss dem Kunden, dem die
Software geliefert wird, die Veranderung des zugreifenden Programms gestattet
werden und zu diesem Zweck auch ein Reverse Engineering zur Fehlerbehebung.
Dies diirfte alle Formen des Debugging und das Dekompilieren des zugreifenden
Programms umfassen.” (cf. Jaeger, Till a. Azel Metzger: Open Source Software.
Rechtliche Rahmenbedingungen der Freien Software; 3rd edition. Miinchen: Verlag
C.H. Beck, 2011, pp.81; emphasis KR).

At first glance, also “copyleft.org” — the “[...] collaborative project to create and disseminate
useful information, tutorial material, and new policy ideas regarding all forms of copyleft
licensing” (cf. copyleft.org: What is copyleft.org; n.l, 2014 (URL: http://copyleft.org/) —
reference download: 2014-12-15, wp.) — could be taken as another witness for such an attitude
of strict reading: Some of its contributors elucidate in a chapter dealing with “special topics
in compliance” that “the license of the whole work must [sic!] permit ‘reverse engineering
for debugging such modifications’ to the library” and that one therefore “ should take care
that the EULA used for the Application does not contradict this permission” (cf. Kuhn,
Bradley M. et al.: Copyleft and the GNU General Public License: A Comprehensive Tutorial
and Guide; n.l, 2014 (URL: http://copyleft.org/guide/comprehensive-gpl-guide.
pdf) — reference download: 2014-12-15, p. 86

cf. Moglen, FEven a. Mishi Choudhary: Software Freedom Law Center Guide to GPL
Compliance, 2nd Edition; 2014 (URL: https://wuw.softwarefreedom.org/resources/
2014/SFLC-Guide_to_GPL_Compliance_2d_ed.html) — reference download: 2014-12-15,
wp., chapter LGPLv2.1, section 6. Such a mitigation can also be found in the tutorial
of copyleft.org: After they have summarized the LGPL-v2 sentence as a strict rule, they
directly continue, that one “[...] must refrain from license terms on works based on the
licensed work that prohibit replacement of the licensed components of the larger non-LGPL’d
work, or prohibit decompilation or reverse engineering in order to enhance or fix bugs in the
LGPL’d components” (cf. Kuhn etal.: Copyleft and the GNU General Public License, 2014,
p. 86). This added specification indicates, that one only has to facilitate the modification of
the library and that reverse engineering can be ignored as long as there are other ways to
improve the embedded library.

http://copyleft.org/
http://copyleft.org/guide/comprehensive-gpl-guide.pdf
http://copyleft.org/guide/comprehensive-gpl-guide.pdf
https://www.softwarefreedom.org/resources/2014/SFLC-Guide_to_GPL_Compliance_2d_ed.html
https://www.softwarefreedom.org/resources/2014/SFLC-Guide_to_GPL_Compliance_2d_ed.html

2 Reverse Engineering and Open Source as Challenge

Finally, a third group of experts prefers not to discuss the problem of reverse
engineering, although this technique is literally mentioned in the license and
although they want explain how to use GPL/LGPL licensed software compliantly®.

This situation must bother companies and people who want to use open source
software compliantly and who therefore are looking for guidance. Particularly
it disturbs those who want to protect their business relevant software. At the
end, they might consider that this sentence is not consistently understood by the
open source community itself. And — as far as we know — at least some of these
companies preventively prohibit their developers to embed LGPL licensed compo-
nents into programs which contain business relevant techniques. Unfortunately,
this consequence does not only obstruct the access to a large set of well written
free software, but it is scarcely possible to obey such an interdiction consequently:
The glibc, which enables the programs to talk with the kernel of the GNU/Linux
system”, is licensed under the LGPL'. And hence, this library is indirectly linked
to or combined with any program running on the GNU/Linux system. So, if the
LGPL-v2 indeed required, that reverse engineering of every program must be
allowed, which contains portions of any LGPL Library, then every GNU /Linux
user would be allowed to examine every program running on GNU/Linux by
reverse engineering, simply, because finally every 'GNU /Linux program’ is linked
to or combined with the glibc'!. In other words: if the LGPL indeed required the
permission of reverse engineering, then every program executed on GNU /Linux
may be reverse engineered.

But an exhaustive reading of the LGPL-v2 strongly indicates, that there must be
another valid, more 'liquid” understanding of the LGPL: The preamble explains

8) An article of Terry J. Ilardi might be taken as a first witness of this third strategy: he
profoundly explains the essence of the LGPL, he especially discusses §6, and he delivers
applicable rules like “DO NOT statically link to LGPL [...] code if you wish to keep your
program proprietary”. But he does not discuss reverse engineering (cf. Ilardi, Terry J.:
Common OSS License Problems; n.l, 2010 (URL: http://www2.aipla.org/html/spring/
2010/papers/Ilardi_Paper.pdf) — reference download: 2014-12-16, pp.5f). Similarily
argues Rosen (cf. Rosen, Lawrence: Open Source Licensing. Software Freedom and
Intellectual Property Law; Upper Saddle River, New Jersey: Prentice Hall PTr, 2005,
ISBN 0-13-148787—6, pp. 121ff). And — despite their comments on reverse engineering in
the specific chapter special topics in compliance — the copyleft.org document can also be
taken as an instance of this attitude: Although its’ authors recommend to “study chapter
10 carefully” for establishing an adequate “compliance with LGPLv2.1” (cf. Kuhn etal.:
Copyleft and the GNU General Public License, 2014, p.86), this chapter 10 — dedicated
to the meaning of the “Lesser GPL” — does not deal with reverse engineering, although it
discusses the §6 of the LGPLv2.1 in depth (cf. id., l.c., pp. 56ff, esp. 60f).

9 cf. http://www.gnu.org/software/libc/

10) ¢f. http://en.wikipedia.org/wiki/GNU_C_Library

1) This conclusion might surprise. But it is inferred with exactly the same arguments as the
conclusion, that without a licence offering a weaker copyleft every program would have been
licensed under the GPL. The copyleft.org document explains this argumentation in great
detail (cf. id., L.c., pp. 56f).

http://www2.aipla.org/html/spring/2010/papers/Ilardi_Paper.pdf
http://www2.aipla.org/html/spring/2010/papers/Ilardi_Paper.pdf

2 Reverse Engineering and Open Source as Challenge

the reason for offering another weaker license beside the GPL. It says that “[...]
on rare occasions, there may be a special need to encourage the widest possible
use of a certain library, so that it becomes a de-facto standard” and that therefore
it could be strategicly necessary to “allow [...] non-free programs [...] to use
the library” without enforcing that these programs become free software too'.

So, if the LGPL had indeed determined that every program linked to or combined
with any LGPL library may be reverse engineered, then the LGPL would have
an effect contrary to its own intention. It would have introduced something like
'security by obscurity’: First, the LGPL would allow to protect the internals of
your own work against investigation by allowing to keep the code of the non-
free program using the library a scecret'®. But then — in the end — the LGPL
would also allow the user to reverse engineer the received binary and hence would
enable him to nevertheless discover all internals'*. Hence, finally the LGPL-v2
would undermine its’ own raison d’etre introduced by its’ inventors: under such
circumstances there probably would have been less hope that any LGPL library
could have become a defacto standard.

We know that the inventors of the GNU licenses and GNU software are very
sophisticated experts. They never would have published such an inconsistent
document. So, this dissent read in(to) the document is a strong indicator for the
fact, that there must be a better way to understand the license. And thus, it is
up to us, the followers, to explicate a more adequate interpretation. Of course,
such an interpretation must be grounded on the written text. No doubt: we, the
scholars, are not allowed to add our own wishes. We must read the license very
strictly. We have to deduce 'understandings’ only by matching the interpretations
explicitly and reasonably back to the license text itself.

Encouraged by the indication that a better understanding of the LGPL may
exist and contrary to the other strategies, we are going to prove that there is
a valid way to compliantly distribute any open source based software without
permitting reverse engineering: We want to show that none of the main open
source licenses'® requires reverse engineering if the work using the open source

12) of. Open Source Initiative: The LGPL-2.1 License (OSI), 1999, wp, §preamble.

13) The weak copyleft has been introduced for encouring the widest possible use of the library.

14) Tt would only cost a little more effort - as security by obscurity indicates.

15) Just as the OSLiC, also this part focuses only on the most important open source licenses (cf.
https://www.blackducksoftware.com/resources/data/top-20-open-source-licenses wp.): the
Apache license (cf. Open Source Initiative: Apache License, Version 2.0; 2004 [n.y. of the page
itself] (URL: http://opensource.org/licenses/Apache-2.0) — reference download: 2013-
02-07, wp.), the BSD licenses (cf. Open Source Initiative: The BSD 3-Clause License; 2012
[n.y.] (URL: http://www.opensource.org/licenses/BSD-3-Clause) — reference down-
load: 2012-07-04, wp. and cf. Open Source Initiative: The BSD 2-Clause License; 2012
[n.y.] (URL: http://www.opensource.org/licenses/BSD-2-Clause) — reference down-
load: 2012-07-03, wp.)), the MIT license (cf. Open Source Initiative: The MIT License; 2012
[n.y.] (URL: http://opensource.org/licenses/mit-license.php) — reference download:

http://opensource.org/licenses/Apache-2.0
http://www.opensource.org/licenses/BSD-3-Clause
http://www.opensource.org/licenses/BSD-2-Clause
http://opensource.org/licenses/mit-license.php

2 Reverse Engineering and Open Source as Challenge

Library is distributed in form of dynamically linkable files. In particular, we are
going to prove that one even has not to allow reverse engineering of the work
using an LGPL Library, if one distributes that work as dynamically linkable files.
And we want to show that in all other cases one has at least to fear that one
has implicitly allowed the reverse engineering of the work using the open source
Library if one distribute that work. In particular, we want to prove that one
has to fear this implicitly given permission even if one distributes a work using a
library licensed under any permissive license'®.

In general, we hope that our analysis, grounded on the license text itself, will
support companies and people to compliantly use open source software more often
and with less scruples.

Hence, let us prove our position ’bottom up’. Let us firstly show that it is true
for the LGPL-v2 — by explicating the license text lingually, then logically, and
finally empirically, before we infer the correct understanding. Then let us show
that it is also true for the LGPL-v3. And in the end let us show that it is true for

all other licenses!'”.

2012-08-24, wp.), the MS-PL (cf. Open Source Initiative: Microsoft Public License (MS-PL);
2013 [n.y.] (URL: http://opensource.org/licenses/MS-PL) — reference download: 2013-
02-26, wp.), the PostgreSXQL (cf. Open Source Initiative: The PostgreSQL Licence (Post-
greSQL); 2013 [n.y.] (URL: http://opensource.org/licenses/PostgreSQL) — reference
download: 2013-02-27, wp.), the PHP license (cf. Open Source Initiative: The PHP License
3.0 (PHP-3.0); 2013 [n.y.] (URL: http://opensource.org/licenses/PHP-3.0) — reference
download: 2013-02-27, wp.), the EPL (cf. Open Source Initiative: Eclipse Public License, Ver-
sion 1.0; 2005 [n.y. of the page itself] (URL: http://opensource.org/licenses/EPL-1.0) —
reference download: 2013-02-20, wp.), the EUPL (cf. Open Source Initiative: Euro-
pean Union Public License, version 1.1 (EUPL-1.1; 2007 [n.y. of the html page it-
self] (URL: http://opensource.org/licenses/EUPL-1.1) — reference download: 2013-
03-04, wp.), the MPL (cf. Open Source Initiative: Mozilla Public License 2.0 (MPL-
2.0); 2013 [n.y.] (URL: http://opensource.org/licenses/MPL-2.0) — reference down-
load: 2013-02-07, wp.), the LGPLs (cf. Open Source Initiative: The LGPL-2.1 Li-
cense (OSI), 1999, wp. and cf. Open Source Initiative: The LGPL-3.0 License (OSI),
2007, wp.), the GPLs (cf. Open Source Initiative: GNU General Public License, ver-
sion 2 (GPL-2.0). Version 2, June 1991; 1991 [n.y. of the html page itself] (URL:
http://opensource.org/licenses/GPL-2.0) — reference download: 2013-02-05, wp. and
cf. Open Source Initiative: GNU General Public License, version 3 (GPL-3.0); 2007 [n.y.
of the html page itself] (URL: http://opensource.org/licenses/GPL-3.0) — reference
download: 2013-03-05, wp.) and the AGPL (cf. Open Source Initiative: GNU Affero
General Public License, Version 3 (AGPL-3.0); 2007 [n.y. of the html page itself] (URL:
http://opensource.org/licenses/AGPL-3.0) — reference download: 2013-04-05, wp.)

16) By the way, our analysis should also provide proof that the LGPL is not something like
a 'poisoned’ license containing “an imprenetrable maze of technology babble” which “[...]
should not be in a general-purpose software license” (cf. Rosen: Open Source Licensing,
2005, p. 124). The challenge of the today’s descendants is to understand the former inventors
of the GNU licenses and their way to think about computing - including all the hassle the
computing language C might provoke.

17) analysed by the OSLiC: — p. 6.

http://opensource.org/licenses/MS-PL
http://opensource.org/licenses/PostgreSQL
http://opensource.org/licenses/PHP-3.0
http://opensource.org/licenses/EPL-1.0
http://opensource.org/licenses/EUPL-1.1
http://opensource.org/licenses/MPL-2.0
http://opensource.org/licenses/GPL-2.0
http://opensource.org/licenses/GPL-3.0
http://opensource.org/licenses/AGPL-3.0

3 Reverse Engineering in the LGPL-v2

3 Reverse Engineering in the LGPL-v2

The LGPL-v2.1 contains one sentence which literally refers to the issues of reverse
engineering:

“I...] you may [...] combine or link a ‘work that uses the Library’
with the Library to produce a work containing portions of the Library,
and distribute that work under terms of your choice, provided that the
terms permit modification of the work for the customer’s own use and
reverse engineering for debugging such modifications.”*®

Hereinafter, we will sometimes denote these lines by the term LGPL2-RefEng-
Sentence.

3.1 Linguistical Clarification

For fulfilling our rule, to read the text strictly and deduce our interpretations
reasonably, let us firstly only highlight the syntactical conjunctions for simplifying
the understanding;:

“I...] you may [...] combine or link a ‘work that uses the Library’
with the Library to produce a work containing portions of the Library
and distribute that work under terms of your choice, provided that
the terms permit modification of the work for the customer’s own use
and reverse engineering for debugging such modifications.”?

It is evident that the conjunction ’provided that’ is splitting the sentence into
two parts: you are allowed to do something provided that a condition is fulfilled.
Additionally, both parts of the sentence — the one before the conjunction ’provided
that” and the part after it — are syntactically condensed embedded phrases which
also contain subordinated conjunctions and elliptical constructions®. These
syntactical interconnections must be disbanded:

Let us firstly dissolve the syntactical compression before the conjunction
‘provided that’: 1t is established by using the two other conjunctions and and
or and introduced by the subordinating phrase you may /...]. Unfortunately,
from a formal point of view, one can read the phrase you may (X or Y and Z) as

18) of. Open Source Initiative: The LGPL-2.1 License (OSI), 1999, wp., §6.. The first ellipse in
this citation — notated by the string ’[...]” — refers to the phrase “As an exception to the
Sections above,”, the second to the phrase “also”. These words together want to indicate,
that the LGPL offers its §6-way-of-distribution as an exception to the intended default way
of distributing such a Library. So, the nature of the extraordinary way itself is not affected
by this hint. Thus, we feel free to erase this contextual link.

19) ¢f. id., l.c., wp., §6, emphasis KR..

20) cf. http://en.wikipedia.org/wiki/Ellipsis_%28linguistics %29, wp.

3 Reverse Engineering in the LGPL-v2

two different groupings: either as you may ((X or Y) and Z) or as you may (X or
(Y and Z)).

But, fortunately, we know from the semantic point of view that speaking about
“[...] combining or linking [...something] to produce a work containing portions
of the Library” denotes two different methods which both can join the components
“[...] to produce a work containing portions of the Library”. So, let us — only for
a moment?! — simply replace the string “combine or link” by the string “*join”?2.
This reduces the syntactical structure of the sentence back to the simple phrase
you may (W and Z) in which W stands for (X or Y).

Now, we can directly state that the phrase you may (W and Z) itself is a condensed
version of the explicit phrase (you may W) and (you may Z).

Finally we have to note, that the phrase before the conjunction ‘provided that’
contains also a linguistic ellipsis?®: It says that you may *join the components
“to produce a work containing portions of the Library and distribute that
work under terms of your choice”. With respect to the English grammar, we may
conclude that the second term that work refers back to the previously introduced
specification of a work containing portions of the Library: if a complete phrase
has just been introduced explicitly, then the English language allows to reduce
its’ next occurence syntactically while its’ complete meaning is retained. Hence,
conversely, we are allowed to unfold the reduced form to restore the complete
phrase.

So — overall — we may understand the phrase before the conjunction ’provided
that’ as a phrase with the structure (you may W) and (you may Z’):

((you may [...] *join a “work that uses the Library” with the Library
to produce a work containing portions of the Library) and (you may
[...] distribute that work containing portions of the Library under
terms of your choice)) provided that |...]

Theoretically, a reader could reject our first dissolution of the LGPL2-RefEng-
Sentence. But for reasonably denying our interpretation he has to deliver other
resolutions of the lingustic elliptical subphrases or other dissolvations of the
conjunctions. Fortunately, it seems to be evident that such attempts must violate
the English grammar.

Let us secondly dissolve the part after the conjunction ’provided that’:
With respect to the subordinated conjunction ‘and’, the subphrase the terms permat

21) Later on we will re-insert th original phrase!

22) When the LGPL and the GPL were initially defined, the C programming language was the
predominant model of software development. Knowing this method eases the understanding
of these licenses. Thus, it is not totally wrong to take this token *join also as a curtsey to
the C programming language.

23) cf. http://en.wikipedia.org/wiki/Ellipsis_%28linguistics %29, wp.

3 Reverse Engineering in the LGPL-v2

syntactically refers to both, the modification and the reverse engineering: An
embedded conjunction ‘and’ allows to use a more stylish grammatical compaction.
So, it should be clear, that saying

provided that the terms permit modification of the work for the
customer’s own use and reverse engineering for debugging such modi-
fications

means

provided that the terms permit (modification of the work for the
customer’s own use and reverse engineering for debugging such modi-
fications)

and is totally equivalent to the sentence

[...] provided that ((the terms permit modification of the work for
the customer’s own use) and (the terms permit reverse engineering
for debugging such modifications)).

We believe that there is no other possibility to understand this part of the LGPL2-
RefEng-Sentence with respect to the rules of the English language. Nevertheless,
this is a next point where our reader may formally disagree with us. If he really
wants to object our dissolution, he must deliver another valid interpreation of
the scope of the conjunction and or he must deliver another resolutions of the
linguistic ellipsis. But we reckon, that one can not reasonably argue for such
alternatives.

Finally, there are other deeply embedded ellipses, which need to be resolved as

1. In the part before the splitting conjunction ’provided that’ we already had

to expand the abridging ’that work’ by its intended explicated version that
work containing portions of the Library’. In the part after the splitting
conjunction the first subphrase also contains the term ’the work’. Formally,
this term can either refer to ’the work that uses the library’ as one of
the components which are joined, or it can refer to ‘the work containing
portions of the Library’ as the result of joining the components. We decide
to constantly dissolve the elliptic abridgement by the phrase ’the work
containing portions of the Library’.

. The first clause of the part after the splitting conjunction ’provided that’ talks
about the purpose of “permitting modification of the work” which we just
had to unfold to the phrase ‘permitting modification of the work containing
portions of the Library’. The second clause talks about the purpose of
“permitting reverse engineering”: it shall support the “debugging [of] such
modifications”. The pronoun ’such’ indicates that the word "modifications’

10

3 Reverse Engineering in the LGPL-v2

refers back to the just unfolded phrase modification of the work containing
portions of the Library. So, even the second sentence has to be expanded to
that explicit phrase.

3. Finally and only for being complete, we also have to unfold the clause “the
terms” to the form which is predetermined by the first referred instance
“the terms of your choice”

So — overall — we are allowed to rewrite the LGPL2-RevEng-Sentence in the
following form, namely without having changed its meaning**:

((you may
*join a work that uses the Library with the Library
to produce a work containing portions of the Library)

AND
(you may
distribute that work containing portions of the Library
under terms of your choice
))

PROVIDED THAT
((the terms of your choice permit
modification of the work containing portions of
the Library for the customer’s own use)
AND
(the terms of your choice permit
reverse engineering for debugging modifications
of the work containing portions of the Library

))

At this point we must recommend all our readers to verify that this ’structurally
explicated presentation’ does exactly mean the same as the intially quoted LGPL2-
RefEng-Sentence. We are now going to discuss some of its’ logical aspects by
some formal transformations. For accepting these operations and linking the
results back to the original LGPL2-RefEng-Sentence, it is very helpful to know
that one already has accepted the equivalence of this explicated form and the
more condensed original version. For reviewing the equivalence the reader could —
for example — ask himself which of our rewritings are wrong, why they are wrong
and which alternatives can reasonably be offered for solving the syntactical issues
which disposed us to chose our solutions. Again, we ourselves — of course — are
profoundly convinced that both versions are completely equivalent.

24) Recollect that "*join’ still stands for ’combine or link’.

11

3 Reverse Engineering in the LGPL-v2

3.2 Logical Clarification

For simplifying our discussion let us now replace the meaningful terminal phrases
of our form by some logical variables:

[' :- (you may *join a work that uses the Library with the Library to produce a
work containing portions of the Library)

A :- (you may distribute that work containing portions of the Library under
terms of your choice)

® - (the terms of your choice permit modification of the work containing portions
of the Library for the customer’s own use)

Y. - (the terms of your choice permit reverse engineering for debugging modifica-
tions of the work containing portions of the Library)

O -T and A
Q -P and X

Based on these definitions, we can syntactically reduce the LGPL2-RefEng-
Sentence to the formula (I' and A) provided that (® and) or — even shorter — to
(© provided that Q).

Now, we have to clarify the meaning of the conjunction ‘provided that’:

Obviously, provided that means something like under the condition that. So, one
might try to take this conjunction as another more stylish version of the common
if(. ..)then(. ..)-formula, sometimes also identified as a (logical) implication®.
Thus, we have to consider the process of sequencing the linguistic form into a
logical formula: if we indeed take the conjunction provided that as another form
of the logical implication, it is not evident, which part of the linguistic sentence
must become the premise, and which the conclusion: Does (© provided that 2)
mean (if © then Q) or (if Q then ©)7

Apparently, provided that wants to establish something like a precondition. So,
one might conclude that (© provided that) means (if Q then ©) or — more
logically notated — ((® A 3) — (I' A A)). If this interpretation is adequate, it
must of course fulfill the intended purpose of the corresponding LGPL-v2-section,
which wants to regulate the distribution of works containing portions of LGPL
libraries.

For facilitating the understanding of our argumentation, let us first check whether
this logical interpretation of the linguistic conjunction fits the purpose of the LGPL

25) Actually the logical implication and the computational if-then-construct are not equivalent.
Fortunately, we later on can show, that in the context of this discussion the difference can
be ignored.

12

3 Reverse Engineering in the LGPL-v2

— by unfolding the slightly reduced version (¥ — A) back to the corresponding
verbal form:

if ([..] the terms permit reverse engineering for debugging modifi-
cations of the work containing portions of the Library,) then ([...]
you may distribute that work containing portions of the Library under
the terms of your choice.)

Now we can better see the problem: An implication as a whole is false only if the
premise is true and the conclusion is false. In all other cases it is true. Especially,
it is true, if the premise is false: If the premise is false, then the truth value of
the conclusion does not matter in any sense. Thus, if we take this implication as
a rule, which shall determine our behaviour, then this implication only supports
us, if we already have decided to permit reverse engineering. In this case the rule
successfully tells us that we are allowed to distribute the work containing portions
of the Library. But from the converse decision that we will not permit reverse
engineering, follows nothing - because a false premise does not influence the truth
value of the conclusion. Especially, the rule does not tell us that we may not
distribute the work containing portions of the Library. So — from the viewpoint
of the formal logic — this translation of the original conjunction ’provided that’
says, that if the terms of your own license do not permit reverse engineering for
debugging modifications of the work containing portions of the Library?®, then
you may or may not distribute that work containing portions of the Library
under the terms of your choice?”. Hence, we must state that this interpretation
does not fulfill the purpose of the LGPL-V2: if reverse engineering is not allowed,
the distribution of the work containing portions of the Library is not regulated.
We have to conclude, that this sequencing the LGPL2-RefEng-Sentence as a
logical implication is wrong.

But we deduced this consequence from a slighty reduced form of the LGPL2-
RefEng-Sentence. Thus, we still have to ask, whether we have to derive this
conclusion also on the base of the completely unfolded formula ((® A ¥) — (T
A A))? The answer is yes: the premise ((® A X) contains a logical conjunction.
So the truth value of the whole premise depends on the truth value of each of its
terminal statements, particularly on that of the statement ¥: If we decide not to
permit reverse engineering, then the premise as whole is false, regardless we forbid
or allow modifications. Consequently, the premise does not influence the truth
value of the conclusion. So, there is no way, to conclude that we have to allow
or that we do not have to allow reverse engineering. Hence we can transfer our
result, deduced for the slightly reduced formula to the unfolded complete formula:
assuming that (O provided that 2) means (if Q then O) is wrong.

26) The premise is false.
27) The truth value of the conlusion is undetermined by the rule.

13

3 Reverse Engineering in the LGPL-v2

So, let us test the other combination. Let us ask, whether (© provided that 2)
means (if © then §2) or — more logically notated — ((I' A A) — (¢ A X)). If
we again for a moment focus on the reduced version (A — X)) and dissolve our
replacements, then we get back the rule:

if ([...] you may distribute that work containing portions of the
Library under the terms of your choice,) then ([...] the terms
permit reverse engineering for debugging modifications of the work
containing portions of the Library.)

Now we can see, that this version perfectly regulates the distribution of works
containing portions of LGPL libraries: If we are allowed to do so or — in other
words: if we are compliantly distributing works containing portions of LGPL
libraries®, then we have to permit reverse engineering?’. This follows from
applying Modus Ponens to the implication®’. And if we do not permit reverse
engineering®', then we are not allowed to distribute works containing portions of
LGPL libraries®?. This follows from applying Modus Tollens to the implication®

But — again — we have to consider that we have deduced this consequence from a
slighty reduced version of our LGPL2-RefEng-Sentence. Thus, we still have to
show that our result also holds for the completely unfolded formula ((I' A A) —
(& A X)): If we want to distribute works containing portions of the Library which
have been produced by joining the Library and the work using the Library**, then
our terms must permit the modification and reverse engineering of the distributed
product®. And if we do not allow its modification or reverse engineering®®, then
we do not compliantly distribute works containing portions of the Library which
have been produced by joining the Library and the work using the Library*” Thus,
we may generally state, that the logical explication ((I' A A) — (& A X)) perfectly
regulates the distribution of works containing portions of LGPL libraries.

Based on this clarification, we can reasonably replace the more stylish conjunction
‘provided that’ by its more known equivalent “implication’®, which we indicate by

28) The premise is true.

29) The conclusion must be true, too!

30) A true premise evokes a true conclusion based on the given truth of the implication / rule
itself.

31) The conclusion is false.

32) The premise must be false, too!

33) A false conclusion evokes a false premise based on the given truth of the implication / rule
itself.

34) Premise is true.

35) Conclusion must become true by Modus Ponens.

36) Conclusion is false.

37) Premise must become false by Modus Tollens.

38) Here we can also see, that the difference between the if-then-command as part of a procedural
computer language and the logical implication does not influence our results: In the context

14

3 Reverse Engineering in the LGPL-v2

the commonly used character for a logical implication, the sign "—:

O provided that 2
=0 —Q
=(PAX) = (T AA)

= (([?] you may
*join a work that uses the Library with the Library
to produce a work containing portions of the Library)
A
([¥X] you may
distribute that work containing portions of the
Library under terms of your choice

/\\Lv

([I'] the terms of your choice permit
modification of the work containing portions of
the Library for the customer’s own use)

A

([A] the terms of your choice permit
reverse engineering for debugging modifications
of the work containing portions of the Library

))

3.3 Empirical Clarification

We can now simplify this formula once more by considering some empirical facts
and explicating some underlying understandings:

The first sentence ® explains that the work that uses the Library and the used
Library itself together are joined and thereby transformed into a work containing
portions of the Library. So, formally, one might ask, whether this newly generated
work containing portions of the Library also still uses the Library?

Unfortunately, it is empirically possible, that such a process for combining the two
components could (a) copy all original portions of the library into a something
like a 'dead end section’ of the program where they are never excuted, and could
(b) replace all original portions of the library by functionally equivalent portions

of a procedural if-then-command the truth of the premise triggers the execution of the
conclusion. In our discussion, this aspect is totally covered by the Modus Ponens derivation
of the logical interpretation. And the Modus Tollens derivation of the logical interpretation
on the other side does not play any role in a procedural if-then-command. So, it was the
right decision to understand the LGPL2-RefEng-Sentence logically and not as procedual
command.

15

3 Reverse Engineering in the LGPL-v2

of any other library. Thus, the resulting work containing portions of the Library
would indeed still contain portions of the Library, although it would not use it
any longer. And because of this possibility, we are not allowed to say, that every
work containing portions of a library also uses the library™.

But, fortunately, the normal computational process of combining and linking a
work that uses the Library with the Library to produce a work containing portions
of the Library inherently preserves the utilization of the joined library: It is the
general purpose of a software library to offer functions and/or data (structures)
for really being used by applications. And vice versa, software developers refer
to a specific library because they prefer its service: They use readily prepared
libraries (or classes or anything else) because they want to simplify their own
work while they conserve the quality level of their work. Thus, they chose a
library based on the assertion, that the standard compiling and linking process
guarantees, that indeed the chosen library is used (and not secretly substituted
by a mysterious ’equivalent’). With respect to this praxis of programming we
are allowed to say that a work containing portions of the Library which has been
built by the normal development processes of combining, compiling, and
linking source and object files, indeed also uses the intended library.

Now, we are able to consider an empirical correlation between the first sentence
® and the second sentence X:

It seems to be evident, that we must already have done ®, in other words: that
we must already have *joined — respectively: combined or linked — a work that
uses the Library with the Library to produce a work containing portions of the
Library, if we are going to compliantly distribute that work containing portions
of the Library under terms of your choice. Or briefly spoken: It seems to be
conclusive that ¥ empirically implies ®*°.

But is this conclusion correct? Let us check this statement by assuming the
opposite: If the contrary was true, there had to exist a work containing portions
of the Library which had been gained without having linked or combined the
work and the Library in any sense. But from the inference above we already
know that works containing portions of the Library, which have been produced
by the standard computational processes of combining and linking a work that
uses the Library with the Library, indeed also use the Library. Thus, it would be
self-contradictory to talk about a work containing portions of the Library, which
was produced by the standard combining and linking processes, and similarily to
state, that exactly this work is not combined with the library in any sense. And
from a proof by contradiction we may infer the truth of the logical opposite:

So, with respect to the meaning of being standardly combined or linked with, we

39) | even if we think that this is a really silly way to organize the joining process!

40) but not vice versa.

16

3 Reverse Engineering in the LGPL-v2

may now say, that

e it is necessarily true that a computional work, which is standardly produced
on the base of a work that uses the Library and the Library and which
therefore literally contains more or less portions of a library, indeed uses the
the Library and is therefore combined with the library.

o Y% empirically implies ®*? (in the standardized world of software devel-
opment), because ® must ever have been executed when ¥ is going to be
realized.

Thus, we can now reduce the LGPL2-RefEng-Sentence to its’ real core, the
LGPL2-RefEng-Rule:

(¢ [¥] you may
distribute (a) work containing portions of the
Library*® under terms of your choice)
N
(([I'] the terms of your choice permit
modification of the work containing portions of
the Library for the customer’s own use)
A
([A] the terms of your choice permit
reverse engineering for debugging modifications
of the work containing portions of the Library

))

This is indeed the essence of the LGPL2-RefEng-Sentence. It logically explains us
that we have to allow reverse engineering and modification of a work containing
portions of the Library if we distribute it (Modus Ponens) and that we are not
allowed to distribute a work containing portions of the Library, if we do not allow
its modification or reverse engineering (Modus Tollens).

Thus, for applying this rule correctly, we now only must know whether a work
indeed contains portions of the Library or not.

3.4 Final Conclusion

Unfortunately, there are more than one software developing scenarios, which must
be considered for answering this question in detail. We see three general types of

4D distributing a work that uses the Library and contains portions of a library

42) A work that uses the Library has been *joined with the Library to produce a work containing
portions of the Library

43) which previously has been prepared for being distributed by standardly combining and
linking the work that uses the Library with the Library in a way that this prepared work indeed
also uses the Library

17

3 Reverse Engineering in the LGPL-v2

developing computer software:

1. You can produce software by using script languages. Source files which
contain script language commands are distributed and executed by an
interpreter without priorly being transformed into another 'more’ machine
specific language.

2. You can develop software by using languages which are designed for being
compiled into a machine independent bytecode. Later on, this independent
bytecode is executed by a machine specific virtual machine.

3. You can write traditional software files. Sometimes, these files are remastered
by a preprocessor before the real process starts. The traditional sources
themselves or the output files of the preprocessor are then compiled and
linked as machine specific binary file(s).

You may take 'php’ is an example for the first environment, ’Java’ an example for
the second, and 'C/C++" an example for the third.

Fortunately, the nature of these environments simplifies the answer to the question
under which conditions the work using the Library contains portions of the Library:

3.4.0.1 Distributing works with manually copied portions of the Library
evokes the copyleft effect: Manually copying code from the sources of the
Library into the overarching work that uses the Library, is not the standard way
of combining both components, neither in the world of script programming, nor
in the world of bytecode programming, nor in the world of programming machine
specific code:

Normally, the work which uses the Library is joined to the intended Library by an
include statement, an input statement, an import statement, a package statement,
or anything else. These *join-statements are inserted into the code of the work.
They denote the file(s) which deliver(s) the used functions, methods, classes, or
data. It is an integrated feature of the normal development tools that inserting
such *join-statements does not directly augment the work using the library by
some code of the Library: The development processes are designed to offer an
automatic augmention as part of the standard compilation which is started after
the actual development loop has been terminated.

Nevertheless, developers can circumvent these standard methods for using a
Library. Technically, they can directly copy code from the Library into their
own work. Consequently, these manually copied extensions of the code will be
compiled and/or executed together with the ’own’ code of the work. Thus, it is
clear, that in this case the work that uses the Library, already contains portions
of the Library, paticularly before the normal *join-processes of the environment
are executed.

18

3 Reverse Engineering in the LGPL-v2

Hence, if you are going to distribute works that contain literal copies of the Library
source code, then you have to allow reverse engineering, even if they have already
been compiled (but still not linked) on the base of such augmented files**.

But, if we manually copy code from the Library to our work using the Library,
we also have to consider, that the LGPL-v2 directly regulates this kind of using
the Library: It says, that “you may modify your copy or copies of the Library or
any portion of it [...] provided that you also [...] cause the whole of the work
to be licensed [...]| under the terms of this License”*>. Thus, there are strong
arguments for the proposition, that the LGPL causes the copyleft effect in case of
literally copying code from the Library into the work using the Library: The code
of the work using the library has to be made accessible, as well.

So, overall, we might say, that 'manually’ copying code from an LGPL-v2 Library

44) This directly follows from the LGPL2-RefEng-Rule by Modus Ponens. But nevertheless, one
might reply here, that even the result of manually copying code from the Library to the
work using the Library is covered by the limits of tolerance, introduced by the LGPL-v2-§5.
Formally, this argument seems to be appropriate. And indeed, also we have to consider these
limits of tolerance later on. But in the context of copying code from the Library into the
work manually, a closer look reduces its impact. You have to discriminate three cases:

1. Developers can manually copy / transfer some or at most all elements of the
Library header files into the code of the work which the preporcessor itself would
copy / transfer into that code automatically. But developers will not do that. Some
simple include commands would cause the same effect. And Developers want to save
recourses, especially their own working time. So, why should they manually do, what
they can delegate to the standard development process. Thus, it is reasonable to assume,
that developers, who nevertheless copy portions from Library into their work, do not
want to repeat the service of the preprocessor manually, but to transfer more than only
these elements. Hence, it is reasonable to assume, that their work is covered by the
LGPL2-RefEng-Rule.

2. Developers can manually copy / transfer more than only the elements of the
Library header files from the Library sources into the code of the work using
the Library and they can nevertheless let the work being linked to the Library.
But again developers will not do that, because — again — some simple include and linking
commands would cause the same effect. So it is reasonable to start from the premise,
that copying developers in fact do more than this. Thus, it is reasonable to assume, that
their work is covered by the LGPL2-RefEng-Rule.

3. Developers can manually copy / transfer more than only the elements of the
Library header files from the Library sources into the code of the work using
the Library without linking it to the Library. This is a reasonable step of work,
because it spares the developers to link their work to the Library. But — by definition
— such an augmented work contains more elements of the Library than LGPL-v2-§5
tolerates. Thus it is — again — reasonable to assume, that such a work is covered by the
LGPL2-RefEng-Rule.

Hence — overall and from a practical point of view — we can indeed say, that manually copying
code from the Library into the work using the Library requires to allow reverse engineering.
45) cf. Open Source Initiative: The LGPL-2.1 License (OSI), 1999, wp., §2, escpcially §2c.

19

3 Reverse Engineering in the LGPL-v2

into a work using that Library as a bypass of the standard software combining
processes and distributing the result indeed requires to additionally permit its
reverse engineering — even if this permission is probably not very important for
the recipient, because he probably must have a direct access to the code.

3.4.0.2 Distributing scripts does not need reverse engineering: Computer
programs written in a script language are distributed as they have been developed.
They are not transformed into another kind of code®. The interpreter takes the
script file as it is and directly executes it. Thus, there is no special technique of
reverse engineering for understanding these kind of software: you can directly
read it if you know the script language.

So, again, we might conclude, that a script using a script Library perhaps requires
to permit its reverse engineering — but probably this permission is not very
important for the recipient, because he can directly read the code.

3.4.0.3 Distributing statically combined bytecode requires the permission of
reverse engineering: In Java — the prototype for languages which are compiled
to machine independent portable bytecode — each class is compiled as a seperate
class file. These class files have to be stored somewhere in the classpath. A side
from that, classes can also be collected and distributed in form of packages which
then can be used like 'traditional” Libraries. These packages must also be stored
somewhere in the classpath. A single class is made known to the work, that want
to use it, by an import statement which contains the class name; a whole Java
library is made usable by integrating a package statement into the code.

The code which follows such import- or package statements, can then use the
definitions offered by the classes. It denotes the elements of the classes by the
(qualified) names of its public or protected member variables or methods. Thus, —
from a strict viewpoint — the code of such a Java work using a Library indeed
contains portions of that library, even if these portions are only identifying names
or data structures containing identifying names. The Java compilation process
which generates the bytecode, preserves these denoting names. It does not replace
the referring names by the referred code of the methods and so on. Only just at
the end, when the java virtual machine itself tries to execute the work using the
Library, it collects all necessary commands of all 'joined’ classes.

So, one might tend to argue that answering the question, whether a distributed
java bytecode already contains portions of the used Library, depends on the

46) Java script is often offered as compressed code. Roughly spoken, this means that at first
all white space signs have been replaced by blanks and then all rows of blanks have been
reduced to at most one single blank. So, even then, the code itself is directly readable and
comprehensible — even if only for very sophisticated experts.

20

3 Reverse Engineering in the LGPL-v2

interpretation, whether a denoting identifier of a Library indeed is a portion of the
Library. We will discuss this case together with the corresponding C/C++-Case.

But there is another Java specific aspect, which has to be considered as well. As
already mentioned, in Java you can also join your work containing the denoting
indentifiers and the denoted Library by building a new package, which then
contains both, the work using the Library and the used Library. Hence, one
can say, that this package is quasi statically linked: if you distribute such an
integrated package, then you are distributing both components together. Thus, if
you distribute a complete package, in other words: a quasi statically linked work
containing the work using the Library and (all portions of) the Library, then you
have to permit reverse engineering®’.

So, preliminarily we conclude, that with respect to Java programming you (a)
have to permit reverse engineering, if you distribute your work using the Library
and the Library itself as a (statically linked) integrated package’® and that (b)
in all other cases your obligation to permit reverse engineering depends on the
interpretation whether the identifiers declared by a Library are indeed portions of
the Library.

Fortunately, we can reasonably decide the issue of case (b) soon.

3.4.0.4 Distributing statically combined binaries require the permission of
reverse engineering: Similar to Java, in C/C++ — the prototype of those
languages, which are compiled as machine specific code — a C/C++ Library is
also explicitly made known to the work that want to use it, namely by some
include statements. These include statements denote the header files offered by
and distributed with the Library. They contain the declarations of those elements
which the Library wants to publish. Or briefly worded: the Library contains the
definitions in form of code, the header files the corresponding declarations.

The C/C++ code following such include statements can refer to the definitions
offered by the Library by using the declarations anounced by the header files.
So, again, — from a strict viewpoint — the code of such a C/C++ work using the
Library indeed contains portions of the library, even if these portions are only
identifying names or data structures published by the header files.

Beyond that conceptual relation, the C/C++ development process finally compiles
the work using the library as an object file containing machine specific code. Just
as the Java compilation, also this process does not replace the referring names
by the referred code of the Library; it still preserves the denoting names. The
resulting file, which has been compiled into machine specific code, but still contains
the denoting identifiers, is also known as 'object code file’.

47) This directly follows from the LGPL2-RefEng-Rule by Modus Ponens
48) This follows from the LGPL2-RevEng-Rule by Modus Ponens.

21

3 Reverse Engineering in the LGPL-v2

The C/C++ compilation process is (mostly) managed by a make file, which is
executed by the make command®. This development tool calls the compiler for
each source file, makes known the directories which contain the compiled target
object files, and finally calls the linker. The linker recursively scans the compiled
object files and replaces each embedded identifier by a truely executable jump
command into that set of Library commands which are denoted by the identifier
and which shall be executed as part of the work using the Library. So, only just
at the end, the linker collects all necessary commands of all ’joined” object files
and Libraries and produces the really executable work.

But — notwithstanding the above — the linker can either be called as integrated
step of the developement process itself. Or the linker can seperatedly be called,
especially on another machine: In the first case, the development process generates
a statically linked executable which already contains all necessary portions of
all used Libraries. In the second case, the development process generates a
dynamically linkable program by collecting the (set of) still unlinked object code
file(s) as a distributable package. Thus, if you distribute a statically linked
executable, it definitely contains ’portions’ of the library; if you distribute a
dynamically linkable program you have to decide whether the embedded identifying
names of a Library have indeed to be interpreted as portions of the Library.

Unfortunately, we still have to consider a little complication, based on the nature
of the a C/C++ development process: In contrary to the Java development
environment, a C/C++ development process inherently uses a preprocessor engine.
This engine takes the header files delivered by the Library, verifies the syntactically
correct use of the Library and can indeed replace some tokens of the work using
the Library by commands and/or lines from the Library. This technique is known
as inline functions or macros. They have been invented for those cases where
expanding the stack of commands during the compilation by a real function call
is more expensive than writing the embedded commands of the function more
than one time into the whole code. Hence, in the C/C++ development process
the compiled object files can indeed contain more than only the referring names
which denote portions of the Library: beside the denoting identifiers, they can
also already contain real, functionally relevant portions of the Library.

Thus, — again and similar to Java compilation — we may conclude, that with
respect to C/C++ programming you (a) have to permit reverse engineering, if you
distribute your work using the Library together with the Library as a statically
linked program® and that (b) in all other cases your obligation to permit reverse
engineering depends on the interpretation whether the used identifiers or dissolved

49) Sometimes there additionally exist a complete meta environment which generates such make
files. The GNU build system for example offers a complex set of configure scripts and make
file templates (cf. http://en.wikipedia.org/wiki/GNU _build_system, wp.).

50) This follows from the LGPL2-RevEng-Rule by Modus Ponens.

22

3 Reverse Engineering in the LGPL-v2

inline functions and macros, which have been declared by the Library and which
therefore have automatically and standard conformably been embedded into an
object file, are indeed portions of the Library.

Obviously, it is time to answer this crucial question:

3.4.0.5 Distributing dynamically combinable bytecode and linkable object
code does not require the permission of reverse engineering: Of course,
there is only one instance, that can answer the question, whether indentifiers and
dissolved inline-functions or macros, which are — according to the development
standard — embedded into a work using the Library, indeed are portions of the
Library. This instance is the LGPL-v2 itself. And — fortunately — this license
supports us in a very clear way to answer this question, even if not by its §6 which
deals with the reverse engineering, but by its §5:

The LGPL simply specifies that “linking a ‘work that uses the Library’ with
the Library creates an executable that is a derivative of the Library (because
it contains portions of the Library) [...]” and that “the executable is therefore
covered by this License”®!. Additionally, it talks about compiled, but still unlinked
“object files”, which therefore are not executables . Such an unexecutable “object
file” — for example that of the “work using the Library” — which “[...] uses only
numerical parameters, data structure layouts and accessors, and small macros
and small inline functions (ten lines or less in length)” shall practically not be
covered by the license of the Library, because “|...] the use of the object file is
unrestricted regardless of whether it is legally a derivative work”"? - as long as it
does not exceed the given limits.

Obviously, the answer of the LGPL to our question is this: (a) yes, such object files
containing names and snippets offered by the used Library, could contain portions
of the Library. But it is not necessary to clarify the details, because (b) — up to
a specific limit of sizes — these kind of ’little’ portions being embedded into the
object file by the standard compilation processes do not evoke any requirements:
they especially do not evoke the obligation to allow reverse engineering. In other
words: These little portions of a Library which are embedded by the standard
development process and which do not contain more than the specified size of
code may be regarded as another type of portions compared to the normal, real
portions which indeed evoke the obligation to allow reverse engineering. From the
viewpoint of the LGPL, they are pseudo portions of the Library, because they do
not restrict the containg object file in any respect.

So, from the LGPL-RevEng-Rule we can now indirectly conclude, that distributing
dynamically linkable or combinable bytecode or object code files which contain

1) cf. Open Source Initiative: The LGPL-2.1 License (OSI), 1999, wp. §5.
52) ¢f. id., ibid.

23

3 Reverse Engineering in the LGPL-v2

“only numerical parameters, data structure layouts and accessors, and small macros
and small inline functions (ten lines or less in length)” being delivered by a Library
does not require to allow reverse engineering”.

Unfortunately, there might be a practical objection which seems to disturb our
simple result: For applying this rule correctly, we apparently have to assure that
a compiled work that uses the Library but is still not *joined to it, indeed has
only been expanded by “small macros or small inline functions (ten lines or less in
length)”. Thus, seemingly, we have to study all header files of all used Libraries
in detail, if we want to compliantly distribute a work using a Library without
permitting reverse engineering. This could be a lot of work — up to a bulk which
practically can not be managed.

Fortunately, there is a simple solution for this challenge, a rule of thumb, based
on the principle “trust the upstream”®*:

The Library developers of course publish the header files or the public members
and functions of the classes in exactly that form they want these elements to be
used. And they want their Library to be used as an LGPL library, otherwise
they would have chosen another License. So, they wish that improvements of the
Libraries shall be made accessible as well, but that the works using the Library
shall not necessarily be published in form of source code®. Thus, as long as we
use a Library exactly in that form, the original authors have published, as long as
we load down the Library from the official repository, and as long as we do not
modify the intended interfaces defined and published by the original header and
class files, we may justifiably assume that we are using the Libraries just as their
copyright owners want them to be used. And thus, — in other words: as long as
we trust the upstream — we might assume that the header and class files of our
Libraries fit the restrictions of the LGPL-v2.

3.4.0.6 LGPL-v2 compliance with or without permitting reverse engineering:
Now, we have reached our target. Our last clarification can directly be applied to
the both open cases: to the case of distributing Java bytecode as well, as to the
case of distribution C/C++ object code. We now know, that the LGPL-v2 wishes,
that not all portions of a Library covered by a work using the Library, trigger

53) From the decision not to allow reverse engineering follows by Modus Tollens applied to the
LGPL2-RevEng-Rule, that the distribution of the work using the Library must not contain
real portions of the Library. From LGPL-v2-§5 and the limit of the standard proccesses
follows that here the work using the Library does not contain normal, real portions. So, we
know, that this case is not covered by the LGPL2-RevEng-Rule and thus we are allowed, to
distribute a work using the Library without allowing its reverse engineering.

59 On the ELLW 2013, we were told about this principle for the first time. We do not know,
whether Armijn Hemel invented it. But we can respectfully affirm that he has persuasively
explained the spirit and purpose of the principle “trust the upstream”.

55) The meaning of the weak copyleft.

24

3 Reverse Engineering in the LGPL-v2

the permission of reverse engineering. And we now know that the limits — given
by the LGPL-v2-§5 — up to which such pseudo portions indeed do not trigger
the obligation to permit reverse engineering, are respected, if we use "upstream
approved’ C/C++ and Java libraries in standard development environments. Thus,
we indeed finally may conclude, that the LGPL-RevEng-Sentence

)

“[...] you may [...] combine or link a ‘work that uses the Library
with the Library to produce a work containing portions of the Library
and distribute that work under terms of your choice, provided that
the terms permit modification of the work for the customer’s own use
and reverse engineering for debugging such modifications.””°

means nothing else’ than

o With respect to a LGPL-v2 licensed Library, you are not required to allow
reverse engineering, if you [A] develop your work using the Library, on the
base of a standard version of the Library containing the interfaces as the
original developers have designed it, if you [B] compile your work using this
Library, as a discret (set of) dynamically linkable or combinable file(s), if you
[C] use only the standard compilation methods which preserve the upstream
approved interfaces’”, and if you [D] distribute the produced unlinked object
code or bytecode files before they are linked as an executable.

e In all other cases of distributing a work using such a Library, you are required
to allow reverse engineering of the work using this Library — especially, . ..

— if you distribute the work using the Library and the Library together as
a statically linked program or as an integrated package containing both
parts, the work using the library and the Library itself’®.

— if you distribute a work containing manually copied portions of the
Library.

3.5 Final Securing

So far, we have done a lot of work: At first, we unfolded and dissolved some
stylisch condensed formulations of the original LGPL2-RevEng-Sentence by their
linguistically explicit version. At second, we explicated the logical structure of the
sentence. At third, we empirically carved out the real meaning of the sentence.
And finally we mapped the triggering part of that rule to some verifiable facts.

56) cf. Open Source Initiative: The LGPL-2.1 License (OSI), 1999, wp., §6, emphasis KR..

57) and which therefore do not to exceed the LGPL-v2 limits!

58) This holds also if you distribute a script language based program or package, notwithstanding
the fact, that one does not need the permission of reverse engineering to understand script
language based applications.

25

3 Reverse Engineering in the LGPL-v2

Indeed, a lot of work for understanding only one sentence correctly®®. So, it is a
good securing to verify that the derived result fits the spirit and the goals of the
LGPL-v2 perfectly.

For that purpose, let us fist discuss a little (semi-) official article — written by
David Turner and published by the FSF® — which deals with the compliant use
of LGPL licensed Java libraries. Turner refers to the “FSF’s position” which - as
he says - “[...] has remained constant throughout”:

“...] the LGPL works as intended with all known programming
languages, including Java. Applications which link to LGPL libraries
need not be released under the LGPL. Applications need only follow
the requirements in section 6 of the LGPL: allow new versions of the
library to be linked with the application; and allow reverse engineering
to debug this.”"!

Then he describes, that Java libraries are “[...| distributed as a separate JAR
(Java Archive) file” and that applications “[...]| use Java’s ‘import’ functionality
to access classes from these libraries”. Moreover, he also explains, that the process
of compilation “creates” and integrates “links” into the compiled application
which let become the application a “derivative work” of the library. Finally he
states, that not only the LGPL permits to distribute such derivative works, but
that “[...] it is easy to comply with the LGPL” if one indeed wants to “...]
distribute a Java application that imports LGPL libraries”: “Your application’s
license needs to allow users to modify the library, and reverse engineer your code
to debug these modifications.” %

So, we might state, that even this semi-official article argues very similarly to us.
There is only one little phrase in this text which differs a little: Summarizing the
“section 6 of the LGPL” by the statement “/...] allow new versions of the library
to be linked with the application; and allow reverse engineering to debug this”
does not consider that the first sentence of the section 6 of the LGPL contains a

59) Here, some readers might ask why the original authors have encapsulated their clear ideas
in such a sophisticate sentence. Here are two answers: First, this question is practically
irrelevant: The authors of the LGPL-v2 did, what they have done. And many developers
have already licensed their works under the terms of the LGPL-v2. Thus, we simply have to
live with the results — just until the last software being published under the terms of the
LGPL-v2 is relicensed by a better version. Probably this won’t happen during our life time.
Secondly, we appreciate the foresight of the LGPL-v2 authors. They wrote a license which
have successfully worked for more than twenty years. They chosed a formulation which had
also to cover 'uninvented’ techniques. So, it is not so surprizing, that we — today — have to
do a lot of work to understand all details the original authors want to be understood.

60) ¢f. Turner, David: The LGPL and Java; 2004 (URL: http://www.gnu.org/licenses/
lgpl-java.en.html) — reference download: 2015-02-09, wp..

61 ¢f. id., l.c., wp.

62) ¢f. id., Lc., wp..

26

http://www.gnu.org/licenses/lgpl-java.en.html
http://www.gnu.org/licenses/lgpl-java.en.html

3 Reverse Engineering in the LGPL-v2

complex condition. The LGPL2-RefEng-Sentence means — as we could prove —
that one may distribute (a) work containing portions of the Library only
if one’s license permit reverse engineering for debugging modifications®. But —
as we could also show — for determining wether an application really contains
portions of the Library, one has additionally to consider the limits defined by
section 5 of the LGPL"*: the application’s license needs to allow to reverse engineer
the application only if it contains more elements of the Library than §5 of the
LGPL-v2 has specified as limit.

That our analysis fits the spirit of the LGPL, can also be shown by considering
the LGPL directly:

The LGPL-v2 clearly describes its goals. It wants to enable the community to
let an LGPL Library “[...] become a de-facto standard”. And the LGPL knows,
that “to achieve this [goal|, non-free programs must be allowed to use the library”,
because the “[...] permission to use a particular library in non-free programs
enables a greater number of people to use a large body of free software”. But
the LGPL also asserts in this context, that “although the Lesser General Public
License is Less protective of the users’ freedom, it does ensure that the user of a
program that is linked with the Library has the freedom and the wherewithal to
run that program using a modified version of the Library”%°.

So — as a last check of our derivation — we can analyze, whether our derived result
violates this goal. If it does, then we probably made a tremendous fault; if not,
then we are allowed to trust in the consistence our analysis:

If you receive a work using the Library in form of a discret (set of) dynamically
linkable or combinable file(s) and if — hence — your provider assumed that the
files he delivers will be linked on your target machine which — therefore — has
to provide a linker and the the necessary dynamically linkable Libraries, than
you systematically have the freedom to replace the dynamically linked Libraries
by their updated versions®®. And as long as the newer versions of the Libraries
preserve the defined and declared interfaces, you can do that successfully. That’s,
what the LGPL-v2 wants to ensure.

In all other cases, you must have the permission of reverse engineering or you
have a direct access to the source code. So, you can use the corresponding tools
and techniques to replace the embedded version of the Library by a newer version;
especially if you have received a statically linked package. Hence, also the second

63) & p. 17

64) 5 p. 23

65) ¢f. Open Source Initiative: The LGPL-2.1 License (OSI), 1999, wp., preamble, emphasis KR.

66) In GNU /Linux — for example — you must (only) copy the dynamically linkable new version
of the Library into the lib/-directory and replace the existing link by a version pointing to
the newer version. Sometimes you should additionally verify the 1d.so.conf files and call
ldconfig tool.

27

4 Reverse Engineering in the LGPL-v3

part of our interpretation respects the spirit of the LGPL-v2.

So, finally we can say, everything is fine: The LGPL2-RevEng-Rule — together with
the meaning of being a portion of a Library — does not only verifiably exeplicate
the meaning of the LGPL2-RevEng-Sentence, but also fits the spirit and the
purpose of the LGPL-v2 as it has been announced by its preamble.

4 Reverse Engineering in the LGPL-v3

Based on our experiences how to successfully carve out the meaning of license
text, we can shorten the way to understand the one LGPL3-RevEng-Sentence
referring to reverse engineering:

“You may convey a Combined Work under terms of your choice that,
taken together, effectively do not restrict modification of the portions of
the Library contained in the Combined Work and reverse engineering
for debugging such modifications, if you also do each of the following

..]

Reusing our method of disambiguation, we first can exemplify the meaning of the
LGPL3-RevEng-Sentence by the following text:

([©]
(You compliantly distribute a Combined Work
under terms of your choice
((that together effectively, do not restrict modification of
the portions of the Library contained in the Combined Work)
AND
(that together effectively, do not restrict reverse
engineering for debugging modifications of the portions
of the Library contained in the Combined Work)
))
IF
Q]
(you also do each of the following [...])
)

But now, a simply executed logical serialization let us running into a problem:

If we serialized (© IF Q) as (@ — ©), then from not respecting © would follow
by Modus Tollens, that we are not allowed to realize €2 — in other words: that we

67) cf. Open Source Initiative: The LGPL-3.0 License (OSI), 2007, wp., §4. The ellipsis at the
end of the sentence denotes a set of tasks which we do not listen here for saving recourses,
but which have to be considered as an integrated part of this sentence.

28

4 Reverse Engineering in the LGPL-v3

may not do even one of the single tasks covered by the ellipsis — which is a silly
result.

If we serialized (© IF Q) as (© —) then from doing © would successfully follow
by Modus Ponens that we also have to do 2. And from not respecting €2 would
successfully follow by Modus Tollens, that we must not do ©. But unfortunately,
we can respect this second interdiction also by distributing a Combined Work
under terms that restrict modifications and/or reverse engineering (instead of not
restricting these techniques) — which, again, is a silly result.

Obviously, a simple serialization based on a intutively unclear reading fails. In fact,
the LGPL3-RevEng-Sentence must have a more sophisticated underlying structure.
It must be logically serialized in a form, that integrates the requirements, not to
restrict modifications and reverse enigneering, as really triggable conditions. Thus,
the meaning of the sentence can logically be explicated as the LGPLS3-RevEng-
Rule:

(2]
(You compliantly distribute a Combined Work
under terms of your choice

)
—
(I]

(the terms of your choice together effectively do
not restrict modification of the portions of the
Library contained in the Combined Work)

A A]

(the terms of your choice together effectively, do
not restrict reverse engineering for debugging
modifications of the portions of the Library
contained in the Combined Work)

A Q]

(you also do each of the following |...])

))

This LGPL3-RevEng-Rule indeed successfully regulates how to compliantly dis-
tribute a Combined Work by telling us,

e that we have to respect I', A and all single parts of €, if we distribute a

Combined Work compliantly®®.

68) follows by Modus Ponens. Thus, in this case especially our terms “[...] together effectively
[must] not restrict reverse engineering for debugging modifications of the portions of
the Library contained in the Combined Work”.

29

4 Reverse Engineering in the LGPL-v3

e that we do not distribute a Combined Work compliantly, if we do not respect
one of the requirements I, A or one of the single parts of Q%.

Now, we can directly see, that the LGPLv3 does not enforce us, not to obstruct
reverse engineering in all respects! The required reverse engineering is limited
to the purpose of supporting the debugging of modifications and focused to the
Combined Work containing portions of the Library. In other words: our terms may
obstruct other purposes of reverse engineering or may restrict reverse engineering
of other forms of our work which which can not be specified as Combined Work
or do not contain portions of the Library. Thus, the first crucial question is, what
the LGPL-v3 means if it talks about a “Combined Work”. The second question
is, what the LGPL-v3 specifies as a portion of the Library.

Again, fortunately, the LGPL-v3 answers clearly: “A ‘Combined Work’ is a work
produced by combining or linking an Application with the Library” ™. From our
LGPL-v2 analysis we know the ways how works that uses a Library can technically
be linked or combined with the Library:

e Copying code from the Library into the work using the Library™ causes
that the application respectively the work using the Library indeed contains
portions of the Library™.

e Combining script language based applications and Libraries may evoke that
the resulting application contains portions of the Library. But the details
can be neglected with respect to the reverse engineering, because script
code is distributed as it has been developed and can therefore directly be
understood™.

e Combining java classes and libraries as integrated quasi statically linked
packages causes, that the resulting package already contains all functionally
necessary code of the Library™.

e Compiling java classes without combining them with the referred Library
classes causes, that the compiled classes at least contain identifiers having
been declared by the Library™.

e Combiling C/C++ files or classes and linking them with the referred Libaries

69) follows by Modus Tollens. Thus, especially we are not distributing a Combined Work
compliantly, if our terms “[...] together effectively do restrict reverse engineering for
debugging modifications of the portions of the Library contained in the Combined Work”.

70) ¢f. Open Source Initiative: The LGPL-3.0 License (OSI), 2007, wp., §0.

™) The LGPL-v3 designates the work using the Library as “Application” and defines that it
“[...] makes use of an interface provided by the Library [...]” (cf. id., ibid.).

) 5 p. 18

) 5 p. 20

™ 5 p. 20

™) 5 p. 23

30

4 Reverse Engineering in the LGPL-v3

statically causes, that the resulting executable indeed contains all functional

relevant code of all used Libraries’®.

e Combiling C/C++ files or classes without linking them to the referred
Libaries causes, that the resulting object file can dynamically be linked
on another machine and contains identifiers offered by the Library and
sometimes some functional code injected by dissolving some inline functions

or macros’’.

So — overall — the situation is this: The LGPL3-RevEng-Rule tells us that we
have to allow reverse engineering of the portions of the Library contained in
the Combined Work. The LGPL3 additionally specifies, that a Combined Work
is simply the result of technically combining the work using the Library (the
application) and the Library. Finally the praxis tells us, that (a) combining both
components statically indeed causes that the resulting Combined Work contains
portions of the Library™, and that (b) we — in case of preparing the both parts as
dynamically combinable components — still have to clarify whether the resulting
work already contains portions of the Library.

Just as the LGPL-v2, the LGPL-v3 supports us to answer this question by its §3
whose linguistic conjunctions we thoroughly have to consider:

The object code form of an Application may incorporate material from
a header file that is part of the Library. You may convey such object
code under terms of your choice, provided that, [if the incorporated
material is not limited to numerical parameters, data structure layouts
and accessors, or small macros, inline functions and templates (ten
or fewer lines in length) |, you do both of the following: a) Give
prominent notice with each copy of the object code that the Library is
used in it and that the Library and its use are covered by this License.
b) Accompany the object code with a copy of the GNU GPL and this
license document]”.

The first sentence of this paragraph tells us that he is dedicated to object files
which are compiled and not linked to the used Library, but which nevertheless can
contain portions of the Library. The second sentence regulates the distribution of
such object files and can be logically serialized:

C [A]

(You compliantly distribute object code [incorporating

) 5 p. 21

™ & p. 23

8) So, it is triggering the LGPL3-RevEng-Rule.

™) cf. Open Source Initiative: The LGPL-3.0 License (OSI), 2007, wp., §3; emphasis and
additional braces KR..

31

4 Reverse Engineering in the LGPL-v3

material from the Library] under terms of your choice)

_>

o]

(the incorporated material is not limited to numerical
parameters, data structure layouts and accessors, or

small macros, inline functions and templates
[ten or fewer lines in length])

[a:] (you do [a] ...])
[B:] (youdo [b] ...])

V>A\J/

))

We see, that this LGPL3-sentence concerning the distribution of object files
contains a main rule ((A — Z)) and that the conclusion Z itself has the form of
an embedded sub rule ((w — (a A B)).

Firstly, the main rule enforces us to respect the sub rule if we want to distribute
the object code compliantly®. Secondly, the main rule tells us that we do not
distribute the object code compliantly if we do not respect the sub rule !

We have two ways to respect the sub rule, and one way not to respect it:

e If the object code contains more and/or larger elements of the Library than
the limit specifies, then we do respect the sub rule, if we do o and 5%,

e If the object code contains elements of the Library at most up to specified
limits, then we do respect the sub rule without having to do some
additionally tasks®

e But if the object code contains more and/or larger elements of the Library
than the limit specifies and if we do not do « or (3, then we do not respect
the sub rule®.

Thus, — at the end and based on the additional object code specification and the
known empirical background knowledge concerning the software programming —
the LGPL3-RevEng-Rule delivers the same result as the LGPL2-RevEng-Rule®:

o With respect to a LGPL-v3 licensed Library, you are not required to allow
reverse engineering, if you [A] develop your work using the Library, on the

80) follows by Modus Ponens to (A — Z).

81) follows by Modus Ponens to (A — Z).

82) follows by Modus Ponens to (w — (a A 3)).

83) follows by definition of an implication: if the premise of this sub rule is false, the sub rule is
as whole is true and hence respected.

84) follows from definition of an implication: if the premise is true and the conclusion is false,
the the implication as whole is false, as well.

85) — 24

32

5 Reverse Engineering in the other Open Source Licenses

base of a standard version of the Library containing the interfaces as the
original developers have designed it, if you [B] compile your work using this
Library, as a discret (set of) dynamically linkable or combinable file(s), if you
[C] use only the standard compilation methods which preserve the upstream
approved interfaces®®, and if you [D] distribute the produced unlinked object
code or bytecode files before they are linked as an executable.

e [n all other cases of distributing a work using such a Library, you are required
to allow reverse engineering of the work using this Library — especially, . . .

— if you distribute the work using the Library and the Library together as
a statically linked program or as an integrated package containing both
parts, the work using the library and the Library itself*”.

— if you distribute a work containing manually copied portions of the
Library.

5 Reverse Engineering in the other Open Source Licenses

The rest of our way is simple: First, we can ascertain, that none of the other open
source licenses we consider®, contain the phrase 'reverse engineering’. Moreover,
they even do not contain one of the single words®. So, we may infer, that these
most important other open source licenses could at most indirectly require the
permission of reverse engineering. Second, we know already that distributing
script code let the allowance to reverse engineer, become irrelevant: script code
can directly be read and understood, if one knows the script language”. Third,
from the definition of strong copleft we may derive, that distributing software
licensed under a strong copyleft license let the permission of reverse engineering
become unimportant, because the source code of the work using the libraries
licensed under a copleft license, must also be made accessible”’.

So — overally — we may conclude, that we have only to consider those cases, where

86) and which therefore do not to exceed the LGPL-v3 limits

87) This holds also if you distribute a script language based program or package, notwithstanding
the fact, that one does not need the permission of reverse engineering to understand script
language based applications

88) 5 p. 6

89) One can verify this negative statement by (a) loading down all licenses from the OSI
homepage (http://opensource.org/licenses/alphabetical) and by (b) executing the command
grep -i "engineering" * respectively grep -i "reverse" * in the directory into which
the license files have been stored: grep will find the words reverse and engineering only in
the texts of the LGPLs.

9) — p. 20

9) ¢f. Stallman, Richard M.: What is Copyleft? originally written in 1996; in: Joshua Gay,
editor: Free Software, Free Society: Selected Essays of Richard M. Stallman; Boston, MA
USA: GNU Press, 2002, ISBN 1-882114-98-1, wp.

33

5 Reverse Engineering in the other Open Source Licenses

a piece of software is distributed in form of binaries or bytecode, which uses
libraries licensed under permissive open source licenses or under weak copyleft
licenses.

From the definition of being a permissive license or a weak copyleft license we
know already that the licenses of the open source components do not directly
influence the permission or interdiction to use the overarching work which uses
the open source software components”?.

So, if we distribute such a work in form of dynamically linkable, but still not
linked binaries or bytecode files, then there is no way to reasonably derive that the
work using the components, may be reverse engineered: The permissive or weak
copyleft open source licenses mainly concern the open source components, not the
work using the components. On the one side, these licenses indeed require that
we add the license texts and the copyright lines of all the open source components
our work wants to use, to the distributed package containing our work. And
the lisenses prohibit to modify the licensing assertions being integrated into the
open source components our work wants to use’®. But — on the other side and in
accordance to the permissive or weak-copyleft licenses — the freedom to use, to
study, to modify, or to distribute the software, which is established by these open
source licenses, concerns only the open source components themselves, not the
work using the open source components. So, as long as these components still
are not linked to or combined with the using work in accordance to the standard
compilation and computation methods, they can indeed be studied or modified
without the need to study or modify the work which uses these components”.

92) of. Reincke, Karsten, Greg Sharpe, a. contributors: Open Source License Compendium.

How to Achieve Open Source License Compliance; 2015 (URL: http://www.oslic.org/
releases/oslic.pdf) — reference download: 2015-01-20, pp. 201ff..

93) These requirements are part of all the open source licenses we consider here. For details cf.
id., l.c., pp. chapter 6.

94) The only way to infer that the licenses of the components operates also on the using work, is
to argue that the using work must at least contain elements (identifiers etc.) of the interfaces
declared (but not defined) by the libraries and that therefore at least these elements may be
investigated or modified. This challenge is explicitly addressed by the LGPL". Fortunately,
it is a general feature of software libraries that they must and shall be used in accordance to
the interfaces, the developers of the libraries have designed to make their libraries practically
usable. So, if the licenses — in contrary to the LGPLs — do not explicitly address the issue of
implicitly included portions of the library in case of unlinked binaries or bytecode files which
have been compiled in accordance to the standard methods and which therefore use open
source software by reffering to their standard interfaces, then one has to infer from the nature
of computation, that the developers have implictly allowed without any requirements such
an integration of declared, but not defined interface elements, because they have designed
the interface as they did and because they have licensed their work as they did. If they
had not wished to use these elements without any requirements, hey had designed another
interface. And if they had wished to incorporate any copyleft effect or permission of reverse
engineering, then they would have selected another license. But again: this conclusion holds
only for the standard methods to use a software library.

34

http://www.oslic.org/releases/oslic.pdf
http://www.oslic.org/releases/oslic.pdf

5 Reverse Engineering in the other Open Source Licenses

On the other side, if we compliantly distribute the work using the components,
as a statically linked binary or bytecode file — which therefore already contains
all the necessary components” and can directly be executed —, then we are also
obliged to add all the open source license texts and all the copyright lines to
our package, and we are not allowed to modify one of the licensing assertions
integrated into the original open source components’’. Thus, one might conclude,
that the freedom to use and to modify the open source components themselves,
survive if we distribute software statically linked to or combined with the open
source components. So, the receiver of the statically linked work probably is
allowed to modify the embedded open source components - even if he had to
edit the binary or bytecode files. Methods to develop binary files reversely, are
known as reverse engineering. Hence, if we distribute a statically linked work
using open source licensed components, we have at least to fear that our receivers
indirectly have also got the permission to reverse engineer our complete product.
And we have to fear so even if the statically linked libraries are licensed under
any permissive or weak copleft license.

So, again, we can summarize the result in the following form:

o With respect to a Library licensed under any permissive or weak copyleft
license, you are not required to allow reverse engineering, if you [A] develop
your work using the Library, on the base of a standard version of the Library
containing the interfaces as the original developers have designed it, if you
[B] compile your work using this Library, as a discret (set of) dynamically
linkable or combinable file(s), if you [C] use only the standard compilation
methods which preserve the upstream approved interfaces, and if you [D]
distribute the produced unlinked object code or bytecode files before they are
linked as an ezvecutable.

e In all other cases of distributing a work using such a Library, you have at
least to fear that you are implictly allowing reverse engineering of the work
using this Library — especially, . ..

— if you distribute the work using the Library and the Library together as
a statically linked program or as an integrated package containing both
parts, the work using the library and the Library itself’*.

— if you distribute a work containing manually copied portions of the
Library.

96) instead of only the declared interface elements!

97) ¢f. Reincke, Sharpe, a. other contributors: OSLiC, 2015, pp. chapter 6..

98) This holds also if you distribute a script language based program or package, notwithstanding
the fact, that one does not need the permission of reverse engineering to understand script
language based applications

35

6 Reverse Engineering in Open Source Licenses: Summary

6 Reverse Engineering in Open Source Licenses: Summary

So, finally we can compile all our results into one single result:

e With respect to any open source Library”, you are not required to allow
reverse engineering, if you [A] develop your work using the Library, on the
base of a standard version of the Library containing the interfaces as the
original developers have designed it, if you [B] compile your work using this
Library, as a discret (set of) dynamically linkable or combinable file(s), if you
[C] use only the standard compilation methods which preserve the upstream
approved interfaces'’’, and if you [D] distribute the produced unlinked object
code or bytecode files before they are linked as an executable.

e In all other cases of distributing your work using such a Library, you are
probably required to allow reverse engineering of your work. By all means,
you have at least to fear that you are implictly allowing reverse engineering
of your work using such a Library — especially, . ..

— if you distribute the work using the Library and the Library together as
a statically linked program or as an integrated package containing both
parts, the work using the library and the Library itself!"!.

— if you distribute a work containing manually copied portions of the
Library.

b

And, so, we can reformulate our result as a slightly modified “rule of thumbs
originally offered by an open source expert who analyzed the problem of protecting
your own work from an other viewport:

e “DO NOT statically link [or combine] [open source| code if you wish to
keep your program proprietary [and if you want to protect it against reverse
engineering]” %2,

e “DO dynamically link to [any open source code, not only to] LGPL code”'%.

g.e.d

9) 5 p. 6

100) and which therefore do not to exceed limits, prescribed by the owners of the Library

101) This holds also if you distribute a script language based program or package, notwithstanding
the fact, that one does not need the permission of reverse engineering to understand script
language based applications

102) ¢f. Jlardi: Common OSS License Problems, 2010, pp. 6; bracketed text KR..

103) ¢f . id., ibid.

36

7 Disclaimer

7 Disclaimer

This article is thoroughly developed. Finally — and preferably with the help of the
open source community —, it shall deliver reliable information. But nevertheless,
it can not offer more than the opinion(s) of its authors and contributors. It is
only one voice of the chorus discussing the open source licenses. For protecting
the authors and contributors from charges and claims of indemnification we adopt
the lightly modified GPL3 disclaimer:

THERE IS NO WARRANTY FOR THIS ATRTICLE, TO THE EXTENT PER-
MITTED BY APPLICABLE LAW. THE COPYRIGHT HOLDERS AND/OR
OTHER PARTIES PROVIDE THE TEXT “AS IS” WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS
TO THE QUALITY AND PERFORMANCE OF THE OSLiC IS WITH YOU.
SHOULD THE OSLiC PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED
TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER
PARTY WHO MODIFIES AND/OR CONVEYS THE OSLiC AS PERMITTED
ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL,
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THIS ARTICLE (INCLUDING
BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED
INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR
A FAILURE OF THE OSLiC TO COOPERATE WITH ANY OTHER TOOLS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF
THE POSSIBILITY OF SUCH DAMAGES.

8 License

This text is licensed under the Creative Commons Attribution-ShareAlike 3.0
Germany License (http://creativecommons.org/licenses/by-sa/3.0/de/): Feel free
“to share (to copy, distribute and transmit)” or “to remix (to adapt)” it, if you
“[...] distribute the resulting work under the same or similar license to this one”
and if you respect how “you must attribute the work in the manner specified
by the author(s) [...]”): In an internet based reuse please mention the initial
authors in a suitable manner, name their sponsor Deutsche Telekom AG and
link it to http://www.telekom.com. In a paper-like reuse please insert a short
hint to http://www.telekom.com, to the initial authors, and to their sponsor

37

References

Deutsche Telekom AG into your preface. For normal citations please use the
scientific standard.

[LaTeX form derived from myCsrf (= 'mind your Scholar Research Framework’) © K. Reincke CC BY 3.0 http://mycsrf.fodina.de/)]

References

copyleft.org: What is copyleft.org; n.l, 2014, FreeWeb/HTML (URL: http://copyleft.org/) —
reference download: 2014-12-15

Ilardi, Terry J.: Common OSS License Problems; n.l, 2010, FreeWeb/PDF (URL: http:
//wuw2.aipla.org/html/spring/2010/papers/Ilardi_Paper.pdf) — reference download:
2014-12-16

Jaeger, Till a. Azel Metzger: Open Source Software. Rechtliche Rahmenbedingungen der Freien
Software; 3rd edition. Miinchen: Verlag C.H. Beck, 2011, Print

Kuhn, Bradley M. etal.: Copyleft and the GNU General Public License: A Comprehen-
sive Tutorial and Guide; n.l, 2014, FreeWeb/PDF (URL: http://copyleft.org/guide/
comprehensive-gpl-guide.pdf) — reference download: 2014-12-15

Moglen, FEven a. Mishi Choudhary: Software Freedom Law Center Guide to GPL Com-
pliance, 2nd Edition; 2014, FreeWeb/HTML (URL: https://www.softwarefreedom.
org/resources/2014/SFLC-Guide_to_GPL_Compliance_2d_ed.html) — reference down-
load: 2014-12-15

Open Source Initiative: GNU General Public License, version 2 (GPL-2.0). Version 2, June
1991; 1991 [n.y. of the html page itself], FreeWeb/HTML (URL: http://opensource.org/
licenses/GPL-2.0) — reference download: 2013-02-05

Open Source Initiative: The GNU Lesser General Public License, version 2.1 (LGPL-2.1); 1999
[n.y. of the html page itself], FreeWeb/HTML (URL: http://opensource.org/licenses/
LGPL-2.1) — reference download: 2013-03-06

Open Source Initiative: Apache License, Version 2.0; 2004 [n.y. of the page itself],
FreeWeb/HTML (URL: http://opensource.org/licenses/Apache-2.0) — reference down-
load: 2013-02-07

Open Source Initiative: Eclipse Public License, Version 1.0; 2005 [n.y. of the page itself],
FreeWeb/HTML (URL: http://opensource.org/licenses/EPL-1.0) — reference download:
2013-02-20

Open Source Initiative: European Union Public License, version 1.1 (EUPL-1.1; 2007 [n.y. of the
html page itself], FreeWeb/HTML (URL: http://opensource.org/licenses/EUPL-1.1) —
reference download: 2013-03-04

Open Source Initiative: GNU Affero General Public License, Version 3 (AGPL-3.0); 2007
[n.y. of the html page itself], FreeWeb/HTML (URL: http://opensource.org/licenses/
AGPL-3.0) — reference download: 2013-04-05

Open Source Initiative: GNU General Public License, version 3 (GPL-3.0); 2007 [n.y. of the
html page itself], FreeWeb/HTML (URL: http://opensource.org/licenses/GPL-3.0) —
reference download: 2013-03-05

Open Source Initiative: The GNU Lesser General Public License, version 3.0 (LGPL-3.0); 2007
[n.y. of the html page itself], FreeWeb/HTML (URL: http://opensource.org/licenses/
LGPL-3.0) — reference download: 2013-03-06

Open Source Initiative: The BSD 2-Clause License; 2012 [n.y.], FreeWeb/HTML (URL:
http://www.opensource.org/licenses/BSD-2-Clause) — reference download: 2012-07-03

Open Source Initiative: The BSD 3-Clause License; 2012 [n.y.], FreeWeb/HTML (URL:
http://www.opensource.org/licenses/BSD-3-Clause) — reference download: 2012-07-04

38

http://copyleft.org/
http://www2.aipla.org/html/spring/2010/papers/Ilardi_Paper.pdf
http://www2.aipla.org/html/spring/2010/papers/Ilardi_Paper.pdf
http://copyleft.org/guide/comprehensive-gpl-guide.pdf
http://copyleft.org/guide/comprehensive-gpl-guide.pdf
https://www.softwarefreedom.org/resources/2014/SFLC-Guide_to_GPL_Compliance_2d_ed.html
https://www.softwarefreedom.org/resources/2014/SFLC-Guide_to_GPL_Compliance_2d_ed.html
http://opensource.org/licenses/GPL-2.0
http://opensource.org/licenses/GPL-2.0
http://opensource.org/licenses/LGPL-2.1
http://opensource.org/licenses/LGPL-2.1
http://opensource.org/licenses/Apache-2.0
http://opensource.org/licenses/EPL-1.0
http://opensource.org/licenses/EUPL-1.1
http://opensource.org/licenses/AGPL-3.0
http://opensource.org/licenses/AGPL-3.0
http://opensource.org/licenses/GPL-3.0
http://opensource.org/licenses/LGPL-3.0
http://opensource.org/licenses/LGPL-3.0
http://www.opensource.org/licenses/BSD-2-Clause
http://www.opensource.org/licenses/BSD-3-Clause

References

Open Source Initiative: The MIT License; 2012 [n.y.], FreeWeb/HTML (URL: http:
//opensource.org/licenses/mit-1license.php) — reference download: 2012-08-24

Open Source Initiative: Microsoft Public License (MS-PL); 2013 [n.y.], FreeWeb/HTML (URL:
http://opensource.org/licenses/MS-PL) — reference download: 2013-02-26

Open Source Initiative: Mozilla Public License 2.0 (MPL-2.0); 2013 [n.y.], FreeWeb/HTML
(URL: http://opensource.org/licenses/MPL-2.0) — reference download: 2013-02-07

Open Source Initiative: The PHP License 3.0 (PHP-3.0); 2013 [n.y.], FreeWeb/HTML (URL:
http://opensource.org/licenses/PHP-3.0) — reference download: 2013-02-27

Open Source Initiative: The PostgreSQL Licence (PostgreSQL); 2013 [n.y.], FreeWeb/HTML
(URL: http://opensource.org/licenses/PostgreSQL) — reference download: 2013-02-27

Reincke, Karsten, Greg Sharpe, a. contributors: Open Source License Compendium. How to
Achieve Open Source License Compliance; 2015, FreeWeb/PDF (URL: http://www.oslic.
org/releases/oslic.pdf) — reference download: 2015-01-20

Rosen, Lawrence: Open Source Licensing. Software Freedom and Intellectual Property Law;
Upper Saddle River, New Jersey: Prentice Hall PTr, 2005, ISBN 0-13-148787-6

Stallman, Richard M.: What is Copyleft? originally written in 1996; in: Joshua Gay, editor:
Free Software, Free Society: Selected Essays of Richard M. Stallman; Boston, MA USA:
GNU Press, 2002, ISBN 1-882114-98-1, pp. 89-90, Print

Turner, David: The LGPL and Java; 2004, FreeWeb/HTML (URL: http://www.gnu.org/
licenses/lgpl-java.en.html) — reference download: 2015-02-09

39

http://opensource.org/licenses/mit-license.php
http://opensource.org/licenses/mit-license.php
http://opensource.org/licenses/MS-PL
http://opensource.org/licenses/MPL-2.0
http://opensource.org/licenses/PHP-3.0
http://opensource.org/licenses/PostgreSQL
http://www.oslic.org/releases/oslic.pdf
http://www.oslic.org/releases/oslic.pdf
http://www.gnu.org/licenses/lgpl-java.en.html
http://www.gnu.org/licenses/lgpl-java.en.html

	Preface
	Reverse Engineering and Open Source as Challenge
	Reverse Engineering in the LGPL-v2
	Linguistical Clarification
	Logical Clarification
	Empirical Clarification
	Final Conclusion
	Distributing works with manually copied portions of the Library evokes the copyleft effect:
	Distributing scripts does not need reverse engineering:
	Distributing statically combined bytecode requires the permission of reverse engineering:
	Distributing statically combined binaries require the permission of reverse engineering:
	Distributing dynamically combinable bytecode and linkable object code does not require the permission of reverse engineering:
	LGPL-v2 compliance with or without permitting reverse engineering:

	Final Securing

	Reverse Engineering in the LGPL-v3
	Reverse Engineering in the other Open Source Licenses
	Reverse Engineering in Open Source Licenses: Summary
	Disclaimer
	License
	References

