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Preface

The goal of this book is to introduce the reader to the intellectual beauty, and philosophical implications,

of the fact that nature obeys variational principles that underlie the Lagrangian and Hamiltonian analytical

formulations of classical mechanics. These variational methods, which were developed for classical mechanics

during the 18− 19 century, have become the preeminent formalisms for classical dynamics, as well as for
many other branches of modern science and engineering. The ambitious goal of this book is to lead the student

from the intuitive Newtonian vectorial formulation, to introduction of the more abstract variational principles

that underlie the Lagrangian and Hamiltonian analytical formulations. This culminates in discussion of the

contributions of variational principles to the development of relativistic and quantum mechanics. The broad

scope of this book attempts to unify the undergraduate physics curriculum by bridging the chasm that

divides the Newtonian vector-differential formulation and the integral variational formulation of classical

mechanics, and the corresponding chasm that exists between classical and quantum mechanics. Powerful

variational techniques in mathematics, that underlie much of modern physics, are introduced and problem

solving skills are developed in order to challenge students at the crucial stage when they first encounter this

sophisticated and challenging material. The underlying fundamental concepts of classical mechanics, and

their applications to modern physics, are emphasized throughout the course.

A full understanding of the power and beauty of variational principles in classical mechanics, is best

acquired by first learning the concepts of the variational approach, and then applying these concepts to

many examples in classical mechanics. Classical mechanics is the ideal topic for learning the principles and

the power of using the variational approach prior to applying these techniques to other branches of science

and engineering. The underlying philosophical approach adopted by this book was espoused by Galileo

Galilei "You cannot teach a man anything; you can only help him find it within himself."

The development of this textbook was influenced by three textbooks: "The Variational Principles of

Mechanics" by Cornelius Lanczos (1949) [La49], "Classical Mechanics" (1950) by Herbert Goldstein[Go50],

and "Classical Dynamics of Particles and Systems" (1965) by Jerry B. Marion[Ma65]. Marion’s excellent

textbook was unusual in partially bridging the chasm between the outstanding graduate texts by Goldstein

and Lanczos, and a bevy of introductory texts based on Newtonian mechanics that were available at that

time. The present textbook was developed to cover the techniques and philosophical implications of the

variational approaches to classical mechanics, with a breadth and depth close to that provided by Goldstein

and Lanczos, but in a format that better matches the needs of the undergraduate student. An additional

goal is to bridge the gap between classical and modern physics in the undergraduate curriculum.

This book was written in support of the physics junior/senior undergraduate course P235W entitled

"Variational Principles in Classical Mechanics" that the author taught at the University of Rochester between

1993− 2015. These lecture notes were distributed to students to allow pre-lecture study, facilitated accurate
transmission of the complicated formulae, and minimized note taking during lectures. These lecture notes

evolved into the present textbook that was used for this course. The target audience of the course, upon

which this textbook is based, typically comprised ≈ 70% junior/senior undergraduates, ≈ 25% sophomores,

≤ 5% graduate students, and the occasional well-prepared freshman. The target audience was physics

and astrophysics majors, but it attracted a significant fraction of majors from other disciplines such as

mathematics, chemistry, optics, engineering, music, and the humanities. As a consequence, the book includes

appreciable introductory level physics, plus mathematical review material, to accommodate the diverse

range of prior preparation of the students. This textbook includes material that extends beyond what

reasonably can be covered during a one-term course. This supplemental material is presented to show the

importance and broad applicability of variational concepts to classical mechanics. The book includes 162

worked examples to illustrate the concepts presented. Advanced group-theoretic concepts are minimized to

xvii
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better accommodate the mathematical skills of the typical undergraduate physics major. For compatibility

with modern literature in this field, this book follows the widely-adopted nomenclature used in "Classical

Mechanics" by Goldstein[Go50], with recent additions by Johns[Jo05].

The book is broken into four major sections. This first review section sets the stage by including a

brief historical introduction (chapter 1), review of the Newtonian formulation of mechanics plus gravitation

(chapter 2), linear oscillators and wave motion (chapter 3), and an introduction to non-linear dynamics

and chaos (chapter 4). Extensive reading assignments are assigned to minimize the time spent on this

review of Newtonian vectorial mechanics. Building on the introductory section, the second section of the

book introduces the variational principles of analytical mechanics that underlie this book. It includes an

introduction to the calculus of variations (chapter 5), the Lagrangian formulation of mechanics with appli-

cations to holonomic and non-holonomic systems (chapter 6), a discussion of symmetries, invariance, plus

Noether’s theorem (chapter 7) and an introduction to the Hamiltonian and the Hamiltonian formulation

of mechanics plus the Routhian reduction technique (Chapter 8). The third section of the book, applies

Lagrangian and Hamiltonian formulations of classical dynamics to central force problems (chapter 9), mo-

tion in non-inertial frames (chapter 10), rigid-body rotation (chapter 11), and coupled oscillators (chapter

12). The final section of the book discusses Hamilton’s Principle plus advanced applications of Lagrangian

mechanics (chapter 13), Hamiltonian mechanics including Poisson brackets, Liouville’s theorem, canonical

transformations, Hamilton-Jacobi theory, the action-angle technique (chapter 14), and classical mechanics

in the continua (chapter 15). This is followed by a brief review of the revolution in classical mechanics intro-

duced by Einstein’s theory of relativistic mechanics. The extended theory of Lagrangian and Hamiltonian

mechanics is used to apply variational techniques to the Special Theory of Relativity followed by a superficial

introduction to the concepts of General Theory of Relativity (chapter 16). The book finishes with a brief

review of the role of variational principles in bridging the gap between classical mechanics and quantum

mechanics, (chapter 17). These advanced topics extend beyond the typical syllabus for an undergraduate

classical mechanics course. The reason for introducing these advanced topics is to stimulate student interest

in physics by giving them a glimpse of the physics at the summit that they have struggled to climb. This

glimpse illustrates the breadth of classical mechanics, and the role that variational principles have played

in the development of classical, relativistic, quantal, and statistical mechanics. These final supplemental

lectures illustrate the beauty and unity of classical mechanics, and the foundation that classical mechanics

has provided to the development of modern physics. The appendices summarize aspects of the mathematical

methods that are exploited in classical mechanics.

The present textbook contains more material than required for a junior/senior undergraduate classical

mechanics course, and thus, it could serve as the text for a graduate course by focussing the course on the

variational principles covered by chapters 5 − 17. The partitioning and ordering of the topics in the book
are the result of many permutations tried while teaching classical mechanics for many years. Chapters 1

through 3 plus the mathematical appendices, are used as reading assignments during the first three weeks

of class to minimize the time spent reviewing Newtonian mechanics. This maximizes the class time available

to cover the variational approach, that is, chapters 5 through 14. The brief reviews of the mechanics in the

continua, and the transition to quantum mechanics, provide the student with a glimpse of the implications

of analytical mechanics to these more advanced topics.

Information regarding the associated P235 undergraduate course at the University of Rochester is avail-

able on the web site at http://www.pas.rochester.edu/~cline/P235/index.shtml. Information about the

author is available at the Cline home web site: http://www.pas.rochester.edu/~cline/index.html.

The author thanks Meghan Sarkis who prepared many of the illustrations, Joe Easterly who designed the

book cover plus the webpage, and Moriana Garcia who organized publication. Andrew Sifain developed the

diagnostic workshop questions. The author appreciates the permission, granted by Professor Struckmeier, to

quote his published article on the extended Hamilton-Lagrangian formalism. The author acknowledges the

feedback and suggestions made by many students who have taken this course, as well as helpful suggestions

by his colleagues; Andrew Abrams, Adam Hayes, Connie Jones, Andrew Melchionna, David Munson, Alice

Quillen, Richard Sarkis, James Schneeloch, Steven Torrisi, Dan Watson, and Frank Wolfs. These lecture

notes were typed in LATEX using Scientific WorkPlace (MacKichan Software, Inc.), while Adobe Illustrator,

Photoshop, Origin, Mathematica, and MUPAD, were used to prepare the illustrations.

Douglas Cline,

University of Rochester, 2017



Prologue

Two dramatically different philosophical approaches to science were developed in the field of classical me-

chanics during the 17 - 18 centuries. This time period coincided with the Age of Enlightenment in Europe

during which remarkable intellectual and philosophical developments occurred. This was a time when both

philosophical and causal arguments were equally acceptable in science, in contrast with current convention

where there appears to be tacit agreement to discourage use of philosophical arguments in science.

Figure 1: Vectorial and variational represen-

tation of Snell’s Law for refraction of light.

Snell’s Law: The genesis of two contrasting philosophical ap-

proaches to science relates back to early studies of the reflection

and refraction of light. The velocity of light in a medium of re-

fractive index  equals  = 

. Thus a light beam incident at an

angle 1 to the normal of a plane interface between medium 1

and medium 2 is refracted at an angle 2 in medium 2 where the

angles are related by Snell’s Law.

sin 1

sin 2
=

1

2
=

2

1
(Snell’s Law)

Ibn Sahl of Bagdad (984) first described the refraction of light,

while Snell (1621) derived his law mathematically. Both of these

scientists used the "vectorial approach" where the light velocity 

is considered to be a vector pointing in the direction of propaga-

tion.

Fermat’s Principle: Fermat’s principle of least time (1657),

which is based on the work of Hero of Alexandria (∼ 60) and Ibn
al-Haytham (1021), states that "light travels between two given

points along the path of shortest time", where the transit time 

of a light beam between two locations  and  in a medium with

position-dependent refractive index () is given by

 =

Z 



 =
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Z 



() (Fermat’s Principle)

Fermat’s Principle leads to the derivation of Snell’s Law.

Philosophically the physics underlying the contrasting vectorial

and Fermat’s Principle derivations of Snell’s Law are dramatically

different. The vectorial approach is based on differential relations

between the velocity vectors in the two media, whereas Fermat’s

variational approach is based on the fact that the light prefer-

entially selects a path for which the integral of the transit time

between the initial location  and the final location  is mini-

mized. That is, the first approach is based on "vectorial mechanics" whereas Fermat’s approach is based on

variational principles in that the path between the initial and final locations is varied to find the path that

minimizes the transit time. Fermat’s enunciation of variational principles in physics played a key role in the

historical development, and subsequent exploitation, of the principle of least action in analytical formulations

of classical mechanics as discussed below.

xix
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Newtonian mechanics: Momentum and force are vectors that underlie the Newtonian formulation of

classical mechanics. Newton’s monumental treatise, entitled "Philosophiae Naturalis Principia Mathemat-

ica", published in 1687, established his three universal laws of motion, the universal theory of gravitation,

the derivation of Kepler’s three laws of planetary motion, and the development of calculus. Newton’s three

universal laws of motion provide the most intuitive approach to classical mechanics in that they are based on

vector quantities like momentum, and the rate of change of momentum, which are related to force. Newton’s

equation of motion

F =
p


(Newton’s equation of motion)

is a vector differential relation between the instantaneous forces and rate of change of momentum, or equiva-

lent instantaneous accelerations, all of which are vector quantities. Momentum and force are easy to visualize,

and both cause and effect are embedded in Newtonian mechanics. Thus, if all of the forces, including the

constraint forces, acting on the system are known, then the motion is solvable for two body systems. The

mathematics for handling Newton’s "vectorial mechanics" approach to classical mechanics is well established.

Analytical mechanics: Variational principles underlie the analytical formulation of mechanics. Leibniz,

who was a contemporary of Newton, introduced methods based on a quantity called "vis viva", which is

Latin for "living force" and equals twice the kinetic energy. Leibniz believed in the philosophy that God

created a perfect world where nature would be thrifty in all its manifestations. In 1707, Leibniz proposed

that the optimum path is based on minimizing the time integral of the vis viva, which is equivalent to

the action integral of Lagrangian/Hamiltonian mechanics. In 1744 Euler derived the Leibniz result using

variational concepts while Maupertuis restated the Leibniz result based on teleological arguments. The

development of Lagrangian mechanics culminated in the 1788 publication of Lagrange’s monumental treatise

entitled "Mécanique Analytique". Lagrangian mechanics derives the magnitude and direction of the optimum

trajectories and forces based on the concept of least action, which is defined to be the time integral of the

difference between the kinetic and potential energies. Hamilton’s Principle (1834), which underlies Lagrange’s

least action principle, minimizes the action integral  given by

 =

Z 



(q q̇) (Hamilton’s Principle)

where the Lagrangian (q q̇) equals the difference between the kinetic energy  and the potential energy

 . This Lagrangian is a function of  generalized coordinates  plus their corresponding velocities ̇

The culmination of the development of analytical mechanics occurred in 1834 when Hamilton developed

the premier variational approach, called Hamiltonian mechanics, that is based on the Hamiltonian (qp)

which is a function of the  fundamental conjugate position  plus the momentum  variables. In 1843

Jacobi provided the mathematical framework required to fully exploit the power of Hamiltonian mechanics.

Note that the Lagrangian, Hamiltonian, and the action integral, all are scalar quantities which simplifies

derivation of the equations of motion compared with the vector calculus used by Newtonian mechanics.

Philosophical developments: Variational principles apply to all aspects of our daily life. Typical ex-

amples include; selecting the optimum compromise in quality and cost when shopping, selecting the fastest

route to travel from home to work, or selecting the optimum compromise to satisfy the disparate desires of

the individuals comprising a family. It is astonishing that the laws of nature are consistent with variational

principles involving the principle of least action. Minimizing the action integral led to the development of the

mathematical field of variational calculus plus the analytical variational approaches to classical mechanics

by Euler, Lagrange, Hamilton, and Jacobi.

The analytical approach to classical mechanics appeared contradictory to Newton’s intuitive vector-

ial treatment of force and momentum. There is a dramatic difference in philosophy between the vector-

differential equations of motion derived by Newtonian mechanics, which relate the instantaneous force to

the corresponding instantaneous acceleration, and analytical mechanics, where minimizing the scalar action

integral involves integrals over space and time between specified initial and final states. Analytical mechanics

uses variational principles to determine the optimum trajectory, from a continuum of tentative possibilities

by requiring that the optimum trajectory minimizes the action integral between specified initial and final

conditions.
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Figure 2: Chronological roadmap of the parallel development of the Newtonian and the variational approaches

to classical mechanics.
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Initially there was considerable prejudice and philosophical opposition to use of the variational approach

which is based on the assumption that nature follows the principles of economy. The variational approach

is not intuitive, and thus it was considered to be speculative and "metaphysical", but it was tolerated as an

efficient tool for exploiting classical mechanics. This opposition to the variational principles, that underlie

analytical mechanics, delayed full appreciation of the variational approach until the start of the 20 century.

As a consequence, the intuitive Newtonian formulation reigned supreme in classical mechanics for over two

centuries, even though the remarkable problem-solving capabilities of analytical mechanics were recognized

and exploited following development of analytical mechanics.

The full significance and superiority of the analytical variational formulations of classical mechanics

became widely accepted following the development of the Special Theory of Relativity in 1905. The Theory

of Relativity requires that the laws of nature be invariant to the reference frame. This is not satisfied by

the Newtonian formulation of mechanics which assumes one absolute frame of reference and a separation of

space and time. In contrast, the Lagrangian and Hamiltonian formulations of the principle of least action

remain valid in the Theory of Relativity, if the Lagrangian is written in a relativistically-invariant form

in space-time. The complete invariance of the variational approach to coordinate frames is precisely the

formalism necessary for handling relativistic mechanics. Hamiltonian mechanics, which is expressed in terms

of the conjugate variables (qp), relates classical mechanics directly to the underlying physics of quantum

mechanics and quantum field theory. As a consequence, the philosophical opposition to exploiting variational

principles no longer exists, and Hamiltonian mechanics has become the preeminent formulation of modern

classical mechanics. The reader is free to draw their own conclusions regarding the philosophical question

"is the principle of economy a fundamental law of classical mechanics, or is it a fortuitous consequence of

the fundamental laws of nature?"

From the late seventeenth century, until the dawn of modern physics at the start of the twentieth cen-

tury, classical mechanics remained a primary driving force in the development of physics. Classical mechanics

embraces an unusually broad range of topics spanning motion of macroscopic astronomical bodies to mi-

croscopic particles in nuclear and particle physics, at velocities ranging from zero to near the velocity of

light, from one-body to statistical many-body systems, as well as having extensions to quantum mechanics.

Introduction of the Special Theory of Relativity in 1905, and the General Theory of Relativity in 1916,

necessitated modifications to classical mechanics for relativistic velocities, and can be considered to be an

extended theory of classical mechanics. Since the 19200s, quantal physics has superseded classical mechanics
in the microscopic domain. Although quantum physics has played the leading role in the development of

physics during much of the past century, classical mechanics still is a vibrant field of physics that recently

has led to exciting developments associated with non-linear systems and chaos theory. This has spawned

new branches of physics and mathematics as well as changing our notion of causality.

Goals: The primary goal of this book is to introduce the reader to the powerful variational approaches that

play such a pivotal role in classical mechanics, plus many other branches of modern science and engineering.

Figure 1 gives a historical roadmap of the evolution of classical mechanics from Newton, to the variational

approaches of Euler, Lagrange, Hamilton and Jacobi. This book emphasizes the intellectual beauty of these

remarkable developments as well as stressing the philosophical implications that have had a tremendous

impact on modern science. A secondary goal is to apply variational principles to solve advanced applications

in classical mechanics in order to introduce many sophisticated and powerful mathematical techniques that

underlie much of modern physics.

The connections and applications of classical mechanics to modern physics are emphasized throughout

the book in an effort to span the chasm that divides the Newtonian vector-differential formulation and the

integral variational formulation of classical mechanics, and the corresponding chasm that exists between

classical and quantum mechanics. Note that these variational principles, developed in the field of classical

mechanics, now are used in a diverse and wide range of fields including economics, meteorology, engineering,

and computing.

This study of classical mechanics involves climbing a vast mountain of knowledge, and the pathway to

the top leads to elegant and beautiful theories that underlie much of modern physics. These theories are

applied to four major topics in classical mechanics. In addition, being so close to the summit provides the

opportunity for this book to take a few extra steps beyond the normal undergraduate classical mechanics

syllabus to provide a glimpse of the exciting physics found at the summit. This new physics includes topics

such as quantum, relativistic, and statistical mechanics..



Chapter 1

A brief history of classical mechanics

1.1 Introduction

This chapter briefly reviews the historical evolution of classical mechanics since considerable insight can be

gained from study of the history of science. There are two dramatically different approaches used in classical

mechanics. The first is the vectorial approach of Newton which is based on vector quantities like momentum,

force, and acceleration. The second is the analytical approach of Lagrange, Euler, Hamilton, and Jacobi,

that is based on the concept of least action and variational calculus. The more intuitive Newtonian picture

reigned supreme in classical mechanics until the start of the twentieth century. Variational principles, which

were developed during the nineteenth century, never aroused much enthusiasm in scientific circles due to

philosophical objections to the underlying concepts; this approach was merely tolerated as an efficient tool

for exploiting classical mechanics. A dramatic advance in the philosophy of scientific thinking occurred at

the start of the 20 century leading to widespread acceptance of the superiority of variational principles.

1.2 Prehistoric astronomy

Astronomy is the earliest branch of classical mechanics. Astronomical observatories date back to around

4900BC when wooden solar observatories, called henges, were built in Europe. Stonehenge in England

is a well-known example which was built ∼ 3000. The mesopotamian people, who lived in the land

between the Tigress and Euphrates rivers, developed cuneiform writing and recorded accurate numerical

data around 3500 − 3000. They recognized that the motion of the planets was periodic as reported in
Babylonian tablets. After 2700BC the Egyptians built pyramids that are aligned to the pole star and they

made significant advances in astronomy, mathematics and medicine.

1.3 Greek antiquity

The great philosophers in ancient Greece played a key role by using the astronomical work of the Babylonians

to develop scientific theories of mechanics. Thales of Miletus (624 - 547BC), the first of the seven

great greek philosophers, developed geometry and is hailed as the first true mathematician. Pythagorus

(570 - 495BC) developed mathematics and postulated that the earth is spherical. Democritus (460 -

370BC) has been called the father of modern science, while Socrates (469 - 399BC) is renowned for his

contributions to ethics. Plato (427-347 B.C.) who was a mathematician and student of Socrates, wrote

important philosophical dialogues. He founded the Academy in Athens which was the first institution of

higher learning in the Western world that helped lay the foundations of Western philosophy and science.

Aristotle (384-322 B.C.) is an important founder of Western philosophy encompassing ethics, logic,

science, and politics. His views on the physical sciences profoundly influenced medieval scholarship that

extended well into the Renaissance. He presented the first implied formulation of the principle of virtual

work in statics and his statement that "what is lost in velocity is gained in force" is a veiled reference to

kinetic and potential energy. He adopted an Earth centered model of the universe. Aristarchus (310 - 240

B.C.) argued that the Earth orbited the Sun and used measurements to imply the relative distances of the

1
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Moon and the Sun. The greek philosophers were relatively advanced in logic and mathematics and developed

concepts that enabled them to calculate areas and perimeters. Unfortunately their philosophical approach

neglected collecting quantitative and systematic data that is an essential ingredient to the advancement of

science.

Archimedes (287-212 B.C.) represented the culmination of science in ancient Greece. As an engineer

he designed machines of war while as a scientist he made significant contributions to hydrostatics and the

principle of the lever. As a mathematician he applied infinitessimals in a way that is reminiscent of modern

integral calculus which he used to derive a value for  Unfortunately much of the work of the brilliant

Archimedes subsequently fell into oblivion. Hero of Alexandria (10 - 70 A.D.) described the principle

of reflection that light takes the shortest path. This is an early illustration of variational principle of

least time. Ptolemy (83 - 161 A.D.) wrote several scientific treatises that greatly influenced subsequent

philosophers. Unfortunately he adopted the incorrect geocentric solar system in contrast to the heliocentric

model of Aristarchus and others.

1.4 Middle Ages

The decline and fall of the Roman Empire in ∼410 A.D. marks the end of Classical Antiquity and the
beginning of the Dark Ages in Western Europe (Christendom) while the Muslim scholars in Eastern Europe

continued to make progress in astronomy and mathematics. For example, in Egypt, Alhazen (965 - 1040

A.D.) expanded the principle of least time to reflection and refraction. The Dark Ages involved a long

scientific decline in Western Europe that languished for about 900 years. Science was dominated by religious

dogma, all western scholars were monks, and the important scientific achievements of Greek antiquity were

forgotten. The works of Aristotle were reintroduced to Western Europe by Arabs in the early 13 century

leading to the concepts of forces in static systems which were developed during the fourteenth century.

This included concepts of the work done by a force, and the virtual work involved in virtual displacements.

Leonardo da Vinci (1452-1519) was a leader in mechanics at that time. He made seminal contributions

to science, in addition to his well known contributions to architecture, engineering, sculpture, and art.

Nicolaus Copernicus (1473-1543) rejected the geocentric theory of Ptolomy and formulated a scientifically-

based heliocentric cosmology that displaced the Earth from the center of the universe. The Ptolomic view

was that heaven represented the perfect unchanging divine while the earth represented change plus chaos

and the celestial bodies moved relative to the fixed heavens. The book, "De revolutionibus orbium coelestium

"(On the Revolutions of the Celestial Spheres), published by Copernicus in 1543, is regarded as the starting

point of modern astronomy and the defining epiphany that began the Scientific Revolution. The book "De

Magnete" written in 1600 by the English physicianWilliam Gilbert (1540-1603) presented the results of

well-planned studies of magnetism and strongly influenced the intellectual-scientific evolution at that time.

Johannes Kepler (1571-1630), a German mathematician, astronomer and astrologer, was a key

figure in the 17th century Scientific Revolution. He is best known for recognizing the connection between the

motions in the sky and physics. His laws of planetary motion were developed by later astronomers based on

his written work "Astronomia nova", "Harmonices Mundi", and "Epitome of Copernican Astrononomy".

Kepler was an assistant to Tycho Brahe (1546-1601) who for many years recorded accurate astronomical

data that played a key role in the development of Kepler’s theory of planetary motion. Kepler’s work

provided the foundation for Isaac Newton’s theory of universal gravitation. Unfortunately Kepler did not

recognize the true nature of the gravitational force.

Galileo Galilei (1564-1642) built on the Aristotle principle by recognizing the law of inertia, the

persistence of motion if no forces act, and the proportionality between force and acceleration. This amounts

to recognition of work as the product of force times displacement in the direction of the force. He applied

virtual work to the equilibrium of a body on an inclined plane. He also showed that the same principle

applies to hydrostatic pressure that had been established by Archimedes, but he did not apply his concepts

in classical mechanics to the considerable knowledge base on planetary motion. Galileo is famous for the

apocryphal story that he dropped two cannon balls of different masses from the Tower of Pisa to demonstrate

that their speed of descent was independent of their mass.
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1.5 Age of Enlightenment

The Age of Enlightenment is a term used to describe a phase in Western philosophy and cultural life in

which reason was advocated as the primary source and legitimacy for authority. It developed simultaneously

in Germany, France, Britain, the Netherlands, and Italy around the 1650’s and lasted until the French

Revolution in 1789. The intellectual and philosophical developments led to moral, social, and political

reforms. The principles of individual rights, reason, common sense, and deism were a revolutionary departure

from the existing theocracy, autocracy, oligarchy, aristocracy, and the divine right of kings. It led to political

revolutions in France and the United States. It marks a dramatic departure from the Early Modern period

which was noted for religious authority, absolute state power, guild-based economic systems, and censorship of

ideas. It opened a new era of rational discourse, liberalism, freedom of expression, and scientific method. This

new environment led to tremendous advances in both science and mathematics in addition to music (Johann

Sebastian Bach, Mozart), literature (Goethe), philosophy (Spinoza, Kant) and art (Rubens). Scientific

development during the 17 century included the pivotal advances made by Newton and Leibniz at the

beginning of the revolutionary Age of Enlightenment, culminating in the development of variational calculus

and analytical mechanics by Euler and Lagrange. The scientific advances of this age include publication of

two monumental books "Philosophiae Naturalis Principia Mathematica" by Newton in 1687 and Mécanique

analytique by Lagrange in 1788. These are the definitive two books upon which classical mechanics is built.

René Descartes (1596-1650) attempted to formulate the laws of motion in 1644. He talked about

conservation of motion (momentum) in a straight line but did not recognize the vector character of momen-

tum. Pierre de Fermat (1601-1665) and René Descartes were two leading mathematicians in the first

half of the 17 century. Independently they discovered the principles of analytic geometry and developed

some initial concepts of calculus. Fermat and Blaise Pascal (1623-1662) were the founders of the theory

of probability. Fermat revived the principle of least time, which states that "light travels between two given

points along the path of shortest time" and was used to derive Snell’s law in 1657. This enunciation of vari-

ational principles in physics played a key role in the historical development of the principle of least action

that underlies the analytical formulations of classical mechanics.

Isaac Newton (1642-1727) made pioneering contributions to physics and mathematics as well as

being a theologian. At 18 he was admitted to Trinity College Cambridge where he read the writings of

modern philosophers like Descartes, and astronomers like Copernicus, Galileo, and Kepler. By 1665 he

had discovered the generalized binomial theorem, and began developing infinitessimal calculus. Due to a

plague, the university closed for two years in 1665 during which Newton worked at home developing the

theory of calculus that built upon the earlier work of Barrow and Descartes. He was elected Lucasian

Professor of Mathematics in 1669 at the age of 26. From 1670 Newton focussed on optics leading to his

"Hypothesis of Light" published in 1675 and his book "Opticks" in 1704. Newton described light as being

made up of a flow of extremely subtle corpuscles that also had associated wavelike properties to explain

diffraction and optical interference that he studied. Newton returned to mechanics in 1677 by studying

planetary motion and gravitation that applied the calculus he had developed. In 1687 he published his

monumental treatise entitled "Philosophiae Naturalis Principia Mathematica" which established his three

universal laws of motion, the universal theory of gravitation, derivation of Kepler’s three laws of planetary

motion, and was his first publication of the development of calculus which he called "the science of fluxions".

Newton’s laws of motion are based on the concepts of force and momentum, that is, force equals the rate of

change of momentum. Newton’s postulate of an invisible force able to act over vast distances led him to be

criticized for introducing "occult agencies" into science. In a remarkable achievement, Newton completely

solved the laws of mechanics. His theory of classical mechanics and of gravitation reigned supreme until the

development of the Theory of Relativity in 1905. The followers of Newton envisioned the Newtonian laws

to be absolute and universal. This dogmatic reverence of Newtonian mechanics prevented physicists from

an unprejudiced appreciation of the analytic variational approach to mechanics developed during the 17

through 19 centuries. Newton was the first scientist to be knighted and was appointed president of the

Royal Society. Newton had an unpleasant character and was notorious for the heated disputes he provoked

with other academics. Eventually he left academia and became active in politics. This led to his appointment

as Warden of the Royal Mint where he conducted a major campaign against counterfeiting that sent several

men to their death on the gallows.
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Gottfried Leibniz (1646-1716) was a brilliant German philosopher, a contemporary of Newton, who

worked on both calculus and mechanics. Leibniz started development of calculus in 1675, ten years after

Newton, but Leibniz published his work in 1684, which was three years before Newton’s Principia. Leibniz

made significant contributions to integral calculus and was responsible for the calculus notation currently

used. He introduced the name calculus based on the Latin word for the small stone used for counting.

Newton and Leibniz were involved in a protracted argument over who originated calculus. It appears that

Leibniz saw drafts of Newton’s work on calculus during a visit to England. Throughout their argument

Newton was the ghost writer of most of the articles in support of himself and he had them published under

non-de-plume of his friends. Leibniz made the tactical error of appealing to the Royal Society to intercede on

his behalf. Newton, as president of the Royal Society, appointed his friends to an "impartial " committee to

investigate this issue, then he wrote the committee’s report that accused Leibniz of plagiarism of Newton’s

work on calculus, after which he had it published by the Royal Society. Still unsatisfied he then wrote an

anonymous review of the report in the Royal Society’s own periodical. This bitter dispute lasted until the

death of Leibniz. When Leibniz died his work was largely discredited. The fact that he falsely claimed to be

a nobleman and added the prefix von to his name, coupled with Newton’s vitriolic attacks, did not help his

credibility. Newton is reported to have declared that he took great satisfaction in "breaking Leibniz’s heart."

Studies during the 20 century have largely revived the reputation of Leibniz and he is acknowledged to

have made major contributions to the development of calculus.

Leibniz made significant contributions to classical mechanics. In contrast to Newton’s laws of motion,

which are based on the concept of momentum, Leibniz devised a new theory of dynamics based on kinetic

and potential energy that anticipates the analytical variational approach of Lagrange and Hamilton. Leibniz

argued for a quantity called the "vis viva", which is Latin for "living force" that equals twice the kinetic

energy. Leibniz argued that the change in kinetic energy is equal to the work done. In 1687 Leibniz

proposed that the optimum path is based on minimizing the time integral of the vis viva which is equivalent

to the action integral. Leibniz used both philosophical and causal arguments in his work which were equally

acceptable during the Age of Enlightenment. Unfortunately for Leibniz, his analytical approach based on

energies, which are scalars, appeared contradictory to Newton’s intuitive vectorial treatment of force and

momentum. There was considerable prejudice and philosophical opposition to the variational approach which

assumes that nature is thrifty in all of its actions. The variational approach was considered to be speculative

and "metaphysical" in contrast to the causal arguments supporting Newtonian mechanics. This opposition

delayed full appreciation of the variational approach until the start of the 20 century.

Johann Bernoulli (1667-1748) was a Swiss mathematician who was a student of Leibniz’s calculus, and

sided with Leibniz in the Newton-Leibniz dispute over the credit for developing calculus. Also Bernoulli sided

with the Descartes’ vortex theory of gravitation which delayed acceptance of Newton’s theory of gravitation

in Europe. Bernoulli pioneered development of the calculus of variations by solving the problems of the

catenary, the brachistochrone, and Fermat’s principle. The Bernoulli family is famous for its contributions

to mathematics and science; Johann’s son Daniel played a significant role in the development of the well-

known Bernoulli Principle in hydrodynamics.

Pierre Louis Maupertuis (1698-1759) was a student of Johann Bernoulli and conceived the universal

hypothesis that in nature there is a certain quantity called action which is minimized. Although this bold

assumption correctly anticipates the development of the variational approach to classical mechanics, he

obtained his hypothesis by an entirely incorrect method. He was a dilettante whose mathematical prowess

was far behind the high standards of that time, and he could not establish satisfactorily the quantity to be

minimized. His teleological1 argument was influenced by Fermat’s principle and the corpuscle theory of light

that implied a close connection between optics and mechanics.

Leonhard Euler (1707-1783) was the preeminent Swiss mathematician of the 18 century and was

a student of Johann Bernoulli. Euler developed, with full mathematical rigor, the calculus of variations

following in the footsteps of Johann Bernoulli. Euler used variational calculus to solve minimum/maximum

isoperimetric problems which had attracted and challenged the early developers of calculus, Newton, Leibniz,

and Bernoulli. Euler also was the first to solve the rigid-body rotation problem using the three components

of the angular velocity as kinematical variables. Euler became blind in both eyes by 1766 but that did not

hinder his prolific output in mathematics due to his remarkable memory and mental capabilities. Euler’s

contributions to mathematics are remarkable in quality and quantity; for example during 1775 he published

1Teleology is any philosophical account that holds that final causes exist in nature, meaning that – analogous to purposes

found in human actions – nature inherently tends toward definite ends.
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one mathematical paper per week in spite of being blind. Euler implicitly implied the principle of least

action using vis visa which is not the exact form explicitly developed by Lagrange.

Jean le Rond d’Alembert (1717-1785) was a French mathematician and physicist who had the

clever idea of extending use of the principle of virtual work from statics to dynamics. D’Alembert’s Principle

rewrites the principle of virtual work in the form

X
=1

(F − ṗ)r = 0

where the inertial reaction force ṗ is subtracted from the corresponding force F. This extension of the

principle of virtual work applies equally to both statics and dynamics leading to a single variational principle.

Joseph Louis Lagrange (1736-1813) was an Italian mathematician who was a student of Leonhard

Euler and his work paralleled that of Euler. In 1788 Lagrange published his monumental treatise on ana-

lytical mechanics entitled "Mécanique Analytique" which describes his new, immensely powerful, analytical

technique that can solve any mechanical problem without resort to geometrical considerations. His theory

only required the analytical form of the scalar quantities kinetic and potential energy. In the preface of

his book he refers modestly to his extraordinary achievements with the statement "The reader will find no

figures in the work. The methods which I set forth do not require either constructions or geometrical or

mechanical reasonings: but only algebraic operations, subject to a regular and uniform rule of procedure."

Lagrange also introduced the concept of undetermined multipliers to handle auxiliary conditions which plays

a vital part of theoretical mechanics. William Hamilton, an outstanding figure in the analytical formulation

of classical mechanics, called Lagrange the "Shakespeare of mathematics," on account of the extraordinary

beauty, elegance, and depth of the Lagrangian methods. Lagrange also pioneered numerous significant

contributions to mathematics. For example, Euler, Lagrange, and d’Alembert developed much of the math-

ematics of partial differential equations. Lagrange survived the French Revolution and, in spite of being a

foreigner, Napoleon named Lagrange to the Legion of Honour and made him a Count of the Empire in 1808.

Lagrange was honoured by being buried in the Pantheon.

Jean Baptiste Joseph Fourier (1768-1830) was a French mathematician and physicist who was a

student of Lagrange. Fourier is most famous for the development of Fourier analysis which includes Fourier

series, and Fourier transforms. His work has many applications to classical mechanics such as all forms of

wave motion, signal processing, and solving for the eigenfunctions of linear equations.

1.6 19 century

The zenith in development of the variational approach to classical mechanics occurred during the 19 century

primarily due to the work of Hamilton and Jacobi.

Carl Friedrich Gauss (1777-1855) was a German child prodigy who made many significant contri-

butions to mathematics, astronomy and physics. He did not work directly on the variational approach, but

Gauss’s law, the divergence theorem, and the Gaussian statistical distribution are important examples of

concepts that he developed and which feature prominently in classical mechanics as well as other branches

of physics, and mathematics.

Simeon Poisson (1781-1840), was a brilliant mathematician who was a student of Lagrange. He

developed the Poisson statistical distribution as well as the Poisson equation that features prominently in

electromagnetic and other field theories. His major contribution to classical mechanics is development, in

1809, of the Poisson bracket formalism which featured prominently in development of Hamiltonian mechanics

and quantum mechanics.

William Hamilton (1805-1865) was a brilliant Irish physicist, astronomer and mathematician who was

appointed professor of astronomy at Dublin when he was barely 22 years old. He developed the Hamiltonian

mechanics formalism of classical mechanics which now plays a pivotal role in modern classical and quantum

mechanics. He opened an entirely new world beyond the developments of Lagrange. Whereas the Lagrange

equations of motion are complicated second-order differential equations, Hamilton succeeded in transforming

them into a set of first-order differential equations with twice as many variables that consider momenta and

the conjugate positions as independent variables. The differential equations of Hamilton are linear, have

separated derivatives, and represent the simplest and most desirable form possible for differential equations to

be used in a variational approach. Hence the name "canonical variables" given by Jacobi. Hamilton exploited
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the d’Alembert principle to give the first exact formulation of the principle of least action which underlies the

variational principles used in analytical mechanics. The form derived by Euler and Lagrange employed the

principle in a way that applies only for conservative (scleronomic) cases. A significant discovery of Hamilton

is his realization that classical mechanics and geometrical optics can be handled from one unified viewpoint.

In both cases he uses a "characteristic" function that has the property that, by mere differentiation, the

path of the body, or light ray, can be determined by the same partial differential equations. This solution is

equivalent to the solution of the equations of motion.

Carl Gustave Jacob Jacobi (1804-1851), a Prussian mathematician and contemporary of Hamilton,

significantly developed Hamiltonian mechanics. He was one of the few who immediately recognized the

extraordinary importance of the Hamiltonian formulation of mechanics. Jacobi developed canonical trans-

formation theory and showed that the function, used by Hamilton, is only one special case of functions that

generate suitable canonical transformations. He proved that any complete solution of the partial differen-

tial equation, without the specific boundary conditions applied by Hamilton, is sufficient for the complete

integration of the equations of motion. This greatly extends the usefulness of Hamilton’s partial differential

equations. In 1843 Jacobi developed both the Poisson brackets, and the Hamilton-Jacobi, formulations of

Hamiltonian mechanics. The latter gives a single, first-order partial differential equation for the action func-

tion in terms of the  generalized coordinates which greatly simplifies solution of the equations of motion.

He also derived a principle of least action for time-independent cases which had been studied by Euler and

Lagrange. Jacobi developed a superior approach to the variational integral that, by eliminating time from

the integral, determined the path without saying anything about how the motion occurs in time.

James Clerk Maxwell (1831-1879) was a Scottish theoretical physicist and mathematician. His

most prominent achievement was formulating a classical electromagnetic theory that united all previously

unrelated observations, experiments and equations of electricity, magnetism and optics into one consistent

theory. Maxwell’s equations demonstrated that electricity, magnetism and light are all manifestations of the

same phenomenon, namely the electromagnetic field. Consequently, all other classic laws and equations of

electromagnetism were simplified cases of Maxwell’s equations. Maxwell’s achievements concerning electro-

magnetism have been called the "second great unification in physics". Maxwell demonstrated that electric

and magnetic fields travel through space in the form of waves, and at the constant speed of light. In 1864

Maxwell wrote "A Dynamical Theory of the Electromagnetic Field" which proposed that light was in fact

undulations in the same medium that is the cause of electric and magnetic phenomena. His work in produc-

ing a unified model of electromagnetism is one of the greatest advances in physics. Maxwell, in collaboration

with Ludwig Boltzmann (1844-1906), also helped develop the Maxwell—Boltzmann distribution, which is

a statistical means of describing aspects of the kinetic theory of gases. These two discoveries helped usher in

the era of modern physics, laying the foundation for such fields as special relativity and quantum mechanics.

Boltzmann founded the field of statistical mechanics and was an early staunch advocate of the existence of

atoms and molecules.

Henri Poincaré (1854-1912) was a French theoretical physicist and mathematician. He was the first to

present the Lorentz transformations in their modern symmetric form and discovered the remaining relativistic

velocity transformations. Although there is similarity to Einstein’s Special Theory of Relativity, Poincaré and

Lorentz still believed in the concept of the ether and did not fully comprehend the revolutionary philosophical

change implied by Einstein. Poincaré worked on the solution of the three-body problem in planetary motion

and was the first to discover a chaotic deterministic system which laid the foundations of modern chaos

theory. It rejected the long-held deterministic view that if the position and velocities of all the particles are

known at one time, then it is possible to predict the future for all time.

The last two decades of the 19 century saw the culmination of classical physics and several important

discoveries that led to a revolution in science that toppled classical physics from its throne. The end of the

19 century was a time during which tremendous technological progress occurred, flight, the automobile,

and turbine-powered ships were developed, Niagara Falls was harnessed for power, etc. During this period,

Heinrich Hertz (1857-1894) produced electromagnetic waves confirming their derivation using Maxwell’s

equations as well as simultaneously discovering the photoelectric effect. Technical developments, such as

photography, the induction spark coil, and the vacuum pump played a significant role in scientific discoveries

made during the 1890’s. At the end of the 19 century, scientists thought that the basic laws were understood

and worried that future physics would be in the fifth decimal place; some scientists worried that little was

left for them to discover. However, there remained a few, presumed minor, unexplained discrepancies plus

new discoveries that led to the revolution in science that occurred at the beginning of the 20 century.
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1.7 The 20 century revolution in physics

The two greatest achievements of modern physics occurred in the beginning of the 20 century. The first

was Einstein’s development of the Theory of Relativity; the Special Theory of Relativity in 1905 and the

General Theory of Relativity in 1915. This was followed in 1925 by the development of quantum mechanics.

Albert Einstein (1879-1955) developed the Special Theory of Relativity in 1905 and the General The-

ory of Relativity in 1915; both of these revolutionary theories had a profound impact on classical mechanics

and the underlying philosophy of physics. The Newtonian formulation of mechanics was shown to be an

approximation that applies only at low velocities while the General Theory of Relativity superseded New-

ton’s Law of Gravitation and explained the Equivalence Principle. The Newtonian concepts of an absolute

frame of reference, plus the assumption of the separation of time and space were shown to be invalid at

relativistic velocities. Einstein’s postulate that the laws of physics are the same in all inertial frames requires

a revolutionary change in the philosophy of time, space and reference frames which leads to a breakdown

in the Newtonian formalism of classical mechanics. By contrast, the Lagrange and Hamiltonian variational

formalisms of mechanics, plus the principle of least action, remain intact using a relativistically invariant

Lagrangian. The independence of the variational approach to reference frames is precisely the formalism

necessary for relativistic mechanics. The invariance to coordinate frames of the basic field equations also

must remain invariant for the General Theory of Relativity. Thus the development of the Theory of Rela-

tivity unambiguously demonstrated the superiority of the variational formulation of classical mechanics over

the vectorial Newtonian formulation, and thus the considerable effort made by Euler, Lagrange, Hamilton,

Jacobi, and others in developing the analytical variational formalism of classical mechanics finally came to

fruition at the start of the 20 century. Newton’s two crowning achievements, the Laws of Motion and the

Laws of Gravitation, that had reigned supreme since published in the Principia in 1687, were toppled from

the throne by Einstein.

Emmy Noether (1882-1935) has been described as "the greatest ever woman mathematician". In

1915 she proposed a theorem that a conservation law is associated with any differentiable symmetry of a

physical system. Noether’s theorem evolves naturally from Lagrangian and Hamiltonian mechanics and

she applied it to the four-dimensional world of general relativity. Noether’s theorem has had an important

impact in guiding the development of modern physics.

Another profound development that had a revolutionary impact on classical mechanics was quantum

physics plus quantum field theory. The 1913 model of atomic structure by Niels Bohr (1885-1962) and

the subsequent enhancements by Arnold Sommerfeld (1868-1951), were based completely on classical

Hamiltonian mechanics. The proposal of wave-particle duality by Louis de Broglie (1892-1987), made

in his 1924 thesis, was the catalyst leading to the development of quantum mechanics. In 1925 Werner

Heisenberg (1901-1976), and Max Born (1882-1970) developed a matrix representation of quantum

mechanics using non-commuting conjugate position and momenta variables.

Paul Dirac (1902-1984) showed in his Ph.D. thesis that Heisenberg’s matrix representation is based

on the Poisson Bracket generalization of Hamiltonian mechanics, which, in contrast to Hamilton’s canoni-

cal equations, allows for non-commuting conjugate variables. In 1926 Erwin Schrödinger (1887-1961)

independently introduced the operational viewpoint and reinterpreted the partial differential equation of

Hamilton-Jacobi as a wave equation. His starting point was the optical-mechanical analogy of Hamilton

that is a built-in feature of the Hamilton-Jacobi theory. Schrödinger then showed that the wave mechanics

he developed, and the Heisenberg matrix mechanics, are equivalent representations of quantum mechanics.

In 1928 Dirac developed his relativistic equation of motion for the electron and pioneered the field of quan-

tum electrodynamics. Dirac also introduced the Lagrangian and the principle of least action to quantum

mechanics and these ideas were developed into the path-integral formulation of quantum mechanics and the

theory of electrodynamics by Richard Feynman(1918-1988).

The concepts of wave-particle duality, and quantization of observables, both are beyond the classical

notions of infinite subdivisions in classical physics. In spite of the radical departure of quantum mechanics

from earlier classical concepts, the basic feature of the differential equations of quantal physics is their self-

adjoint character which means that they are derivable from a variational principle. Thus both the Theory

of Relativity, and quantum physics are consistent only with the variational principle of mechanics, and

not Newtonian mechanics. As a consequence Newtonian mechanics has been dislodged from the throne

it occupied since 1687, and the intellectually beautiful and powerful variational principles of analytical

mechanics have been validated
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Advances in classical mechanics continue to be made. For example, during the past four decades there

have been tremendous advances in the understanding of the evolution of chaos in non-linear systems. This

is due to the availability of computers which has reopened this interesting branch of classical mechanics that

was pioneered by Henri Poincaré. Although classical mechanics is the most mature branch of physics that

has been studied for over 5000years, there still are new research opportunities in this field of physics.

References:

Excellent sources of information regarding the history of major players in the field of classical mechanics

can be found on Wikipedia and the book "Variational Principle of Mechanics" by Lanczos.[La49]



Chapter 2

Review of Newtonian mechanics

2.1 Introduction

It is assumed that the reader has been introduced to Newtonian mechanics applied to one or two point objects.

This chapter reviews Newtonian mechanics for motion of many-body systems as well as for macroscopic

sized bodies. Newton’s Law of Gravitation also is reviewed. The purpose of this review is to ensure that the

reader has a solid foundation of elementary Newtonian mechanics upon which to build the powerful analytic

Lagrangian and Hamiltonian approaches to classical dynamics.

Newtonian mechanics is based on application of Newton’s Laws of motion which assume that the concepts

of distance, time, and mass, are absolute, that is, motion is in an inertial frame. The Newtonian idea of

the complete separation of space and time, and the concept of the absoluteness of time, are violated by the

Theory of Relativity as discussed in chapter 16. However, for most practical applications, relativistic effects

are negligible and Newtonian mechanics is an adequate description at low velocities. Therefore chapters

3− 15 will assume velocities for which Newton’s laws of motion are applicable.

2.2 Newton’s Laws of motion

Newton defined a vector quantity called linear momentum p which is the product of mass and velocity.

p = ṙ (2.1)

Since the mass  is a scalar quantity, then the velocity vector ṙ and the linear momentum vector p are

colinear.

Newton’s laws, expressed in terms of linear momentum, are:

1 Law of inertia: A body remains at rest or in uniform motion unless acted upon by a force.

2 Equation of motion: A body acted upon by a force moves in such a manner that the time rate of change

of momentum equals the force.

F =
p


(2.2)

3 Action and reaction: If two bodies exert forces on each other these forces are equal in magnitude and

opposite in direction.

Newton’s second law contains the essential physics relating the force F and the rate of change of linear

momentum p.

Newton’s first law, the law of inertia, is a special case of Newton’s second law in that if

F =
p


= 0 (2.3)

then p is a constant of motion.

Newton’s third law also can be interpreted as a statement of the conservation of momentum, that is, for

a two particle system with no external forces acting,

F12 = −F21 (2.4)

9
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If the forces acting on two bodies are their mutual action and reaction, then equation 24 simplifies to

F12 +F21 =
p1


+

p2


=




(p1 + p2) = 0 (2.5)

This implies that the total linear momentum (P = p1 + p2) is a constant of motion.

Combining equations 21 and 22 leads to a second-order differential equation

F =
p


= 

2r

2
= r̈ (2.6)

Note that the force on a body F, and the resultant acceleration a = r̈ are colinear. Appendix 2 gives

explicit expressions for the acceleration a in cartesian and curvilinear coordinate systems. The definition of

force depends on the definition of the mass . Newton’s laws of motion are obeyed to a high precision for

velocities much less than the velocity of light. For example, recent experiments have shown they are obeyed

with an error in the acceleration of ∆ ≤ 5× 10−142

2.3 Inertial frames of reference

x

y

z

O

O’

x’

y’

z’Vt

r
r’

P

Figure 2.1: Frame 0 moving with a con-
stant velocity  with respect to frame 

at the time .

An inertial frame of reference is one in which Newton’s Laws of

motion are valid. It is a non-accelerated frame of reference. An

inertial frame must be homogeneous and isotropic. Physical ex-

periments can be carried out in different inertial reference frames.

The Galilean transformation provides a means of converting be-

tween two inertial frames of reference moving at a constant rel-

ative velocity. Consider two reference frames  and 0 with 0

moving with constant velocity V at time  Figure 21 shows a

Galilean transformation which can be expressed in vector form.

r0 = r−V (2.7)

0 = 

Equation 27 gives the boost, assuming Newton’s hypothesis

that the time is invariant to change of inertial frames of reference.

Differentiation of this transformation gives

ṙ0 = ṙ−V (2.8)

r̈0 = r̈

Note that the forces in the primed and unprimed inertial frames

are related by

F =
p


= r̈ =r̈0 = F0 (2.9)

Thus Newton’s Laws of motion are invariant under a Galilean transformation, that is, the inertial mass is

unchanged under Galilean transformations. If Newton’s laws are valid in one inertial frame of reference,

then they are valid in any frame of reference in uniform motion with respect to the first frame of reference.

This invariance is called Galilean invariance. There are an infinite number of possible inertial frames all

connected by Galilean transformations.

Galilean invariance violates Einstein’s Theory of Relativity. In order to satisfy Einstein’s postulate

that the laws of physics are the same in all inertial frames, as well as satisfy Maxwell’s equations for

electromagnetism, it is necessary to replace the Galilean transformation by the Lorentz transformation. As

will be discussed in chapter 16, the Lorentz transformation leads to Lorentz contraction and time dilation both

of which are related to the parameter  ≡ 1
1−(  )

2
where  is the velocity of light in vacuum. Fortunately,

most situations in life involve velocities where   ; for example, for a body moving at 25 000m.p.h.

(11 111 ) which is the escape velocity for a body at the surface of the earth, the  factor differs from

unity by about 6810−10 which is negligible. Relativistic effects are significant only in nuclear and particle
physics and some exotic conditions in astrophysics. Thus, for the purpose of classical mechanics usually it

is reasonable to assume that the Galilean transformation is valid and is well obeyed under most practical

conditions.
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2.4 First-order integrals in Newtonian mechanics

A fundamental goal of mechanics is to determine the equations of motion for an −body system, where
the force F acts on the individual mass  where 1 ≤  ≤ . Newton’s second-order equation of motion,

equation 26 must be solved to calculate the instantaneous spatial locations, velocities, and accelerations for

each mass  of an -body system. Both F and r̈ are vectors each having three orthogonal components.

The solution of equation 26 involves integrating second-order equations of motion subject to a set of initial

conditions. Although this task appears simple in principle, it can be exceedingly complicated for many-body

systems. Fortunately, solution of the motion often can be simplified by exploiting three first-order integrals

of Newton’s equations of motion, that relate directly to conservation of either the linear momentum, angular

momentum, or energy of the system. In addition, for the special case of these three first-order integrals, the

internal motion of any many-body system can be factored out by a simple transformations into the center

of mass of the system. As a consequence, the following three first-order integrals are exploited extensively

in classical mechanics.

2.4.1 Linear Momentum

Newton’s Laws can be written as the differential and integral forms of the first-order time integral which

equals the change in linear momentum. That is

F =
p



Z 2

1

F =

Z 2

1

p


 = (p2 − p1) (2.10)

This allows Newton’s law of motion to be expressed directly in terms of the linear momentum p = ṙ of

each of the 1     bodies in the system This first-order time integral features prominently in classical

mechanics since it connects to the important concept of linear momentum p. This first-order time integral

gives that the total linear momentum is a constant of motion when the sum of the external forces is zero.

2.4.2 Angular momentum

The angular momentum L of a particle  with linear momentum p with respect to an origin from which

the position vector r is measured, is defined by

L ≡ r × p (2.11)

The torque, or moment of the force N with respect to the same origin is defined to be

N ≡ r ×F (2.12)

where r is the position vector from the origin to the point where the force F is applied. Note that the

torque N can be written as

N = r × p


(2.13)

Consider the time differential of the angular momentum, L


L


=




(r × p) = r


× p + r × p


(2.14)

However,
r


× p = 

r


× r


= 0 (2.15)

Equations 213 − 215 can be used to write the first-order time integral for angular momentum in either

differential or integral form as

L


= r × p


=N

Z 2

1

N =

Z 2

1

L


 = (L2 − L1) (2.16)

Newton’s Law relates torque and angular momentum about the same axis. When the torque about any axis

is zero then angular momentum about that axis is a constant of motion. If the total torque is zero then the

total angular momentum, as well as the components about three orthogonal axes, all are constants.
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2.4.3 Kinetic energy

The third first-order integral, that can be used for solving the equations of motion, is the first-order spatial

integral
R 2
1
F · r. Note that this spatial integral is a scalar in contrast to the first-order time integrals for

linear and angular momenta which are vectors. The work done on a mass  by a force F in transforming

from condition 1 to 2 is defined to be

[12] ≡
Z 2

1

F · r (2.17)

If F is the net resultant force acting on a particle  then the integrand can be written as

F · r = p


· r = 

v


· r


 = 

v


· v = 

2




(v · v)  = 

µ
1

2


2


¶
=  [ ] (2.18)

where the kinetic energy of a particle  is defined as

[ ] ≡
1

2


2
 (2.19)

Thus the work done on the particle , that is, [12] equals the change in kinetic energy of the particle if

there is no change in other contributions to the total energy such as potential energy, heat dissipation, etc.

That is

[12] =

∙
1

2
22 −

1

2
21

¸


= [2 − 1] (2.20)

Thus the differential, and corresponding first integral, forms of the kinetic energy can be written as

F =


r

Z 2

1

F · r = (2 − 1) (2.21)

If the work done on the particle is positive, then the final kinetic energy 2  1 Especially noteworthy is that

the kinetic energy [ ] is a scalar quantity which makes it simple to use. This first-order spatial integral is the

foundation of the analytic formulation of mechanics that underlies Lagrangian and Hamiltonian mechanics.

2.5 Conservation laws in classical mechanics

Elucidating the dynamics in classical mechanics is greatly simplified when conservation laws are applicable.

In nature, isolated many-body systems frequently conserve one or more of the first-order integrals for linear

momentum, angular momentum, and mass/energy. Note that mass and energy are coupled in the Theory

of Relativity, but for non-relativistic mechanics the conservation of mass and energy are decoupled. Other

observables such as lepton and baryon numbers are conserved, but these conservation laws usually can be

subsumed under conservation of mass for most problems in non-relativistic classical mechanics. The power

of conservation laws in calculating classical dynamics makes it useful to combine the conservation laws

with the first integrals for linear momentum, angular momentum, and work-energy, when solving problems

involving Newtonian mechanics. These three conservation laws will be derived assuming Newton’s laws of

motion, however, these conservation laws are fundamental laws of nature that apply well beyond the domain

of applicability of Newtonian mechanics.

2.6 Motion of finite-sized and many-body systems

Elementary presentations in classical mechanics discuss motion and forces involving single point particles.

However, in real life, single bodies have a finite size introducing new degrees of freedom such as rotation and

vibration, and frequently many finite-sized bodies are involved. A finite-sized body can be thought of as a

system of interacting particles such as the individual atoms of the body. The interactions between the parts

of the body can be strong which leads to rigid body motion where the positions of the particles are held

fixed with respect to each other, and the body can translate and rotate. When the interaction between the

bodies is weaker, such as for a diatomic molecule, additional vibrational degrees of relative motion between

the individual atoms are important. Newton’s third law of motion becomes especially important for such

many-body systems.
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2.7 Center of mass of a many-body system

R

CM

r’

r

Figure 2.2: Position vector with respect to the

center of mass.

A finite sized body needs a reference point with respect

to which the motion can be described. For example,

there are 8 corners of a cube that could server as ref-

erence points, but the motion of each corner is compli-

cated if the cube is both translating and rotating. The

treatment of the behavior of finite-sized bodies, or many-

body systems, is greatly simplified using the concept of

center of mass. The center of mass is a particular fixed

point in the body that has an especially valuable prop-

erty; that is, the translational motion of a finite sized

body can be treated like that of a point mass located at

the center of mass. In addition the translational motion

is separable from the rotational-vibrational motion of a

many-body system when the motion is described with

respect to the center of mass. Thus it is convenient at

this juncture to introduce the concept of center of mass

of a many-body system.

For a many-body system, the position vector r, de-

fined relative to the laboratory system, is related to the

position vector r0 with respect to the center of mass, and
the center-of-mass location R relative to the laboratory

system. That is, as shown in figure 22

r = R+ r
0
 (2.22)

This vector relation defines the transformation between the laboratory and center of mass systems. For

discrete and continuous systems respectively, the location of the center of mass is uniquely defined as being

where
X


r
0
 =

Z
r0 = 0 (Center of mass definition)

Define the total mass  as

 =

X


 =

Z


 (Total mass)

The average location of the system corresponds to the location of the center of mass since 1


P
r

0
 = 0

that is
1



X


r = R+
1



X


r
0
 = R (2.23)

The vector R which describes the location of the center of mass, depends on the origin and coordinate

system chosen. For a continuous mass distribution the location vector of the center of mass is given by

R =
1



X


r =
1



Z
r (2.24)

The center of mass can be evaluated by calculating the individual components along three orthogonal axes.

The center-of-mass frame of reference is defined as the frame for which the center of mass is stationary.

This frame of reference is especially valuable for elucidating the underlying physics which involves only the

relative motion of the many bodies. That is, the trivial translational motion of the center of mass frame,

which has no influence on the relative motion of the bodies, is factored out and can be ignored. For example,

a tennis ball (006) approaching the earth (6 × 1024) with velocity  could be treated in three frames,

(a) assume the earth is stationary, (b) assume the tennis ball is stationary, or (c) the center-of-mass frame.

The latter frame ignores the center of mass motion which has no influence on the relative motion of the

tennis ball and the earth. The center of linear momentum and center of mass coordinate frames are identical

in Newtonian mechanics but not in relativistic mechanics as described in chapter 1643.
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2.8 Total linear momentum of a many-body system

2.8.1 Center-of-mass decomposition

The total linear momentum P for a system of  particles is given by

P =

X


p =




X


r (2.25)

It is convenient to describe a many-body system by a position vector r0 with respect to the center of mass.

r = R+ r
0
 (2.26)

That is,

P =

X


p =




X


r =



R+





X


r
0
 =




R+ 0 =Ṙ (2.27)

since
P

 r
0
 = 0 as given by the definition of the center of mass. That is;

P =Ṙ (2.28)

Thus the total linear momentum for a system is the same as the momentum of a single particle of mass

 =
P

  located at the center of mass of the system.

2.8.2 Equations of motion

The force acting on particle  in an -particle many-body system, can be separated into an external force

F plus internal forces f between the  particles of the system

F = F

 +

X


6=

f (2.29)

The origin of the external force is from outside of the system while the internal force is due to the mutual

interaction between the  particles in the system. Newton’s Law tells us that

ṗ = F = F

 +

X

6=

f (2.30)

Thus the rate of change of total momentum is

Ṗ =

X


ṗ =

X


F +

X


X


6=

f (2.31)

Note that since the indices are dummy then

X


X


6=

f =
X


X


6=

f (2.32)

Substituting Newton’s third law f = −f into equation 232 implies that

X


X

6=

f =
X


X


6=

f = −
X


X

6=

f = 0 (2.33)
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which is satisfied only for the case where the summations equal zero. That is, for every internal force, there

is an equal and opposite reaction force that cancels that internal force.

Therefore the first-order integral for linear momentum can be written in differential and integral forms

as

Ṗ =

X


F

2Z
1

X


F  = P2 −P1 (2.34)

The reaction of a body to an external force is equivalent to a single particle of mass  located at the center

of mass assuming that the internal forces cancel due to Newton’s third law.

Note that the total linear momentum P is conserved if the net external force F is zero, that is

F =
P


= 0 (2.35)

Therefore the P of the center of mass is a constant. Moreover, if the component of the force along any

direction be is zero, that is,
F · be = P · be


= 0 (2.36)

then P · be is a constant. This fact is used frequently to solve problems involving motion in a constant force
field. For example, in the earth’s gravitational field, the momentum of an object moving in vacuum in the

vertical direction is time dependent because of the gravitational force, whereas the horizontal component of

momentum is constant if no forces act in the horizontal direction.

2.1 Example: Exploding cannon shell

Consider a cannon shell of mass  moves along a parabolic trajectory in the earths gravitational field.

An internal explosion, generating an amount  of mechanical energy, blows the shell into two parts. One

part of mass  where   1 continues moving along the same trajectory with velocity 0 while the other
part is reduced to rest. Find the velocity of the mass  immediately after the explosion.

 v’

 v

M

kM

(1-k)M

Exploding cannon shell

It is important to remember that the energy release  is given in

the center of mass. If the velocity of the shell immediately before the

explosion is  and 0 is the velocity of the  part immediately after the

explosion, then energy conservation gives that 1
2
2+ = 1

2
02 

The conservation of linear momentum gives  = 0. Eliminating
 from these equations gives

0 =

s
2

[(1− ) ]

2.2 Example: Billiard-ball collisions

A billiard ball with mass  and incident velocity  collides with an identical stationary ball . Assume that

the balls bounce off each other elastically in such a way that the incident ball is deflected at a scattering angle

 to the incident direction. Calculate the final velocities  and  of the two balls and the scattering angle 

of the target ball. The conservation of linear momentum in the incident direction  gives  =  cos +

 cos. The linear momentum in the perpendicular direction gives 0 =  sin  − sinThe energy

is conserved since the collision is elastic. Thus



2
2 =



2
2 +



2
 2


Solving these three equations gives  = 900 −  that is, the balls bounce off perpendicular to each other in

the laboratory frame. The final velocities are

 =  cos 

 =  sin 
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2.9 Angular momentum of a many-body system

2.9.1 Center-of-mass decomposition

As was the case for linear momentum, for a many-body system it is possible to separate the angular mo-

mentum into two components. One component is the angular momentum about the center of mass and the

other component is the angular motion of the center of mass about the origin of the coordinate system. This

separation is done by describing the angular momentum of a many-body system using a position vector r0
with respect to the center of mass plus the vector location R of the center of mass.

r = R+ r
0
 (2.37)

The total angular momentum

L =

X


L =

X


r × p

=

X


(R+ r0)×

³
Ṙ+ ṙ0

´
=

X




h
r0 × ṙ0 + r0 × Ṙ+R× ṙ0 +R× Ṙ

i
(2.38)

Note that if the position vectors are with respect to the center of mass, then
P

 r
0
 = 0 resulting in the

middle two terms in the bracket being zero, that is;

L =

X


r0 × p0 +R×P (2.39)

The total angular momentum separates into two terms, the angular momentum about the center of mass,

plus the angular momentum of the center of mass about the origin of the axis system. This factoring of the

angular momentum only applies for the center of mass. This is called Samuel König’s first theorem.

2.9.2 Equations of motion

The time derivative of the angular momentum

L̇ =



r × p = ṙ × p + r × ṗ (2.40)

But

ṙ × p = ṙ × ṙ = 0 (2.41)

Thus

L̇ = r × ṗ = r ×F =N (2.42)

Consider that the resultant force acting on particle  in this -particle system can be separated into an

external force F plus internal forces between the  particles of the system

F = F

 +

X


6=

f (2.43)

The origin of the external force is from outside of the system while the internal force is due to the interaction

with the other − 1 particles in the system. Newton’s Law tells us that

ṗ = F = F

 +

X

6=

f (2.44)
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The rate of change of total angular momentum is

L̇ =
X


L̇ =
X


r × ṗ =
X


r ×F +
X


X

6=

r × f (2.45)

Since f = −f the last expression can be written asX


X

6=

r × f =
X


X




(r − r)× f (2.46)

Note that (r − r) is the vector r connecting  to . For central forces the force vector f = cr thusX


X




(r − r)× f =
X


X




r × cr = 0 (2.47)

That is, for central internal forces the total internal torque on a system of particles is zero, and the rate of

change of total angular momentum for central internal forces becomes

L̇ =
X


r ×F =
X


N
 = N

 (2.48)

whereN is the net external torque acting on the system. Equation 248 leads to the differential and integral

forms of the first integral relating the total angular momentum to total external torque.

L̇ =N

2Z
1

N = L2 − L1 (2.49)

Angular momentum conservation occurs in many problems involving zero external torques N = 0 plus

two-body central forces F =()r̂ since the torque on the particle about the center of the force is zero

N = r×F =()[r× r̂] =0 (2.50)

Examples are, the central gravitational force for stellar or planetary systems in astrophysics, and the central

electrostatic force manifest for motion of electrons in the atom. In addition, the component of angular

momentum about any axis Lê is conserved if the net external torque about that axis Nê =0.

CM

V 0

m 1

Bolas thrown by a gaucho

2.3 Example: Bolas thrown by gaucho

Consider the bolas thrown by a gaucho to catch cattle. This is a

system with conserved linear and angular momentum about certain

axes. When the bolas leaves the gaucho’s hand the center of mass

has a linear velocity V and an angular momentum about the center

of mass of L If no external torques act, then the center of mass of

the bolas will follow a typical ballistic trajectory in the earth’s grav-

itational field while the angular momentum vector L is conserved,

that is, both in magnitude and direction. The tension in the ropes

connecting the three balls does not impact the motion of the system

as long as the ropes do not snap due to centrifugal forces.
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2.10 Work and kinetic energy for a many-body system

2.10.1 Center-of-mass kinetic energy

For a many-body system the position vector r0 with respect to the center of mass is given by.

r = R+ r
0
 (2.51)

The location of the center of mass is uniquely defined as being at the location where
R
r0 = 0 The

velocity of the  particle can be expressed in terms of the velocity of the center of mass Ṙ plus the velocity

of the particle with respect to the center of mass ṙ0 . That is,

ṙ = Ṙ+ ṙ
0
 (2.52)

The total kinetic energy  is

 =

X


1

2


2
 =

X


1

2
ṙ · ṙ =

X


1

2
ṙ

0
 · ṙ0 +

Ã




X


ṙ
0


!
· Ṙ+

X


1

2
Ṙ · Ṙ (2.53)

For the special case of the center of mass, the middle term is zero since, by definition of the center of mass,P
ṙ

0
 = 0 Therefore

 =

X


1

2


02
 +

1

2
 2 (2.54)

Thus the total kinetic energy of the system is equal to the sum of the kinetic energy of a mass  moving

with the center of mass velocity plus the kinetic energy of motion of the individual particles relative to the

center of mass. This is called Samuel König’s second theorem.

Note that for a fixed center-of-mass energy, the total kinetic energy  has a minimum value of
P


1
2


02


when the velocity of the center of mass  = 0. For a given internal excitation energy, the minimum energy

required to accelerate colliding bodies occurs when the colliding bodies have identical, but opposite, linear

momenta. That is, when the center-of-mass velocity  = 0.

2.10.2 Conservative forces and potential energy

In general, the line integral of a force field F, that is,
R 2
1
F·r is both path and time dependent. However,

an important class of forces, called conservative forces, exist for which the following two facts are obeyed.

1) Time independence:

The force depends only on the particle position r, that is, it does not depend on velocity or time.

2) Path independence:

For any two points 1 and 2 , the work done by F is independent of the path taken between 1 and 2 .

If forces are path independent, then it is possible to define a scalar field, called potential energy and

denoted by (r) that is only a function of position. The path independence can be expressed by noting

that the integral around a closed loop is zero. That isI
F · r = 0 (2.55)

Applying Stokes theorem for a path-independent force leads to the alternate statement that the curl is zero.

See appendix 33

∇×F = 0 (2.56)

Note that the vector product of two del operators ∇ acting on a scalar field  equals

∇×∇ = 0 (2.57)

Thus it is possible to express a path-independent force field as the gradient of a scalar field,  , that is

F = −∇ (2.58)
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Then the spatial integral Z 2

1

F · r = −
Z 2

1

(∇) · r = 1 − 2 (2.59)

Thus for a path-independent force, the work done on the particle is given by the change in potential energy

if there is no change in kinetic energy. For example, if an object is lifted against the gravitational field, then

work is done on the particle and the final potential energy 2 exceeds the initial potential energy, 1.

2.10.3 Total mechanical energy

The total mechanical energy  of a particle is defined as the sum of the kinetic and potential energies.

 =  +  (2.60)

Note that the potential energy is defined only to within an additive constant since the force F = −∇
depends only on difference in potential energy. Similarly, the kinetic energy is not absolute since any inertial

frame of reference can be used to describe the motion and the velocity of a particle depends on the relative

velocities of inertial frames. Thus the total mechanical energy  =  +  is not absolute.

If a single particle is subject to several path-independent forces, such as gravity, linear restoring forces,

etc., then a potential energy  can be ascribed to each of the  forces where for each force F = −∇. In
contrast to the forces, which add vectorially, these scalar potential energies are additive,  =

X


. Thus

the total mechanical energy for  potential energies equals

 =  + (r) =  +

X


(r) (2.61)

The time derivative of the total mechanical energy  =  +  equals




=




+




(2.62)

Equation 218 gave that  = F · r. Thus, the first term in equation 262 equals




= F · r


(2.63)

The potential energy can be a function of both position and time. Thus the time difference in potential

energy due to change in both time and position is given as




=
X









+




= (∇) · r


+




(2.64)

The time derivative of the total mechanical energy is given using equations 263 264 in equation 262




=




+




= F · r


+ (∇) · r


+




= [F+ (∇)] · r


+




(2.65)

Note that if the field is path independent, that is ∇×F = 0 then the force and potential are related by

F = −∇ (2.66)

Therefore, for path independent forces, the first term in the time derivative of the total energy in equation

265 is zero. That is,



=




(2.67)

In addition, when the potential energy  is not an explicit function of time, then 

= 0 and thus the total

energy is conserved. That is, for the combination of (a) path independence plus (b) time independence, then

the total energy of a conservative field is conserved.



20 CHAPTER 2. REVIEW OF NEWTONIAN MECHANICS

Note that there are cases where the concept of potential still is useful even when it is time dependent.

That is, if path independence applies, i.e. F = −∇ at any instant. For example, a Coulomb field problem

where charges are slowly changing due to leakage etc., or during a peripheral collision between two charged

bodies such as nuclei.

2.4 Example: Central force

A particle of mass  moves along a trajectory given by  = 0 cos1 and  = 0 sin2.

a) Find the  and  components of the force and determine the condition for which the force is a central

force.

Differentiating with respect to time gives

̇ = −01 sin (1) ̈ = −021 cos (1)
̇ = −02 cos (2) ̈ = −022 sin (2)

Newton’s second law gives

F= (̈̂+̈̂) = − £021 cos (1) ̂+ 0
2
2 sin (2) ̂

¤
= − £21̂+ 22̂

¤
Note that if 1 = 2 =  then

F = = −2 [̂+ ̂] = −2r

That is, it is a central force if 1 = 2 = 

b) Find the potential energy as a function of  and .

Since

F = −∇ = −
∙



̂+




̂

¸
then

 =
1

2

¡
21

2 + 22
2
¢

assuming that  = 0 at the origin.

c) Determine the kinetic energy of the particle and show that it is conserved.

The total energy

 =  +  =
1

2

¡
̇2 + ̇2

¢
+
1

2

¡
21

2 + 22
2
¢
=
1

2

¡
20

2
1 + 20

2
2

¢
since cos2 + sin2  = 1. Thus the total energy  is a constant and is conserved.

2.10.4 Total mechanical energy for conservative systems

Equation 220 showed that, using Newton’s second law, F = p

 the first-order spatial integral gives that

the work done 12 is related to the change in the kinetic energy. That is,

12 ≡
Z 2

1

F · r = 1

2
22 −

1

2
21 = 2 − 1 (2.68)

The work done 12 also can be evaluated in terms of the known forces F in the spatial integral.

Consider that the resultant force acting on particle  in this -particle system can be separated into an

external force F plus internal forces between the  particles of the system

F = F

 +

X


6=

f (2.69)

The origin of the external force is from outside of the system while the internal force is due to the interaction

with the other − 1 particles in the system. Newton’s Law tells us that

ṗ = F = F

 +

X

6=

f (2.70)
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The work done on the system by a force moving from configuration 1→ 2 is given by

1→2 =
X


Z 2

1

F · r +
X


X

6=

Z 2

1

f · r (2.71)

Since f = −f then
1→2 =

X


Z 2

1

F · r +
X


X




Z 2

1

f · (r − r) (2.72)

where r − r = r is the vector from  to 

Assume that both the external and internal forces are conservative, and thus can be derived from time

independent potentials, that is

F = −∇

 (2.73)

f = −∇

 (2.74)

Then

1→2 = −
X


Z 2

1

∇

 · r −

X


X




Z 2

1

∇

 · r

=

X



 (1)−

X



 (2) +

X



 (1)−

X



 (2)

= (1)− (2) + (1)− (2) (2.75)

Define the total external potential energy,

 =

X



 (2.76)

and the total internal energy

 =

X


 
 (2.77)

Equating the two equivalent equations for 1→2, that is 268 and 275gives that

1→2 = 2 − 1 = (1)− (2) + (1)− (2) (2.78)

Regroup these terms in equation 278 gives

1 + (1) +  (1) = 2 + (2) +  (2)

This shows that, for conservative forces, the total energy is conserved and is given by

 =  +  +   (2.79)

The three first-order integrals for linear momentum, angular momentum, and energy provide powerful

approaches for solving the motion of Newtonian systems due to the applicability of conservation laws for the

corresponding linear and angular momentum plus energy conservation for conservative forces. In addition,

the important concept of center-of-mass motion naturally separates out for these three first-order integrals.

Although these conservation laws were derived assuming Newton’s Laws of motion, these conservation laws

are more generally applicable, and these conservation laws surpass the range of validity of Newton’s Laws of

motion. For example, in 1930 Pauli and Fermi postulated the existence of the neutrino in order to account for

non-conservation of energy and momentum in -decay because they did not wish to relinquish the concepts

of energy and momentum conservation. The neutrino was first detected in 1956 confirming the correctness

of this hypothesis.
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2.11 Virial Theorem

The virial theorem is an important theorem for a system of moving particles both in classical physics and

quantum physics. The Virial Theorem is useful when considering a collection of many particles and has a

special importance to central-force motion. For a general system of mass points with position vectors r and

applied forces F, consider the scalar product 

 ≡
X


p · r (2.80)

where  sums over all particles. The time derivative of  is




=
X


p · ṙ +
X


ṗ · r (2.81)

However, X


p · ṙ =
X


ṙ · ṙ =
X


2 = 2 (2.82)

Also, since ṗ = F X


ṗ · r =
X


F · r (2.83)

Thus



= 2 +

X


F · r (2.84)

The time average over a period  is

1



Z 

0




 =

()−(0)


= h2 i+

*X


F · r
+

(2.85)

where the hi brackets refer to the time average. Note that if the motion is periodic and the chosen time 
equals a multiple of the period, then

()−(0)


= 0. Even if the motion is not periodic, if the constraints and

velocities of all the particles remain finite, then there is an upper bound to  This implies that choosing

 →∞ means that
()−(0)


→ 0 In both cases the left-hand side of the equation tends to zero giving the

virial theorem

h i = −1
2

*X


F · r
+

(2.86)

The right-hand side of this equation is called the virial of the system. For a single particle subject to a

conservative central force F = −∇ the Virial theorem equals

h i = 1

2
h∇ · ri = 1

2

¿





À
(2.87)

If the potential is of the form  = +1 that is,  = −(+ 1), then  

= (+ 1) . Thus for a single

particle in a central potential  = +1 the Virial theorem reduces to

h i = + 1

2
hi (2.88)

The following two special cases are of considerable importance in physics.

Hooke’s Law: Note that for a linear restoring force  = 1 then

h i = + hi ( = 1)

You may be familiar with this fact for simple harmonic motion where the average kinetic and potential

energies are the same and both equal half of the total energy.
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Inverse-square law: The other interesting case is for the inverse square law  = −2 where

h i = −1
2
hi ( = −2)

The Virial theorem is useful for solving problems in that knowing the exponent  of the field makes it

possible to write down directly the average total energy in the field. For example, for  = −2

hi = h i+ hi = −1
2
hi+ hi = 1

2
hi (2.89)

This occurs for the Bohr model of the hydrogen atom where the kinetic energy of the bound electron is half

of the potential energy. The same result occurs for planetary motion in the solar system.

2.5 Example: The ideal gas law

The Virial theorem deals with average properties and has applications to statistical mechanics. Consider

an ideal gas. According to the equipartition theorem the average kinetic energy per atom in an ideal gas is
3
2
 where  is the absolute temperature and  is the Boltzmann constant. Thus the average total kinetic

energy for  atoms is hi = 3
2
 . The right-hand side of the Virial theorem contains the force . For

an ideal gas it is assumed that there are no interaction forces between atoms, that is the only force is the

force of constraint of the walls of the pressure vessel. The pressure  is force per unit area and thus the

instantaneous force on an area of wall  is F = −n̂ where ̂ designates the unit vector normal to

the surface. Thus the right-hand side of the Virial theorem is

−1
2

*X


F · r
+
=



2

Z
n̂ · r

Use of the divergence theorem thus gives that
R
n̂ ·r =

R ∇ · r = 3
R
 = 3 Thus the Virial theorem

leads to the ideal gas law, that is

 = 

2.6 Example: The mass of galaxies

The Virial theorem can be used to make a crude estimate of the mass of a cluster of galaxies. Assuming a

spherically-symmetric cluster of  galaxies, each of mass  then the total mass of the cluster is  = .

A crude estimate of the cluster potential energy is

hi ≈ 2


()

where  is the radius of a cluster. The average kinetic energy per galaxy is 1
2
 hi2 where hi2 is the average

square of the galaxy velocities with respect to the center of mass of the cluster. Thus the total kinetic energy

of the cluster is

hi ≈  hi2
2

=
 hi2
2

()

The Virial theorem tells us that a central force having a radial dependence of the form  ∝  gives hi =
+1
2
hi. For the inverse-square gravitational force then

hi = −1
2
hi ()

Thus equations   and  give an estimate of the total mass of the cluster to be

 ≈  hi2


This estimate is larger than the value estimated from the luminosity of the cluster implying a large amount

of "dark matter" must exist in galaxies which remains an open question in physics.
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2.12 Applications of Newton’s equations of motion

Newton’s equation of motion can be written in the form

F =
p


= 

v


= 

2r

2
(2.90)

A description of the motion of a particle requires a solution of this second-order differential equation of

motion. This equation of motion may be integrated to find r() and v() if the initial conditions and

the force field F() are known. Solution of the equation of motion can be complicated for many practical

examples, but there are various approaches to simplify the solution. It is of value to learn efficient approaches

to solving problems.

The following sequence is recommended

a) Make a vector diagram of the problem indicating forces, velocities, etc.

b) Write down the known quantities.

c) Before trying to solve the equation of motion directly, look to see if a basic conservation law applies.

That is, check if any of the three first-order integrals, can be used to simplify the solution. The use of

conservation of energy or conservation of momentum can greatly simplify solving problems.

The following examples show the solution of typical types of problem encountered using Newtonian

mechanics.

2.12.1 Constant force problems

Problems having a constant force imply constant acceleration. The classic example is a block sliding on an

inclined plane, where the block of mass  is acted upon by both gravity and friction. The net force F is

given by the vector sum of the gravitational force F, normal force N and frictional force f .

F = F +N+ f = a (2.91)

Taking components perpendicular to the inclined plane in the  direction

− cos  + = 0 (2.92)

F

N

g

y

x

ff

Figure 2.3: Block on an inclined plane

That is, since  = 

 =  cos  (2.93)

Similarly, taking components along the inclined plane in the  di-

rection

 sin  −  = 
2

2
(2.94)

Using the concept of coefficient of friction 

 =  (2.95)

Thus the equation of motion can be written as

 (sin  −  cos ) = 
2

2
(2.96)

The block accelerates if sin    cos  that is, tan    The

acceleration is constant if  and  are constant, that is

2

2
=  (sin  −  cos ) (2.97)

Remember that if the block is stationary, the friction coefficient balances such that (sin  −  cos ) = 0

that is, tan  = . However, there is a maximum static friction coefficient  beyond which the block starts

sliding. The kinetic coefficient of friction  is applicable for sliding friction and usually    

Another example of constant force and acceleration is motion of objects free falling in a uniform gravi-

tational field when air drag is neglected. Then one obtains the simple relations such as  = + , etc.
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2.12.2 Linear Restoring Force

An important class of problems involve a linear restoring force, that is, they obey Hooke’s law. The equation

of motion for this case is

 () = − = ̈ (2.98)

It is usual to define

20 ≡



(2.99)

Then the equation of motion then can be written as

̈+ 20 = 0 (2.100)

which is the equation of the harmonic oscillator. Examples are small oscillations of a mass on a spring,

vibrations of a stretched piano string, etc.

The solution of this second order equation is

() =  sin (0− ) (2.101)

This is the well known sinusoidal behavior of the displacement for the simple harmonic oscillator. The

angular frequency 0 is

0 =

r



(2.102)

Note that for this linear system with no dissipative forces, the total energy is a constant of motion as

discussed previously. That is, it is a conservative system with a total energy  given by

1

2
̇2 +

1

2
2 =  (2.103)

The first term is the kinetic energy and the second term is the potential energy. The Virial theorem gives

that for the linear restoring force the average kinetic energy equals the average potential energy.

2.12.3 Position-dependent conservative forces

The linear restoring force is an example of a conservative field. The total energy  is conserved, and if the

field is time independent, then the conservative forces are a function only of position. The easiest way to

solve such problems is to use the concept of potential energy  illustrated in Figure 24.

2 − 1 = −
Z 2

1

F · r (2.104)

Consider a conservative force in one dimension. Since it was shown that the total energy  =  +  is

conserved for a conservative field, then

 =  +  =
1

2
2 + () (2.105)

Therefore:

 =



= ±

r
2


[ − ()] (2.106)

Integration of this gives

− 0 =

Z 

0

±q
2

[ − ()]

(2.107)

where  = 0 when  = 0 Knowing () it is possible to solve this equation as a function of time.
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Figure 2.4: One-dimensional potential ()

It is possible to understand the general features of the

solution just from inspection of the function () For ex-

ample, as shown in figure 24 the motion for energy 1
is periodic between the turning points  and  Since

the potential energy curve is approximately parabolic be-

tween these limits the motion will exhibit simple harmonic

motion. For 0 the turning point coalesce to 0 that is

there is no motion. For total energy 2 the motion is

periodic in two independent regimes,  ≤  ≤  and

 ≤  ≤   Classically the particle cannot jump from

one pocket to the other. The motion for the particle with

total energy 3 is that it moves freely from infinity, stops

and rebounds at  =  and then returns to infinity. That

is the particle bounces off the potential at  For energy

4 the particle moves freely and is unbounded. For all

these cases, the actual velocity is given by the above re-

lation for  ()  Thus the kinetic energy is largest where

the potential is deepest. An example would be motion of

a roller coaster car.

Position-dependent forces are encountered extensively

in classical mechanics. Examples are the many manifesta-

tions of motion in gravitational fields, such as interplane-

tary probes, a roller coaster, and automobile suspension systems. The linear restoring force is an especially

simple example of a position-dependent force while the most frequently encountered conservative potentials

are in electrostatics and gravitation for which the potentials are;

() =
1

40

12

212
(Electrostatic potential energy)

() = −12

212
(Gravitational potential energy)

Knowing () it is possible to solve the equation of motion as a function of time.

2.7 Example: Diatomic molecule

An example of a conservative field is a vibrating diatomic molecule which has a potential energy depen-

dence with separation distance  that is described approximately by the Morse function

() = 0

h
1− −

(−0)


i2
− 0

where 0 0 and  are parameters chosen to best describe the particular pair of atoms. The restoring force

is given by

 () = −()


= 2
0



h
1− −

(−0)


i h
−

(−0)


i
This has a minimum value of (0) = 0 at  = 0
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Potential energy function ()0 versus 

for the diatomic molecule.

Note that for small amplitude oscillations, where

(− 0)  

the exponential term in the potential function can be ex-

panded to give

() ≈ 0

∙
1− (1−−(− 0)


)

¸2
−0 ≈ 0

2
(−0)2−0

This gives a restoring force

 () = −()


= −20

(− 0)

That is, for small amplitudes the restoring force is linear.
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2.12.4 Constrained motion

A frequently encountered problem with position dependent forces is when the motion is constrained to

follow a certain trajectory. Forces of constraint must exist to constrain the motion to a specific trajectory.

Examples are, the roller coaster, a rolling ball on an undulating surface, or a downhill skier, where the

motion is constrained to follow the surface or track contours. The potential energy can be evaluated at all

positions along the constrained trajectory for conservative forces such as gravity. However, the additional

forces of constraint that must exist to constrain the motion, can be complicated and depend on the motion.

For example, the roller coaster must always balance the gravitational and centripetal forces. Fortunately

forces of constraint F often are normal to the direction of motion and thus do not contribute to the total

mechanical energy since then the work done F · l is zero. Magnetic forces F =v ×B exhibit this feature

of having the force normal to the motion.

Solution of constrained problems is greatly simplified if the other forces are conservative and the forces

of constraint are normal to the motion, since then energy conservation can be used.

2.8 Example: Roller coaster

Roller coaster (CCO Public Domain)

Consider motion of a roller coaster shown in the

adjacent figure. This system is conservative if the fric-

tion and air drag are neglected and then the forces of

constraint are normal to the direction of motion.

The kinetic energy at any position is just given by

energy conservation and the fact that

 =  + 

where  depends on the height of the track at any the

given location. The kinetic energy is greatest when the

potential energy is lowest. The forces of constraint

can be deduced if the velocity of motion on the track

is known. Assuming that the motion is confined to a

vertical plane, then one has a centripetal force of con-

straint 2


normal to the track inwards towards the

center of the radius of curvature , plus the gravita-

tion force downwards of 

The constraint force is
2

−  upwards at the

top of the loop, while it is
2

+  downwards at

the bottom of the loop. To ensure that the car and

occupants do not leave the required trajectory, the force

upwards at the top of the loop has to be positive, that

is, 2 ≥ . The velocity at the bottom of the loop

is given by 1
2
2 =

1
2
2 + 2 assuming that the

track has a constant radius of curvature . That is;

at a minimum 2 =  + 4 = 5 Therefore the

occupants now will feel an acceleration downwards of

at least
2

+  = 6 at the bottom of the loop The

first roller coaster was built with such a constant radius of curvature but an acceleration of 6 was too much

for the average passenger. Therefore roller coasters are designed such that the radius of curvature is much

larger at the bottom of the loop, as illustrated, in order to maintain sufficiently low  loads and also ensure

that the required constraint forces exist.

Note that the minimum velocity at the top of the loop,  , implies that if the cart starts from rest it must

start at a height  > 
2
above the top of the loop if friction is negligible. Note that the solution for the rolling

ball on such a roller coaster differs from that for a sliding object since one must include the rotational energy

of the ball as well as the linear velocity.

Looping the loop in a glider involves the same physics making it necessary to vary the elevator control to

vary the radius of curvature throughout the loop to minimize the maximum  load.
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2.12.5 Velocity Dependent Forces

Velocity dependent forces are encountered frequently in practical problems. For example, motion of an

object in a fluid, such as air, where viscous forces retard the motion. In general the retarding force has a

complicated dependence on velocity. The drag force usually is expressed in terms of a drag coefficient ,

F() = −1
2


2bv (2.108)

where  is a dimensionless drag coefficient,  is the density of air,  is the cross sectional area perpendicular

to the direction of motion, and  is the velocity. Modern automobiles have drag coefficients as low as 03. As

described in chapter 4, the drag coefficient  depends on the Reynold’s number which relates the inertial to

viscous drag forces. Small sized objects at low velocity, such as light raindrops, have low Reynold’s numbers

for which  is roughly proportional to 
−1 leading to a linear dependence of the drag force on velocity, i.e.

() ∝ . Larger objects moving at higher velocities, such as a car or sky-diver, have higher Reynold’s

numbers for which  is roughly independent of velocity leading to a drag force () ∝ 2. This drag force

always points in the opposite direction to the unit velocity vector. Approximately for air

F() = −
¡
1 + 2

2
¢ bv (2.109)

where for spherical objects of diameter, 1 ≈ 155×10−4 and 2 ≈ 0222 in MKS units. Fortunately, the

equation of motion usually can be integrated when the retarding force has a simple power law dependence.

As an example, consider free fall in the Earth’s gravitational field.

2.9 Example: Vertical fall in the earth’s gravitational field.

Linear regime 1  2

For small objects at low-velocity, i.e. low Reynold’s number, the drag has approximately a linear depen-

dence on velocity. The equation of motion is

− − 1 = 




Separate the variables and integrate

 =

Z 

0



− − 1
= −

1
ln

µ
 + 1

 + 10

¶
That is

 = −

1
+

µ


1
+ 0

¶
−

1



Note that for  À 
1
the velocity approaches a terminal velocity of ∞ = −

1
 The characteristic time

constant is  = 
1
= ∞


 Note that if 0 = 0 then

 = ∞
³
1− −




´
For the case of small raindrops with  = 05 then ∞ = 8 (18) and time constant  = 08 sec 

Note that in the absence of air drag, these rain drops falling from 2000 would attain a velocity of over

400 m.p.h. It is fortunate that the drag reduces the speed of rain drops to non-damaging values. Note that

the above relation would predict high velocities for hail. Fortunately, the drag increases quadratically at the

higher velocities attained by large rain drops or hail, and this limits the terminal velocity to moderate values.

As known in the mid-west, these velocities still are sufficient to do considerable crop damage.

Quadratic regime 2  1
For larger objects at higher velocities, i.e. high Reynold’s number, the drag depends on the square of the

velocity making it necessary to differentiate between objects rising and falling. The equation of motion is

− ± 2
2 = 
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where the positive sign is for falling objects and negative sign for rising objects. Integrating the equation of

motion for falling gives

 =

Z 

0



− + 22
= 

µ
tanh−1

0

∞
− tanh−1 

∞

¶

where  =
q


2

and ∞ =
q


2
 That is,  = ∞


 For the case of a falling object with 0 = 0 solving for

velocity gives

 = ∞ tanh




As an example, a 06 basket ball with  = 025 will have ∞ = 20 ( 43 m.p.h.) and  = 21.

Consider President George H.W. Bush skydiving. Assume his mass is 70kg and assume an equivalent

spherical shape of the former President to have a diameter of  = 1. This gives that ∞ = 56

( 120) and  = 56. When Bush senior opens his 8 diameter parachute his terminal velocity is

estimated to decrease to 7 ( 15 ) which is close to the value for a typical ( 8) diameter emergency

parachute which has a measured terminal velocity of 11 in spite of air leakage through the central vent

needed to provide stability.

2.10 Example: Projectile motion in air

Consider a projectile initially at  =  = 0 at  = 0, that is fired at an initial velocity v0 at an angle

 to the horizontal. In order to understand the general features of the solution, assume that the drag is

proportional to velocity. This is incorrect for typical projectile velocities, but simplifies the mathematics. The

equations of motion can be expressed as

̈ = −̇

̈ = −̇ −

where  is the coefficient for air drag. Take the initial conditions at  = 0 to be  =  = 0 ̇ =  cos 

̇ =  sin 

Solving in the x coordinate,
̇


= −̇

Therefore

̇ =  cos 
−

That is, the velocity decays to zero with a time constant  = 1

.

Integration of the velocity equation gives

 =




¡
1− −

¢
Note that this implies that the body approaches a value of  = 


as →∞

The trajectory of an object is distorted from the parabolic shape, that occurs for  = 0 due to the rapid

drop in range as the drag coefficient increases. For realistic cases it is necessary to use a computer to solve

this numerically.

2.12.6 Systems with Variable Mass

Classic examples of systems with variable mass are the rocket, nuclear fission and other modes of nuclear

decay.

Consider the problem of rocket motion in a gravitational field. When there is a vertical gravitational

external field the vertical momentum is not conserved due to both gravity and the ejection of rocket propel-

lant. In a time  the rocket ejects propellant  with exhaust velocity relative to the rocket of . Thus

the momentum imparted to this propellant is

 = − (2.110)
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Therefore the rocket is given an equal and opposite increase in momentum 

 = + (2.111)

In the time interval  the net change in the linear momentum of the rocket plus fuel system is given by

 = (− )( + ) + ( − )− =  −  (2.112)

The rate of change of the linear momentum thus equals

 =



= 




− 





Consider the problem for the special case of vertical ascent of the rocket against the external gravitational

force  = −. Then

− + 



= 




(2.113)

This can be rewritten as

− + ̇ = ̇ (2.114)

Earth

y

m 

g

v

udm’ 

Figure 2.5: Vertical motion of a rocket in a

gravitational field

The second term comes from the variable mass. But the

loss of mass of the rocket equals the mass of the ejected

propellant. Assuming a constant fuel burn ̇ =  then

̇ = −̇ = − (2.115)

where   0 Then the equation becomes

 =
³
− + 



´
 (2.116)

Since



= − (2.117)

then

−

=  (2.118)

Inserting this in the above equation gives

 =
³ 

− 



´
 (2.119)

Integration gives

 = − 


(0 −) +  ln

³0



´
(2.120)

But the change in mass is given by Z 

0

 = −
Z 

0

 (2.121)

That is

0 − =  (2.122)

Thus

 = −+  ln
³0



´
(2.123)

Note that once the propellant is exhausted the rocket will continue to fly upwards as it decelerates in the

gravitational field. You can easily calculate the maximum height. Note that this formula assumes that the

acceleration due to gravity is constant whereas for large heights above the Earth it is necessary to use the

true gravitational force −
2

where  is the distance from the center of the earth. In real situations it is

necessary to include air drag which requires use of a computer to numerically solve the equations of motion.

The highest rocket velocity is attained by maximizing the exhaust velocity and the ratio of initial to final

mass. Because the terminal velocity is limited by the mass ratio, engineers construct multistage rockets that

jettison the spent fuel containers and rockets.
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2.12.7 Rigid-body rotation about a body-fixed rotation axis

The most general case of rigid-body rotation involves rotation about some body-fixed point with the orien-

tation of the rotation axis undefined. For example, an object spinning in space will rotate about the center

of mass with the rotation axis having any orientation. Another example is a child’s spinning top which spins

with arbitrary orientation of the axis of rotation about the pointed end which touches the ground about a

static location. Such rotation about a body-fixed point is complicated and will be discussed in chapter 11.

Rigid-body rotation is easier to handle if the orientation of the axis of rotation is fixed with respect to the

rigid body. An example of such motion is a hinged door.

For a rigid body rotating with angular velocity  the total angular momentum L is given by

L =

X


L =

X


r × p (2.124)

For rotation equation appendix 29 gives

v = ω × r (294)

thus the angular momentum can be written as

L =

X


r × p =
X


r × ω × r (2.125)

This can be simplified using the vector identity equation 24 giving

L =

X


£¡


2


¢
ω − (r · ω)r

¤
(2.126)

Rigid-body rotation about a body-fixed symmetry axis

The simplest case for rigid-body rotation is when the body has a symmetry axis with the angular velocity ω

parallel to this body-fixed symmetry axis. For this case then r can be taken perpendicular to ω for which

the second term in equation 2126, i.e. (r · ω) =0, thus

L =

X


¡


2


¢
ω (r perpendicular to ω)

The moment of inertia about the symmetry axis is defined as

 =

X



2
 (2.127)

where  is the perpendicular distance from the axis of rotation to the body,  For a continuous body the

moment of inertia can be generalized to an integral over the mass density  of the body

 =

Z
2 (2.128)

where  is perpendicular to the rotation axis. The definition of the moment of inertia allows rewriting the

angular momentum about a symmetry axis L in the form

L = ω (2.129)

where the moment of inertia  is taken about the symmetry axis and assuming that the angular velocity

of rotation vector is parallel to the symmetry axis.
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Rigid-body rotation about a non-symmetric body-fixed axis

In general the fixed axis of rotation is not aligned with a symmetry axis of the body, or the body does not

have a symmetry axis, both of which complicate the problem.

For illustration consider that the rigid body comprises a system of  masses  located at positions r

with the rigid body rotating about the  axis with angular velocity ω That is,

ω = ẑ (2.130)

In cartesian coordinates the fixed-frame vector for particle  is

r = (  ) (2.131)

using these in the cross product (294) gives

v = ω × r =
⎛⎝ −

0

⎞⎠ (2.132)

which is written as a column vector for clarity. Inserting v in the cross-product r×v gives the components
of the angular momentum to be

L =

X


r × v =
X




⎛⎝ −
−
2 + 2

⎞⎠

x

O

L

y

z

r

Figure 2.6: A rigid rotating body comprising a sin-

gle mass  attached by a massless rod at a fixed

angle  shown at the instant when  happens to

lie in the  plane. As the body rotates about

the − axis the mass  has a velocity and mo-

mentum into the page (the negative  direction).

Therefore the angular momentum L = r× p is in
the direction shown which is not parallel to the

angular velocity 

That is, the components of the angular momentum are

 = −
Ã

X




!
 ≡  (2.133)

 = −
Ã

X




!
 ≡ 

 =

Ã
X




£
2 + 2

¤!
 ≡ 

Note that the perpendicular distance from the  axis

in cylindrical coordinates is  =
p
2 + 2  thus the an-

gular momentum  about the  axis can be written

as

 =

Ã
X



2

!
 =  (2.134)

where (2134) gives the elementary formula for the mo-

ment of inertia  =  about the  axis given earlier

in (2129).

The surprising result is that  and  are non-zero

implying that the total angular momentum vector L is

in general not parallel with ω This can be understood

by considering the single body  shown in figure 26.

When the body is in the   plane then  = 0 and

 = 0 Thus the angular momentum vector L has a

component along the − direction as shown which is
not parallel with ω and, since the vectors ωL r are

coplanar, then L must sweep around the rotation axis ω to remain coplanar with the body as it rotates

about the  axis. Instantaneously the velocity of the body v is into the plane of the paper and, since
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L = r × v then L is at an angle (90◦ − ) to the  axis. This implies that a torque must be applied

to rotate the angular momentum vector. This explains why your automobile shakes if the rotation axis and

symmetry axis are not parallel for one wheel.

The first two moments in (2133) are called products of inertia of the body designated by the pair of

axes involved. Therefore, to avoid confusion, it is necessary to define the diagonal moment, which is called

themoment of inertia, by two subscripts as  Thus in general, a body can have three moments of inertia

about the three axes plus three products of inertia. This group of moments comprise the inertia tensor

which will be discussed further in chapter 11. If a body has an axis of symmetry along the  axis then the

summations will give  =  = 0 while  will be unchanged. That is, for rotation about a symmetry

axis the angular momentum and rotation axes are parallel. For any axis along which the angular momentum

and angular velocity coincide is called a principal axis of the body.

2.11 Example: Moment of inertia of a thin door

Consider that the door has width  and height  and assume the door thickness is negligible with areal

density 2. Assume that the door is hinged about the  axis. The mass of a surface element of

dimension  at a distance  from the rotation axis is  =  thus the mass of the complete door

is  =  The moment of inertia about the  axis is given by

 =

Z 

=0

Z 

=0

2 =
1

3
3 =

1

3
2

2.12 Example: Merry-go-round

A child of mass  jumps onto the outside edge of a circular merry-go-round of moment of inertia , and

radius  and initial angular velocity 0 What is the final angular velocity ?

If the initial angular momentum is 0 and, assuming the child jumps with zero angular velocity, then the

conservation of angular momentum implies that

0 = 

0 =  +


0


=




( +2)

That is


0
=



0
=



 +2

Note that this is true independent of the details of the acceleration of the initially stationary child.

2.13 Example: Cue pushes a billiard ball

0

Cue pushing a billiard ball horizontally at the height

of the centre of rotation of the ball.

Consider a billiard ball of mass  and radius 

is pushed by a cue in a direction that passes through

the center of gravity such that the ball attains a veloc-

ity 0. The friction coefficient between the table and

the ball is . How far does the ball move before the

initial slipping motion changes to pure rolling mo-

tion?

Since the direction of the cue force passes through

the center of mass of the ball, it contributes zero

torque to the ball. Thus the initial angular momen-

tum is zero at  = 0. The friction force  points opposite to the direction of motion and causes a torque 

about the center of mass in the direction ̂.

N = f ·R =



34 CHAPTER 2. REVIEW OF NEWTONIAN MECHANICS

Since the moment of inertia about the center of a uniform sphere is  = 2
5
2 then the angular acceleration

of the ball is

̇ =



=


2
5
2

=
5

2




()

Moreover the frictional force causes a deceleration  of the linear velocity of the center of mass of

 = − 


= − ()

Integrating  from time zero to  gives

 =

Z 

0

̇ =
5

2






The linear velocity of the center of mass at time  is given by integration of equation 

 =

Z 

0

 = 0 − 

The billiard ball stops sliding and only rolls when  = , that is, when

5

2




 = 0 − 

That is, when

 =
2

7

0



Thus the ball slips for a distance

 =

Z 

0

 = 0 − 2
2

=
12

49

20


Note that if the ball is pushed at a distance  above the center of mass, besides the linear velocity there

is an initial angular momentum of

 =
0
2
5
2

=
5

2

0

2

For the case  = 2
5
 then the ball immediately assumes a pure non-slipping roll. For   2

5
 one has

  0

while   2

5
 corresponds to   0


. In the latter case the frictional force points forward.

2.12.8 Time dependent forces

Many problems involve action in the presence of a time dependent force. There are two extreme cases that

are often encountered. One is an impulsive force that acts for a very short time, for example, striking a ball

with a bat, or the collision of two cars while the second force is an oscillatory time dependent force. The

response to impulsive forces is discussed below whereas the response to oscillatory time dependent forces is

discussed in chapter 3.

Translational impulsive forces

An impulsive force acts for a very short time relative to the response time of the mechanical system being

discussed. In principle the equation of motion can be solved if the complicated time dependence of the force,

 () is known. However, often it is possible to use the much simpler approach employing the concept of an

impulse and the principle of the conservation of linear momentum.

Define the linear impulse to be the first-order time integral of the time-dependent force.

P ≡
Z
F() (2.135)
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Since F() = p

then equation 2135 gives that

P =

Z 

0

p

0
0 =

Z 

0

p = p()− p0 = ∆p (2.136)

Thus the impulse P is an unambiguous quantity that equals the change in linear momentum of the object

that has been struck which is independent of the details of the time dependence of the impulsive force.

Computation of the spatial motion still requires knowledge of  () since the 2136 can be written as

v() =
1



Z 

0

F(0)0 + v0 (2.137)

Integration gives

r()− r0 = v0+
Z 

0

"
1



Z ”

0

F(0)0
#
” (2.138)

In general this is complicated. However, for the case of a constant force F() = F0 this simplifies to the

constant acceleration equation

r()− r0 = v0+ 1
2

F0


2 (2.139)

where the constant acceleration a = F0

.

Angular impulsive torques

Note that the principle of impulse also applies to angular motion. Define an impulsive torque as the first-order

time integral of the time-dependent torque.

T ≡
Z
N() (2.140)

Since torque is related to the rate of change of angular momentum

N() =
L


(2.141)

then

T =

Z 

0

L

0
0 =

Z 

0

L = L()− L0 = ∆L (2.142)

Thus the impulsive torque T equals the change in angular momentum ∆L of the struck body.

2.14 Example: Center of percussion of a baseball bat

y

  O 

C

0 S

s
M

x

y

When an impulsive force  strikes a bat of mass  at a dis-

tance s from the center of mass, then both the linear momentum

of the center of mass, and angular momenta about the center

of mass, of the bat are changed. Assume that the ball strikes

the bat with an impulsive force  = ∆ perpendicular to the

symmetry axis of the bat at the strike point  which is a distance

 from the center of mass of the bat. The translational impulse

given to the bat equals the change in linear momentum of the

ball as given by equation 2136 coupled with the conservation of

linear momentum

P =∆p =∆v

Similarly equation 2142 gives that the angular impulse  equals

the change in angular momentum about the center of mass to be

T= s×P =∆L =∆ω
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The above equations give that

∆v =
P



∆ω
 =

s×P


Assume that the bat was stationary prior to the strike, then after the strike the net translational velocity

of a point  along the body-fixed symmetry axis of the bat at a distance  from the center of mass, is given

by

v () = ∆v +∆ω × y = P

+

1


((s×P)× y) = P


+

1


[(s · y)P− (s ·P)y]

It is assumed that  and  are perpendicular and thus (s ·P) = 0 which simplifies the above equation to

v () = ∆v +∆ω × y = P



µ
1 +

 (s · y)


¶
Note that the translational velocity of the location  along the bat symmetry axis at a distance  from the

center of mass, is zero if the bracket equals zero, that is, if

s · y = −


= −2

where  is called the radius of gyration of the body about the center of mass. Note that when the scalar

product  ·  = − 


= −2 then there will be no translational motion at the point . This point on the

 axis lies on the opposite side of the center of mass from the strike point , and is called the center of

percussion corresponding to the impulse at the point . The center of percussion often is referred to as the

"sweet spot" for an object corresponding to the impulse at the point . For a baseball bat the batter holds

the bat at the center of percussion so that they do not feel an impulse in their hands when the ball is struck

at the point . This principle is used extensively to design bats for all sports involving striking a ball with

a bat, such as, cricket, squash, tennis, etc. as well as weapons such of swords and axes used to decapitate

opponents.

2.15 Example: Energy transfer in charged-particle scattering

y

x 
+e2

m 
O

+e1

V 0

p
.

Charged-particle scattering

Consider a particle of charge +1 moving with very high

velocity 0 along a straight line that passes a distance  from

another charge +2 and mass . Find the energy  trans-

ferred to the mass  during the encounter assuming the

force is given by Coulomb’s law. Since the charged parti-

cle 1 moves at very high speed it is assumed that charge 2

does not change position during the encounter. Assume that

charge 1 moves along the − axis through the origin while
charge 2 is located on the  axis at  = . Let us consider

the impulse given to charge 2 during the encounter. By sym-

metry the  component must cancel while the  component

is given by

 =  = − 12

402
cos  = − 12

402
cos 






But

̇ = −0 cos 
where




= cos( − ) = − cos 
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Thus

 = − 12

400
cos 

Integrate from 
2
   3

2
gives that the total momentum imparted to 2 is

 = − 12

400

Z 3
2


2

cos  =
12

200

Thus the recoil energy of charge 2 is given by

2 =
2
2

=
1

2

µ
12

200

¶2

2.13 Solution of many-body equations of motion

The following are general methods used to solve Newton’s many-body equations of motion for practical

problems.

2.13.1 Analytic solution

In practical problems one has to solve a set of equations of motion since the forces depend on the location

of every body involved. For example one may be dealing with a set of coupled oscillators such as the

many components that comprise the suspension system of an automobile. Often the coupled equations of

motion comprise a set of coupled second-order differential equations. The first approach to solve such a

system is to try an analytic solution comprising a general solution of the inhomogeneous equation plus one

particular solution of the inhomogeneous equation. Another approach is to employ numeric integration using

a computer.

2.13.2 Successive approximation

When the system of coupled differential equations of motion is too complicated to solve analytically one

can use the method of successive approximation. The differential equations are transformed to integral

equations. Then one starts with some initial conditions to make a first order estimate of the functions. The

functions determined by this first order estimate then are used in a second iteration and this is repeated

until the solution converges. An example of this approach is when making Hartree-Foch calculations of the

electron distributions in an atom. The first order calculation uses the electron distributions predicted by

the one-electron model of the atom. This result then is used to compute the influence of the electron charge

distribution around the nucleus on the charge distribution of the atom for a second iteration etc.

2.13.3 Perturbation method

The perturbation technique can be applied if the force separates into two parts  = 1+2 where 1  2
and the solution is known for the dominant 1 part of the force. Then the correction to this solution due

to addition of the perturbation 2 usually is easier to evaluate. As an example, consider that one of the

Space Shuttle thrusters fires. In principle one has all the gravitational forces acting plus the thrust force

of the thruster. The perturbation approach is to assume that the trajectory of the Space Shuttle in the

earth’s gravitational field is known. Then the perturbation to this motion due to the very small thrust,

produced by the thruster, is evaluated as a small correction to the motion in the Earth’s gravitational field.

This perturbation technique is used extensively in physics, especially in quantum physics. An example

from my own research is scattering of a 1 208 ion in the Coulomb field of a 197 nucleus The

trajectory for elastic scattering is simple to calculate since neither nucleus is excited and the total energy and

momenta are conserved. However, usually one of these nuclei will be internally excited by the electromagnetic

interaction. This is called Coulomb excitation. The effect of the Coulomb excitation usually can be treated as

a perturbation by assuming that the trajectory is given by the elastic scattering solution and then calculate

the excitation probability assuming the Coulomb excitation of the nucleus is a small perturbation to the

trajectory.
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2.14 Newton’s Law of Gravitation
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Figure 2.7: Gravitational force on mass m due

to an infinitessimal volume element of the mass

density distribution.

Gravitation plays a fundamental role in classical mechan-

ics as well as being an important example of a conservative

central
¡
1


¢2
force. Although you may not be familiar with

the following presentation addressing the gravitational field

g, it is assumed that you have met the identical discus-

sion when addressing the electric field E in electrostatics.

The only difference is that mass  replaces charge  and

gravitational field g replaces the electric field E. Thus this

chapter is designed to be a review of the concepts that can

be used for study of any conservative inverse-square law

central fields.

In 1666 Newton formulated the Theory of Gravitation

which he eventually published in the Principia in 1687New-

ton’s Law of Gravitation states that each mass particle at-

tracts every other particle in the universe with a force that

varies directly as the product of the mass and inversely as

the square of the distance between them. That is, the force

on a gravitational point mass  produced by a mass 

F = −

2
br (2.143)

where br is the unit vector pointing from the gravitational mass  to the gravitational mass  as shown

in figure 27. Note that the force is attractive, that is, it points toward the other mass. This is in contrast to

the repulsive electrostatic force between two similar charges. Newton’s law was verified by Cavendish using

a torsion balance. The experimental value of  = (66726± 00008)× 10−11 ·22

The gravitational force between point particles can be extended to finite-sized bodies using the fact that

the gravitational force field satisfies the superposition principle, that is, the net force is the vector sum of the

individual forces between the component point particles. Thus the force summed over the mass distribution

is

F (r) = −

X
=1



2
br (2.144)

where r is the vector from the gravitational mass  to the gravitational mass  at the position r.

For a continuous gravitational mass distribution  (r
0), the net force on the gravitational mass  at

the location r can be written as

F (r) = −

Z


 (r
0)
³br− br0´

(r− r0)2
0 (2.145)

where 0 is the volume element at the point r0 as illustrated in figure 27.

2.14.1 Gravitational and inertial mass

Newton’s Laws use the concept of inertial mass  ≡  in relating the force F to acceleration a

F = a (2.146)

and momentum p to velocity v

p = v (2.147)

That is, inertial mass is the constant of proportionality relating the acceleration to the applied force.

The concept of gravitational mass  is the constant of proportionality between the gravitational force

and the amount of matter. That is, on the surface of the earth, the gravitational force is assumed to be

F = 

"
−

X
=1



2
br# = g (2.148)
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where g is the gravitational field which is a position-dependent force per unit gravitational mass pointing

towards the center of the Earth. The gravitational mass is measured when an object is weighed.

Newton’s Law of Gravitation leads to the relation for the gravitational field g (r) at the location r due

to a gravitational mass distribution at the location r0 as given by the integral over the gravitational mass
density 

g (r) = −
Z


 (r
0)
³br− br0´

(r− r0)2
0 (2.149)

The acceleration of matter in a gravitational field relates the gravitational and inertial masses

F = g = a (2.150)

Thus

a =




g (2.151)

That is, the acceleration of a body depends on the gravitational strength  and the ratio of the gravitational

and inertial masses. It has been shown experimentally that all matter is subject to the same acceleration

in vacuum at a given location in a gravitational field. That is, 


is a constant common to all materials.

Galileo first showed this when he dropped objects from the Tower of Pisa. Modern experiments have shown

that this is true to 5 parts in 1013.

The exact equivalence of gravitational mass and inertial mass is called the weak principle of equiva-

lence which underlies the General Theory of Relativity as discussed in chapter 14. It is convenient to use

the same unit for the gravitational and inertial masses and thus they both can be written in terms of the

common mass symbol .

 =  =  (2.152)

Therefore the subscripts  and  can be omitted in equations 2150 and 2152. Also the local acceleration

due to gravity a can be written as

a = g (2.153)

The gravitational field g ≡ F

has units of  in the MKS system while the acceleration a has units 2.

2.14.2 Gravitational potential energy 

F

mg

dl

Figure 2.8: Work done against a

force field moving from a to b.

It was shown that for a conservative field it is possible to use the

concept of a potential energy (r) which depends on position. The

potential energy difference ∆→ between two points r and r, is

the work done moving from  to  against a force F. That is:

∆→ = (r) − (r) = −
Z 



F · l (2.154)

In general, this line integral depends on the path taken.

Consider the gravitational field produced by a single point mass

1 The work done moving a mass 0 from  to  in this gravita-

tional field can be calculated along an arbitrary path shown in figure

28 by assuming Newton’s law of gravitation. Then the force on 0

due to point mass 1 is;

F = −10

2
br (2.155)

Expressing l in spherical coordinates l =r̂+θ̂+ sin φ̂ gives

the path integral (2154) from () to () is

∆→ = −
Z 



F · l =
Z 



h

10

2
(r̂·br + r̂ · θ̂ +  sin r̂ · φ̂)

i
= 

Z 



10

2
br · br

= −10

∙
1


− 1



¸
(2.156)
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since the scalar product of the unit vectors br · br = 1 Note that the second two terms also cancel sincebr · θ̂ = r̂ · φ̂ = 0 since the unit vectors are mutually orthogonal. Thus the line integral just depends only on
the starting and ending radii and is independent of the angular coordinates or the detailed path taken between

() and () 

Consider the Principle of Superposition for a gravitational field produced by a set of  point masses. The

line integral then can be written as:

∆
→ = −

Z 



F · l = −
X
=1

Z 



F · l =
X
=1

∆ 
→ (2.157)

Thus the net potential energy difference is the sum of the contributions from each point mass producing the

gravitational force field. Since each component is conservative, then the total potential energy difference also

must be conservative. For a conservative force, this line integral is independent of the path taken, it depends

only on the starting and ending positions, r and r. That is, the potential energy is a local function

dependent only on position. The usefulness of gravitational potential energy is that, since the gravitational

force is a conservative force, it is possible to solve many problems in classical mechanics using the fact

that the sum of the kinetic energy and potential energy is a constant. Note that the gravitational field is

conservative, since the potential energy difference ∆
→ is independent of the path taken. It is conservative

because the force is radial and time independent, it is not due to the 1
2
dependence.

2.14.3 Gravitational potential 

Using F = 0g gives that the change in potential energy due to moving a mass 0 from  to  in a

gravitational field g is:

∆
→ = −0

Z 



g · l (2.158)

Note that the probe mass 0 factors out from the integral. It is convenient to define a new quantity called

gravitational potential  where

∆→ =
∆

→

0

= −
Z 



g · l (2.159)

That is; gravitational potential difference is the work that must be done, per unit mass, to move from a to

b with no change in kinetic energy. Be careful not to confuse the gravitational potential energy difference

∆→ and gravitational potential difference ∆→, that is, ∆ has units of energy, , while ∆ has

units of .

The gravitational potential is a property of the gravitational force field; it is given as minus the line

integral of the gravitational field from  to . The change in gravitational potential energy for moving a

mass 0 from  to  is given in terms of gravitational potential by:

∆
→ = 0∆


→ (2.160)

Superposition and potential

Previously it was shown that the gravitational force is conservative for the superposition of many masses.

To recap, if the gravitational field

g = g1 + g2 + g3 (2.161)

then

→ = −
Z 



g · l = −
Z 



g1 · l−
Z 



g2 · l−
Z 



g3 · l = Σ → (2.162)

Thus gravitational potential is a simple additive scalar field because the Principle of Superposition applies.

The gravitational potential, between two points differing by  in height, is . Clearly, the greater  or ,

the greater the energy released by the gravitational field when dropping a body through the height . The

unit of gravitational potential is the 
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2.14.4 Potential theory

The gravitational force and electrostatic force both obey the inverse square law, for which the field and

corresponding potential are related by:

∆→ = −
Z 



g · l (2.163)

For an arbitrary infinitessimal element distance l the change in electric potential  is

 = −g · l (2.164)

Using cartesian coordinates both g and l can be written as

g =bi +bj + bk l =bi+bj + bk (2.165)

Taking the scalar product gives:

 = −g · l = −−  −  (2.166)

Differential calculus expresses the change in potential  in terms of partial derivatives by:

 =



+




 +




 (2.167)

By association, 2166 and 2167 imply that

 = −


 = −


 = −


(2.168)

Thus on each axis, the gravitational field can be written as minus the gradient of the gravitational potential.

In three dimensions, the gravitational field is minus the total gradient of potential and the gradient of the

scalar function  can be written as:

g = −∇ (2.169)

In cartesian coordinates this equals

g = −
∙bi


+bj

+ bk



¸
(2.170)

Thus the gravitational field is just the gradient of the gravitational potential, which always is perpendicular

to the equipotentials. Skiers are familiar with the concept of gravitational equipotentials and the fact that

the line of steepest descent, and thus maximum acceleration, is perpendicular to gravitational equipotentials

of constant height. The advantage of using potential theory for inverse-square law forces is that scalar

potentials replace the more complicated vector forces, which greatly simplifies calculation. Potential theory

plays a crucial role for handling both gravitational and electrostatic forces.

2.14.5 Curl of the gravitational field

1

2

Figure 2.9: Circulation of the

gravitational field.

It has been shown that the gravitational field is conservative, that is

∆→ is independent of the path taken between  and . Therefore,

equation 2159 gives that the gravitational potential is independent of

the path taken between two points  and . Consider two possible paths

between  and  as shown in figure 29. The line integral from  to  via

route 1 is equal and opposite to the line integral back from  to  via

route 2 if the gravitational field is conservative as shown earlier.

A better way of expressing this is that the line integral of the gravita-

tional field is zero around any closed path. Thus the line integral between

 and , via path 1, and returning back to , via path 2, are equal and

opposite. That is, the net line integral for a closed loop is zero.
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I
g · l = 0 (2.171)

which is a measure of the circulation of the gravitational field. The fact that the circulation equals zero

corresponds to the statement that the gravitational field is radial for a point mass.

Stokes Theorem, discussed in appendix 3, states thatI


F · l =
Z







(∇×F) · S (2.172)

Thus the zero circulation of the gravitational field can be rewritten asI


g · l =
Z







(∇× g) · S = 0 (2.173)

Since this is independent of the shape of the perimeter , therefore

∇× g = 0 (2.174)

That is, the gravitational field is a curl-free field.

A property of any curl-free field is that it can be expressed as the gradient of a scalar potential  since

∇×∇ = 0 (2.175)

Therefore, the curl-free gravitational field can be related to a scalar potential  as

g = −∇ (2.176)

Thus  is consistent with the above definition of gravitational potential  in that the scalar product

∆→ = −
Z 



g · l =
Z 



(∇) · l =
Z 



X





 =

Z 



 (2.177)

An identical relation between the electric field and electric potential applies for the inverse-square law

electrostatic field.

Reference potentials:

Note that only differences in potential energy,  , and gravitational potential, , are meaningful, the absolute

values depend on some arbitrarily chosen reference. However, often it is useful to measure gravitational

potential with respect to a particular arbitrarily chosen reference point  such as to sea level. Aircraft

pilots are required to set their altimeters to read with respect to sea level rather than their departure

airport. This ensures that aircraft leaving from say both Rochester, 559
0
 and Denver 5000

0
, have

their altimeters set to a common reference to ensure that they do not collide. The gravitational force is the

gradient of the gravitational field which only depends on differences in potential, and thus is independent of

any constant reference.

Gravitational potential due to continuous distributions of charge Suppose mass is distributed

over a volume  with a density  at any point within the volume. The gravitational potential at any field

point  due to an element of mass  =  at the point 0 is given by:

∆∞→ = −
Z


(0)0

0
(2.178)

This integral is over a scalar quantity. Since gravitational potential  is a scalar quantity, it is easier to

compute than is the vector gravitational field g . If the scalar potential field is known, then the gravitational

field is derived by taking the gradient of the gravitational potential.
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2.14.6 Gauss’s Law for Gravitation

dS

g

Figure 2.10: Flux of the gravitational field through

an infinitessimal surface element dS.

The flux Φ of the gravitational field g through a surface

, as shown in figure 210, is defined as

Φ ≡
Z


g · S (2.179)

Note that there are two possible perpendicular directions

that could be chosen for the surface vector S Using

Newton’s law of gravitation for a point mass  the flux

through the surface  is

Φ = −
Z


br · S
2

(2.180)

Note that the solid angle subtended by the surface 

at an angle  to the normal from the point mass is given

by

Ω =
cos 

2
=
br · S
2

(2.181)

Thus the net gravitational flux equals

Φ = −
Z


Ω (2.182)

Consider a closed surface where the direction of the surface vector S is defined as outwards. The net

flux out of this closed surface is given by

Φ = −
I


br · S
2

= −
I


Ω = −4 (2.183)

This is independent of where the point mass lies within the closed surface or on the shape of the closed

surface. Note that the solid angle subtended is zero if the point mass lies outside the closed surface. Thus

the flux is as given by equation 2183 if the mass is enclosed by the closed surface, while it is zero if the mass

is outside of the closed surface.

Since the flux for a point mass is independent of the location of the mass within the volume enclosed by

the closed surface, and using the principle of superposition for the gravitational field, then for  enclosed

point masses the net flux is

Φ ≡
Z


g · S = −4
X


 (2.184)

This can be extended to continuous mass distributions, with local mass density  giving that the net flux

Φ ≡
Z


g · S = −4
Z



 (2.185)

Gauss’s Divergence Theorem was given in appendix 2 as

Φ =

I


F · S =
Z



∇ · F (2.186)

Applying the Divergence Theorem to Gauss’s law gives that

Φ =

I


g · S =
Z



∇ · g = −4
Z





or Z



[∇ · g+ 4]  = 0 (2.187)
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This is true independent of the shape of the surface, thus the divergence of the gravitational field

∇ · g = −4 (2.188)

This is a statement that the gravitational field of a point mass has a 1
2
dependence.

Using the fact that the gravitational field is conservative, this can be expressed as the gradient of the

gravitational potential 

g = −∇ (2.189)

and Gauss’s law, then becomes

∇ ·∇ = 4 (2.190)

which also can be written as Poisson’s equation

∇2 = 4 (2.191)

Knowing the mass distribution  allows determination of the potential by solving Poisson’s equation.

A special case that often is encountered is when the mass distribution is zero in a given region. Then the

potential for this region can be determined by solving Laplace’s equation with known boundary conditions.

∇2 = 0 (2.192)

For example, Laplace’s equation applies in the free space between the masses. It is used extensively in elec-

trostatics to compute the electric potential between charged conductors which themselves are equipotentials.

2.14.7 Condensed forms of Newton’s Law of Gravitation

The above discussion has resulted in several alternative expressions of Newton’s Law of Gravitation that will

be summarized here. The most direct statement of Newton’s law is

g (r) = −
Z


 (r0)
³br− br0´

(r− r0)2
0 (2.193)

An elegant way to express Newton’s Law of Gravitation is in terms of the flux and circulation of the

gravitational field. That is,

Flux:

Φ ≡
Z


g · S = −4
Z



 (2.194)

Circulation: I
g · l = 0 (2.195)

The flux and circulation are better expressed in terms of the vector differential concepts of divergence

and curl.

Divergence:

∇ · g = −4 (2.196)

Curl:

∇× g = 0 (2.197)

Remember that the flux and divergence of the gravitational field are statements that the field between

point masses has a 1
2
dependence. The circulation and curl are statements that the field between point

masses is radial.

Because the gravitational field is conservative it is possible to use the concept of the scalar potential

field  This concept is especially useful for solving some problems since the gravitational potential can be

evaluated using the scalar integral

∆∞→ = −
Z


(0)0

0
(2.198)
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An alternate approach is to solve Poisson’s equation if the boundary values and mass distributions are known

where Poisson’s equation is:

∇2 = 4 (2.199)

These alternate expressions of Newton’s law of gravitation can be exploited to solve problems. The

method of solution is identical to that used in electrostatics.

2.16 Example: Field of a uniform sphere

Consider the simple case of the gravitational field due to a uniform sphere of matter of radius  and

mass  . Then the volume mass density

 =
3

43

The gravitational field and potential for this uniform sphere of matter can be derived three ways;

a) The field can be evaluated by directly integrating over the volume

g (r) = −
Z


 (r0)
³br− br0´

(r− r0)2
 0

b) The potential can be evaluated directly by integration of

∆∞→ = −
Z


(0) 0

0

g

0

-GM r -GM 
r²

-GM 
r

-GM | 3R²-r² |

Gravitational field g and gravitational

potential Φ of a uniformly-dense

spherical mass distribution of radius .

and then

g = −∇
c) The obvious spherical symmetry can be used in conjunction

with Gauss’s law to easily solve this problem.Z


g · S = −4
Z





42 () = −4 (rR)

That is: for   

g = −

2
br (rR)

Similarly, for   

42 () =
4

3
3 (rR)

That is:

g = −

3
r (rR)

The field inside the Earth is radial and is proportional to the distance from the center of the Earth. This

is Hooke’s Law, and thus ignoring air drag, any body dropped down a hole through the center of the Earth

will undergo harmonic oscillations with an angular frequency of 0 =

q

3 =

p


 This gives a period of

oscillation of 14 hours, which is about the length of a classical mechanics lecture, which may seem like a

long time.

Clearly method (c) is much simpler to solve for this case. In general, look for a symmetry that allows

identification of a surface upon which the magnitude and direction of the field is constant. For such cases

use Gauss’s law. Otherwise use methods (a) or (b) whichever one is easiest to apply. Further examples will

not be given here since they are essentially identical to those discussed extensively in electrostatics.
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2.15 Summary

Newton’s Laws of Motion:

A cursory review of Newtonian mechanics has been presented. The concept of inertial frames of reference

was introduced since Newton’s laws of motion apply only to inertial frames of reference.

Newton’s Law of motion

F =
p


(26)

leads to second-order equations of motion which can be difficult to handle for many-body systems.

Solution of Newton’s second-order equations of motion can be simplified using the three first-order in-

tegrals coupled with corresponding conservation laws. The first-order time integral for linear momentum

is Z 2

1

F =

Z 2

1

p


 = (p2 − p1) (210)

The first-order time integral for angular momentum is

L


= r × p


=N

Z 2

1

N =

Z 2

1

L


 = (L2 − L1) (216)

The first-order spatial integral is related to kinetic energy and the concept of work. That is

F =


r

Z 2

1

F · r = (2 − 1) (221)

The conditions that lead to conservation of linear and angular momentum and total mechanical energy

were discussed for many-body systems. The important class of conservative forces was shown to apply if

the position-dependent force do not depend on time or velocity, and if the work done by a force
R 2
1
F · r

is independent of the path taken between the initial and final locations. The total mechanical energy is a

constant of motion when the forces are conservative.

It was shown that the concept of center of mass of a many-body or finite sized body separates naturally

for all three first-order integrals. The center of mass is that point about which

X


r
0
 =

Z
r0 = 0 (Centre of mass definition)

where r0 is the vector defining the location of mass  with respect to the center of mass. The concept of

center of mass greatly simplifies the description of the motion of finite-sized bodies and many-body systems

by separating out the important internal interactions and corresponding underlying physics, from the trivial

overall translational motion of a many-body system..

The Virial theorem states that the time-averaged properties are related by

h i = −1
2

*X


F · r
+

(286)

It was shown that the Virial theorem is useful for relating the time-averaged kinetic and potential energies,

especially for cases involving either linear or inverse-square forces.

Typical examples were presented of application of Newton’s equations of motion to solving systems

involving constant, linear, position-dependent, velocity-dependent, and time-dependent forces, to constrained

and unconstrained systems, as well as systems with variable mass. Rigid-body rotation about a body-fixed

rotation axis also was discussed.

It is important to be cognizant of the following limitations that apply to Newton’s laws of motion:

1) Newtonian mechanics assumes that all observables are measured to unlimited precision, that is  

p r are known exactly. Quantum physics introduces limits to measurement due to wave-particle duality.

2) The Newtonian view is that time and position are absolute concepts. The Theory of Relativity shows

that this is not true. Fortunately for most problems    and thus Newtonian mechanics is an excellent

approximation.
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3) Another limitation, to be discussed later, is that it is impractical to solve the equations of motion

for many interacting bodies such as molecules in a gas. Then it is necessary to resort to using statistical

averages, this approach is called statistical mechanics.

Newton’s work constitutes a theory of motion in the universe that introduces the concept of causality.

Causality is that there is a one-to-one correspondence between cause of effect. Each force causes a known

effect that can be calculated. Thus the causal universe is pictured by philosophers to be a giant machine

whose parts move like clockwork in a predictable and predetermined way according to the laws of nature. This

is a deterministic view of nature. There are philosophical problems in that such a deterministic viewpoint

appears to be contrary to free will. That is, taken to the extreme it implies that you were predestined to

read this book because it is a natural consequence of this mechanical universe!

Newton’s Laws of Gravitation

Newton’s Laws of Gravitation and the Laws of Electrostatics are essentially identical since they both

involve a central inverse square-law dependence of the forces. The important difference is that the gravi-

tational force is attractive whereas the electrostatic force between identical charges is repulsive. That is,

the gravitational constant  is replaced by − 1
40

, and the mass density  becomes the charge density for

the case of electrostatics. As a consequence it is unnecessary to make a detailed study of Newton’s law of

gravitation since it is identical to what has already been studied in your accompanying electrostatic courses.

Table 21 summarizes and compares the laws of gravitation and electrostatics. For both gravitation and

electrostatics the field is central and conservative and depends as 1
2
r̂

The laws of gravitation and electrostatics can be expressed in a more useful form in terms of the flux and

circulation of the gravitational field as given either in the vector integral or vector differential forms. The

radial independence of the flux, and corresponding divergence, is a statement that the fields are radial and

have a 1
2
r̂ dependence. The statement that the circulation, and corresponding curl, are zero is a statement

that the fields are radial and conservative.

Table 31; Comparison of Newton’s law of gravitation and electrostatics.

Gravitation Electrostatics

Force field g ≡ F


E ≡ F


Density Mass density  (r0) Charge density  (r0)

Conservative central field g (r) = − R


(r0)(r−r0)
(r−r0)2 0 E (r) = 1

40

R


(r0)(r−r0)
(r−r0)2 0

Flux Φ ≡ R

g · S = −4 R


 Φ ≡ R


E · S = 1

0

R





Circulation

I
g · l = 0

I
E · l = 0

Divergence ∇ · g = −4 ∇ ·E = 1
0


Curl ∇× g = 0 ∇×E = 0
Potential ∆∞→ = −

R


(0)0

0
∆∞→ =

1
40

R


(0)0

0
Poisson’s equation ∇2 = 4 ∇2 = − 1

0


Both the gravitational and electrostatic central fields are conservative making it possible to use the

concept of the scalar potential field  This concept is especially useful for solving some problems since the

potential can be evaluated using a scalar integral. An alternate approach is to solve Poisson’s equation if the

boundary values and mass distributions are known. The methods of solution of Newton’s law of gravitation

are identical to those used in electrostatics and are readily accessible in the literature.
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Workshop exercises

1. Spend a few minutes looking over the following problems, paying particular attention to the problems that

you think you might have trouble with. All of the problems are taken from an introductory physics course on

mechanics, so this should seem like review material. After you have had some time to look over the problems,

you will take turns stepping up to the board to solve one. When it is your turn, you may pick ANY of the

problems that have not already been solved. Depending on the number of students in the recitation, you may

be asked to solve more than one problem. Good luck!

(a) Justin fires a 12-gram bullet into a block of wood. The bullet travels at 190 m/s, penetrates the 2.0-kg

block of wood, and emerges going 150 m/s. If the block is stationary on a frictionless surface when hit,

how fast does it move after the bullet emerges?

(b) A mass  at the end of a spring vibrates with a frequency of 0.88 Hz; when an additional 1.25 kg mass

is added to , the frequency is 0.48 Hz. What is the value of ?

(c) Dan has a new chandelier in his living room. The chandelier is 27-kg and it hangs from the ceiling on a

vertical 4.0-m-long wire. What horizontal force would Dan need to use to displace its position 0.10 m to

one side? What will be the tension in the wire?

(d) Dianne has a new spring with a spring constant of 900 N/m that she bought at Springs-R-Us. She places

it vertically on a table and compresses it by 0.150 m. What upward speed can it give to a 0.300-kg ball

when released?

(e) A tiger leaps horizontally from a 6.5-m-high rock with a speed of 4.0 m/s. How far from the base of the

rock will she land?

(f) How much work must SuperRyan do to stop a 1300-kg car traveling at 100 km/hr?

(g) Jason catches a baseball 3.1 s after throwing it vertically upward. With what speed did he throw it and

what height did it reach?

(h) Laura is practicing her figure skating and during her finale she can increase her rotation rate from an

initial rate of 1.0 rev every 2.0 s to a final rate of 3.0 rev/s. If her initial moment of inertia was 4.6 kg·m2,
what is her final moment of inertia?

(i) On an icy day in Rochester (imagine that!), you worry about parking your car in your driveway, which

has an incline of 12◦. Your neighbor Emily’s driveway has an incline of 9◦, and Brian’s driveway across
the street has one of 6◦. The coefficient of static friction between tire rubber and ice is 0.15. Which
driveway(s) will be safe to park a car?

2. Two particles are projected from the same point with velocities 1 and 2, at elevations 1 and 2, respectively

(1  2). Show that if they are to collide in mid-air the interval between the firings must be

212 sin(1 − 2)

(1 cos1 + 2 cos2)


(If you don’t have time to solve this problem completely, then at least give an outline of how you would go

about solving the problem.)

3. Read each of the following statements and, without consulting anyone else, mark them true or false. If you are

unsure of any of them, make a guess. Once everyone has answered each of the statements individually, break

into small groups and compare your answers. Try to come to an agreement as a group. The Teaching Assistant

will then make sure everyone has the correct answer. Good luck!

(a) The conservation of linear momentum is a consequence of translational symmetry, or the homogeneity of

space.

(b) For an isolated system with no external forces acting on it, the angular momentum will remain constant

in both magnitude and direction.

(c) A reference frame is called an inertial frame if Newton’s laws are valid in that frame.

(d) Newtonian mechanics and the laws of electromagnetism are invariant under Galilean transformations.
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(e) The law of conservation of angular momentum is a consequence of rotational symmetry, or the isotropy

of space.

(f) The center of mass of a system of particles moves like a single particle of mass  (total mass of the

system) acted on by a single force  that is equal to the sum of all the external forces acting on the

system.

(g) If Newton’s laws are valid in one reference frame, then they are also valid in any reference frame accelerated

with respect to the first system.

(h) The law of conservation of energy is a consequence of inversion symmetry, or the invertibility of space.

4. The teeter totter comprises two identical weights which hang on drooping arms attached to a peg as shown.

The arrangement is unexpectedly stable and can be spun and rocked with little danger of toppling over.

m m 

l l
L

(a) Find an expression for the potential energy of the teeter toy as a function of  when the teeter toy is

cocked at an angle  about the pivot point. For simplicity, consider only rocking motion in the vertical

plane.

(b) Determine the equilibrium values(s) of .

(c) Determine whether the equilibrium is stable, unstable, or neutral for the value(s) of  found in part (b).

(d) How could you determine the answers to parts (b) and (c) from a graph of the potential energy versus ?

(e) Expand the expression for the potential energy about  = 0 and determine the frequency of small

oscillations.

5. For each of the situations described below, determine which of the four functional forms of the force is most

appropriate. Consider motion only along one dimension.

• Constant force:  = 

• Time-dependent force:  =  ()

• Velocity-dependent force:  =  ()

• Distance-dependent force:  =  ()

Go around the room and take turns answering a question. When it is your turn, pick a functional form and

explain why you chose the one you did. If you are unsure, make a guess or ask a question to get help from the

rest of the workshop. There may be more than one answer depending on your interpretation of the situation,

so be sure to explore all of the possibilities.

(a) A mass resting on a frictionless table is attached to a spring, which in turn is attached to a wall. The

mass is pulled to the side and executes simple harmonic motion in the horizontal direction.

(b) A freely-falling body subject to a constant gravitational field with no air resistance.

(c) An electron, initially at rest (treat it classically!), encounters an incoming electromagnetic wave of electric

field intensity  given by  = 0 sin(+ ).

(d) A large mass is affected by the gravitational field of another mass a distance  away.
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(e) A freely-falling body subject to a constant gravitational field with air resistance.

(f) A charged point particle is affected by the presence of another charged point particle a distance  away.

6. A particle of mass  is constrained to move on the frictionless inner surface of a cone of half-angle .

(a) Find the restrictions on the initial conditions such that the particle moves in a circular orbit about the

vertical axis.

(b) Determine whether this kind of orbit is stable. A particle of mass  is constrained to move on the

frictionless inner surface of a cone of half-angle , as shown in the figure.

7. Consider a thin rod of length  and mass  .

(a) Draw gravitational field lines and equipotential lines for the rod. What can you say about the equipotential

surfaces of the rod?

(b) Calculate the gravitational potential at a point  that is a distance  from one end of the rod and in a

direction perpendicular to the rod.

(c) Calculate the gravitational field at  by direct integration.

(d) Could you have used Gauss’s law to find the gravitational field at  ? Why or why not?

8. Consider a single particle of mass 

(a) Determine the position  and velocity  of a particle in spherical coordinates.

(b) Determine the total mechanical energy of the particle in potential  .

(c) Assume the force is conservative. Show that  = −∇ . Show that it agrees with Stoke’s theorem.
(d) Show that the angular momentum  =  ×  of the particle is conserved. Hint: d

d
( × ) =

× dB
d
+ dA

d
×.

9. Consider a fluid with density  and velocity  in some volume  . The mass current  =  determines the

amount of mass exiting the surface per unit time by the integral


 · 

(a) Using the divergence theorem, prove the continuity equation, ∇ ·  + 


= 0

10. A rocket of initial mass  burns fuel at constant rate  (kilograms per second), producing a constant force  .

The total mass of available fuel is . Assume the rocket starts from rest and moves in a fixed direction with

no external forces acting on it.

(a) Determine the equation of motion of the rocket.

(b) Determine the final velocity of the rocket.

(c) Determine the displacement of the rocket in time.
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Problems

1. Consider a solid hemisphere of radius . Compute the coordinates of the center of mass relative to the center

of the spherical surface used to define the hemisphere.

2. A 2000kg Ford was travelling south on Mt. Hope Avenue when it collided with your 1000kg sports car travelling

west on Elmwood Avenue. The two badly-damaged cars became entangled in the collision and leave a skid mark

that is 20 meters long in a direction 14◦ to the west of the original direction of travel of the Excursion. The
wealthy Excursion driver hires a high-powered lawyer who accuses you of speeding through the intersection.

Use your P235 knowledge, plus the police officer’s report of the recoil direction, the skid length, and knowledge

that the coefficient of sliding friction between the tires and road is  = 06, to deduce the original velocities of

both cars. Were either of the cars exceeding the 30mph speed limit?

3. A particle of mass  moving in one dimension has potential energy () = 0[2(


)2 − (


)4] where 0 and 

are positive constants.

a) Find the force  () that acts on the particle.

b) Sketch (). Find the positions of stable and unstable equilibrium.

c) What is the angular frequency  of oscillations about the point of stable equilibrium?

d) What is the minimum speed the particle must have at the origin to escape to infinity?

e) At  = 0 the particle is at the origin and its velocity is positive and equal to the escape velocity. Find ()

and sketch the result.

4. a) Consider a single-stage rocket travelling in a straight line subject to an external force   acting along the

same line where  is the exhaust velocity of the ejected fuel relative to the rocket. Show that the equation of

motion is

̇ = −̇ + 


b) Specialize to the case of a rocket taking off vertically from rest in a uniform gravitational field  Assume

that the rocket ejects mass at a constant rate of ̇ = − where  is a positive constant. Solve the equation of
motion to derive the dependence of velocity on time.

c) The first couple of minutes of the launch of the Space Shuttle can be described roughly by; initial mass

= 2 × 106 kg, mass after 2 minutes = 1 × 106 kg, exhaust speed  = 3000 and initial velocity is zero.

Estimate the velocity of the Space Shuttle after two minutes of flight.

d) Describe what would happen to a rocket where ̇  

5. A time independent field  is conservative if ∇ ×  = 0. Use this fact to test if the following fields are

conservative, and derive the corresponding potential  .

a)  =  + +   =  +   =  + 

b)  = −−  = ln   = − + 
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6. Consider a solid cylinder of mass  and radius  sliding without rolling down the smooth inclined face of a

wedge of mass  that is free to slide without friction on a horizontal plane floor. Use the coordinates shown

in the figure.

a) How far has the wedge moved by the time the cylinder has descended from rest a vertical distance  ?

b) Now suppose that the cylinder is free to roll down the wedge without slipping. How far does the wedge

move in this case if the cylinder rolls down a vertical distance  ?

c) In which case does the cylinder reach the bottom faster? How does this depend on the radius of the cylinder?

y
x

x

y

.

7. If the gravitational field vector is independent of the radial distance within a sphere, find the function describing

the mass density  () of the sphere.



Chapter 3

Linear oscillators

3.1 Introduction

Oscillations are a ubiquitous feature in nature. Examples are periodic motion of planets, the rise and fall

of the tides, water waves, pendulum in a clock, musical instruments, sound waves, electromagnetic waves,

and wave-particle duality in quantal physics. Oscillatory systems all have the same basic mathematical form

although the names of the variables and parameters are different. The classical linear theory of oscillations

will be assumed in this chapter since: (1) The linear approximation is well obeyed when the amplitudes of

oscillation are small, that is, the restoring force obeys Hooke’s Law. (2) The Principle of Superposition

applies. (3) The linear theory allows most problems to be solved explicitly in closed form. This is in contrast

to non-linear system where the motion can be complicated and even chaotic as discussed in chapter 4.

3.2 Linear restoring forces

Figure 3.1: Stability for a one-

dimensional potential U(x).

An oscillatory system requires that there be a stable equilibrium about

which the oscillations occur. Consider a conservative system with potential

energy  for which the force is given by

F = −∇ (3.1)

Figure 31 illustrates a conservative system that has three locations at

which the restoring force is zero, that is, where the gradient of the potential

is zero. Stable oscillations occur only around locations 1 and 3 whereas

the system is unstable at the zero gradient location 2. Point 2 is called a

separatrix in that an infinitessimal displacement of the particle from this

separatrix will cause the particle to diverge towards either minimum 1 or

3 depending on which side of the separatrix the particle is displaced.

The requirements for stable oscillations about any point 0 are that

the potential energy must have the following properties.

Stability requirements

1) The potential has a stable position for which the restoring force is zero, i.e.
¡



¢
=0

= 0

2) The potential  must be positive and an even function of displacement − 0 That is.
³



´
0

 0

where  is even.

The requirement for the restoring force to be linear is that the restoring force for perturbation about a

stable equilibrium at 0 is of the form

F = −(−0) = ̈ (3.2)

The potential energy function for a linear oscillator has a pure parabolic shape about the minimum location,

that is,

 =
1

2
(− 0)

2 (3.3)

53
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where 0 is the location of the minimum.

Fortunately, oscillatory systems involve small amplitude oscillations about a stable minimum. For weak

non-linear systems, where the amplitude of oscillation ∆ about the minimum is small, it is useful to make

a Taylor expansion of the potential energy about the minimum. That is

(∆) = (0) +∆
 (0)


+
∆2

2!

2 (0)

2
+
∆3

3!

3 (0)

3
+
∆4

4!

4 (0)

4
+  (3.4)

By definition, at the minimum
(0)


= 0 and thus equation 33 can be written as

∆ = (∆)− (0) =
∆2

2!

2 (0)

2
+
∆3

3!

3 (0)

3
+
∆4

4!

4 (0)

4
+  (3.5)

For small amplitude oscillations, the system is linear if the second-order ∆
2

2!

2(0)

2
term in equation 32 is

dominant.

The linearity for small amplitude oscillations greatly simplifies description of the oscillatory motion and

complicated chaotic motion is avoided. Most physical systems are approximately linear for small amplitude

oscillations, and thus the motion close to equilibrium approximates a linear harmonic oscillator.

3.3 Linearity and superposition

An important aspect of linear systems is that the solutions obey the Principle of Superposition, that is, for

the superposition of different oscillatory modes, the amplitudes add linearly. The linearly-damped linear

oscillator is an example of a linear system in that it involves only linear operators, that is, it can be written

in the operator form (appendix 2)µ
2

2
+ Γ




+ 2

¶
() =  cos (3.6)

The quantity in the brackets on the left hand side is a linear operator that can be designated by L where

L() =  () (3.7)

An important feature of linear operators is that they obey the principle of superposition. This property

results from the fact that linear operators are distributive, that is

L(1 + 2) = L (1) + L (2) (3.8)

Therefore if there are two solutions 1() and 2() for two different forcing functions 1() and 2()

L1() = 1() (3.9)

L2() = 2()

then the addition of these two solutions, with arbitrary constants, also is a solution for linear operators.

L(11 + 22) = 11 () + 22 () (3.10)

In general then

L

Ã
X
=1

()

!
=

Ã
X
=1

()

!
(3.11)

The left hand bracket can be identified as the linear combination of solutions

() =

X
=1

() (3.12)

while the driving force is a linear superposition of harmonic forces

 () =

X
=1

() (3.13)
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Thus these linear combinations also satisfy the general linear equation

L() =  () (3.14)

Applicability of the Principle of Superposition to a system provides a tremendous advantage for handling

and solving the equations of motion of oscillatory systems.

3.4 Geometrical representations of dynamical motion

The powerful pattern-recognition capabilities of the human brain, coupled with geometrical representations

of the motion of dynamical systems, provide a sensitive probe of periodic motion. The geometry of the

motion often can provide more insight into the dynamics than inspection of mathematical functions. A

system with  degrees of freedom is characterized by locations , velocities ̇ and momenta  where

0 ≤  ≤ , in addition to the time  and instantaneous energy (). There are many possible combinations

of correlations between these 2+ 2 variables. The following three are used frequently.

3.4.1 Configuration space (  )

A configuration space plot shows the correlated motion of two spatial coordinates  and  averaged over

time. An example is the two-dimensional linear oscillator with two equations of motion and solutions

̈+  = 0 ̈ +  = 0 (3.15)

 () =  cos ()  () =  cos (− ) (3.16)

where  =

q


. For unequal restoring force constants,  6=  the trajectory executes complicated Lis-

sajous figures that depend on the angular frequencies   and the phase factor . When the ratio of

the angular frequencies along the two axes is rational, that is 

is a rational fraction, then the curve will

repeat at regular intervals as shown in figure 32 and this shape depends on the phase difference. Otherwise

the trajectory gradually fills the whole rectangle.

Configuration plots of ( ) where  = cos(4) and  = cos(5− ) at four different phase values . The

curves are called Lissajous figures
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3.4.2 State space, ( ̇)

Visualization of a trajectory is enhanced by correlation of configuration  and it’s corresponding velocity

̇ which specifies the direction of the motion. The state space representation
1 is especially valuable when

discussing Lagrangian mechanics which is based on the Lagrangian (q q̇).

The free undamped harmonic oscillator provides a simple application of state space. Consider a mass 

attached to a spring with linear spring constant  for which the equation of motion is

− = ̈ = ̇
̇


(3.17)

By integration this gives

1

2
̇2 +

1

2
2 =  (3.18)

The first term in equation 318 is the kinetic energy, the second term is the potential energy, and  is the

total energy which is conserved for this system. This equation can be expressed in terms of the state space

coordinates as
̇2¡
2


¢ + 2¡
2


¢ = 1 (3.19)

This corresponds to the equation of an ellipse for a state-space plot of ̇ versus  as shown in figure 33.

The elliptical paths shown correspond to contours of constant total energy which is partitioned between

kinetic and potential energy. For the coordinate axis shown, the motion of a representative point will be in

a clockwise direction as the total oscillator energy is redistributed between potential to kinetic energy. The

area of the ellipse is proportional to the total energy .

3.4.3 Phase space, ( )

Figure 3.2: State space (upper),

and phase space (lower) diagrams,

for the linear harmonic oscillator.

Phase space, which was introduced by J.W. Gibbs for the field of sta-

tistical mechanics, provides a fundamental graphical representation in

classical mechanics. The phase space coordinates  are the conju-

gate coordinates (qp) and are fundamental to Hamiltonian mechanics

which is based on the Hamiltonian(qp). For a conservative system,

only one phase-space curve passes through any point in phase space

like the flow of an incompressible fluid. This makes phase space more

useful than state space where many curves pass through any location.

Lanczos [La49] defined an extended phase space using four-dimensional

relativistic space-time as discussed in chapter 16.

Since  = ̇ for the non-relativistic, one-dimensional, linear os-

cillator, then equation 319 can be rewritten in the form

2
2

+
2¡
2


¢ = 1 (3.20)

This is the equation of an ellipse in the phase space diagram shown

in Fig.33- which looks identical to Fig 33- since that the

ordinate variable is multiplied by the constant . That is, the only

difference is the phase-space coordinates ( ) replace the state-space

coordinates ( ̇). State space plots are used extensively in this chapter

to describe oscillatory motion. Although phase space is more funda-

mental, both state space and phase space plots provide useful represen-

tations for characterizing and elucidating a wide variety of motion in

classical mechanics. The following discussion of the undamped simple

pendulum illustrates the general features of state space.

1A universal name for the (q q̇) representation has not been adopted in the literature. Therefore this book has adopted

the name "state space" in common with reference [Ta05]. Lanczos [La49] uses the term "state space" to refer to the extended

phase space (qp) discussed in chapter 16
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3.4.4 Plane pendulum

Consider a simple plane pendulum of mass  attached to a string of length  in a uniform gravitational field

. There is only one generalized coordinate,  Since the moment of inertia of the simple plane-pendulum is

 = 2 then the kinetic energy is

 =
1

2
2̇

2
(3.21)

and the potential energy relative to the bottom dead center is

 =  (1− cos ) (3.22)

Thus the total energy equals

 =
1

2
2̇

2
+(1− cos ) = 2

22
+ (1− cos ) (3.23)

where  is a constant of motion. Note that the angular momentum  is not a constant of motion since the

angular acceleration ̇ explicitly depends on .

It is interesting to look at the solutions for the equation of motion for a plane pendulum on a
³
 ̇
´

state space diagram shown in figure 34. The curves shown are equally-spaced contours of constant total

energy. Note that the trajectories are ellipses only at very small angles where 1−cos  ≈ 2, the contours are

non-elliptical for higher amplitude oscillations. When the energy is in the range 0    2 the motion

corresponds to oscillations of the pendulum about  = 0. The center of the ellipse is at (0 0) which is a

stable equilibrium point for the oscillation. However, when ||  2 there is a phase change to rotational

motion about the horizontal axis, that is, the pendulum swings around and over top dead center, i.e. it

rotates continuously in one direction about the horizontal axis. The phase change occurs at  = 2 and

is designated by the separatrix trajectory.

Figure 3.3: State space diagram for a plane pendu-

lum. The  axis is in units of  radians. Note that

 = + and − correspond to the same physical
point, that is the phase diagram should be rolled

into a cylinder connected at  = ±.

Figure 34 shows two cycles for  to better illustrate

the cyclic nature of the phase diagram. The closed loops,

shown as fine solid lines, correspond to pendulum oscil-

lations about  = 0 or 2 for   2. The dashed

lines show rolling motion for cases where the total en-

ergy   2. The broad solid line is the separatrix

that separates the rolling and oscillatory motion. Note

that at the separatrix the kinetic energy and ̇ are zero

when the pendulum is at top dead center which occurs

when  = ±The point ( 0) is an unstable equilib-
rium characterized by phase lines that are hyperbolic

to this unstable equilibrium point. Note that  = +

and − correspond to the same physical point, that is,
the phase diagram is better presented on a cylindri-

cal phase space representation since  is a cyclic vari-

able that cycles around the cylinder whereas ̇ oscillates

equally about zero having both positive and negative val-

ues. The state-space diagram can be wrapped around a

cylinder, then the unstable and stable equilibrium points

will be at diametrically opposite locations on the surface

of the cylinder at ̇ = 0. For small oscillations about

equilibrium, also called librations, the correlation be-

tween ̇ and  is given by the clockwise closed loops wrapped on the cylindrical surface, whereas for energies

||  2 the positive ̇ corresponds to counterclockwise rotations while the negative ̇ corresponds to

clockwise rotations.

State-space diagrams will be used for describing oscillatory motion in chapters 3 and 4 Phase space is

used in statistical mechanics in order to handle the equations of motion for ensembles of ∼ 1023 independent
particles since momentum is more fundamental than velocity. Rather than try to account separately for

the motion of each particle for an ensemble, it is best to specify the region of phase space containing the

ensemble. If the number of particles is conserved, then every point in the initial phase space must transform

to corresponding points in the final phase space. This will be discussed in chapters 85 and 143.
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3.5 Linearly-damped free linear oscillator

3.5.1 General solution

All simple harmonic oscillations are damped to some degree due to energy dissipation via friction, viscous

forces, or electrical resistance etc. The motion of damped systems is not conservative in that energy is

dissipated as heat. As was discussed in chapter 2 the damping force can be expressed as

F() = −()bv (3.24)

where the velocity dependent function () can be complicated. Fortunately there is a very large class of

problems in electricity and magnetism, classical mechanics, molecular, atomic, and nuclear physics, where

the damping force depends linearly on velocity which greatly simplifies solution of the equations of motion.

Therefore this chapter will discuss only linear damping.

Consider the free simple harmonic oscillator, that is, assuming no oscillatory forcing function, with a

linear damping term F() = −v where the parameter  is the damping factor. Then the equation of
motion is

−− ̇ = ̈ (3.25)

This can be rewritten as

̈+ Γ̇+ 20 = 0 (3.26)

where the damping parameter

Γ =



(3.27)

and the characteristic angular frequency

0 =

r



(3.28)

The general solution to the linearly-damped free oscillator is obtained by inserting the complex trial

solution  = 0
 Then

()
2
0

 + Γ0
 + 200

 = 0 (3.29)

This implies that

2 − Γ− 20 = 0 (3.30)

The solution is

± = 
Γ

2
±
s
20 −

µ
Γ

2

¶2
(3.31)

The two solutions ± are complex conjugates and thus the solutions of the damped free oscillator are

 = 1



Γ
2
+


20−(Γ2 )

2


+ 2




Γ
2
−

20−(Γ2 )

2



(3.32)

This can be written as

 = −(
Γ
2 )
£
1

1 + 2
−1¤ (3.33)

where

1 ≡
s
2 −

µ
Γ

2

¶2
(3.34)
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Underdamped motion 21 ≡ 2 −
¡
Γ
2

¢2
 0

When 21  0 then the square root is real so the solution can be written taking the real part of  which

gives that equation 333 equals

() = −(
Γ
2 ) cos (1− ) (3.35)

Where  and  are adjustable constants fit to the initial conditions. Therefore the velocity is given by

̇() = −−Γ2 
∙
1 sin (1− ) +

Γ

2
cos (1− )

¸
(3.36)

This is the damped sinusoidal oscillation illustrated in figure 35. The solution has the following

characteristics:

a) The oscillation amplitude decreases exponentially with a time constant  =
2
Γ


b) There is a small reduction in the frequency of the oscillation due to the damping leading to 1 =q
2 −

¡
Γ
2

¢2

The amplitude-time dependence and state-space diagrams for the free linearly-damped harmonic oscillator.

The upper row shows the underdamped system for the case with damping Γ = 0
5
. The lower row shows

the overdamped (Γ
2
 0) [solid line] and critically damped (

Γ
2
= 0) [dashed line] in both cases assuming

that initially the system is at rest.
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Figure 3.4: Real and imaginary solutions ± of the damped harmonic oscillator. A phase transition occurs
at Γ = 20 For Γ  20 (dashed) the two solutions are complex conjugates and imaginary. For Γ  20,

(solid), there are two real solutions + and − with widely different decay constants where + dominates
the decay at long times.

Overdamped case 21 ≡ 2 −
¡
Γ
2

¢2
 0

In this case the square root of 21 is imaginary and can be expressed as 
0
1 = 

q¡
Γ
2

¢2 − 2 Therefore the

solution is obtained more naturally by using a real trial solution  = 0
 in equation 333 which leads to

two roots

± = −
⎡⎣−Γ

2
±
sµ

Γ

2

¶2
− 2

⎤⎦
Thus the exponentially damped decay has two time constants + and −

() =
£
1

−+ +2
−−¤ (3.37)

The time constant 1
−

 1
+

thus the first term 1
−+ in the bracket decays in a shorter time than the

second term 2
−− As illustrated in figure 36 the decay rate, which is imaginary when underdamped, i.e.

Γ
2
  bifurcates into two real values ± for overdamped, i.e.Γ2  . At large times the dominant term

when overdamped is for + which has the smallest decay rate, that is, the longest decay constant + =
1
+
.

There is no oscillatory motion for the overdamped case, it slowly moves monotonically to zero as shown in

fig 35. The amplitude decays away with a time constant that is longer than 2
Γ


Critically damped 21 ≡ 2 −
¡
Γ
2

¢2
= 0

This is the limiting case where Γ
2
=  For this case the solution is of the form

() = (+) −(
Γ
2 ) (3.38)

This motion also is non-sinusoidal and evolves monotonically to zero. As shown in figure 35 the critically-

damped solution goes to zero with the shortest time constant, that is, largest . Thus analog electric meters

are built almost critically damped so the needle moves to the new equilibrium value in the shortest time

without oscillation.

It is useful to graphically represent the motion of the damped linear oscillator on either a state space

(̇ ) diagram or phase space ( ) diagram as discussed in chapter 34. The state space plots for the

undamped, overdamped, and critically-damped solutions of the damped harmonic oscillator are shown in

figure 35 For underdamped motion the state space diagram spirals inwards to the origin in contrast to

critical or overdamped motion where the state and phase space diagrams move monotonically to zero.
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3.5.2 Energy dissipation

The instantaneous energy is the sum of the instantaneous kinetic and potential energies

 =
1

2
̇2 +

1

2
2 (3.39)

where  and ̇ are given by the solution of the equation of motion.

Consider the total energy of the underdamped system

 =
1

2




2
+
1

2
20

2 (3.40)

where  = 20 The average total energy is given by substitution for  and ̇ and taking the average over

one cycle. Since

() = −(
Γ
2 ) cos (1− ) (3.41)

Then the velocity is given by

̇() = −−Γ2 
∙
1 sin (1− ) +

Γ

2
cos (1− )

¸
(3.42)

Inserting equations 341 and 342 into 340 gives a small amplitude oscillation about an exponential decay for

the energy . Averaging over one cycle and using the fact that hsin  cos i = 0, and
D
[sin ]

2
E
=
D
[cos ]

2
E
=

1
2
, gives the time-averaged total energy as

hi = −Γ
Ã
1

4
221 +

1

4
2

µ
Γ

2

¶2
+
1

4
220

!
(3.43)

which can be written as

hi = 0
−Γ (3.44)

Note that the energy of the linearly damped free oscillator decays away with a time constant  = 1
Γ
 That

is, the intensity has a time constant that is half the time constant for the decay of the amplitude of the

transient response. Note that the average kinetic and potential energies are identical, as implied by the

Virial theorem, and both decay away with the same time constant. This relation between the mean life 

for decay of the damped harmonic oscillator and the damping width term Γ occurs frequently in physics.

The damping of an oscillator usually is characterized by a single parameter  called the Quality Factor

where

 ≡ Energy stored in the oscillator
Energy dissipated per radian

(3.45)

The energy loss per radian is given by

∆ =




1

1
=

Γ

1
=

Γq
2 −

¡
Γ
2

¢2 (3.46)

where the numerator 1 =

q
2 −

¡
Γ
2

¢2
is the frequency of the free damped linear oscillator.

.
Typical Q factors

Earth, for earthquake wave 250-1400

Piano string 3000

Crystal in digital watch 104

Microwave cavity 104

Excited atom 107

Neutron star 1012

LIGO laser 1013

Mössbauer effect in nucleus 1014

Table 3.1: Typical Q factors in nature.

Thus the Quality factor  equals

 =


∆
=

1

Γ
(3.47)

The larger the  factor, the less damped is the system, and the

greater is the number of cycles of the oscillation in the damped

wave train. Chapter 3113 shows that the longer the wave train,

that is the higher is the  factor, the narrower is the frequency

distribution around the central value. The Mössbauer effect in

nuclear physics provides a remarkably long wave train that can

be used to make high precision measurements. The high- pre-

cision of the LIGO laser interferometer was used in the recent

successful search for gravity waves.
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3.6 Sinusoidally-drive, linearly-damped, linear oscillator

The linearly-damped linear oscillator, driven by a harmonic driving force, is of considerable importance to

all branches of science and engineering. The equation of motion can be written as

̈+ Γ̇+ 20 =
 ()


(3.48)

where  () is the driving force. For mathematical simplicity the driving force is chosen to be a sinusoidal

harmonic force. The solution of this second-order differential equation comprises two components, the

complementary solution (transient response), and the particular solution (steady-state response).

3.6.1 Transient response of a driven oscillator

The transient response of a driven oscillator is given by the complementary solution of the above second-order

differential equation

̈+ Γ̇+ 20 = 0 (3.49)

which is identical to the solution of the free linearly-damped harmonic oscillator. As discussed in section 35

the solution of the linearly-damped free oscillator is given by the real part of the complex variable  where

 = −
Γ
2

£
1

1 + 2
−1¤ (3.50)

and

1 ≡
s
2 −

µ
Γ

2

¶2
(3.51)

Underdamped motion 21 ≡ 2 − Γ2
2
 0 : When 21  0 then the square root is real so the transient

solution can be written taking the real part of  which gives

() =
0


−

Γ
2
 cos (1) (3.52)

The solution has the following characteristics:

a) The amplitude of the transient solution decreases exponentially with a time constant  = 2
Γ
while

the energy decreases with a time constant of 1
Γ


b) There is a small downward frequency shift in that 1 =

q
2 −

¡
Γ
2

¢2


Overdamped case 21 ≡ 2−
¡
Γ
2

¢2
 0 : In this case the square root is imaginary, which can be expressed

as 01 ≡
q¡

Γ
2

¢2 − 2 which is real and the solution is just an exponentially damped one

() =
0


−

Γ
2

h


0
1 + −

0
1
i

(3.53)

There is no oscillatory motion for the overdamped case, it slowly moves monotonically to zero. The total

energy decays away with two time constants greater than 1
Γ


Critically damped 21 ≡ 2 −
¡
Γ
2

¢2
= 0 : For this case, as mentioned for the damped free oscillator, the

solution is of the form

() = (+) −
Γ
2
 (3.54)

The critically-damped system decays away the quickest.
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3.6.2 Steady state response of a driven oscillator

The particular solution of the differential equation gives the important steady state response, () to the

forcing function. Consider that the forcing term is a single frequency sinusoidal oscillation.

 () = 0 cos() (3.55)

Thus the particular solution is the real part of the complex variable  which is a solution of

̈ + Γ̇ + 20 =
0


 (3.56)

A trial solution is

 = 0
 (3.57)

This leads to the relation

−20 + Γ0 + 200 =
0


(3.58)

Multiplying the numerator and denominator by the factor
¡
20 − 2

¢− Γ gives

0 =
0


(20 − 2) + Γ
=

0


(20 − 2)
2
+ (Γ)

2

£¡
20 − 2

¢− Γ
¤

(3.59)

The steady state solution () thus is given by the real part of , that is

 () =
0


(20 − 2)
2
+ (Γ)

2

£¡
20 − 2

¢
cos+ Γ sin

¤
(3.60)

This can be expressed in terms of a phase  defined as

tan  ≡
µ

Γ

20 − 2

¶
(3.61)

Figure 3.5: Phase between driving force and

resultant motion.

As shown in figure 37 the hypotenuse of the triangle equalsq
(20 − 2)

2
+ (Γ)

2
. Thus

cos  =
20 − 2q

(20 − 2)
2
+ (Γ)

2
(3.62)

and

sin  =
Γq

(20 − 2)
2
+ (Γ)

2
(3.63)

The phase  represents the phase difference between the

driving force and the resultant motion. For a fixed 0 the

phase  = 0 when  = 0 and increases to  = 
2
when

 = 0. For   0 the phase  →  as  →∞.
The steady state solution can be re-expressed in terms of

the phase shift  as

 () =
0
q

(20 − 2)
2
+ (Γ)

2
[cos  cos+ sin  sin]

=
0
q

(20 − 2)
2
+ (Γ)

2
cos (− ) (3.64)
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Figure 3.6: Amplitude versus time, and state space plots of the transient solution (dashed) and total solution

(solid) for two cases. The upper row shows the case where the driving frequency  = 1
5
while the lower row

shows the same for the case where the driving frequency  = 51

3.6.3 Complete solution of the driven oscillator

To summarize, the total solution of the sinusoidally forced linearly-damped harmonic oscillator is the sum

of the transient and steady-state solutions of the equations of motion.

() = () + () (3.65)

This for the underdamped case, the transient solution is the complementary solution

() =
0


−

Γ
2
 cos (1− ) (3.66)

where 1 =

q
2 −

¡
Γ
2

¢2
. The steady-state solution is given by the particular solution

() =
0
q

(20 − 2)
2
+ (Γ)

2
cos (− ) (3.67)

Note that the frequency of the transient solution is 1 which in general differs from the driving frequency

. The phase shift −  for the transient component is set by the initial conditions. The transient response

leads to a more complicated motion immediately after the driving function is switched on. Figure 38

illustrates the amplitude time dependence and state space diagram for the transient component, and the

total response, when the driving frequency is either  = 1
5
or  = 51 Note that the modulation of the

steady-state response by the transient response is unimportant once the transient response has damped out

leading to a constant elliptical state space trajectory. For cases where the initial conditions are  = ̇ = 0

then the transient solution has a relative phase difference −  =  radians at  = 0 and relative amplitudes

such that the transient and steady-state solutions cancel at  = 0

The characteristic sounds of different types of musical instruments depend very much on the admixture

of transient solutions plus the number and mixture of oscillatory active modes. Percussive instruments, such

as the piano, have a large transient component. The mixture of transient and steady-state solutions for

forced oscillations occurs frequently in studies of  networks in electrical circuit analysis.
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3.6.4 Resonance

The discussion so far has discussed the role of the transient and steady-state solutions of the driven damped

harmonic oscillator which occurs frequently is science, and engineering. Another important aspect is reso-

nance that occurs when the driving frequency  approaches the natural frequency 1 of the damped system.

Consider the case where the time is sufficient for the transient solution to have decayed to zero.

Figure 3.7: Resonance behavior for the

linearly-damped, harmonically driven, linear

oscillator.

Figure 39 shows the amplitude and phase for the steady-

state response as  goes through a resonance as the driving

frequency is changed. The steady-states solution of the

driven oscillator follows the driving force when   0 in

that the phase difference is zero and the amplitude is just
0

 The response of the system peaks at resonance, while

for   0 the harmonic system is unable to follow the

more rapidly oscillating driving force and thus the phase of

the induced oscillation is out of phase with the driving force

and the amplitude of the oscillation tends to zero.

Note that the resonance frequency for a driven damped

oscillator, differs from that for the undriven damped oscilla-

tor, and differs from that for the undamped oscillator. The

natural frequency for an undamped harmonic oscillator

is given by

20 =



(3.68)

The transient solution is the same as damped free os-

cillations of a damped oscillator and has a frequency of

the system 1 given by

21 = 20 −
µ
Γ

2

¶2
(3.69)

That is, damping slightly reduces the frequency.

For the driven oscillator the maximum value of the

steady-state amplitude response is obtained by taking the

maximum of the function () , that is when



= 0 This

occurs at the resonance angular frequency  where

2 = 20 − 2
µ
Γ

2

¶2
(3.70)

No resonance occurs if 20−2
¡
Γ
2

¢2
 0 since then  is imaginary and the amplitude decreases monotonically

with increasing  Note that the above three frequencies are identical if Γ = 0 but they differ when Γ  0

with   1  0

For the driven oscillator it is customary to define the quality factor  as

 ≡ 

Γ
(3.71)

When   1 then one has a narrow high resonance peak. As the damping increases the quality factor

decreases leading to a wider and lower peak. The resonance disappears when   1 .

3.6.5 Energy absorption

Discussion of energy stored in resonant systems is best described using the steady state solution which is

dominant after the transient solution has decayed to zero. Then

 () =
0


(20 − 2)
2
+ (Γ)

2

£¡
20 − 2

¢
cos+ Γ sin

¤
(3.72)
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This can be rewritten as

() =  cos+ sin (3.73)

where the elastic amplitude

 =
0


(20 − 2)
2
+ (Γ)

2

¡
20 − 2

¢
(3.74)

while the absorptive amplitude

 =
0


(20 − 2)
2
+ (Γ)

2
Γ (3.75)

Figure 3.8: Elastic (solid) and absorptive (dashed)

amplitudes of the steady-state solution for Γ =

0100

Figure 310 shows the behavior of the absorptive and

elastic amplitudes as a function of angular frequency .

The absorptive amplitude is significant only near res-

onance whereas the elastic amplitude goes to zero at

resonance. Note that the full width at half maximum of

the absorptive amplitude peak equals Γ

The work done by the force 0 cos on the oscillator

is

 =

Z
 =

Z
̇ (3.76)

Thus the absorbed power  () is given by

 () =



= ̇ (3.77)

The steady state response gives a velocity

̇() = − sin+  cos (3.78)

Thus the steady-state instantaneous power input is

 () = 0 cos [− sin+  cos] (3.79)

The absorptive term steadily absorbs energy while the elastic term oscillates as energy is alternately absorbed

or emitted. The time average over one cycle is given by

h i = 0

h
− hcos sini+ 

D
(cos)

2
Ei

(3.80)

where hcos sini and cos2® are the time average over one cycle. The time averages over one complete
cycle for the first term in the bracket is

− hcos sini = 0 (3.81)

while for the second term 
cos2

®
=
1



Z 0+



cos2 =
1

2
(3.82)

Thus the time average power input is given by only the absorptive term

h i = 1

2
0 =

 20
2

Γ2

(20 − 2)
2
+ (Γ)

2
(3.83)

This shape of the power curve is a classic Lorentzian shape. Note that the maximum of the average kinetic

energy occurs at  = 0 which is different from the peak of the amplitude which occurs at 
2
1 = 20−

¡
Γ
2

¢2
.

The potential energy is proportional to the amplitude squared, i.e. 2 which occurs at the same angular

frequency as the amplitude, that is, 2 = 2 = 20 − 2
¡
Γ
2

¢2
. The kinetic and potential energies resonate

at different angular frequencies as a result of the fact that the driven damped oscillator is not conservative
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because energy is continually exchanged between the oscillator and the driving force system in addition to

the energy dissipation due to the damping.

When  ∼ 0  Γ, then the power equation simplifies since¡
20 − 2

¢
= (0 + ) (0 − ) ≈ 20 (0 − ) (3.84)

Therefore

h i '  20
8

Γ

(0 − )
2
+
¡
Γ
2

¢2 (3.85)

This is called the Lorentzian or Breit-Wigner shape. The half power points are at a frequency difference

from resonance of ±∆ where
∆ = |0 − | = ±Γ

2
(3.86)

Thus the full width at half maximum of the Lorentzian curve equals Γ Note that the Lorentzian has a

narrower peak but much wider tail relative to a Gaussian shape. At the peak of the absorbed power, the

absorptive amplitude can be written as

( = 0) =
0





20
(3.87)

That is, the peak amplitude increases with increase in . This explains the classic comedy scene where the

soprano shatters the crystal glass because the highest quality crystal glass has a high  which leads to a

large amplitude oscillation when she sings on resonance.

The mean lifetime  of the free linearly-damped harmonic oscillator, that is, the time for the energy of

free oscillations to decay to 1 was shown to be related to the damping coefficient Γ by

 =
1

Γ
(3.88)

Therefore we have the classical uncertainty principle for the linearly-damped harmonic oscillator

that the measured full-width at half maximum of the energy resonance curve for forced oscillation and the

mean life for decay of the energy of a free linearly-damped oscillator are related by

Γ = 1 (3.89)

This relation is correct only for a linearly-damped harmonic system. Comparable relations between the

lifetime and damping width exist for different forms of damping.

One can demonstrate the above line width and decay time relationship using an acoustically driven

electric guitar string. It also occurs for the width of the electromagnetic radiation and the lifetime for decay

of atomic or nuclear electromagnetic decay. This classical uncertainty principle is exactly the same as the

one encountered in quantum physics due to wave-particle duality. In nuclear physics it is difficult to measure

the lifetime of states when   10−13 For shorter lifetimes the value of Γ can be determined from the shape
of the resonance curve which can be measured directly when the damping is large.

3.1 Example: Harmonically-driven series RLC circuit

The harmonically-driven, resonant, series  circuit, is encountered fre-

quently in AC circuits. Kirchhoff ’s Rules applied to the series  circuit

lead to the differential equation

̈ +̇ +



= 0 sin

where  is charge, L is the inductance,  is the capacitance,  is the resistance,

and the applied voltage across the circuit is  () = 0 sin. The linearity of

the network allows use of the phasor approach which assumes that the current

 = 0
 the voltage  = 0

(+) and the impedance is a complex number
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 = 0
0
 where  is the phase difference between the voltage and the current. For this circuit the impedance

is given by

 = + 

µ
− 1



¶
Because of the phases involved in this  circuit, at resonance the maximum voltage across the resistor

occurs at a frequency of  = 0 across the capacitor the maximum voltage occurs at a frequency 2 =

20− 2

22
 and across the inductor  the maximum voltage occurs at a frequency 2 =

20

1− 2

22

 where 20 =
1


is the resonance angular frequency when  = 0. Thus these resonance frequencies differ when   0.

3.7 Wave equation

Wave motion is a ubiquitous feature in nature. Mechanical wave motion is manifest by transverse waves

on fluid surfaces, longitudinal and transverse seismic waves travelling through the Earth, and vibrations of

mechanical structures such as suspended cables. Acoustical wave motion occurs on the stretched strings of

the violin, as well as the cavities of wind instruments. Electromagnetic wave motion includes wavelengths

ranging from 105 radiowaves, to 10−13 -rays. Matter waves are a prominent feature of quantum physics.

All these manifestations of waves exhibit the same general features of wave motion.

Wave motion occurs for deformable bodies where elastic forces acting between the nearest-neighbor atoms

of the body exert time-dependent forces on one another. Chapter 12 will introduce the collective modes of

motion, called the normal modes, of coupled, many-body, linear oscillators which act as independent modes

of motion. However, it is useful to introduce wavemotion at this juncture because the equations of wave

motion are simple, and wave motion features prominently in several chapters of this book.

Consider a travelling wave in one dimension for a linear system. If the wave is moving, then the wave

function Ψ ( ) describing the shape of the wave, is a function of both  and . The instantaneous amplitude

of the wave Ψ ( ) could correspond to the transverse displacement of a wave on a string, the longitudinal

amplitude of a wave on a spring, the pressure of a longitudinal sound wave, the transverse electric or magnetic

fields in an electromagnetic wave, a matter wave, etc. If the wave train maintains its shape as it moves, then

one can describe the wave train by the function  () where the coordinate  is measured relative to the

shape of the wave, that is, it could correspond to the phase of a crest of the wave. Consider that ( = 0)

corresponds to a constant phase, e.g. the peak of the travelling pulse, then assuming that the wave travels

at a phase velocity  in the  direction and the peak is at  = 0 for  = 0 then it is at  =  at time .

That is, a point with phase  fixed with respect to the waveform shape of the wave profile () moves in

the + direction for  = −  and in − direction for  = + .

General wave motion can be described by solutions of a wave equation. The wave equation can be

written in terms of the spatial and temporal derivatives of the wave function Ψ() Consider the first partial

derivatives of Ψ() = (∓ ) = ()

Ψ


=

Ψ






=

Ψ


(3.90)

and
Ψ


=

Ψ






= ∓Ψ


(3.91)

Factoring out Ψ

for the first derivatives gives

Ψ


= ∓Ψ


(3.92)

The sign in this equation depends on the sign of the wave velocity making it not a generally useful formula.

Consider the second derivatives
2Ψ

2
=

2Ψ

2



=

2Ψ

2
(3.93)

and
2Ψ

2
=

2Ψ

2



= +2

2Ψ

2
(3.94)
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Factoring out 2Ψ
2

gives

2Ψ

2
=
1

2
2Ψ

2
(3.95)

This wave equation in one dimension for a linear system is independent of the sign of the velocity. There

are an infinite number of possible shapes of waves both travelling and standing in one dimension, all of these

must satisfy this one-dimensional wave equation. The converse is that any function that satisfies this one

dimensional wave equation must be a wave in this one dimension.

The Wave Equation in three dimensions is

∇2Ψ ≡ 2Ψ

2
+

2Ψ

2
+

2Ψ

2
=
1

2
2Ψ

2
(3.96)

There are an infinite number of possible solutions Ψ to this wave equation, any one of which corresponds to

a wave motion with velocity .

The Wave Equation is applicable to all manifestations of wave motion, both transverse and longitudinal,

for linear systems. That is, it applies to waves on a string, water waves, seismic waves, sound waves,

electromagnetic waves, matter waves, etc. If it can be shown that a wave equation can be derived for any

system, discrete or continuous, then this is equivalent to proving the existence of waves of any waveform,

frequency, or wavelength travelling with the phase velocity given by the wave equation.[Cra65]

3.8 Travelling and standing wave solutions of the wave equation

The wave equation can have both travelling and standing-wave solutions. Consider a one-dimensional trav-

elling wave with velocity  having a specific wavenumber  ≡ 2

. Then the travelling wave is best written

in terms of the phase of the wave as

Ψ( ) = ()
2

(∓) = ()(∓) (3.97)

where the wave number  ≡ 2

 with  being the wave length, and angular frequency  ≡ . This particular

solution satisfies the wave equation and corresponds to a travelling wave with phase velocity  = 

in the

positive or negative direction  depending on whether the sign is negative or positive. Assuming that the

superposition principle applies, then the superposition of these two particular solutions of the wave equation

can be written as

Ψ( ) = ()((−) + (+)) = ()(− + ) = 2() cos (3.98)

Thus the superposition of two identical single wavelength travelling waves propagating in opposite directions

can correspond to a standing wave solution. Note that a standing wave is identical to a stationary normal

mode of the system discussed in chapter 12. This transformation between standing and travelling waves can

be reversed, that is, the superposition of two standing waves, i.e. normal modes, can lead to a travelling

wave solution of the wave equation.

Discussion of waveforms is simplified when using either of the following two limits.

1) The time dependence of the waveform at a given location  = 0 which can be expressed using a

Fourier decomposition, appendix 2, of the time dependence as a function of angular frequency  = 0.

Ψ(0 ) =

∞X
=−∞


(00−0) =

∞X
=−∞

 (0) 
−0 (3.99)

2) The spatial dependence of the waveform at a given instant  = 0 which can be expressed using a

Fourier decomposition of the spatial dependence as a function of wavenumber  = 0

Ψ( 0) =

∞X
=−∞


(0−10) =

∞X
=−∞

 (0) 
0 (3.100)

The above is applicable both to discrete, or continuous linear oscillator systems, e.g. waves on a string.

In summary, stationary normal modes of a system are obtained by a superposition of travelling waves

travelling in opposite directions, or equivalently, travelling waves can result from a superposition of stationary

normal modes.
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3.9 Waveform analysis

3.9.1 Harmonic decomposition

Figure 3.9: The time and frequency rep-

resentations of a system exhibiting beats.

As described in appendix , when superposition applies, then a

Fourier series decomposition of the form 3101 can be made of

any periodic function where

 () =

X
=1

 cos(0+ ) (3.101)

or the more general Fourier Transform can be made for an ape-

riodic function where

 () =

Z
 () cos(+  ()) (3.102)

Any linear system that is subject to the forcing function  ()

has an output that can be expressed as a linear superposition

of the solutions of the individual harmonic components of the

forcing function. Fourier analysis of periodic waveforms in terms

of harmonic trigonometric functions plays a key role in describing

oscillatory motion in classical mechanics and signal processing

for linear systems. Fourier’s theorem states that any arbitrary

forcing function  () can be decomposed into a sum of harmonic

terms. As a consequence two equivalent representations can be used to describe signals and waves; the first

is in the time domain which describes the time dependence of the signal. The second is in the frequency

domain which describes the frequency decomposition of the signal. Fourier analysis relates these equivalent

representations.

Figure 3.10: The intensity ()2 and

Fourier transform |()|2 of the free

linearly-underdamped harmonic oscillator

with 0 = 10 and damping Γ = 1.

For example, the superposition of two equal intensity har-

monic oscillators in the time domain is given by

() =  cos (1) + cos (2)

= 2 cos

∙µ
1 + 2

2

¶


¸
cos

∙µ
1 − 2

2

¶
 (̧3.103)

which leads to the phenomenon of beats as illustrated for both

the time domain and frequency domain by figure 39

3.9.2 The free linearly-damped linear oscilla-

tor

The response of the free, linearly-damped, linear oscillator is one

of the most frequently encountered waveforms in science and thus

it is useful to investigate the Fourier transform of this waveform.

The damped waveform for the underdamped case, shown in fig-

ure 35 is given by equation (335), that is

 () = −
Γ
2
 cos (1− )  ≥ 0 (3.104)

 () = 0   0 (3.105)

where 21 = 20 −
¡
Γ
2

¢2
and where 0 is the angular frequency of

the undamped system. The Fourier transform is given by

 () =
0

(2 − 21)
2
+ (Γ)

2

£¡
2 − 21

¢− Γ
¤

(3.106)

which is complex and has the famous Lorentz form.
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The intensity of the wave gives

| ()|2 = 2−Γ cos2 (1− ) (3.107)

| ()|2 =
20

(2 − 21)
2
+ (Γ)

2
(3.108)

Note that since the average over 2 of cos2 = 1
2
 then the average over the cos2 (1− ) term gives the

intensity  () = 2

2
−Γ which has a mean lifetime for the decay of  = 1

Γ
 The | ()|2 distribution has the

classic Lorentzian shape, shown in figure 312, which has a full width at half-maximum, FWHM, equal to Γ.

Note that  () is complex and thus one also can determine the phase shift  which is given by the ratio of

the imaginary to real parts of equation 3105 i.e. tan  = Γ

(2−21)
.

The mean lifetime of the exponential decay of the intensity can be determined either by measuring 

from the time dependence, or measuring the FWHM Γ = 1

of the Fourier transform | ()|2. In nuclear

and atomic physics excited levels decay by photon emission with the wave form of the free linearly-damped,

linear oscillator. Typically the mean lifetime  usually can be measured when  & 10−12 whereas for
shorter lifetimes the radiation width Γ becomes sufficiently large to be measured. Thus the two experimental

approaches are complementary.

3.9.3 Damped linear oscillator subject to an arbitrary periodic force

Fourier’s theorem states that any arbitrary forcing function  () can be decomposed into a sum of harmonic

terms. Consider the response of a damped linear oscillator to an arbitrary periodic force.

 () =

X
=0

0 () cos (+ ) (3.109)

For each harmonic term  the response of a linearly-damped linear oscillator to the forcing function

 () = 0 () cos() is given by equation (365− 67) to be
() = () + ()

=
0 ()



⎡⎣−Γ2  cos (1− ) +
1q

(20 − 2)
2
+ (Γ)

2
cos (− )

⎤⎦ (3.110)

The amplitude is obtained by substituting into (3111) the derived values
0()


from the Fourier analysis.

3.2 Example: Vibration isolation

Seismic isolation of an optical bench.

Frequently it is desired to isolate instrumentation from the

influence of horizontal and vertical external vibrations that exist

in its environment. One arrangement to achieve this isolation

is to mount a heavy base of mass  on weak springs of spring

constant  plus weak damping. The response of this system is

given by equation 3109 which exhibits a resonance at the angu-

lar frequency 2 = 20 − 2
¡
Γ
2

¢2
associated with each resonant

frequency 0 of the system. For each resonant frequency the sys-

tem amplifies the vibrational amplitude for angular frequencies

close to resonance that is, below
√
2 0 while it attenuates the

vibration roughly by a factor of
¡
0


¢2
at higher frequencies. To

avoid the amplification near the resonance it is necessary to make 0 very much smaller than the frequency

range of the vibrational spectrum and have a moderately high  value. This is achieved by use a very heavy

base and weak spring constant so that 0 is very small. A typical table may have the resonance frequency

at 05 which is well below typical perturbing vibrational frequencies, and thus the table attenuates the

vibration by 99% at 5 and even more attenuation for higher frequency perturbations. This principle is

used extensively in design of vibration-isolation tables for optics or microbalance equipment.
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3.10 Signal processing

It has been shown that the response of the linearly-damped linear oscillator, subject to any arbitrary periodic

force, can be calculated using a frequency decomposition, (Fourier analysis), of the force, appendix . The

response can equally well can be calculated using a time-ordered discrete-time sampling of the pulse shape;

that is, the Green’s function approach, appendix  . The linearly-damped, linear oscillator is the simplest

example of a linear system that exhibits both resonance and frequency-dependent response. Typical physical

linear systems exhibit far more complicated response functions with multiple resonances and corresponding

frequency response. For example, an automobile suspension system involves four wheels and associated

springs plus dampers allowing the car to rock sideways, or forward and backward, in addition to the up-

down motion, when subject to the forces produced by a rough road. Similarly a suspension bridge or aircraft

wing can twist as well as bend due to air turbulence, or a building can undergo complicated oscillations due

to seismic waves. An acoustic system exhibits similar complexity. Signal analysis and signal processing is of

pivotal importance to elucidating the response of complicated linear systems to complicated periodic forcing

functions. This is used extensively in engineering, acoustics, and science.

The response of a low-pass filter, such as an R-C circuit or a coaxial cable, to a input square wave, shown in

figure 313, provides a simple example of the relative advantages of using the complementary Fourier analysis

in the frequency domain, or the Green’s discrete-function analysis in the time domain. The response of a

repetitive square-wave input signal is shown in the time domain and the Fourier transform to the frequency

domain. The middle curves show the time dependence for the response of the low-pass filter to an impulse

 () and the Fourier transform (). The output of the low-pass filter can be calculated by folding the

input square wave and impulse time dependence in the time domain as shown on the left or by folding

of their Fourier transforms shown on the right. Working in the frequency domain the response of linear

mechanical systems, such as an automobile suspension or a musical instrument, as well as linear electronic

signal processing systems such as amplifiers, loudspeakers and microphones, can be treated as black boxes

having a certain transfer function ( ) describing the gain and phase shift versus frequency. That is,

the output wave frequency decomposition is

() = ( ) ·() (3.111)

Working in the time domain, the the low-pass system has an impulse response () = −

 , which is the

Fourier transform of the transfer function ( ). In the time domain

() =

Z ∞
−∞

() · (− ) (3.112)

This is shown schematically in figure 313. The Fourier transformation connects the three quantities in the

time domain with the corresponding three in the frequency domain. For example, the impulse response of

the low-pass filter has a fall time of  which is related by a Fourier transform to the width of the transfer

function. Thus the time and frequency domain approaches are closely related and give the same result for

the output signal for the low-pass filter to the applied square-wave input signal. The result is that the

higher-frequency components are attenuated leading to slow rise and fall times in the time domain.

Analog signal processing and Fourier analysis were the primary tools to analyze and process all forms of

periodic motion during the 20 century. For example, musical instruments, mechanical systems, electronic

circuits, all employed resonant systems to enhance the desired frequencies and suppress the undesirable

frequencies and the signals were observed using analog oscilloscopes. The remarkable development of com-

puting has enabled use of digital signal processing leading to a revolution in signal processing that has had a

profound impact on both science and engineering. For example, the digital oscilloscope, which can sample at

frequencies above 109 has replaced the analog oscilloscope because it allows sophisticated analysis of each

individual signal that was not possible using analog signal processing. For example, the analog approach

in nuclear physics involved tiny analog electric signals, produced by many individual radiation detectors,

that were transmitted hundreds of meters via carefully shielded and expensive coaxial cables to the data

room where the signals were amplified and signal processed using analog filters to maximize the signal to

noise in order to separate the signal from the background noise. Stray electromagnetic radiation picked up

via the cables significantly degraded the signals. The performance and limitations of the analog electronics

severely restricted the pulse processing capabilities. Digital signal processing has rapidly replaced analog
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Figure 3.11: Response of an  electrical circuit to an input square wave. The upper row shows the time

and the exponential-form frequency representations of the square-wave input signal. The middle row gives

the impulse response, and corresponding transfer function for the  circuit. The bottom row shows the

corresponding output properties in both the time and frequency domains

signal processing. Analog to digital detector circuits are built directly into the electronics for each individual

detector so that only digital information needs to be transmitted from each detector to the analysis com-

puters. Computer processing provides unlimited and flexible processing capabilities for the digital signals

greatly enhancing the response and sensitivity of our detector systems. Common examples of digital signal

processing are digital CD and DVD disks.

3.11 Wave propagation

Wave motion typically involves a packet of waves encompassing a finite number of wave cycles. Information

in a wave only can be transmitted by starting, stopping, or modulating the amplitude of a wave train, which

is equivalent to forming a wave packet. For example, a musician will play a note for a finite time, and this

wave train propagates out as a wave packet of finite length. You have no information as to the frequency

and amplitude of the sound prior to the wave packet reaching you, or after the wave packet has passed you.

The velocity of the wavelets contained within the wave packet is called the phase velocity. For a dispersive

system the phase velocity of the wavelets contained within the wave packet is frequency dependent and the

shape of the wave packet travels at the group velocity which usually differs from the phase velocity. If

the shape of the wave packet is time dependent, then neither the phase velocity, which is the velocity of the

wavelets, nor the group velocity, which is the velocity of an instantaneous point fixed to the shape of the

wave packet envelope, represent the actual velocity of the overall wavepacket.

A third wavepacket velocity, the signal velocity, is defined to be the velocity of the leading edge of the

energy distribution, and corresponding information content, of the wave packet. For most linear systems

the shape of the wave packet is not time dependent and then the group and signal velocities are identical.

However, the group and signal velocities can be very different for non-linear systems as discussed in chapter

47. Note that even when the phase velocity of the waves within the wave packet travels faster than the

group velocity of the shape, or the signal velocity of the energy content of the envelope of the wave packet,

the information contained in a wave packet is only manifest when the wave packet envelope reaches the

detector and this energy and information travel at the signal velocity.

The modern ideas of wave propagation, including Hamilton’s concept of group velocity, were developed

by Lord Rayleigh when applied to the theory of sound[Ray1887]. The concept of phase, group, and signal

velocities played a major role in discussion of electromagnetic waves as well as de Broglie’s development of
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the concept of wave-particle duality and the development of wave mechanics by Schrödinger.

3.11.1 Phase, group, and signal velocities of wave packets

The concepts of wave packets, as well as their phase, group, and signal velocities, are of considerable im-

portance for propagation of information and other manifestations of wave motion in science and engineering

which warrants further discussion at this juncture.

Consider a particular   component of a one-dimensional wave,

( ) = (±) (3.113)

The argument of the exponential is called the phase  of the wave where

 ≡ −  (3.114)

If we move along the  axis at a velocity such that the phase is constant then we perceive a stationary

wave. The velocity of this wave is called the phase velocity. To ensure constant phase we require that 

is constant or, assuming real  and 

 =  (3.115)

Therefore the phase velocity is defined to be

 =



(3.116)

The velocity we have used so far is just the phase velocity of the individual wavelets at the carrier frequency.

If  or  are complex then one must take the real parts to ensure that the velocity is real.

If the phase velocity of a wave is dependent on the wavelength, that is,  ()  then the system is

said to be dispersive in that the wave is dispersed according the wavelength. The simplest illustration of

dispersion is the refraction of light in glass prism which leads to dispersion of the light into the spectrum

of wavelengths. Dispersion leads to development of wave packets that travel at group and signal velocities

that usually differ from the phase velocity. To illustrate this consider two equal amplitude travelling waves

having slightly different wave number  and angular frequency . Superposition of these waves gives

( ) = ([−] + [(+∆)−(+∆)]) (3.117)

= [(+
∆
2
)−(+∆

2
)] · {−[∆2 −∆

2
] + [

∆
2
−∆

2
]}

= 2[(+
∆
2
)−(+∆

2
)] cos[

∆

2
− ∆

2
]

This corresponds to a wave with the average carrier frequency modulated by the cosine term which has a

wavenumber of ∆
2
and angular frequency ∆

2
, that is, this is the usual example of beats The cosine term

modulates the average wave producing wave packets as shown in figure 311. The velocity of these wave

packets is called the group velocity given by requiring that the phase of the modulating term is constant,

that is
∆

2
 =

∆

2
 (3.118)

Thus the group velocity is given by

 =



=
∆

∆
(3.119)

If dispersion is present then the group velocity  =
∆
∆

does not equal the phase velocity  =




Expanding the above example to superposition of  waves gives

( ) =

X
=1


(±) (3.120)

In the event that →∞ and the frequencies are continuously distributed, then the summation is replaced

by an integral
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( ) =

Z ∞
−∞

()(±) (3.121)

where the factor  () represents the distribution amplitudes of the component waves, that is the spectral

decomposition of the wave. This is the usual Fourier decomposition of the spatial distribution of the wave.

Consider an extension of the linear superposition of two waves to a well defined wave packet where the

amplitude is nonzero only for a small range of wavenumbers 0 ±∆

( ) =

Z 0+∆

0−∆
()(−) (3.122)

This functional shape is called a wave packet which only has meaning if ∆  0. The angular frequency

can be expressed by making a Taylor expansion around 0

() = (0) +

µ




¶
0

( − 0) +  (3.123)

For a linear system the phase then reduces to

−  = (0− 0) + ( − 0)−
µ




¶
0

( − 0) (3.124)

The summation of terms in the exponent given by 3125 leads to the amplitude 3123 having the form of a

product where the integral becomes

( ) = (0−0)
Z 0+∆

0−∆
()

(−0)[−(  )0 ] (3.125)

The integral term modulates the (0−0) first term.
The group velocity is defined to be that for which the phase of the exponential term in the integral is

constant. Thus

 =

µ




¶
0

(3.126)

Since  =  then

 =  + 



(3.127)

For non-dispersive systems the phase velocity is independent of the wave number  or angular frequency 

and thus  =  The case discussed earlier, equation (3103)  for beating of two waves gives the

same relation in the limit that ∆ and ∆ are infinitessimal.

The group velocity of a wave packet is of physical significance for dispersive media where  =¡



¢
0
6= 


= . Every wave train has a finite extent and thus we usually observe the motion of a

group of waves rather than the wavelets moving within the wave packet. In general, for non-linear dispersive

systems the derivative



can be either positive or negative and thus in principle the group velocity

can either be greater than, or less than, the phase velocity. Moreover, if the group velocity is frequency

dependent, that is, when group velocity dispersion occurs, then the overall shape of the wave packet is time

dependent and thus the speed of a specific relative location defined by the shape of the envelope of the wave

packet does not represent the signal velocity of the wave packet. Brillouin showed that the distribution

of the energy, and corresponding information content, in any wave packet travels at the signal velocity

which can be different from the group velocity if the shape of the envelope of the wave packet is time

dependent. For electromagnetic waves one has the possibility that the group velocity    =  In

1914 Brillouin[Bri14][Bri60] showed that the signal velocity of electromagnetic waves, defined by the leading

edge of the time-dependent envelope of the wave packet, never exceeds  even though the group velocity

corresponding to the velocity of the instantaneous shape of the wave packet may exceed . Thus, there is

no violation of Einstein’s fundamental principle of relativity that the velocity of an electromagnetic wave

cannot exceed .
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3.3 Example: Water waves breaking on a beach

The concepts of phase and group velocity are illustrated by the example of water waves moving at velocity

 incident upon a straight beach at an angle  to the shoreline. Consider that the wavepacket comprises

many wavelengths of wavelength . During the time it takes the wave to travel a distance  the point where

the crest of one wave breaks on the beach travels a distance 
cos

along beach. Thus the phase velocity of the

crest of the one wavelet in the wave packet is

 =


cos

The velocity of the wave packet along the beach equals

 =  cos

Note that for the wave moving parallel to the beach  = 0 and  =  = . However, for  = 
2

 →∞ and  → 0. In general for waves breaking on the beach

 = 2

The same behavior is exhibited by surface waves bouncing off the sides of the Erie canal, sound waves in

a trombone, and electromagnetic waves transmitted down a rectangular wave guide. In the latter case the

phase velocity exceeds the velocity of light  in apparent violation of Einstein’s theory of relativity. However,

the information travels at the signal velocity which is less than .

3.4 Example: Surface waves for deep water

In the "Theory of Sound" Rayleigh discusses the example of surface waves for water where he derives a

dispersion relation for the phase velocity  and wavenumber  which are related to the density , depth

, gravity , and surface tension  , by

2 =  +
3


tanh()

For deep water where the wavelength is short compared with the depth, that is kl  1  then tanh()→ 1

and the dispersion relation is given approximately by

2 =  +
3



For long surface waves for deep water, that is, small , then the gravitational first term in the dispersion

relation dominates and the group velocity is given by

 =

µ




¶
=
1

2

r



=
1

2




=



2

That is, the group velocity is half of the phase velocity. Here the wavelets are building at the back of the wave

packet, progress through the wave packet and dissipate at the front. This can be demonstrated by dropping a

pebble into a calm lake. It will be seen that the surface disturbance comprises a wave packet moving outwards

at the group velocity with the individual waves within the wave packet expanding at twice the group velocity of

the wavepacket, that is, they appear at the inner radius of the wave packet and disappear at the outer radius

of the wave packet.

For small wavelength ripples, where  is large, then the surface tension term dominates and the dispersion

relation is approximately given by

2 ' 3



leading to a group velocity of

 =

µ




¶
=
3

2


Here the group velocity exceeds the phase velocity and wavelets are building at the front of the wave packet

and dissipate at the back. Note that for this linear system the Brillion signal velocity equals the group velocity

for both gravity and surface tension waves for deep water.
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3.5 Example: Electromagnetic waves in ionosphere

The response to radio waves of the free electron plasma in the ionosphere provides an excellent example

that involves cut-off frequency, complex wavenumber  as well as the phase, group, and signal velocities.

Maxwell’s equations give the most general wave equation for electromagnetic waves to be

∇2E− 
2E

2
= 

j


+∇·

³


´
∇2H− 

2H

2
= −∇× j

where  and j are the unbound charge and current densities. The effect of the bound charges and

currents are absorbed into  and . Ohm’s Law can be written in terms of the electrical conductivity  which

is a constant

j =E

Assuming Ohm’s Law plus assuming  = 0, in the plasma gives the relations

∇2E− 
2E

2
− 

E


= 0

∇2H− 
2H

2
− 

H


= 0

The third term in both of these wave equations is a damping term that leads to a damped solution of an

electromagnetic wave in a good conductor.

The solution of these damped wave equations can be solved by considering an incident wave

E = x̂
(−)

Substituting for E in the first damped wave equation gives

−2 + 2−  = 0

That is

2 = 2

∙
1− 



¸
In general  is complex, that is, it has real  and imaginary  parts that lead to a solution of the form

E = 
−(−)

The first exponential term is an exponential damping term while the second exponential term is the oscillating

term.

Consider that the plasma involves the motion of a bound damped electron, of charge  of mass  bound

in a one dimensional atom or lattice subject to an oscillatory electric field of frequency . Assume that the

electromagnetic wave is travelling in the ̂ direction with the transverse electric field in the ̂ direction. The

equation of motion of an electron can be written as

ẍ+ Γẋ+ 20 = x̂0
(−)

where Γ is the damping factor. The instantaneous displacement of the oscillating charge equals

x =




1

(20 − 2) + Γ
x̂0

(−)

and the velocity is

ẋ =






(20 − 2) + Γ
x̂0

(−)

Thus the instantaneous current density is given by

j = ẋ =
2





(20 − 2) + Γ
x̂0

(−)
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therefore the electrical conductivity is given by

 =
2





(20 − 2) + Γ

Let us consider only unbound charges in the plasma, that is let 0 = 0. Then the conductivity is given by

 =
2





Γ − 2

For a low density ionized plasma   Γ thus the conductivity is given approximately by

 ≈ −2



Since  is pure imaginary, then j and E have a phase difference of 
2
which implies that the average of

the Joule heating over a complete period is hj ·Ei = 0 Thus there is no energy loss due to Joule heating

implying that the electromagnetic energy is conserved.

Substitution of  into the relation for 2

2 = 2

∙
1− 



¸
= 2

∙
1− 2

2

¸
Define the Plasma oscillation frequency  to be

 ≡
r

2



then 2 can be written as

2 = 2

∙
1−

³


´2¸
()

For a low density plasma the dielectric constant  ' 1 and the relative permeability  ' 1 and thus
 = 0 ' 0 and  = 0 ' 0. The velocity of light in vacuum  = 1√

00
. Thus for low density

equation  can be written as

2 = 2 + 22 ()

Differentiation of equation  with respect to  gives 2 

= 22That is,  = 2 and the phase

velocity is

 =

r
2 +

2

2

There are three cases to consider.

1)    : For this case
h
1− ¡



¢2i
 1 and thus  is a pure real number. Therefore the elec-

tromagnetic wave is transmitted with a phase velocity that exceeds  while the group velocity is less than

.

2)    : For this case
h
1− ¡



¢2i
 1 and thus  is a pure imaginary number. Therefore the

electromagnetic wave is not transmitted and in the ionosphere it is attenuated rapidly as −(

 ). However,

since there are no Joule heating losses then the electromagnetic wave must be complete reflected. Thus the

Plasma oscillation frequency serves as a cut-off frequency. For this example the signal and group velocities

are identical.

For the ionosphere  = 10−11electrons/m3, which corresponds to a Plasma oscillation frequency of

 =  2 = 3. Thus electromagnetic waves in the AM waveband ( 16) are totally reflected by

the ionosphere and bounce repeatedly around the Earth, whereas for VHF frequencies above 3, the waves

are transmitted and refracted passing through the atmosphere. Thus light is transmitted by the ionosphere.

By contrast, for a good conductor like silver, the Plasma oscillation frequency is around 1016 which is

in the far ultraviolet part of the spectrum. Thus, all lower frequencies, such as light, are totally reflected

by such a good conductor, whereas X-rays have frequencies above the Plasma oscillation frequency and are

transmitted.
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3.11.2 Fourier transform of wave packets

Fourier transform of a Gaussian frequency

distribution.

The relation between the time distribution and the cor-

responding frequency distribution, or equivalently, the

spatial distribution and the corresponding wave-number

distribution, are of considerable importance in discus-

sion of wave packets and signal processing. It directly

relates to the uncertainty principle that is a characteris-

tic of all forms of wave motion. The relation between the

time and corresponding frequency distribution is given

via the Fourier transform discussed in appendix . The

following are two examples of the Fourier transforms of

typical but rather different wavepacket shapes that are

encountered frequently in science and engineering.

3.6 Example: Fourier transform of a
Gaussian wave packet:

Assuming that the amplitude of the wave is a

Gaussian wave packet shown in the adjacent figure where

 () = 
− (−0)2

22

This leads to the Fourier transform

 () = 
√
2

−2
2

2 cos (0)

Note that the wavepacket has a standard deviation for the amplitude of the wavepacket of  =
1

, that

is  ·  = 1. The Gaussian wavepacket results in the minimum product of the standard deviations of the

frequency and time representations for a wavepacket. This has profound importance for all wave phenomena,

and especially to quantum mechanics. Because matter exhibits wave-like behavior, the above property of wave

packet leads to Heisenberg’s Uncertainty Principle. For signal processing, it shows that if you truncate a

wavepacket you will broaden the frequency distribution.

3.7 Example: Fourier transform of a rectangular wave packet:

Assume unity amplitude of the frequency distribution between 0−∆ ≤  ≤ 0+∆ , that is, a single

isolated square pulse of width  that is described by the rectangular function Π defined as

Π() =

½
1

0

| − 0|  ∆
| − 0|  ∆

Then the Fourier transform us given by

 () =

∙
sin∆

∆

¸
cos0

That is, the transform of a rectangular wavepacket gives a cosine wave modulated by an unnormalized

 function which is a nice example of a simple wave packet. That is, on the right hand side we have

a wavepacket ∆ = ± 2
∆

wide. Note that the product of the two measures of the widths ∆ · ∆ = ±
Example 2 considers a rectangular pulse of unity amplitude between − 

2
≤  ≤ 

2
which resulted in a

Fourier transform  () = 
³
sin 

2

2

´
. That is, for a pulse of width ∆ = ± 

2
the frequency envelope has

the first zero at ∆ = ±

. Note that this is the complementary system to the one considered here which has

∆ ·∆ = ± illustrating the symmetry of the Fourier transform and its inverse.
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3.11.3 Wave-packet Uncertainty Principle

The Uncertainty Principle states that for all types of wave motion there is a minimum product of the

uncertainty in the width of a wave packet and the distribution width of the frequency decomposition of

the wave packet. This was illustrated by the Fourier transforms of wave packets discussed above where it

was shown the product of the widths is minimized for a Gaussian-shaped wave packet. The Uncertainty

Principle implies that to make a precise measurement of the frequency of a sinusoidal wave requires that the

wave packet be infinitely long. If the length of the wave packet is reduced then the frequency distribution

broadens. Then the crucial aspect needed for this discussion, is that, for the amplitudes of any wavepacket,

the standard deviations  () =

q
h2i− hi2 characterizing the width of the spectral distribution in the

angular frequency domain, (), and the width in time () are related :

() · () > 1 (Relation between amplitude uncertainties.)

This product of the standard deviations equals unity only for the special case of Gaussian-shaped spectral

distributions, and is greater than unity for all other shaped spectral distributions.

The intensity of the wave is the square of the amplitude leading to standard deviation widths for a

Gaussian distribution where ()
2 = 1

2
()

2, that is, () =
()√

2
. Thus the standard deviations for the

spectral distribution and width of the intensity of the wavepacket are related by:

() · () > 1

2
(Uncertainty principle for frequency-time intensities)

This states that the uncertainties with which you can simultaneously measure the time and frequency

for the intensity of a given wavepacket are related. If you try to measure the frequency within a short time

interval () then the uncertainty in the frequency measurement () > 1
2()

 Accurate measurement

of the frequency requires measurement times that encompass many cycles of oscillation, that is, a long

wavepacket.

Exactly the same relations exist between the spectral distribution as a function of wavenumber  and the

spatial dependence of a wave  which are conjugate representations. Thus the spectral distribution plotted

versus  is directly related to the amplitude as a function of position ; the spectral distribution versus  is

related to the amplitude as a function of ; and the  spectral distribution is related to the spatial dependence

on  Following the same arguments discussed above, the standard deviation, () characterizing the width

of the spectral intensity distribution of , and the standard deviation () characterizing the spatial

width of the wave packet intensity as a function of  are related by the Uncertainty Principle for position-

wavenumber. Thus in summary the uncertainty principle for the intensity of wave motion is,

() · () > 1

2
(3.128)

() · () > 1

2
() · () > 1

2
() · () > 1

2

This applies to all forms of wave motion, be they, sound waves, water waves, electromagnetic waves, or

matter waves.

As discussed in chapter 17, the transition to quantum mechanics involves relating the matter-wave prop-

erties to the energy and momentum of the corresponding particle. That is, in the case of matter waves,

multiplying both sides of equation 3129 by ~ and using the de Broglie relations gives that the particle en-
ergy is related to the angular frequency by  = ~ and the particle momentum is related to the wavenumber,
that is −→p = ~−→k . These lead to the Heisenberg Uncertainty Principle:

() · () > ~
2

(3.129)

() · () > ~
2

() · () > ~
2

() · () > ~
2

This uncertainty principle applies equally to the wavefunction of the electron in the

hydrogen atom, proton in a nucleus, as well as to a wavepacket describing a particle wave moving along
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some trajectory. Thus, this implies that, for a particle of given momentum, the wavefunction is spread out

spatially. Planck’s constant ~ = 105410−34 · = 658210−16 · is extremely small compared with energies
and times encountered in normal life, and thus the effects due to the Uncertainty Principle are not manifest

for macroscopic dimensions.

Confinement of a particle, of mass, within±() of a fixed location implies that there is a corresponding
uncertainty in the momentum

() ≥ ~
2()

(3.130)

Now the variance in momentum p is given by the difference in the average of the square
D
(p · p)2

E
, and the

square of the average of hpi2. That is

(p)2 =
D
(p · p)2

E
− hpi2 (3.131)

Assuming a fixed average location implies that hpi = 0, then
D
(p · p)2

E
= ()2 ≥

µ
~

2()

¶2
(3.132)

Since the kinetic energy is given by:

Kinetic energy =
2

2
≥ ~2

8()2
(Zero-point energy)

This zero-point energy is the minimum kinetic energy that a particle of mass  can have if confined within a

distance ±() This zero-point energy is a consequence of wave-particle duality and the uncertainty between
the size and wavenumber for any wave packet. It is a quantal effect in that the classical limit has ~→ 0 for

which the zero-point energy → 0

Inserting numbers for the zero-point energy gives that an electron confined to the radius of the atom,

that is () = 10−10 has a zero-point kinetic energy of ∼ 1 . Confining this electron to 3× 10−15 the

size of a nucleus, gives a zero-point energy of 109 (1 ) Confining a proton to the size of the nucleus

gives a zero-point energy of 05 . These values are typical of the level spacing observed in atomic and

nuclear physics. If ~ was a large number, then a billiard ball confined to a billiard table would be a blur
as it oscillated with the minimum zero-point kinetic energy. The smaller the spatial region that the ball

was confined, the larger would be its zero-point energy and momentum causing it to rattle back and forth

between the boundaries of the confined region. Life would be dramatically different if ~ was a large number.
In summary, Heisenberg’s Uncertainty Principle is a well-known and crucially important aspect of quan-

tum physics. What is less well known, is that the Uncertainty Principle exists for all forms of wave motion,

that is, it is not restricted to matter waves. The following three examples illustrate application of the

Uncertainty Principle to acoustics, the nuclear Mössbauer effect, and quantum mechanics.

3.8 Example: Acoustic wave packet

A violinist plays the note middle C (261625) with constant intensity for precisely 2 seconds. Using

the fact that the velocity of sound in air is 3432 calculate the following:

1) The wavelength of the sound wave in air:  = 3432261625 = 1312.

2) The length of the wavepacket in air: Wavepacket length = 3432× 2 = 6864
3) The fractional frequency width of the note: Since the wave packet has a square pulse shape of length

 = 2, then the Fourier transform is a sinc function having the first zeros when sin 
2
= 0, that is, ∆ = 1


.

Therefore the fractional width is ∆

= 1


= 00019. Note that to achieve a purity of ∆


= 10−6 the violinist

would have to play the note for 106.
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3.9 Example: Gravitational red shift

The Mössbauer effect in nuclear physics provides a wave packet that has an exceptionally small frac-

tional width in frequency. For example, the 57Fe nucleus emits a 144 deexcitation-energy photon which

corresponds to  ≈ 2 × 1025 that has a decay time of  ≈ 10−7. Thus the fractional width is
∆

≈ 3× 10−18. In 1959 Pound and Rebka used this to test Einstein’s general theory of relativity by mea-

surement of the gravitational red shift between the attic and basement of the 225 high physics building at

Harvard. The magnitude of the predicted relativistic red shift is ∆

= 25×10−15 which is what was observed

with a fractional precision of about 1%.

3.10 Example: Quantum baseball

George Gamow, in his book ”Mr. Tompkins in Wonderland”, describes the strange world that would exist

if ~ was a large number. As an example, consider you play baseball in a universe where ~ is a large number.
The pitcher throws a 150 ball 20 to the batter at a speed of 40. For a strike to be thrown, the ball’s

position must be pitched within the 30 radius of the strike zone, that is, it is required that ∆ ≤ 03.
The uncertainty relation tells us that the transverse velocity of the ball cannot be less than ∆ = ~

2∆
 The

time of flight of the ball from the mound to batter is  = 05. Because of the transverse velocity uncertainty,

∆ the ball will deviate ∆ transversely from the strike zone. This also must not exceed the size of the

strike zone, that is;

∆ =
~

2∆
≤ 03 (Due to transverse velocity uncertainty)

Combining both of these requirements gives

~ ≤ 2∆
2


= 54 10−2 · 

This is 32 orders of magnitude larger than ~ so quantal effects are negligible. However, if ~ exceeded the
above value, then the pitcher would have difficulty throwing a reliable strike.

3.12 Summary

Linear systems have the feature that the solutions obey the Principle of Superposition, that is, the am-

plitudes add linearly for the superposition of different oscillatory modes. Applicability of the Principle of

Superposition to a system provides a tremendous advantage for handling and solving the equations of motion

of oscillatory systems.

Geometric representations of the motion of dynamical systems provide sensitive probes of periodic mo-

tion. Configuration space (qq ), state space (q q̇ ) and phase space (qp ), are powerful geometric

representations that are used extensively for recognizing periodic motion where q q̇ and p are vectors in

-dimensional space.

Linearly-damped free linear oscillator The free linearly-damped linear oscillator is characterized by

the equation

̈+ Γ̇+ 20 = 0 (326)

The solutions of the linearly-damped free linear oscillator are of the form

 = −(
Γ
2 )
£
1

1 + 2
−1¤ 1 ≡

s
2 −

µ
Γ

2

¶2
(333)

The solutions fall into three categories

() = −(
Γ
2 ) cos (1− ) underdamped 1 =

q
2 −

¡
Γ
2

¢2
 0

() = [1
−+ +2

−−] overdamped ± = −
∙
−Γ
2
±
q¡

Γ
2

¢2 − 2

¸
() = (+) −(

Γ
2 ) critically damped 1 =

q
2 −

¡
Γ
2

¢2
= 0
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The energy dissipation for the linearly-damped free linear oscillator time averaged over one period is

given by

hi = 0
−Γ (344)

The quality factor  characterizing the damping of the free oscillator is define to be

 =


∆
=

1

Γ
(347)

where ∆ is the energy dissipated per radian.

Sinusoidally-driven, linearly-damped, linear oscillator The linearly-damped linear oscillator, driven

by a harmonic driving force, is of considerable importance to all branches of physics, and engineering. The

equation of motion can be written as

̈+ Γ̇+ 20 =
 ()


(349)

where  () is the driving force. The complete solution of this second-order differential equation comprises

two components, the complementary solution (transient response), and the particular solution (steady-state

response). That is,

() = () + () (365)

For the underdamped case, the transient solution is the complementary solution

() =
0


−

Γ
2
 cos (1− ) (366)

and the steady-state solution is given by the particular solution

() =
0
q

(20 − 2)
2
+ (Γ)

2
cos (− ) (367)

Resonance A detailed discussion of resonance and energy absorption for the driven linearly-damped linear

oscillator was given. For resonance the maximum amplitudes occur at frequencies

undamped free linear oscillator 0 =

q



linearly-damped free linear oscillator 1 =

q
20 −

¡
Γ
2

¢2
driven linearly-damped linear oscillator  =

q
20 − 2

¡
Γ
2

¢2
The energy absorption for the steady-state solution for resonance is given by

() =  cos+ sin (373)

where the elastic amplitude

 =
0


(20 − 2)
2
+ (Γ)

2

¡
20 − 2

¢
(374)

while the absorptive amplitude

 =
0


(20 − 2)
2
+ (Γ)

2
Γ (375)

The time average power input is given by only the absorptive term

h i = 1

2
0 =

 20
2

Γ2

(20 − 2)
2
+ (Γ)

2
(3.133)

This power curve has the classic Lorentzian shape.
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Wave propagation The wave equation was introduced and both travelling and standing wave solutions

of the wave equation were discussed. Harmonic wave-form analysis, and the complementary time-sampled

wave form analysis techniques, were introduced in this chapter and in appendix . The relative merits of

Fourier analysis and the digital Green’s function waveform analysis were illustrated for signal processing.

The concepts of phase velocity, group velocity, and signal velocity were introduced. The phase velocity

is given by

 =



(3117)

and group velocity

 =

µ




¶
0

=  + 



(3128)

If the group velocity is frequency dependent then the information content of a wave packet travels at the

signal velocity which can differ from the group velocity.

The Wave-packet Uncertainty Principle implies that making a precise measurement of the frequency of a

sinusoidal wave requires that the wave packet be infinitely long. The standard deviation  () =

q
h2i− hi2

characterizing the width of the amplitude of the wavepacket spectral distribution in the angular frequency

domain, (), and the corresponding width in time () are related by :

() · () > 1 (Relation between amplitude uncertainties.)

The standard deviations for the spectral distribution and width of the intensity of the wave packet are

related by:

() · () > 1

2
(3.134)

() · () > 1

2
() · () > 1

2
() · () > 1

2

This applies to all forms of wave motion, including sound waves, water waves, electromagnetic waves, or

matter waves.
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Workshop exercises

1. Given below are a list of statements followed by a list of reasons related to harmonic motion. For each of the

statements, determine the reason(s) that make that statement true. You may do this in small groups or as one

large group—the teaching assistant will decide what works best for your workshop.

Statements:

• We can neglect the higher order terms in the Taylor expansion of  ().
• The restoring force is a linear force.
• 0 must vanish.

• ()0 is negative and  is positive.
• We can write  () as a Taylor series expansion.

Reasons:

•  () depends only on .

• A position of stable equilibrium exists and we call this point the origin of our coordinate system.

•  () has continuous derivatives of all orders.

• The restoring force is directed toward the equilibrium position.

• We consider only small displacements.

2. Second-order ordinary differential equations are an important part of the physics of the harmonic oscillator.

(a) What do each of the following terms mean with respect to differential equations?

i. Ordinary

ii. Second-order

iii. Homogeneous

iv. Linear

(b) Give a mini-lesson on how to solve second-order differential equations by working through the following

examples. Don’t just provide a solution; explain the steps leading up to the solution.

i. 00+50+6 = 0
ii. 00+0+ = 0
iii. 00+40+4 = 0
iv. 00−302
v. 00−30−4 = 2 sin

3. Harmonic oscillations occur for many different types of systems and it is important to recognize when the

equations for harmonic motion apply. Three different systems are described below. Each system can be

approximately described using the equations for harmonic motion. Break up into three groups—one group per

system. For your group’s system, answer the following questions:

(a) What approximations are necessary for this system to exhibit harmonic oscillations?

(b) What is the differential equation that governs the motion of this system? Use Newton’s second law to

arrive at this equation.

(c) What is the solution to the differential equation that you found in part (b)?

(d) What is the natural frequency of oscillations?

Here are the three systems:

• A mass  is tied to a massless spring having a spring constant . The system oscillates in one dimension

along a horizontal frictionless surface.
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• A particle of mass  is attached to a weightless, extensionless rod to form a pendulum. The length of

the rod is  and the system oscillates in a single plane.

• A tube is bent into the shape of a U and is partially filled with a liquid of density . The cross-sectional
area of the tube is  and the length of the tube filled with liquid is . The liquid is initially displaced so

that it is higher on one side of the tube than the other.

Once each group has answered all of the questions, share the results with the entire class.

4. Consider a mass  attached to a spring of spring constant . The spring is mounted horizontally so that the

mass oscillates horizontally on a frictionless surface. The spring is attached to the wall on the right and the

mass is initially moved to the right of its equilibrium position (compressing the spring) by a distance  and

released. Working individually, determine how (if at all) the period of the motion would be affected by each of

the changes below. Once you have answered each part on your own, compare your answers with a classmate.

(a) The spring is replaced with a stiffer spring.

(b) The mass is initially displaced a distance  to the left and released.

(c) The mass is replaced with a heavier mass.

(d) The mass is initially displaced a distance  (  ) to the right and released.

5. When you were first introduced to simple harmonic motion, you used the formula ̈ = − to find the
position of the oscillating mass as a function of time. This assumes that the origin is defined to be the

equilibrium point. What happens if this is not the case? What would the equation of motion look like? How

would the position of the oscillating mass as a function of time change?

6. For each of the situations described below, give a rough sketch of the state space diagram (̇ versus ) that

represents the motion of each object. All of the motion takes place along the -axis.

(a) An eggplant is at rest at a point on the + axis.

(b) A monkey on a skateboard skates with constant speed in the negative  direction.

(c) A race car moving in the + direction undergoes constant acceleration until it abruptly stops.

(d) A cantaloupe undergoes simple harmonic motion. The initial location of the cantaloupe is at a point on

the + axis.

7. Consider a simple harmonic oscillator consisting of a mass  attached to a spring of spring constant . For

this oscillator () =  sin(0− ).

(a) Find an expression for ̇().

(b) Eliminate  between () and ̇() to arrive at one equation similar to that for an ellipse.

(c) Rewrite the equation in part (b) in terms of , ̇, , , and the total energy .

(d) Give a rough sketch of the phase space diagram (̇ versus ) for this oscillator. Also, on the same set of

axes, sketch the phase space diagram for a similar oscillator with a total energy that is larger than the

first oscillator.

(e) What direction are the paths that you have sketched? Explain your answer.

(f) Would different trajectories for the same oscillator ever cross paths? Why or why not?

8. Consider a damped, driven oscillator consisting of a mass  attached to a spring of spring constant .

(a) What is the equation of motion for this system?

(b) Solve the equation in part (a). The solution consists of two parts, the complementary solution and the

particular solution. When might it be possible to safely neglect one part of the solution?

(c) What is the difference between amplitude resonance and kinetic energy resonance?

(d) How might phase space diagrams look for this type of oscillator? What variables would affect the diagram?
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9. A particle of mass  is subject to the following force

F = (3 − 42 + 3)x̂
where  is a constant.

(a) Determine the points when the particle is in equilibrium.

(b) Which of these points is stable and which are unstable?

(c) Is the motion bounded or unbounded?

10. A very long cylindrical shell has a mass density that depends upon the radial distance such that () = 

,

where  is a constant. The inner radius of the shell is  and the outer radius is .

(a) Determine the direction and the magnitude of the gravitational field for all regions of space.

(b) If the gravitational potential is zero at the origin, what is the difference between the gravitational potential

at  =  and  = ?

11. A mass  is constrained to move along one dimension. Two identical springs are attached to the mass, one on

each side, and each spring is in turn attached to a wall. Both springs have the same spring constant .

(a) Determine the frequency of the oscillation, assuming no damping.

(b) Now consider damping. It is observed that after  oscillations, the amplitude of the oscillation has

dropped to one-half of its initial value. Find an expression for the damping constant.

(c) How long does it take for the amplitude to decrease to one-quarter of its initial value?

12. Discuss the motion of a continuous string when plucked at one third of the length of the string. That is, the

initial condition is ̇( 0) = 0, and ( 0) =

½
3

 0 ≤  ≤ 

3
3
2
(− ) 

3
≤  ≤ 

¾
13. When a particular driving force is applied to a stretched string it is observed that the string vibration in purely

of the  harmonic. Find the driving force.

14. Consider the two-mass system pivoted at its vertex where  6= . It undergoes oscillations of the angle 

with respect to the vertical in the plane of the triangle.

mM

l l

l

(a) Determine the angular frequency of small oscillations.

(b) Use your result from part (a) to show 2 ≈ 

for  À .

(c) Show that your result from part (a) agrees with 2 =
 00()


where  is the equilibrium angle and  is

the moment of inertia.

(d) Assume the system has energy . Setup an integral that determines the period of oscillation.

15. A cube of side  and mass  is immersed in water with density  past the point of equilibrium and then

released. Assume there is no damping due to the water.

(a) Show that the cube’s equation of motion is

2

2
++ = 0

where  and  are constants. Determine  and .
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(b) The solution to the equation of motion is

() =



+1 cos (

√
) + 2 sin (

√
)

where 1 and 2 are constants. If (0) = −, determine ().

(c) Determine the period  of oscillation.

Problems

1. An unusual pendulum is made by fixing a string to a horizontal cylinder of radius  wrapping the string

several times around the cylinder, and then tying a mass  to the loose end. In equilibrium the mass hangs a

distance 0 vertically below the edge of the cylinder. Find the potential energy if the pendulum has swung to

an angle  from the vertical. Show that for small angles, it can be written in the Hooke’s Law form  = 1
2
2.

Comment of the value of 

2. Consider the two-dimensional anisotropic oscillator with motion with  =  and  = .

a) Prove that if the ratio of the frequencies is rational (that is, 

= 


where  and  are integers) then the

motion is periodic. What is the period?

b) Prove that if the same ratio is irrational, the motion never repeats itself.

3. A simple pendulum consists of a mass  suspended from a fixed point by a weight-less, extensionless rod of

length .

a) Obtain the equation of motion, and in the approximation sin  ≈  show that the natural frequency is

0 =
p



, where  is the gravitational field strength.

b) Discuss the motion in the event that the motion takes place in a viscous medium with retarding force

2
√
̇.

4. Derive the expression for the State Space paths of the plane pendulum if the total energy is   2. Note

that this is just the case of a particle moving in a periodic potential () = (1−cos) Sketch the State
Space diagram for both   2 and   2

5. Consider the motion of a driven linearly-damped harmonic oscillator after the transient solution has died out,

and suppose that it is being driven close to resonance,  = .

a) Show that the oscillator’s total energy is  = 1
2
22.

b) Show that the energy ∆ dissipated during one cycle by the damping force Γ̇ is Γ2

6. Two masses m1 and m2 slide freely on a horizontal frictionless rail and are connected by a spring whose force

constant is k. Find the frequency of oscillatory motion for this system.

7. A particle of mass  moves under the influence of a resistive force proportional to velocity and a potential  ,

that is .

 ( ̇) = −̇− 



where   0 and () = (2 − 2)2

a) Find the points of stable and unstable equilibrium.

b) Find the solution of the equations of motion for small oscillations around the stable equilibrium points

c) Show that as →∞ the particle approaches one of the stable equilibrium points for most choices of initial

conditions. What are the exceptions? (Hint: You can prove this without finding the solutions explicitly.)



Chapter 4

Nonlinear systems and chaos

4.1 Introduction

In nature only a subset of systems have equations of motion that are linear. Contrary to the impression

given by the analytic solutions presented in undergraduate physics courses, most dynamical systems in nature

exhibit non-linear behavior that leads to complicated motion. The solutions of non-linear equations usually

do not have analytic solutions, superposition does not apply, and they predict phenomena such as attractors,

discontinuous period bifurcation, extreme sensitivity to initial conditions, rolling motion, and chaos. There

have been some exciting discoveries in classical mechanics during the past four decades associated with the

recognition that nonlinear systems can exhibit chaos. Chaotic phenomena have been observed in most fields of

science and engineering such as, weather patterns, fluid flow, motion of planets in the solar system, epidemics,

changing populations of animals, birds and insects, and the motion of electrons in atoms. The complicated

dynamical behavior predicted by non-linear differential equations is not limited to classical mechanics, rather

it is a manifestation of the mathematical properties of the solutions of the differential equations involved,

and thus is generally applicable to solutions of first or second-order non-linear differential equations. It is

important to understand that the systems discussed in this chapter follow a fully deterministic evolution

predicted by the laws of classical mechanics, the evolution for which is based on the prior history. This

behavior is completely different from a random walk where each step is based on a random process. The

complicated motion of deterministic non-linear systems stems in part from sensitivity to the initial conditions.

The French mathematician Poincaré is credited with being the first to recognize the existence of chaos

during his investigation of the gravitational three-body problem in celestial mechanics. At the end of the

nineteenth century Poincaré noticed that such systems exhibit high sensitivity to initial conditions character-

istic of chaotic motion, and the existence of nonlinearity which is required to produce chaos. Poincaré’s work

received little notice, in part it was overshadowed by the parallel development of the Theory of Relativity

and quantum mechanics at the start of the 20 century. In addition, solving nonlinear equations of motion

is difficult, which discouraged work on nonlinear mechanics and chaotic motion. The field blossomed in the

19600 when computers became sufficiently powerful to solve the nonlinear equations required to calculate
the long-time histories necessary to document chaotic behavior.

Laplace, and many other scientists, believed in the deterministic view of nature which assumes that if the

position and velocities of all particles are known, then one can unambiguously predict the future motion using

Newtonian mechanics. Researchers in many fields of science now realize that this “clockwork universe" is

invalid. That is, knowing the laws of nature can be insufficient to predict the evolution of nonlinear systems

in that the time evolution can be extremely sensitive to the initial conditions even though they follow a

completely deterministic development. There are two major classifications of nonlinear systems that lead to

chaos in nature. The first classification encompasses nondissipative Hamiltonian systems such as Poincaré’s

three-body celestial mechanics system. The other main classification involves driven, damped, non-linear

oscillatory systems.

Nonlinearity and chaos is a broad and active field and thus this chapter will focus only on a few examples

that illustrate the general features of non-linear systems. Weak non-linearity is used to illustrate bifurcation

and asymptotic attractor solutions for which the system evolves independent of the initial conditions. The

common sinusoidally-driven linearly-damped plane pendulum illustrates several features characteristic of the

89
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evolution of a non-linear system from order to chaos. The impact of non-linearity on wavepacket propagation

velocities and the existence of soliton solutions is discussed. The example of the three-body problem is

discussed in chapter 9. The transition from laminar flow to turbulent flow is illustrated by fluid mechanics

discussed in chapter 158. Analytic solutions of nonlinear systems usually are not available and thus one

must resort to computer simulations. As a consequence the present discussion focusses on the main features

of the solutions for these systems and ignores how the equations of motion are solved.

4.2 Weak nonlinearity

Most physical oscillators become non-linear with increase in amplitude of the oscillations. Consequences

of non-linearity include breakdown of superposition, introduction of additional harmonics, and complicated

motion having great sensitivity to the initial conditions plus chaos as illustrated in this chapter Weak non-

linearity is interesting since perturbation theory can be used to solve the non-linear equations of motion.

The potential energy function for a linear oscillator has a pure parabolic shape about the minimum

location, that is,  = 1
2
(− 0)

2 where 0 is the location of the minimum. For weak non-linear systems,

where the amplitude of oscillation ∆ about the minimum is small, it is useful to make a Taylor expansion

of the potential energy about the minimum. That is

(∆) = (0) +∆
 (0)


+
∆2

2!

2 (0)

2
+
∆3

3!

3 (0)

3
+
∆4

4!

4 (0)

4
+  (4.1)

By definition, at the minimum
(0)


= 0 and thus equation 41 can be written as

∆ = (∆)− (0) =
∆2

2!

2 (0)

2
+
∆3

3!

3 (0)

3
+
∆4

4!

4 (0)

4
+  (4.2)

For small amplitude oscillations the system is linear if only the second-order ∆
2

2!

2(0)

2
term in equation 42

is significant. The linearity for small amplitude oscillations greatly simplifies description of the oscillatory

motion in that superposition applies, and complicated chaotic motion is avoided. For slightly larger amplitude

motion, where the higher-order terms in the expansion are still much smaller than the second-order term,

then perturbation theory can be used as illustrated by the simple plane pendulum which is non linear since

the restoring force equals

 sin  ' ( − 3

3!
+

5

5!
− 7

7!
+ ) (4.3)

This is linear only at very small angles where the higher-order terms in the expansion can be neglected.

Consider the equation of motion at small amplitudes for the harmonically-driven, linearly-damped plane

pendulum

̈ + Γ̇ + 20 sin  = ̈ + Γ̇ + 20( −
3

6
) = 0 cos () (4.4)

where only the first two terms in the expansion 43 have been included. It was shown in chapter 3 that when

sin  ≈  then the steady-state solution of equation 44 is of the form

 () =  cos (− ) (4.5)

Insert this first-order solution into equation 44, then the cubic term in the expansion gives a term 3 =
1
4
(cos 3+ 3 cos). Thus the perturbation expansion to third order involves a solution of the form

 () =  cos (− ) + cos 3(− ) (4.6)

This perturbation solution shows that the non-linear term has distorted the signal by addition of the third

harmonic of the driving frequency with an amplitude that depends sensitively on . This illustrates that the

superposition principle is not obeyed for this non-linear system, but, if the non-linearity is weak, perturbation

theory can be used to derive the solution of a non-linear equation of motion.

Figure 41 illustrates that for a potential () = 22 + 4 the 4 non-linear term reduces the maximum

amplitude  which makes the total energy contours in state-space more rectangular than the elliptical shape

for the harmonic oscillator shown in figure 33. The solution is of the form given in equation 46.
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Figure 4.1: The left side shows the potential energy for a symmetric potential () = 22 + 4. The right

side shows the contours of constant total energy on a state-space diagram.

4.1 Example: Non-linear oscillator

Assume that a non-linear oscillator has a potential given by

() =
2

2
− 3

3

where  is small. Find the solution of the equation of motion to first order in , assuming  = 0 at  = 0.

The equation of motion for the nonlinear oscillator is

̈ = −


= −+2

If the 2 term is neglected, then the second-order equation of motion reduces to a normal linear oscillator

with

0 =  sin (0+ )

where

0 =

r




Assume that the first-order solution has the form

1 = 0 + 1

Substituting this into the equation of motion, and neglecting terms of higher order than  gives

̈1 + 201 = 20 =
2

2
[1− cos (20)]

To solve this try a particular integral

1 =  +  cos (20)

and substitute into the equation of motion gives

−320 cos (20) + 20 =
2

2
− 2

2
cos (20)

Comparison of the coefficients gives

 =
2

220

 =
2

620
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The homogeneous equation is

̈1 + 201 = 0

which has a solution of the form

1 = 1 sin (0) +2 cos (0)

Thus combining the particular and homogeneous solutions gives

1 = (+ 1) sin (0) + 

∙
2

220
+2 cos (0) +

2

620
cos (20)

¸
The initial condition  = 0 at  = 0 then gives

2 = −2
2

32

and

1 = (+ 1) sin (0) +
2

20

∙
1

2
− 2
3
cos (0) +

1

6
cos (20)

¸
The constant (+ 1) is given by the initial amplitude and velocity.

This system is nonlinear in that the output amplitude is not proportional to the input amplitude. Secondly,

a large amplitude second harmonic component is introduced in the output waveform; that is, for a non-linear

system the gain and frequency decomposition of the output differs from the input. Note that the frequency

composition is amplitude dependent. This particular example of a nonlinear system does not exhibit chaos.

The Laboratory for Laser Energetics uses nonlinear crystals to double the frequency of laser light.

4.3 Bifurcation, and point attractors

Interesting new phenomena occur when the non-linearity becomes large, such as bifurcation, and attractors.

In chapter 3 it was shown that the state-space diagram (̇ ) for an undamped harmonic oscillator is an

ellipse with dimensions defined by the total energy of the system. As shown in figure 35for the damped

harmonic oscillator, the state-space diagram spirals inwards to the origin due to dissipation of energy. Non-

linearity distorts the shape of the ellipse or spiral on the state-space diagram, and thus the state-space, or

corresponding phase-space, diagrams, provide useful representations of the motion of linear and non-linear

periodic systems that is used frequently.

The complicated motion of non-linear systems makes it necessary to distinguish between transient and

asymptotic behavior. The damped harmonic oscillator executes a transient spiral motion that asymptotically

approaches the origin. The transient behavior depends on the initial conditions, whereas the asymptotic limit

of the steady-state solution is a specific location, that is called a point attractor. The point attractor for

damped motion in the anharmonic potential well

() = 22 + 4 (4.7)

is at the minimum, which is the origin of the state-space diagram as shown in figure 41.

The more complicated one-dimensional potential well

() = 8− 42 + 054 (4.8)

shown in figure 42 has two minima that are symmetric about  = 0 with a saddle of height 8.

The kinetic plus potential energies of a particle with mass  = 2 released in this potential, will be

assumed to be given by

( ̇) = ̇2 + () (4.9)

The state-space plot in figure 42 shows contours of constant energy with the minima at ( ̇) = (±2 0).
At slightly higher total energy the contours are closed loops around either of the two minima at  = ±2.
For total energies above the saddle energy of 8, the contours are peanut-shaped and are symmetric about

the origin. Assuming that the motion is weakly damped, then a particle released with total energy 

which is higher than  will follow a peanut-shaped spiral trajectory centered at ( ̇) = (0 0) in the
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Figure 4.2: The left side shows the potential energy for a bimodal symmetric potential () = 8 − 42 +
054. The right-hand figure shows contours of the sum of kinetic and potential energies on a state-space

diagram. For total energies above the saddle point the particle follows peanut-shaped trajectories in state-

space centered around ( ̇) = (0 0). For total energies below the saddle point the particle will have closed

trajectories about either of the two symmetric minima located at ( ̇) = (±2 0). Thus the system solution

bifurcates when the total energy is below the saddle point.

state-space diagram for   . For    there are two separate solutions for the two

minimum centered at  = ±2 and ̇ = 0. This is an example of bifurcation where the one solution for

   bifurcates into either of the two solutions for   .

For an initial total energy    damping will result in spiral trajectories of the particle that

will be trapped in one of the two minima. For    the particle trajectories are centered giving

the impression that they will terminate at ( ̇) = (0 0) when the kinetic energy is dissipated. However, for

   the particle will be trapped in one of the two minimum and the trajectory will terminate

at the bottom of that potential energy minimum occurring at ( ̇) = (±2 0). These two possible terminal
points of the trajectory are called point attractors. This example appears to have a single attractor for

   which bifurcates leading to two attractors at ( ̇) = (±2 0) for   . The

determination as to which minimum traps a given particle depends on exactly where the particle starts in

state space and the damping etc. That is, for this case, where there is symmetry about the -axis, when

the particle has an initial total energy    then the initial conditions with  radians of state

space will lead to trajectories that are trapped in the left minimum, and the other  radians of state space

will be trapped in the right minimum. Trajectories starting near the split between these two halves of the

starting state space will be sensitive to the exact starting phase. This is an example of sensitivity to initial

conditions.

4.4 Limit cycles

4.4.1 Poincaré-Bendixson theorem

Coupled first-order differential equations in two dimensions of the form

̇ = ( ) (4.10)

̇ = ( )

occur frequently in physics. The state-space paths do not cross for such two-dimensional autonomous systems,

where an autonomous system is not explicitly dependent on time.

The Poincaré-Bendixson theorem states that, state-space, and phase-space, can have three possible paths:

(1) closed paths, like the elliptical paths for the undamped harmonic oscillator,

(2) terminate at an equilibrium point as →∞, like the point attractor for a damped harmonic oscillator,
(3) tend to a limit cycle as  → ∞. The limit cycle is unusual in that the periodic motion tends

asymptotically to the limit-cycle attractor independent of whether the initial values are inside or outside

the limit cycle. The balance of dissipative forces and driving forces often leads to limit-cycle attractors,
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Figure 4.3: The Poincaré-Bendixson theorem allows the following three scenarios for two-dimensional au-

tonomous systems. (1) Closed paths as illustrated by the undamped harmonic oscillator. (2) Terminate at

an equilibrium point as  → ∞, as illustrated by the damped harmonic oscillator, and (3) Tend to a limit
cycle as →∞ as illustrated by the van der Pol oscillator.

especially in biological applications. Identification of limit-cycle attractors, as well as the trajectories of the

motion towards these limit-cycle attractors, is more complicated than for point attractors.

4.4.2 van der Pol damped harmonic oscillator:

The van der Pol damped harmonic oscillator illustrates a non-linear equation that leads to a well-studied,

limit-cycle attractor that has important applications to diverse fields. It has an equation of motion given

by
2

2
+ 

¡
2 − 1¢ 


+ 20 = 0 (4.11)

The non-linear 
¡
2 − 1¢ 


damping term is unusual in that the sign changes when  = 1 leading to

positive damping for   1 and negative damping for   1 To simplify equation 411 assume that the term

20 =  that is, 20 = 1.

This equation was studied extensively during the 1920’s and 1930’s by the Dutch engineer, Balthazar van

der Pol, to describe electronic circuits that incorporate feedback. The form of the solution can be simplified

by defining a variable  ≡ 

 Then the second-order equation 411 can be expressed as two coupled first-order

equations.

 ≡ 


(4.12)




= −− 

¡
2 − 1¢  (4.13)

It is advantageous to transform the (̇ ) state space to polar coordinates in by setting

 =  cos  (4.14)

 =  sin 

and using the fact that 2 = 2 + 2  Therefore





= 




+ 




(4.15)

Similarly for the angle coordinate




=




cos  − 




sin  (4.16)




=




sin  + 




cos  (4.17)
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Figure 4.4: Solutions of the van der Pol system for  = 02 top row and  = 5 bottom row, assuming that

20 = 1. The left column shows the time dependence (). The right column shows the corresponding ( ̇)

state space plots. Upper: Weak nonlinearity, = 02; At large times the solution tends to one limit

cycle for initial values inside or outside the limit cycle attractor. The amplitude () for two initial condi-

tions approaches an approximately harmonic oscillation. Lower: Strong nonlinearity, μ = 5; Solutions

approach a common limit cycle attractor for initial values inside or outside the limit cycle attractor while

the amplitude () approaches a common approximate square-wave oscillation.

Multiply equation 416 by  and 417 by  and subtract gives

2



= 




− 




(4.18)

Equations 415 and 418 allow the van der Pol equations of motion to be written in polar coordinates




= − ¡2 cos2  − 1¢  sin2  (4.19)




= −1− 

¡
2 cos2  − 1¢ sin  cos  (4.20)

The non-linear terms on the right-hand side of equations 419− 20 have a complicated form.
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Weak non-linearity:   1

In the limit that  → 0, the equations 419 420 correspond to a circular state-space trajectory similar to

the harmonic oscillator. That is, the solution is of the form

 () =  sin (− 0) (4.21)

where  and 0 are arbitrary parameters. For weak non-linearity,   1 the angular equation 420 has a

rotational frequency that is unity since the sin  cos  term changes sign twice per period, in addition to the

small value of . For   1 and   1 the radial equation 419 has a sign of the
¡
2 cos2  − 1¢ term that

is positive and thus the radius increases monotonically to unity. For   1 the bracket is predominantly

negative resulting in a spiral decrease in the radius. Thus, for very weak non-linearity, this radial behavior

results in the amplitude spiralling to a well defined limit-cycle attractor value of  = 2 as illustrated by

the state-space plots in figure 44 for cases where the initial condition is inside or external to the circular

attractor. The final amplitude for different initial conditions also approach the same asymptotic behavior.

Dominant non-linearity:   1

For the case where the non-linearity is dominant, that is   1, then as shown in figure 44, the system

approaches a well defined attractor, but in this case it has a significantly skewed shape in state-space, while

the amplitude approximates a square wave. The solution remains close to  = +2 until  = ̇ ≈ +7 and
then it relaxes quickly to  = −2 with  = ̇ ≈ 0 This is followed by the mirror image. This behavior is
called a relaxed vibration in that a tension builds up slowly then dissipates by a sudden relaxation process.

The seesaw is an extreme example of a relaxation oscillator where the angle switches spontaneously from

one solution to the other when the difference in the moment arms changes sign.

The study of feedback in electronic circuits was the stimulus for study of this equation by van der

Pol. However, Lord Rayleigh first identified such relaxation oscillator behavior in 1880 during studies of

vibrations of a stringed instrument excited by a bow, or the squeaking of a brake drum. In his discussion of

non-linear effects in acoustics, he derived the equation

̈− (− ̇2)̇+ 20 (4.22)

Differentiation of Rayleigh’s equation 422 gives

...
 − (− 3̇2)̈+ 20̇ = 0 (4.23)

Using the substitution of

 = 0

r
3


̇ (4.24)

leads to the relations

̇ =

r


3



0
̈ =

r


3

̇

0

...
 =

r


3

̈

0
(4.25)

Substituting these relations into equation 423 givesr


3

̈

0
−
r



3

∙
− 3



̇2

20

¸
̇

0
+ 20

r


3



0
= 0 (4.26)

Multiplying by 0

q
3

and rearranging leads to the van der Pol equation

̈ − 

20
(20 − 2)̇ − 20 = 0 (4.27)

The rhythm of a heartbeat driven by a pacemaker is an important application where the self-stabilization of

the attractor is a desirable characteristic to stabilize an irregular heartbeat; the medical term is arrhythmia.

The mechanism that leads to synchronization of the many pacemaker cells in the heart and human body to

an implanted pacemaker is discussed in chapter 1212. Another biological application of limit cycles is the

time variation of animal populations.

In summary the non-linear damping of the van der Pol oscillator leads to a self-stabilized, single limit-

cycle attractor that is insensitive to the initial conditions. The van der Pol oscillator has many important

applications such as bowed musical instruments, electrical circuits, and human anatomy as mentioned above.
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4.5 Harmonically-driven, linearly-damped, plane pendulum

The harmonically-driven, linearly-damped, plane pendulum illustrates many of the phenomena exhibited by

non-linear systems as they evolve from ordered to chaotic motion. It illustrates the remarkable fact that

determinism does not imply either regular behavior or predictability. The well-known, harmonically-driven

linearly-damped pendulum provides an ideal basis for an introduction to non-linear dynamics1.

Consider a harmonically-driven linearly-damped plane pendulum of moment of inertia  and mass  in

a gravitational field that is driven by a torque due to a force  () =  cos at a moment arm . The

damping term is  and the angular displacement of the pendulum, relative to the vertical, is . The equation

of motion of the harmonically-driven linearly-damped simple pendulum can be written as

̈ + ̇ + sin  =  cos (4.28)

Note that the sinusoidal restoring force for the plane pendulum is non-linear for large angles . The natural

period of the free pendulum is

0 =

r



(4.29)

A dimensionless parameter , which is called the drive strength, is defined by

 ≡ 


(4.30)

The equation of motion 428 can be generalized by use of dimensionless units for both time ̃ and relative

drive frequency ̃ defined by

̃ ≡ 0 ̃ ≡ 

0
(4.31)

In addition, define the inverse damping factor  as

 ≡ 0


(4.32)

These definitions allow equation 428 to be written in the dimensionless form

2

̃2
+
1





̃
+ sin  =  cos ̃̃ (4.33)

The behavior of the angle  for the driven damped plane pendulum depends on the drive strength 

and the damping factor . This driven damped plane pendulum is evaluated assuming that the damping

coefficient  = 2, and that the relative angular frequency ̃ = 2
3
 which is close to resonance where chaotic

phenomena are manifest. The Runge-Kutta method is used to solve this non-linear equation of motion.

4.5.1 Close to linearity

For drive strength  = 02 the amplitude is sufficiently small that sin  '  superposition applies, and the

solution is identical to that for the driven linearly-damped linear oscillator. As shown in figure 45, once

the transient solution dies away, the steady-state solution asymptotically approaches one attractor that has

an amplitude of ±03 radians and a phase shift  with respect to the driving force. The abscissa is given
in units of the dimensionless time ̃ = 0. The transient solution depends on the initial conditions and

dies away after about 5 periods, whereas the steady-state solution is independent of the initial conditions

and has a state-space diagram that has an elliptical shape, characteristic of the harmonic oscillator. For all

initial conditions, the time dependence and state space diagram for steady-state motion approaches a unique

solution, called an "attractor", that is, the pendulum oscillates sinusoidally with a given amplitude at the

frequency of the driving force and with a constant phase shift , i.e.

() =  cos(− ) (4.34)

This solution is identical to that for the harmonically-driven, linearly-damped, linear oscillator discussed in

chapter 36

1A similar approach is used by the book "Chaotic Dynamics" by Baker and Gollub[Bak96].
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Figure 4.5: Motion of the driven damped pendulum for drive strengths of  = 02,  = 09  = 105 and

 = 1078. The left side shows the time dependence of the deflection angle  with the time axis expressed

in dimensionless units ̃. The right side shows the corresponding state-space plots. These plots assume

̃ = 
0
= 2

3
,  = 2, and the motion starts with  =  = 0.
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Figure 4.6: The driven damped pendulum assuming that ̃ = 2
3
,  = 2, with initial conditions (0) = −

2
,

(0) = 0. The system exhibits period-two motion for drive strengths of  = 1078 as shown by the state

space diagram for cycles 10 − 20. For  = 1081 the system exhibits period-four motion shown for cycles

10− 30.

4.5.2 Weak nonlinearity

Figure 45 shows that for drive strength  = 09, after the transient solution dies away, the steady-state

solution settles down to one attractor that oscillates at the drive frequency with an amplitude of slightly

more than 
2
radians for which the small angle approximation fails. The distortion due to the non-linearity

is exhibited by the non-elliptical shape of the state-space diagram.

The observed behavior can be calculated using the successive approximation method discussed in chapter

42. That is, close to small angles the sine function can be approximated by replacing

sin  ≈  − 1
6
3

in equation 433 to give

̈ +
1


̇ + 20

µ
 − 1

6
3
¶
=  cos ̃̃ (4.35)

As a first approximation assume that

(̃) ≈  cos(̃̃− )

then the small 3 term in equation 435 contributes a term proportional to cos3(̃̃− ). But

cos3(̃̃− ) =
1

4

¡
cos 3(̃̃− ) + 3 cos(̃̃− )

¢
That is, the nonlinearity introduces a small term proportional to cos 3(− ). Since the right-hand side of

equation 435 is a function of only cos then the terms in  ̇ and ̈ on the left hand side must contain

the third harmonic cos 3(− ) term. Thus a better approximation to the solution is of the form

(̃) = 
£
cos(̃̃− ) +  cos 3(̃̃− )

¤
(4.36)
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where the admixture coefficient   1. This successive approximation method can be repeated to add

additional terms proportional to cos( − ) where  is an integer with  ≥ 3. Thus the nonlinearity

introduces progressively weaker -fold harmonics to the solution. This successive approximation approach

is viable only when the admixture coefficient   1 Note that these harmonics are integer multiples of ,

thus the steady-state response is identical for each full period even though the state space contours deviate

from an elliptical shape.

4.5.3 Onset of complication

Figure 45 shows that for  = 105 the drive strength is sufficiently strong to cause the transient solution for

the pendulum to rotate through two complete cycles before settling down to a single steady-state attractor

solution at the drive frequency. However, this attractor solution is shifted two complete rotations relative

to the initial condition. The state space diagram clearly shows the rolling motion of the transient solution

for the first two periods prior to the system settling down to a single steady-state attractor. The successive

approximation approach completely fails at this coupling strength since  oscillates through large values that

are multiples of 

Figure 45 shows that for drive strength  = 1078 the motion evolves to a much more complicated

periodic motion with a period that is three times the period of the driving force. Moreover the amplitude

exceeds 2 corresponding to the pendulum oscillating over top dead center with the centroid of the motion

offset by 3 from the initial condition. Both the state-space diagram, and the time dependence of the motion,

illustrate the complexity of this motion which depends sensitively on the magnitude of the drive strength 

in addition to the initial conditions, ((0) (0)) and damping factor  as is shown in figure 46

4.5.4 Period doubling and bifurcation

For drive strength  = 1078 with the initial condition ((0)  (0)) = (0 0)  the system exhibits a regular

motion with a period that is three times the drive period. In contrast, if the initial condition is [(0) =

−
2
  (0) = 0] then, as shown in figure 46 the steady-state solution has the drive frequency with no offset

in , that is, it exhibits period-one oscillation. This appearance of two separate and very different attractors

for  = 1078 using different initial conditions, is called bifurcation.

An additional feature of the system response for  = 1078 is that changing the initial conditions to

[(0) = −
2
  (0) = 0] shows that the amplitude of the even and odd periods of oscillation differ slightly

in shape and amplitude, that is, the system really has period-two oscillation. This period-two motion, i.e.

period doubling, is clearly illustrated by the state space diagram in that, although the motion still is

dominated by period-one oscillations, the even and odd cycles are slightly displaced. Thus, for different

initial conditions, the system for  = 1078 bifurcates into either of two attractors that have very different

waveforms, one of which exhibits period doubling.

The period doubling exhibited for  = 1078 is followed by a second period doubling when  = 1081 as

shown in figure 46 . With increase in drive strength this period doubling keeps increasing in binary multiples

to period 8, 16, 32, 64 etc. Numerically it is found that the threshold for period doubling is 1 = 10663

from two to four occurs at 2 = 10793 etc. Feigenbaum showed that this cascade increases with increase in

drive strength according to the relation that obeys

(+1 − ) '
1


( − −1) (4.37)

where  = 46692016,  is called a Feigenbaum number. As  →∞ this cascading sequence goes to a limit

 where

 = 10829 (4.38)

4.5.5 Rolling motion

It was shown that for   105 the transient solution causes the pendulum to have angle excursions exceeding

2, that is, the system rolls over top dead center. For drive strengths in the range 13    14 the steady-

state solution for the system undergoes continuous rolling motion as illustrated in figure 47. The time

dependence for the angle exhibits a periodic oscillatory motion superimposed upon a monotonic rolling

motion, whereas the time dependence of the angular frequency  = 

is periodic. The state space plots
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Figure 4.7: Rolling motion for the driven damped plane pendulum for  = 14. (a) The time dependence

of angle () increases by 2 per drive period whereas (b) the angular velocity () exhibits periodicity. (c)

The state space plot for rolling motion is shown with the origin shifted by 2 per revolution to keep the plot

within the bounds −    +

for rolling motion corresponds to a chain of loops with a spacing of 2 between each loop. The state space

diagram for rolling motion is more compactly presented if the origin is shifted by 2 per revolution to keep

the plot within bounds as illustrated in figure 47.

4.5.6 Onset of chaos

When the drive strength is increased to  = 1105 then the system does not approach a unique attractor

as illustrated by figure 48 which shows state space orbits for cycles 25− 200. Note that these orbits do
not repeat implying the onset of chaos. For drive strengths greater than  = 10829 the driven damped

plane pendulum starts to exhibit chaotic behavior. The onset of chaotic motion is illustrated by making a 3-

dimensional plot which combines the time coordinate with the state-space coordinates as illustrated in figure

48. This plot shows 16 trajectories starting at different initial values in the range −015    015

for  = 1168. Some solutions are erratic in that, while trying to oscillate at the drive frequency, they never

settle down to a steady periodic motion which is characteristic of chaotic motion. Figure 48 illustrates

the considerable sensitivity of the motion to the initial conditions. That is, this deterministic system can

exhibit either order, or chaos, dependent on miniscule differences in initial conditions.

Figure 4.8: Left: Space-space orbits for the driven damped pendulum with  = 1105. Note that the orbits

do not repeat for cycles 25 to 200. Right: Time-state-space diagram for  = 1168. The plot shows 16

trajectories starting with different initial values in the range −015    015.
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Figure 4.9: State-space plots for the harmonically-driven, linearly-damped, pendulum for driving amplitudes

of  = 05 and  = 12. These calculations were performed using the Runge-Kutta method by E. Shah,

(Private communication)

4.6 Differentiation between ordered and chaotic motion

Chapter 45 showed that motion in non-linear systems can exhibit both order and chaos. The transition

between ordered motion and chaotic motion depends sensitively on both the initial conditions and the model

parameters. It is surprisingly difficult to unambiguously distinguish between complicated ordered motion

and chaotic motion. Moreover, the motion can fluctuate between order and chaos in an erratic manner

depending on the initial conditions. The extremely sensitivity to initial conditions of the motion for non-

linear systems, makes it essential to have quantitative measures that can characterize the degree of order, and

interpret the complicated dynamical motion of systems. As an illustration, consider the harmonically-driven,

linearly-damped, pendulum with  = 2 and driving force  () =  sin ̃̃ where ̃ =
2
3
. Figure 49 shows

the state-space plots for two driving amplitudes,  = 05 which leads to ordered motion, and  = 12

which leads to possible chaotic motion. It can be seen that for  = 05 the state-space diagram converges

to a single attractor once the transient solution has died away. This is in contrast to the case for  = 12

where the state-space diagram does not converge to a single attractor, but exhibits possible chaotic motion.

Three quantitative measures can be used to differentiate ordered motion from chaotic motion for this system,

namely, the Lyapunov exponent, the bifurcation diagram, and the Poincaré section, as illustrated below.

4.6.1 Lyapunov exponent

The Lyapunov exponent provides a quantitative and useful measure of the instability of trajectories, and how

quickly nearby initial conditions diverge. It compares two identical systems that start with an infinitesimally

small difference in the initial conditions in order to ascertain whether they converge to the same attractor

at long times, corresponding to a stable system, or whether they diverge to very different attractors, charac-

teristic of chaotic motion. If the initial separation between the trajectories in phase space at  = 0 is |0|,
then to first order the time dependence of the difference can be assumed to depend exponentially on time.

That is,

|()| ∼  |0| (4.39)

where  is the Lyapunov exponent. That is, the Lyapunov exponent is defined to be

 = lim
→∞

lim
0→0

1


ln
|()|
|0| (4.40)

Systems for which the Lyapunov exponent   0, (negative) converge exponentially to the same attractor

solution at long times since |()|→ 0 for →∞. By contrast, systems for which   0 (positive) diverge

to completely different long-time solutions, that is, |()| → ∞ for  → ∞. Even for infinitesimally
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Figure 4.10: Lyapunov plots of ∆ versus time for two initial starting points differing by ∆0 = 0001.

The parameters are  = 2 and  () =  sin(
2
3
) and ∆ = 004. The Lyapunov exponent for  = 05

which is drawn as a dashed line, is convergent with  = −0251 For  = 12 the exponent is divergent as
indicated by the dashed line which as a slope of  = 01538 These calculations were performed using the

Runge-Kutta method by E. Shah, (Private communication)

small differences in the initial conditions, systems having a positive Lyapunov exponent diverge to different

attractors, whereas when the Lyapunov exponent   0 they correspond to stable solutions.

Figure 410 illustrates Lyapunov plots for the harmonically-driven, linearly-damped, plane pendulum,

with the same conditions discussed in chapter 45. Note that for the small driving amplitude  = 05

the Lyapunov plot converges to ordered motion with an exponent  = −0251 whereas for  = 12 the

plot diverges characteristic of chaotic motion with an exponent  = 01538 The Lyapunov exponent usually

fluctuates widely at the local oscillator frequency, and thus the time average of the Lyapunov exponent must

be taken over many periods of the oscillation to identify the general trend with time. Some systems near an

order-to-chaos transition can exhibit positive Lyapunov exponents for short times, characteristic of chaos,

and then converge to negative  at longer time implying ordered motion. The Lyapunov exponents are

used extensively to monitor the stability of the solutions for non-linear systems. For example the Lyapunov

exponent is used to identify whether fluid flow is laminar or turbulent as discussed in chapter 158.

A dynamical system in -dimensional phase space will have a set of  Lyapunov exponents {1 2  }
associated with a set of attractors, the importance of which depend on the initial conditions. Typically one

Lyapunov exponent dominates at one specific location in phase space, and thus it is usual to use the maximal

Lyapunov exponent to identify chaos.The Lyapunov exponent is a very sensitive measure of the onset of chaos

and provides an important test of the chaotic nature for the complicated motion exhibited by non-linear

systems.

4.6.2 Bifurcation diagram

The bifurcation diagram simplifies the presentation of the dynamical motion by sampling the status of

the system once per period, synchronized to the driving frequency, for many sets of initial conditions. The

results are presented graphically as a function of one parameter of the system in the bifurcation diagram. For

example, the wildly different behavior in the driven damped plane pendulum is represented on a bifurcation

diagram in figure 411, which shows the observed angular velocity  of the pendulum sampled once per drive

cycle plotted versus drive strength. The bifurcation diagram is obtained by sampling either the angle ,

or angular velocity  once per drive cycle, that is, it represents the observables of the pendulum using a

stroboscopic technique that samples the motion synchronous with the drive frequency. Bifurcation plots also

can be created as a function of either the time ̃, the damping factor  , the normalized frequency ̃ = 
0
,

or the driving amplitude 



104 CHAPTER 4. NONLINEAR SYSTEMS AND CHAOS

Figure 4.11: Bifurcation diagram samples the angular velocity

 once per period for the driven, linearly-damped, plane pen-

dulum plotted as a function of the drive strength . Regions

of period doubling, and chaos, as well as islands of stability

all are manifest as the drive strength  is changed. Note that

the limited number of samples causes broadening of the lines

adjacent to bifurcations.

In the domain with drive strength  

10663 there is one unique angle each drive

cycle as illustrated by the bifurcation di-

agram. For slightly higher drive strength

period-two bifurcation behavior results in

two different angles per drive cycle. The

Lyapunov exponent is negative for this re-

gion corresponding to ordered motion. The

cascade of period doubling with increase in

drive strength is readily apparent until chaos

sets in at the critical drive strength  when

there is a random distribution of sampled an-

gular velocities and the Lyapunov exponent

becomes positive. Note that at  = 10845

there is a brief interval of period-6 motion

followed by another region of chaos. Around

 = 11 there is a region that is primarily

chaotic which is reflected by chaotic values of

the angular velocity on the bifurcation plot

and large positive values of the Lyapunov ex-

ponent. The region around  = 112 exhibits

period three motion and negative Lyapunov

exponent corresponding to ordered motion.

The 115    125 region is mainly chaotic

and has a large positive Lyapunov exponent.

The region with 13    14 is striking

in that this corresponds to rolling motion

with reemergence of period one and negative

Lyapunov exponent. This period-1 motion

is due to a continuous rolling motion of the

plane pendulum as shown in figure 47 where it is seen that the average  increases 2 per cycle, whereas the

angular velocity  exhibits a periodic motion. That is, on average the pendulum is rotating 2 per cycle.

Above  = 14 the system start to exhibit period doubling followed by chaos reminiscent of the behavior

seen at lower  values.

These results show that the bifurcation diagram nicely illustrates the order to chaos transitions for the

harmonically-driven, linearly-damped, pendulum. Several transitions between order and chaos are seen to

occur. The apparent ordered and chaotic regimes are confirmed by the corresponding Lyapunov exponents

which alternate between negative and positive values for the ordered and chaotic regions respectively.

4.6.3 Poincaré Section

State-space plots are very useful for characterizing periodic motion, but they become too dense for useful

interpretation when the system approaches chaos as illustrated in figure 411 Poincaré sections solve this

difficulty by taking a stroboscopic sample once per cycle of the state-space diagram. That is, the point on

the state space orbit is sampled once per drive frequency. For period-1 motion this corresponds to a single

point ( ). For period-2 motion this corresponds to two points etc. For chaotic systems the sequence of

state-space sample points follow complicated trajectories. Figure 412 shows the Poincaré sections for the

corresponding state space diagram shown in figure 49 for cycles 10 to 6000. Note the complicated curves do

not cross or repeat. Enlargements of any part of this plot will show increasingly dense parallel trajectories,

called fractals, that indicates the complexity of the chaotic cyclic motion. That is, zooming in on a small

section of this Poincaré plot shows many closely parallel trajectories. The fractal attractors are surprisingly

robust to large differences in initial conditions. Poincaré sections are a sensitive probe of periodic motion

for systems where periodic motion is not readily apparent.

In summary, the behavior of the well-known, harmonically-driven, linearly-damped, plane pendulum

becomes remarkably complicated at large driving amplitudes where non-linear effects dominate. That is,
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Figure 4.12: Three Poincaré section plots for the harmonically-driven, linearly-damped, pendulum for various

initial conditions with  = 12 ̃ = 2
3
 and ∆ = 

100
. These calculations used the Runge-Kutta method

and were performed for 6000 by E. Shah (Private communication).

when the restoring force is non-linear. The system exhibits bifurcation where it can evolve to multiple

attractors that depend sensitively on the initial conditions. The system exhibits both oscillatory, and rolling,

solutions depending on the amplitude of the motion. The system exhibits domains of simple ordered motion

separated by domains of very complicated ordered motion as well as chaotic regions. The transitions between

these dramatically different modes of motion are extremely sensitive to the amplitude and phase of the

driver. Eventually the motion becomes completely chaotic. The Lyapunov exponent, bifurcation diagram,

and Poincaré section plots, are sensitive measures of the order of the motion. These three sensitive measures

of order and chaos are used extensively in many fields in classical mechanics. Considerable computing

capabilities are required to elucidate the complicated motion involved in non-linear systems. Examples

include laminar and turbulent flow in fluid dynamics and weather forecasting of hurricanes, where the

motion can span a wide dynamic range in dimensions from 10−5 to 104.

4.7 Wave propagation for non-linear systems

4.7.1 Phase, group, and signal velocities

Chapter 3 discussed the wave equation and solutions for linear systems. It was shown that, for linear systems,

the wave motion obeys superposition and exhibits dispersion, that is, a frequency-dependent phase velocity,

and, in some cases, attenuation. Nonlinear systems introduce intriguing new wave phenomena. For example

for nonlinear systems, second, and higher terms must be included in the Taylor expansion given in equation

42 These second and higher order terms result in the group velocity being a function of  that is, group

velocity dispersion occurs which leads to the shape of the envelope of the wave packet being time dependent.

As a consequence the group velocity in the wave packet is not well defined, and does not equal the signal

velocity of the wave packet or the phase velocity of the wavelets. Nonlinear optical systems have been studied

experimentally where   , which is called slow light, while other systems have    which is

called superluminal light. The ability to control the velocity of light in such optical systems is of considerable

current interest since it has signal transmission applications.

The dispersion relation for a nonlinear system can be expressed as a Taylor expansion of the form

 = 0 +

µ




¶
=0

( − 0) +
1

2

µ
2

2

¶
=0

( − 0)
2 +  (4.41)

where  is used as the independent variable since it is invariant to phase transitions of the system. Note

that the factor for the first derivative term is the reciprocal of the group velocityµ




¶
=0

≡ 1


(4.42)



106 CHAPTER 4. NONLINEAR SYSTEMS AND CHAOS

while the factor for the second derivative term isµ
2

2

¶
=0

=
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¸
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(4.43)

which gives the velocity dispersion for the system.

Since

 =



(4.44)

then




≡ 1


=

1


+ 

 1



(4.45)

The inverse velocities for electromagnetic waves are best represented in terms of the corresponding refractive

indices  where

 ≡ 


(4.46)

and the group refractive index

 ≡ 


(4.47)

Then equation 447 can be written in the more convenient form

 = + 



(4.48)

Figure 4.13: The real and imaginary parts of the phase

refractive index n plus the real part of the group refractive

index associated with an isolated atomic resonance.

Wave propagation for an optical system that

is subject to a single resonance gives one ex-

ample of nonlinear frequency response that has

applications to optics.

Figure 413 shows that the real and imagi-

nary parts of the phase refractive index exhibit

the characteristic resonance frequency depen-

dence of the sinusoidally-driven, linear oscillator

that was discussed in chapter 36 and as illus-

trated in figure 310. Figure 413 also shows the

group refractive index  computed using

equation 448.

Note that at resonance  is reduced be-

low the non-resonant value which corresponds

to superluminal (fast) light, whereas in the

wings of the resonance  is larger than the

non-resonant value corresponding to slow light.

Thus the nonlinear dependence of the refractive

index  on angular frequency  leads to fast

or slow group velocities for isolated wave pack-

ets. Velocities of light as slow as 17 sec have

been observed. Experimentally the energy ab-

sorption that occurs on resonance makes it dif-

ficult to observe the superluminal electromag-

netic wave at resonance.

Note that Sommerfeld and Brillouin showed

that even though the group velocity may exceed

, the signal velocity, marking the arrival of the

leading edge of the optical pulse, does not ex-

ceed , the velocity of light in vacuum, as was

postulated by Einstein.[Bri14]
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4.7.2 Soliton wave propagation

Figure 4.14: A solitary wave approaches the coast of Hawaii.

(Image: Robert Odom/University of Washington)

The soliton is a fascinating and very special

wave propagation phenomenon that occurs for

certain non-linear systems. The soliton is a self-

reinforcing solitary localized wave packet that

maintains its shape while travelling long distances

at a constant speed. Solitons are caused by a

cancellation of phase modulation resulting from

non-linear velocity dependence, and the group ve-

locity dispersive effects in a medium. Solitons

arise as solutions of a widespread class of weakly-

nonlinear dispersive partial differential equations

describing many physical systems. Figure 414

shows a soliton comprising a solitary water wave

approaching the coast of Hawaii. While the soli-

ton in Fig. 414 may appear like a normal wave,

it is unique in that there are no other waves ac-

companying it. This wave was probably created

far away from the shore when a normal wave was

modulated by a geometrical change in the ocean

depth, such as the rising sea floor, which forced

it into the appropriate shape for a soliton. The

wave was then able to travel to the coast intact,

despite the apparently placid nature of the ocean near the beach. Solitons are notable in that they interact

with each other in ways very different from normal waves. Normal waves are known for their complicated

interference patterns that depend on the frequency and wavelength of the waves. Solitons, can pass right

through each other without being a affected at all. This makes solitons very appealing to scientists because

soliton waves are more sturdy than normal waves and can therefore be used to transmit information in ways

that are distinctly different than for normal wave motion. For example, optical solitons are used in optical

fibers made of a dispersive, nonlinear optical medium, to transmit optical pulses with an invariant shape.

Solitons were first observed in 1834 by John Scott Russell (1808 − 1882). Russell was an engineer con-
ducting experiments to increase the efficiency of canal boats. His experimental and theoretical investigations

allowed him to recreate the phenomenon in wave tanks that he built in his home. Through his extensive

studies, Scott Russell noticed that soliton propagation exhibited the following properties:

• The waves are stable and hold their shape for long periods of time.
• The waves can travel over long distances at uniform speed.

• The speed of propagation of the wave depends on the size of the wave, with larger waves traveling
faster than smaller waves.

• The waves maintained their shape when they collided - seemingly passing right through each other.
Scott Russell’s work was met with scepticism by the scientific community. The problem with the Wave

of Translation was that it was an effect that depended on nonlinear effects, whereas previously existing

theories of hydrodynamics (such as those of Newton and Bernoulli) only dealt with linear systems. George

Biddell Airy, and George Gabriel Stokes, published papers attacking Scott Russell’s observations because

the observations could not be explained by their theories of wave propagation in water. Regardless, Scott

Russell was convinced of the prime importance of the Wave of Translation and history proved that he was

correct. Scott Russell went on to develop the "wave line" system of hull construction that revolutionized

nineteenth century naval architecture, along with a number of other great accomplishments that rewarded

him with much fame and prominence. Despite all of the success in his career, he continued throughout his

life to pursue his studies of the Wave of Translation.

In 1895 Korteweg and de Vries developed a wave equation for surface waves for shallow water.




+

3

3
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= 0 (4.49)

A solution of this equation has the characteristics of a solitary wave with fixed shape. It is given by

substituting the form ( ) = (− ) into the Korteweg-de Vries equation which gives
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− 


+
3

3
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= 0 (4.50)

Integrating with respect to  gives

32 +
2

3
−  =  (4.51)

where  is a constant of integration. This non-linear equation has a solution

( ) =
1

2
 sec2

∙√


2
(− − )

¸
(4.52)

where  is a constant. Equation 452 is the equation of a solitary wave moving in the + direction at a

velocity .

Soliton behavior is observed in phenomena such as tsunamis, tidal bores that occur for some rivers,

signals in optical fibres, plasmas, atmospheric waves, vortex filaments, superconductivity, and gravitational

fields having cylindrical symmetry. Much work has been done on solitons for fibre optics applications. The

soliton’s inherent stability make long-distance transmission possible without the use of repeaters, and could

potentially double the transmission capacity.

Before the discovery of solitons, mathematicians were under the impression that nonlinear partial differ-

ential equations could not be solved exactly. However, solitons led to the recognition that there are non-linear

systems that can be solved analytically. This discovery has prompted much investigation into these so-called

"integrable systems." Such systems are rare, as most non-linear differential equations admit chaotic behavior

with no explicit solutions. Integrable systems nevertheless lead to very interesting mathematics ranging from

differential geometry and complex analysis to quantum field theory and fluid dynamics.

Many of the fundamental equations in physics (Maxwell’s, Schrödinger’s) are linear equations. However,

physicists have begun to recognize many areas of physics in which nonlinearity can result in qualitatively

new phenomenon which cannot be constructed via perturbation theory starting from linearized equations.

These include phenomena in magnetohydrodynamics, meteorology, oceanography, condensed matter physics,

nonlinear optics, and elementary particle physics. For example, the European space mission Cluster detected

a soliton-like electrical disturbances that travelled through the ionized gas surrounding the Earth starting

about 50,000 kilometers from Earth and travelling towards the planet at about 8 km/s. It is thought that

this soliton was generated by turbulence in the magnetosphere.

Efforts to understand the nonlinearity of solitons has led to much research in many areas of physics. In

the context of solitons, their particle-like behavior (in that they are localized and preserved under collisions)

leads to a number of experimental and theoretical applications. The technique known as bosonization allows

viewing particles, such as electrons and positrons, as solitons in appropriate field equations. There are

numerous macroscopic phenomena, such as internal waves on the ocean, spontaneous transparency, and the

behavior of light in fiber optic cable, that are now understood in terms of solitons. These phenomena are

being applied to modern technology.

4.8 Summary

The study of the dynamics of non-linear systems remains a vibrant and rapidly evolving field in classical

mechanics as well as many other branches of science. This chapter has discussed examples of non-linear

systems in classical mechanics. It was shown that the superposition principle is broken even for weak

nonlinearity. It was shown that increased nonlinearity leads to bifurcation, point attractors, limit-cycle

attractors, and sensitivity to initial conditions.

Limit-cycle attractors: The Poincaré-Bendixson theorem for limit cycle attractors states that the

paths, both in state-space and phase-space, can have three possible paths:

(1) closed paths, like the elliptical paths for the undamped harmonic oscillator,

(2) terminate at an equilibrium point as →∞, like the point attractor for a damped harmonic oscillator,
(3) tend to a limit cycle as →∞.
The limit cycle is unusual in that the periodic motion tends asymptotically to the limit-cycle attractor

independent of whether the initial values are inside or outside the limit cycle. The balance of dissipative forces

and driving forces often leads to limit-cycle attractors, especially in biological applications. Identification of
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limit-cycle attractors, as well as the trajectories of the motion towards these limit-cycle attractors, is more

complicated than for point attractors.

The van der Pol oscillator is a common example of a limit-cycle system that has an equation of motion

of the form
2

2
+ 

¡
2 − 1¢ 


+ 20 = 0 (411)

The van der Pol oscillator has a limit-cycle attractor that includes non-linear damping and exhibits

periodic solutions that asymptotically approach one attractor solution independent of the initial conditions.

There are many examples in nature that exhibit similar behavior.

Harmonically-driven, linearly-damped, plane pendulum: The non-linearity of the well-known

driven linearly-damped plane pendulum was used as an excellent example of the behavior of non-linear

systems in nature. It was shown that non-linearity leads to discontinuous period bifurcation, extreme

sensitivity to initial conditions, rolling motion and chaos.

Differentiation between ordered and chaotic motion: Lyapunov exponents, bifurcation diagrams,

and Poincaré sections were used to identify the transition from order to chaos. Chapter 158 discusses

the non-linear Navier-Stokes equations of viscous-fluid flow which leads to complicated transitions between

laminar and turbulent flow. Fluid flow exhibits remarkable complexity that nicely illustrates the dominant

role that non-linearity can have on the solutions of practical non-linear systems in classical mechanics.

Wave propagation for non-linear systems: Non-linear equations can lead to unexpected behavior

for wave packet propagation such as fast or slow light as well as soliton solutions. Moreover, it is notable

that some non-linear systems can lead to analytic solutions.

The complicated phenomena exhibited by the above non-linear systems is not restricted to classical

mechanics, rather it is a manifestation of the mathematical behavior of the solutions of the differential

equations involved. That is, this behavior is a general manifestation of the behavior of solutions for second-

order differential equations. Exploration of this complex motion has only become feasible with the advent

of powerful computer facilities during the past three decades. The breadth of phenomena exhibited by

these examples is manifest in myriads of other nonlinear systems, ranging from many-body motion, weather

patterns, growth of biological species, epidemics, motion of electrons in atoms, etc. Other examples of non-

linear equations of motion not discussed here, are the three-body problem, which is mentioned in chapter 9,

and turbulence in fluid flow which is discussed in chapter 15.

It is stressed that the behavior discussed in this chapter is very different from the random walk problem

which is a stochastic process where each step is purely random and not deterministic. This chapter has

assumed that the motion is fully deterministic and rigorously follows the laws of classical mechanics. Even

though the motion is fully deterministic, and follows the laws of classical mechanics, the motion is extremely

sensitive to the initial conditions and the non-linearities can lead to chaos. Computer modelling is the only

viable approach for predicting the behavior of such non-linear systems. The complexity of solving non-linear

equations is the reason that this book will continue to consider only linear systems. Fortunately, in nature,

non-linear systems can be approximately linear when the small-amplitude assumption is applicable.
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Workshop exercises

1. Consider the chaotic motion of the driven damped pendulum whose equation of motion is given by

̈+ Γ̇+ 20 sin = 20 cos

for which the Lyapunov exponent is  = 1 with time measured in units of the drive period.

(a) Assume that you need to predict  () with an accuracy of 10−2, and that you know the initial
value  (0) to within 10−6. What is the maximum time horizon max for which you can predict

 () within the required accuracy?

(b) Suppose that, with unlimited time and financial constraints, you manage to improve the accuracy of the

initial value to 10−9 (that is, a thousand-fold improvement). What is the time horizon now for
achieving the accuracy of 10−2?

(c) By what factor has max improved with the 1000−  improvement in initial measurement.

(d) What does this imply regarding long-term predictions of chaotic motion?

2. A non-linear oscillator satisfies the equation ̈ + ̇3 +  = 0 Find the polar equations for the motion in the

state-space diagram. Show that any trajectory that starts within the circle   1 encircle the origin infinitely

many times in the clockwise direction. Show further that these trajectories in state space terminate at the

origin.

3. Consider the system of a mass suspended between two identical springs as shown.

If each spring is stretched a distance  to attach the mass at the equilibrium position the mass is subject to

two equal and oppositely directed forces of magnitude . Ignore gravity. Show that the potential in which

the mass moves is approximately

() =

½




¾
2 +

½
( − )

43

¾
4

Construct a state-space diagram for this potential.

Problems

1. A non-linear oscillator satisfies the equation

̈+ (2 + ̇2 − 1)̇+  = 0

Find the polar equations for the motion in the state-space diagram. Show that any trajectory that starts in

the domain 1   
√
3 spirals clockwise and tends to the limit cycle  = 1. [The same is true of trajectories

that start in the domain 0    1. ] What is the period of the limit cycle?

2. A mass  moves in one direction and is subject to a constant force +0 when   0 and to a constant force

−0 when   0. Describe the motion by constructing a state space diagram. Calculate the period of the

motion in terms of 0 and the amplitude . Disregard damping.



Chapter 5

Calculus of variations

5.1 Introduction

The prior chapters have focussed on the intuitive Newtonian perspective of classical mechanics, which is

based on vector quantities like force, momentum, and acceleration. Newtonian mechanics leads to second-

order differential equations of motion. The calculus of variations underlies a powerful alternative approach

to classical mechanics that is based on identifying the path that minimizes an integral quantity. This integral

variational approach was first championed by Gottfried Wilhelm Leibniz, contemporaneously with Newton’s

development of the differential approach to classical mechanics.

During the 18 century, Bernoulli, who was a student of Leibniz, developed the field of variational

calculus which underlies the integral variational approach to mechanics. He solved the brachistochrone

problem which involves finding the path for which the transit time between two points is the shortest. The

integral variational approach also underlies Fermat’s principle in optics, which can be used to derive that

the angle of reflection equals the angle of incidence, as well as derive Snell’s law. Other applications of the

calculus of variations include solving the catenary problem, finding the maximum and minimum distances

between two points on a surface, polygon shapes having the maximum ratio of enclosed area to perimeter,

or maximizing profit in economics. Bernoulli, developed the principle of virtual work used to describe

equilibrium in static systems, and d’Alembert extended the principle of virtual work to dynamical systems.

Euler, the preeminent Swiss mathematician of the 18 century and a student of Bernoulli, developed the

calculus of variations with full mathematical rigor. Lagrange (1736-1813),a student of Euler, culminated the

development of the Lagrangian variational approach to classical mechanics.

The Euler-Lagrangian approach to classical mechanics stems from a deep philosophical belief that the

laws of nature are based on a principle of economy.That is, the physical universe follows paths through space

and time that are based on extrema principles. The standard Lagrangian  is defined as the difference

between the kinetic and potential energy, that is

 =  −  (5.1)

Chapters 6 and 13 will show that the laws of classical mechanics can be expressed in terms of Hamilton’s

variational principle which states that the motion of the system between the initial time 1and final time

2 follows a path that minimizes the scalar action integral  defined as the time integral of the Lagrangian.

 =

Z 2

1

 (5.2)

The calculus of variations provides the mathematics required to determine the path that minimizes the

action integral. This variational approach is both elegant and beautiful, and has withstood the rigors

of experimental confirmation. In fact, not only is it an exceedingly powerful alternative approach to the

intuitive Newtonian approach to mechanics, but Hamilton’s variational principle now is recognized to be

more fundamental than Newton’s Laws of Motion. The Lagrangian and Hamiltonian variational approaches

to mechanics are the only approaches that can handle the Theory of Relativity, statistical mechanics, and

the dichotomy of philosophical approaches to quantum physics.

111
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5.2 Euler’s differential equation

The calculus of variations, presented here, underlie the powerful variational approaches that were developed

for classical mechanics. Variational calculus now is applied to many other disciplines in science, engineering,

economics, and medicine.

For the special case of one dimension, the calculus of variations reduces to varying the function () such

that the scalar functional 

 =

Z 2

1

 [() 0();]  (5.3)

is an extremum, that is, it is a maximum or minimum. Here  is the independent variable, () the dependent

variable, plus its first derivative 0 ≡ 

 The quantity  [() 0();] has some given dependence on  0

and  The calculus of variations involves varying the function () until a stationary value of  is found,

which is presumed to be an extremum. This means that if a function  = () gives a minimum value for the

scalar functional  , then any neighboring function, no matter how close to () must increase  . For all

paths, the integral  is taken between two fixed points, 1 1 and 2 2 Possible paths between the initial

and final points are illustrated in figure 51. Relative to any neighboring path, the functional  must have

a stationary value which is presumed to be the correct extremum path.

Define a neighboring function using a parametric representation ( ) such that  = 0,  = (0 ) = ()

is the function that yields the extremum for  . Assume that an infinitesimally small fraction  of the

neighboring function () is added to the extremum path (). That is, assume

( ) = (0 ) + () (5.4)

0( ) ≡ ( )


=

(0 )


+ 





where it is assumed that the extremum function (0 ) and the auxiliary function () are well behaved

functions of  with continuous first derivatives, and where () vanishes at 1 and 2 because for all possible

paths the function ( ) must be identical with () at the end points of the path, i.e. (1) = (2) = 0.

The situation is depicted in figure 51.

It is possible to express any such parametric family of curves  as a function of 

 () =

Z 2

1

 [( ) 0( );]  (5.5)

The condition that the integral has a stationary (extremum) value is that  be independent of  to first

order along the path giving the extremum value ( = 0). That isµ




¶
=0

= 0 (5.6)

for all functions () This is illustrated on the right side of figure 51

Applying condition (56) to equation (55)  and since  is independent of  then




=

Z 2

1

µ







+



0
0



¶
 = 0 (5.7)

Since the limits of integration are fixed, the differential operation affects only the integrand. From equations

(54),



= () (5.8)

and
0


=




(5.9)

Consider the second term in the integrandZ 2

1



0
0


 =

Z 2

1



0



 (5.10)
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y(x)

x

x

x1 2x

Extremum path, y(x)

Varied path

O

Figure 5.1: The left shows the extremum () and neighboring paths ( ) = ()+ () between (1 1)

and (2 2) that minimizes the function  =
R 2
1

 [() 0();] . The right shows the dependence of 
as a function of the admixture coefficient  for a maximum (upper) or a minimum (lower) at  = 0.

Integrate by parts Z
 =  −

Z
 (5.11)

gives Z 2

1



0



 =

∙


0
()

¸2
1

−
Z 2

1
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µ


0

¶
 (5.12)

Note that the first term on the right-hand side is zero since by definition 

= () = 0 at 1 and 2 Thus
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Z 2

1

µ
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0
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Thus equation 57 reduces to



=

Z 2

1

µ



− 





0

¶
() (5.13)

The function 

will be an extremum if it is stationary at  = 0. That is,




=

Z 2

1

µ



− 





0

¶
() = 0 (5.14)

This integral now appears to be independent of  However, the functions  and 0 occurring in the derivatives
are functions of  Since

¡



¢
=0

must vanish for a stationary value, and because () is an arbitrary function

subject to the conditions stated, then the above integrand must be zero. This derivation that the integrand

must be zero leads to Euler’s differential equation




− 





0
= 0 (5.15)

where  and 0 are the original functions, independent of  The basis of the calculus of variations is that the
function () that satisfies Euler’s equation is an stationary function. Note that the stationary value could

be either a maximum or a minimum value. When Euler’s equation is applied to mechanical systems using

the Lagrangian as the functional, then Euler’s differential equation is called the Euler-Lagrange equation.
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5.3 Applications of Euler’s equation

5.1 Example: Shortest distance between two points

Consider the path lies in the x − y plane. The infinitessimal length of arc is

 =
p
2 + 2 =

⎡⎣s1 + µ



¶2⎤⎦ 
Then the length of the arc is

 =

Z 2

1

 =

Z 2

1

⎡⎣s1 +µ



¶2⎤⎦ 

y

x

x 1 y 1

x 2 y 2

Shortest distance between two points in a plane.

The function  is

 =

q
1 + (0)2

Therefore



= 0

and


0
=

0q
1 + (0)2

Inserting these into Euler’s equation 515 gives

0 +




⎛⎝ 0q
1 + (0)2

⎞⎠ = 0

that is
0q

1 + (0)2
= constant = 

This is valid if

0 =
√
1− 2

= 

Therefore

 = + 

which is the equation of a straight line in the plane. Thus the shortest path between two points in a plane is

a straight line between these points, as is intuitively obvious. This stationary value obviously is a minimum.

This trivial example of the use of Euler’s equation to determine an extremum value has given the obvious

answer. It has been presented here because it provides a proof that a straight line is the shortest distance in

a plane and illustrates the power of the calculus of variations to determine extremum paths.

5.2 Example: Brachistochrone problem

The Brachistochrone problem involves finding the path having the minimum transit time between two

points. The Brachistochrone problem stimulated the development of the calculus of variations by John

Bernoulli and Euler. For simplicity, take the case of frictionless motion in the  −  plane with a uni-

form gravitational field acting in the by direction, as shown in the adjacent figure. The question is what
constrained path will result in the minimum transit time between two points (11) and (22)



5.3. APPLICATIONS OF EULER’S EQUATION 115

Consider that the particle of mass  starts at the origin 1 = 0 1 = 0 with zero velocity. Since the

problem conserves energy and assuming that initially  =  +  = 0 then

1

2
2 − = 0

That is

 =
p
2

The transit time is given by

 =

Z 2

1




=

Z 2

1

p
2 + 2√
2

=

Z 2

1

s
(1 + 02)
2



where 0 ≡ 

. Note that, in this example, the independent variable has been chosen to be  and the dependent

variable is ().

The function  of the integral is

 =
1√
2

s
(1 + 02)



Factor out the constant
√
2 term, which does not affect the final equation, and note that




= 0



0
=

0r

³
1 + (0)2

´

y

x(x  1 , y )1

(x  , y  )2

Cycloid  

a

2a

P(x , y)

aa

2

The Bachistochrone problem involves finding the path for

the minimum transit time for constrained frictionless

motion in a uniform gravitational field.

Therefore Euler’s equation gives

0 +




⎛⎜⎜⎝ 0r

³
1 + (0)2

´
⎞⎟⎟⎠ = 0

or

0r

³
1 + (0)2

´ = constant = 1√
2

That is
02


³
1 + (0)2

´ = 1

2

This may be rewritten as

 =

Z 2

1

p
2 − 2

Change the variable to  = (1 − cos ) gives
that  =  sin  leading to the integral

 =

Z
 (1− cos ) 

or

 = ( − sin ) + constant
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The parametric equations for a cycloid passing through the origin are

 = ( − sin )
 = (1− cos )

which is the form of the solution found. That is, the shortest time between two points is obtained by con-

straining the motion of the mass to follow a cycloid shape. Thus the mass first accelerates rapidly by falling

down steeply and then follows the curve and coasts upward at the end. The elapsed time is obtained by

inserting the above parametric relations for  and  in terms of  into the transit time integral giving

 =
q



 where  and  are fixed by the end point coordinates. Thus the time to fall from starting with zero

velocity at the cusp to the minimum of the cycloid is 
q



 If 2 = 1 = 0 then 2 = 2 which defines the

shape of the cycloid and the minimum time is 2
q



=
q

22


 If the mass starts with a non-zero initial

velocity, then the starting point is not at the cusp of the cycloid, but down a distance  such that the kinetic

energy equals the potential energy difference from the cusp.

A modern application of the Brachistochrone problem is determination of the optimum shape of the low-

friction emergency chute that passengers slide down to evacuate a burning aircraft. Bernoulli solved the

problem of rapid evacuation of an aircraft two centuries before the first flight of a powered aircraft.

5.3 Example: Minimal travel cost

Assume that the cost of flying an aircraft at height  is − per unit distance of flight-path, where  is a
positive constant. Consider that the aircraft flies in the ( )-plane from the point (− 0) to the point ( 0)
where  = 0 corresponds to ground level, and where the -axis points vertically upwards. Find the extremal

for the problem of minimizing the total cost of the journey.

The differential arc-length element of the flight path  can be written as

 =
p
2 + 2 =

p
1 + 02

where 0 ≡ 

. Thus the cost integral to be minimized is

 =

Z +

−
− =

Z +

−
−

p
1 + 02

The function of this integral is

 = −
p
1 + 02

The partial differentials required for the Euler equations are







0
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00−√
1 + 02

− 02−√
1 + 02

− 0002−
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= −−

p
1 + 02

Therefore Euler’s equation equals




− 





0
= −−

p
1 + 02 − 00−√

1 + 02
+

02−√
1 + 02

+
0002−

(1 + 02)32
= 0

This can be simplified by multiplying the radical to give

−− 202 − 04 − 00 − 0002 + 02 + 04 + 0002 = 0

Cancelling terms gives

00 + 
¡
1 + 02

¢
= 0

Separating the variables leads to

arctan 0 =
Z

0

02 + 1
= −

Z
 = − + 1
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Integration gives

() =

Z 

−
 =

Z 

−
tan(1 − ) =

ln(cos(1 − ))− ln(cos(1 + ))


+ 2 =

ln
³
cos(1−)
cos(1+)

´


+ 2

Using the initial condition that (−) = 0 gives 2 = 0. Similarly the final condition () = 0 implies that

1 = 0. Thus Euler’s equation has determined that the optimal trajectory that minimizes the cost integral 

is

() =
1


ln

µ
cos()

cos()

¶
This example is typical of problems encountered in economics.

5.4 Selection of the independent variable

Awide selection of variables can be chosen as the independent variable for variational calculus. The derivation

of Euler’s equation and example 51 both assumed that the independent variable is  whereas example

52 used  as the independent variable, example 53 used , and Lagrange mechanics uses time  as the

independent variable. Selection of which variable to use as the independent variable does not change the

physics of a problem, but some selections can simplify the mathematics for obtaining an analytic solution.

The following example of a cylindrically-symmetric soap-bubble surface formed by blowing a soap bubble that

stretches between two circular hoops, illustrates the importance when selecting the independent variable.

5.4 Example: Surface area of a cylindrically-symmetric soap bubble

y x

z

z

Cylindrically-symmetric surface formed by

rotation about the  axis of a soap bubble

suspended between two identical hoops

centred on the  axis.

Consider a cylindrically-symmetric soap-bubble surface

formed by blowing a soap bubble that stretches between two

circular hoops. The surface energy, that results from the sur-

face tension of the soap bubble, is minimized when the surface

area of the bubble is minimized. Assume that the axes of the

two hoops lie along the  axis as shown in the adjacent figure.

It is intuitively obvious that the soap bubble having the mini-

mum surface area that is bounded by the two hoops will have

a circular cross section that is concentric with the symmetry

axis, and the radius will be smaller between the two hoops.

Therefore, intuition can be used to simplify the problem to

finding the shape of the contour of revolution around the axis

of symmetry that defines the shape of the surface of minimum

surface area. Use cylindrical coordinates (  ) and assume

that hoop 1 at 1 has radius 1 and hoop 2 at 2 has radius

2. Consider the cases where either , or , are selected to

be the independent variable.

The differential arc-length element of the circular annu-

lus at constant  between  and  +  is given by  =p
2 + 2. Therefore the area of the infinitessimal circular

annulus is  = 2 which can be integrated to give the

area of the surface  of the soap bubble bounded by the two

circular hoops as

 = 2

Z 2

1


p
2 + 2

Independent variable 

Assuming that  is the independent variable, then the surface area can be written as

 = 2

Z 2

1



s
1 +

µ




¶2
 = 2

Z 2

1


p
1 + 02
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where 0 ≡ 

. The function of the surface integral is  = 

p
1 + 02 The derivatives are




=
p
1 + 02

and


0
=

0q
1 + (0)2

Therefore Euler’s equation gives





⎛⎝ 0q
1 + (0)2

⎞⎠−p1 + 02 = 0

This is not an easy equation to solve.

Independent variable 

Consider the case where the independent variable is chosen to be , then the surface integral can be written

as

 = 2

Z 2

1



s
1 +

µ




¶2
 = 2

Z

p
1 + 02

where 0 ≡ 

. Thus the function of the surface integral is  = 

√
1 + 02 The derivatives are




= 0

and


0
=

0q
1 + (0)2

Therefore Euler’s equation gives

0 +




⎛⎝ 0q
1 + (0)2

⎞⎠ = 0

That is
0q
1 + (0)2

= 

where  is a constant. This can be rewritten as

02
¡
2 − 2

¢
= 2

or

0 =



=

p
2 − 2

The integral of this is

 =  cosh−1
³


´
+ 

That is

 =  cosh
 − 



which is the equation of a catenary. The catenary is the shape of a uniform flexible cable hung in a uniform

gravitational field. The constants  and  are given by the end points. The physics of the solution must be

identical for either choice of independent variable. However, mathematically one case is easier to solve than

the other because, in the latter case, one term in Euler’s equation is zero.
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5.5 Functions with several independent variables ()

The discussion has focussed on systems having only a single function () such that the functional is an

extremum. It is more common to have a functional that is dependent upon several independent variables

 [1() 
0
1() 2() 

0
2() ;] which can be written as

 =

Z 2

1

X
=1

 [() 
0
();]  (5.16)

where  = 1 2 3 

By analogy with the one dimensional problem, define neighboring functions  for each variable. Then

( ) = (0 ) + () (5.17)

0( ) ≡
( )


=

(0 )


+ 




where  are independent functions of  that vanish at 1 and 2 Using equations 512 and 517 leads to

the requirements for an extremum value to be




=

Z 2

1

X


µ







+



0

0


¶
 =

Z 2

1

X


µ



− 





0

¶
() = 0 (5.18)

If the variables () are independent, then the () are independent. Since the () are independent,

then evaluating the above equation at  = 0 implies that each term in the bracket must vanish independently.

That is, Euler’s differential equation becomes a set of  equations for the  independent variables




− 





0
= 0 (5.19)

where  = 1 2 3 Thus, each of the  equations can be solved independently when the  variables are

independent. Note that Euler’s equation involves partial derivatives for the dependent variables  , 
0
 and

the total derivative for the independent variable .

5.5 Example: Fermat’s Principle

O

P1

P2

1

2

(0, y  , 0)

(x, 0, z)

1

(x  , -y  , 0)     2      2 

Light incident upon a plane glass interface in the

( ) plane at  = 0.

In 1662 Fermat’s proposed that the propagation of

light obeyed the generalized principle of least transit time.

In optics, Fermat’s principle, or the principle of least

time, is the principle that the path taken between two

points by a ray of light is the path that can be traversed in

the least time. Historically, the proof of Fermat’s princi-

ple by Johann Bernoulli was one of the first triumphs of

the calculus of variations, and served as a guiding princi-

ple in the formulation of physical laws using variational

calculus.

Consider the geometry shown in the figure, where

the light travels from the point 1(0 1 0) to the point

2(2−2 0). The light beam intersects a plane glass

interface at the point ( 0 ).

The French mathematician Fermat discovered that

the required path travelled by light is the path for which

the travel time  is a minimum. That is, the transit time from the initial point 1 to the final point 2 is

given by

 =

Z 2

1

 =

Z 2

1




=
1



Z 2

1

 =
1



Z 2

1

(  )

q
1 + (0)2 + (0)2

assuming that the velocity of light in any medium is given by  =  where  is the refractive index of the

medium and  is the velocity of light in vacuum.
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This is a problem that has two dependent variables () and () with  chosen as the independent

variable. The integral can be broken into two parts 1 → 0 and 0→ −2

 =
1



∙Z 0

1

1

q
1 + (0)2 + (0)2 +

Z −2
0

2

q
1 + (0)2 + (0)2

¸
The functionals are functions of 0 and 0 but not  or . Thus Euler’s equation for  simplifies to

0 +




µ
1


(

1
0

√
1 + 

02 + 02
+

2
0

√
1 + 02 + 

02
)

¶
= 0

This implies that 0 = 0, therefore  is a constant. Since the initial and final values were chosen to be

1 = 2 = 0, therefore at the interface  = 0. Similarly Euler’s equations for  are

0 +




µ
1


(

1
0

√
1 + 

02 + 02
+

2
0

√
1 + 02 + 

02
)

¶
= 0

But 0 = tan 1 for 1 and 0 = − tan 2 for 2 and it was shown that 
0 = 0. Thus

0 +




⎛⎝1

(

1 tan 1q
1 + (tan 1)

2
− 2 tan 2q

1 + (tan 2)
2
)

⎞⎠ =




µ
1


(1 sin 1 − 2 sin 2)

¶
= 0

Therefore 1

(1 sin 1 − 2 sin 2) = constant which must be zero since when 1 = 2 then 1 = 2. Thus

Fermat’s principle leads to Snell’s Law.

1 sin 1 = 2 sin 2

The geometry of this problem is simple enough to directly minimize the path rather than using Euler’s

equations for the two parameters as performed above. The lengths of the paths 1 and 2 are

1 =

q
2 + 21 + 2

2 =

q
(2 − )

2
+ 22 + 2

The total transit time is given by

 =
1



µ
1

q
2 + 21 + 2 + 2

q
(2 − )

2
+ 22 + 2

¶
This problem involves two dependent variables, () and (). To find the minima, set the partial derivatives


= 0 and 


= 0. That is,




=
1


(

1p
2 + 21 + 2

+
2q

(2 − )
2
+ 22 + 2

) = 0

This is zero only if  = 0, that is the point  lies in the plane containing 1 and 2. Similarly




=
1


(

1p
2 + 21 + 2

− 2(2 − )q
(2 − )

2
+ 22 + 2

) =
1


(1 sin 1 − 2 sin 2) = 0

This is zero only if Snell’s law applies that is

1 sin 1 = 2 sin 2

Fermat’s principle has shown that the refracted light is given by Snell’s Law, and is in a plane normal to the

surface. The laws of reflection also are given since then 1 = 2 =  and the angle of reflection equals the

angle of incidence.
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5.6 Example: Minimum of (∇)2 in a volume
Find the function (1 2 3) that has the minimum value of (∇)2 per unit volume. For the volume

 it is desired to minimize the following

 =
1



Z Z Z
(∇)2 123 = 1



Z Z Z "µ


1

¶2
+

µ


2

¶2
+

µ


3

¶2#
123

Note that the variables 1 2 3 are independent, and thus Euler’s equation for several independent variables

can be used. To minimize the functional  , the function

 =

µ


1

¶2
+

µ


2

¶2
+

µ


3

¶2
()

must satisfy the Euler equation




−

3X
=1





µ


0

¶
= 0

where 0 = 

. Substitute  into Euler’s equation gives

3X
=1





µ




¶
= 0

This is just Laplace’s equation

∇2 = 0
Therefore  must satisfy Laplace’s equation in order that the functional  be a minimum.

5.6 Euler’s integral equation

An integral form of the Euler differential equation can be written which is useful for cases when the function

 does not depend explicitly on the independent variable , that is, when 

= 0 Note that




=




+








+



0
0


(5.20)

But




µ
0


0

¶
=



0
0


+ 0







0
(5.21)

Combining these two equations gives





µ
0


0

¶
=




− 


− 0




+ 0







0
(5.22)

The last two terms can be rewritten as

0
µ







0
− 



¶
(5.23)

which vanishes when the Euler equation is satisfied. Therefore the above equation simplifies to




− 



µ
 − 0



0

¶
= 0 (5.24)

This integral form of Euler’s equation is especially useful when 

= 0 that is, when  does not depend

explicitly on the independent variable . Then the first integral of equation 524 is a constant, i.e.

 − 0


0
= constant (5.25)

This is Euler’s integral variational equation. Note that the shortest distance between two points, the mini-

mum surface of rotation, and the brachistochrone, described earlier, all are examples where 

= 0 and thus

the integral form of Euler’s equation is useful for solving these cases.
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5.7 Constrained variational systems

mg

y

N

Ff

Figure 5.2: A disk rolling down

an inclined plane.

Imposing a constraint on a variational system implies:

1. The  constrained coordinates () are correlated which violates

the assumption made in chapter 55 that the  variables are inde-

pendent.

2. Constrained motion implies that constraint forces must be acting

to account for the correlation of the variables. These constraint

forces must be taken into account in the equations of motion.

For example, for a disk rolling down an inclined plane without slip-

ping, there are three coordinates  [perpendicular to the wedge], , [Along

the surface of the wedge], and the rotation angle  shown in figure 52

The constraint forces, F N, lead to the correlation of the variables such

that  = , while  = . Basically there is only one independent vari-

able, which can be either  or  The use of only one independent variable

essentially buries the constraint forces under the rug, which is fine if you

only need to know the equation of motion. If you need to determine the

forces of constraint then it is necessary to include all coordinates explicitly in the equations of motion.

5.7.1 Holonomic constraints

Most problems involve restrictions or constraints that couple the coordinates. For example, the () may

be confined to a surface in coordinate space. The constraints mean that the coordinates () are not inde-

pendent, but are related by equations of constraint. A constraint is called holonomic if the equations of

constraint can be expressed in the form of an algebraic equation that directly and unambiguously specifies

the shape of the surface of constraint. A non-holonomic constraint does not provide an algebraic relation

between the correlated coordinates. In addition to the holonomy of the constraints, the equations of con-

straint also can be grouped into the following three classifications depending on whether they are algebraic,

differential, or integral. These different equations of constraint exhibit different holonomy in the relation

between the coupled coordinates. Fortunately the solution of constrained systems is greatly simplified if the

equations of constraint are holonomic.

5.7.2 Geometric (algebraic) equations of constraint

Geometric constraints can be expressed in the form of algebraic relations that directly specify the shape of

the surface of constraint in coordinate space 1 2   

(1 2   ; ) = 0 (5.26)

where  = 1 2 3 . There can be  such equations of constraint where 0 ≤  ≤ . An example of such a

geometric constraint is when the motion is confined to the surface of a sphere of radius  in coordinate space

which can be written in the form  = 2 + 2 + 2 −2 = 0 Such algebraic constraint equations are called

Holonomic which allows use of generalized coordinates as well as Lagrange multipliers to handle both the

constraint forces and the correlation of the coordinates.

5.7.3 Kinematic (differential) equations of constraint

The  constraint equations also can be expressed in terms of the infinitessimal displacements of the form

X
=1




 +




 = 0 (5.27)

where  = 1 2 3 ,  = 1 2 3 . If equation (527) represents the total differential of a function then

it can be integrated to give a holonomic relation of the form of equation 526. However, if equation 527 is
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not the total differential, then it is non-holonomic and can be integrated only after having solved the full

problem.

An example of differential constraint equations is for a wheel rolling on a plane without slipping which is

non-holonomic and more complicated than might be expected. The wheel moving on a plane has five degrees

of freedom since the height  is fixed. That is, the motion of the center of mass requires two coordinates

( ) plus there are three angles (  ) where  is the rotation angle for the wheel,  is the pivot angle of

the axis, and  is the tilt angle of the wheel. If the wheel slides then all five degrees of freedom are active.

If the axis of rotation of the wheel is horizontal, that is, the tilt angle  = 0 is constant, then this kinematic

system leads to three differential constraint equations The wheel can roll with angular velocity ̇, as well as

pivot which corresponds to a change in  Combining these leads to two differential equations of constraint

−  sin  = 0  +  cos  = 0 (5.28)

These constraints are insufficient to provide finite relations between all the coordinates. That is, the con-

straints cannot be reduced by integration to the form of equation 526 because there is no functional relation

between  and the other three variables,   . Many rolling trajectories are possible between any two points

of contact on the plane that are related to different pivot angles. That is, the point of contact of the disk

could pivot plus roll in a circle returning to the same point where    are unchanged whereas the value

of  depends on the circumference of the circle. As a consequence the rolling constraint is non-holonomic

except for the case where the disk rolls in a straight line and remains vertical.

5.7.4 Isoperimetric (integral) equations of constraint

Equations of constraint also can be expressed in terms of direct integrals. This situation is encountered for

isoperimetric problems, such as finding the maximum volume bounded by a surface of fixed area, or the

shape of a hanging rope of fixed length. Integral constraints occur in economics when minimizing some cost

algorithm subject to a fixed total cost constraint.

A simple example of an isoperimetric problem involves finding the curve  = () such that the functional

has an extremum where the curve () satisfies boundary conditions such that (1) =  and (2) = ,

that is

 () =

Z 2

1

( 0;) (5.29)

is an extremum such that the perimeter also is constrained to satisfy

() =

Z 2

1

( 0;) =  (5.30)

where  is a fixed length. This integral constraint is geometric and holonomic. Another example is finding

the minimum surface area of a closed surface subject to the enclosed volume being the constraint.

5.7.5 Properties of the constraint equations

Holonomic constraints Geometric constraints can be expressed in the form of an algebraic equation

that directly specifies the shape of the surface of constraint

(1 2 3 ;) = 0 (5.31)

Such a system is called holonomic since there is a direct relation between the coupled variables. An example

of such a holonomic geometric constraint is if the motion is confined to the surface of a sphere of radius 

which can be written in the form

 = 2 + 2 + 2 −2 = 0 (5.32)

Non-holonomic constraints There are many classifications of non-holonomic constraints that exist

if equation (531) is not satisfied. The algebraic approach is difficult to handle when the constraint is an

inequality, such as the requirement that the location is restricted to lie inside a spherical shell of radius 

which can be expressed as

 = 2 + 2 + 2 −2 ≤ 0 (5.33)
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This non-holonomic constrained system has a one-sided constraint. Systems usually are non-holonomic if

the constraint is kinematic as discussed above.

Partial Holonomic constraints Partial-holonomic constraints are holonomic for a restricted range

of the constraint surface in coordinate space, and this range can be case specific. This can occur if the

constraint force is one-sided and perpendicular to the path. An example is the pendulum with the mass

attached to the fulcrum by a flexible string that provides tension but not compression. Then the pendulum

length is constant only if the tension in the string is positive. Thus the pendulum will be holonomic if

the gravitational plus centrifugal forces are such that the tension in the string is positive, but the system

becomes non-hononomic if the tension is negative as can happen when the pendulum rotates to an upright

angle where the centrifugal force outwards is insufficient to compensate for the vertical downward component

of the gravitational force. There are many other examples where the motion of an object is holonomic when

the object is pressed against the constraint surface, such as the surface of the Earth, but is unconstrained if

the object leaves the surface.

Time dependence

A constraint is called scleronomic if the constraint is not explicitly time dependent. This ignores the time

dependence contained within the solution of the equations of motion. Fortunately a major fraction of

systems are scleronomic. The constraint is called rheonomic if the constraint is explicitly time dependent.

An example of a rheonomic system is where the size or shape of the surface of constraint is explicitly time

dependent such as a deflating pneumatic tire.

Energy conservation

The solution depends on whether the constraint is conservative or dissipative, that is, if friction or drag are

acting. The system will be conservative if there are no drag forces, and the constraint forces are perpendicular

to the trajectory of the path such as the motion of a charged particle in a magnetic field. Forces of constraint

can result from sliding of two solid surfaces, rolling of solid objects, fluid flow in a liquid or gas, or result from

electromagnetic forces. Energy dissipation can result from friction, drag in a fluid or gas, or finite resistance

of electric conductors leading to dissipation of induced electric currents in a conductor, e.g. eddy currents.

A rolling constraint is unusual in that friction between the rolling bodies is necessary to maintain rolling.

A disk on a frictionless inclined plane will conserve it’s angular momentum since there is no torque acting

if the rolling contact is frictionless, that is, the disk will just slide. If the friction is sufficient to stop sliding,

then the bodies will roll and not slide. A perfect rolling body does not dissipate energy since no work is

done at the instantaneous point of contact where both bodies are in zero relative motion and the force is

perpendicular to the motion. In real life, a rolling wheel can involve a very small energy dissipation due to

deformation at the point of contact coupled with non-elastic properties of the material used to make the

wheel and the plane surface. For example, a pneumatic tire can heat up and expand due to flexing of the

tire.

5.7.6 Treatment of constraint forces in variational calculus

There are three major approaches to handle constraint forces in variational calculus. All three of them exploit

the tremendous freedom and flexibility available when using generalized coordinates. The (1) generalized

coordinate approach, described in chapter 58, exploits the correlation of the  coordinates due to the 

constraint forces to reduce the dimension of the equations of motion to  = − degrees of freedom. This

approach embeds the  constraint forces, into the choice of generalized coordinates and does not determine

the constraint forces, (2) Lagrange multiplier approach, described in chapter 59, exploits generalized

coordinates but includes the  constraint forces into the Euler equations to determine both the constraint

forces in addition to the  equations of motion. (3) Generalized forces approach, described in chapter

673 introduces constraint and other forces explicitly.
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5.8 Generalized coordinates in variational calculus

Newtonian mechanics is based on a vectorial treatment of mechanics which can be difficult to apply when

solving complicated problems in mechanics. Constraint forces acting on a system usually are unknown, and

thus must be included explicitly in Newtonian mechanics so that they can be determined simultaneously

with the solution of the dynamical equations of motion. The major advantage of the variational approaches

is that solution of the dynamical equations of motion can be simplified by expressing the motion in terms of

 independent generalized coordinates. These generalized coordinates can be any set of independent

variables, , where 1 ≤  ≤ , plus the corresponding velocities ̇ for Lagrangian mechanics, or the

corresponding canonical variables,   for Hamiltonian mechanics. These generalized coordinates for the

 variables are used to specify the scalar functional dependence on these generalized coordinates. The

variational approach employs the scalar functional to determine the trajectory. The generalized coordinates

used for the variational approach do not need to be orthogonal, they only need to be independent since

they are used only to completely specify the magnitude of the scalar functional. This greatly expands

the arsenal of possible generalized coordinates beyond what is available using Newtonian mechanics. For

example, generalized coordinates can be the dimensionless amplitudes for the  normal modes of coupled

oscillator systems, or action-angle variables. In addition, generalized coordinates having different dimensions

can be used for each of the  variables. Each generalized coordinate,  specifies an independent mode of the

system, not a specific particle. For example, each normal mode of coupled oscillators can involve correlated

motion of several coupled particles. The major advantage of using generalized coordinates is that they can

be chosen to be perpendicular to a corresponding constraint force, and therefore that specific constraint

force does no work for motion along that generalized coordinate. Moreover, the constrained motion does no

work in the direction of the constraint force for rigid constraints. Thus generalized coordinates allow specific

constraint forces to be ignored in evaluation of the minimized functional. This freedom and flexibility of choice

of generalized coordinate allows the correlated motion produced by the constraint forces to be embedded

directly into the choice of the independent generalized coordinates, and the actual constraint forces can

be ignored. Embedding of the constraint induced correlations into the generalized coordinates, effectively

"sweeps the constraint forces under the rug" which greatly simplifies the equations of motion for any system

that involve constraint forces. Selection of the appropriate generalized coordinates can be obvious, and often

it is performed subconsciously by the user.

Three variational approaches are used that employ generalized coordinates to derive the equations of

motion of a system that has  generalized coordinates subject to  constraints.

1) Minimal set of generalized coordinates: When the equations of constraint are holonomic, then

the  algebraic constraint relations can be used to transform the coordinates into  =  − independent

generalized coordinates . This approach reduces the number of unknowns,  by the number of constraints

, to give a minimal set of  = − independent generalized dynamical variables. The forces of constraint

are not explicitly discussed, or determined, when this generalized coordinate approach is employed. This

approach greatly simplifies solution of dynamical problems by avoiding the need for explicit treatment of the

constraint forces. This approach is straight forward for holonomic constraints, since the  spatial coordinates

1() () are coupled by  algebraic equations which can be used to make the transformation to

generalized coordinates. Thus the  coupled spatial coordinates are transformed to  =  − independent

generalized dynamical coordinates 1() (), and their generalized first derivatives ̇1() ̇() These

generalized coordinates are independent, and thus it is possible to use Euler’s equation for each independent

parameter 



− 





0
= 0 (5.34)

where  = 1 2 3 There are  = − such Euler equations. The freedom to choose generalized coordinates

underlies the tremendous advantage of applying the variational approach.

2) Lagrange multipliers: The  Lagrange equations, plus the  equations of constraint, can be used

to explicitly determine the  generalized coordinates plus the  constraint forces. That is, + unknowns

are determined. This approach is discussed in chapter 59.

3) Generalized forces: This approach introduces the constraint forces explicity. This approach, applied

to Lagrangian mechanics, is discussed in chapter 663

The above three approaches exploit generalized coordinates to handle constraint forces as described in

chapter 6
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5.9 Lagrange multipliers for holonomic constraints

5.9.1 Algebraic equations of constraint

The Lagrange multiplier technique provides a powerful, and elegant, way to handle holonomic constraints

using Euler’s equations1. The general method of Lagrange multipliers for  variables, with  constraints,

is best introduced using Bernoulli’s ingenious exploitation of virtual infinitessimal displacements, which

Lagrange signified by the symbol . The term "virtual" refers to an intentional variation of the generalized

coordinates  in order to elucidate the local sensitivity of a function  ( ) to variation of the variable.

Contrary to the usual infinitessimal interval in differential calculus, where an actual displacement  occurs

during a time , a virtual displacement is imagined to be an instantaneous, infinitessimal, displacement of

a coordinate, not an actual displacement, in order to elucidate the local dependence of  on the coordinate.

The local dependence of any functional  to virtual displacements of all  coordinates, is given by taking

the partial differentials of  .

 =

X





 (5.35)

The function  is stationary, that is an extremum, if equation 535 equals zero. The extremum of the

functional  , given by equation 516 can be expressed in a compact form using the virtual displacement

formalism as

 = 

Z 2

1

X


 [() 
0
();]  =

X





 = 0 (5.36)

The auxiliary conditions, due to the  holonomic algebraic constraints for the  variables , can be

expressed by the  equations

(q) = 0 (5.37)

where 1 ≤  ≤  and 1 ≤  ≤  with   . The variational problem for the  holonomic constraint

equations also can be written in terms of  differential equations where 1 ≤  ≤ 

 =

X
=1




 = 0 (5.38)

Since equations 536 and 538 both equal zero, the  equations 538 can be multiplied by arbitrary

undetermined factors  and added to equations 536 to give.

 ( ) + 11 + 22 · · · · = 0 (5.39)

Note that this is not trivial in that although the sum of the constraint equations for each  is zero; the

individual terms of the sum are not zero.

Insert equations 536 plus 538 into 539 and collect all  terms, gives

X


Ã



+

X
=1






!
 = 0 (5.40)

Note that all the  are free independent variations and thus the terms in the brackets, which are the

coefficients of each , individually must equal zero. For each of the  values of , the corresponding bracket

implies




+

X
=1





= 0 (5.41)

This is equivalent to what would be obtained from the variational principle

 +

X
=1

 = 0 (5.42)

1This textbook uses the symbol  to designate a generalized coordinate, and 
0
 to designate the corresponding first derivative

with respect to the independent variable, in order to differentiate the spatial coordinates from the more powerful generalized

coordinates.
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Equation 542 is equivalent to a variational problem for finding the stationary value of  0

 ( 0) = 

Ã
 +

X




!
= 0 (5.43)

where  0 is defined to be

 0 ≡
Ã
 +

X
=1



!
(5.44)

The solution to equation 543 can be found using Euler’s differential equation 519 of variational calculus.

At the extremum  ( 0) = 0 corresponds to following contours of constant  0 which are in the surface that is
perpendicular to the gradients of the terms in  0. The Lagrange multiplier constants are required because,
although these gradients are parallel at the extremum, the magnitudes of the gradients are not equal.

The beauty of the Lagrange multipliers approach is that the auxiliary conditions do not have to be

handled explicitly, since they are handled automatically as  additional free variables during solution of

Euler’s equations for a variational problem with  +  unknowns fit to  +  equations. That is, the 

variables  are determined by the variational procedure using the  variational equations




(
 0

0
)− (

0


) =




(


0
)− (


)−

X






= 0 (5.45)

simultaneously with the  variables  which are determined by the  variational equations




(
 0

0
)− (

0


) = 0 (5.46)

Equation 545 usually is expressed as

(



)− 


(


0
) +

X






= 0 (5.47)

The elegance of Lagrange multipliers is that a single variational approach allows simultaneous determination

of all + unknowns. Chapter 62 will show that the forces of constraint are given directly by the 



terms.

5.7 Example: Two dependent variables coupled by one holonomic constraint

The powerful, and generally applicable, Lagrange multiplier technique is illustrated by considering the case

of only two dependent variables, () and  ()  with the function (() 0() () ()0;) and with one
holonomic equation of constraint coupling these two dependent variables. The extremum is given by requiring




=

Z 2

1

∙µ



− 





0

¶



+

µ



− 





0

¶




¸
 = 0 ()

with the constraint expressed by the auxiliary condition

 ( ;) = 0 ()

Note that the variations 

and 


are no longer independent because of the constraint equation, thus the

the two terms in the brackets of equation  are not separately equal to zero at the extremum. However,

differentiating the constraint equation  gives




=

µ







+









¶
= 0 ()

No 

term applies because, for the independent variable, 


= 0 Introduce the neighboring paths by adding

the auxiliary functions

( ) = () + 1() ()

( ) = () + 2() ()
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Insert the differentials of  and  into  gives




=

µ



1() +




2()

¶
= 0 ( )

implying that

2() = −






1()

Equation  can be rewritten asZ 2

1

∙µ



− 





0

¶
1() +

µ



− 





0

¶
2()

¸
 = 0Z 2

1

"µ



− 





0

¶
−
µ



− 





0

¶ 





#
1() = 0 ()

Equation  now contains only a single arbitrary function 1() that is not restricted by the constraint. Thus

the bracket in the integrand of equation  must equal zero for the extremum. That isµ



− 





0

¶µ




¶−1
=

µ



− 





0

¶µ




¶−1
≡ −()

Now the left hand side of this equation is only a function of  and  with respect to  and 0 while the
right-hand side is a function of  and  with respect to  and 0 Because both sides are functions of  then
each side can be set equal to a function −() Thus the above equations can be written as







0
− 


=  ()











0
− 


=  ()




()

There are three unknown functions. () () and () The complete solution for these three unknown

functions is obtained by solving the two equations, , plus the equation of constraint  . The Lagrange

multiplier () is related to the force of constraint. This example of two variables coupled by one holonomic

constraint conforms with the general relation for many variables and constraints given by equation 547.

5.9.2 Integral equations of constraint

The constraint equation also can be given in an integral form which is used frequently for isoperimetric

problems. Consider a one dependent-variable isoperimetric problem, where it is required to find the curve

 = () such that the functional has an extremum, and the curve () satisfies boundary conditions such

that (1) =  and (2) = . That is

 () =

Z 2

1

( 0;) (5.48)

is an extremum such that the perimeter also is a constraint that satisfies

() =

Z 2

1

( 0;) =  (5.49)

where  is a fixed length. This is an integral constraint.

Analogous to (544) these two functionals can be combined requiring that

(  ) ≡  [ () + ()] = 

Z 2

1

[ + ] = 0 (5.50)

That is, it is an extremum for both () and the Lagrange multiplier . This effectively involves finding the

extremum path for the function (  ) =  ( ) + ( ) where both () and  are the minimized

variables. Therefore the curve () must satisfy the differential equation







0
− 


+ 

∙






0
− 



¸
= 0 (5.51)



5.9. LAGRANGE MULTIPLIERS FOR HOLONOMIC CONSTRAINTS 129

subject to the boundary conditions (1) =  (2) =  and () = .

5.8 Example: Catenary

One isoperimetric problem is the catenary which is the shape a uniform rope or chain of fixed length 

that minimizes the gravitational potential energy. Let the rope have a uniform mass per unit length of 

kg/m

1 1

The catenary

The gravitational potential energy is

 = 

Z 2

1

 = 

Z 2

1


p
2 + 2 = 

Z 2

1


p
1 + 02

The constraint is that the length be a constant 

 =

Z 2

1

 =

Z 2

1

p
1 + 02

Thus the function is ( 0;) = 
p
1 + 02 while the integral con-

straint sets  =
p
1 + 02

These need to be inserted into the Euler equation (551) by defining

 =  +  = ( + )
p
1 + 02

Note that this case is one where 


= 0 and  is a constant; also

defining  =  +  then 0 = 0 Therefore the Euler’s equations can be written in the integral form

 − 0


0
=  = constant

Inserting the relation  = 
√
1 + 02 gives


p
1 + 02 − 0

0√
1 + 02

= 

where  is an arbitrary constant. This simplifies to

02 =
³


´2
− 1

The integral of this is

 =  cosh

µ
+ 



¶
where  and  are arbitrary constants fixed by the locations of the two fixed ends of the rope.

5.9 Example: The Queen Dido problem

A famous constrained isoperimetric legend is that of Dido, first Queen of Carthage. Legend says that,

when Dido landed in North Africa, she persuaded the local chief to sell her as much land as an oxhide could

contain. She cut an oxhide into narrow strips and joined them to make a continuous thread more than four

kilometers in length which was sufficient to enclose the land adjoining the coast on which Carthage was built.

Her problem was to enclose the maximum area for a given perimeter. Let us assume that the coast line is

straight and the ends of the thread are at ± on the coast line. The enclosed area is given by

 =

Z +

−


The constraint equation is that the total perimeter equals .Z 

−

p
1 + 02 = 
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Thus we have that the functional ( 0 ) =  and ( 0 ) =
p
1 + 02. Then 


= 1 

0 = 0


= 0

and 
0 =

0√
1+02

 Insert these into the Euler-Lagrange equation (551) gives

1− 




"
0p
1 + 02

#
= 0

That is





"
0p
1 + 02

#
=
1



Integrate with respect to  gives
0p
1 + 02

= − 

where  is a constant of integration. This can be rearranged to give

0 =
± (− )q
2 − (− )

2

The integral of this is

 = ∓
q
2 − (− )

2
+ 

Rearranging this gives

(− )
2
+ ( − )

2
= 2

This is the equation of a circle centered at ( ). Setting the bounds to be (− 0) to ( 0) gives that
 =  = 0 and the circle radius is  Thus the length of the thread must be  = . Assuming that  = 4

then  = 127 and Queen Dido could buy an area of 2532

5.10 Geodesic

The geodesic is defined as the shortest path between two fixed points for motion that is constrained to lie

on a surface. Variational calculus provides a powerful approach for determining the equations of motion

constrained to follow a geodesic.

The use of variational calculus is illustrated by considering the geodesic constrained to follow the surface

of a sphere of radius . As discussed in appendix 23, the element of path length on the surface of the

sphere is given in spherical coordinates as  = 

q
2 + (sin )

2
. Therefore the distance  between two

points 1 and 2 is

 = 

Z 2

1

⎡⎣sµ 



¶2
+ sin2 

⎤⎦  (5.52)

The function  for ensuring that  be an extremum value uses

 =
p
02 + sin2  (5.53)

where 0 = 

 This is a case where 


= 0 and thus the integral form of Euler’s equation can be used

leading to the result that p
02 + sin2  − 0



0
p
02 + sin2  = constant =  (5.54)

This gives that

sin2  = 
p
02 + sin2  (5.55)

This can be rewritten as



=
1

0
=

 csc2 √
1− 2 csc2 

(5.56)
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Solving for  gives

 = sin−1
µ
cot 



¶
+  (5.57)

where

 ≡ 1− 2

2
(5.58)

That is

cot  =  sin (− ) (5.59)

Expanding the sine and cotangent gives

( cos) sin  sin− ( sin) sin  cos =  cos  (5.60)

Since the brackets are constants, this can be written as

 ( sin  sin)− ( sin  cos) = ( cos ) (5.61)

The terms in the brackets are just expressions for the rectangular coordinates    That is,

 − =  (5.62)

This is the equation of a plane passing through the center of the sphere. Thus the geodesic on a sphere

is the path where that plane through the center, as well as the initial and final points, intersects the sphere.

This geodesic is called a great circle. Euler’s equation gives both the maximum and minimum extremum

path lengths for motion on this great circle.

Chapter 16 discusses the geodesic in the four-dimensional space-time coordinates that underlie the General

Theory of Relativity. As a consequence, the use of the calculus of variations to determine the equations of

motion for geodesics plays a pivotal role in the General Theory of Relativity.

5.11 Variational approach to classical mechanics

This chapter has introduced the general principles of variational calculus needed for understanding the La-

grangian and Hamiltonian approaches to classical mechanics. Although variational calculus was developed

originally for classical mechanics, now it has grown to be an important branch of mathematics with applica-

tions to many other fields outside of physics. The prologue of this book emphasized the dramatic differences

between the differential vectorial approach of Newtonian mechanics, and the integral variational approaches

of Lagrange and Hamiltonian mechanics. The Newtonian vectorial approach involves solving Newton’s dif-

ferential equations of motion that relate the force and momenta vectors. This requires knowledge of the

time dependence of all the force vectors, including constraint forces, acting on the system which can be very

complicated. Chapter 2 showed that the first-order time integrals, equations 210 216, relate the initial and

final total momenta without requiring knowledge of the complicated instantaneous forces acting during the

collision of two bodies. Similarly, for conservative systems, the first-order spatial integral, equation 221,

relates the initial and final total energies to the net work done on the system without requiring knowledge

of the instantaneous force vectors. The first-order spatial integral has the advantage that it is a scalar quan-

tity, in contrast to time integrals which are vector quantities. These first-order integral relations are used

frequently in Newtonian mechanics to derive solutions of the equations of motion that avoid having to solve

complicated differential equations of motion.

This chapter has illustrated that variational principles provide a means of deriving more detailed infor-

mation, such as the trajectories for the motion between given initial and final conditions, by requiring that

scalar functionals have extrema values. For example, the solution of the brachistochrone problem determined

the trajectory having the minimum transit time, based on only the magnitudes of the kinetic and gravita-

tional potential energies. Similarly, the catenary shape of a suspended chain was derived by minimizing the

gravitational potential energy. The calculus of variations uses Euler’s equations to determine directly the

differential equations of motion of the system that lead to the functional of interest being stationary at an

extremum. The Lagrangian and Hamiltonian variational approaches to classical mechanics are discussed

in chapters 6 − 16. The broad range of applicability, the flexibility, and the power provided by variational
approaches to classical mechanics and modern physics will be illustrated.



132 CHAPTER 5. CALCULUS OF VARIATIONS

5.12 Summary

Euler’s differential equation: The calculus of variations has been introduced and Euler’s differential

equation was derived. The calculus of variations reduces to varying the functions () where  = 1 2 3 ,

such that the integral

 =

Z 2

1

 [() 
0
();]  (516)

is an extremum, that is, it is a maximum or minimum. Here  is the independent variable, () are

the dependent variables plus their first derivatives 0 ≡ 


 The quantity  [() 0();] has some given
dependence on  

0
 and  The calculus of variations involves varying the functions () until a stationary

value of  is found which is presumed to be an extremum. It was shown that if the () are independent,

then the extremum value of  leads to  independent Euler equations




− 





0
= 0 (519)

where  = 1 2 3. This can be used to determine the functional form () that ensures that the integral

 =
R 2
1

 [() 0();]  is a stationary value, that is, presumably a maximum or minimum value.

Note that Euler’s equation involves partial derivatives for the dependent variables  
0
 and the total

derivative for the independent variable 

Euler’s integral equation: It was shown that if the function
R 2
1

 [() 
0
();] does not depend on

the independent variable, then Euler’s differential equation can be written in an integral form. This integral

form of Euler’s equation is especially useful when 

= 0 that is, when  does not depend explicitly on ,

then the first integral of the Euler equation is a constant

 − 0


0
= constant (525)

Constrained variational systems: Most applications involve constraints on the motion. The equations

of constraint can be classified according to whether the constraints are holonomic or non-holonomic, the time

dependence of the constraints, and whether the constraint forces are conservative.

Generalized coordinates in variational calculus: Independent generalized coordinates can be chosen

that are perpendicular to the rigid constraint forces and therefore the constraint does not contribute to the

functional being minimized. That is, the constraints are embedded into the generalized coordinates and thus

the constraints can be ignored when deriving the variational solution.

Minimal set of generalized coordinates: If the constraints are holonomic then the  holonomic

equations of constraint can be used to transform the  coupled generalized coordinates to  =  − 

independent generalized variables  
0
. The generalized coordinate method then uses Euler’s equations to

determine these  = − independent generalized coordinates.




− 





0
= 0 (535)

Lagrange multipliers for holonomic constraints: The Lagrange multipliers approach for  variables,

plus  holonomic equations of constraint, determines all  + unknowns for the system. The holonomic

forces of constraint acting on the  variables, are related to the Lagrange multiplier terms ()



that

are introduced into the Euler equations. That is,




− 





0
+

X


()



= 0 (548)

where the holonomic equations of constraint are given by

(;) = 0 (538)

The advantage of using the Lagrange multiplier approach is that the variational procedure simultaneously

determines both the equations of motion for the  variables plus the  constraint forces acting on the

system.
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Workshop exercises

1. Find the extremal of the functional

() =

2Z
1

̇2

3


that satisfies (1) = 3 and (2) = 18. Show that this extremal provides the global minimum of  .

2. Consider the use of equations of constraint.

(a) A particle is constrained to move on the surface of a sphere. What are the equations of constraint for this

system?

(b) A disk of mass  and radius  rolls without slipping on the outside surface of a half-cylinder of radius

5. What are the equations of constraint for this system?

(c) What are holonomic constraints? Which of the equations of constraint that you found above are holo-

nomic?

(d) Equations of constraint that do not explicitly contain time are said to be scleronomic. Moving constraints

are rheonomic. Are the equations of constraint that you found above scleronomic or rheonomic?

3. For each of the following systems, describe the generalized coordinates that would work best. There may be

more than one answer for each system.

(a) An inclined plane of mass  is sliding on a smooth horizontal surface, while a particle of mass  is

sliding on the smooth inclined surface.

(b) A disk rolls without slipping across a horizontal plane. The plane of the disk remains vertical, but it is

free to rotate about a vertical axis.

(c) A double pendulum consisting of two simple pendula, with one pendulum suspended from the bob of the

other. The two pendula have equal lengths and have bobs of equal mass. Both pendula are confined to

move in the same plane.

(d) A particle of mass  is constrained to move on a circle of radius . The circle rotates in space about

one point on the circle, which is fixed. The rotation takes place in the plane of the circle, with constant

angular speed , in the absence of a gravitational force.

(e) A particle of mass is attracted toward a given point by a force of magnitude 2, where  is a constant.

4. Looking back at the systems in problem 3, which ones could have equations of constraint? How would you

classify the equations of constraint (holonomic, scleronomic, rheonomic, etc.)?
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Problems

1. Find the extremal of the functional

() =

Z 

0

(2 sin − ̇2)

that satisfies () = () = 0. Show that this extremal provides the global maximum of  .

2. Find and describe the path  = () for which the the integral

2Z
1

√


q
1 + (0)2 is stationary.

3. Find the dimensions of the parallelepiped of maximum volume circumscribed by a sphere of radius .

4. Consider a single loop of the cycloid having a fixed value of  as shown in the figure. A car released from

rest at any point 0 anywhere on the track between  and the lowest point  , that is, 0 has a parameter

0  0  

P
P

O

y

x

0

(a) Show that the time  for the cart to slide from 0 to  is given by the integral

 (0 →  ) =

r




Z
0

r
1− cos 

cos 0 − cos 

(b) Prove that this time  is equal to 
p
 which is independent of the position 0

(c) Explain qualitatively how this surprising result can possibly be true.

5. Consider a medium for which the refractive index  = 
2
where  is a constant and  is the distance from

the origin. Use Fermat’s Principle to find the path of a ray of light travelling in a plane containing the origin.

Hint, use two-dimensional polar coordinates with  =  ()  Show that the resulting path is a circle through

the origin.

6. Find the shortest path between the (  ) points (0−1 0) and (0 1 0) on the conical surface

 = 1−
p
2 + 2

What is the length of this path? Note that this is the shortest mountain path around a volcano.

7. Show that the geodesic on the surface of a right circular cylinder is a segment of a helix.



Chapter 6

Lagrangian dynamics

6.1 Introduction

Newtonian mechanics is based on vector observables such as momentum and force, and Newton’s equations

of motion can be derived if the forces are known. However, Newtonian mechanics becomes difficult for

many-body systems when constraint forces apply. The alternative algebraic Lagrangian mechanics approach

is based on the concept of scalar energies which circumvent many of the difficulties in handling constraint

forces and many-body systems.

The Lagrangian approach to classical dynamics is based on the calculus of variations introduced in chapter

5. It was shown that the calculus of variations determines the function () such that the scalar functional

 =

Z 2

1

X


 [() 
0
();]  (6.1)

is an extremum, that is, a maximum or minimum. Here  is the independent variable, () are the 

dependent variables, and their derivatives 0 ≡ 


 where  = 1 2 3  The function  [() 
0
();] has

an assumed dependence on  
0
 and  The calculus of variations determines the functional dependence

of the dependent variables () on the independent variable  that is required to ensure that  is an

extremum. For  independent variables,  has a stationary point, which is presumed to be an extremum,

that is determined by solution of Euler’s differential equations







0
− 


= 0 (6.2)

If the coordinates () are independent, then the Euler equations, (62), for each coordinate  are inde-

pendent. However, for constrained motion, the constraints lead to auxiliary conditions that correlate the

coordinates. As shown in chapter 5 a transformation to independent generalized coordinates can be made

such that the correlations induced by the constraint forces are embedded into the choice of the independent

generalized coordinates. The use of generalized coordinates in Lagrangian mechanics simplifies derivation of

the equations of motion for constrained systems. For example, for a system of  coordinates, that involves

 holonomic constraints, there are  =  −  independent generalized coordinates. For such holonomic

constrained motion, it will be shown that the Euler equations can be solved using either of the following

three alternative ways.

1) Theminimal set of generalized coordinates approach involves finding a set of  = − indepen-

dent generalized coordinates  that satisfy the assumptions underlying (63). These generalized coordinates

can be determined if the  equations of constraint are holonomic, that is, related by algebraic equations of

constraint

(;) = 0 (6.3)

where  = 1 2 3  These equations uniquely determine the relationship between the  correlated coordi-

nates. This method has the advantage that it reduces the system of  coordinates, subject to  constraints,

to  = − independent generalized coordinates which reduces the dimension of the problem to be solved.

However, it does not explicitly determine the forces of constraint which are effectively swept under the rug.

135
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2) The Lagrange multipliers approach takes account of the correlation between the  coordinates and

 holonomic constraints by introducing the Lagrange multipliers (). These  generalized coordinates 
are correlated by the  holonomic constraints.







0
− 


=

X


 ()



(6.4)

where  = 1 2 3 . The Lagrange multiplier approach has the advantage that Euler’s calculus of variations

automatically use the  Lagrange equations, plus the  equations of constraint, to explicitly determine both

the  coordinates  and the  forces of constraint which are related to the Lagrange multipliers  as given

in equation (64). Chapter 62 shows that the
P

  ()



terms are directly related to the holonomic

forces of constraint.

3) The generalized force approach incorporates the forces of constraint explicitly as will be shown

in chapter 653. Generalized forces include the constraint forces explicitly, and thus can accommodate

holonomic, non-holonomic, and non-conservative forces.

The physics underlying the Lagrange formulation of classical mechanics will be illustrated by use of a

plausibility argument that is based on Newton’s laws of motion. This will be followed by a more rigorous

derivation of the Lagrangian formulation developed by the following two approaches that better elucidate

the physics underlying the Lagrange and Hamiltonian analytic representations of classical mechanics. In

1788 Lagrange derived his equations of motion using the differential d’Alembert Principle, that extends to

dynamical systems the Bernoulli Principle of infinitessimal virtual displacements and virtual work. The

other approach, developed in 1834, uses the integral Hamilton’s Principle to derive the Lagrange equations.

Euler’s variational calculus underlies d’Alembert’s Principle and Hamilton’s Principle since both are based

on the philosophical belief that the laws of nature prefer economy of motion. Chapters 62− 65 show that
both d’Alembert’s Principle and Hamilton’s Principle lead to the Euler-Lagrange equations. This will be

followed by examples to illustrate the use of Lagrangian mechanics in classical mechanics.

6.2 Newtonian plausibility argument for Lagrangian mechanics

Insight into the physics underlying Lagrange mechanics is given by showing the direct relationship between

Newtonian and Lagrangian mechanics. The variational approaches to classical mechanics exploit the first-

order spatial integral of the force, equation 217 which equals the work done between the initial and final

conditions. This is a simple scalar quantity that depends on the initial and final location for conservative

forces. Newton’s equation of motion is

F =
p


(6.5)

The kinetic energy is given by

 =
1

2
2 =

p · p
2

=
2
2

+
2

2
+

2
2

It can be seen that


̇
=  (6.6)

and






̇
=




=  (6.7)

Consider that the force, acting on a mass  is arbitrarily separated into two components, one part that

is conservative, and thus can be written as the gradient of a scalar potential  , plus the excluded part of

the force,  . The excluded part of the force  could include non-conservative frictional forces as well

as forces of constraint which may be conservative or non-conservative. This separation allows the force to

be written as

F = −∇ +F (6.8)

Along each of the  axes,






̇
= − 


+ 


(6.9)
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Equation (69) can be extended by transforming the cartesian coordinate  to the generalized coordinates



Define the standard Lagrangian to be the difference between the kinetic energy and the potential energy,

which can be written in terms of the generalized coordinates  as

( ̇) ≡  (̇)− () (6.10)

Assume that the potential is only a function of the generalized coordinates  that is

̇

= 0 then



̇
=



̇
+



̇
=



̇
(6.11)

Using the above equations allows Newton’s equation of motion (69) to be expressed as







̇
− 


= 


(6.12)

The excluded force 


can be partitioned into a holonomic constraint force 


 plus any remaining

excluded forces   as given by




= 


+  (6.13)

A comparison of equations (612) and (64) shows that the holonomic constraint forces 


 that are

contained in the excluded force   can be identified with the Lagrange multiplier term in equation 64.



≡

X


 ()



(6.14)

That is the Lagrange multiplier terms can be used to account for holonomic constraint forces 


. Thus

equation 612 can be written as







̇
− 


=

X


 ()



+ 


(6.15)

where the Lagrange multiplier term accounts for holonomic constraint forces, and 


includes all the

remaining forces that are not accounted for by the scalar potential  , or the Lagrange multiplier terms 


.

For holonomic, conservative forces it is possible to absorb all the forces into the potential  plus the

Lagrange multiplier term, that is 


= 0 Moreover, the use of a minimal set of generalized coordinates

allows the holonomic constraint forces to be ignored by explicitly reducing the number of coordinates from

 dependent coordinates to  =  − independent generalized coordinates. That is, the correlations due

to the constraint forces are embedded into the generalized coordinates. Then equation 615 reduces to the

basic Euler differential equations.






̇
− 


= 0 (6.16)

Note that equation 616 is identical to Euler’s equation 534, if the independent variable  is replaced

by time . Thus Newton’s equation of motion are equivalent to minimizing the action integral  =
R 2
1

,

that is

 = 

Z 2

1

( ̇; ) = 0 (6.17)

which is Hamilton’s Principle. Hamilton’s Principle underlies many aspects of physics and now it is used

as the starting point for developing classical mechanics. Hamilton’ Principle was postulated 46 years after

Lagrange introduced Lagrangian mechanics.

The above plausibility argument, which is based on Newtonian mechanics, illustrates the close connection

between the vectorial Newtonian mechanics and the algebraic Lagrangian mechanics approaches to classical

mechanics.
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6.3 Lagrange equations from d’Alembert’s Principle

6.3.1 d’Alembert’s Principle of virtual work

The Principle of Virtual Work provides a basis for a rigorous derivation of Lagrangian mechanics. Bernoulli

introduced the concept of virtual infinitessimal displacement of a system mentioned in chapter 591. This

refers to a change in the configuration of the system as a result of any arbitrary infinitessimal instantaneous

change of the coordinates r that is consistent with the forces and constraints imposed on the system at

the instant . Lagrange’s symbol  is used to designate a virtual displacement which is called "virtual" to

imply that there is no change in time , i.e.  = 0. This distinguishes it from an actual displacement r of

body  during a time interval  when the forces and constraints may change.

Suppose that the system of  particles is in equilibrium, that is, the total force on each particle  is

zero. The virtual work done by the force F moving a distance r is given by the dot product F · r. For
equilibrium, the sum of all these products for the  bodies also must be zero

X


F · r = 0 (6.18)

Decomposing the force F on particle  into applied forces F

 and constraint forces f


 gives

X


F · r +
X


f · r = 0 (6.19)

The second term in equation 619 can be ignored if the virtual work due to the constraint forces is zero.

This is rigorously true for rigid bodies and is valid for any forces of constraint where the constraint forces

are perpendicular to the constraint surface and the virtual displacement is tangent to this surface. Thus if

the constraint forces do no work, then (619) reduces to

X


F · r = 0 (6.20)

This relation is the Bernoulli’s Principle of Static Virtual Work and is used to solve problems in statics.

Bernoulli introduced dynamics by using Newton’s Law to related force and momentum.

F = ṗ (6.21)

Equation (621) can be rewritten as

F − ṗ = 0 (6.22)

In 1742, d’Alembert developed the Principle of Dynamic Virtual Work in the form

X


(F − ṗ) · r = 0 (6.23)

Using equations (619) plus (623) gives

X


(F − ṗ) · r +
X


f · r = 0 (6.24)

For the special case where the forces of constraint is zero, then equation 624 reduces to d’Alembert’s

Principle
X


(F − ṗ) · r = 0 (6.25)

The d’Alembert’s Principle, by a stroke of genius, cleverly transforms the principle of virtual work from the

realm of statics to dynamics. Application of virtual work to statics primarily leads to algebraic equations

between the forces, whereas d’Alembert’s principle applied to dynamics leads to differential equations.
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6.3.2 Transformation to generalized coordinates

In classical mechanical systems the coordinates r usually are not independent due to the forces of constraint

and the constraint force energy contributes to equation 624. These problems can be eliminated by expressing

d’Alembert’s Principle in terms of virtual displacements of  independent generalized coordinates  of the

system for which the constraint force term
P

 f

 · q = 0. Then the individual variational coefficients 

are independent and (F − ṗ) · q = 0 can be equated to zero for each value of .
The transformation of the  -body system to  independent generalized coordinates  can be expressed

as

r = r(1 2 3  ) (6.26)

Assuming  independent coordinates, then the velocity v can be written in terms of general coordinates 
using the chain rule for partial differentiation.

v ≡ r


=

X


r


̇ +

r


(6.27)

The arbitrary virtual displacement r can be related to the virtual displacement of the generalized coordinate

 by

r =

X


r


 (6.28)

Note that by definition, a virtual displacement considers only displacements of the coordinates, and no time

variation  is involved.

The above transformations can be used to express d’Alembert’s dynamical principle of virtual work in

generalized coordinates. Thus the first term in d’Alembert’s Dynamical Principle, (625) becomes

X


F · r =
X


F ·
r


 =

X


 (6.29)

where  are called components of the generalized force,
1 defined as

 ≡
X


F ·
r


(6.30)

Note that just as the generalized coordinates  need not have the dimensions of length, so the  do not

necessarily have the dimensions of force, but the product  must have the dimensions of work. For

example,  could be torque and  could be the corresponding infinitessimal rotation angle.

The second term in d’Alembert’s Principle (625) can be transformed using equation 628

X


ṗ · r =
X


r̈ · r =
Ã

X


r̈ · r


!
 (6.31)

The right-hand side of (631) can be rewritten asÃ
X


r̈ · r


!
 =

X


½




µ
ṙ · r



¶
−ṙ · 



µ
r



¶¾
 (6.32)

Note that equation (627) gives that
v

̇
=

r


(6.33)

therefore the first right-hand term in (632) can be written as





µ
ṙ · r



¶
=





µ
v · v

̇

¶
(6.34)

1This proof, plus the notation, conform with that used by Goldstein [Go50] and by other texts on classical mechanics.
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The second right-hand term in (632) can be rewritten by interchanging the order of the differentiation with

respect to  and 




µ
r



¶
=

v


(6.35)

Substituting (634) and (635) into (632) gives

X


ṗ · r =
Ã

X


r̈ · r


!
 =

X


½




µ
v · v

̇

¶
−v · v



¾
 (6.36)

Inserting (629) and (636) into d’Alembert’s Principle (625) leads to the relation

X


(F − ṗ) · r = −
X


(




Ã


̇

ÃX


1

2


2


!!
− 



Ã
X


1

2


2


!
−

)
 = 0 (6.37)

The
P


1
2


2
 term can be identified with the system kinetic energy  . Thus d’Alembert Principle reduces

to the relation

X


∙½




µ


̇

¶
− 



¾
−

¸
 = 0 (6.38)

For cartesian coordinates  is a function only of velocities (̇ ̇ ̇) and thus the term 


= 0 However,

as discussed in appendix 22, for curvilinear coordinates 


6= 0 due to the curvature of the coordinates
as is illustrated for polar coordinates where v =̇r̂+ ̇θ̂.

If all the  generalized coordinates  are independent, then equation 638 implies that the term in the

square brackets is zero for each individual value of . This leads to the basic Euler-Lagrange equations of

motion for each of the independent generalized coordinates½




µ


̇

¶
− 



¾
=  (6.39)

where  ≥  ≥ 1. That is, this leads to  Euler-Lagrange equations of motion for the generalized forces  .

As discussed in chapter 58 when  holonomic constraint forces apply, it is possible to reduce the system

to  = − independent generalized coordinates for which equation 625 applies.

In 1687 Leibniz proposed minimizing the time integral of his “vis viva", which equals 2 That is,



Z 2

1

 = 0 (6.40)

The variational equation 639 accomplishes the minimization of equation 640. It is remarkable that Leibniz

anticipated the basic variational concept prior to the birth of the developers of Lagrangian mechanics, i.e.,

d’Alembert, Euler, Lagrange, and Hamilton.

6.3.3 Lagrangian

The handling of both conservative and non-conservative generalized forces  is best achieved by assuming

that the generalized force  =
P

 F

 · r̄

can be partitioned into a conservative velocity-independent term,

that can be expressed in terms of the gradient of a scalar potential, −∇ plus an excluded generalized force

 which contains the non-conservative, velocity-dependent, and all the constraint forces not explicitly

included in the potential  . That is,

 = −∇ +
 (6.41)

Inserting (641) into (638)  and assuming that the potential  is velocity independent, allows (638) to be

rewritten as X


∙½




µ
( − )

̇

¶
− ( − )



¾
−



¸
 = 0 (6.42)
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The standard definition of the Lagrangian is

 ≡  −  (6.43)

then (642) can be written as

X


∙½




µ


̇

¶
− 



¾
−



¸
 = 0 (6.44)

Note that equation (644) contains the basic Euler-Lagrange equation (638) as a special case when  = 0.

In addition, note that if all the generalized coordinates are independent, then the square bracket terms are

zero for each value of  which leads to the general Euler-Lagrange equations of motion½




µ


̇

¶
− 



¾
= 

 (6.45)

where  ≥  ≥ 1.
Chapter 653 will show that the holonomic constraint forces can be factored out of the generalized force

term 
 which simplifies derivation of the equations of motion using Lagrangian mechanics. The general

Euler-Lagrange equations of motion are used extensively in classical mechanics because conservative forces

play a ubiquitous role in classical mechanics.

6.4 Lagrange equations from Hamilton’s Principle

In two papers published in 1834 and 1835, Hamilton announced a dynamical principle upon which it is

possible to base all of classical mechanics, and much of classical physics. Hamilton was seeking a theory of

optics when he developed Hamilton’s Principle and the field of Hamiltonian mechanics both of which play

a crucial role in classical mechanics and modern physics. Hamilton’s Principle states. “ dynamical systems

follow paths that minimize the time integral of the Lagrangian”. That is, the action functional 

 =

Z 2

1

(q q̇) (6.46)

has a minimum value for the correct path of motion. As discussed in chapter 132, choice the Lagrangian

usually is limited to a function of the generalized coordinates q, and their velocities q̇, plus time . At this

stage the discussion is restricted to use of the standard Lagrangian  ≡  − . Hamilton’s Principle can

be written in terms of virtual infinitessimal displacement  as

 = 

Z 2

1

 = 0 (6.47)

Variational calculus therefore implies that a system of  independent generalized coordinates must satisfy

the basic Lagrange-Euler equations






̇
− 


= 0 (6.48)

This is precisely the conclusion given in equation 645 when 
 = 0 which was derived using d’Alembert’s

Principle.

This discussion has demonstrated that Euler’s variational differential equation underlies both the dif-

ferential variational d’Alembert Principle, and the integral Hamilton’s Principle. These approaches have

been used to derive the most general Lagrange equations that are applicable to both holonomic and non-

holonomic constraints, as well as for conservative and non-conservative systems. Chapter 62 presented a

plausibility argument that illustrated that the same result is justified based on Newtonian mechanics. How-

ever, d’Alembert’s Principle and Hamilton’s Principle, expressed in terms of generalized coordinates, are

broader in scope than the equations of motion implied using Newtonian mechanics.
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6.5 Constrained systems

The motion for systems subject to constraints is difficult to calculate using Newtonian mechanics because

all the unknown constraint forces must be included explicitly with the active forces in order to determine

the equations of motion. Lagrangian mechanics avoids these difficulties by allowing selection of independent

generalized coordinates that incorporate the correlated motion induced by the constraint forces. This allows

the constraint forces acting on the system to be ignored by reducing the system to a minimal set of generalized

coordinates. The holonomic constraint forces can be determined using the Lagrange multiplier approach,

and all constraint forces can be determined by including them as generalized forces, as described below.

6.5.1 Choice of generalized coordinates

As discussed in chapter 58, the flexibility and freedom for selection of generalized coordinates is a consid-

erable advantage of Lagrangian mechanics when handling constrained systems. The generalized coordinates

can be any set of independent variables that completely specify the scalar action functional, equation 646.

The generalized coordinates are not required to be orthogonal as is required using the vectorial Newtonian

approach. The secret to using generalized coordinates is to select coordinates that are perpendicular to the

constraint forces so that the constraint forces do no work. Moreover, if the constraints are rigid, then the

constraint forces do no work in the direction of the constraint force. As a consequence, the constraint forces

do not contribute to the action integral and thus the
P

 f

 · r term in equation 619 can be omitted from

the action integral. Generalized coordinates allow reducing the number of unknowns from  to  =  −

when the system has  holonomic constraints. In addition, generalized coordinates facilitate using both the

Lagrange multipliers, and the generalized forces, approaches for determining the constraint forces.

6.5.2 Minimal set of generalized coordinates

The set of  generalized coordinates  are used to describe the motion of the system. No restrictions have

been placed on the nature of the constraints other than they are workless for a virtual displacement. If the

 constraints are holonomic, then it is possible to find sets of  = − independent generalized coordinates

 that contain the  constraint conditions implicitly in the transformation equations

r = r(1 2 3  ) (6.49)

For the case of  = − unknowns, any virtual displacement  is independent of , therefore the

only way for (644) to hold is for the term in brackets to vanish for each value of , that is½




µ


̇

¶
− 



¾
= 

 (6.50)

where  = 1 2 3   These are the Lagrange equations for the minimal set of  independent generalized

coordinates.

If all the generalized forces are conservative plus velocity independent, and are included in the potential

 and 
 = 0, then (650) simplifies to½





µ


̇

¶
− 



¾
= 0 (6.51)

This is Euler’s differential equation, derived earlier using the calculus of variations. Thus d’Alembert’s

Principle leads to a solution that minimizes the action integral 
R 2
1

 = 0 as stated by Hamilton’s

Principle.

6.5.3 Lagrange multipliers approach

Equation (644) sums over all  coordinates for  particles, providing  equations of motion. If the 

constraints are holonomic they can be expressed by  algebraic equations of constraint

(1 2  ) = 0 (6.52)
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where  = 1 2 3  Kinematic constraints can be expressed in terms of the infinitessimal displacements

of the form
X
=1




(q ) +




 = 0 (6.53)

where  = 1 2 3 ,  = 1 2 3 , and where the 

, and 


are functions of the generalized coordinates

 , described by the vector q that are derived from the equations of constraint. As discussed in chapter 57,

if (653) represents the total differential of a function, then it can be integrated to give a holonomic relation

of the form of equation (652). However, if (653) is not the total differential, then it can be integrated only

after having solved the full problem. If 

= 0 then the constraint is scleronomic.

The discussion of Lagrange multipliers in chapter 591, showed that, for virtual displacements  

the correlation of the generalized coordinates, due to the constraint forces, can be taken into account by

multiplying (653) by unknown Lagrange multipliers  and summing over all  constraints. Generalized

forces can be partitioned into a Lagrange multiplier term plus a remainder force. That is


 =

X
=1





(q ) +

 (6.54)

since by definition  = 0 for virtual displacements.

Chapter 591 showed that holonomic forces of constraint can be taken into account by introducing

the Lagrange undetermined multipliers approach, which is equivalent to defining an extended Lagrangian

0(q q̇λ) where

0(q q̇λ) = (q q̇) +

X
=1

X
=1





(q ) (6.55)

Finding the extremum for the extended Lagrangian 0(q q̇λ) using (647) gives

X


"½




µ


̇

¶
− 



¾
−

X
=1





(q )−



#
 = 0 (6.56)

where 
 is the remaining part of the generalized force  after subtracting both the part of the force

absorbed in the potential energy  , which is buried in the Lagrangian , as well as the holonomic constraint

forces which are included in the Lagrange multiplier terms
P

=1 


(q ). The  Lagrange multipliers

 can be chosen arbitrarily in (656)  Utilizing the free choice of the  Lagrange multipliers  allows them

to be determined in such a way that the coefficients of the first  infinitessimals, i.e. the square brackets

vanish. Therefore the expression in the square bracket must vanish for each value of 1 ≤  ≤ . Thus it

follows that ½




µ


̇

¶
− 



¾
−

X
=1





(q )−

 = 0 (6.57)

when  = 1 2  Thus (656) reduces to a sum over the remaining coordinates between + 1 ≤  ≤ 

X
=+1

"½




µ


̇

¶
− 



¾
−

X
=1





(q )−



#
 = 0 (6.58)

In equation (658) the  =  −  infinitessimals  can be chosen freely since the  =  −  degrees

of freedom are independent. Therefore the expression in the square bracket must vanish for each value of

+ 1 ≤  ≤ . Thus it follows that½




µ


̇

¶
− 



¾
−

X
=1





(q )−

 = 0 (6.59)

where  = +1+2  Combining equations (657) and (659) then gives the important general relation

that for 1 ≤  ≤  ½




µ


̇

¶
− 



¾
=

X
=1





(q ) +

 (6.60)
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To summarize, the Lagrange multiplier approach (660) automatically solves the  equations plus the

 holonomic equations of constraint, which determines the  +  unknowns, that is, the  coordinates

plus the  forces of constraint. The beauty of the Lagrange multipliers is that all  variables, plus the 

constraint forces, are found simultaneously by using the calculus of variations to determine the extremum

for the expanded Lagrangian 0(q q̇λ).

6.5.4 Generalized forces approach

The two right-hand terms in (660) can be understood to be those forces acting on the system that are

not absorbed into the scalar potential  component of the Lagrangian . The Lagrange multiplier termsP
=1 



(q ) account for the holonomic forces of constraint that are not included in the conservative

potential or in the generalized forces 
 . The generalized force


 =

X


F ·
r


(617)

is the sum of the components in the  direction for all external forces that have not been taken into account

by the scalar potential or the Lagrange multipliers. Thus the non-conservative generalized force 


contains non-holonomic constraint forces, including dissipative forces such as drag or friction, that are not

included in  or used in the Lagrange multiplier terms to account for the holonomic constraint forces.

The concept of generalized forces is illustrated by the case of spherical coordinate systems. The attached

table gives the displacement elements , (taken from table 4) and the generalized force for the three

coordinates. Note that  has the dimensions of force and  has the units of energy. By contrast

equation 630 gives that  =  and  =  which have the dimensions of torque. However,  and

 both have the dimensions of energy as is required in equation 630. This illustrates that the units used

for generalized forces depend on the units of the corresponding generalized coordinate.

Unit vectors    · 
̂ r̂ r̂ 

θ̂ θ̂ θ̂ 

φ̂ φ̂ sin  φ̂ sin   sin 

6.6 Applying the Euler-Lagrange equations to classical mechanics

d’Alembert’s principle of virtual work has been used to derive the Euler-Lagrange equations, which also

satisfy Hamilton’s Principle, and the Newtonian plausibility argument. These imply that the actual path

taken in configuration space (

 ) is the one that minimizes the action integral

R 2
1

( 

 ; ) As a

consequence, the Euler equations for the calculus of variations lead to the Lagrange equations of motion.½




µ


̇

¶
− 



¾
=

X
=1





(q ) +

 (660)

for  variables, with  equations of constraint. The generalized forces 
 are not included in the

conservative, potential energy  or the Lagrange multipliers approach for holonomic equations of constraint.2

The following is a logical procedure for applying the Euler-Lagrange equations to classical mechanics.

1) Select a set of independent generalized coordinates:

Select an optimum set of independent generalized coordinates as described in chapter 651. Use of generalized

coordinates is always advantageous since they incorporate the constraints, and can reduce the number of

unknowns, both of which simplify use of Lagrangian mechanics

2Euler’s differential equation is ubiquitous in Lagrangian mechanics. Thus, for brevity, it is convenient to define the concept

of the Lagrange linear operator Λ  as described in appendix 2

Λ ≡






̇
− 



where Λ operates on the Lagrangian . Then Euler’s equations can be written compactly in the form Λ = 0.
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2) Partition the active forces:

The active forces should be partitioned into the following three groups:

(i) Conservative one-body forces plus the velocity-dependent electromagnetic force which

can be characterized by the scalar potential  , that is absorbed into the Lagrangian. The gravitational

forces plus the velocity-dependent electromagnetic force can be absorbed into the potential  as discussed

in chapter 610. This approach is by far the easiest way to account for such forces in Lagrangian mechanics.

(ii) Holonomic constraint forces provide algebraic relations that couple some of the generalized co-

ordinates. This coupling can be used either to reduce the number of generalized coordinates used, or to

determine these holonomic constraint forces using the Lagrange multiplier approach.

(iii) Generalized forces provide a mechanism for introducing non-conservative and non-holonomic

constraint forces into Lagrangian mechanics. Typically general forces are used to introduce dissipative

forces.

Typical systems can involve a mixture of all three categories of active forces. For example, mechanical

systems often include gravity, introduced as a potential, holonomic constraint forces are determined using

Lagrange multipliers, and dissipative forces are included as generalized forces.

3) Minimal set of generalized coordinates:

The ability to embed constraint forces directly into the generalized coordinates is a tremendous advantage

enjoyed by the Lagrangian and Hamiltonian variational approaches to classical mechanics. If the constraint

forces are not required, then choice of a minimal set of generalized coordinates significantly reduces the

number of equations of motion that need to be solved .

4) Derive the Lagrangian:

The Lagrangian is derived in terms of the generalized coordinates and including the conservative forces

buried into the scalar potential 

5) Derive the equations of motion:

Equation (660) is solved to determine the  generalized coordinates, plus the  Lagrange multipliers char-

acterizing the holonomic constraint forces, plus any generalized forces that were included. The holonomic

constraint forces then are given by evaluating the 


(q ) terms for the  holonomic forces.

In summary, in Lagrangian mechanics is based on energies which are scalars in contrast to Newtonian

mechanics which is based on vector forces and momentum. As a consequence, Lagrange mechanics allows

use of any set of independent generalized coordinates, which do not have to be orthogonal, and they can

have very different units for different variables. The generalized coordinates can incorporate the correlations

introduced by constraint forces.

The active forces are split into the following three categories;

1. Velocity-independent conservative forces are taken into account using scalar potentials .

2. Holonomic constraint forces can be determined using Lagrange multipliers.

3. Non-holonomic constraints require use of generalized forces 
 .

Use of the concept of scalar potentials is a trivial and powerful way to incorporate conservative forces in

Lagrangian mechanics. The Lagrange multipliers approach requires using the Euler-Lagrange equations for

+ coordinates but determines for holonomic constraint forces and equations of motion simultaneously.

Non-holonomic constraints and dissipative forces can be incorporated into Lagrangian mechanics via use of

generalized forces which broadens the scope of Lagrangian mechanics.

Note that the equations of motion resulting from the Lagrange-Euler algebraic approach are the same

equations of motion as obtained using Newtonian mechanics. However, the Lagrangian is a scalar which

facilitates rotation into the most convenient frame of reference, and can greatly simplify determination of

the equations of motion when constraint forces apply. As discussed in chapter 14, the Lagrangian and the

Hamiltonian variational approaches to mechanics are the only viable way to handle relativistic, statistical,

and quantum mechanics.
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6.7 Applications to unconstrained systems

Although most dynamical systems involve constrained motion, it is useful to consider examples of systems

subject to conservative forces with no constraints. For no constraints the Lagrange-Euler equations (660)

simplify to Λ = 0 where  = 1 2  and the transformation to generalized coordinates is of no conse-

quence.

6.1 Example: Motion of a free particle, U=0

The Lagrangian in cartesian coordinates is  = 1
2
(̇2 + ̇2 + ̇2) Then



̇
= ̇



̇
= ̇



̇
= ̇




=




=




= 0

Insert these in the Lagrange equation gives

Λ =






̇
− 


=




̇− 0 = 0

Thus

 = ̇ = 

 = ̇ = 

 = ̇ = 

That is, this shows that the linear momentum is conserved if  is a constant, that is, no forces apply. Note

that momentum conservation has been derived without any direct reference to forces.

6.2 Example: Motion in a uniform gravitational field

x

y

(x, y) g

Motion in a gravitational field

Consider the motion is in the  −  plane. The

kinetic energy  = 1
2

³


2
+



2
´
while the potential

energy is  =  where ( = 0) = 0 Thus

 =
1

2

³


2
+



2
´
−

Using the Lagrange equation for the  coordinate

gives

Λ =









− 


=







− 0 = 0

Thus the horizontal momentum ̇ is conserved and

 = 0 The  coordinate gives

Λ =









− 


=







 + = 0

Thus the Lagrangian produces the same result as de-

rived using Newton’s Laws of Motion.

 = −
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The importance of selecting the most convenient generalized coordinates is nicely illustrated by trying to

solve this problem using polar coordinates   where  is radial distance and  the elevation angle from the

 axis as shown in the adjacent figure. Then

 =
1

2




2
+
1

2

³




´2

 =  sin 

Thus

 =
1

2




2
+
1

2

³
̇
´2
− sin 

Λ = 0 for the  coordinate

̇
2 −  sin  − ̈ = 0

Λ = 0 for the  coordinate

− cos  − 2̇̇ − 2̈ = 0

These equations written in polar coordinates are more complicated than the result expressed in cartesian

coordinates. This is because the potential energy depends directly on the  coordinate, whereas it is a function

of both   This illustrates both the freedom for using different generalized coordinates, plus the importance

of choosing a sensible set of generalized coordinates.

6.3 Example: Central forces

Consider a mass  moving under the influence of a spherically-symmetric, conservative, attractive,

inverse-square force. The potential then is

 = −


It is natural to express the Lagrangian in spherical coordinates for this system. That is,

 =
1

2
̇2 +

1

2

³
̇
´2
+
1

2
( sin ̇)2 +





Λ = 0 for the  coordinate gives

̈ −[̇
2
+ sin2 ̇

2
] =



2

where the  sin2 ̇
2
term comes from the centripetal acceleration.

Λ = 0 for the  coordinate gives




³
2 sin2 ̇

´
= 0

This implies that the derivative of the angular momentum about the  axis, ̇ = 0 and thus  = 2 sin2 ̇

is a constant of motion.

Λ = 0 for the  coordinate gives




(2̇)−2 sin  cos ̇

2
= 0

That is,

̇ = 2 sin  cos ̇
2
=

2 cos 

22 sin3 

Note that  is a constant of motion if  = 0 and only the radial coordinate is influenced by the radial form

of the central potential.
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6.8 Applications to systems involving holonomic constraints

The equations of motion that result from the Lagrange-Euler algebraic approach are the same as those given

by Newtonian mechanics. The solution of these equations of motion can be obtained mathematically using

the chosen initial conditions. The following simple example of a disk rolling on an inclined plane, is useful

for comparing the merits of the Newtonian method with Lagrange mechanics employing either minimal

generalized coordinates, the Lagrange multipliers, or the generalized forces approaches.

6.4 Example: Disk rolling on an inclined plane

mg

y

N

Ff

Disk rolling without slipping on an inclined

plane.

Consider a disk rolling down an inclined plane to com-

pare the results obtained using Newton’s laws with the results

obtained using Lagrange’s equations with either generalized

coordinates, Lagrange multipliers, or generalized forces. All

these cases assume that the friction is sufficient to ensure that

the rolling equation of constraint applies and that the disk has

a radius  and moment of inertia of . Assume as general-

ized coordinates, distance along the inclined plane  which is

perpendicular to the normal constraint force  , and perpen-

dicular to the inclined plane , plus the rolling angle . The

constraint for rolling is holonomic

 − = 0

The frictional force is   The constraint that it rolls along

the plane implies

− = 0

a) Newton’s laws of motion

Newton’s law for the components of the forces along the inclined plane gives

 sin−  = 

 (a)

Perpendicular to the inclined plane, Newton’s law gives

 cos =  (b)

The torque on the disk gives

 = ̈ (c)

Assuming the disc rolls gives

 = ̈

then

 =


2
̈

Inserting this in (a) gives µ
+



2

¶
̈ − sin = 0

The moment of inertia of a uniform solid circular disk is

 =
1

2
2

Therefore

̈ =
2

3
 sin

and the frictional force is

 =


3
sin

which is smaller than the gravitational force along the plane which is  sin
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b) Lagrange equations with a minimal set of generalized coordinates

Using the generalized coordinates defined above, the total kinetic energy is

 =
1

2
̇2 +

1

2
̇
2

The conservative gravitational force can be absorbed into the potential energy

 = ( − ) sin

Thus the Lagrangian is

 =
1

2
̇2 +

1

2
̇
2 −( − ) sin

The holonomic equations of constraint are

1 =  − = 0

2 = − = 0

A holonomic constraint can be used to reduce the system to a single generalized coordinate  plus generalized

velocity ̇ Expressed in terms of this single generalized coordinate, the Lagrangian becomes

 =
1

2

µ
+



2

¶
̇2 −( − ) sin

The Lagrange equation Λ = 0 gives

 sin =

µ
+



2

¶



Again if  = 1
2
2 then

̈ =
2

3
 sin

The solution for the  coordinate is trivial. This answer is identical to that obtained using Newton’s laws

of motion. Note that no forces have been determined using the single generalized coordinate.

c) Lagrange equation with Lagrange multipliers

Again the conservative gravitation force is absorbed into the scalar potential while the holonomic constraints

are taken into account using Lagrange multipliers. Ignoring the trivial  dependence, the Lagrangian is given

above to be

 =
1

2
̇2 +

1

2
̇
2 −( − ) sin

The constraint equations are

1 =  − = 0

2 = − = 0

The Lagrange equation for the  coordinate







̇
− 


= 1

1


+ 20

gives

̈ − sin = 1

The Lagrange equation for the  coordinate







̇
− 


= 1

1


+ 20
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which gives

̈ = −1
The constraint can be written as

̈ = ̈

Let  = 1
2
2 and solve for   and  gives

1 = − ¡
1 + 2



¢ sin = −

3
sin

The frictional force is given by

 = 1
1


= 1 = −

3
sin

Also

̈ =  sin+ 1 =
2

3
 sin

and the torque is

−1 =  = ̈

d) Lagrange equation using a generalized force

Again the conservative gravitation force is absorbed into the scalar potential while the holonomic constraints

are taken into account using generalized forces. Ignoring the trivial  dependence, the Lagrangian was given

above to be

 =
1

2
̇2 +

1

2
̇
2 −( − ) sin

The generalized forces (630) are

 = −
 = 

The Euler-Lagrange equations are:

The Λ =  Lagrange equation for the  coordinate

̈ − sin =  = −
The Λ =  Lagrange equation for the  coordinate

̈ =  = 

The constraint equation gives that  =  and assuming  = 1
2
2 leads to the  relation




=  =



2
̈

Substitute this equation into the  relation gives that

̈ − sin =  = − = 

2
̈

Thus

̈ =
2

3
 sin

and

 = −

3
sin

The four methods for handling the equations of constraint all are equivalent and result in the same

equations of motion. The scalar Lagrangian mechanics is able to calculate the vector forces acting in a direct

and simple way. The Newton’s law approach is more intuitive for this simple case and the ease and power

of the Lagrangian approach is not apparent for this simple system.

The following series of examples will gradually increase in complexity, and will illustrate the power,

elegance, plus superiority of the Lagrangian approach compared with the Newtonian approach.
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6.5 Example: Two connected masses on frictionless inclined planes

1 2

x 1  x  2m 1 m 2

Two connected masses on frictionless inclined

planes

Consider the system shown in the figure. This is

a problem that has five constraints that will be solved

using the method of generalized coordinates. The ob-

vious generalized coordinates are 1 and 2 which are

perpendicular to the normal constraint forces on the

inclined planes. Another holonomic constraint is that

the length of the rope connecting the masses is assumed

to be constant. Thus the equation of constraint is that

1 + 2 −  = 0

The other four constraints ensure that the two masses

slide directly down the inclined planes in the plane

shown. This is assumed implicitly by using only the

variables, 1 and 2 Let us chose 1 as the primary

generalized coordinate, thus

2 =  − 1

1 = 1 sin 1

2 = ( − 1) sin 2

The conservative gravitational force is absorbed into the potential energy given by

 = −11 sin 1 −2 ( − 1) sin 2

Since

1 = − 

2 the kinetic energy is given by

 =
1

2
1̇

2
1 +

1

2
2̇

2
2 =

1

2
(1 +2) ̇

2
1

The Lagrangian then gives that

 =
1

2
(1 +2) ̇

2
1 +11 sin 1 +2 ( − 1) sin 2

x x 1 2

m 

m 

1

2

Atwoods machine

Therefore



̇1
= (1 +2) ̇1



1
=  (1 sin 1 −2 sin 2)

Thus

Λ1 =






̇1
− 

1
= 0 = (1 +2) ̈1 −  (1 sin 1 −2 sin 2)

Note that the system acts as though the inertial mass is (1 +2)

while the driving force comes from the difference of the forces. The

acceleration is zero if

1 sin 1 = 2 sin 2

A special case of this is the Atwood’s machine with a massless

pulley shown in the adjacent figure. For this case 1 = 2 = 90

Thus

(1 +2) ̈1 =  (1 −2)

Note that this problem has been solved without any reference to the

force in the rope or the normal constraint forces on the inclined planes.
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6.6 Example: Two blocks connected by a friction-
less bar

x

y

l

Two frictionless masses that are connected by a

bar and are constrained to slide in vertical and

horizontal channels.

Two identical masses  are connected by a massless

rigid bar of length , and they are constrained to move

in two frictionless slides, one vertical and the other hor-

izontal as shown in the adjacent figure. Assume that the

conservative gravitational force acts along the negative 

axis and is incorporated into the scalar potential  . The

generalized coordinate can be chosen to be the angle 

corresponding to a single degree of freedom. The relative

cartesian coordinates of the blocks are given by

 =  cos

 =  sin

Thus

̇ = −(sin)̇
̇ = (cos)̇

This constraint, that is absorbed into the generalized co-

ordinate, is holonomic, scleronomic, and conservative.

The kinetic energy is given by

 =
1

2

¡
2(sin)2̇2 + 2(cos)2̇2

¢
=
1

2
2̇2

The gravitational potential energy is given by

 =  =  sin

Thus the Lagrangian is

 =
1

2
2̇2 − sin

Using the Lagrange operator equation Λ = 0 gives

2̈+ cos = 0

̈+



cos = 0

Multiply by ̇ yields

̈̇+



̇ cos = 0

This can be integrated to give
1

2
̇2 +




sin = 

where  is a constant. That is

̇ =

r
2
³
− 


sin

´
Separation of the variable gives

 =
q

2
¡
− 


sin

¢
Integration of this gives

− 0 =

Z 

0

q
2
¡
− 


sin

¢
The constants  and 0 are determined from the given initial conditions.



6.8. APPLICATIONS TO SYSTEMS INVOLVING HOLONOMIC CONSTRAINTS 153

6.7 Example: Block sliding on a movable frictionless inclined plane

m 

x 

M 

x’ 

A block sliding on a frictionless movable inclined

plane.

Consider a block of mass  free to slide on a smooth

frictionless inclined plane of mass  that is free to slide

horizontally as shown in the adjacent figure. The six de-

grees of freedom can be reduced to two independent gen-

eralized coordinates since the inclined plane and mass 

are confined to slide along specific non-orthogonal direc-

tions. Choose  as the coordinate for movement of the

inclined plane in the horizontal ̂ direction and 0 the
position of the block with respect to the surface of the

inclined plane in the ê direction which is inclined down-

ward at an angle . Thus the velocity of the inclined

plane is

V = ̂̇

while the velocity of the small block on the inclined plane

is

v = ̂̇+ ê̇0

The kinetic energy is given by

 =
1

2
V ·V+1

2
v · v = 1

2
̇2 +

1

2
[̇2 + ̇02 + 2̇̇0 cos ]

The conservative gravitational force is absorbed into the scalar potential energy which depends only on the

vertical position of the block and is taken to be zero at the top of the wedge.

 = −0 sin 

Thus the Lagrangian is

 =
1

2
̇2 +

1

2
[̇2 + ̇02 + 2̇̇0 cos ] +0 sin 

Consider the Lagrange-Euler equation for the  coordinate, Λ = 0 which gives




[(̇+ ̇0 cos ) +̇] = 0 ()

which states that [(̇ + ̇0 cos ) +̇] is a constant of motion. This constant of motion is just the total

linear momentum of the complete system in the  direction. That is, conservation of the linear momentum

is satisfied automatically by the Lagrangian approach. The Newtonian approach also predicts conservation of

the linear momentum since there are no external horizontal forces,

Consider the Lagrangian equation for the 0 coordinate Λ0 = 0 which gives




[̇0 + ̇ cos ] =  sin  ()

Perform both of the time derivatives for equations  and  give

[̈+ ̈0 cos ] +̈ = 0

̈0 + ̈ cos  =  sin 

Solving for ̈ and ̈0 gives

̈ =
− sin  cos 

(+)− cos2 
and.

̈0 =
 sin 

1− cos2 (+)

This example illustrates the flexibility of being able to use non-orthogonal displacement vectors to specify the

scalar Lagrangian energy. Newtonian mechanics would require more thought to solve this problem.
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6.8 Example: Sphere rolling without slipping down an inclined plane on a
frictionless floor.

A sphere of mass  and radius  rolls, without slipping, down an inclined plane, of mass  sitting on a

frictionless horizontal floor as shown in the adjacent figure. The velocity of the rolling sphere has horizontal

and vertical components of

 = ̇+̇ cos

 = −̇ sin

Assume initial conditions are  = 0  = 0  = 0  = 0  =  ̇ = ̇ = 0 Choose the independent coordinates

 and  as generalized coordinates plus the holonomic constraint  = . Then the Lagrangian is

 =


2
̇2 +



2

h
̇2 + 2̇

2
+ 2̇̇ cos

i
+



5
2̇

2 − (−  sin)

y
x

x

y

.

Solid sphere rolling without slipping on an

inclined plane on a frictionless horizontal floor.

Lagrange’s equations Λ = 0 and Λ = 0, give

( +) ̈+̈ cos = 0

̈ cos+
7

5
̈ −  sin = 0

Eliminating ̈ givesµ
7

5
−  cos2 

 +

¶
̈ = 

sin



Integrate this equation assuming the initial conditions,

results in

 =
5 ( +) sin

2 [7 ( +)− 5 cos2 ]
2

Thus

 = − cos

 +
 =

5 sin (2)

4 [7 ( +)− 5 cos2 ]
2

Note that these equations predict conservation of linear

momentum for the block plus sphere.

6.9 Example: Mass sliding on a rotating straight frictionless rod.

. m

Mass sliding on a rotating straight frictionless

rod.

Consider a mass  sliding on a frictionless rod that

rotates about one end of the rod with an angular velocity


. Choose  and  to be generalized coordinates. Then

the kinetic energy is given by

 =
1

2
̇2 +

1

2
2̇

2

and potential energy

 = 0

The Lagrange equation for  gives

Λ =






̇
− 


=




(2̇) = 0

Thus the angular momentum is constant

2̇ = constant = 
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The Lagrange equation for  gives

Λ =






̇
− 


= ̈ −̇

2
= 0

The  equation states that the angular momentum is conserved for this case which is what we expect since

there are no external torques acting on the system. The  equation states that the centrifugal acceleration is

̈ = 2 These equations of motion were derived without reference to the forces between the rod and mass.

6.10 Example: Spherical pendulum

g

m

Spherical pendulum

The spherical pendulum is a classic holonomic

problem in mechanics that involves rotation plus os-

cillation where the pendulum is free to swing in any

direction. This also applies to a particle constrained

to slide in a smooth frictionless spherical bowl under

gravity, such as a bar of soap in a wet hemispherical

sink. Consider the equation of motion of the spher-

ical pendulum of mass  and length  shown in the

adjacent figure. The most convenient generalized co-

ordinates are    with origin at the fulcrum, since

the length is constrained to be  =  The kinetic

energy is

 =
1

2
2̇

2
+
1

2
2 sin2 ̇

2

The potential energy

 = − cos 

giving that

 =
1

2
2̇

2
+
1

2
2 sin2 ̇

2
+ cos 

The Lagrange equation for 

Λ =






̇
− 


= 0

which gives

2̈ = 2̇
2
sin  cos  − sin 

The Lagrange equation for 

Λ =






̇
− 


=




[2 sin2 ̇] = 0

which gives

2 sin2 ̇ =  = constant

This is just the angular momentum  for the pendulum rotating in the  direction. Automatically the

Lagrange approach shows that the angular momentum  is a conserved quantity. This is what is expected

from Newton’s Laws of Motion since there are no external torques applied about this vertical axis.

The equation of motion for  can be simplified to

̈ +



sin  − 2 cos 

24 sin3 
= 0

There are many possible solutions depending on the initial conditions. The pendulum can just oscillate

in the  direction, or rotate in the  direction or some combination of these. Note that if  is zero, then

the equation reduces to the simple harmonic pendulum, while the other extreme is when ̈ = 0 for which the

motion is that of a conical pendulum that rotates at a constant angle 0 to the vertical axis.
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6.11 Example: Spring plane pendulum

A mass  is suspended by a spring with spring constant  in the gravitational field. Besides the longi-

tudinal spring vibration, the spring performs a plane pendulum motion in the vertical plane, as illustrated in

the adjacent figure. Find the Lagrangian, the equations of motion, and force in the spring.

The system is holonomic, conservative, and scleronomic. Introduce plane polar coordinates with radial

length  and polar angle  as generalized coordinates. The generalized coordinates are related to the cartesian

coordinates by

m

y

r

Spring pendulum having spring

constant  and oscillating in a

vertical plane.

 =  cos 

 =  sin 

Therefore the velocities are given by

̇ = ̇ cos  + ̇ sin 

̇ = ̇ sin  − ̇ cos 

The kinetic energy is given by

 =
1

2

¡
̇2 + ̇2

¢
=
1

2

³
̇2 + 2̇

2
´

The gravitational plus spring potential energies both can be absorbed

into the potential  .

 = − cos  +


2
( − 0)

2

where 0 denotes the rest length of the spring. The Lagrangian thus equals

 =
1

2

³
̇2 + 2̇

2
´
+ cos  − 

2
( − 0)

2

For the polar angle , the Lagrange equation Λ = 0 gives





³
2̇

´
= − sin 

The angular momentum  = 2̇, thus the equation of motion can be written as

̇ = − sin 

Alternatively, evaluating 


³
2̇

´
gives

2̈ = − sin  − 2̇̇

The last term in the right-hand side is the Coriolis force caused by the time variation of the pendulum length.

For the radial distance  the Lagrange equation Λ = 0 gives

̈ = ̇
2
+ cos  −  ( − 0)

This equation just equals the tension in the spring, i.e.  = ̈. The first term on the right-hand side

represents the centrifugal radial acceleration, the second term is the component of the gravitational force,

and the third term represents Hooke’s Law for the spring. For small amplitudes of  the motion appears as

a superposition of harmonic oscillations in the   plane.

In this example the orthogonal coordinate approach used gave the tension in the spring thus it is unnec-

essary to repeat this using the Lagrange multiplier approach.
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6.12 Example: The yo-yo

Consider a yo-yo comprising a disc that has a string wrapped around it with one end attached to a fixed

support. The disc is allowed to fall with the string unwinding as it falls as illustrated in the adjacent figure.

Derive the equations of motion and the forces of constraint via use of Lagrange multipliers. Use  and  as

independent generalized coordinates.

y

The yo-yo comprises a falling disc unrolling

from a string attached to the disc at one end

and a fixed support at the other end.

The kinetic energy of the falling yo-yo is given by

 =
1

2
̇2 +

1

2
̇

2
=
1

2
̇2 +

1

4
2̇

2

where  is the mass of the disc,  the radius, and  =
1
2
2 is the moment of inertia of the disc about its central

axis. The potential energy of the disc is

 = −

Thus the Lagrangian is

 =
1

2
̇2 +

1

4
2̇

2
+

The one equation of constraint is holonomic

( ) =  −  = 0

The two Lagrange equations are




− 





0
+ 




= 0




− 





0
+ 




= 0

with only one Lagrange multiplier . Evaluating these two Euler-Lagrange equations leads to two equations

of motion

 −̈ +  = 0

−1
2
2̈−  = 0

Differentiating the equation of constraint gives

̈ =
̈



Inserting this into the second equation and solving the two equations gives

 = −1
3


Inserting  into the two equations of motion gives

̈ =
2

3


̈ =
2

3





The generalized force of constraint

 = 



= −1

3


and the constraint torque is

 = 



=
1

3


Thus the string reduces the acceleration of the disc in the gravitational field by a factor of 1
3
.
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6.13 Example: Mass constrained to move on the inside of a frictionless paraboloid

y

x

z

g

z

r

Mass constrained to slide on the

inside of a frictionless paraboloid.

A mass  moves on the frictionless inner surface of a paraboloid

2 + 2 = 2 = 

with a gravitational potential energy of  = 

This system is holonomic, scleronomic, and conservative. Choose

cylindrical coordinates    with respect to the vertical axis of the

paraboloid to be the generalized coordinates.

The Lagrangian is

 =
1

2

³
̇2 + 2̇

2
+ ̇2

´
−

The equation of constraint is

( ) = 2 −  = 0

The Lagrange multiplier approach will be used to determine the forces

of constraint.

For Λ = 








̇
− 


= 12 (a)


³
̈− ̇

2
´

= 12

For Λ =  






³
2̇

´
= ̇ = 0 (b)

Thus the angular momentum  is conserved, that is, it is a constant of motion.

For Λ = 


̈ = − − 1 (c)

and the time differential of the constraint equation is

2̇− ̇ = 0 (d)

The above four equations of motion can be used to determine   1

The radius of the circle at the intersection of the plane  =  with the paraboloid 2 =  is given by

0 =
√
 For a constant height  = , then ̈ = 0 and equation (c) reduces to

1 = −



Therefore the constraint force  is given by

 = 1
( )


= −


2

Assuming that ̈ = 0 then equation (a) for ̇ =  and  = 0 gives


¡
0− 0

2
¢
= 120 = −




20 = 

That is, the constraint force equals

 = −0
2

which is the usual centripetal force. These relations also give that the initial angular velocity required for

such a stable trajectory with height  is

̇ =  =

r
2
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6.14 Example: Mass on a frictionless plane connected to a plane pendulum

r

s

m

m1

2

Mass 2 hanging from a rope that is connected

to 1 which slides on a frictionless plane.

The masses 1 and 2 are connected by a string of

length . Mass 1 is on a horizontal frictionless table

and it is assumed that mass 2 moves in a vertical plane.

This is another problem involving holonomic constrained

motion. The constraints are:

1) 1 moves in the horizontal plane

2) 2 moves in the vertical plane

3)  +  =  Therefore ̇ = −̇
There are 6−3 = 3 remaining degrees of freedom after

taking the constraints into account. Choose as a set of

generalized coordinates,   and  In terms of these three

generalized coordinates, the kinetic energy is

 =
1

2
1

³
̇2 + 2̇

2
´
+
1

2
2

³
̇2 + 2̇

2
´

=
1

2
1

³
̇2 + ( − )

2
̇
2
´
+
1

2
2

µ
̇2 + 2

·

2
¶

The potential energy in terms of the generalized coordi-

nates relative to the horizontal plane, is

 = 0−2 cos 

Therefore the Lagrangian equals

 =
1

2
1

³
̇2 + ( − )

2
̇
2
´
+
1

2
2

³
̇2 + 2̇

2
´
+2 cos 

The differentials are




= −( − )̇

2
+2̇

2
+ cos 



̇
= (1 +2)̇




= − sin 



̇
= 2

2̇




= 0



̇
= 1 ( − )

2
̇

Thus the three Lagrange equations are

Λ = (1 +2)̈ +1 ( − ) ̇
2 −2̇

2 −2 cos  = 0

Λ =




h
2

2̇
i
+2 sin  = 0

that is

22̇̇ + 22̈ +2 sin  = 0

Λ =




h
1 ( − )

2
̇
i
= 0

This last equation is a statement of the conservation of angular momentum. These three differential equations

of motion can be solved for known initial conditions.
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6.15 Example: Two connected masses constrained to slide along a moving rod

z

y

x

z

y

x

1

1

1

O

r

r

Two identical masses  constrained to slide on

a moving rod of mass  The masses are

attached to the center of the rod by identical

springs each having a spring constant .

Consider two identical masses  constrained to move

along the axis of a thin straight rod, of mass  and length

 which is free to both translate and rotate. Two identi-

cal springs link the two masses to the central point of the

rod. Consider only motions of the system for which the

extended lengths of the two springs are equal and opposite

such that the two masses always are equal distances from

the center of the rod keeping the center of mass at the

center of the rod. Find the equations of motion for this

system.

Use a fixed cartesian coordinate system (  ) and

a moving frame with the origin  at the center of the

rod with its cartesian coordinates (0 0 0) being parallel
to the fixed coordinate frame as shown in the figure. Let

(  ) be the spherical coordinates of a point referring to

the center of the moving (0 0 0) frame as shown in the
figure. Then the two masses  have spherical coordinates

(  ) and (−  ) in the moving-rod fixed frame. The
frictionless constraints are holonomic.

The kinetic energy of the system is equal to the kinetic energy for all the mass concentrated at the center

of mass plus the kinetic energy about the center of mass. Since  is the center of mass then the kinetic

energy can be separated into three terms

 =  + 
 +  



Note that since the kinetic energy is a scalar quantity it is rotational invariant and thus can be evaluated in

any rotated frame. Thus the kinetic energy of the center of mass is

 =
1

2
( + 2)(̇2 + ̇2 + ̇2)

The rotational kinetic energy of the two masses in the center of mass frame is


 = (̇2 + 2̇

2
+ 2̇2 sin2 )

The rotational kinetic energy of the rod  
 is a scalar and thus can be evaluated in any rotated frame of

reference fixed with respect to the principal axis system of the rod. The angular velocity of the rod about 

resolved along its principal axes is given by

̄ = ̇ cos ê − ̇ sin ê − ̇ê

The corresponding moments of inertia of the uniform infinitesimally-thin rod are  = 0  =
1
12
2  =

1
12
2. Hence the rotational kinetic energy of the rod is

 
 =

1

2
(

2
 + 

2
 + 

2
) =

1

24
2(̇

2
+ ̇2 sin2 )

The only potential energy is due to the two extended springs which are assumed to have the same length 

where 0 is the unstretched length.

 = 2 · 1
2
( − 0)

2 = ( − 0)
2

Thus the Lagrangian is

 =
1

2
( + 2)(̇2 + ̇2 + ̇2) +(̇2 + 2̇

2
+ 2̇2 sin2 ) +

1

24
2(̇

2
+ ̇2 sin2 )−( − 0)

2

Using Lagrange’s equations Λ = 0 for the generalized coordinates gives.



6.9. APPLICATIONS INVOLVING NON-HOLONOMIC CONSTRAINTS 161

( + 2)̇ = constant (Λ = 0)

( + 2)̇ = constant (Λ = 0)

( + 2)̇ = constant (Λ = 0)µ
22 +

1

12
2

¶
̇ sin2  = constant (Λ = 0)

̈ − ̇
2 − ̇2 sin2  +




( − 0) = 0 (Λ = 0)µ

2 +
2

24

¶
̈ + 2̇̇ −

µ
2 +

2

24

¶
̇2 sin  cos  = 0 (Λ = 0)

The first three equations show that the three components of the linear momentum of the center of mass

are constants of motion. The fourth equation shows that the component of the angular momentum about

the 0 axis is a constant of motion. Since the 1 axis has been arbitrarily chosen then the total angular

momentum must be conserved. The fifth and sixth equations give the radial and angular equations of motion

of the oscillating masses .

6.9 Applications involving non-holonomic constraints

In general, non-holonomic constraints can be handled by use of generalized forces 
 in the Lagrange-

Euler equations 660. The following examples, 616 − 619 involve one-sided constraints which exhibit
holonomic behavior for restricted ranges of the constraint surface in coordinate space, and this range is case

specific. When the forces of constraint press the object against the constraint surface, then the system is

holonomic, but the holonomic range of coordinate space is limited to situations where the constraint forces

are positive. When the constraint force is negative, the object flies free from the constraint surface. In

addition, when the frictional force    where  is the static coefficient of friction, then the

object slides negating any rolling constraint that assumes static friction.

6.16 Example: Mass sliding on a frictionless spherical shell

Mass  sliding on frictionless cylinder

of radius .

Consider a mass starts from rest at the top of a frictionless

fixed spherical shell of radius . The questions are what is the

force of constraint and determine the angle  at which the mass

leaves the surface of the spherical shell. The coordinates   shown

are the obvious generalized coordinates to use. The constraint will

not apply if the force of constraint does not hold the mass against

the surface of the spherical shell, that is, it is only holonomic in a

restricted domain.

The Lagrangian is

 =
1

2

³
̇2 + 2̇

2
´
− cos 

This Lagrangian is applicable irrespective of whether the constraint

is obeyed, where the constraint is given by

( ) =  − = 0

For the restricted domain where this system is holonomic, it can be solved using generalized coordinates,

generalized forces, Lagrange multipliers, or Newtonian mechanics as illustrated below.

Minimal generalized coordinates:

The minimal number of generalized coordinates reduces the system to one coordinate , which does not

determine the constraint force that is needed to know if the constraint applies. Thus this approach is not

useful for solving this partially-holonomic system.
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Generalized forces:

The radial constraint has a corresponding generalized force . The Lagrange equation Λ =  gives

̈ + cos  −̇
2
=  (a)

The Lagrange equation Λ =  = 0 since there is no tangential force for this frictionless system. Therefore

2̈ − sin  + 2̇̇ = 0 (b)

When constrained to follow the surface of the spherical shell, the system is holonomic, i.e.  =  and

̇ = ̈ = 0. Thus the above two equations reduce to

 cos  −̇
2
=  (c)

2̈ − sin  = 0

That is

̈ =



sin 

Integrate to get ̇ using the fact that

̈ =
̇






= ̇

̇



then Z
̈ =

Z
̇̇ =





Z
sin 

Therefore

̇
2
=
2


(1− cos ) (d)

assuming that ̇ = 0 at  = 0 Substituting equation () into equation () gives the constraint force, which

is normal to the surface, to be

 =  = (3 cos  − 2)
Note that  =  = 0 when cos  =

2
3
, that is  = 482

Lagrange multipliers:

For the holonomic regime, which obeys the constraint, ( ) =  − = 0 the Lagrange equation for 

is Λ = 

 Since 


= 1 then

̈ + cos  −̇
2
=  (a)

The Lagrange equation for  gives ∆ = 

= 0 since 


= 0 Thus

2̈ − sin  + 2̇̇ = 0 (b)

As above, when constrained to follow the surface of the spherical shell, the system is holonomic  = 

and ̇ = ̈ = 0 Thus the above two equations reduce to

 cos  −̇
2
=  (c)

2̈ − sin  = 0 (d)

That is, the answers are identical to that obtained using generalized forces, namely;

̇
2
=
2


(1− cos ) (d)

assuming that ̇ = 0 at  = 0

The force of constraint applied by the surface is

 = 



= 
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Substituting equation () into equation () gives

 =  = (3 cos  − 2)

Note that  = 0 when cos  = 2
3
, that is  = 482

Both of the above methods give identical results and give that the force of constraint is negative when

  482 Assuming that the surface cannot hold the mass against the surface, then the mass will fly off the

spherical shell when   482 and the system reduces to an unconstrained object falling freely in a uniform

gravitational field, which is holonomic, that is  =  = 0 Then the equations of motion () and () reduce

to

̈ + cos  −̇
2
= 0 (e)

2̈ − sin  + 2̇̇ = 0 (f)

Energy conservation:

This problem can be solved using energy conservation

1

2
2 = [1− cos ]

Thus the centripetal acceleration

2


= 2[1− cos ]

The normal force to the surface will cancel when the centripetal acceleration equals the gravitational acceler-

ation, that is, when

2


= 2[1− cos ] =  cos 

This occurs when cos  = 2
3
. This is an unusual case where the Newtonian approach is the simplest.

6.17 Example: Rolling solid sphere on a spherical shell

Disk of mass , radius  rolling on a

cylindrical surface of radius .

This is a similar problem to the prior one with the added

complication of rolling which is assumed to move in a vertical

plane making it holonomic. Here we would like to determine

the forces of constraint to see when the solid sphere flies off the

spherical shell and when the friction is insufficient to stop the

rolling sphere from slipping.

The best generalized coordinates are the distance of the center

of the sphere from the center of the spherical shell,   and 

It is important to note that  is measured with respect to the

vertical, not the time-dependent vector r. That is, the direction

of the radius  is  which is time dependent and thus is not a

useful reference to use to define the angle . Let us assume

that the sphere is uniform with a moment of inertia of  =
2
5
2 If the tangential frictional force  is less than the limiting

value , with   0 then the sphere will roll without

slipping on the surface of the cylinder and both constraints apply.

Under these conditions the system is holonomic and the solution is solved using Lagrange multipliers and the

equations of constraint are the following:

1) The center of the sphere follows the surface of the cylinder

1 =  −−  = 0

2) The sphere rolls without slipping

2 =  (− )− = 0
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The kinetic energy is  = 1
2

³
̇2 + 2̇

2
´
+ 1

2
̇

2
and the potential energy is  =  cos  Thus the

Lagrangian is

 =
1

2

³
̇2 + 2̇

2
´
+
1

2
̇

2 − cos 

Consider the solution using Lagrange multipliers for the holonomic regime where both constraints are

satisfied and lead to the following differential constraint relations

1


= 1

1


= 0

1


= 0

2


= 0

2


= 

2


= − (+ )

The Lagrange operator equation Λ gives,







̇
− 


= 1

1


+ 2

2



that is

̈ + cos  −̇
2
= 1 (a)

Λ gives

2̈ + 2̇̇ − sin  = −2 (+ ) (b)

Λ gives

̈ = 2 (c)

Since the center of the sphere rolling on the spherical shell must have

 = + 

then

̇ = ̈ = 0

̈ =



̈

Substituting this into () gives

̈ =
2


2

Insert this into equation () gives

2 =
 sin ¡
 + 22



¢
The moment of inertia about the axis of a solid sphere is  = 2

5
2 Then

2 =
2 sin 

7

But also

̈ = ̇
̇


=

2


2 =

5

2
2 =

5 sin 

7

Integrating gives Z
̇̇ =

5

7

Z
sin 

That is

̇
2
=
10

7
(1− cos )

assuming that ̇ = 0 at  = 0 Inserting this into equation () gives

−
10

7
[1− cos ] + cos  = 1
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That is

1 =


7
[17 cos  − 10]

Note that this equals zero when

cos  =
10

17

For larger angles 1 is negative implying that the solid sphere will fly off the surface of the spherical shell.

The sphere will leave the surface of the cylinder when cos  = 10
17
that is,  = 5397 This is a significantly

larger angle than obtained for the similar problem where the mass is sliding on a frictionless cylinder because

the energy stored in rotation implies that the linear velocity of the mass is lower at a given angle  for the

case of a rolling sphere.

The above discussion has omitted an important fact that, if   ∞ the frictional force becomes

insufficient to maintain the rolling constraint before  = 5397 that is, the frictional force will exceed

the sliding limit . To determine when the rolling constraint fails it is necessary to determine the

frictional torque

 = −2
Thus

 = −2
It is in the negative direction because of the direction chosen for  The required coefficient of friction  is

given by the ratio of the frictional force to the normal force, that is

 =
2

1
=

2 sin 

[17 cos  − 10]

For  = 1 the disk starts to slip when  = 47540 Note that the sphere starts slipping before it flies off

the cylinder since a normal force is required to support a frictional force and the difference depends on the

coefficient of friction. The no-slipping constraint is not satisfied once the sphere starts slipping and the

frictional force should equal 1 Thus for the angles beyond 4754
 the problem needs to be solved with

the rolling constraint changed to a sliding non-conservative frictional force. This is best handled by including

the frictional force and normal forces as generalized forces. Fortunately this will be a small correction. The

friction will slightly change the exact angle at which the normal force becomes zero and the system transitions

to free motion of the sphere in a gravitational field.

6.18 Example: Solid sphere rolling plus slipping on a spherical shell

Consider the above case when the frictional force is insufficient to constrain the motion to rolling. Now

the frictional force  is given by

 = 

when  is positive.

This can be solved using generalized forces with the previous Lagrangian. Then







̇
− 


=  = 

which gives

̈ + cos  −̇
2
= 

Similarly Λ =  = − (+ ) gives

2̈ + 2̇̇ − sin  = − (+ )

Similarly Λ =  =  gives

̈ = 

These can be solved by substituting the relation  = . The sphere flies off the spherical shell

when  ≤ 0 leading to free motion discussed in example 62. The problem of a solid uniform sphere rolling

inside a hollow sphere can be solved the same way.
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6.19 Example: Small body held by friction on the periphery of a rolling wheel

M

NF

O

m

y

x

x

Small body of mass  held by friction on the periphery

of a rolling wheel of mass  and radius .

Assume that a small body of mass  is bal-

anced on a rolling wheel of mass  and radius

 as shown in the figure. The wheel rolls in

a vertical plane without slipping on a horizontal

surface. This example illustrates that it is possi-

ble to use simultaneously a mixture of holonomic

constraints, partially-holonomic constraints, and

generalized forces.3

Assume that at  = 0 the wheel touches the

floor at  =  = 0 with the mass perched at

the top of the wheel at  = 0. Let the frictional

force acting on the mass  be  and the reaction

force of the periphery of the wheel on the mass

be  . Let ̇ be the angular velocity of the wheel,

and ̇ the horizontal velocity of the center of the

wheel. The polar coordinates   of the mass 

are taken with  measured from the center of the

wheel with  measured with respect to the vertical.

Thus the cartesian coordinates of the small mass

 are (+  sin +  cos ) with respect to the

origin at  =  = 0.

The kinetic energy is given by

 =
1

2
̇2 +

1

2
̇2 +

1

2


∙³
̇+ ̇ cos  + ̇ sin 

´2
+
³
̇ cos  − ̇ sin 

´2¸
The gravitational force can be absorbed into the scalar potential term of the Lagrangian and includes only

the potential energy of the mass  since the potential energy of the rolling wheel is constant.

 = + (+  cos )

Thus the Lagrangian is

 =
1

2
( +) ̇2 +

1

2
̇2 +

1

2

h
2̇

2
+ 2̇̇ cos  + 2̇̇ sin  + ̇2

i
− (+  cos )

The equations of constraints are:

1) The wheel rolls without slipping on the ground plane leading to a holonomic constraint:

1 = − = ̇−̇ = 0

2) The mass  is touching the periphery of the wheel, that is, the normal force   0 This is a one-sided

restricted holonomic constraint.

2 = −  = 0

3) The mass  does not slip on the wheel if the frictional force   . When this restricted

holonomic constraint is satisfied, then

3 = ̇ − ̇ = 0

The rolling constraint is holonomic, and can be accounted for using one Lagrange multiplier  plus the

differential constraint equations

3This problem is solved in detail in example 319 of " Classical Mechanics and Relativity". by Muller-Kirsten [06] 



6.9. APPLICATIONS INVOLVING NON-HOLONOMIC CONSTRAINTS 167

1


= 1

1


= 0

1


= 

1


= 0

The other two constraints are non-holonomic, and thus these constraint forces are expressed in terms of two

generalized forces  and  that are related to the tangential force  and radial reaction force  . For

simplicity, assume that the wheel is a thin-walled cylinder with a moment of inertia of

 =2

The Euler-Lagrange equations for the four coordinates     are

− 



³
( +) ̇+̇ cos  + ̇ sin 

´
+  + = 0 (Λ)

̇̇ sin  + ̇̇ cos  − sin  − 



³
2̇ +̇ cos 

´
+ = 0 (Λ)

− 



¡
2̇

¢− = 0 (Λ)

− cos  − 


(̇ sin  + ̇) + = 0 (Λ)

The generalized forces can be related to  and  using the definition

 = F()·
r



where  () is the vectorial sum of the forces acting at  The components of vector  = (+  sin +  cos )

and  , and  are in the directions defined in the figure which leads to the generalized forces

 = − cos  + sin 

 = (− cos  + sin ) (− cos )− ( sin  + cos ) sin  = −
 = 

Solving the above 7 equations gives that

̈ sin  +̇
2 − cos  + = 0

This last equation can be derived by Newtonian mechanics from consideration of the forces acting.

The above equations of motion can be used to calculate the motion for the following conditions.

a) Mass not slipping:

This occurs if  = 

≤  which also implies that   0 That is a situation where the system is

holonomic with  =  ̇ = ̇ ̇ = ̇ which can be solved using the generalized coordinate approach with

only one independent coordinate which can be taken to be .

b) Mass slipping:

Here the no-slip constraint is violated and thus one has to explicitly include the generalized forces  

and assume that sliding friction is given by  = 

c) Reaction force  is negative:

Here the mass is not subject to any constraints and it is in free fall.

The above example illustrates the flexibility provided by Lagrangian mechanics that allows simultane-

ous use of Lagrange multipliers, generalized forces, and scalar potential to handle combinations of several

holonomic and nonholonomic constraints for a complicated problem.
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6.10 Velocity-dependent Lorentz force

The Lorentz force in electromagnetism is unusual in that it is a velocity-dependent force, as well as being a

conservative force which can be treated using the concept of potential. That is, the Lorentz force is

F = (E+ v×B) (6.61)

It is interesting to use Maxwell’s equations and Lagrangian mechanics to show that the Lorentz force can be

represented by a conservative potential in Lagrangian mechanics.

Maxwell’s equations can be written as

∇ ·E =


0
(6.62)

∇×E+B


= 0

∇ ·B = 0

∇×B−00
E


= J

Since ∇ ·B =0 then it follows from Appendix  that B can be represented by the curl of a vector

potential, A that is

B =∇×A (6.63)

Substituting this into ∇×E+B

= 0 gives that

∇×E+∇×A


= 0 (6.64)

∇×
µ
E+

A



¶
= 0

Since this curl is zero it can be represented by the gradient of a scalar potential 

E+
A


= −∇ (6.65)

The following shows that this relation corresponds to taking the gradient of a potential  for the charge 

where the potential  is given by the relation

 = (Φ−A · v) (6.66)

where Φ is the scalar electrostatic potential. This scalar potential  can be used in the Lagrange equations

using the Lagrangian

 =
1

2
v · v− (Φ−A · v) (6.67)

The Lorentz force can be derived from this Lagrangian by considering the Lagrange equation for the cartesian

coordinate 







̇
− 


= 0 (6.68)

Using the above Lagrangian (667) gives

̈+ 

∙



+

Φ


− A


· v
¸
= 0 (6.69)

But



=




+




̇+




̇ +




̇ (6.70)

and
A


· v =


̇+




̇ +




̇ (6.71)
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Inserting equations 670 and 671 into 669 gives

 = ̈ = 

∙µ
−Φ

− 



¶
+

µ



− 



¶
̇ −

µ



− 



¶
̇

¸
=  [E+ v×B] (6.72)

Corresponding expressions can be obtained for  and . Thus the total force is the well-known Lorentz

force

F = (E+ v×B) (6.73)

This has demonstrated that the electromagnetic scalar potential

 = (Φ−A · v) (6.74)

satisfies Maxwell’s equations, gives the Lorentz force, and it can be absorbed into the Lagrangian. Note that

the velocity-dependent Lorentz force is conservative since E is conservative, and because (v ×B× v)=0
therefore the magnetic force does no work since it is perpendicular to the trajectory. The velocity-dependent

conservative Lorentz force is an important and ubiquitous force that features prominently in many branches

of science. It will be discussed further for the case of relativistic motion in chapter 166.

6.11 Time-dependent forces

All examples discussed in this chapter have assumed Lagrangians that are time independent. Mathematical

systems where the ordinary differential equations do not depend explicitly on the independent variable, which

in this case is time , are called autonomous systems. Systems having differential equations governing the

dynamical behavior that have time-dependent coefficients are called non-autonomous systems.

In principle it is trivial to incorporate time-dependent behavior into the equations of motion by intro-

ducing either a time dependent generalized force ( ), or allowing the Lagrangian to be time dependent.

For example, in the rocket problem the mass is time dependent. In some cases the time dependent forces

can be represented by a time-dependent potential energy rather than using a generalized force. Solutions

for non-autonomous systems can be considerably more difficult to obtain, and can involve regions where the

motion is stable and other regions where the motion is unstable or chaotic similar to the behavior discussed

in chapter 4. The following case of a simple pendulum, whose support is undergoing vertical oscillatory

motion, illustrates the complexities that can occur for systems involving time-dependent forces.

6.20 Example: Plane pendulum hanging from a vertically-oscillating support

Consider a plane pendulum having a mass  fastened to a massless rigid rod of length  that is at an

angle () to the vertical gravitational field . The pendulum is attached to a support that is subject to a

vertical oscillatory force  such that the vertical position  of the support is

 =  cos

The kinetic energy is

 =
1

2


∙³
̇ cos 

´2
+ (̇ + ̇ sin )2

¸
=
1

2

h
2̇

2
+ 2̇̇ sin  + ̇2

i
and the potential energy is

 = [(1− cos ) + ]

Thus the Lagrangian is

 =
1

2

h
2̇

2
+ 2̇̇ sin  + ̇2

i
− [(1− cos ) + ]

The Euler-Lagrange equations lead to equations of motion for  and 

2̈ +̈ sin  + sin  = 0

̈ sin  +̇
2
cos  +̈ + = 
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Assume the small-angle approximation where → 0 then these two equations reduce to

̈ +

µ



+

̈



¶
 = 0

̈ +  =




Substitute ̈ = −2 cos into these equations gives

̈ +

µ



− 2


cos

¶
 = 0


¡
 −2 cos

¢
= 

These correspond to stable harmonic oscillations about  ≈ 0 if the bracket term is positive, and to

unstable motion if the bracket is negative. Thus, for small amplitude oscillation about  ≈ 0 the motion of
the system can be unstable whenever the bracket is negative, that is, when the acceleration 2 cos  

and resonance behavior can occur coupling the pendulum period and the forcing frequency .

This discussion also applies to the inverted pendulum with a surprising result. It is well known that the

pendulum is unstable near  = . However, if the support is oscillating, then for  ≈  the equations of

motion become

̈ −
µ



− 2


cos

¶
 = 0


¡
 −2 cos

¢
= 

The inverted pendulum has stable oscillations about  ≈  if the bracket is negative, that is, if 2 cos  

This illustrates that nonautonomous dynamical systems can involve either stable or unstable motion.

6.12 Impulsive forces

Colliding bodies often involve large impulsive forces that act for a short time. As discussed in chapter 2128

the treatment of impulsive forces or torques is greatly simplified if they act for a sufficiently short time that

the displacement during the impact can be ignored, even though the instantaneous change in velocities may

be large. The simplicity is achieved by taking the time integral of the Euler-Lagrange equations over the

duration  of the impulse and assuming  → 0.

The impact of the impulse on a system can be handled two ways. The first approach is to use the

Euler-Lagrange equation during the impulse to determine the equations of motion





µ


̇

¶
− 


= 

 (6.75)

where the impulsive force is introduced using the generalized force 
 . Knowing the initial conditions at

time  the conditions at the time +  are given by integration of equation 675 over the duration  of the

impulse which gives Z +







µ


̇

¶
 −

Z +






 =

Z +




  (6.76)

This integration determines the conditions at time +  which then are used as the initial conditions for the

motion when the impulsive force 
 is zero.

The second approach is to realize that equation 676 can rewritten in the form

lim
→0

Z +







µ


̇

¶
 = lim

→0


̇

¯̄̄̄+


= ∆ = lim
→0

Z +



µµ




¶
+



¶
 (6.77)

Note that in the limit that  → 0 then the integral of the generalized momentum  =

̇

simplifies to give

the change in generalized momentum ∆ . In addition, assuming that the non-impulsive forces
³



´
are
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finite and independent of the instantaneous impulsive force during the infinitessimal duration  , then the

contribution of the non-impulsive forces
R +


³



´
 during the impulse can be neglected relative to the

large impulsive force term; lim→0
R +



  . Thus it can be assumed that

∆ = lim
→0

Z +




  = ̃ (6.78)

where ̃ is the generalized impulse associated with coordinate  = 1 2 3  . This generalized impulse

can be derived from the time integral of the impulsive forces P given by equation 2135 using the time

integral of equation 677, that is

∆ = ̃ = lim
→0

Z +




  ≡ lim

→0

Z +



X


P ·
r


 =

X


P̃ ·
r


(6.79)

Note that the generalized impulse ̃ can be a translational impulse P̃ with corresponding translational

variable   or an angular impulsive torque τ̃  with corresponding angular variable  .

Impulsive force problems usually are solved in two stages. Either equations 676 or 679 are used to

determine the conditions of the system immediately following the impulse. If  → 0 then impulse changes

the generalized velocities ̇ but not the generalized coordinates  . The subsequent motion then is determined

using the Lagrangian equations of motion with the impulsive generalized force being zero, and assuming that

the initial condition corresponds to the result of the impulse calculation.

6.21 Example: Series-coupled double pendulum subject to impulsive force

Two series-coupled plane pendula.

Consider a series-coupled double pendulum comprising

two masses 1 and 2 connected by rigid massless rods of

lengths 1 and 2 as shown in the figure. Initially the two

pendula are at rest and hanging vertically when a horizontal

impulse ̃ strikes the system at a distance  below the up-

per fulcrum where 1    1 + 2. For this system the

kinetic energy of the masses 1 and 2 are

1 =
1

2
1

2
1̇
2

1

2 =
1

2
2[

2
1̇
2

1 + 212̇1̇2 cos(1 − 2) + 22̇
2

2]

Note the velocity of 2 is the vector sum of the two velocities

shown, separated by the angle 2−1. Thus the total kinetic

energy is

 =
1

2
(1 +2)

2
1̇
2

1 +212̇1̇2 cos(1 − 2) +
1

2
2

2
2̇
2

2

To first order in cos(1 − 2)

 =
1

2
(1 +2)

2
1̇
2

1 +212̇1̇2 +
1

2
2

2
2̇
2

2

The total potential energy is

 = 11(1− cos1) +2[1(1− cos1) + 2(1− cos2)
= (1 +2)1(1− cos1) +22(1− cos2)

Thus, assuming the small-angle approximation, the Lagrangian becomes

 =
1

2
(1 +2)

2
1̇
2

1 +212̇1̇2 +
1

2
2

2
2̇
2

2 −
µ
1

2
(1 +2)1

2
1 +

1

2
22

2
2

¶
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Use equation 679 to transform to the generalized coordinates 1 and 2 with the corresponding generalized

impulsive torques

̃1 = ̃1

̃2 = ̃ ( − 1)

Since the system starts at rest where 1 = 2 = 0, then using equation 677 gives the change in angular

momentum immediately following the impulse to be

1
2
1̇1 +21

³
1̇1 + 2̇2

´
= ̃1

22

³
1̇1 + 2̇2

´
= ̃ ( − 1)

These two equations determine ̇1 and ̇2 immediately after the impulse; these can be used with 1 = 2 = 0

as initial conditions for solving the subsequent force-free motion when the generalized impulsive force is zero.

As described in example 125 the subsequent motion of this series coupled pendulum will be a superposition

of the two normal modes with amplitudes determined by the result of the impulse calculation.

6.13 The Lagrangian versus the Newtonian approach to classical

mechanics

It is useful to contrast the differences, and relative advantages, of the Newtonian and Lagrangian formulations

of classical mechanics. The Newtonian force-momentum formulation is vectorial in nature, it has cause and

effect embedded in it. The Lagrangian approach is cast in terms of kinetic and potential energies which involve

only scalar functions and the equations of motion come from a single scalar function, the Lagrangian. The

directional properties of the equations of motion come from the requirement that the trajectory is specified

by the principle of least action. The directional properties of the vectors in the Newtonian approach assist

in our intuition when setting up a problem, but the Lagrangian method is simpler mathematically when the

mechanical system becomes more complex.

The major advantage of the variational approaches to mechanics is that solution of the dynamical equa-

tions of motion can be simplified by expressing the motion in terms of independent generalized coordi-

nates. These generalized coordinates can be any set of independent variables, , where 1 ≤  ≤ ,

plus the corresponding velocities ̇ for Lagrangian mechanics. These independent generalized coordinates

completely specify the scalar potential and kinetic energies used in the Lagrangian or Hamiltonian. The vari-

ational approach allows for a much larger arsenal of possible generalized coordinates than the typical vector

coordinates used in Newtonian mechanics. For example, the generalized coordinates can be dimensionless

amplitudes for the  normal modes of coupled oscillator systems, or action-angle variables. Moreover, very

different generalized coordinates can be used for each of the  variables. The tremendous freedom plus

flexibility of the choice of generalized coordinates is important when constraint forces are acting on the

system. Generalized coordinates allow the constraint forces to be ignored by including auxiliary conditions

to account for the kinematic constraints that lead to correlated motion. The Lagrange method provides

an incredibly consistent and mechanistic problem-solving strategy for many-body systems subject to con-

straints. Expressed in terms of generalized coordinates, the Lagrange’s equations can be applied to a wide

variety of physical problems including those involving fields. The manipulation of scalar quantities in a

configuration space of generalized coordinates can greatly simplify problems compared with being confined

to a rigid orthogonal coordinate system characterized by the Newtonian vector approach.

The use of generalized coordinates in Lagrange’s equations of motion can be applied to a wide range

of physical phenomena including field theory, such as for electromagnetic fields which are beyond the ap-

plicability of Newton’s equations of motion. The superiority of the Lagrangian approach compared to the

Newtonian approach for solving problems in mechanics is apparent when dealing with holonomic constraint

forces. Constraint forces must be known and included explicitly in the Newtonian equations of motion. Un-

fortunately knowledge of the equations of motion is required to derive these constraint forces. For holonomic

constrained systems, the equations of motion can be solved directly without calculating the constraint forces

using the minimal set of generalized coordinate approach to Lagrangian mechanics. Moreover, the Lagrange

approach has significant philosophical advantages compared to the Newtonian approach.
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6.14 Summary

Newtonian plausibility argument for Lagrangian mechanics:

A justification for introducing the calculus of variations to classical mechanics becomes apparent when

the concept of the Lagrangian  ≡  −  is used in the functional and time  is the independent variable.

It was shown that Newton’s equation of motion can be rewritten as







̇
− 


= 


(612)

where 


are the excluded forces of constraint plus any other conservative or non-conservative forces not

included in the potential  This corresponds to the Euler-Lagrange equation for determining the minimum

of the time integral of the Lagrangian.

The excluded force 


can be partitioned into the holonomic constraint part 


which can be

represented by the Lagrange multipliers term.



≡

X


 ()



(614)

Thus the excluded forces 


can be separated into the Lagrange multiplier terms plus any remaining

excluded forces 


. That is,



≡

X


 ()



+ 


(613 614)

Thus equation 612 can be written as







̇
− 


=

X


 ()



+ 


(615)

where the Lagrange multiplier term accounts for holonomic constraint forces, and 


includes all addi-

tional forces not accounted for by the scalar potential  , or the Lagrange multiplier terms 


. As discussed

in chapter 663, the constraint forces can be included explicitly as generalized forces in the excluded term




of equation 615.

Note that for unconstrained pure conservative forces, equation 615 can be simplified to the Euler-Lagrange

equation for  independent coordinates .







̇
− 


= 0 (616)

This is equivalent to using the calculus of variations to minimize the action integral  =
R 2
1

, that is

 = 

Z 2

1

( ̇; ) = 0 (617)

where the functional is the Lagrangian and the independent variable is time 

d’Alembert’s Principle

It was shown that d’Alembert’s Principle

X


(F − ṗ) · r = 0 (625)

cleverly transforms the principle of virtual work from the realm of statics to dynamics. Application of virtual

work to statics primarily leads to algebraic equations between the forces, whereas d’Alembert’s principle

applied to dynamics leads to differential equations.

Lagrange equations of motion

Lagrange used d’Alembert’s Principle to derived the basic equations of Lagrangian mechanics. This proof

clearly illustrates the role of the calculus of variations in Lagrangian mechanics as well as elucidating the
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role of forces in the theory. The d’Alembert Principle leads to Euler’s variational equation for the kinetic

energy plus the active forces  for each coordinate .X


∙½




µ


̇

¶
− 



¾
−

¸
 = 0 (638)

If the  coordinates  are independent then for each value of  the square bracket equals zero which

corresponds to Euler’s equation.

The Lagrangian method concentrates solely on active forces, completely ignoring all other internal forces.

In Lagrangian mechanics the generalized forces, corresponding to each generalized coordinate, can be parti-

tioned three ways

 = −∇ +
X
=1





(q ) +



where the velocity-independent conservative forces can be absorbed into a scalar potential  , the holonomic

constraint forces can be handled using the Lagrange multiplier term
P

=1 


(q ), and the remaining

part of the active forces can be absorbed into the generalized force 
 . The scalar potential energy  is

handled by absorbing it into the standard Lagrangian  =  − . If the constraint forces are holonomic then
these forces are easily and elegantly handled by use of Lagrange multipliers. All remaining forces, including

dissipative forces, can be handled by including them explicitly in the the generalized force 
 .

Combining the above two equations gives

X


"½




µ


̇

¶
− 



¾
−

 −
X
=1





(q )

#
 = 0 (656)

Use of the Lagrange multipliers to handle the  constraint forces ensures that all  infinitessimals  are

independent implying that the expression in the square bracket must be zero for each of the  values of .

This leads to  Lagrange equations plus  constraint relations½




µ


̇

¶
− 



¾
= 

 +

X
=1





(q ) (660)

where  = 1 2 3 

Application of Lagrangian mechanics:

The optimal way to exploit Lagrangian mechanics is as follows:

1. Select a set of independent generalized coordinates.

2. Partition the active forces into three groups:

(a) Conservative one-body forces

(b) Holonomic constraint forces

(c) Generalized forces

3. Minimize the number of generalized coordinates.

4. Derive the Lagrangian

5. Derive the equations of motion

Velocity-dependent Lorentz force:

Usually velocity-dependent forces are non-holonomic. However, electromagnetism is a special case where

the velocity-dependent Lorentz force F = (E+v×B) can be obtained from a velocity-dependent potential

function (

 ). It was shown that the velocity-dependent potential

 = Φ− v ·A (674)
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leads to the Lorentz force where Φ is the scalar electric potential and A the vector potential.

Time-dependent forces:

It was shown that time-dependent forces can lead to complicated motion having both stable regions and

unstable regions of motion that can exhibit chaos.

Impulsive forces:

A generalized impulse ̃ can be derived for an instantaneous impulsive force from the time integral of

the impulsive forces P given by equation 2135 using the time integral of equation 617, that is

∆ = ̃ = lim
→0

Z +




  ≡ lim

→0

Z +



X


F ·
r


 =

X


P̃ ·
r


(679)

Note that the generalized impulse ̃ can be a translational impulse P̃ with corresponding translational

variable  or an angular impulsive torque T̃ with corresponding angular variable  .

Comparison of Newtonian and Lagrangian mechanics:

In contrast to Newtonian mechanics, which is based on knowing all the vector forces acting on a system,

Lagrangian mechanics can derive the equations of motion using generalized coordinates without requiring

knowledge of the constraint forces acting on the system. Lagrangian mechanics provides a remarkably

powerful, and incredibly consistent, approach to solving for the equations of motion in classical mechanics

which is especially powerful for handling systems that are subject to holonomic constraints.
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Workshop exercises

1. A disk of mass  and radius  rolls without slipping down a plane inclined from the horizontal by an angle

. The disk has a short weightless axle of negligible radius. From this axis is suspended a simple pendulum of

length    and whose bob has a mass . Assume that the motion of the pendulum takes place in the plane

of the disk.

(a) What generalized coordinates would be appropriate for this situation?

(b) Are there any equations of constraint? If so, what are they?

(c) Find Lagrange’s equations for this system.

2. A Lagrangian for a particular system can be written as

 =


2
(̇2 + 2̇̇ + ̇2)− 

2
(2 + 2 + 2)

where   and  are arbitrary constants, but subject to the condition that 2 − 4 6= 0.

(a) What are the equations of motion?

(b) Examine the case  = 0 = . What physical system does this represent?

(c) Examine the case  = 0 and  = −. What physical system does this represent?

(d) Based on your answers to (b) and (c), determine the physical system represented by the Lagrangian given

above.

3. Consider a particle of mass  moving in a plane and subject to an inverse square attractive force.

(a) Obtain the equations of motion.

(b) Is the angular momentum about the origin conserved?

(c) Obtain expressions for the generalized forces. Recall that the generalized forces are defined by

 =
X








4. Consider a Lagrangian function of the form ( ̇ ̈ ). Here the Lagrangian contains a time derivative

of the generalized coordinates that is higher than the first. When working with such Lagrangians, the term

“generalized mechanics” is used.

(a) Consider a system with one degree of freedom. By applying the methods of the calculus of variations,

and assuming that Hamilton’s principle holds with respect to variations which keep both  and ̇ fixed at

the end points, show that the corresponding Lagrange equation is

2

2

µ


̈

¶
− 



µ


̇

¶
+




= 0

Such equations of motion have interesting applications in chaos theory.

(b) Apply this result to the Lagrangian

 = −
2
̈ − 

2
2

Do you recognize the equations of motion?

5. A bead of mass  slides under gravity along a smooth wire bent in the shape of a parabola 2 =  in the

vertical ( ) plane.

(a) What kind (holonomic, nonholonomic, scleronomic, rheonomic) of constraint acts on ?

(b) Set up Lagrange’s equation of motion for  with the constraint embedded.



6.14. SUMMARY 177

(c) Set up Lagrange’s equations of motion for both  and  with the constraint adjoined and a Lagrangian

multiplier  introduced.

(d) Show that the same equation of motion for  results from either of the methods used in part (b) or part

(c).

(e) Express  in terms of  and ̇.

(f) What are the  and  components of the force of constraint in terms of  and ̇?

6. Consider the two Lagrangians

( ̇; ) and 0( ̇; ) = ( ̇; ) +
 ( )



where  ( ) is an arbitrary function of the generalized coordinates (). Show that these two Lagrangians

yield the same Euler-Lagrange equations. As a consequence two Lagrangians that differ only by an exact time

derivative are said to be equivalent.

7. Consider the double pendulum comprising masses 1 and 2 connected by inextensible strings as shown in

the figure. Assume that the motion of the pendulum takes place in a vertical plane.

(a) Are there any equations of constraint? If so, what are they?

(b) Find Lagrange’s equations for this system.

O

1

2

m 2

m 2 g

m 1

m 1g

L1

L2

8 Consider the system shown in the figure which consists of a mass  suspended via a constrained massless link

of length  where the point  is acted upon by a spring of spring constant . The spring is unstretched when

the massless link is horizontal. Assume that the holonomic constraints at  and  are frictionless.

a Derive the equations of motion for the system using the method of Lagrange multipliers.

x y

mg

Lx 0

kx

9 Consider a pendulum, with mass , connected to a (horizontally) moveable support of mass  .

(a) Determine the Lagrangian of the system.

(b) Determine the equations of motion for  ¿ 1.

(c) Find an equation of motion in  alone. What is the frequency of oscillation?

(d) What is the frequency of oscillation for  À ? Does this make sense?
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Problems

1. A sphere of radius  is constrained to roll without slipping on the lower half of the inner surface of a hollow

cylinder of radius Determine the Lagrangian function, the equation of constraint, and the Lagrange equations

of motion. Find the frequency of small oscillations.

2. A particle moves in a plane under the influence of a force  = −−1 directed toward the origin;  and

 ( 0) are constants. Choose generalized coordinates with the potential energy zero at the origin.

a) Find the Lagrangian equations of motion.

b) Is the angular momentum about the origin conserved?

c) Is the total energy conserved?

3. Two blocks, each of mass are connected by an extensionless, uniform string of length . One block is placed

on a frictionless horizontal surface, and the other block hangs over the side, the string passing over a frictionless

pulley. Describe the motion of the system:

a) when the mass of the string is negligible

b) when the string has mass .

4. Two masses 1 and 2 (1 6= 2) are connected by a rigid rod of length  and of negligible mass. An

extensionless string of length 1 is attached to 1 and connected to a fixed point of the support  . Similarly

a string of length 2 (1 6= 2) connects 2 and  . Obtain the equation of motion describing the motion in

the plane of 12 and  , and find the frequency of small oscillation around the equilibrium position.

5. A thin uniform rigid rod of length 2 and mass  is suspended by a massless string of length . Initially the

system is hanging vertically downwards in the gravitational field . Use as generalized coordinates the angles

given in the diagram.

a) Derive the Lagrangian for the system.

b) Use the Lagrangian to derive the equations of motion.

c) A horizontal impulsive force  in the  direction strikes the bottom end of the rod for an infinitessimal

time  . Derive the initial conditions for the system immediately after the impulse has occurred.

d) Draw a diagram showing the geometry of the pendulum shortly after the impulse when the displacement

angles are significant.

O

1

2

Mg

F

y
2L

l
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x



Chapter 7

Symmetries, Invariance and the

Hamiltonian

7.1 Introduction

The discussion of Lagrangian dynamics illustrates the power of Lagrangian mechanics for deriving the equa-

tions of motion. In contrast to Newtonian mechanics, which is given in terms of force vectors acting on a

system, the Lagrangian method, based on d’Alembert’s Principle or Hamilton’s Principle, is expressed in

terms of the scalar kinetic and potential energies of the system. The Lagrangian approach is a sophisticated

alternative to Newton’s laws of motion, that provides a simpler derivation of the equations of motion that

allows constraint forces to be ignored. In addition, the use of Lagrange multipliers or generalized forces

allows the Lagrangian approach to determine the constraint forces when these forces are of interest. The

equations of motion, derived either from Newton’s Laws or Lagrangian dynamics, can be non-trivial to

solve mathematically. It is necessary to integrate second-order differential equations, which for  degrees of

freedom, imply 2 constants of integration.

Chapter 7 will explore the remarkable connection between symmetry and invariance of a system under

transformation, and the related conservation laws that imply the existence of constants of motion. Even

when the equations of motion cannot be solved easily, it is possible to derive important physical principles

regarding the first-order integrals of motion of the system directly from the Lagrange equation, as well as

elucidating the underlying symmetries plus invariance. This property is contained in Noether’s theorem

which states that conservation laws are associated with differentiable symmetries of a physical system.

7.2 Generalized momentum

Consider a holonomic system of  masses under the influence of conservative forces that depend on position

 but not velocity ̇ , that is, the potential is velocity independent. Then for the  coordinate of particle 

for  particles



̇
=



̇
− 

̇
=



̇
(7.1)

=


̇

X
=1

1

2


¡
̇2 + ̇2 + ̇2

¢
= ̇ = 

Thus for a holonomic, conservative, velocity-independent potential we have



̇
=  (7.2)

which is the  component of the linear momentum for the  particle.
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This result suggests an obvious extension to the concept of momentum to generalized coordinates. The

generalized momentum associated with the coordinate  is defined to be



̇
≡  (7.3)

Note that  also is called the conjugate momentum or canonical momentum to  where    are

conjugate, or canonical, variables. Remember that the linear momentum  is the first-order time integral

given by equation 210. If  is not a spatial coordinate, then  is the generalized momentum, not the

kinematic linear momentum. For example, if  is an angle, then  will be angular momentum. That

is, the generalized momentum may differ from the usual linear or angular momentum since the definition

(73) is more general than the usual definition of momentum,  = ̇ in classical mechanics. This is

illustrated by the case of a moving charged particles    in an electromagnetic field. Chapter 6 showed

that electromagnetic forces on a charge  can be described in terms of a scalar potential  where

 = (Φ−A · v) (7.4)

Thus the Lagrangian for the electromagnetic force can be written as

 =

X
=1

∙
1

2
v · v − (Φ−A · v)

¸
(7.5)

The generalized momentum to the coordinate  for charge   and mass  is given by the above Lagrangian

 =


̇
=  ̇ +  (7.6)

Note that this includes both the mechanical linear momentum plus the correct electromagnetic momentum.

The fact that the electromagnetic field carries momentum should not be a surprise since electromagnetic

waves also carry energy as is illustrated by the radiant energy from the sun.

7.1 Example: Feynman’s angular-momentum paradox

Feynman[Fey84] posed the following paradox. A circular insulating disk  mounted on frictionless bearings,

has a circular ring of total charge  uniformly distributed around the perimeter of the circular disk at the

radius . A superconducting long solenoid of radius  where   , is fixed to the disk and is mounted

coaxial with the bearings. The moment of inertia of the system about the rotation axis is . Initially the disk

plus superconducting solenoid are stationary with a steady current producing a uniform magnetic field 0
inside the solenoid. Assume that a rise in temperature of the solenoid destroys the superconductivity leading

to a rapid dissipation of the electric current and resultant magnetic field. Assume that the system is free to

rotate, no other forces or torques are acting on the system, and that the charge carriers in the solenoid have

zero mass and thus do not contribute to the angular momentum. Does the system rotate when the current in

the solenoid stops?

Initially the system is stationary with zero mechanical angu-

lar momentum. Faraday’s Law states that, when the magnetic

field dissipates from 0 to zero, there will be a torque N acting

on the circumferential charge  at radius  due to the change

in magnetic flux Φ.

N() = −Φ



Since Φ


 0, this torque leads to an angular impulse which

will equal the final mechanical angular momentum.

L
 = T =

Z


N() = Φ
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The initial angular momentum in the electromagnetic field can be derived using equation 76 plus Stoke’s

theorem (Appendix 3). Equation 2142 gives that the final angular momentum equals the angular impulse

L = 

Z


I
̇ = 

I
 = 

I
 = 

Z
B · dS =Φ

where Φ =

I
 =

Z
B · dS is the initial total magnetic flux through the solenoid. Thus the total initial

angular momentum is given by

L = 0 + L = Φ

Since the final electromagnetic field is zero the final total angular momentum is given by

L = L
 + 0 = Φ

Note that the total angular momentum is conserved. That is, initially all the angular momentum is stored in

the electromagnetic field, whereas the final angular momentum is all mechanical. This explains the paradox

that the mechanical angular momentum is not conserved, only the total angular momentum of the system is

conserved, that is, the sum of the mechanical and electromagnetic angular momenta.

7.3 Invariant transformations and Noether’s Theorem

One of the great advantages of Lagrangian mechanics is the freedom it allows in choice of generalized

coordinates which can simplify derivation of the equations of motion. For example, for any set of coordinates,

  a reversible point transformation can define another set of coordinates 
0
 such that

0 = 0(1 2 ; ) (7.7)

The new set of generalized coordinates satisfies Lagrange’s equations of motion with the new Lagrangian

(0 ̇0 ) = ( ̇ ) (7.8)

The Lagrangian is a scalar, with units of energy, which does not change if the coordinate representa-

tion is changed. Thus (0 ̇0 ) can be derived from ( ̇ ) by substituting the inverse relation  =

(
0
1 

0
2 

0
; ) into ( ̇ ) That is, the value of the Lagrangian  is independent of which coordinate

representation is used. Although the general form of Lagrange’s equations of motion is preserved in any

point transformation, the explicit equations of motion for the new variables usually look different from those

with the old variables. A typical example is the transformation from cartesian to spherical coordinates.

For a given system, there can be particular transformations for which the explicit equations of motion are

the same for both the old and new variables. Transformations where the equations of motion are invariant

are called invariant transformations. It will be shown that if the Lagrangian does not explicitly contain

a particular coordinate of displacement  then the corresponding conjugate momentum,  is conserved.

This relation is called Noether’s theorem which states “For each symmetry of the Lagrangian, there is a

conserved quantity".

Noether’s Theorem will be used to consider invariant transformations for two dependent variables, ()

and () plus their conjugate momenta  and . For a closed system, these provide up to six possible

conservation laws for the three axes. Then we will discuss the independent variable  and its relation to

the Generalized Energy Theorem, which provides another possible conservation law. For simplicity, these

discussions assume that the systems are holonomic and conservative.

The Lagrange equations using generalized coordinates for holonomic systems, was given by equation 660

to be ½




µ


̇

¶
− 



¾
=

X
=1





(q ) +

 (7.9)

This can be written in terms of the generalized momentum as½



 − 



¾
=

X
=1





(q ) +

 (7.10)
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or equivalently as

̇ =



+

"
X
=1





(q ) +



#
(7.11)

Note that if the Lagrangian  does not contain  explicitly, that is, the Lagrangian is invariant to a linear

translation, or equivalently, is spatially homogeneous, and if the Lagrange multiplier constraint force and

generalized force terms are zero, then




+

"
X
=1





(q ) +



#
= 0 (7.12)

In this case the Lagrange equation reduces to

̇ =



= 0 (7.13)

Equation 713 corresponds to  being a constant of motion. Stated in words, the generalized momentum 
is a constant of motion if the Lagrangian is invariant to a spatial translation of , and the constraint plus

generalized force terms are zero. Expressed another way, if the Lagrangian does not contain a given coordi-

nate  and the corresponding constraint plus generalized forces are zero, then the generalized momentum

associated with this coordinate is conserved. Note that this example of Noether’s theorem applies to any

component of q. For example, in the uniform gravitational field at the surface of the earth, the Lagrangian

does not depend on the  and  coordinates in the horizontal plane, thus  and  are conserved, whereas,

due to the gravitational force, the Lagrangian does depend on the vertical  axis and thus  is not conserved.

7.2 Example: Atwoods machine

Assume that the linear momentum is conserved for the Atwood’s machine shown in the adjacent figure.

Let the left mass rise a distance  and the right mass rise a distance . Then the middle mass must drop

by +  to conserve the length of the string. The Lagrangian of the system is

 =
1

2
(4)̇2+

1

2
(3)(−̇−̇)2+1

2
̇2−(4+ 3(−− ) +) =

7

2
̇2+3̇̇+2̇2−(−2)

yx
m 3m 4m 

Example of an Atwood’s machine

Note that the transformation

 = 0 + 2

 = 0 + 

results in the potential energy term (−2) = (0−20)
which is a constant of motion. As a result the Lagrangian

is independent of  which means that it is invariant to the

small perturbation  and thus 

= 0 Therefore, accord-

ing to Noether’s theorem, the corresponding linear momen-

tum  =

̇
is conserved. This conserved linear momentum

then is given by

 =


̇
=



̇

̇

̇
+



̇

̇

̇
= (7̇+ 3̇)(2) +(3̇+ 4̇) = (17̇+ 10̇)

Thus, if the system starts at rest with  = 0, then ̇ always equals −10
17
̇ since  is constant.

Note that this also can be shown using the Euler-Lagrange equations in that Λ = 0 and Λ = 0 give

7̈+ 3̈ = −

3̈+ 4̈ = 2

Adding the second equation to twice the first gives

17̈+ 10̈ =



(17̇+ 10̇) = 0

This is the result obtained directly using Noether’s theorem.
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7.4 Rotational invariance and conservation of angular momentum

The arguments, used above, apply equally well to conjugate momenta  and  for rotation about any axis.

The Lagrange equation is ½



 − 



¾
=

X
=1





(q ) +

 (7.14)

If no constraint or generalized torques act on the system, then the right-hand side of equation 714 is zero.

Moreover if the Lagrangian in not an explicit function of  then 

= 0 and assuming that the constraint

plus generalized torques are zero, then  is a constant of motion.

Noether’s Theorem illustrates this general result which can be stated as, if the Lagrangian is rotationally

invariant about some axis, then the component of the angular momentum along that axis is conserved. Also

this is true for the more general case where the Lagrangian is invariant to rotation about any axis, which

leads to conservation of the total angular momentum.

7.3 Example: Conservation of angular momentum for rotational invariance:

r

Infinitessimal rotation

The Noether theorem result for rotational-invariance about an

axis also can be derived using cartesian coordinates as shown below.

As discussed in appendix , it is necessary to limit discussion of

rotation to infinitessimal rotation angles in order to represent the

rotation by a vector. Consider an infinitessimal rotation  about

some axis, which is a vector. As illustrated in the adjacent figure,

this can be expressed as

r = θ × r
The velocity vectors also change on rotation of the system obeying

the transformation equation which is common to all vectors, that

is,

ṙ = θ × ṙ
If the Lagrangian is unaffected by the orientation of the system,

that is, it is rotationally invariant, then it can be shown that the

angular momentum is conserved. For example, consider that the

Lagrangian is invariant to rotation about some axis . Since the

Lagrangian is a function

 = ( ̇; )

then the expression that the Lagrangian does not change due to an infinitesimal rotation  about this axis

can be expressed as

 =
X





 +

X




̇
̇ = 0 ()

where cartesian coordinates have been used.

Using the generalized momentum


̇
= 

then, Lagrange’s equation gives



 − 


= 0

that is

̇ =




Inserting this into equation  gives

 =

3X


̇ +

3X


̇ = 0
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This is equivalent to the scalar products

ṗ · r+ p · ṙ = 0
For an infinitessimal rotation then  =  ×  and ̇ =  × ̇ . Therefore

ṗ · (θ × r) + p · (θ × ṙ) = 0
The cyclic order can be permuted giving

θ · (r× ṗ) + θ · (ṙ× p) = 0

θ · [(r× ṗ) + (ṙ× p)] = 0

θ · 

(r× p) = 0

Because the infinitessimal angle  is arbitrary, then the time derivative




(r× p) = 0

about the axis of rotation  But the bracket (r× p) equals the angular momentum. That is;
Angular momentum = (r× p) = constant

This proves the Noether’ theorem that the angular momentum about any axis is conserved if the Lagrangian

is rotationally invariant about that axis.

7.4 Example: Diatomic molecules and axially-symmetric nuclei

An interesting example of Noether’s theorem applies to diatomic molecules such as 2 2 2 2 2
and 2. The electric field produced by the two charged nuclei of the diatomic molecule has cylindrical

symmetry about the axis through the two nuclei. Electrons are bound to this dumbbell arrangement of the two

nuclear charges which may be rotating and vibrating in free space. Assuming that there are no external torques

acting on the diatomic molecule in free space, then the angular momentum about any fixed axis in free space

must be conserved according to Noether’s theorem. If no external torques are applied, then the component of

the angular momentum about any fixed axis is conserved, that is, the total angular momentum is conserved.

What is especially interesting is that since the electrostatic potential, and thus the Lagrangian, of the diatomic

molecule has cylindrical symmetry, that is 

= 0, then the component of the angular momentum with respect

to this symmetry axis also is conserved irrespective of how the diatomic molecule rotates or vibrates in free

space. That is, an additional symmetry has been identified that leads to an additional conservation law that

applies to the angular momentum.

An example of Noether’s theorem is in nuclear physics where some nuclei have a spheroidal shape similar

to an american football or a rugby ball. This spheroidal shape has an axis of symmetry along the long axis.

The Lagrangian is rotationally invariant about the symmetry axis resulting in the angular momentum about

the symmetry axis being conserved in addition to conservation of the total angular momentum.

7.5 Cyclic coordinates

Translational and rotational invariance occurs when a system has a cyclic coordinate  A cyclic coordinate

is one that does not explicitly appear in the Lagrangian. The term cyclic is a natural name when one has

cylindrical or spherical symmetry. In Hamiltonian mechanics a cyclic coordinate often is called an ignorable

coordinate. By virtue of Lagrange’s equations







̇
− 


= 0 (7.15)

then a cyclic coordinate  is one for which



= 0. Thus







̇
= ̇ = 0 (7.16)

that is,  is a constant of motion if the conjugate coordinate  is cyclic. This is just Noether’s Theorem.
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7.6 Kinetic energy in generalized coordinates

Application of Noether’s theorem to the conservation of energy requires the kinetic energy to be expressed

in generalized coordinates. In terms of fixed rectangular coordinates, the kinetic energy for  bodies, each

having three degrees of freedom, is expressed as

 =
1

2

X
=1

3X
=1

̇
2
 (7.17)

These can be expressed in terms of generalized coordinates as  = (  ) and in terms of generalized

velocities

̇ =

X
=1




̇ +




(7.18)

Taking the square of ̇ and inserting into the kinetic energy relation gives

 (q q̇ ) =
X


X


1

2









̇ ̇ +

X


X











̇ +

X


X


1

2


µ




¶2
(7.19)

This can be abbreviated as

 (q q̇ ) = 2(q q̇ ) + 1(q q̇ ) + 0(q ) (7.20)

where

2(q q̇ ) =
X


X


1

2









̇ ̇ =

X


̇ ̇ (7.21)

1(q q̇ ) =
X


X











̇ =

X


 ̇ (7.22)

0(q ) =
X


X


1

2


µ




¶2
(7.23)

where

 ≡
X

=1

3X
=1

1

2









(7.24)

When the transformed system is scleronomic, time does not appear explicitly in the transformation

equations to generalized coordinates since



= 0. Then 1 = 0 = 0, and the kinetic energy reduces to

a homogeneous quadratic function of the generalized velocities

 (q q̇ ) = 2(q q̇ ) (7.25)

A useful relation can be derived by taking the differential of equation 721 with respect to ̇. That is

2(q q̇ )

̇
=
X


̇ +
X


̇ (7.26)

Multiply this by ̇ and sum over  givesX


̇
2(q q̇ )

̇
=
X


̇̇ +
X


̇ ̇ = 2
X


̇̇ = 22

Similarly, the products of the generalized velocities ̇ with the corresponding derivatives of 1 and 0 giveX


̇
2

̇
= 22 (7.27)

X


̇
1(q q̇ )

̇
= 1(q q̇ ) (7.28)

X


̇
0(q )

̇
= 0 (7.29)
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Equation 725 gives that  = 2 when the transformed system is scleronomic, i.e.



= 0 and then the

kinetic energy is a quadratic function of the generalized velocities ̇ . Using the definition of the generalized

momentum equation 73 assuming  = 2, and that the potential  is velocity independent, gives that

 ≡ 

̇
=



̇
− 

̇
=

2

̇
(7.30)

Then equation 727 reduces to the useful relation that

2 =
1

2

X


̇ =
1

2
q̇ · p (7.31)

where, for compactness, the summation is abbreviated as a scalar product.

7.7 Generalized energy and the Hamiltonian function

Consider the time derivative of the Lagrangian, plus the fact that time is the independent variable in the

Lagrangian. Then the total time derivative is




=
X





̇ +

X




̇
̈ +




(7.32)

The Lagrange equations for a conservative force are given by equation 660 to be







̇
− 


= 

 +

X
=1





(q ) (7.33)

The holonomic constraints can be accounted for using the Lagrange multiplier terms while the generalized

force 
 includes non-holonomic forces or other forces not included in the potential energy term of the

Lagrangian, or holonomic forces not accounted for by the Lagrange multiplier terms.

Substituting equation 733 into equation 732 gives




=

X


̇






̇
−
X


̇

"

 +

X
=1





(q )

#
+
X




̇
̈ +





=
X






µ
̇


̇

¶
−
X


̇

"

 +

X
=1





(q )

#
+




(7.34)

This can be written in the form





⎡⎣X


µ
̇


̇

¶
− 

⎤⎦ =X


̇

"

 +

X
=1





(q )

#
− 


(7.35)

Define Jacobi’s Generalized Energy1 (q q̇ ) by

(q q̇ ) ≡
X


µ
̇


̇

¶
− (q q̇ ) (7.36)

Jacobi’s generalized momentum, equation 73 can be used to express the generalized energy ( ̇ ) in

terms of the canonical coordinates ̇ and , plus time . Define the Hamiltonian function to equal the

generalized energy expressed in terms of the conjugate variables ( ), that is,

 (qp) ≡ (q q̇ ) ≡
X


µ
̇


̇

¶
− (q q̇ ) =

X


(̇)− (q q̇ ) (7.37)

This Hamiltonian  (qp) underlies Hamiltonian mechanics which plays a profoundly important role in

most branches of physics as illustrated in chapters 8 14 and 17.

1Most textbooks call the function (q q̇ ) Jacobi’s energy integral. This book adopts the more descriptive name Generalized

energy in analogy with use of generalized coordinates q and generalized momentum p.
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7.8 Generalized energy theorem

The Hamilton function, 737 plus equation 735 lead to the generalized energy theorem

 (qp)


=

(q q̇ )


=
X


̇

"

 +

X
=1





(q )

#
− (q q̇ )


(7.38)

Note that for the special case where all the external forces
h

 +

P
=1 



(q )

i
= 0, then




= −


(7.39)

Thus the Hamiltonian is time independent if both
h

 +

P
=1 



(q )

i
= 0 and the Lagrangian are

time-independent. For an isolated closed system having no external forces acting, then the Lagrangian is

time independent because the velocities are constant, and there is no external potential energy. That is, the

Lagrangian is time-independent, and





⎡⎣X


µ
̇


̇

¶
− 

⎤⎦ = 


= −


= 0 (7.40)

As a consequence, the Hamiltonian (qp)  and generalized energy (q q̇ ), both are constants of motion

if the Lagrangian is a constant of motion, and if the external non-potential forces are zero. This is an example

of Noether’s theorem, where the symmetry of time independence leads to conservation of the conjugate

variable, which is the Hamiltonian or Generalized energy.

7.9 Generalized energy and total energy

The generalized kinetic energy, equation 720, can be used to write the generalized Lagrangian as

(q q̇ ) = 2(q q̇ ) + 1(q q̇ ) + 0(q )− (q ) (7.41)

If the potential energy  does not depend explicitly on velocities ̇ or time, then

 =


̇
=

 ( − )

̇
=



̇
(7.42)

Equation 742 can be used to write the Hamiltonian as

 (qp) =
X


µ
̇
2

̇

¶
+
X


µ
̇
1

̇

¶
+
X


µ
̇
0

̇

¶
− (q q̇ ) (7.43)

Using equations 727 728 729 gives that the total generalized Hamiltonian  (qp) equals

 (qp) = 22 + 1 − (2 + 1 + 0 − ) = 2 − 0 +  (7.44)

But the sum of the kinetic and potential energies equals the total energy. Thus equation 744 can be rewritten

in the form

 (qp) = ( + )− (1 + 20) =  − (1 + 20) (7.45)

Note that Jacobi’s generalized energy and the Hamiltonian do not equal the total energy . However, in

the special case where the transformation is scleronomic, then 1 = 0 = 0 and if the potential energy 

does not depend explicitly of ̇, then the generalized energy (Hamiltonian) equals the total energy, that is,

 =  Recognition of the relation between the Hamiltonian and the total energy facilitates determining

the equations of motion.
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7.10 Hamiltonian invariance

Chapters 78 79 addressed two important and independent features of the Hamiltonian regarding: ) when

 is conserved, and ) when  equals the total mechanical energy. These important results are summarized

below with a discussion of the assumptions made in deriving the Hamiltonian, as well as the implications.

a) Conservation of generalized energy

The generalized energy theorem (738) was given as

 (qp)


=

(q q̇ )


=
X


̇

"

 +

X
=1





(q )

#
− (q q̇ )


(7.46)

Note that when
P

 ̇

h

 +

P
=1 



(q )

i
= 0, then equation 746 reduces to




= −


(7.47)

Also, when
P

 ̇

h

 +

P
=1 



(q )

i
= 0 and if the Lagrangian is not an explicit function of time,

then the Hamiltonian is a constant of motion. That is,  is conserved if, and only if, the Lagrangian, and

consequently the Hamiltonian, are not explicit functions of time, and if the external forces are zero.

b) The generalized energy and total energy

If the following two requirements are satisfied

1) The kinetic energy has a homogeneous quadratic dependence on the generalized velocities, that is, the

transformation to generalized coordinates is independent of time,



= 0

2) The potential energy is not velocity dependent, thus the terms 
̇

= 0

Then equation 745 implies that the Hamiltonian equals the total mechanical energy, that is,

 =  +  =  (7.48)

Expressed in words, the generalized energy (Hamiltonian) equals the total energy if the constraints are

time independent and the potential energy is velocity independent. This is equivalent to stating that, if the

constraints, or generalized coordinates, for the system are time independent, then  = .

The four combinations of the above two independent conditions, assuming that the external forces term

in equation 746 is zero, are summarized in table 71.

Table 7.1: Hamiltonian and total energy

Hamiltonian Constraints and coordinate transformation

Time behavior Time independent Time dependent



= −


= 0  conserved,  =   conserved,  6= 



= −


6= 0  not conserved,  =   not conserved,  6= 

Note the following general facts regarding the Lagrangian and the Hamiltonian.

(1) the Lagrangian is indefinite with respect to addition of a constant to the scalar potential,

(2) the Lagrangian is indefinite with respect to addition of a constant velocity,

(3) there is no unique choice of generalized coordinates.

(4) the Hamiltonian is a scalar function that is derived from the Lagrangian scalar function.

(5) the generalized momentum is derived from the Lagrangian.

These facts, plus the ability to recognize the conditions under which  is conserved, and when  = 

can greatly facilitate solving problems as shown by the following two examples.
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7.5 Example: Linear harmonic oscillator on a cart moving at constant velocity

m 

x’ 

x

v t0

v0

Harmonic oscillator on cart moving at

uniform velocity 0.

Consider a linear harmonic oscillator on a cart moving with

constant velocity 0 in the  direction shown in the adjacent

figure. Let the laboratory frame be the unprimed frame and the

cart frame be designated the primed frame. Assume that  = 0

at  = 0 Then

0 = − 0 ̇0 = ̇− 0 ̈0 = ̈

The harmonic oscillator will have a potential energy of

 =
1

2
02 =

1

2
 (− 0)

2

Laboratory frame: The Lagrangian is

( ̇ ) =
̇2

2
− 1
2
 (− 0)

2

Lagrange equation Λ = 0 gives the equation of motion to be

̈ = −(− 0)

The definition of generalized momentum gives

 =


̇
= ̇

The Hamiltonian is

(  ) =
X


̇


̇
−  =

2

2
+
1

2
 (− 0)

2

The Hamiltonian is the sum of the kinetic and potential energies and equals the total energy of the system,

but it is not conserved since  and  are both explicit functions of time, that is 

= 


= −


6= 0.

Physically this is understood in that energy must flow into and out of the external constraint keeping the cart

moving uniformly at a constant velocity 0 against the reaction to the oscillating mass. That is, assuming

a uniform velocity for the moving cart constitutes a time-dependent constraint on the mass, and the force of

constraint does work in actual displacement of the complete system. If the constraint did not exist, then the

cart momentum would oscillate such that the total momentum of cart plus spring system is conserved.

Cart frame: Transform the Lagrangian to the primed coordinates in the moving frame of reference,

which also is an inertial frame. Then the Lagrangian  in terms of the moving cart frame coordinates, is

(0 ̇0 ) =


2

¡
̇02 + 2̇00 + 20

¢− 1
2
02

The Lagrange equation of motion Λ0 = 0 gives the equation of motion to be

̈0 = −0

where 0 is the displacement of the mass with respect to the cart. This implies that an observer on the
cart will observe simple harmonic motion as is to be expected from the principle of equivalence in Galilean

relativity.

The definition of the generalized momentum gives the linear momentum in the primed frame coordinates

to be

0 =


̇0
= ̇0 +0

The cart-frame Hamiltonian also can be expressed in terms of the coordinates in the moving frame to be

(0 0 ) = ̇0


̇0
−  =

(0 −0)
2

2
+
1

2
02 − 

2
20

Note that the Lagrangian and Hamiltonian expressed in terms of the coordinates in the cart frame of reference

are not explicitly time dependent, therefore  is conserved. However, the cart-frame Hamiltonian does not

equal the total energy since the coordinate transformation is time dependent. Actually the first two terms in

the above Hamiltonian are the energy of the harmonic oscillator in the cart frame. This example shows that

the Hamiltonians differ when expressed in terms of either the laboratory or cart frames of reference
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7.6 Example: Isotropic central force in a rotating frame

m 

y

z

x

Mass subject to radial force

Consider a mass subject to a central isotropic radial

force () as shown in the adjacent figure. Compare the

Hamiltonian  in the fixed frame of reference , with

the Hamiltonian  0 in a frame of reference 0 which
is rotating about the center of the force with constant

angular velocity  Restrict this case to rotation about

one axis so that only two polar coordinates  and  need

to be considered. The transformations are

0 = 

0 = − 

Also

() = (0)

Fixed frame of reference :

 =  −  =


2

³
̇2 + 2̇

2
´
− ()

Since the Lagrangian is not explicitly time dependent, then the Hamiltonian is conserved. For this fixed-frame

Hamiltonian the generalized momenta are

 =


̇
= ̇2̇

 =


̇
= ̇

The Hamiltonian equals

(   ) =
X


̇


̇
−  =

1

2

µ
2 +



2

2
¶
+ () = 

The Hamiltonian in the fixed frame is conserved and equals the total energy, that is  =  +  .

Rotating frame of reference 0

The above inertial fixed-frame Lagrangian can be written in terms of the primed (non-inertial rotating

frame) coordinates as

 =  −  =


2

³
̇2 + 2̇

2
´
− () =



2

µ
̇02 + 02

³
̇
0
+ 

´2¶
− (0)

The generalized momenta derived from this Lagrangian are

0 =


̇
0 = ̇02

³
̇
0
+ 

´
= 00 +02

0 =


̇0
= ̇02 = 

The Hamiltonian expressed in terms of the non-inertial rotating frame coordinates is

 0(0 
0
 

0 0) =


̇0
̇0 +



̇
0 ̇
0 −  =

1

2

⎛⎝02 +

³
00 +2

´
2

⎞⎠+ (0)

Note that  0(0 
0
 

0 0) is time independent and therefore is conserved, but (0 
0
 

0 0) 6=  because

the generalized coordinates are time dependent. In addition, 00 is conserved since

̇0 =


0
= − 

0
= 0
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7.7 Example: The plane pendulum

g

m

The plane pendulum constrained to oscillate in a

vertical plane in a uniform gravitational field.

The simple plane pendulum in a uniform gravita-

tional field  is an example that illustrates Hamiltonian

invariance. There is only one generalized coordinate, 

and the Lagrangian for this system is

 =
1

2
2̇

2
+ cos 

The momentum conjugate to  is

 =


̇
= 2̇

which is the angular momentum about the pivot point.

Using the Lagrange-Euler equation this gives that




 = ̇ =




= − sin 

Note that the angular momentum  is not a constant of motion since it explicitly depends on .

The Hamiltonian is

 =
X


̇ −  = ̇ −  =
1

2
2̇

2 − cos  =
2
22

− cos 

Note that the Lagrangian and Hamiltonian are not explicit functions of time, therefore they are conserved.

Also the potential is velocity independent and there is no coordinate transformation, thus the Hamiltonian

equals the total energy  which is a constant of motion.

 =
2
22

− cos  = 

7.8 Example: Oscillating cylinder in a cylindrical bowl

It is important to correctly account for constraint forces when us-

ing Noether’s theorem for constrained systems. Noether’s theorem as-

sumes the variables are independent. This is illustrated by considering

the example of a solid cylinder rolling in a fixed cylindrical bowl. As-

sume that a uniform cylinder of radius  and mass  is constrained

to roll without slipping on the inner surface of the lower half of a hol-

low cylinder of radius . The motion is constrained to ensure that

the axes of both cylinders remain parallel and   .

The generalized coordinates are taken to be the angles  and 

which are measured with respect to a fixed vertical axis. Then the

kinetic energy and potential energy are

 =
1

2

h
(− ) ̇

i2
+
1

2
̇

2
 = [− (− ) cos ]

where  is the mass of the small cylinder and where  = 0 at the lowest position of the sphere. The moment

of inertia of a uniform cylinder is  = 1
2
2.

The Lagrangian is

−  −  =
1

2

h
(− ) ̇

i2
+
1

4
2̇

2 − [− (− ) cos ]

Since the solid cylinder rotates without slipping inside the cylindrical shell, then the equation of constraint is

() =  −  (+ ) = 0
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Using the Lagrangian, plus the one equation of constraint, requires one Lagrange multiplier. Then the

Lagrange equations of motion for  and  are




− 



∙


̇

¸
+ 




= 0




− 



∙


̇

¸
+ 




= 0

Substitute the Lagrangian and the equation of constraint gives two equations of motion

− (− ) sin  − (− )
2
̈ +  (− ) = 0

−1
2
2̈−  = 0

The lower equation of motion gives that

 = −1
2
̈

Substitute this into the equation of constraint gives

 = −1
2
 (− ) ̈

Substitute this into the first equation of motion gives the equation of motion for  to be

̈ =
2

3 (− )
sin 

that is

 = −

3
sin 

The torque acting on the small cylinder due to the frictional force is

 =
1

2
2̈ = −

Thus the frictional force is

 = − = 

3
sin 

Noether’s theorem can be used to ascertain if the angular momentum  is a constant of motion. The

derivative of the Lagrangian



= (− ) sin 

and thus the Lagrange equations tells us that ̇ = (− ) sin . Therefore  is not a constant of motion.

The Lagrangian is not an explicit function of  which would suggest that  is a constant of motion.

But this is incorrect because the constraint equation  =
(−)


 couples  and , that is, they are not

independent variables, and thus  and  are coupled by the constraint equation. As a result  is not a

constant of motion because it is directly coupled to  = (− ) sin  which is not a constant of motion.

Thus neither  nor  are constants of motion. This illustrates that one must account carefully for equations

of constraint, and the concomitant constraint forces, when applying Noether’s theorem which tacitly assumes

independent variables.

The Hamiltonian can be derived using the generalized momenta

 =


̇
=  (− )

2
̇

 =


̇
=
1

2
2̇

Then the Hamiltonian is given by

 = ̇ + ̇−  =
2

2 (− )
2
+

2

2
+ [− (− ) cos ]

Note that the transformation to generalized coordinates is time independent and the potential is not velocity

dependent, thus the Hamiltonian also equals the total energy. Also the Hamiltonian is conserved since


= 0.
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7.11 Hamiltonian for cyclic coordinates

It is interesting to discuss the properties of the Hamiltonian for cyclic coordinates  for which



= 0.

Ignoring the external and Lagrange multiplier terms,

̇ =



= −


= 0 (7.49)

That is, a cyclic coordinate has a constant corresponding momentum  for the Hamiltonian as well as

for the Lagrangian. Conversely, if a generalized coordinate does not occur in the Hamiltonian, then the

corresponding generalized momentum is conserved. Cyclic coordinates were discussed earlier when discussing

symmetries and conservation-law aspects of the Lagrangian. For example, if the Lagrangian, or Hamiltonian

do not depend on a linear coordinate  then  is conserved. Similarly for  and  An extension of this

principle has been derived for the relationship between time independence and total energy of a system,

that is, the Hamiltonian equals the total energy if the transformation to generalized coordinates is time

independent and the potential is velocity independent.

A valuable feature of the Hamiltonian formulation is that it allows elimination of cyclic variables which

reduces the number of degrees of freedom to be handled. As a consequence, cyclic variables are called

ignorable variables in Hamiltonian mechanics. For example, consider that the Lagrangian has one cyclic

variable . As a consequence, the Lagrangian does not depend on , and thus it can be written as

 = (1  −1; ̇1  ̇; ) The Lagrangian still contains  generalized velocities, thus one still has to
treat  degrees of freedom even though one degree of freedom  is cyclic. However, in the Hamiltonian

formulation, only −1 degrees of freedom are required since the momentum for the cyclic degree of freedom

is a constant  =  Thus the Hamiltonian can be written as  = (1  −1; 1  −1;; ) , that is,
the Hamiltonian includes only −1 degrees of freedom. Thus the dimension of the problem has been reduced
by one since the conjugate cyclic (ignorable) variables ( ) are eliminated. Hamiltonian mechanics can

significantly reduce the dimension of the problem when the system involves several cyclic variables. This is

in contrast to the situation for the Lagrangian approach as discussed in chapters 8 and 14.

7.12 Symmetries and invariance

This chapter has shown that the symmetries of a system lead to invariance of physical quantities as was pro-

posed by Noether. The symmetry properties of the Lagrangian can lead to the conservation laws summarized

in table 72.

Table 7.2: Symmetries and conservation laws in classical mechanics

Symmetry Lagrange property Conserved quantity

Spatial invariance Translational invariance Linear momentum

Spatial homogeneous Rotational invariance Angular momentum

Time invariance Time independence Total energy

The importance of the relations between invariance and symmetry cannot be overemphasized. It extends

beyond classical mechanics to quantum physics and field theory. For a three-dimensional closed system,

there are three possible constants for linear momentum, three for angular momentum, and one for energy. It

is especially interesting in that these, and only these, seven integrals have the property that they are additive

for the particles comprising a system, and this occurs independent of whether there is an interaction among

the particles. That is, this behavior is obeyed by the whole assemble of particles for finite systems. Because

of its profound importance to physics, these relations between symmetry and invariance are used extensively.

7.13 Hamiltonian in classical mechanics

The Hamiltonian was defined by equation 737 during the discussion of time invariance and energy conserva-

tion. The Hamiltonian is of much more profound importance to physics than implied by the ad hoc definition

given by equation 737 This relates to the fact that the Hamiltonian is written in terms of the fundamental

coordinate  and its generalized momentum  defined by equation 73.
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It is more convenient to write the  generalized coordinates  plus their generalized momentum  as

vectors, e.g. q ≡ (1 2 ), p ≡ (1 2 ). The generalized momenta conjugate to the coordinate ,
defined by 73, then can be written in the form

 =
(q q̇ t)

̇
(7.50)

Substituting this definition of the generalized momentum into the Hamiltonian defined in (737), and

expressing it in terms of the coordinate q and its conjugate generalized momenta p, leads to

 (qp ) =
X


̇ − (q q̇ ) (7.51)

= p · q̇−(q q̇ ) (7.52)

Note that the scalar product p · q̇ =P ̇ equals 2 for systems that are scleronomic and when the

potential is velocity independent.

The crucial feature of the Hamiltonian is that it is expressed as  (qp )  that is, it is a function

of the  generalized coordinates q and their conjugate momenta p, which are taken to be independent, in

addition to the independent variable, . This is in contrast to the Lagrangian (q q̇ ) which is a function

of the  generalized coordinates  , the corresponding velocities ̇ , and time  The velocities q̇ are the

time derivatives of the coordinates q and thus these are related. In physics, the fundamental conjugate

coordinates are (qp) which are the coordinates underlying the Hamiltonian. This is in contrast to (q q̇)

which are the coordinates that underlie the Lagrangian. Thus the Hamiltonian is more fundamental than

the Lagrangian and is a reason why the Hamiltonian mechanics, rather than the Lagrangian mechanics, was

used as the foundation for development of quantum and statistical mechanics.

Hamiltonian mechanics will be derived two other ways. Chapter 8 uses the Legendre transformation

between the conjugate variables (q q̇ ) and (qp ) where the generalized coordinate q and its conju-

gate generalized momentum, p are independent. This shows that Hamiltonian mechanics is based on the

same variational principles as those used to derive Lagrangian mechanics. Chapter 13 derives Hamiltonian

mechanics directly from Hamilton’s Principle of Least action. Chapter 8 will introduce the algebraic Hamil-

tonian mechanics, that is based on the Hamiltonian. The powerful capabilities provided by Hamiltonian

mechanics will be described in chapter 14.

7.14 Summary

This chapter has explored the importance of symmetries and invariance in Lagrangian mechanics and has

introduced the Hamiltonian. The following are the main points introduced in this chapter.

Noether’s theorem:

Noether’s theorem explores the remarkable connection between symmetry, plus the invariance of a sys-

tem under transformation and related conservation laws which imply the existence of important physical

principles, and constants of motion. Transformations where the equations of motion are invariant are called

invariant transformations. Variables that are invariant to a transformation are called cyclic variables. It

was shown that if the Lagrangian does not explicitly contain a particular coordinate of displacement,  then

the corresponding conjugate momentum, ̇ is conserved. This is Noether’s theorem which states “For each

symmetry of the Lagrangian, there is a conserved quantity". In particular it was shown that translational

invariance in a given direction leads to the conservation of linear momentum in that direction, and rotational

invariance about an axis leads to conservation of angular momentum about that axis. These are the first-

order spatial and angular integrals of the equations of motion. Noether’s theorem also relates the properties

of the Hamiltonian to time invariance of the Lagrangian, namely;

(1)  is conserved if, and only if, the Lagrangian, and consequently the Hamiltonian, are not explicit

functions of time.

(2) The Hamiltonian gives the total energy if the constraints and coordinate transformations are time

independent and the potential energy is velocity independent. This is equivalent to stating that if the con-

straints, or generalized coordinates, for the system are time independent then  = .

Noether’s theorem is of importance since it underlies the relation between symmetries, and invariance in

all of physics; that is, its applicability extends beyond classical mechanics.
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Generalized momentum:

The generalized momentum associated with the coordinate  is defined to be



̇
≡  (73)

where  is also called the conjugate momentum (or canonical momentum) to  where    are

conjugate, or canonical, variables. Remember that the linear momentum  is the first-order time integral

given by equation 210. Note that if  is not a spatial coordinate, then  is not linear momentum, but is

the conjugate momentum. For example, if  is an angle, then  will be angular momentum.

Kinetic energy in generalized coordinates:

It was shown that the kinetic energy van be expressed in terms of generalized coordinates by

 (q q̇ ) =
X


X


1

2









̇ ̇ +

X


X











̇ +

X


X


1

2


µ




¶2
(719)

= 2(q q̇ ) + 1(q q̇ ) + 0(q ) (7.53)

For scleronomic systems with a potential that is velocity independent, then the kinetic energy can be

expressed as

 = 2 =
1

2

X


̇ =
1

2
q̇ · p (731)

Generalized energy

Jacobi’s Generalized Energy (q ̇ ) was defined as

(q q̇ ) ≡
X


µ
̇


̇

¶
− (q q̇ ) (736)

Hamiltonian function

The Hamiltonian  (qp) was defined in terms of the generalized energy (q q̇ ) and by introducing

the generalized momentum. That is

 (qp) ≡ (q q̇ ) =
X


 ̇ − (q q̇ ) = p · q̇−(q q̇ ) (737)

Generalized energy theorem

The equations of motion lead to the generalized energy theorem which states that the time dependence

of the Hamiltonian is related to the time dependence of the Lagrangian.

 (qp)


=
X


̇

"

 +

X
=1





(q )

#
− (q q̇ )


(738)

Note that if all the generalized non-potential forces are zero, then the bracket in equation 738 is zero, and

if the Lagrangian is not an explicit function of time, then the Hamiltonian is a constant of motion.

Generalized energy and total energy:

The generalized energy, and corresponding Hamiltonian, equal the total energy if:

1) The kinetic energy has a homogeneous quadratic dependence on the generalized velocities and the

transformation to generalized coordinates is independent of time,



= 0

2) The potential energy is not velocity dependent, thus the terms 
̇

= 0

Chapter 8 will introduce Hamiltonian mechanics that is built on the Hamiltonian, and chapter 14 will

explore applications of Hamiltonian mechanics.
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Workshop exercises

1. Consider a particle of mass  moving in a plane and subject to an inverse square attractive force.

(a) Obtain the equations of motion.

(b) Is the angular momentum about the origin conserved?

(c) Obtain expressions for the generalized forces.

2. Consider a Lagrangian function of the form ( ̇ ̈ ). Here the Lagrangian contains a time derivative

of the generalized coordinates that is higher than the first. When working with such Lagrangians, the term

“generalized mechanics” is used.

(a) Consider a system with one degree of freedom. By applying the methods of the calculus of variations,

and assuming that Hamilton’s principle holds with respect to variations which keep both  and ̇ fixed at

the end points, show that the corresponding Lagrange equation is

2

2

µ


̈

¶
− 



µ


̇

¶
+




= 0

Such equations of motion have interesting applications in chaos theory.

(b) Apply this result to the Lagrangian

 = −
2
̈ − 

2
2

Do you recognize the equations of motion?

3. A uniform solid cylinder of radius  and mass  rests on a horizontal plane and an identical cylinder rests

on it touching along the top of the first cylinder with the axes of both cylinders parallel. The upper cylinder

is given an infinitessimal displacement so that both cylinders roll without slipping in the directions shown by

the arrows.

(a) Find Lagrangian for this system

(b) What are the constants of motion?

(c) Show that as long as the cylinders remain in contact then

̇
2
=

12 (1− cos )
 (17 + 4 cos  − 4 cos2 )

y
x

t = 0 t > 0

1

2

4. Consider a diatomic molecule which has a symmetry axis along the line through the center of the two atoms

comprising the molecule. Consider that this molecule is rotating about an axis perpendicular to the symmetry

axis and that there are no external forces acting on the molecule. Use Noether’s Theorem to answer the

following questions:

a) Is the total angular momentum conserved?

b) Is the projection of the total angular momentum along a space-fixed  axis conserved?

c) Is the projection of the angular momentum along the symmetry axis of the rotating molecule conserved?

d) Is the projection of the angular momentum perpendicular to the rotating symmetry axis conserved?
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5. A bead of mass  slides under gravity along a smooth wire bent in the shape of a parabola 2 =  in the

vertical ( ) plane.

(a) What kind (holonomic, nonholonomic, scleronomic, rheonomic) of constraint acts on ?

(b) Set up Lagrange’s equation of motion for  with the constraint embedded.

(c) Set up Lagrange’s equations of motion for both  and  with the constraint adjoined and a Lagrangian

multiplier  introduced.

(d) Show that the same equation of motion for  results from either of the methods used in part (b) or part

(c).

(e) Express  in terms of  and ̇.

(f) What are the  and  components of the force of constraint in terms of  and ̇?

Problems

1. Let the horizontal plane be the  −  plane. A bead of mass  is constrained to slide with speed  along a

curve described by the function  = (). What force does the curve apply to the bead? (Ignore gravity)

2. Consider the Atwoods machine shown. The masses are 4, 5, and 3. Let  and  be the heights of the

right two masses relative to their initial positions.

a) Solve this problem using the Euler-Lagrange equations

b) Use Noether’s theorem to find the conserved momentum.

3m 5m 

4m 

yx

3. A cube of side 2 and center of mass , is placed on a fixed horizontal cylinder of radius  and center  as

shown in the figure. Originally the cube is placed such that  is centered above  but it can roll from side to

side without slipping. (a) Assuming that    use the Lagrangian approach to to find the frequency for small

oscillations about the top of the cylinder. For simplicity make the small angle approximation for  before using

the Lagrange-Euler equations. (b) What will be the motion if    ? Note that the moment of inertia of the

cube about the center of mass is 2
3
2.

O

b

C

h
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4. Two equal masses of mass  are glued to a massless hoop of radius  is free to rotate about its center in a

vertical plane. The angle between the masses is 2, as shown. Find the frequency of oscillations.

5. Three massless sticks each of length 2, and mass  with the center of mass at the center of each stick, are

hinged at their ends as shown. The bottom end of the lower stick is hinged at the ground. They are held so

that the lower two sticks are vertical, and the upper one is tilted at a small angle  with respect to the vertical.

They are then released. At the instant of release what are the three equations of motion derived from the

Lagrangian derived assuming that  is small? Use these to determine the initial angular accelerations of the

three sticks.

m 

m 

m 



Chapter 8

Hamiltonian mechanics

8.1 Introduction

The three major formulations of classical mechanics are

1. Newtonian mechanics which is the most intuitive vector formulation used in classical mechanics.

2. Lagrangian mechanics is a powerful algebraic formulation of classical mechanics derived using either

d’Alembert’s Principle, or Hamilton’s Principle. The latter states ”A dynamical system follows a path

that minimizes the time integral of the difference between the kinetic and potential energies”.

3. Hamiltonian mechanics has a beautiful superstructure that, like Lagrangian mechanics, is built

upon variational calculus, Hamilton’s principle, and Lagrangian mechanics.

Hamiltonian mechanics is introduced at this juncture since it is closely interwoven with Lagrange mechan-

ics. Hamiltonian mechanics plays a fundamental role in modern physics, but the discussion of the important

role it plays in modern physics will be deferred until chapters 14 and 17 where applications to modern physics

are addressed.

The following important concepts were introduced in chapter 7:

The generalized momentum was defined to be given by

 ≡ (q q̇)

̇
(8.1)

Note that, as discussed in chapter 72, if the potential is velocity dependent, such as the Lorentz force, then

the generalized momentum includes terms in addition to the usual mechanical momentum.

Jacobi’s generalized energy function (q q̇ ) was introduced where

(q q̇ ) =

X


µ
̇


̇

¶
− (q q̇ ) (8.2)

The Hamiltonian function was defined to be given by expressing the generalized energy function,

equation 82, in terms of the generalized momentum. That is, the Hamiltonian (qp ) is expressed as

 (qp ) =

X


̇ − (q q̇ ) (8.3)

The symbols q, p, designate vectors of  generalized coordinates, q ≡ (1 2 ) p ≡ (1 2 ).

Equation 83 can be written compactly in a symmetric form using the scalar product p · q̇ =P ̇.

 (qp ) + (q q̇ ) = p · q̇ (8.4)

A crucial feature of Hamiltonian mechanics is that the Hamiltonian is expressed as  (qp )  that

is, it is a function of the  generalized coordinates and their conjugate momenta, which are taken to be

independent, plus the independent variable, time. This contrasts with the Lagrangian (q q̇ ) which is a

function of the  generalized coordinates  , and the corresponding velocities ̇ , that is the time derivatives

of the coordinates , plus the independent variable, time.

199
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8.2 Legendre Transformation between Lagrangian and Hamiltonian

mechanics

Hamiltonian mechanics can be derived directly from Lagrange mechanics by considering the Legendre trans-

formation between the conjugate variables (q q̇ ) and (qp ). Such a derivation is of considerable im-

portance in that it shows that Hamiltonian mechanics is based on the same variational principles as those

used to derive Lagrangian mechanics; that is d’Alembert’s Principle and Hamilton’s Principle. The general

problem of converting Lagrange’s equations into the Hamiltonian form hinges on the inversion of equation

(81) that defines the generalized momentum p This inversion is simplified by the fact that (81) is the first

partial derivative of the Lagrangian scalar function (q q̇ t).

As described in appendix 4, consider transformations between two functions  (uw) and (vw)

where u and v are the active variables related by the functional form

v =∇u (uw) (8.5)

and where w designates passive variables. The function ∇u (uw) is the first-order derivative, (gradient)

of  (uw) with respect to the components of the vector u. The Legendre transform states that the inverse

formula can always be written as a first-order derivative

u =∇v(vw) (8.6)

The function (vw) is related to  (uw) by the symmetric relation

(vw)+ (uw) = u · v (8.7)

where the scalar product u · v =P
=1 .

Furthermore the first-order derivatives with respect to all the passive variables  are related by

∇w (uw) = −∇w(vw) (8.8)

The relationship between the functions  (uw) and (vw) is symmetrical and each is said to be the

Legendre transform of the other.

The general Legendre transform can be used to relate the Lagrangian and Hamiltonian by identifying the

active variables v with p and u with q̇ the passive variable w with q, and the corresponding functions

 (uw) =(q q̇) and (vw) =(qp). Thus the generalized momentum (81) corresponds to

p =∇q̇(q q̇) (8.9)

where (q) are the passive variables. Then the Legendre transform states that the transformed variable q̇

is given by the relation

q̇ =∇p(qp) (8.10)

Since the functions (q q̇) and (qp) are the Legendre transforms of each other, they satisfy the

relation

 (qp )+(q q̇ ) = p · q̇ (8.11)

The function  (qp ), which is the Legendre transform of the Lagrangian (q q̇ ) is called the Hamil-

tonian function and equation (811) is identical to our original definition of the Hamiltonian given by

equation (83). The variables q and  are passive variables thus equation (88) gives that

∇q(q̇q) = −∇q(pq ) (8.12)

Written in component form equation 812 gives the partial derivative relations

(q̇q)


= −(pq )


(8.13)

(q̇q)


= −(pq )


(8.14)
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Note that equations 813 and 814 are strictly a result of the Legendre transformation. To complete the

transformation from Lagrangian to Hamiltonian mechanics it is necessary to invoke the calculus of variations

via the Lagrange-Euler equations. The symmetry of the Legendre transform is illustrated by equation 811

Equation 731 gives that the scalar product p · q̇ =22 For scleronomic systems, with velocity indepen-
dent potentials  the standard Lagrangian  =  − and  = 2 − + =  + . Thus, for this simple

case, equation 811 reduces to an identity  +  = 2 .

8.3 Hamilton’s equations of motion

The explicit form of the Legendre transform 810 gives that the time derivative of the generalized coordinate

 is

̇=
(qp)


(8.15)

The Euler-Lagrange equation 660 is







̇
− 


=

X
=1





+

 (8.16)

This gives the corresponding Hamilton equation for the time derivative of  to be







̇
= ̇ =




+

X
=1





+

 (8.17)

Substitute equation 813 into equation 817 leads to the second Hamilton equation of motion

̇ = −(qp)


+

X
=1





+

 (8.18)

One can explore further the implications of Hamiltonian mechanics by taking the time differential of (83)

giving.
(qp)


=
X


µ
̇



+ 

̇


− 






− 

̇

̇



¶
− 


(8.19)

Inserting the conjugate momenta  ≡ 
̇

and equation 817 into equation 819 results in

(qp)


=
X


Ã
̇ ̇ + 

̇


−
"
̇ −

X
=1





−



#
̇ − 

̇



!
− 


(8.20)

The second and fourth terms cancel as well as the ̇ ̇ terms, leaving

(qp)


=
X


Ã"
X
=1





+



#
̇

!
− 


(8.21)

This is the generalized energy theorem given by equation 738.

The total differential of the Hamiltonian also can be written as

(qp)


=
X


µ



̇ +




̇

¶
+




(8.22)

Use equations 815 and 818 to substitute for 


and 


in equation 822 gives

(qp)


=
X


Ã"
X
=1





+



#
̇

!
+

(qp)


(8.23)
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Note that equation 823 must equal the generalized energy theorem equation 821 Therefore,




= −


(8.24)

In summary, Hamilton’s equations of motion are given by

̇ =
(qp)


(8.25)

̇ = −(qp)


+

"
X
=1





+



#
(8.26)

(qp)


=

X


Ã"
X
=1





+



#
̇

!
− (q q̇)


(8.27)

The symmetry of Hamilton’s equations of motion is illustrated when the Lagrange multiplier and gener-

alized forces are zero. Then

̇ =
(qp)


(8.28)

̇ = −(pq )


(8.29)

(pq )


=

(pq )


= −(q̇q)


(8.30)

This simplified form illustrates the symmetry of Hamilton’s equations of motion. Many books present

the Hamiltonian only for this simplified case where it is holonomic, conservative, and generalized coordinates

are used.

8.3.1 Canonical equations of motion

Hamilton’s equations of motion, summarized in equations 825− 27 use either a minimal set of generalized
coordinates or the Lagrange multiplier terms to account for holonomic constraints, or generalized forces


 to account for non-holonomic or other forces. Hamilton’s equations of motion usually are called

the canonical equations of motion. The term canonical has nothing to do with religion or canon law;

the reason for this name has bewildered many generations of students of classical mechanics. The term was

introduced by Jacobi in 1837 to designate a simple and fundamental set of conjugate variables and equations.

Note the symmetry of Hamilton’s two canonical equations, and the fact that the canonical variables  
are treated as independent canonical variables. The Lagrange mechanics coordinates (q q̇) are replaced by

the Hamiltonian mechanics coordinates (qp) where the conjugate momenta p are taken to be independent

of the coordinate q.

Lagrange was the first to derive the canonical equations but he did not recognize them as a basic set of

equations of motion. Hamilton derived the canonical equations of motion from his fundamental variational

principle, chapter 132, and made them the basis for a far-reaching theory of dynamics. Hamilton’s equations

give 2 first-order differential equations for   for each of the  = − degrees of freedom. Lagrange’s

equations give  second-order differential equations for the  independent generalized coordinates  ̇

It has been shown that (pq ) and (q̇q) are the Legendre transforms of each other. Although

the Lagrangian formulation is ideal for solving numerical problems in classical mechanics, the Hamiltonian

formulation provides a better framework for conceptual extensions to other fields of physics since it is written

in terms of the fundamental conjugate coordinates, qp. The Hamiltonian is used extensively in modern

physics, including quantum physics, as discussed in chapters 14 and 17. For example, in quantum mechanics

there is a straightforward relation between the classical and quantal representations of momenta; this does

not exist for the velocities.

The concept of state space, introduced in chapter 332, applies naturally to Lagrangian mechanics since

(̇ ) are the generalized coordinates used in Lagrangian mechanics. The concept of Phase Space, introduced

in chapter 333, naturally applies to Hamiltonian phase space since ( ) are the generalized coordinates

used in Hamiltonian mechanics.
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8.4 Hamiltonian in different coordinate systems

Prior to solving problems using Hamiltonian mechanics, it is useful to express the Hamiltonian in cylindrical

and spherical coordinates for the special case of conservative forces since these are encountered frequently

in physics.

8.4.1 Cylindrical coordinates   

Consider cylindrical coordinates    Expressed in cartesian coordinate

 =  cos (8.31)

 =  sin

 = 

Using appendix table 3 the Lagrangian can be written as

 =  −  =


2

³
̇2 + 2̇

2
+ ̇2

´
− (  ) (8.32)

The conjugate momenta are

 =


̇
= ̇ (8.33)

 =


̇
= 2̇ (8.34)

 =


̇
= ̇ (8.35)

Assume a conservative force, then  is conserved. Since the transformation from cartesian to non-

rotating generalized cylindrical coordinates is time independent, then  =  Then using (832−835) gives
the Hamiltonian in cylindrical coordinates to be

 (qp ) =
X


̇ − (q q̇ ) (8.36)

=
³
̇+ ̇+  ̇

´
− 

2

µ


2
+ 2




2

+


2

¶
+ (  )

=
1

2

Ã
2 +

2

2
+ 2

!
+ (  ) (8.37)

The canonical equations of motion in cylindrical coordinates can be written as

̇ = −


=
2

3
− 


(8.38)

̇ = −


= −


(8.39)

̇ = −


= −


(8.40)

̇ =



=




(8.41)

̇ =



=



2
(8.42)

̇ =



=




(8.43)

Note that if  is cyclic, that is 

= 0 then the angular momentum about the  axis, , is a constant

of motion. Similarly, if  is cyclic, then  is a constant of motion.
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8.4.2 Spherical coordinates,   

Appendix table 4 shows that the spherical coordinates are related to the cartesian coordinates by

 =  sin  cos (8.44)

 =  sin  sin

 =  cos 

The Lagrangian is

 =  −  =


2

³
̇2 + 2̇

2
+ 2 sin2 ̇

2
´
− () (8.45)

The conjugate momenta are

 =





= ̇ (8.46)

 =






= 2̇ (8.47)

 =






= 2 sin2 ̇ (8.48)

Assuming a conservative force then is conserved. Since the transformation from cartesian to generalized

spherical coordinates is time independent, then  =  Thus using (846 − 848) the Hamiltonian is given
by

 (qp ) =
X


̇ − (q q̇ ) (8.49)

=
³
 ̇ + ̇ + ̇

´
− 

2

³
̇2 + 2̇

2
+ 2 sin2 ̇

2
´
+ (  ) (8.50)

=
1

2

Ã
2 +

2
2
+

2

2 sin2 

!
+ (  ) (8.51)

Then the canonical equations of motion in spherical coordinate are

̇ = −


=
1

3

Ã
2 +

2

sin2 

!
− 


(8.52)

̇ = −


=
1

2

Ã
2 cos 

sin3 

!
− 


(8.53)

̇ = −


= −


(8.54)

̇ =



=




(8.55)

̇ =



=



2
(8.56)

̇ =



=



2 sin2 
(8.57)

Note that if the coordinate  is cyclic, that is 

= 0 then the angular momentum  is conserved. Also

if the  coordinate is cyclic, and  = 0 that is, there is no change in the angular momentum perpendicular

to the  axis, then  is conserved.

An especially important spherically-symmetric Hamiltonian is that for a central field. Central fields, such

as the gravitational or Coulomb fields of a uniform spherical mass, or charge, distributions, are spherically

symmetric and then both  and  are cyclic. Thus the projection of the angular momentum  about the 

axis is conserved for these spherically symmetric potentials. In addition, since both  and  are conserved,

then the total angular momentum also must be conserved as is predicted by Noether’s theorem
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8.5 Applications of Hamiltonian Dynamics

The equations of motion of a system can be derived using the Hamiltonian coupled with Hamilton’s equations

of motion, that is, equations 825− 827.
Formally the Hamiltonian is constructed from the Lagrangian. That is

1) Select a set of independent generalized coordinates 
2) Partition the active forces.

3) Construct the Lagrangian ( ̇ )

4) Derive the conjugate generalized momenta via  =

̇

5) Knowing  ̇  derive  =
P

 ̇ − 

6) Derive ̇ =



and ̇ = −(qp)


+
P

=1 



+
 

This procedure appears to be unnecessarily complicated compared to just using the Lagrangian plus

Lagrangian mechanics to derive the equations of motion. Fortunately the above lengthy procedure often can

be bypassed for conservative systems. That is, if the following conditions are satisfied;

)  =  (

)− (), that is,  () is independent of the velocity ̇.

) the generalized coordinates are time independent.

then it is possible to use the fact that  =  +  = .

The following five examples illustrate the use of Hamiltonian mechanics to derive the equations of motion.

8.1 Example: Motion in a uniform gravitational field

Consider a mass  in a uniform gravitational field acting in the −z direction. The Lagrangian for this
simple case is

 =
1

2

¡
̇2 + ̇2 + ̇2

¢−

Therefore the generalized momenta are  =

̇
= ̇  =


̇
= ̇  =


̇
= ̇. The corresponding

Hamiltonian  is

 =
X


̇ −  = ̇+ ̇ +  ̇ − 

=
2

+

2


+

2

− 1
2

Ã
2

+

2


+

2


!
+ =

1

2

Ã
2

+

2


+

2


!
+

Note that the Lagrangian is not explicitly time dependent, thus the Hamiltonian is a constant of motion.

Hamilton’s equations give that

̇ =



=




− ̇ =




= 0

̇ =



=




− ̇ =




= 0

̇ =



=




− ̇ =




= 

Combining these gives that ̈ = 0 ̈ = 0 ̈ = −. Note that the linear momenta  and  are constants

of motion whereas the rate of change of  is given by the gravitational force . Note also that  =  +

for this conservative system.

8.2 Example: One-dimensional harmonic oscillator

Consider a mass  subject to a linear restoring force with constant  The Lagrangian  =  − equals

 =
1

2
̇2 − 1

2
2

Therefore the generalized momentum is

 =


̇
= ̇
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The Hamiltonian  is

 =
X


̇ −  = ̇− 

=



− 1
2

2

+
1

2
2 =

1

2

2

+
1

2
2

Note that the Lagrangian is not explicitly time dependent, thus the Hamiltonian will be a constant of motion.

Hamilton’s equations give that

̇ =



=





or

 = ̇

In addition

−̇ = 


=




= 

Combining these gives that

̈+



 = 0

which is the equation of motion for the harmonic oscillator.

8.3 Example: Plane pendulum

The plane pendulum, in a uniform gravitational field  is an interesting system to consider. There is

only one generalized coordinate,  and the Lagrangian for this system is

 =
1

2
2̇

2
+ cos 

The momentum conjugate to  is

 =


̇
= 2̇

which is the angular momentum about the pivot point.

The Hamiltonian is

 =
X


̇ −  = ̇ −  =
1

2
2̇

2 − cos  =
2
22

− cos 

Hamilton’s equations of motion give

̇ =



=



2



̇ = −


= − sin 

Note that the Lagrangian and Hamiltonian are not explicit functions of time, therefore they are conserved.

Also the potential is velocity independent and there is no coordinate transformation, thus the Hamiltonian

equals the total energy, that is

 =
2
22

− cos  = 

where  is a constant of motion. Note that the angular momentum  is not a constant of motion since ̇
explicitly depends on .
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P

Elliptic point

Hyperbolic point

(b)

P

O

Phase-space diagrams for the plane

pendulum. The separatrix (bold line)

separates the oscillatory solutions from

the rolling solutions. The upper (a)

shows one complete cycle while the lower

(b) shows two complete cycles.

The solutions for the plane pendulum on a ( ) phase di-

agram, shown in the adjacent figure, illustrate the motion. The

upper phase-space plot shows the range ( = ± ). Note that
the  = + and − correspond to the same physical point, that is
the phase diagram should be rolled into a cylinder connected along

the dashed lines. The lower phase space plot shows two cycles for

 to better illustrate the cyclic nature of the phase diagram. The

corresponding state-space diagram is shown in figure 34. The

trajectories are ellipses for low energy −     corre-

sponding to oscillations of the pendulum about  = 0. The center

of the ellipse (0 0) is a stable equilibrium point for the oscillation.

However, there is a phase change to rotational motion about the

horizontal axis when ||  , that is, the pendulum swings

around a circle continuously, i.e. it rotates continuously in one

direction about the horizontal axis. The phase change occurs at

 =  and is designated by the separatrix trajectory.

The plot of  versus  for the plane pendulum is better pre-

sented on a cylindrical phase space representation since  is a

cyclic variable that cycles around the cylinder, whereas  oscil-

lates equally about zero having both positive and negative values.

When wrapped around a cylinder then the unstable and stable

equilibrium points will be at diametrically opposite locations on

the surface of the cylinder at  = 0. For small oscillations

about equilibrium, also called librations, the correlation between

 and  is given by the clockwise closed ellipses wrapped on the

cylindrical surface, whereas for energies ||   the positive

 corresponds to counterclockwise rotations while the negative

 corresponds to clockwise rotations.

8.4 Example: Hooke’s law force constrained to the surface of a cylinder

y

x

z

z

Mass attracted to origin by force proportional to

distance from origin with the motion constrained

to the surface of a cylinder.

Consider the case where a mass  is attracted by a

force directed toward the origin and proportional to the

distance from the origin. Determine the Hamiltonian

if the mass is constrained to move on the surface of a

cylinder defined by

2 + 2 = 2

It is natural to transform this problem to cylindrical co-

ordinates   . Since the force is just Hooke’s law

F = −r

the potential is the same as for the harmonic oscillator,

that is

 =
1

2
2 =

1

2
(2 + 2)

This is independent of  and thus  is cyclic.

In cylindrical coordinates the velocity is

2 = ̇2 + 2̇
2
+



2

Confined to the surface of the cylinder means that

 = 

 = 0
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Then the Lagrangian simplifies to

 =  −  =
1

2

³
2̇

2
+ ̇2

´
− 1
2
(2 + 2)

The generalized coordinates are   and the corresponding generalized momenta are

 =


̇
= 2̇ (a)

 =


̇
= ̇ (b)

The system is conservative, and the transformation from rectangular to cylindrical coordinates does not

depend explicitly on time. Therefore the Hamiltonian is conserved and equals the total energy. That is

 =
X


̇ −  =
2

22
+

2
2

+
1

2
(2 + 2) = 

The equations of motion then are given by the canonical equations

̇ = −


= 0 ̇ =



=



2
(c)

̇ = −


= − ̇ =



=




(d)

Equation (a) and (c) imply that

 =






= 2̇ = constant

Thus the angular momentum about the axis of the cylinder is conserved, that is, it is a cyclic variable.

Combining equations (b) and (d) implies that

̈ +



 = 0

This is the equation for simple harmonic motion with angular frequency  =

q


. The symmetries imply

that this problem has the same solutions for the  coordinate as the harmonic oscillator, while the  coordinate

moves with constant angular velocity.

8.5 Example: Electron motion in a cylindrical magnetron

A magnetron comprises a hot cylindrical wire cathode that emits electrons and is at a high negative voltage.

It is surrounded by a larger diameter cylindrical anode at ground potential. A uniform magnetic field runs

parallel to the cylindrical axis of the magnetron. The electron beam excites a multiple set of microwave

cavities located around the circumference of the cylindrical wall of the anode. The magnetron was invented

in England during World War 2 to generate microwaves required for the development of radar.

Consider a non-relativistic electron of mass  and charge − in a cylindrical magnetron moving between
the central cathode wire, of radius  at a negative electric potential −0, and a concentric cylindrical anode
conductor of radius  which has zero electric potential. There is a uniform constant magnetic field  parallel

to the cylindrical axis of the magnetron.

Using SI units and cylindrical coordinates (  ) aligned with the axis of the magnetron, the electromag-

netic force Lagrangian, given in chapter 610 equals

 =
1

2
ṙ2 + (− ṙ ·A)

The electric and vector potentials for the magnetron geometry are

 = −0
ln( 


)

ln( 

)

A =
1

2
̂
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Thus expressed in cylindrical coordinates the Lagrangian equals

 =
1

2

³
̇2 + 2̇

2
+ ̇2

´
+ − 1

2
2̇

The generalized momenta are

 =


̇
= ̇

 =


̇
= 2̇ − 1

2
2

 =


̇
= ̇

Note that the vector potential  contributes an additional term to the angular momentum .

Using the above generalized momenta leads to the Hamiltonian

 =  ̇ + ̇ +  ̇ − 

=
1

2

³
̇2 + 2̇

2
+ ̇2

´
− +

1

2
2̇

=
2
2

+
1

22

µ
 +

1

2
2

¶2
+

2
2
− 

=
1

2

"
2 +

µ



+
1

2


¶2
+ 2

#
− 

Note that the Hamiltonian is not an explicit function of time, therefore it is a constant of motion which

equals the total energy.

 =
1

2

"
2 +

µ



+
1

2


¶2
+ 2

#
−  = 

Since ̇ = −


 and if  is not an explicit function of  then ̇ = 0 that is,  is a constant of motion.

Thus  and  are constants of motion.

Consider the initial conditions  =  ̇ = ̇ = ̇ = 0. Then

 =


̇
= 2̇ − 1

2
2 = −1

2
2

 = 0

 =
1

2

"
2 +

µ



+
1

2


¶2
+ 2

#
+ 0

ln( 

)

ln( 

)
= 0

Note that at  =  then  is given by the last equation since the Hamiltonian equals a constant 0. That

is, assuming that    then

2 = 20 − (
1

2
)2

Define a critical magnetic field by

 ≡ 2



r
20


then ¡
2
¢
=

=
¡
2
 −2

¢
(
1

2
)2

Note that if    then  is real at  = . However, if    then  is imaginary at  = 

implying that there must be a maximum orbit radius 0 for the electron where 0  . That is, the electron

trajectories are confined spatially to coaxial cylindrical orbits concentric with the magnetron electromagnetic

fields. These closed electron trajectories excite the microwave cavities located in the nearby outer cylindrical

wall of the anode.

.



210 CHAPTER 8. HAMILTONIAN MECHANICS

8.6 Routhian reduction

Noether’s theorem states that if the coordinate  is cyclic, and if the Lagrange multiplier plus generalized

force contributions for the  coordinates are zero, then the canonical momentum of the cyclic variable,   is

a constant of motion as is discussed in chapter 73. Therefore, both (  ) are constants of motion for cyclic

variables, and these constant ( ) coordinates can be factored out of the Hamiltonian (pq ). This

reduces the number of degrees of freedom included in the Hamiltonian. For this reason, cyclic variables are

called ignorable variables in Hamiltonian mechanics. This advantage does not apply to the (  ̇) variables

used in Lagrangian mechanics since ̇ is not a constant of motion for a cyclic coordinate. The ability

to eliminate the cyclic variables as unknowns in the Hamiltonian is a valuable advantage of Hamiltonian

mechanics that is exploited extensively for solving problems, as is described in chapter 14.

It is advantageous to have the ability to exploit both the Lagrangian and Hamiltonian formulations simul-

taneously when handling systems that involve a mixture of cyclic and non-cyclic coordinates. The equations

of motion for each independent generalized coordinate can be derived independently of the remaining general-

ized coordinates. Thus it is possible to select either the Hamiltonian or the Lagrangian formulations for each

generalized coordinate, independent of what is used for the other generalized coordinates. Routh[Rou1860]

devised an elegant, and useful, hybrid technique that separates the cyclic and non-cyclic generalized coor-

dinates in order to simultaneously exploit the differing advantages of both the Hamiltonian and Lagrangian

formulations. The Routhian reduction approach partitions the
P

=1 ̇ kinetic energy term in the Hamil-

tonian into a cyclic group, plus a non-cyclic group, i.e.

(1  ; 1  ; ) =

X
=1

̇ −  =

X


̇ +

−X


̇ −  (8.58)

Routh’s clever idea was to define a new function, called the Routhian, that include only one of the two

partitions of the kinetic energy terms. This makes the Routhian a Hamiltonian for the coordinates for which

the kinetic energy terms are included, while the Routhian acts like a negative Lagrangian for the coordinates

where the kinetic energy term is omitted. This book defines two Routhians.

(1  ; ̇1  ̇; +1  ; ) ≡
X



̇ −  (8.59)

(1  ; 1  ; ̇+1  ̇; ) ≡
X



̇ −  (8.60)

The first, Routhian, called  includes the kinetic energy terms only for the cyclic variables, and behaves

like a Hamiltonian for the cyclic variables, and behaves like a Lagrangian for the non-cyclic variables. The

second Routhian, called − includes the kinetic energy terms for only the non-cyclic variables, and
behaves like a Hamiltonian for the non-cyclic variables, and behaves like a negative Lagrangian for the cyclic

variables. These two Routhians complement each other in that they make the Routhian either a Hamiltonian

for the cyclic variables, or the converse where the Routhian is a Hamiltonian for the non-cyclic variables.

The Routhians use ( ̇) to denote those coordinates for which the Routhian behaves like a Lagrangian, and

( ) for those coordinates where the Routhian behaves like a Hamiltonian. For uniformity, it is assumed

that the degrees of freedom between 1 ≤  ≤  are non-cyclic, while those between +1 ≤  ≤  are ignorable

cyclic coordinates.

The Routhian is a hybrid of Lagrangian and Hamiltonian mechanics. Some textbooks minimize discussion

of the Routhian on the grounds that this hybrid approach is not fundamental. However, the Routhian is

used extensively in engineering in order to derive the equations of motion for rotating systems. In addition

it is used when dealing with rotating nuclei in nuclear physics, rotating molecules in molecular physics, and

rotating galaxies in astrophysics. The Routhian reduction technique provides a powerful way to calculate

the intrinsic properties for a rotating system in the rotating frame of reference. The Routhian approach is

included in this textbook because it plays an important role in practical applications of rotating systems, plus

it nicely illustrates the relative advantages of the Lagrangian and Hamiltonian formulations in mechanics.
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8.6.1 R - Routhian is a Hamiltonian for the cyclic variables

The cyclic Routhian  is defined assuming that the variables between 1 ≤  ≤  are non-cyclic, where

 = −, while the  variables between +1 ≤  ≤  are ignorable cyclic coordinates. The cyclic Routhian

 expresses the cyclic coordinates in terms of ( ) which are required for use by Hamilton’s equations,

while the non-cyclic variables are expressed in terms of ( ̇) for use by the Lagrange equations. That is,

the cyclic Routhian  is defined to be

(1  ; ̇1  ̇; +1  ; ) ≡
X



̇ −  (8.61)

where the summation
P

 ̇ is over only the  cyclic variables +1 ≤  ≤ . Note that the Lagrangian

can be split into the cyclic and the non-cyclic parts

(1  ; ̇1  ̇; +1  ; ) =

X


̇ −  −  (8.62)

The first two terms on the right can be combined to give the Hamiltonian  for only the  cyclic

variables,  = + 1 + 2  , that is

(1  ; ̇1  ̇; +1  ; ) =  −  (8.63)

The Routhian (1  ; ̇1  ̇; +1  ; ) also can be written in an alternate form

(1  ; ̇1  ̇; +1  ; ) ≡
X



̇ −  =

X
=1

̇ − −
X



̇ (8.64)

=  −
X



̇ (8.65)

which is expressed as the complete Hamiltonian minus the kinetic energy term for the noncyclic coordinates.

The Routhian  behaves like a Hamiltonian for the  cyclic coordinates and behaves like a negative

Lagrangian  for all the  = − noncyclic coordinates  = 1 2   Thus the equations of motion

for the  non-cyclic variables are given using Lagrange’s equations of motion, while the Routhian behaves

like a Hamiltonian  for the  ignorable cyclic variables  = + 1  

Ignoring both the Lagrange multiplier and generalized forces, then the partitioned equations of motion

for the non-cyclic and cyclic generalized coordinates are given in Table 81

Table 81; Equations of motion for the Routhian 

Lagrange equations Hamilton equations

Coordinates Noncyclic: 1 ≤  ≤  Cyclic: (+ 1) ≤  ≤ 




= −





= −̇
Equations of motion


̇

= −
̇




= ̇

Thus there are  cyclic (ignorable) coordinates ( )+1  ( ) which obey Hamilton’s equations of

motion, while the the first  = − non-cyclic (non-ignorable) coordinates ( ̇)1   ( ̇) for  = 1 2  

obey Lagrange equations. The solution for the cyclic variables is trivial since they are constants of motion

and thus the Routhian  has reduced the number of equations of motion that must be solved from  to

the  = − non-cyclic variables This Routhian provides an especially useful way to reduce the number

of equations of motion for rotating systems.

Note that there are several definitions used to define the Routhian, for example some books define this

Routhian as being the negative of the definition used here so that it corresponds to a positive Lagrangian.

However, this sign usually cancels when deriving the equations of motion, thus the sign convention is unim-

portant if a consistent sign convention is used.
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8.6.2 R - Routhian is a Hamiltonian for the non-cyclic variables

The non-cyclic Routhian  complements . Again the generalized coordinates between 1 ≤  ≤
 are assumed to be non-cyclic, while those between +1 ≤  ≤  are ignorable cyclic coordinates. However,

the expression in terms of ( ) and ( ̇) are interchanged, that is, the cyclic variables are expressed in

terms of ( ̇) and the non-cyclic variables are expressed in terms of ( ) which is opposite of what was

used for .

(1  ; 1  ; ̇+1  ̇; ) =

X


̇ −  −  (8.66)

=  −  (8.67)

It can be written in a frequently used form

(1  ; 1  ; ̇+1  ̇; ) ≡
X



̇ −  =

X
=1

̇ − −
X



̇

=  −
X



̇ (8.68)

This Routhian behaves like a Hamiltonian for the  non-cyclic variables which are expressed in terms of 

and  appropriate for a Hamiltonian. This Routhian writes the  cyclic coordinates in terms of , and ̇

appropriate for a Lagrangian, which are treated assuming the Routhian  is a negative Lagrangian for

these cyclic variables as summarized in table 82.

Table 82; Equations of motion for the Routhian 

Hamilton equations Lagrange equations

Coordinates Noncyclic: 1 ≤  ≤  Cyclic: (+ 1) ≤  ≤ 




= −̇ 


= −


Equations of motion




= ̇


̇
= −

̇

This non-cyclic Routhian  is especially useful since it equals the Hamiltonian for the non-cyclic

variables, that is, the kinetic energy for motion of the cyclic variables has been removed. Note that since the

cyclic variables are constants of motion, then  is a constant of motion if  is a constant of motion.

However,  does not equal the total energy since the coordinate transformation is time dependent,

that is,  corresponds to the energy of the non-cyclic parts of the motion. For example, when used

to describe rotational motion,  corresponds to the energy in the non-inertial rotating body-fixed

frame of reference. This is especially useful in treating rotating systems such as rotating galaxies, rotating

machinery, molecules, or rotating strongly-deformed nuclei as discussed in chapter 109

The Lagrangian and Hamiltonian are the fundamental algebraic approaches to classical mechanics. The

Routhian reduction method is a valuable hybrid technique that exploits a trick to reduce the number of

variables that have to be solved for complicated problems encountered in science and engineering. The

Routhian  provides the most useful approach for solving the equations of motion for rotating

molecules, deformed nuclei, or astrophysical objects in that it gives the Hamiltonian in the non-inertial

body-fixed rotating frame of reference ignoring the rotational energy of the frame. By contrast, the cyclic

Routhian  is especially useful to exploit Lagrangian mechanics for solving problems in rigid-body

rotation such as the Tippe Top described in example 1114.

Note that the Lagrangian, Hamiltonian, plus both the  and  Routhian’s, all are scalars

under rotation, that is, they are rotationally invariant. However, they may be expressed in terms of the

coordinates in either the stationary or a rotating frame. The major difference is that the Routhian includes

only subsets of the kinetic energy term
P

  ̇ . The relative merits of using Lagrangian, Hamiltonian, and

both the  and  Routhian reduction methods, are illustrated by the following examples.
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8.6 Example: Spherical pendulum using Hamiltonian mechanics

g

m

Spherical pendulum

The spherical pendulum provides a simple test case for compar-

ison of the use of Lagrangian mechanics, Hamiltonian mechanics,

and both approaches to Routhian reduction. The Lagrangian me-

chanics solution of the spherical pendulum is described in example

610. The solution using Hamiltonian mechanics is given in this

example followed by solutions using both of the Routhian reduction

approaches.

Consider the equations of motion of a spherical pendulum of

mass  and length . The generalized coordinates are   since

the length is fixed at  =  The kinetic energy is

 =
1

2
2




2

+
1

2
2 sin2 




2

The potential energy  = − cos  giving that

(   ̇ ̇ ̇) =
1

2
2




2

+
1

2
2 sin2 




2

+ cos 

The generalized momenta are

 =


̇
= 2



  =


̇
= 2 sin2 





Since the system is conservative, and the transformation from rectangular to spherical coordinates does not

depend explicitly on time, then the Hamiltonian is conserved and equals the total energy. The generalized

momenta allow the Hamiltonian to be written as

(     ) =
2
22

+
2

22 sin2 
− cos 

The equations of motion are


̇ = −


=
2 cos 

22 sin3 
− sin  ()

ṗ= −

= 0 ()

̇ =



=



2
()

̇ =



=



2 sin2 
()

Take the time derivative of equation () and use () to substitute for ̇ gives that

̈ − 2 cos 

24 sin3 
+




sin  = 0 ()

Note that equation (b) shows that  is a cyclic coordinate. Thus

 = 2 sin2 ̇ = constant

that is the angular momentum about the vertical axis is conserved. Note that although  is a constant of

motion, ̇ =


2 sin2 
is a function of  and thus in general it is not conserved. There are various solutions

depending on the initial conditions. If  = 0 then the pendulum is just the simple pendulum discussed

previously that can oscillate, or rotate in the  direction. The opposite extreme is where  = 0 where the

pendulum rotates in the  direction with constant . In general the motion is a complicated coupling of the

 and  motions.
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8.7 Example: Spherical pendulum using (   ̇ ̇ )

The Lagrangian for the spherical pendulum is

(   ̇ ̇ ̇) =
1

2
2̇

2
+
1

2
2 sin2 ̇

2
+ cos 

Note that the Lagrangian is independent of , therefore  is an ignorable variable with

̇ =



= −


= 0

Therefore  is a constant of motion equal to

 =


̇
= 2 sin2 ̇

The Routhian (   ̇ ̇ ) equals

(   ̇ ̇ ) = ̇− 

= −
∙
1

2
2̇

2
+
1

2
2 sin2 ̇

2
+ cos  −2 sin2 ̇

2
¸

= −1
2
2̇

2
+
1

2

2

2 sin2 
+ cos 

The Routhian (   ̇ ̇ ) behaves like a Hamiltonian for  and like a Lagrangian 0 = −

for . Use of Hamilton’s canonical equations for  give

̇ =



=



2 sin2 

−̇ =



= 0

These two equations show that  is a constant of motion given by

2 sin2 ̇ =  = constant ()

Note that the Hamiltonian only includes the kinetic energy for the  motion which is a constant of motion,

but this energy does not equal the total energy. This is what is predicted by Noether’s theorem due to the

symmetry of the Lagrangian about the vertical  axis.

Since (   ̇ ̇ ) behaves like a Lagrangian for  then the Lagrange equation for  is

Λ =






̇
− 


= 0

where the negative sign of the Lagrangian in (   ̇ ̇ ) cancels. This leads to

2̈ =
2 cos 

2 sin3 
− sin 

that is

̈ − 2 cos 

24 sin3 
+




sin  = 0 ()

This result is identical to the one obtained using Lagrangian mechanics in example 612 and Hamiltonian

mechanics given in example 86. The Routhian  simplified the problem to one degree of freedom 

by absorbing into the Hamiltonian the cyclic, that is, ignorable,  coordinate and its conserved conjugate

momentum . Note that the central term in equation  is the centrifugal term which is due to rotation

about the vertical axis. This term is zero for plane pendulum motion when  = 0.
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8.8 Example: Spherical pendulum using (     ̇)

For a rotational system the Routhian (     ̇) also can be used to project out the Hamil-

tonian for the active variables in the rotating body-fixed frame of reference. Consider the spherical pendulum

where the rotating frame is rotating with angular velocity ̇. The Lagrangian for the spherical pendulum is

(   ̇ ̇ ̇) =
1

2
2̇

2
+
1

2
2 sin2 ̇

2
+ cos 

Note that the Lagrangian is independent of , therefore  is an ignorable variable with

̇ =



= −


= 0

Therefore  is a constant of motion equal to

 =


̇
= 2 sin2 ̇

The total Hamiltonian is given by

(     ) =
X


̇ −  =
2
22

+
2

22 sin2 
− cos 

The Routhian for the rotating frame of reference  is given by equation 868, that is

(     ̇) =

X
=1

̇ − ̇−  =  − ̇

=
2
22

+
2

22 sin2 
− cos  − ̇

=
2
22

− 1
2
2 sin2 ̇

2 − cos  ()

This behaves like a negative Lagrangian for  and a Hamiltonian for . The conjugate momenta are

 =


̇
= −

̇
= 2 sin2 ̇

̇ =



= −


= 0

that is,  is a constant of motion.

Hamilton’s equations of motion give

̇ =



=



2
()

−̇ =



= − 2 cos 

2 sin3 
+ sin  ()

Equation  gives that



̇ = ̈ =

̇

2

Inserting this into equation  gives

̈ − 2 cos 

24 sin3 
+




sin  = 0

which is identical to the equation of motion  derived using . The Hamiltonian in the rotating frame

is a constant of motion given by but it does not include the total energy.

Note that these examples show that both forms of the Routhian, as well as the complete Lagrangian

formalism, shown in example 612, and complete Hamiltonian formalism, shown in example 86 all give the

same equations of motion. This illustrates that the Lagrangian, Hamiltonian, and Routhian mechanics all

give the same equations of motion and this applies both in the static inertial frame as well as a rotating frame

since the Lagrangian, Hamiltonian and Routhian all are scalars under rotation, that is, they are rotationally

invariant.
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8.9 Example: Single particle moving in a vertical plane under the influence of
an inverse-square central force

The Lagrangian for a single particle of mass  moving in a vertical plane and subject to a central inverse

square central force, is specified by two generalized coordinates,  and 

 =


2
(̇2 + 2̇

2
) +





The ignorable coordinate is  since it is cyclic. Let the constant conjugate momentum be denoted by  =


̇
= 2̇. Then the corresponding cyclic Routhian is

(  ̇ ) = ̇ −  =
2
22

− 1
2
̇2 − 



This Routhian is the equivalent one-dimensional potential () minus the kinetic energy of radial motion.

Applying Hamilton’s equation to the cyclic coordinate  gives

̇ = 0


2
= ̇

implying a solution

 = 2̇ = 

where the angular momentum  is a constant.

The Lagrange-Euler equation can be applied to the non-cyclic coordinate 

Λ =






̇
− 


= 0

where the negative sign of  cancels. This leads to the radial solution

̈ − 2
3

+


2
= 0

where  =  which is a constant of motion in the centrifugal term. Thus the problem has been reduced to a

one-dimensional problem in radius  that is in a rotating frame of reference.

8.7 Dissipative dynamical systems

Dissipative drag forces are non-conservative and usually are velocity dependent. Chapter 4 showed that

the motion of non-linear dissipative dynamical systems can be highly sensitive to the initial conditions and

can lead to chaotic motion. In spite of the complications that can be introduced by energy dissipation,

it is possible to use variational methods to incorporate energy dissipation in dynamical systems via the

following three different approaches. (1) Explicitly introduce the dissipative force as a generalized force

in the Lagrangian or Hamiltonian mechanics. (2) Use Rayleigh’s dissipation function when the dissipation

forces depend linearly on velocity. (3) Use non-standard Lagrangians, or the corresponding Hamiltonians,

that incorporate dissipation directly in the Lagrangian or Hamiltonian as discussed in chapter 13.

8.7.1 Generalized drag force

The most straightforward approach for handling dissipative forces is to include the dissipative drag force

explicitly as a generalized drag force in the Euler-Lagrange equations. The drag force can have any functional

dependence on velocity, position, or time.

F = −(q̇q )v̂ (8.69)

Note that since the drag force is dissipative the dominant component of the drag force must point in the

opposite direction to the velocity vector. For example, for a simple linear velocity dependence the generalized

drag force could be of the form 
 = −̄ 
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8.7.2 Rayleigh’s dissipation function

Dissipative forces for fluids and gases depend linearly on velocity at Reynolds numbers Re ≤ 1[?, linear-
velocity energy dissipation ] that is, for low velocities. Such linear-velocity dissipative forces occur frequently

in nature. The wide range of electrical conductors that obey Ohm’s Law is an example of a dissipative force

that depends linearly on velocity. Systems involving small amplitude oscillations at low velocities are other

examples where the dissipation depends linearly on velocity. Such linear dissipative systems have a dissipative

force of the form F = −(  )v where the dissipation coefficient (  ) is velocity independent and may
have different values along different axes. Dissipative forces that depend linearly on velocity can be absorbed

directly into the Lagrange equations by expressing the vector frictional force F in terms of a scalar function

of the generalized coordinates called the Rayleigh dissipation function F as proposed by Lord Rayleigh. The
Rayleigh dissipation function is a useful way for including linear dissipative forces in both Lagrangian and

Hamiltonian mechanics as shown below.

Lagrangian mechanics

Consider  equations of motion for the  degrees of freedom, and assume that the dissipation depends linearly

on velocity. Then, allowing all possible cross coupling of the equations of motion for   the equations of

motion can be written in the form

X
=1

[ ̈ +  ̇ +  −()] = 0 (8.70)

Multiplying equation 870 by ̇ , take the time integral, and sum over  , gives the following energy equation

X
=1

X
=1

Z 

0

 ̈ ̇+

X
=1

X
=1

Z 

0

 ̇ ̇+

X
=1

X
=1

Z 

0

 ̇ =

X


Z 

0

()̇ (8.71)

The right-hand term is the total energy supplied to the system by the external generalized forces ()

during the time . The first time-integral term on the left-hand side is the total kinetic energy, while the

third integral term equals the potential energy. The second integral term on the left equals 2F where F is

defined as

F ≡1
2

X
=1

X
=1

 ̇̇ (8.72)

and the summations are over all  particles of the system. This definition allows for complicated cross-

coupling effects between the  particles. Fortunately the particle-particle coupling effects usually can be

neglected allowing use of the simpler definition that includes only the diagonal terms. Then the diagonal

form of the Rayleigh dissipation function can be written as

F ≡1
2

X
=1

̇
2
 (8.73)

The frictional force in the  direction is given by

 

= −F

̇
= −̇ (8.74)

which depends linearly on velocity ̇ In general, the dissipative force is the velocity gradient of the Rayleigh

dissipation function,

F = −∇q̇F (8.75)

Note that the physical significance of the Rayleigh dissipation function is illustrated by calculating the

work done by one particle  against friction, which is



 = −F · r = −F · q̇ = ̇

2
  (8.76)

Therefore

2F = 


(8.77)
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which is the rate of energy (power) loss due to the dissipative forces involved. The same relation is obtained

after summing over all the particles involved.

Transforming the frictional force into generalized coordinates requires the relation

ṙ=
X


r


̇ +

r


(8.78)

Note that the derivative with respect to ̇ equals

ṙ

̇
=

r


(8.79)

Using equations 617 and 647 the  component of the generalized frictional force 

 is given by



 =

X
=1

F

 ·

r


=

X
=1

F

 ·

ṙ

̇
= −

X
=1

∇F ·
ṙ

̇
= −F

̇
(8.80)

Thus the Lagrange equations 647 can be written including the Rayleigh dissipation function in the form½




µ


̇

¶
− 



¾
=

"
X
=1





(q ) +



#
− F

̇
(8.81)

Where
 corresponds to the generalized forces remaining after removal of the generalized linear, velocity-

dependent, frictional force 

  and the holonomic forces of constraint are absorbed into the Lagrange mul-

tiplier term.

Linear dissipative forces can be directly, and elegantly, included in Lagrangian mechanics by use of

Rayleigh’s dissipation function. Equation 881 facilitates solving the equations of motion when linear velocity-

dependent dissipative forces are acting on the system.

Hamiltonian mechanics

If the nonconservative forces depend linearly on velocity, and are derivable from Rayleigh’s dissipation

function according to equation 881, then using the definition of generalized momentum gives

̇ =






̇
=




+

"
X
=1





(q ) +



#
− F

̇
(8.82)

̇ = −(pq )


+

"
X
=1





(q ) +



#
− F

̇
(8.83)

Thus Hamilton’s equations become

̇ =



(8.84)

̇ = −


+

"
X
=1





(q ) +



#
− F

̇
(8.85)

The Rayleigh dissipation function provides an elegant and convenient way to account for the frequently

encountered special case of linear dissipative forces in Lagrangian and Hamiltonian mechanics. The following

two examples illustrate the usefulness of the Rayleigh dissipation function when applied to both classical

mechanics and electromagnetism.
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8.10 Example: Driven, linearly-damped, coupled linear oscillators

m m 

x 1  x  2

Harmonically-driven, linearly-damped, coupled

linear oscillators.

Consider the two identical, linearly damped, coupled

oscillators (damping constant ) shown in the figure. A

periodic force  = 0 cos() is applied to the left-hand

mass . The kinetic energy of the system is

 =
1

2
(̇21 + ̇22)

The potential energy is

 =
1

2
21 +

1

2
22 +

1

2
0 (2 − 1)

2
=
1

2
(+ 0)21 +

1

2
(+ 0)22 − 012

Thus the Lagrangian equals

 =
1

2
(̇21 + ̇2)−

∙
1

2
(+ 0)21 +

1

2
(+ 0)22 − 012

¸
Since the damping is linear, it is possible to use the Rayleigh dissipation function

F =1
2
(̇21 + ̇22)

The applied generalized forces are

01 =  cos () 02 = 0

Use the Euler-Lagrange equations 881 to derive the equations of motion½




µ


̇

¶
− 



¾
+

F
̇

= 0 +
X
=1





(q )

gives

̈1 + ̇1 + (+ 0)1 − 02 = 0 cos ()

̈2 + ̇2 + (+ 0)2 − 01 = 0

These two coupled equations can be decoupled and simplified by making a transformation to normal coor-

dinates, 1 2 where

1 = 1 − 2 2 = 1 + 2

Thus

1 =
1

2
(1 + 2) 2 =

1

2
(2 − 1)

Insert these into the equations of motion gives

(̈1 + ̈2) + (̇1 + ̇2) + (+ 0)(1 + 2)− 0(2 − 1) = 20 cos ()

(2 − 1) + (2 − 1) + (+ 0)(2 − 1)− 0(1 + 2) = 0

Add and subtract these two equations gives the following two decoupled equations

̈1 +



̇1 +

(+ 20)


1 =
0


cos ()

̈2 +



̇2 +




2 =

0


cos ()

Define Γ = 

 1 =

q
(+20)


 2 =

p


  = 0


. Then the two independent equations of motion become

̈1 + Γ̇1 + 211 =  cos () ̈2 + Γ̇2 + 222 =  cos ()
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This solution is a superposition of two independent, linearly-damped, driven normal modes 1 and 2 that

have different natural frequencies 1 and 2. For weak damping these two driven normal modes each undergo

damped oscillatory motion with the 1 and 2 normal modes exhibiting resonances at 
0
1 =

q
21 − 2

¡
Γ
2

¢2
and 02 =

q
22 − 2

¡
Γ
2

¢2
8.11 Example: Kirchhoff’s rules for electrical circuits

The mathematical equations governing the behavior of mechanical systems and  electrical circuits

have a close similarity. Thus variational methods can be used to derive the analogous behavior for electrical

circuits. For example, for a system of  separate circuits, the magnetic flux Φ through circuit  due to

electrical current  = ̇ flowing in circuit  is given by

Φ =̇

where is the mutual inductance. The diagonal term  =  corresponds to the self inductance of

circuit . The net magnetic flux Φ through circuit  due to all  circuits, is the sum

Φ =

X
=1

̇

Thus the total magnetic energy which is analogous to kinetic energy  is given by summing over all

 circuits to be

 =  =
1

2

X
=1

X
=1

̇̇

Similarly the electrical energy  stored in the mutual capacitance  between the  circuits, which

is analogous to potential energy,  is given by

 =  =
1

2

X
=1

X
=1





Thus the standard Lagrangian for this electric system is given by

 =  −  =
1

2

X
=1

X
=1

∙
̇̇ − 



¸
()

Assuming that Ohm’s Law is obeyed, that is, the dissipation force depends linearly on velocity, then the

Rayleigh dissipation function can be written in the form

F ≡1
2

X
=1

X
=1

̇̇ ()

where  is the resistance matrix. Thus the dissipation force, expressed in volts, is given by

 = −F
̇

=
1

2

X
=1

̇ ()

Inserting equations   and  into equation 881 plus making the assumption that an additional gen-

eralized electrical force  = () volts is acting on circuit  then the Euler-Lagrange equations give the

following equations of motion.
X

=1

∙
̈ +̇ +





¸
= ()

This is a generalized version of Kirchhoff ’s loop rule which can be seen by considering the case where the

diagonal term  =  is the only non-zero term. Then∙
̈ +̇ +





¸
= ()

This sum of the voltages is identical to the usual expression for Kirchhoff ’s loop rule. This example

illustrates the power of variational methods when applied to fields beyond classical mechanics.
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8.8 Summary

Hamilton’s equations of motion

Inserting the generalized momentum into Jacobi’s generalized energy relation was used to define the

Hamiltonian function to be

 (qp ) = p · q̇−(q q̇ ) (83)

The Legendre transform of the Lagrange-Euler equations, led to Hamilton’s equations of motion.

̇ =



(825)

̇ = −


+

"
X
=1





+



#
(826)

The generalized energy equation 738 gives the time dependence

(qp)


=
X


Ã"
X
=1





+



#
̇

!
− (q q̇)


(827)

where



= −


(824)

The   are treated as independent canonical variables Lagrange was the first to derive the canonical

equations but he did not recognize them as a basic set of equations of motion. Hamilton derived the canonical

equations of motion from his fundamental variational principle and made them the basis for a far-reaching

theory of dynamics. Hamilton’s equations give 2 first-order differential equations for   for each of the

 degrees of freedom. Lagrange’s equations give  second-order differential equations for the variables  ̇

Routhian reduction technique

The Routhian reduction technique is a hybrid of Lagrangian and Hamiltonian mechanics that exploits

the advantages of both approaches for solving problems involving cyclic variables. It is especially useful for

solving motion in rotating systems in science and engineering. Two Routhians are used frequently for solving

the equations of motion of rotating systems. Assuming that the variables between 1 ≤  ≤  are non-cyclic,

while the  variables between + 1 ≤  ≤  are ignorable cyclic coordinates, then the two Routhians are:

(1  ; ̇1  ̇; +1  ; ) =

X


̇ −  =  −
X



̇ (865)

(1  ; 1  ; ̇+1  ̇; ) =

X


̇ −  =  −
X



̇ (868)

The Routhian  is a negative Lagrangian for the non-cyclic variables between 1 ≤  ≤ , where

 =  −  and is a Hamiltonian for the  cyclic variables between  + 1 ≤  ≤ . Since the cyclic

variables are constants of the Hamiltonian, their solution is trivial, and the number of variables included in

the Lagrangian is reduced from  to  = −. The Routhian  is useful for solving some problems in

classical mechanics. The Routhian  is a Hamiltonian for the non-cyclic variables between 1 ≤  ≤ ,

and is a negative Lagrangian for the  cyclic variables between  + 1 ≤  ≤ . Since the cyclic variables

are constants of motion, the Routhian  also is a constant of motion but it does not equal the total

energy since the coordinate transformation is time dependent. The Routhian  is especially valuable

for solving rotating many-body systems such as galaxies, molecules, or nuclei, since the Routhian 

is the Hamiltonian in the rotating body-fixed coordinate frame.

Dissipative systems:

There are three different approaches to Lagrangian or Hamiltonian mechanics that can be used to derive

the equations of motion for dissipative systems. The first, and most straightforward approach, is to introduce

the drag force as a generalized force in the Euler-Lagrange equations. The second approach uses Rayleigh’s

dissipation scalar function F which applies when drag forces depend linearly on velocity. If the dissipative

force can be expressed as

F = −∇F (875)
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then the Lagrange equations can be written in terms of the Rayleigh dissipation function as½




µ


̇

¶
− 



¾
=

"
X
=1





(q ) +



#
− F

̇
(881)

The corresponding Hamiltonian relations are

̇ =



(884)

̇ = −


+

"
X
=1





(q ) +



#
− F

̇
(885)

The third approach, discussed in chapter 137 uses non-standard Lagrangians or Hamiltonians that are

derived from the required equations of motion using the inverse variational problem.

Comparison of Lagrangian and Hamiltonian mechanics

Lagrangian and the Hamiltonian dynamics are two powerful and related algebraic formulations of me-

chanics that are based on the same variational principle. They both concentrate solely on active forces and

can ignore internal forces. They can handle many-body systems and allow convenient generalized coordinates

of choice, which is impractical or impossible using Newtonian mechanics. Thus it is natural to compare the

relative advantages of these two algebraic formalisms in order to decide which should be used for a specific

problem.

For a system with  generalized coordinates, plus  constraint forces that are not required to be known,

then the Lagrangian approach, using a minimal set of generalized coordinates, reduces to only  =  −

second-order differential equations and unknowns compared to the Newtonian approach where there are

 + unknowns. Alternatively, use of Lagrange multipliers allows determination of the constraint forces

resulting in  +  second order equations and unknowns. The Lagrangian potential function is limited

to conservative forces, Lagrange multipliers can be used to handle holonomic forces of constraint, while

generalized forces can be used to handle non-conservative and non-holonomic forces. The advantage of the

Lagrange equations of motion is that they can deal with any type of force, conservative or non-conservative,

and they directly determine , ̇ rather than   which then requires relating  to ̇.

For a system with  generalized coordinates, the Hamiltonian approach determines 2 first-order differ-

ential equations which are easier to solve than second-order equations. But the 2 solutions then must be

combined to determine the equations of motion. The Hamiltonian approach is superior to the Lagrange ap-

proach in its ability to obtain an analytical solution of the integrals of the motion. Hamiltonian dynamics also

has a means of determining the unknown variables for which the solution assumes a soluble form. Important

applications of Hamiltonian mechanics are to quantum mechanics and statistical mechanics, where quantum

analogs of  and  can be used to relate to the fundamental variables of Hamiltonian mechanics. This

does not apply for the variables  and ̇ of Lagrangian mechanics. The Hamiltonian approach is especially

powerful when the system has  cyclic variables, then the  conjugate momenta  are constants. Thus the

 conjugate variables ( ) can be factored out of the Hamiltonian, which reduces the number of conjugate

variables required to  −. This is not possible using the Lagrangian approach since, even though the 

coordinates  can be factored out, the velocities ̇ still must be included, thus the  conjugate variables

must be included. The Lagrange approach is advantageous for obtaining a numerical solution of systems in

classical mechanics. However, Hamiltonian mechanics expresses the variables in terms of the fundamental

canonical variables (qp) which provides a more fundamental insight into the underlying physics.1

1Recommended reading: "Classical Mechanics" H. Goldstein, Addison-Wesley, Reading (1950). The present chapter

closely follows the notation used by Goldstein to facilitate cross-referencing and reading the many other textbooks that have

adopted this notation.
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Workshop exercises

1. A block of mass  rests on an inclined plane making an angle  with the horizontal. The inclined plane (a

triangular block of mass  ) is free to slide horizontally without friction. The block of mass  is also free to

slide on the larger block of mass  without friction.

(a) Construct the Lagrangian function.

(b) Derive the equations of motion for this system.

(c) Calculate the canonical momenta.

(d) Construct the Hamiltonian function.

(e) Find which of the two momenta found in part (c) is a constant of motion and discuss why it is so. If the

two blocks start from rest, what is the value of this constant of motion?

2. Discuss among yourselves the following four conditions that can exist for the Hamiltonian and give several

examples of systems exhibiting each of the four conditions.

(a) The Hamiltonian is conserved and equals the total mechanical energy

(b) The Hamiltonian is conserved but does not equal the total mechanical energy

(c) The Hamiltonian is not conserved but does equal the total mechanical energy

(d) The Hamiltonian is not conserved and does not equal the mechanical total energy.

3. A block of mass  rests on an inclined plane making an angle  with the horizontal. The inclined plane (a

triangular block of mass  ) is free to slide horizontally without friction. The block of mass  is also free to

slide on the larger block of mass  without friction.

(a) Construct the Lagrangian function.

(b) Derive the equations of motion for this system.

(c) Calculate the canonical momenta.

(d) Construct the Hamiltonian function.

(e) Find which of the two momenta found in part (c) is a constant of motion and discuss why it is so. If the

two blocks start from rest, what is the value of this constant of motion?

4. Discuss among yourselves the following four conditions that can exist for the Hamiltonian and give several

examples of systems exhibiting each of the four conditions.

a) The Hamiltonian is conserved and equals the total mechanical energy

b) The Hamiltonian is conserved but does not equal the total mechanical energy

c) The Hamiltonian is not conserved but does equal the total mechanical energy

d) The Hamiltonian is not conserved and does not equal the mechanical total energy

5. Compare the Lagrangian formalism and the Hamiltonian formalism by creating a two-column chart. Label one

side “Lagrangian” and the other side “Hamiltonian” and discuss the similarities and differences. Here are some

ideas to get you started:

• What are the basic variables in each formalism?
• What are the form and number of the equations of motion derived in each case?

• How does the Lagrangian “state space” compare to the Hamiltonian “phase space”?

6. It can be shown that if ( ̇ ) is the Lagrangian of a particle moving in one dimension, then  = 0 where
0( ̇ ) = ( ̇ ) + 


and ( ) is an arbitrary function. This problem explores the consequences of

this on the Hamiltonian formalism.
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(a) Relate the new canonical momentum 0, for 0, to the old canonical momentum , for .

(b) Express the new Hamiltonian  0(0 0 ) for 0 in terms of the old Hamiltonian (  ) and  .

(c) Explicitly show that the new Hamilton’s equations for  0 are equivalent to the old Hamilton’s equations
for  .

7. A massless hoop of radius  is rotating about an axis perpendicular to its central axis at constant angular

velocity . A mass  can freely slide around the hoop.

(a) Determine the Lagrangian of the system.

(b) Determine the Hamiltonian of the system. Does it equal the total mechanical energy?

(c) Determine the Lagrangian of the system with respect to a coordinate frame in which  =  +eff . What

is eff? What force generates the additional term in eff?

8. Consider a pendulum of length  attached to the end of rod of length . The rod is rotating at constant

angular velocity  in the plane. Assume the pendulum is always taut.

(a) Determine equations of motion.

(b) For what value of 2 is this system the same as a plane pendulum in a constant gravitational field?

(c) Show  6= . What is the reason?

Problems

1) A particle of mass  in a gravitational field slides on the inside of a smooth parabola of revolution whose axis is

vertical. Using the distance from the axis  and the azimuthal angle  as generalized coordinates, find the following.

a) The Lagrangian of the system.

b) The generalized momenta and the corresponding Hamiltonian

c) The equation of motion for the coordinate  as a function of time.

d) If


= 0 show that the particle can execute small oscillations about the lowest point of the paraboloid and

find the frequency of these oscillations.

2) Consider a particle of mass  which is constrained to move on the surface of a sphere of radius . There are no

external forces of any kind acting on the particle.

a) What is the number of generalized coordinates necessary to describe the problem?

b) Choose a set of generalized coordinates and write the Lagrangian of the system.

c) What is the Hamiltonian of the system? Is it conserved?

d) Prove that the motion of the particle is along a great circle of the sphere.

3. A block of mass  is attached to a wedge of mass by a spring with spring constant . The inclined frictionless

surface of the wedge makes an angle  to the horizontal. The wedge is free to slide on a horizontal frictionless surface

as shown in the figure.

a) Given that the relaxed length of the spring is , find the values 0 when both book and wedge are stationary.

b) Find the Lagrangian for the system as a function of the  coordinate of the wedge and the length of spring .

Write down the equations of motion.

c) What is the natural frequency of vibration?



8.8. SUMMARY 225

4. A fly-ball governor comprises two masses  connected by 4 hinged arms of length  to a vertical shaft and to a

mass  which can slide up or down the shaft without friction in a uniform vertical gravitational field as shown in

the figure. The assembly is constrained to rotate around the axis of the vertical shaft with same angular velocity as

that of the vertical shaft. Neglect the mass of the arms, air friction, and assume that the mass  has a negligible

moment of inertia. Assume that the whole system is constrained to rotate with a constant angular velocity 0.

a) Choose suitable coordinates and use the Lagrangian to derive equations of motion of the system around the

equilibrium position.

b) Determine the height  of the mass  above its lowest position as a function of 0.

c) Find the frequency of small oscillations about this steady motion.

d) Derive a Routhian that provides the Hamiltonian in the rotating system.

e) Is the total energy of the fly-ball governor in the rotating frame of reference constant in time?

f) Suppose that the shaft and assembly are not constrained to rotate at a constant angular velocity 0, that is,

it is allowed to rotate freely at angular velocity ̇. What is the difference in the overall motion?

5. A rigid straight, frictionless, massless, rod rotates about the  axis at an angular velocity ̇. A mass  slides

along the frictionless rod and is attached to the rod by a massless spring of spring constant .

a; Derive the Lagrangian and the Hamiltonian

b; Derive the equations of motion in the stationary frame using Hamiltonian mechanics.

c; What are the constants of motion?

d; If the rotation is constrained to have a constant angular velocity ̇ =  then is the non-cyclic Routhian

 =  − ̇ a constant of motion, and does it equal the total energy?

e; Use the non-cyclic Routhian  to derive the radial equation of motion in the rotating frame of reference

for the cranked system with ̇ = .
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6. A thin uniform rod of length 2 and mass is suspended from a massless string of length  tied to a nail. Initially

the rod hangs vertically. A weak horizontal force  is applied to the rod’s free end.

a) Write the Lagrangian for this system.

b) For very short times such that all angles are small, determine the angles that string and the rod make with

the vertical. Start from rest at  = 0

c) Draw a diagram to illustrate the initial motion of the rod.

7. A uniform ladder of mass  and length 2 is leaning against a frictionless vertical wall with its feet on a

frictionless horizontal floor. Initially the stationary ladder is released at an angle 0 = 60◦ to the floor. Assume
that gravitation field  = 9812 acts vertically downward and that the moment of inertia of the ladder about its

midpoint is  = 1
3
2.

a) Derive the Lagrangian

b) Derive the Hamiltonian

c) Explain if the Hamiltonian is conserved and/or if it equals the total energy

d) Use the Lagrangian to derive the equations of motion

e) Derive the angle  at which the ladder loses contact with the vertical wall?

8. The classical mechanics exam induces Jacob to try his hand at bungee jumping. Assume Jacob’s mass 

is suspended in a gravitational field by the bungee of unstretched length  and spring constant . Besides the

longitudinal oscillations due to the bungee jump, Jacob also swings with plane pendulum motion in a vertical plane.

Use polar coordinates  , neglect air drag, and assume that the bungee always is under tension.

a; Derive the Lagrangian

b; Determine Lagrange’s equation of motion for angular motion and identify by name the forces contributing to

the angular motion.

c; Determine Lagrange’s equation of motion for radial oscillation and identify by name the forces contributing to

the tension in the spring.

d; Derive the generalized momenta

e; Determine the Hamiltonian and give all of Hamilton’s equations of motion.



Chapter 9

Conservative two-body central forces

9.1 Introduction

Conservative two-body central forces are of tremendous importance in physics because of the pivotal role that

the Coulomb and the gravitational forces play in nature. The Coulomb force plays a role in electrodynamics,

molecular, atomic, and nuclear physics, while the gravitational force plays an analogous role in celestial

mechanics. Therefore this chapter focusses on the physics of systems involving conservative two-body central

forces because of the importance and ubiquity of these conservative two-body central forces in nature.

A conservative two-body central force has the following three important attributes.

1. Conservative: A conservative force depends only on the particle position, that is, the force is not

time dependent. Moreover the work done by the force moving a body between any two points 1 and 2

is path independent. Conservative fields are discussed in chapter 28.

2. Two-body: A two-body force between two bodies depends only on the relative locations of the two

interacting bodies and is not influenced by the proximity of additional bodies. For two-body forces

acting between  bodies, the force on body 1 is the vector superposition of the two-body forces due

to the interactions with each of the other − 1 bodies. This differs from three-body forces where the

force between any two bodies is influenced by the proximity of a third body.

3. Central: A central force field depends on the distance 12 from the origin of the force at point 1 to

the body location at point 2, and the force is directed along the line joining them, that is, r̂12.

A conservative, two-body, central force combines the above three attributes and can be expressed as,

F21=(12)r̂12 (9.1)

The force field F21 has a magnitude (12) that depends only on the magnitude of the relative separation

vector r12 = r2−r1 between the origin of the force at point 1 and point 2 where the force acts, and the force
is directed along the line joining them, that is, r̂12.

Chapter 28 showed that if a two-body central force is conservative, then it can be written as the gradient

of a scalar potential energy () which is a function of the distance from the center of the force field.

F21 = −∇(12) (9.2)

As discussed in chapter 2, the ability to represent the conservative central force by a scalar function ()

greatly simplifies the treatment of central forces.

The Coulomb and gravitational forces both are true conservative, two-body, central forces whereas the

nuclear force between nucleons in the nucleus has three-body components. Two bodies interacting via a

two-body central force is the simplest possible system to consider, but equation 91 is applicable equally for

 bodies interacting via two-body central forces because the superposition principle applies for two-body

central forces. This chapter will focus first on the motion of two bodies interacting via conservative two-body

central forces followed by a brief discussion of the motion for   2 interacting bodies.

227
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9.2 Equivalent one-body representation for two-body motion

Figure 9.1: Center of mass cordinates for

the two-body system.

The motion of two bodies, 1 and 2, interacting via two-body

central forces, requires 6 spatial coordinates, that is, three each

for r1 and r2. Since the two-body central force only depends on

the relative separation r = r1 − r2 of the two bodies, it is more
convenient to separate the 6 degrees of freedom into 3 spatial

coordinates of relative motion r plus 3 spatial coordinates for

the center-of-mass location R as described in chapter 27. It will

be shown here that the equation of motion for relative motion

of the two-bodies in the center of mass can be represented by an

equivalent one-body problem which simplifies the mathematics.

Consider two bodies acted upon by a conservative two-body

central force where the position vectors r1 and r2 specify the

location of each particle as illustrated in figure 91. An alternate

set of six variables would be the three components of the center

of mass position vector R and the three components specifying

the difference vector r defined by figure 91. Define the vectors

r01 and r
0
2 as the position vectors of the masses 1 and 2 with

respect to the center of mass. Then

r1 = R+ r01 (9.3)

r2 = R+ r02

By the definition of the center of mass

R =
1r1 +2r2

1 +2

(9.4)

and

1r
0
1 +2r

0
2 = 0 (9.5)

so that

−1

2

r01 = r
0
2 (9.6)

Therefore

r = r01 − r02 =
1 +2

2

r01 (9.7)

that is,

r01 =
2

1 +2

r (9.8)

Similarly;

r02 = −
1

1 +2

r (9.9)

Substituting these into equation 93 gives

r1 = R+ r01 = R+
2

1 +2

r

r2 = R+ r02 = R−
1

1 +2

r (9.10)

That is, the two vectors r1 r2 are written in terms of the position vector for the center of mass R and the

position vector r for relative motion in the center of mass.

Assuming that the two-body central force is conservative and represented by (), then the Lagrangian

of the two-body system can be written as

 =
1

2
1 |ṙ1|2 + 1

2
2 |ṙ2|2 − () (9.11)
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Differentiating equations 910 with respect to time, and inserting them into the Lagrangian, gives

 =
1

2

¯̄̄
Ṙ

¯̄̄2
+
1

2
 |ṙ|2 − () (9.12)

where the total mass  is defined as

 = 1 +2 (9.13)

and the reduced mass  is defined by

 ≡ 12

1 +2

(9.14)

or equivalently
1


=

1

1

+
1

2

(9.15)

The total Lagrangian can be separated into two independent parts

 =
1

2

¯̄̄
Ṙ

¯̄̄2
+  (9.16)

where

 =
1

2
 |ṙ|2 − () (9.17)

Assuming that no external forces are acting, then 
R

= 0 and the three Lagrange equations for each of the

three coordinates of the R coordinate can be written as







Ṙ
=

P


= 0 (9.18)

That is, for a pure central force, the center-of-mass momentum P is a constant of motion where

P =


Ṙ
=Ṙ (9.19)

Figure 9.2: Orbits of a two-body system with

mass ratio of 2 rotating about the center-of-

mass, O. The dashed ellipse is the equivalent

one-body orbit with the center of force at the

focus O.

It is convenient to work in the center-of-mass frame using

the effective Lagrangian . In the center-of-mass frame of

reference, the translational kinetic energy 1
2

¯̄̄
Ṙ

¯̄̄2
associated

with center-of-mass motion is ignored, and only the energy in

the center-of-mass is considered. This center-of-mass energy

is the energy involved in the interaction between the colliding

bodies. Thus, in the center-of-mass, the problem has been re-

duced to an equivalent one-body problem of a mass  moving

about a fixed force center with a path given by r which is the

separation vector between the two bodies, as shown in figure

92. In reality, both masses revolve around their center of

mass, also called the barycenter, in the center-of-mass frame

as shown in figure 92. Knowing r allows the trajectory of

each mass about the center of mass r01 and r
0
2 to be calcu-

lated. Of course the true path in the laboratory frame of

reference must take into account both the translational mo-

tion of the center of mass, in addition to the motion of the

equivalent one-body representation relative to the barycenter.

Be careful to remember the difference between the actual tra-

jectories of each body, and the effective trajectory assumed

when using the reduced mass which only determines the rel-

ative separation r of the two bodies. This reduction to an

equivalent one-body problem greatly simplifies the solution

of the motion, but it misrepresents the actual trajectories and the spatial locations of each mass in space.

The equivalent one-body representation will be used extensively throughout this chapter.
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9.3 Angular momentum L

The notation used for the angular momentum vector is L where the magnitude is designated by |L| = .

Be careful not to confuse the angular momentum vector L with the Lagrangian  Note that the angular

momentum for two-body rotation about the center of mass with angular velocity  is identical when evaluated

in either the laboratory or equivalent two-body representation. That is, using equations 98 and 99

L =m1
02
1 ω +m2

02
2 ω =

2ω (9.20)

The center-of-mass Lagrangian leads to the following two general properties regarding the angular mo-

mentum vector L.

1) The motion lies entirely in a plane perpendicular to the fixed direction of the total angular momentum

vector. This is because

L · r = r× p · r = 0 (9.21)

that is, the radius vector is in the plane perpendicular to the total angular momentum vector. Thus, it is

possible to express the Lagrangian in polar coordinates, ( ) rather than spherical coordinates. In polar

coordinates the center-of-mass Lagrangian becomes

 =
1

2

³
̇2 + 2̇

2
´
− () (9.22)

2) If the potential is spherically symmetric, then the polar angle  is cyclic and therefore Noether’s

theorem gives that the angular momentum p ≡ L = r× p is a constant of motion. That is, since 


= 0

then the Lagrange equations imply that

ṗ =






ψ̇
= 0 (9.23)

where the vectors ṗ and ψ̇ imply that equation 923 refers to three independent equations corresponding

to the three components of these vectors. Thus the angular momentum p conjugate to ψ is a constant of

motion. The generalized momentum p is a first integral of the motion which equals

p =


ψ̇
= 2ψ̇ = p̂ (9.24)

where the magnitude of the angular momentum , and the direction p̂ both are constants of motion.

O

r

r+dr

x

y

Figure 9.3: Area swept out by the radius

vector in the time dt.

A simple geometric interpretation of equation 924 is illus-

trated in figure 93 The radius vector sweeps out an area A

in time  where

A =
1

2
r× v (9.25)

and the vector A is perpendicular to the −  plane. The rate

of change of area is
A


=
1

2
r× v (9.26)

But the angular momentum is

L = r× p = r× v = 2A


(9.27)

Thus the conservation of angular momentum implies that the

areal velocity 

also is a constant of motion This fact is called

Kepler’s second law of planetary motion which he deduced in

1609 based on Tycho Brahe’s 55 years of observational records

of the motion of Mars. Kepler’s second law implies that a

planet moves fastest when closest to the sun and slowest when

farthest from the sun. Note that Kepler’s second law is a state-

ment of the conservation of angular momentum which is inde-

pendent of the radial form of the central potential.
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9.4 Equations of motion

The equations of motion for two bodies interacting via a conservative two-body central force can be de-

termined using the center of mass Lagrangian,  given by equation 922 For the radial coordinate, the

operator equation Λ = 0 leads to




(̇)− ̇

2
+




= 0 (9.28)

But

̇ =


2
(9.29)

therefore the radial equation of motion is

̈ = −


+
2

3
(9.30)

Similarly, for the angular coordinate, the operator equation Λ = 0 leads to equation 924. That is, the

angular equation of motion for the magnitude of  is

 =


̇
= 2̇ =  (9.31)

Lagrange’s equations have given two equations of motion, one dependent on radius  and the other on

the polar angle . Note that the radial acceleration is just a statement of Newton’s Laws of motion for the

radial force  in the center-of-mass system of

 = −


+
2

3
(9.32)

Figure 9.4: The attractive inverse-square law po-

tential (

), the centrifugal potential ( 2

22
), and

the combined effective bound potential.

This can be written in terms of an effective potential

 () ≡ () +
2

22
(9.33)

which leads to an equation of motion

 = ̈ = − ()


(9.34)

Since 2

3
= ̇

2
, the second term in equation (933)

is the usual centrifugal force that originates because the

variable  is in a non-inertial, rotating frame of reference.

Note that the angular equation of motion is independent

of the radial dependence of the conservative two-body

central force.

Figure 94 shows, by dashed lines, the radial depen-

dence of the potential corresponding to the attractive

inverse square law force, that is  = −

, and the po-

tential corresponding to the centrifugal term 2

22
cor-

responding to a repulsive centrifugal force. The sum of

these two potentials  (), shown by the solid line,

has a minimum min value at a certain radius similar

to that manifest by the diatomic molecule discussed in

example 27.

It is remarkable that the six-dimensional equations

of motion, for two bodies interacting via a two-body

central force, has been reduced to trivial center-of-mass translational motion, plus a one-dimensional one-

body problem given by (934) in terms of the relative separation  and an effective potential  ().
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9.5 Differential orbit equation:

The differential orbit equation relates the shape of the orbital motion, in plane polar coordinates, to the

radial dependence of the two-body central force. A Binet coordinate transformation, which depends on the

functional form of F(r) can simplify the differential orbit equation. For the inverse-square law force, the

best Binet transformed variable is where  is defined to be

 ≡ 1


(9.35)

Inserting the transformed variable  into equation 929 gives

̇ =
2


(9.36)

From the definition of the new variable




= −−2 


= −−2 


̇ = − 






(9.37)

Differentiating again gives

2

2
= − 







µ




¶
= −

µ




¶2
2

2
(9.38)

Substituting these into Lagrange’s radial equation of motion gives

2

2
+  = − 

2
1

2
 (
1


) (9.39)

Binet’s differential orbit equation directly relates  and  which determines the overall shape of the orbit

trajectory. This shape is crucial for understanding the orbital motion of two bodies interacting via a two-

body central force. Note that for the special case of an inverse square-law force, that is where  ( 1

) = 2,

then the right-hand side of equation 939 equals a constant −
2
since the orbital angular momentum is a

conserved quantity.

9.1 Example: Central force leading to a circular orbit  = 2 cos 

R
r

Circular trajectory passing through the

origin of the central force.

Binet’s differential orbit equation can be used to derive the

central potential that leads to the assumed circular trajectory

of  = 2 cos  where  is the radius of the circular orbit.

Note that this circular orbit passes through the origin of the

central force when  = 2 cos  = 0

Inserting this trajectory into Binet’s differential orbit equa-

tion 939 gives

1

2

2 (cos )
−1

2
+
1

2
(cos )

−1
= − 

2
42 (cos )

2
 (
1


) ()

Note that the differential is given by

2 (cos )
−1

2
=





µ
sin 

cos3 

¶
=
2 sin2 

cos3 
+

1

cos 

Inserting this differential into equation  gives

2 sin2 

cos3 
+

1

cos 
+

1

cos 
=

2

cos3 
= − 

2
83 (cos )

2
 (
1


)

Thus the radial dependence of the required central force is

 = − 2

83

2

cos5 
= −8

22



1

5
= − 

5

This corresponds to an attractive central force that depends to the fifth power on the inverse radius r . Note

that this example is unrealistic since the assumed orbit implies that the potential and kinetic energies are

infinite when → 0 at  → 
2
.
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9.6 Hamiltonian

Since the center-of-mass Lagrangian is not an explicit function of time, then




= −


= 0 (9.40)

Thus the center-of mass Hamiltonian  is a constant of motion. However, since the transformation to

center of mass can be time dependent, then  6=  that is, it does not include the total energy because

the kinetic energy of the center-of-mass motion has been omitted from . Also, since no transformation

is involved, then

 =  +  =  (9.41)

That is, the center-of-mass Hamiltonian  equals the center-of-mass total energy. The center-of-mass

Hamiltonian then can be written using the effective potential (933) in the form

 =
2
2
+

2
22

+ () =
2
2
+

2

22
+ () =

2
2
+  () =  (9.42)

It is convenient to express the center-of-mass Hamiltonian  in terms of the energy equation for the

orbit in a central field using the transformed variable  = 1

. Substituting equations 933 and 937 into the

Hamiltonian equation 942 gives the energy equation of the orbit

2

2

"µ




¶2
+ 2

#
+ 

¡
−1

¢
=  (9.43)

Energy conservation allows the Hamiltonian to be used to solve problems directly. That is, since

 =
̇2

2
+

2

22
+ () =  (9.44)

then

̇ =



= ±

s
2



µ
 −  − 2

22

¶
(9.45)

The time dependence can be obtained by integration

 =

Z ±r
2


³
 −  − 2

22

´ + constant (9.46)

An inversion of this gives the solution in the standard form  =  ()  However, it is more interesting to find

the relation between  and  From relation 946 for 

then

 =
±r

2


³
 −  − 2

22

´ (9.47)

while equation 929 gives

 =


2
=

±
2

r
2
³
 −  − 2

22

´ (9.48)

Therefore

 =

Z ±
2

r
2
³
 −  − 2

22

´ + constant (9.49)

which can be used to calculate the angular coordinate. This gives the relation between the radial and angular

coordinates which specifies the trajectory.

Although equations (945) and (949) formally give the solution, the actual solution can be derived

analytically only for certain specific forms of the force law and these solutions differ for attractive versus

repulsive interactions.
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9.7 General features of the orbit solutions

It is useful to look at the general features of the solutions of the equations of motion given by the equivalent

one-body representation of the two-body motion. These orbits depend on the net center of mass energy 

There are five possible situations depending on the center-of-mass total energy .

1) E 0 : The trajectory is hyperbolic and has a minimum distance, but no maximum. The distance

of closest approach is given when ̇ = 0 At the turning point  = + 2

22

2) E= 0 : It can be shown that the orbit for this case is parabolic.

3) 0  E Umin : For this case the equivalent orbit has both a maximum and minimum radial distance

at which ̇ = 0 At the turning points the radial kinetic energy term is zero so  = + 2

22
 For the

attractive inverse square law force the path is an ellipse with the focus at the center of attraction (Figure

95), which is Kepler’s First Law. During the time that the radius ranges from min to max and back the

radius vector turns through an angle ∆ which is given by

∆ = 2

Z max

min

±
2

r
2
³
 −  − 2

22

´ (9.50)

The general path prescribes a rosette shape which is a closed curve only if ∆ is a rational fraction of

2.

4) E= Umin : In this case  is a constant implying that the path is circular since

̇ =



= ±

s
2



µ
 −  − 2

22

¶
= 0 (9.51)

5) E Umin : For this case the square root is imaginary and there is no real solution.

In general the orbit is not closed, and such open orbits do not repeat. Bertrand’s Theorem states that

the inverse-square central force, and the linear harmonic oscillator, are the only radial dependences of the

central force that lead to stable closed orbits.

9.2 Example: Orbit equation of motion for a free body

r0

r

x

y

Q

P

Trajectory of a free body

It is illustrative to use the differential orbit equation 939 to show that

a body in free motion travels in a straight line. Assume that a line through

the origin  intersects perpendicular to the instantaneous trajectory at the

point  which has polar coordinates (0 ) relative to the origin. The

point  with polar coordinates ( ) lies on straight line through  that

is perpendicular to  if, and only if,  cos(− ) = 0 Since the force is

zero then the differential orbit equation simplifies to

2()

2
+ () = 0

A solution of this is

() =
1

0
cos(− )

where 0 and  are arbitrary constants. This can be rewritten as

() =
0

cos(− )

This is the equation of a straight line in polar coordinates as illustrated in the adjacent figure. This shows

that a free body moves in a straight line if no forces are acting on the body.
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9.8 Inverse-square, two-body, central force

The most important conservative, two-body, central interaction is the attractive inverse-square law force,

which is encountered in both gravitational attraction and the Coulomb force. This force F(r) can be written

in the form

F() =


2
br (9.52)

The force constant  is defined to be negative for an attractive force and positive for a repulsive force. In

S.I. units the force constant  = −12 for the gravitational force and  = + 12
40

for the Coulomb force.

Note that this sign convention is the opposite of what is used in many books which use a negative sign in

equation 952 and assume  to be positive for an attractive force and negative for a repulsive force.

The conservative, inverse-square, two-body, central force is unique in that the underlying symmetries

lead to four conservation laws, all of which are of pivotal importance in nature.

1. Conservation of angular momentum: Like all conservative central forces, the inverse-square cen-

tral two-body force conserves angular momentum as proven in chapter 93.

2. Conservation of energy: This conservative central force can be represented in terms of a scalar

potential energy () as given by equation 92 where for this central force

() =



(9.53)

Moreover, equation 942 showed that the center-of-mass Hamiltonian is conserved, that is,  = 

3. Gauss’ Law: For a conservative, inverse-square, two-body, central force, the flux of the force field out

of any closed surface is proportional to the algebraic sum of the sources and sinks of this field that

are located inside the closed surface. The net flux is independent of the distribution of the sources

and sinks inside the closed surface, as well as the size and shape of the closed surface. Chapter 2125

proved this for the gravitational force field.

4. Closed orbits: Two bodies interacting via the conservative, inverse-square, two-body, central force

follow closed (degenerate) orbits as stated by Bertrand’s Theorem. The first consequence of this

symmetry is that Kepler’s laws of planetary motion have stable, single-valued orbits. The second

consequence of this symmetry is the conservation of the eccentricity vector discussed in chapter 984.

Observables that depend on Gauss’s Law, or on closed planetary orbits, are extremely sensitive to addition

of even a miniscule incremental exponent  to the radial dependence −(2±) of the force. The statement
that the inverse-square, two-body, central force leads to closed orbits can be proven by inserting equation

952 into the orbit differential equation,

2

2
+  = − 

2
1

2
2 = −

2
(9.54)

Using the transformation

 ≡ +


2
(9.55)

the orbit equation becomes
2

2
+  = 0 (9.56)

A solution of this equation is

 =  cos ( − 0) (9.57)

Therefore

 =
1


= −

2
[1 +  cos ( − 0)] (9.58)

This the equation of a conic section. For an attractive, inverse-square, central force, equation 958 is the

equation for an ellipse with the origin of  at one of the foci of the ellipse that has eccentricity  defined as

 ≡ 
2


(9.59)
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Equation 958 is the polar equation of a conic section. Equation 958 also can be derived with the origin

at a focus by inserting the inverse square law potential into equation 949 which gives

 =

Z ±q
2

2
+ 2

2
− 2

+ constant (9.60)

The solution of this gives

 =
1


= −

2

"
1 +

s
1 +

22

2
cos ( − 0)

#
(9.61)

Equations 958 and 961 are identical if the eccentricity  equals

 =

s
1 +

22

2
(9.62)

The value of 0 merely determines the orientation of the major axis of the equivalent orbit. Without loss of

generality, it is possible to assume that the angle  is measured with respect to the major axis of the orbit,

that is 0 = 0. Then the equation can be written as

 =
1


= −

2
[1 +  cos ()] = −

2

"
1 +

s
1 +

22

2
cos ()

#
(9.63)

This is the equation of a conic section where  is the eccentricity of the conic section. The conic section is a

hyperbola if   1, parabola if  = 1 ellipse if   1 and a circle if  = 0 All the equivalent one-body orbits

for an attractive force have the origin of the force at a focus of the conic section. The orbits depend on

whether the force is attractive or repulsive, on the conserved angular momentum  and on the center-of-mass

energy .

9.8.1 Bound orbits

Figure 9.5: Bound elliptical orbit.

Closed bound orbits occur only if the following requirements

are satisfied.

1. The force must be attractive, (  0) then equation

963 ensures that  is positive.

2. For a closed elliptical orbit. the eccentricity   1 of the

equivalent one-body representation of the orbit implies

that the total center-of-mass energy   0, that is,

the closed orbit is bound.

Bound elliptical orbits have the center-of-force at one in-

terior focus 1 of the elliptical one-body representation of the

orbit as shown in figure 95.

The minimum value of the orbit  = min occurs when

 = 0 where

min = − 2

 [1 + ]
(9.64)

This minimum distance is called the periapsis1 .

1The greek term apsis refers to the points of greatest or least distance of approach for an orbiting body from one of the

foci of the elliptical orbit. The term periapsis or pericenter both are used to designate the closest distance of approach, while

apoapsis or apocenter are used to designate the farthest distance of approach. Attaching the terms "perí-" and "apo-" to the

general term "-apsis" is preferred over having different names for each object in the solar system. For example, frequently used

terms are "-helion" for orbits of the sun, "-gee" for orbits around the earth, and "-cynthion" for orbits around the moon.
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The maximum distance,  = max which is called the apoapsis, occurs when  = 180

max = − 2

 [1− ]
(9.65)

Remember that since   0 for bound orbits, the negative signs in equations 964 and 965 lead to   0.

The most bound orbit is a circle having  = 0 which implies that  = −2

2
.

The shape of the elliptical orbit also can be described with respect to the center of the elliptical equivalent

orbit by deriving the lengths of the semi-major axis  and the semi-minor axis  shown in figure 95

 =
1

2
(min + max) =

1

2

µ
2

 [1 + ]
+

2

 [1− ]

¶
=

2

 [1− 2]
(9.66)

 = 
p
1− 2 =

2


p
[1− 2]

(9.67)

Remember that the predicted bound elliptical orbit corresponds to the equivalent one-body representation

for the two-body motion as illustrated in figure 92. This can be transformed to the individual spatial

trajectories of the each of the two bodies in an inertial frame.

9.8.2 Kepler’s laws for bound planetary motion

Kepler’s three laws of motion apply to the motion of two bodies in a bound orbit due to the attractive

gravitational force for which  = −12.

1) Each planet moves in an elliptical orbit with the sun at one focus

2) The radius vector, drawn from the sun to a planet, describes equal areas in equal times

3) The square of the period of revolution about the sun is proportional to the cube of the major axis

of the orbit.

Two bodies interacting via the gravitational force, which is a conservative, inverse-square, two-body

central force, is best handled using the equivalent orbit representation. The first and second laws were

proved in chapters 98 and 93. That is, the second law is equivalent to the statement that the angular

momentum is conserved. The third law can be derived using the fact that the area of an ellipse is

 =  = 2
p
1− 2 =

√−
3
2 (9.68)

Equations 926 and 927 give that the rate of change of area swept out by the radius vector is




=
1

2
2̇ =



2
(9.69)

Therefore the period for one revolution  is given by the time to sweep out one complete ellipse

 =
¡



¢ = 2µ 

−
¶ 1

2


3
2 (9.70)

This leads to Kepler’s 3 law

2 = 42


−
3 (9.71)

Bound orbits occur only for attractive forces for which the force constant  is negative, and thus cancel

the negative sign in equation 974. For example, for the gravitational force  = −12.

Note that the reduced mass  = 12

1+2
occurs in Kepler’s 3 law. That is, Kepler’s third law can be

written in terms of the actual masses of the bodies to be

2 =
42

 (1 +2)
3 (9.72)

In relating the relative periods of the different planets Kepler made the approximation that the mass of the

planet 1 is negligible relative to the mass of the sun 2
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The eccentricity of the major planets ranges from  = 02056 for Mercury, to  = 00068 for Venus. The

Earth has an eccentricity of  = 00167 with min = 91 · 106 miles and max = 95 · 106 miles. On the other
hand,  = 0967 for Halley’s comet, that is, the radius vector ranges from 06 to 18 times the radius of the

orbit of the Earth.

The orbit energy can be derived by substituting the eccentricity, given by equation 962 into the semi-

major axis length  given by equation 966 which leads to the center-of-mass energy of

 = − 

2
(9.73)

However, the Hamiltonian, given by equation 942 implies that  is

 =
1

2
2 +

µ
−


¶
= − 

2
(9.74)

For the simple case of a circular orbit,  =  then the velocity  equals

 =

s



(9.75)

For a circular orbit, the drag on a satellite lowers the total energy resulting in a decrease in the radius

of the orbit and a concomitant increase in velocity. That is, when the orbit radius is decreased, part of the

gain in potential energy accounts for the work done against the drag, and the remaining part goes towards

increase of the kinetic energy. Also note that, as predicted by the Virial Theorem, the kinetic energy always

is half the potential energy for the inverse square law force.

9.8.3 Unbound orbits

Figure 9.6: Hyperbolic two-body orbits for a

repulsive (left) and attractive (right) inverse-

square, central two-body forces. Both orbits

have the angular momentum vector pointing

upwards out of the plane of the orbit

Attractive inverse-square central forces lead to hyperbolic

orbits for   1 for which   0, that is, the orbit is

unbound. In addition, the orbits always are unbound for

a repulsive force since  = 

is positive as is the kinetic

energy , thus  =  +   0 The radial orbit

equation for either an attractive or a repulsive force is

 = − 2

 [1 +  cos]
(9.76)

For a repulsive force  is positive and 2 always is positive.

Therefore to ensure that  remain positive the bracket term

must be negative. That is

[1 +  cos]  0   0 (9.77)

For an attractive force  is negative and since 2 is positive

then the bracket term must be positive to ensure that  is

positive. That is,

[1 +  cos]  0   0 (9.78)

Figure 96 shows both branches of the hyperbola for a given

angle  for the equivalent two-body orbits where the center

of force is at the origin. For an attractive force,   0

the center of force is at the interior focus of the hyperbola,

whereas for a repulsive force the center of force is at the

exterior focus. For a given value of || the asymptotes of the
orbits both are displaced by the same impact parameter

 from parallel lines passing through the center of force.

The scattering angle, between the outgoing direction of the

scattered body and the incident direction, is designated to

be  which is related to the angle  by  = 180◦ − 2.
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9.8.4 Eccentricity vector

Two-bodies interacting via a conservative two-body central force have two invariant first-order integrals,

namely the conservation of energy and the conservation of angular momentum. For the special case of the

inverse-square law, there is a third invariant of the motion, which Hamilton called the eccentricity vector2 ,

that unambiguously defines the orientation and direction of the major axis of the elliptical orbit. It will be

shown that the angular momentum plus the eccentricity vector completely define the plane and orientation

of the orbit for a conservative inverse-square law central force.

Newton’s second law for a central force can be written in the form

ṗ =()r̂ (9.79)

Note that the angular moment L = r× p is conserved for a central force, that is L̇ = 0. Therefore the time
derivative of the product p× L reduces to




(p× L)= ṗ× L =()r̂× (r×ṙ) = ()





£
r (r · ṙ)− 2ṙ

¤
(9.80)

This can be simplified using the fact that

r · ṙ =1
2




(r · r) = ̇ (9.81)

thus

()




£
r (r · ṙ)− 2ṙ

¤
= −()2

∙
ṙ


− ṙ

2

¸
= −()2 



³r


´
(9.82)

This allows equation 980 to be reduced to




(p× L)=− ()2





³r


´
(9.83)

Assume the special case of the inverse-square law, equation 952, then the central force equation 983 reduces

to



(p× L)= − 


(r̂) (9.84)

or



[(p× L)+ (r̂)] = 0 (9.85)

Define the eccentricity vector A as

A ≡ (p× L)+ (r̂) (9.86)

then equation 985 corresponds to
A


= 0 (9.87)

This is a statement that the eccentricity vector  is a constant of motion for an inverse-square, central

force.

The definition of the eccentricity vector A and angular momentum vector L implies a zero scalar product,

A · L =0 (9.88)

Thus the eccentricity vector A and angular momentum L are mutually perpendicular, that is, A is in the

plane of the orbit while L is perpendicular to the plane of the orbit. The eccentricity vector A, always points

along the major axis of the ellipse from the focus to the periapsis as illustrated on the left side in figure 97.

2The symmetry underlying the eccentricity vector is less intuitive than the energy or angular momentum invariants leading

to it being discovered independently several times during the past three centuries. Jakob Hermann was the first to indentify

this invariant for the special case of the inverse-square central force. Bernoulli generalized his proof in 1710. Laplace derived

the invariant at the end of the 18 century using analytical mechanics. Hamilton derived the connection between the invariant

and the orbit eccentricity. Gibbs derived the invariant using vector analysis. Runge published the Gibb’s derivation in his

textbook which was referenced by Lenz in a 1924 paper on the quantal model of the hydrogen atom. Goldstein named this

invariant the "Laplace-Runge-Lenz vector", while others have named it the "Runge-Lenz vector" or the "Lenz vector". This

book uses Hamilton’s more intuitive name of "eccentricity vector".
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Figure 9.7: The elliptical trajectory and eccentricity vector A for two bodies interacting via the inverse-

square, central force for eccentricity  = 075. The left plot shows the elliptical spatial trajectory where

the semi-major axis is assumed to be on the -axis and the angular momentum L =ẑ, is out of the page.

The force centre is at one foci of the ellipse. The vector coupling relation A ≡ (p× L)+ (r̂) is illustrated
at four points on the spatial trajectory. The right plot is a hodograph of the linear momentum p for this

trajectory. The periapsis is denoted by the number 1 and the apoapsis is marked as 3 on both plots. Note

that the eccentricity vector A is a constant that points parallel to the major axis towards the perapsis.

As a consequence, the two orthogonal vectors A and L completely define the plane of the orbit, plus the

orientation of the major axis of the Kepler orbit, in this plane. The three vectors A, p× L, and (r̂) obey
the triangle rule as illustrated in the left side of figure 97.

Hamilton noted the direct connection between the eccentricity vector A and the eccentricity  of the

conic section orbit. This can be shown by considering the scalar product

A · r = cos = r· (p× L) +  (9.89)

Note that the triple scalar product can be permuted to give

r· (p× L) = (r× p) ·L = L · L =2 (9.90)

Inserting equation 990 into 989 gives

1


= −

2

µ
1− 


cos

¶
(9.91)

Note that equations 963 and 991 are identical if 0 = 0. This implies that the eccentricity  and  are

related by

 = − 


(9.92)

where  is defined to be negative for an attractive force. The relation between the eccentricity and total

center-of-mass energy can be used to rewrite equation 962 in the form

2 = 22 + 2
2 (9.93)

The combination of the eccentricity vector A and the angular momentum vector L completely specifies

the orbit for an inverse square-law central force. The trajectory is in the plane perpendicular to the angu-

lar momentum vector L, while the eccentricity, plus the orientation of the orbit, both are defined by the

eccentricity vector A. The eccentricity vector and angular momentum vector each have three independent

coordinates, that is, these two vector invariants provide six constraints, while the scalar invariant energy 

adds one additional constraint. The exact location of the particle moving along the trajectory is not defined

and thus there are only five independent coordinates governed by the above seven constraints. Thus the
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eccentricity vector, angular momentum, and center-of-mass energy are related by the two equations 988 and

993.

Noether’s theorem states that each conservation law is a manifestation of an underlying symmetry.

Identification of the underlying symmetry responsible for the conservation of the eccentricity vector A is

elucidated using equation 986 to give

(r̂) = A− (p× L) (9.94)

Take the scalar product

(r̂) · (r̂) = ()2 = 22 +2 − 2 · (p× L) (9.95)

Choose the angular momentum to be along the -axis, that is, L =ẑ, and, since p and A are perpendicular

to L, then p and A are in the x̂− ŷ plane. Assume that the semimajor axis of the elliptical orbit is along
the x-axis, then the locus of the momentum vector on a momentum hodograph has the equation

2 +

µ
 − 



¶2
=

µ




¶2
(9.96)

Equation 996 implies that the locus of the momentum vector is a circle of radius
¯̄̄



¯̄̄
with the center

displaced from the origin at coordinates
¡
0 



¢
as shown by the momentum hodograph on the right side of

an figure 97. The angle  and eccentricity  are related by,

cos = − 


= − 


=  (9.97)

The circular orbit is centered at the origin for  = − 

= 0, and thus the magnitude |p| is a constant around

the whole trajectory.

The inverse-square, central, two-body, force is unusual in that it leads to stable closed bound orbits

because the radial and angular frequencies are degenerate, i.e.  =  In momentum space, the locus of

the linear momentum vector p is a perfect circle which is the underlying symmetry responsible for both the

fact that the orbits are closed, and the invariance of the eccentricity vector. Mathematically this symmetry

for the Kepler problem corresponds to the body moving freely on the boundary of a four-dimensional sphere

in space and momentum. The invariance of the eccentricity vector is a manifestation of the special property

of the inverse-square, central force under certain rotations in this four-dimensional space; this (4) symmetry

is an example of a hidden symmetry.

9.9 Isotropic, linear, two-body, central force

Closed orbits occur for the two-dimensional linear oscillator when 

is a rational fraction as discussed in

chapter 33. Bertrand’s Theorem states that the linear oscillator, and the inverse-square law (Kepler

problem), are the only two-body central forces that have single-valued, stable, closed orbits of the coupled

radial and angular motion. The invariance of the eccentricity vector was the underlying symmetry leading

to single-valued, stable, closed orbits for the Kepler problem. It is interesting to explore the symmetry that

leads to stable closed orbits for the harmonic oscillator. For simplicity, this discussion will restrict discussion

to the isotropic, harmonic, two-body, central force where  =  = , for which the two-body, central force

is linear

F() = r (9.98)

where   0 corresponds to a repulsive force and   0 to an attractive force. This isotropic harmonic force

can be expressed in terms of a spherical potential () where

() = −1
2
2 (9.99)

Since this is a central two-body force, both the equivalent one-body representation, and the conservation of

angular momentum, are equally applicable to the harmonic two-body force. As discussed in section 93, since

the two-body force is central, the motion is confined to a plane, and thus the Lagrangian can be expressed



242 CHAPTER 9. CONSERVATIVE TWO-BODY CENTRAL FORCES

in polar coordinates. In addition, since the force is spherically symmetric, then the angular momentum is

conserved. The orbit solutions are conic sections as described in chapter 97. The shape of the orbit for

the harmonic two-body central force can be derived using either polar or cartesian coordinates as illustrated

below.

9.9.1 Polar coordinates

The origin of the equivalent orbit for the harmonic force will be found to be at the center of an ellipse, rather

than the foci of the ellipse as found for the inverse square law. The shape of the orbit can be defined using

a Binet differential orbit equation that employs the transformation

0 ≡ 1

2
(9.100)

Then
0


= − 2

3



(9.101)

The chain rule gives that

̇ =



̇ = −

3

2
̇
0


= −

2





0


(9.102)

Substitute this into the Hamiltonian  equation 942 gives

1

2
̇2 =

1

8

2

0

µ
0



¶2
=  − 2

2
0 +



20
(9.103)

Rearranging this equation gives µ
0



¶2
+ 402 − 8

2
0 =

4

2
(9.104)

Addition of a constant to both sides of the equation completes the square"




Ã
0 − 

2

!#2
+ 4

Ã
0 − 

2

!2
= +

4

2
+ 4

Ã


2

!2
(9.105)

The right-hand side of equation 9105 is a constant. The solution of 9105 must be a sine or cosine function

with polar angle  = . That isÃ
0 − 

2

!
=

⎡⎣Ã

2

!2
+



2

⎤⎦ 1
2

cos 2 ( − 0) (9.106)

That is,

0 =
1

2
=



2

⎛⎝1 +Ã1 + 2

2

! 1
2

cos 2( − 0)

⎞⎠ (9.107)

Equation 9107 corresponds to a closed orbit centered at the origin of the elliptical orbit as illustrated in

figure 98 The eccentricity  of this closed orbit is given byÃ
1 +

2

2

! 1
2

=
2

2− 2
(9.108)

Equations 966 967 give that the eccentricity is related to the semi-major  and semi-minor  axes by

2 = 1−
µ




¶2
(9.109)

Note that for a repulsive force   0, then  ≥ 1 leading to unbound hyperbolic or parabolic orbits centered
on the origin. An attractive force,   0 allows for bound elliptical, as well as unbound parabolic and

hyperbolic orbits.
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Figure 9.8: The elliptical equivalent trajectory for two bodies interacting via the linear, central force for

eccentricity  = 075. The left plot shows the elliptical spatial trajectory where the semi-major axis is

assumed to be on the -axis and the angular momentum L =ẑ, is out of the page. The force center is at

the center of the ellipse. The right plot is a hodograph of the linear momentum p for this trajectory.

9.9.2 Cartesian coordinates

The isotropic harmonic oscillator, expressed in terms of cartesian coordinates in the ( ) plane of the orbit,

is separable because there is no direct coupling term between the  and  motion. That is. the center-of-mass

Lagrangian in the ( ) plane separates into independent motion for  and .

 =
1

2
ṙ · ṙ+ 1

2
r · r =

∙
1

2
̇2 +

1

2
2

¸
+

∙
1

2
̇2 +

1

2
2

¸
(9.110)

Solutions for the independent coordinates, and their corresponding momenta, are

r = ̂ cos (+ ) + ̂ cos (+ ) (9.111)

p = −̂ sin (+ )− ̂ sin (+ ) (9.112)

where  =
q



. Therefore

2 = 2 + 2 = [ cos (+ )]
2
+ [ cos (+ )]

2
(9.113)

=
2 +2

2
+

p
4 +4 + 22 cos (− )

2
cos (2+ 0)

where

cos0 =
2 cos+2 cosp

4 +4 + 22 cos (− )
(9.114)

For a phase difference  −  = ±
2
 this equation describes an ellipse centered at the origin which agrees

with equation 9107 that was derived using polar coordinates.

The two normal modes of the isotropic harmonic oscillator are degenerate, therefore   are equally good

normal modes with two corresponding total energies, 1 2, while the corresponding angular momentum 

points in the  direction.

1 =
2
2
+
1

2
2 (9.115)

2 =
2

2
+
1

2
2 (9.116)

 =  ( − ) (9.117)
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Figure 98 shows the closed elliptical equivalent orbit plus the corresponding momentum hodograph for

the isotropic harmonic two-body central force. Figures 97 and 98 contrast the differences between the

elliptical orbits for the inverse-square force, and those for the harmonic two-body central force. Although

the orbits for bound systems with the harmonic two-body force, and the inverse-square force, both lead to

elliptical bound orbits, there are important differences. Both the radial motion and momentum are two

valued per cycle for the reflection-symmetric harmonic oscillator, whereas the radius and momentum have

only one maximum and one minimum per revolution for the inverse-square law. Although the inverse-square,

and the isotropic, harmonic, two-body central forces both lead to closed bound elliptical orbits for which the

angular momentum is conserved and the orbits are planar, there is another important difference between the

orbits for these two interactions. The orbit equation for the Kepler problem is expressed with respect to a

foci of the elliptical equivalent orbit, as illustrated in figure 97, whereas the orbit equation for the isotropic

harmonic oscillator orbit is expressed with respect to the center of the ellipse as illustrated in figure 98.

9.9.3 Symmetry tensor A0

The invariant vectors L and A provide a complete specification of the geometry of the bound orbits for

the inverse square-law Kepler system. It is interesting to search for a similar invariant that fully specifies

the orbits for the isotropic harmonic central force. In contrast to the Kepler problem, the harmonic force

center is at the center of the elliptical orbit, and the orbit is reflection symmetric with the radial and angular

frequencies related by  = 2. Since the orbit is reflection-symmetric, the orientation of the major axis

of the orbit cannot be uniquely specified by a vector. Therefore, for the harmonic interaction it is necessary

to specify the orientation of the principal axis by the symmetry tensor. The symmetry of the isotropic

harmonic, two-body, central force leads to the symmetry tensor A0 which is an invariant of the motion
analogous to the eccentricity vector A. Like a rotation matrix, the symmetry tensor defines the orientation,

but not direction, of the major principal axis of the elliptical orbit. In the plane of the polar orbit the 3× 3
symmetry tensor A0 reduces to a 2× 2 matrix having matrix elements defined to be,

0 =


2
+
1

2
 (9.118)

The diagonal matrix elements 011 = 1, and 022 = 2 which are constants of motion. The off-diagonal

term is given by

0212 ≡
µ


2
+
1

2


¶2
=

µ
2
2
+
1

2
2

¶Ã
2

2
+
1

2
2

!
− 4 ( − )

2
= 12 − 2

43
(9.119)

The terms on the right-hand side of equation 9119 all are constants of motion, therefore 0212 also is a

constant of motion. Thus the 3×3 symmetry tensor A0 can be reduced to a 2×2 symmetry tensor for which
all the matrix elements are constants of motion, and the trace of the symmetry tensor is equal to the total

energy.

In summary, the inverse-square, and harmonic oscillator two-body central interactions both lead to closed,

elliptical equivalent orbits, the plane of which is perpendicular to the conserved angular momentum vector.

However, for the inverse-square force, the origin of the equivalent orbit is at the focus of the ellipse and

 = , whereas the origin is at the center of the ellipse and  = 2 for the harmonic force. As a

consequence, the elliptical orbit is reflection symmetric for the harmonic force but not for the inverse square

force. The eccentricity vector and symmetry tensor both specify the major axes of these elliptical orbits,

the plane of which are perpendicular to the angular momentum vector. The eccentricity vector, and the

symmetry tensor, both are directly related to the eccentricity of the orbit and the total energy of the two-

body system. Noether’s theorem states that the invariance of the eccentricity vector and symmetry tensor,

plus the corresponding closed orbits, are manifestations of underlying symmetries. The dynamical 3

symmetry underlies the invariance of the symmetry tensor, whereas the dynamical 4 symmetry underlies

the invariance of the eccentricity vector. These symmetries lead to stable closed elliptical bound orbits only

for these two specific two-body central forces, and not for other two-body central forces.
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9.10 Closed-orbit stability

Figure 9.9: Stable and unstable effective central po-

tentials. The repulsive centrifugal and the attractive

potentials (k<0) are shown dashed. The solid curve

is the effective potential.

Bertrand’s theorem states that the linear oscillator and

the inverse-square law are the only two-body, central

forces for which all bound orbits are single-valued, and

stable closed orbits. The stability of closed orbits can

be illustrated by studying their response to perturba-

tions. For simplicity, the following discussion of stabil-

ity will focus on circular orbits, but the general prin-

ciples are the same for elliptical orbits.

A circular orbit occurs whenever the attractive

force just balances the effective ”centrifugal force” in

the rotating frame. This can occur for any radial func-

tional form for the central force. The effective poten-

tial, equation 933 will have a stationary point whenµ




¶
=0

= 0 (9.120)

that is, when µ




¶
=0

− 2

30
= 0 (9.121)

This is equivalent to the statement that the net force

is zero. Since the central attractive force is given by

 () = −


(9.122)

then the stationary point occurs when

 (0) = − 2

30
= −0̇2 (9.123)

This is the so-called centrifugal force in the rotating

frame. The Hamiltonian, equation 944, gives that

̇ = ±
s
2



µ
 −  − 2

22

¶
(9.124)

For a circular orbit ̇ = 0 that is

 =  − 2

22
(9.125)

A stable circular orbit is possible if both equations

(9121) and (9125) are satisfied. Such a circular or-

bit will be a stable orbit at the minimum whenµ
2

2

¶
=0

 0 (9.126)

Examples of stable and unstable orbits are shown in

figure 99.

Stability of a circular orbit requires thatµ
2

2

¶
=0

+
32

40
 0 (9.127)
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which can be written in terms of the central force for a stable orbit as

−
µ




¶
0

+
3 (0)

0
 0 (9.128)

If the attractive central force can be expressed as a power law

 () = − (9.129)

then stability requires

−10 (3 + )  0 (9.130)

or

  −3 (9.131)

Stable equivalent orbits will undergo oscillations about the stable orbit if perturbed. To first order, the

restoring force on a bound reduced mass  is given by

 = −
µ
2

2

¶
=0

( − 0) = ̈ (9.132)

To the extent that this linear restoring force dominates over higher-order terms, then a perturbation of the

stable orbit will undergo simple harmonic oscillations about the stable orbit with angular frequency

 =

vuut³
2
2

´
=0


(9.133)

The above discussion shows that a small amplitude radial oscillation about the stable orbit with amplitude

 will be of the form

 =  sin(2+ )

The orbit will be closed if the product of the oscillation frequency  and the orbit period  is an integer

value.

The fact that planetary orbits in the gravitational field are observed to be closed is strong evidence

that the gravitational force field must obey the inverse square law. Actually there are small precessions of

planetary orbits due to perturbations of the gravitational field by bodies other than the sun, and due to

relativistic effects. Also the gravitational field near the earth departs slightly from the inverse square law

because the earth is not a perfect sphere, and the field does not have perfect spherical symmetry. The study

of the precession of satellites around the earth has been used to determine the oblate quadrupole and slight

octupole (pear shape) distortion of the shape of the earth.

The most famous test of the inverse square law for gravitation is the precession of the perihelion of

Mercury. If the attractive force experienced by Mercury is of the form

F() = −

2+
r̂

where || is small, then it can be shown that, for approximate circular orbitals, the perihelion will advance
by a small angle  per orbit period. That is, the precession is zero if  = 0, corresponding to an inverse

square law dependence which agrees with Bertrand’s theorem. The position of the perihelion of Mercury has

been measured with great accuracy showing that, after correcting for all known perturbations, the perihelion

advances by 43(±5) seconds of arc per century, that is 5× 10−7 radians per revolution. This corresponds to
 = 16 × 10−7 which is small but still significant. This precession remained a puzzle for many years until
1915 when Einstein predicted that one consequence of his general theory of relativity is that the planetary

orbit of Mercury should precess at 43 seconds of arc per century, which is in remarkable agreement with

observations.
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9.3 Example: Linear two-body restoring force

The effective potential for a linear two-body restoring force  = − is

 =
1

2
2 +

2

22

At the minimum µ




¶
=0

=  − 2

3
= 0

Thus

0 =

µ
2



¶ 1
4

and µ
2

2

¶
=0

=
32

40
+  = 4  0

which is a stable orbit. Small perturbations of such a stable circular orbit will have an angular frequency

 =

vuut³
2
2

´
=0


= 2

s




Note that this is twice the frequency for the planar harmonic oscillator with the same restoring coefficient.

This is due to the central repulsion, the effective potential well for this rotating oscillator example has about

half the width for the corresponding planar harmonic oscillator. Note that the kinetic energy for the rotational

motion, which is 2

22
 equals the potential energy 1

2
2 at the minimum as predicted by the Virial Theorem

for a linear two-body restoring force.

9.4 Example: Inverse square law attractive force

The effective potential for an inverse square law restoring force  = − 
2
̂ where  is assumed to be

positive,

 = −

+

2

22

At the minimum µ




¶
=0

=


2
− 2

3
= 0

Thus

0 =
2



and µ
2

2

¶
=0

=
32

40
− 2

30
=



30
 0

which is a stable orbit. Small perturbations about such a stable circular orbit will have an angular frequency

 =

vuut³
2
2

´
=0


=

2

3

The kinetic energy for oscillations about this stable circular orbit, which is 2

22
 equals half the magnitude

of the potential energy −

at the minimum as predicted by the Virial Theorem.
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9.5 Example: Attractive inverse cubic central force

The inverse cubic force is an interesting example to investigate the stability of the orbit equations. One

solution of the inverse cubic central force, for a reduced mass  is a spiral orbit

 = 0


That this is true can be shown by inserting this orbit into the differential orbit equation.

Using a Binet transformation to the variable to  gives

 =
1


=
1

0
−




= − 

0
−

2

2
=

2

0
−

Substituting these into the differential equation of the orbit

2

2
+  = − 

2
1

2
 (
1


)

gives
2

0
− +

1

0
− = − 

2
20

2

µ
1



¶
That is



µ
1



¶
= −

¡
2 + 1

¢
2


−30 −3 = −

¡
2 + 1

¢
2

3

which is a central attractive inverse cubic force.

The time dependence of the spiral orbit can be derived since the angular momentum gives

̇ =


2
=



20
2

This can be written as

2 =


20


Integrating gives
2

2
=



20
+ 

where  is a constant. But the orbit gives

2 = 20
2 =

2


+ 2

Thus the radius increases or decreases as the square root of the time. That is, an attractive cubic central force

does not have a stable orbit which is what is expected since there is no minimum in the effective potential

energy. Note that it is obvious that there will be no minimum or maximum for the summation of effective

potential energy since, if the force is  = − 
3
 then the effective potential energy is

 = − 

22
+

2

22
=

µ
2


− 

¶
1

22

which has no stable minimum or maximum.
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9.6 Example: Spiralling mass attached by a string to a hanging mass

An example of an application of orbit stability is the case shown in the adjacent figure. A particle of mass

 moves on a horizontal frictionless table. It is attached by a light string of fixed length  and rotates about

a hole in the table. The string is attached to a second equal mass  that is hanging vertically downwards

with no angular motion.

O

z

Rotating mass  on a frictionless

horizontal table connected to a

suspended mass .

The equations are most conveniently expressed in cylindrical

coordinates (   ) with the origin at the hole in the table, and 

vertically upward. The fixed length of the string requires  = −.
The potential energy is

 =  = ( − )

The system is central and conservative, thus the Hamiltonian

can be written as

 =


2

³
̇2 + 2̇

2
´
+



2



2
+( − ) = 

The Lagrangian is independent of , that is,  is cyclic, thus the

angular momentum 2̇ =  is a constant of motion. Substi-

tuting this into the Hamiltonian equation gives

̇2 +
2

22
+( − ) = 

The effective potential is

 =
2

22
+( − )

which is shown in the adjacent figure. The stationary value occurs whenµ




¶
0

= − 2

30
+ = 0

That is, when the angular momentum is related to the radius by

2 = 230

Note that 0 = 0 if  = 0.

r

Effective potential for two connected masses.

The stability of the solution is given by the second deriv-

ative µ
2

2

¶
0

=
32

40
=
3

0
 0

Therefore the stationary point is stable.

Note that the equation of motion for the minimum can be

expressed in terms of the restoring force on the two masses

2̈ = −
µ
2

2

¶
0

( − 0)

Thus the system undergoes harmonic oscillation with fre-

quency

 =

s
3
0

2
=

r
3

20

The solution of this system is stable and undergoes simple

harmonic motion.
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9.11 The three-body problem

Figure 9.10: A contour plot of the effec-

tive potential for the Sun-Earth gravita-

tional system in the rotating frame where

the Sun and Earth are stationary. The

5 Lagrange points  are saddle points

where the net force is zero. (Figure cre-

ated by NASA)

Two bodies interacting via conservative central forces can be

solved analytically for the inverse square law and the Hooke’s

law radial dependences as already discussed. For central forces

having other radial dependences the equations of motion may

not be expressible in terms of simple functions, nevertheless the

motion always can be given in terms of an integral. For a gravi-

tational system comprising  ≥ 3 bodies that are interacting via
the two-body central gravitational force, then the equations of

motion can be written as

q̈ =G

X


 6=



(q − q)
|q − q |3

( = 1 2  )

Even when all the  bodies are interacting via two-body central

forces, the problem usually is insoluble in terms of known ana-

lytic integrals. Newton first posed the difficulty of the three-body

Kepler problem which has been studied extensively by mathe-

maticians and physicists. No known general analytic integral

solution has been found. Each body for the -body system has

6 degrees of freedom, that is, 3 for position and 3 for momen-

tum. The center-of-mass motion can be factored out, therefore

the center-of-mass system for the -body system has 6−10 de-
grees of freedom after subtraction of 3 degrees for location of the

center of mass, 3 for the linear momentum of the center of mass,

3 for rotation of the center of mass, and 1 for the total energy of

the system. Thus for  = 2 there are 12− 10 = 2 degrees of freedom for the two-body system for which the

Kepler approach takes to be r and  For  = 3 there are 8 degrees of freedom in the center of mass system

that have to be determined.

Numerical solutions to the three-body problem can be obtained using successive approximation or per-

turbation methods in computer calculations. The problem can be simplified by restricting the motion to

either of following two approximations:

1) Planar approximation

This approximation assumes that the three masses move in the same plane, that is, the number of degrees

of freedom are reduced from 8 to 6 which simplifies the numerical solution.

2) Restricted three-body approximation

The restricted three-body approximation assumes that two of the masses are large and bound while the

third mass is negligible such that the perturbation of the motion of the larger two by the third body is

negligible. Thus approximation essentially reduces the system to a two body problem in order to calculate

the gravitational fields that act on the third much lighter mass.

Euler and Lagrange showed that the restricted three-body system has five points at which the combined

gravitational attraction plus centripetal force of the two large bodies cancel. These are called the Lagrange

points and are used for parking satellites in stable orbits with respect to the Earth-Moon system, or with

respect to the Sun-Earth system. Figure 910 illustrates the five Lagrange points for the Earth-Sun system.

Only two of the Lagrange points, 4 and 5 lead to stable orbits. Note that these Lagrange points are fixed

with respect to the Earth-Sun system which rotates with respect to inertial coordinate frames. The 1900’s

discovery of the Trojan asteroids at the 4 and 5 Lagrange points of the Sun-Jupiter system confirmed the

Lagrange predictions.

Poincaré showed that the motion of a light mass bound to two heavy bodies can exhibit extreme sensitivity

to initial conditions as well as characteristics of chaos. Solution of the three-body problem has remained a

largely unsolved problem since Newton discovered the difficulties involved.
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9.12 Two-body scattering

Two moving bodies interacting via a central force scatter when the force is repulsive, or when an attractive

system is unbound. Two-body scattering of bodies is encountered extensively in the fields of astronomy,

atomic, nuclear, and particle physics. The probability of such scattering is most conveniently expressed in

terms of scattering cross sections defined below.

9.12.1 Total two-body scattering cross section

AB

Figure 9.11: Scattering probability for an in-

cident beam of cross sectional area A by a

target body of cross sectional area .

The concept of scattering cross section for two-body scat-

tering is most easily described for the total two-body cross

section. The probability  that a beam of  incident point

particles/second, distributed over a cross sectional area 

will hit a single solid object, having a cross sectional area 

is given by the ratio of the areas as illustrated in figure 911.

That is,

 =




(9.134)

where it is assumed that    For a spherical target

body of radius , the cross section  = 2 The scattering

probability  is proportional to the cross section  which

is the cross section of the target body perpendicular to the

beam; thus  has the units of area.

Since the incident beam of  incident point parti-

cles/second, has a cross sectional area  , then it will have

an areal density  given by

 =




beam particles2/ sec (9.135)

then the number of beam particles scattered per second  by this single target scatterer equals

 =  =




 =  (9.136)

Thus the cross section for scattering by this single target body is

 =



=
Scattered particles/sec

incident beam/m
2
/sec

Realistically one will have many target scatterers in the target and the total scattering probability increases

proportionally to the number of target scatterers. That is, for a target comprising an areal density of 
target bodies per unit area of the incident beam, then the number scattered will increase proportional to the

target areal density   That is, there will be  scattering bodies that interact with the beam assuming

that the target has a larger area than the beam. Thus the total number scattered per second  by a target

that comprises multiple scatterers is

 = 




 =  (9.137)

Note that this is independent of the cross sectional area of the beam assuming that the target area is larger

than that of the beam. That is, the number scattered per second is proportional to the cross section  times

the product of the number of incident particles per second,  and the areal density of target scatterers,

 . Typical cross sections encountered in astrophysics are  ≈ 10142, in atomic physics:  ≈ 10−202,

and in nuclear physics;  ≈ 10−282 = 3

N. B., the above proof assumed that the target size is larger than the cross sectional area of the incident

beam. If the size of the target is smaller than the beam, then  is replaced by the areal density/sec of the

beam  and  is replaced by the number of target particles  and the cross-sectional size of the target

cancels.

3The term "barn" was chosen because nuclear physicists joked that the cross sections for neutron scattering by nuclei were

as large as a barn door.
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9.12.2 Differential two-body scattering cross section

b

db

Figure 9.12: The equivalent one-body prob-

lem for scattering of a reduced mass  by a

force centre in the centre of mass system.

The differential two-body scattering cross section gives much

more detailed information of the scattering force than does

the total cross section because of the correlation between the

impact parameter and the scattering angle. That is, a mea-

surement of the number of beam particles scattered into a

given solid angle as a function of scattering angles   probes

the radial form of the scattering force.

The differential cross section for scattering of an incident

beam by a single target body into a solid angle Ω at scat-

tering angles   is defined to be



Ω
() ≡ 1



 ( )

Ω
(9.138)

where the right-hand side is the ratio of the number scattered

per target nucleus into solid angle Ω( ) to the incident

beam intensity  2.

Similar reasoning used to derive equation 9137 leads to

the number of beam particles scattered into a solid angle

Ω for  beam particles incident upon a target with areal

density  is
 ( )

Ω
= 



Ω
() (9.139)

Consider the equivalent one-body system for scattering of one body by a scattering force center in the

center of mass. As shown in figures 96 and 912, the perpendicular distance between the center of force of the

two body system and trajectory of the incoming body at infinite distance is called the impact parameter . For

a central force the scattering system has cylindrical symmetry, therefore the solid angle Ω() = sin 

can be integrated over the azimuthal angle  to give Ω() = 2 sin 

For the inverse-square, two-body, central force there is a one-to-one correspondence between impact

parameter  and scattering angle  for a given bombarding energy. In this case, assuming conservation of

flux means that the incident beam particles passing through the impact-parameter annulus between  and

 +  must equal the the number passing between the corresponding angles  and  +  That is, for an

incident beam flux of  2 the number of particles per second passing through the annulus is

2 || = 2 
Ω

 sin  || (9.140)

The modulus is used to ensure that the number of particles is always positive. Thus



Ω
=



sin 

¯̄̄̄




¯̄̄̄
(9.141)

9.12.3 Impact parameter dependence on scattering angle

If the function  = () is known, then it is possible to evaluate
¯̄



¯̄
which can be used in equation

9141 to calculate the differential cross section. A simple and important case to consider is two-body elastic

scattering for the inverse-square law force such as the Coulomb or gravitational forces. To avoid confusion,

in the following discussion the center-of-mass scattering angle will be called  while the angle used to define

the hyperbolic orbits in the discussion of trajectories for the inverse square law, will be called .

In chapter 98 the equivalent one-body representation gave that the radial distance for a trajectory for

the inverse square law is given by
1


= −

2
[1 +  cos] (9.142)

Note that closest approach is when  = 0 while for  →∞ the bracket must equal zero, that is

cos∞ = ±
¯̄̄̄
1



¯̄̄̄
(9.143)
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The polar angle  is measured with respect to the symmetry axis of the two-body system which is along

the line of distance of closest approach as shown in figure 96. The geometry and symmetry show that the

scattering angle  is related to the trajectory angle ∞ by

 =  − 2∞ (9.144)

Equation 950 gives that

∞ =
Z ∞
min

±
2

r
2
³
 −  − 2

22

´ (9.145)

Since

2 = 22 = 22 (9.146)

then the scattering angle can be written as.

∞ =
 − 

2
=

Z ∞
min



2

r³
1− 


− 2

2

´ (9.147)

Let  = 1

, then

∞ =
 − 

2
=

Z ∞
min

r³
1− 


− 22

´ (9.148)

For the repulsive inverse square law

 = −

= − (9.149)

where  is taken to be positive for a repulsive force. Thus the scattering angle relation becomes

∞ =
 − 

2
=

Z ∞
min

r³
1 + 


− 22

´ (9.150)

Figure 9.13: Impact parameter depen-

dence on scattering angle for Rutherford

scattering.

The solution of this equation is given by equation 963 to be

 =
1


= −

2
[1 +  cos] (9.151)

where the eccentricity

 =

s
1 +

22

2
(9.152)

For  →∞  = 0 then, as shown before,¯̄̄̄
1



¯̄̄̄
= cos∞ = cos

 − 

2
= sin



2
(9.153)

Therefore
2


=
p
2 − 1 = cot 

2
(9.154)

that is, the impact parameter  is given by the relation

 =


2

cot


2
(9.155)

Thus, for an inverse-square law force, the two-body scattering

has a one-to-one correspondence between impact parameter 

and scattering angle  as shown schematically in figure 913.
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Figure 9.14: Classical trajectories for

scattering to a given angle by the

repulsive Coulomb field plus the at-

tractive nuclear field for three differ-

ent impact parameters. Path 1 is

pure Coulomb. Paths 2 and 3 in-

clude Coulomb plus nuclear interac-

tions. The dashed parts of trajecto-

ries 2 and 3 correspond to only the

Coulomb force acting, i.e. zero nu-

clear force

If  is negative, which corresponds to an attractive inverse square

law, then one gets the same relation between impact parameter and

scattering angle except that the sign of the impact parameter  is

opposite. This means that the hyperbolic trajectory has an interior

rather than exterior focus. That is, the trajectory partially orbits

around the center of force rather than being repelled away.

Note that the distance of closest approach is related to the

eccentricity  by equation 9151, therefore

min =


2

(1 + ) (9.156)

min =


2

Ã
1 +

1

sin 
2

!
(9.157)

Note that for  = 180 then

 =


min
= (min) (9.158)

which is what you would expect from equating the incident kinetic

energy to the potential energy at the distance of closest approach.

For scattering of two nuclei by the normal repulsive Coulomb force,

when the impact parameter becomes small enough, the attractive nu-

clear force also acts leading to impact-parameter dependent effective

potentials illustrated in figure 914 Trajectory 1 does not overlap the

nuclear force and thus is pure Coulomb. Trajectory 2 interacts at the

periphery of the nuclear potential and the trajectory deviates from pure Coulomb shown dashed. Trajectory

3 passes through the interior of the nuclear potential. These three trajectories all can lead to the same scat-

tering angle and thus there no longer is a one-to-one correspondence between scattering angle and impact

parameter.

9.12.4 Rutherford scattering

Two models of the nucleus evolved in the 1900’s, the Rutherford model assumed electrons orbiting around a

small nucleus like planets around the sun, while J.J. Thomson’s ”plum-pudding” model assumed the electrons

were embedded in a uniform sphere of positive charge the size of the atom. When Rutherford derived his

classical formula in 1911 he realized that it can be used to determine the size of the nucleus since the electric

field obeys the inverse square law only when outside of the charged spherical nucleus. Inside a uniform sphere

of charge the electric field is E ∝ r and thus the scattering cross section will not obey the Rutherford relation
for distances of closest approach that are less than the radius of the sphere of negative charge. Observation

of the angle beyond which the Rutherford formula breaks down immediately determines the radius of the

nucleus.

For pure Coulomb scattering, equation 9155 can be used to evaluate
¯̄



¯̄
 which when used in equation

9141 gives the center-of-mass Rutherford scattering cross section



Ω
=
1

4

µ


2

¶2
1

sin4 
2

(9.159)

This cross section assumes elastic scattering by a repulsive two-body inverse-square central force. For scat-

tering of nuclei in the Coulomb potential, the constant  is given to be

 =
 

2

4
(9.160)

The cross section, scattering angle and  of equation 9159 are in the center-of-mass coordinate system,

whereas usually two-body elastic scattering data involve scattering of the projectiles by a stationary target.
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Gieger and Marsden performed scattering of 77 MeV  particles from a thin gold foil and proved that

the differential scattering cross section obeyed the Rutherford formula back to angles corresponding to a

distance of closest approach of 10−14 which is much smaller that the 10−10 size of the atom. This

validated the Rutherford model of the atom and immediately led to the Bohr model of the atom which

played such a crucial role in the development of quantum mechanics. Bohr showed that the agreement with

the Rutherford formula implies the Coulomb field obeys the inverse square law to small distances. This work

was performed at Manchester University, England between 1908 and 1913. It is fortunate that the classical

result is identical to the quantal cross section for scattering, otherwise the development of modern physics

could have been delayed for many years.

Scattering of very heavy ions, such as 208Pb, can electromagnetically excite target nuclei. For the Coulomb

force the impact parameter  and the distance of closest approach, min are directly related to the scattering

angle  by equation 9155. Thus observing the angle of the scattered projectile unambiguously determines the

hyperbolic trajectory and thus the electromagnetic impulse given to the colliding nuclei. This process, called

Coulomb excitation, uses the measured angular distribution of the scattered ions for inelastic excitation of

the nuclei to precisely and unambiguously determine the Coulomb excitation cross section as a function of

impact parameter. This unambiguously determines the shape of the nuclear charge distribution.

9.7 Example: Two-body scattering by an inverse cubic force

Assume two-body scattering by a potential  = 
2
where   0. This corresponds to a repulsive two-body

force F =2
3
r̂. Insert this force into Binet’s differential orbit, equation 939 gives

2

2
+ 

µ
1 +

2

2

¶
= 0

The solution is of the form  =  sin( + ) where  and  are constants of integration,  = 2̇ and

2 =

µ
1 +

2

2

¶
Initially  =∞,  = 0 and therefore  = 0. Also at  =∞,  = 1

2
̇2∞ , that is |̇∞| =

q
2

. Then

̇ =



̇ =







2
= − 






= − 


 cos ()

The initial energy gives that  = 1


√
2 Hence the orbit equation is

 =
1


=

√
2


sin ()

The above trajectory has a distance of closest approach, min, when min =

2
. Moreover, due to the

symmetry of the orbit, the scattering angle  is given by

 =  − 20 = 

µ
1− 1



¶
Since 2 = 22̇2∞ = 2

2 then

1− 


=

µ
1 +

2

2

¶− 1
2

=

µ
1 +



2

¶− 1
2

This gives that the impact parameter  is related to scattering angle by

2 =




( − )
2

(2 − ) 

This impact parameter relation can be used in equation 9141 to give the differential cross section



Ω
=



sin 

¯̄̄̄




¯̄̄̄
=





2 ( − )

(2 − )
2
2

These orbits are called Cotes spirals.
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9.13 Two-body kinematics

So far the discussion has been restricted to the center-of-momentum system. Practically, scattering mea-

surements are performed in the laboratory frame, and thus it is necessary to transform the scattering angle,

energies and cross sections between the laboratory and center-of-momentum coordinate frame. In principle

the transformation between the center-of-momentum and laboratory frames is straightforward, one only has

to use vector addition of the center-of-mass velocity vector and the center-of-momentum velocity vectors of

the two bodies. The following discussion assumes non-relativistic kinematics apply.

In chapter 272 it was shown that, for Newtonian mechanics, the center-of-mass and center-of-momentum

frames of reference are identical. By definition, in the center-of-momentum frame the vector sum of the linear

momentum of the incoming projectile  and target,  are equal and opposite. That is

p + p = 0 (9.161)

Using the center-of-momentum frame, coupled with the conservation of linear momentum, implies that the

vector sum of the final momenta of the  reaction products,   also is zero. That is

X
=1

p = 0 (9.162)

An additional constraint is that energy conservation relates the initial and final kinetic energies by¡


¢2
2

+

¡


¢2
2

+ =

¡


¢2
2

+

¡


¢2
2

(9.163)

where the  value is the energy contributed to the final total kinetic energy by the reaction between the

incoming projectile and target. For exothermic reactions,   0 the summed kinetic of the reaction products

exceeds the sum of the incoming kinetic energies, while for endothermic reactions,   0 the summed kinetic

energy of the reaction products is less than that of the incoming channel.

For two-body kinematics, the following are three advantages to working in the center-of-momentum frame

of reference.

1. Two incident colliding bodies are colinear as are two final bodies.

2. The linear momenta for the two colliding bodies are identical in both the incident channel and also the

outgoing channel.

3. The total energy in the center-of-momentum coordinate frame is the energy available to the reac-

tion during the collision. The trivial kinetic energy of the center-of-momentum frame relative to the

laboratory frame is handled separately.

The kinematics for two-body reactions is easily determined using the conservation of linear momentum

along and perpendicular to the beam direction plus the conservation of energy, 9161−9163. Note that it is
common practice to use the name center-of-mass rather than center-of-momentum in spite of the fact that

for relativistic mechanics only the center-of-momentum is a meaningful concept.

General features of the transformation between the center-of-momentum and laboratory frames of refer-

ence are best illustrated by elastic or inelastic scattering of nuclei where the two reaction products in the final

channel are identical to the incident bodies. Inelastic excitation of an excited state energy of ∆ in either

reaction product corresponds to  = −∆ while elastic scattering corresponds to  = −∆ = 0.

For inelastic scattering the conservation of linear momenta for the outgoing channel in the center-of-

momentum simplifies to

p + p = 0 (9.164)

that is, the linear momenta of the two reaction products are equal and opposite.

Assume that the center-of-momentum direction of the scattered projectile is at an angle  =  relative

to the direction of the incoming projectile direction and the scattered target nucleus is scattered at a center-

of-momentum direction  =  − . Elastic scattering corresponds to simple scattering for which the

magnitudes of the incoming and outgoing projectile momenta are equal, that is,
¯̄


¯̄
=
¯̄


¯̄
.



9.13. TWO-BODY KINEMATICS 257

Figure 9.15: Vector hodograph of the scattered projectile and target velocities for a projectile, with incident

velocity  that is elastically scattered by a stationary target body. The circles show the magnitude of

the projectile and target body final velocities in the center of mass. The center-of-mass velocity vectors

are shown as dashed lines while the laboratory vectors are shown as solid lines. The left hodograph shows

normal kinematics where the projectile mass is less than the target mass. The right hodograph shows inverse

kinematics where the projectile mass is greater than the target mass. For elastic scattering  = 0 .

Velocities

The transformation between the center-of-momentum and laboratory frames requires knowledge of the par-

ticle velocities which can be derived from the linear momenta since the particle masses are known. Assume

that a projectile, mass  , with incident energy  in the laboratory frame bombards a stationary target

with mass   The incident projectile velocity  is given by

 =

r
2



(9.165)

The initial velocities in the laboratory frame are taken to be

 =  (Initial Lab velocities)

 = 0

The final velocities in the laboratory frame after the inelastic collision are

0 (Final Lab velocities)

0

In the center-of-momentum coordinate system, equation 910 implies that the initial center-of-momentum

velocities are

 = 


 +

 = 


 +

(9.166)

It is simple to derive that the final center-of-momentum velocities after the inelastic collision are given
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by

0 =


 +

r
2



̃

0 =


 +

r
2



̃ (9.167)

The energy ̃ is defined to be given by

̃ =  +(1 +




) (9.168)

where  = −∆ which is the excitation energy of the final excited states in the outgoing channel.

Angles

The angles of the scattered recoils are written as

 (Final laboratory angles)



and

 =  (Final CM angles)

 =  − 

where  is the center-of-mass (center-of-momentum) scattering angle.

From figure 915 it can be seen that angle relations between the laboratory and CM frames for the

scattered projectile are connected by

sin( − )

sin 
=





r


̃
≡  (9.169)

where

 =




1q
1 + 


(1 + 


)
=





1q
1 + 

 
(+


)

(9.170)

and 


is the energy per nucleon on the incident projectile.

Equation 9169 can be rewritten as

tan  =
sin

cos + 
(9.171)

Another useful relation from equation 9169 gives the center-of-momentum scattering angle in terms of

the laboratory scattering angle.

 = sin
−1( sin ) +  (9.172)

This gives the difference in angle between the lab scattering angle and the center-of-momentum scattering

angle. Be careful with this relation since  is two-valued for inverse kinematics corresponding to the two

possible signs for the solution.

The angle relations between the lab and center-of-momentum for the recoiling target nucleus are connected

by

sin( − )

sin 
=

r


̃
≡ ̃ (9.173)

That is

 = sin
−1(̃ sin ) +  (9.174)
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Figure 9.16: The kinematic correlation of the laboratory and center-of-mass scattering angles of the recoiling

projectile and target nuclei for scattering for 43 /nucleon 104Pd on 208Pb (left) and for the inverse

43 /nucleon 208Pb on 104Pd (right). The projectile scattering angles are shown by solid lines while the

recoiling target angles are shown by dashed lines. The blue curves correspond to elastic scattering, that is

 = 0 while the red curves correspond to inelastic scattering with  = −5 .

where

̃ =
1q

1 + 

(1 + 


)
=

1q
1 + 

 
(+


)

(9.175)

Note that ̃ is the same under interchange of the two nuclei at the same incident energy/nucleon, and

that ̃ is always larger than or equal to unity since  is negative. For elastic scattering ̃ = 1 which gives

 =
1

2
( − ) (Recoil lab angle for elastic scattering)

For the target recoil equation 9173 can be rewritten as

tan  =
sin

cos + ̃
(Target lab to CM angle conversion)

Velocity vector hodographs provide useful insight into the behavior of the kinematic solutions. As shown

in figure 915, in the center-of-momentum frame the scattered projectile has a fixed final velocity 0 , that is,
the velocity vector describes a circle as a function of . The vector addition of this vector and the velocity

of the center-of-mass vector − gives the laboratory frame velocity 0 . Note that for normal kinematics,
where     then | |  |0 | leading to a monotonic one-to-one mapping of the center-of-momentum
angle  and 


. However, for inverse kinematics, where     then | |  |0 | leading to two valued

 solutions at any fixed laboratory scattering angle .

Billiard ball collisions are an especially simple example where the two masses are identical and the collision

is essentially elastic. Then essentially  = ̃ = 1,  =

2
 and  =

1
2

³
 − 

´
, that is, the angle

between the scattered billiard balls is 
2
.

Both normal and inverse kinematics are illustrated in figure 916 which shows the dependence of the

projectile and target scattering angles in the laboratory frame as a function of center-of-momentum scattering

angle for the Coulomb scattering of 104Pd by 208Pb, that is, for a mass ratio of 2 : 1. Both normal and

inverse kinematics are shown for the same bombarding energy of 43 for elastic scattering and

for inelastic scattering with a -value of −5 .
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Figure 9.17: Recoil energies, in  , versus laboratory scattering angle, shown on the left for scattering of

447 104Pd by 208Pb with  = −50 , and shown on the right for scattering of 894 208Pb on
104Pd with  = −50

Since sin(− ) ≤ 1 then equation 9173 implies that ̃ sin  ≤ 1 Since ̃ is always larger than or
equal to unity there is a maximum scattering angle in the laboratory frame for the recoiling target nucleus

given by

sin max =
1

̃
(9.176)

For elastic scattering  = sin−1( 1
̃
) = 90◦ since ̃ = 1 for both 894 208Pb bombarding 104Pd, and

the inverse reaction using a 447 104Pd beam scattered by a 208Pb target. A -value of −5

gives ̃ = 1002808 which implies a maximum scattering angle of  = 8571◦ for both 894 208Pb

bombarding 104Pd, and the inverse reaction of a 447 104Pd beam scattered by a 208Pb target. As a

consequence there are two solutions for  for any allowed value of  as illustrated in figure 916.

Since sin( − ) ≤ 1 then equation 9150 implies that  sin  ≤ 1 For a 447 104Pd beam

scattered by a 208Pb target 


= 050, thus  = 05 for elastic scattering which implies that there is no

upper bound to . This leads to a one-to-one correspondence between 

 and 


 for normal kinematics.

In contrast, the projectile has a maximum scattering angle in the laboratory frame for inverse kinematics

since 


= 20 leading to an upper bound to  given by

sin max =
1


(9.177)

For elastic scattering  = 2 implying max = 30◦. In addition to having a maximum value for , when

  1 there also are two solutions for  for any allowed value of . For the example of 894 208Pb

bombarding 178Hf leads to a maximum projectile scattering angle of  = 300
◦ for elastic scattering and

 = 29907
◦ for  = −5

Kinetic energies

The initial total kinetic energy in the center-of-momentum frame is


 = 



 +

(9.178)

The final total kinetic energy in the center-of-momentum frame is


 = 

 + = ̃


 +

(9.179)
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In the laboratory frame the kinetic energies of the scattered projectile and recoiling target nucleus are

given by


 =

µ


 +

¶2 ³
1 + 2 + 2 cos

´
̃ (9.180)


 =



( + )
2

³
1 + ̃2 + 2̃ cos

´
̃ (9.181)

where  and  are the center-of-mass scattering angles respectively for the scattered projectile and

target nuclei.

For the chosen incident energies the normal and inverse reactions give the same center-of-momentum

energy of 298 which is the energy available to the interaction between the colliding nuclei. However,

the kinetic energy of the center-of-momentum is 447−298 = 149 for normal kinematics and 894−298 =
596 for inverse kinematics. This trivial center-of-momentum kinetic energy does not contribute to the

reaction. Note that inverse kinematics focusses all the scattered nuclei into the forward hemisphere which

reduces the required solid angle for particle detection.

Solid angles

The laboratory-frame solid angles for the scattered projectile and target are taken to be  and 
respectively, while the center-of-momentum solid angles are Ω and Ω respectively. The Jacobian relating

the solid angles is



Ω
=

Ã
sin 

sin

!2 ¯̄̄
cos( − )

¯̄̄
(9.182)



Ω
=

Ã
sin 

sin

!2 ¯̄̄
cos( − )

¯̄̄
(9.183)

These can be used to transform the calculated center-of-momentum differential cross sections to the

laboratory frame for comparison with measured values. Note that relative to the center-of-momentum frame,

the forward focussing increases the observed differential cross sections in the forward laboratory frame and

decreases them in the backward hemisphere.

Exploitation of two-body kinematics

Computing the transform relations between the center-of-mass and laboratory coordinate frames is non-

trivial and this transformation for two-body scattering is used extensively in many fields of physics. This

discussion has assumed non-relativistic two-body kinematics. Relativistic two-body kinematics encompasses

non-relativistic kinematics as discussed in chapter 164. Many computer codes are available that can be used

for making either non-relativistic or relativistic transformations.

It is stressed that the underlying physics for two interacting bodies is identical irrespective of whether

the reaction is observed in the center-of-mass or the laboratory coordinate frames. That is, no new physics

is involved in the kinematic transformation. However, the transformation between these frames can dramat-

ically alter the angles and velocities of the observed scattered bodies which can be beneficial experimentally.

For example, in heavy-ion nuclear physics the projectile and target nuclei can be interchanged leading to

very different velocities and scattering angles in the laboratory frame of reference which can greatly facili-

tate identification and observation of the velocities vectors of the scattered nuclei. In high-energy physics

it is advantageous to collide beams having identical, but opposite, linear momentum vectors, since then the

laboratory frame is the center-of-mass frame, and the energy required to accelerate the colliding bodies is

minimized.



262 CHAPTER 9. CONSERVATIVE TWO-BODY CENTRAL FORCES

9.14 Summary

This chapter has focussed on the classical mechanics of bodies interacting via conservative, two-body, central

interactions. The following are the main topics presented in this chapter.

Equivalent one-body representation for two bodies interacting via a central interaction The

equivalent one-body representation of the motion of two bodies interacting via a two-body central interaction

greatly simplifies solution of the equations of motion. The position vectors r1 and r2 are expressed in terms

of the center-of-mass vector R plus total mass  = 1 +2 while the position vector r plus associated

reduced mass  = 12

1+2
 describe the relative motion of the two bodies in the center of mass. The total

Lagrangian then separates into two independent parts

 =
1

2

¯̄̄
Ṙ

¯̄̄2
+  (916)

where the center-of-mass Lagrangian is

 =
1

2
 |ṙ|2 − () (917)

Equations 910, and 911 can be used to derive the actual spatial trajectories of the two bodies expressed in

terms of r1 and r2 from the relative equations of motion, written in terms of R and r for the equivalent

one-body solution..

Angular momentum Noether’s theorem shows that the angular momentum is conserved if only a spherically-

symmetric two-body central force acts between the interacting two bodies. The plane of motion is perpen-

dicular to the angular momentum vector and thus the Lagrangian can be expressed in polar coordinates

as

 =
1

2

³
̇2 + 2̇

2
´
− () (922)

Differential orbit equation of motion The Binet transformation  = 1

allows the center-of-mass

Lagrangian  for a central force F =()r̂ to be used to express the differential orbit equation for the

radial motion as
2

2
+  = − 

2
1

2
 (
1


) (939)

The Lagrangian, and the Hamiltonian all were used to derive the equations of motion for two bodies inter-

acting via a two-body, conservative, central interaction. The general features of the conservation of angular

momentum and conservation of energy for a two-body, central potential were presented.

Inverse-square, two-body, central force The is of pivotal importance in nature since it is applies

to both the gravitational force and the Coulomb force. The underlying symmetries of the inverse-square,

two-body, central interaction, lead to conservation of angular momentum, conservation of energy, Gauss’s

law, and that the two-body orbits follow closed, degenerate, orbits that are conic sections, for which the

eccentricity vector is conserved. The radial dependence, relative to the force center which lies at one focus

of the conic section, is given by
1


= −

2
[1 +  cos ( − 0)] (958)

where the orbit eccentricity  equals

 =

s
1 +

22

2
(962)

These lead to Kepler’s three laws of motion for two bodies in a bound orbit due to the attractive gravitational

force for which  = −12. The inverse-square law is special in that the eccentricity vector A is a third

invariant of the motion, where

A ≡ (p× L)+ (r̂) (986)

The eccentricity vector unambiguously defines the orientation and direction of the major axis of the elliptical

orbit. The invariance of the eccentricity vector, and the existence of stable closed orbits, are manifestations

of the dynamical 04 symmetry.
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Isotropic, harmonic, two-body, central force The isotropic, harmonic, two-body, central interaction

is of interest since, like the inverse-square law force, it leads to closed elliptical orbits described by

1

2
=



2

⎛⎝1 +Ã1 + 2

2

! 1
2

cos 2( − 0)

⎞⎠ (9107)

where the eccentricity  is given by Ã
1 +

2

2

! 1
2

=
2

2− 2
(9108)

The harmonic force orbits are distinctly different from those for the inverse-square law in that the force center

is at the center of the ellipse, rather than at the focus for the inverse-square law force. This elliptical orbit

is reflection symmetric for the harmonic force, but not for the inverse square force. The isotropic harmonic

two-body force leads to invariance of the symmetry tensor, and stable closed orbits, which are manifestations

of the dynamical 3 symmetry.

Orbit stability Bertrand’s theorem states that only the inverse square law and the linear radial depen-

dences of the central forces lead to stable closed bound orbits that do not precess. These are manifestation

of the dynamical symmetries that occur for these two specific radial forms of two-body forces.

The three-body problem The difficulties encountered in solving the equations of motion for three bodies,

that are interacting via two-body central forces, was discussed. The three-body motion can include the

existence of chaotic motion. It was shown that solution of the three-body problem is simplified if either the

planar approximation, or the restricted three-body approximation, are applicable.

Two-body scattering The total and differential two-body scattering cross sections were introduced. It

was shown that for the inverse-square law force there is a simple relation between the impact parameter 

and scattering angle  given by

 =


2

cot


2
(9155)

This led to the solution for the differential scattering cross-section for Rutherford scattering due to the

Coulomb interaction.


Ω
=
1

4

µ


2

¶2
1

sin4 
2

(9159)

This cross section assumes elastic scattering by a repulsive two-body inverse-square central force. For scat-

tering of nuclei in the Coulomb potential the constant  is given to be

 =
 

2

4
(9160)

Two-body kinematics The transformation from the center-of-momentum frame to laboratory frames of

reference was introduced. Such transformations are used extensively in many fields of physics for theoretical

modelling of scattering, and for analysis of experiment data.
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Workshop exercises

1. Listed below are several statements concerning central force motion. For each statement, give the reason for

why the statement is true. If a statement is only true in certain situations, then explain when it holds and

when it doesn’t. The system referred to below consists of mass 1 located at 1 and mass 2 located at 2.

• The potential energy of the system depends only on the difference 1 − 2, not on 1 and 2 separately.

• The potential energy of the system depends only on the magnitude of 1 − 2, not the direction.

• It is possible to choose an inertial reference frame in which the center of mass of the system is at rest.

• The total energy of the system is conserved.

• The total angular momentum of the system is conserved.

2. A particle of mass  moves in a potential () = −0−22 .

(a) Given the constant , find an implicit equation for the radius of the circular orbit. A circular orbit at

 =  is possible if µ




¶ ¯̄̄̄
=

= 0

where  is the effective potential.

(b) What is the largest value of  for which a circular orbit exists? What is the value of the effective potential

at this critical orbit?

3. A particle of mass  is observed to move in a spiral orbit given by the equation  = , where  is a constant.

Is it possible to have such an orbit in a central force field? If so, determine the form of the force function.

4. The interaction energy between two atoms of mass  is given by the Lennard-Jones potential, () =


£
(0)

12 − 2(0)6
¤

(a) Determine the Lagrangian of the system where 1 and 2 are the positions of the first and second mass,

respectively.

(b) Rewrite the Lagrangian as a one-body problem in which the center-of-mass is stationary.

(c) Determine the equilibrium point and show that it is stable.

(d) Determine the frequency of small oscillations about the stable point.

5. Consider two bodies of mass  in circular orbit of radius 02, attracted to each other by a force  () , where

 is the distance between the masses.

(a) Determine the Lagrangian of the system in the center-of-mass frame (Hint: a one-body problem subject

to a central force).

(b) Determine the angular momentum. Is it conserved?

(c) Determine the equation of motion in  in terms of the angular momentum and |F()|.

(d) Expand your result in (c) about an equilibrium radius 0 and show that the condition for stability

is,
 0(0)
 (0)

+ 3
0

 0

6. Consider two charges of equal magnitude  connected by a spring of spring constant 0 in circular orbit. Can
the charges oscillate about some equilibrium? If so, what condition must be satisfied?

7. Consider a mass  in orbit around a mass  , which is subject to a force  = − 
2
̂ , where  is the distance

between the masses. Show that the Runge-Lenz vector  = × −  ̂ is conserved.
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Problems

1. Show that the areal velocity is constant for a particle moving under the influence of an attractive force given

by  () = −. Calculate the time averages of the kinetic and potential energies and compare with the the
results of the virial theorem.

2. Assume that the Earth’s orbit is circular and that the Sun’s mass suddenly decreases by a factor of two. (a)

What orbit will the earth then have? (b) Will the Earth escape the solar system?

3. Discuss the motion of a particle in a central inverse-square-law force field for a superimposed force whose

magnitude is inversely proportional to the cube of the distance from the particle to force center; that is

 () = − 

2
− 

3
(k,   0)

Show that the motion is described by a precessing ellipse. Consider the cases

a)   2


, b)  = 2


 c)   2


where  is the angular momentum and  the reduced mass.

4. A communications satellite is in a circular orbit around the earth at a radius  and velocity . A rocket

accidentally fires quite suddenly, giving the rocket an outward velocity  in addition to its original tangential

velocity 

a) Calculate the ratio of the new energy and angular momentum to the old.

b) Describe the subsequent motion of the satellite and plot  () () the net effective potential, and ()

after the rocket fires.

5. Two identical point objects, each of mass  are bound by a linear two-body force  = − where  is the
vector distance between the two point objects. The two point objects each slide on a horizontal frictionless

plane subject to a vertical gravitational field . The two-body system is free to translate, rotate and oscillate

on the surface of the frictionless plane.

a) Derive the Lagrangian for the complete system including translation and relative motion.

b) Use Noether’s theorem to identify all constants of motion.

c) Use the Lagrangian to derive the equations of motion for the system.

d) Derive the generalized momenta and the corresponding Hamiltonian.

e) Derive the period for small amplitude oscillations of the relative motion of the two masses.

6. A bound binary star system comprises two spherical stars of mass 1 and 2 bound by their mutual gravita-

tional attraction. Assume that the only force acting on the stars is their mutual gravitation attraction and let

 be the instantaneous separation distance between the centers of the two stars where  is much larger than

the sum of the radii of the stars.

a) Show that the two-body motion of the binary star system can be represented by an equivalent one-body system

and derive the Lagrangian for this system.

b) Show that the motion for the equivalent one-body system in the center of mass frame lies entirely in a plane

and derive the angle between the normal to the plane and the angular momentum vector.

c) Show whether  is a constant of motion and whether it equals the total energy.

d) It is known that a solution to the equation of motion for the equivalent one-body orbit for this gravitational

force has the form
1


= −

2
[1 +  cos ]

and that the angular momentum is a constant of motion  = . Use these to prove that the attractive force leading

to this bound orbit is

F =


2
r̂

where  must be negative.
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7 When performing the Rutherford experiment, Gieger and Marsden scattered 77 4He particles (alpha

particles) from 238U at a scattering angle in the laboratory frame of  = 900. Derive the following observables

as measured in the laboratory frame.

(a) The recoil scattering angle of the 238U in the laboratory frame.

(b) The scattering angles of the 4He and 238U in the center-of-mass frame

(c) The kinetic energies of the 4He and 238U in the laboratory frame

(d) The impact parameter

(e) The distance of closest approach min



Chapter 10

Non-inertial reference frames

10.1 Introduction

Newton’s Laws of motion apply only to inertial frames of reference. Inertial frames of reference make it

possible to use Newton’s laws of motion, or Lagrangian, or Hamiltonian mechanics, to develop the necessary

equations of motion. There are certain situations where it is much more convenient to treat the motion

in a non-inertial frame of reference. Examples are motion in frames of reference undergoing translational

acceleration, rotating frames of reference, or frames undergoing both translational and rotational motion.

This chapter will analyze the behavior of dynamical systems in accelerated frames of reference, especially

rotating frames such as on the surface of the Earth. Newtonian mechanics, as well as the Lagrangian and

Hamiltonian approaches, will be used to handle motion in non-inertial reference frames by introducing extra

inertial forces that correct for the fact that the motion is being treated with respect to a non-inertial reference

frame. These inertial forces are often called fictitious even though they appear real in the non-inertial frame.

The underlying reasons for each of the inertial forces will be discussed followed by a presentation of important

applications.

10.2 Translational acceleration of a reference frame

Figure 10.1: Inertial reference frame (un-

primed), and translational accelerating frame

(primed).

Consider an inertial system (  ) which is fixed

in space, and a non-inertial system (0 
0
 

0
) that

is moving in a direction relative to the fixed frame such as

to maintain constant orientations of the axes relative to the

fixed frame, as illustrated in figure 101. The fixed frame is

designated to be the unprimed frame and, to avoid confu-

sion the subscript  is attached to the fixed coordinates

taken with respect to the fixed coordinate frame. Similarly,

the translating reference frame, which is undergoing trans-

lational acceleration, has the subscript  attached to the

coordinates taken with respect to the translating frame of

reference. Newton’s Laws of motion are obeyed only in the

inertial (unprimed) reference frame. The respective position

vectors are related by

r = R+r
0
 (10.1)

where r is the vector relative to the fixed frame, r
0
 is

the vector relative to the translationally accelerating frame

and R is the vector from the origin of the fixed frame to

the origin of the accelerating frame. Differentiating equation

101 gives the velocity vector relation

v = V+v
0
 (10.2)

267
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where v =
r


 v0 =
r0


and V =

R


. Similarly the acceleration vector relation is

a = A+a
0
 (10.3)

where a =
2r
2

 a0 =
2r0

2
and A =

2R

2


In the fixed frame, Newton’s laws give that

F = a (10.4)

The force in the fixed frame can be separated into two terms, the acceleration of the accelerating frame of

reference A plus the acceleration with respect to the accelerating frame a
0
.

F = A+a
0
 (10.5)

Relative to the accelerating reference frame the acceleration is given by

a0 = F −A (10.6)

The accelerating frame of reference can exploit Newton’s Laws of motion using an effective translational

force F0 ≡ F −A The additional −A term is called an inertial force; it can be altered by

choosing a different non-inertial frame of reference, that is, it is dependent on the frame of reference in which

the observer is situated.

10.3 Rotating reference frame

Consider a rotating frame of reference which will be designated as the double-primed (rotating) frame

to differentiate it from the non-rotating primed (moving) frame, since both of which may be undergoing

translational acceleration relative to the inertial fixed unprimed frame as described above.

10.3.1 Spatial time derivatives in a rotating, non-translating, reference frame

Figure 10.2: Infinitessimal displacement in

the non rotating primed frame and in the ro-

tating double-primed reference frame frame.

For simplicity assume that R = V = 0 that is, the

primed reference frame is stationary and identical to the fixed

stationary unprimed frame. The double-primed (rotating)

frame is a non-inertial frame rotating with respect to the

origin of the fixed primed frame. Appendix 23 shows that

an infinitessimal rotation  about an instantaneous axis of

rotation leads to an infinitessimal displacement r where

r = θ × r0 (10.7)

Consider that during a time  the position vector in the fixed

primed reference frame moves by an arbitrary infinitessimal

distance r0 As illustrated in figure 102, this infinitessi-

mal distance in the primed non-rotating frame can be split

into two parts:

a) r = θ×r0 which is due to rotation of the rotating

frame with respect to the translating primed frame.

b) (r00) which is the motion with respect to the rotating
(double-primed) frame.

That is, the motion has been arbitrarily divided into

a part that is due to the rotation of the double-primed

frame, plus the vector displacement measured in this rotating

(double-primed) frame. It is always possible to make such a

decomposition of the displacement as long as the vector sum

can be written as

r0 = r00 + θ × r0 (10.8)
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Since θ = ω then the time differential of the displacement, equation 108, can be written asµ
r0



¶


=

µ
r00



¶


+ ω × r0 (10.9)

The important conclusion is that a velocity measured in a non-rotating reference frame
³
r0


´


can be

expressed as the sum of the velocity
³
r00


´


 measured relative to a rotating frame, plus the term ω×r0

which accounts for the rotation of the frame. The division of the r0 vector into two parts, a part due to
rotation of the frame plus a part with respect to the rotating frame, is valid for any vector as shown below.

10.3.2 General vector in a rotating, non-translating, reference frame

Consider an arbitrary vector G which can be expressed in terms of components along the three unit vector

basis ê

 in the fixed inertial frame as

G =

3X
=1



 ê


 (10.10)

Neglecting translational motion, then it can be expressed in terms of the three unit vectors in the non-inertial

rotating frame unit vector basis ê as

G =

3X
=1

() ê

 (10.11)

Since the unit basis vectors ê are constant in the rotating frame, that is,µ
ê



¶


= 0 (10.12)

then the time derivatives of G in the rotating coordinate system ê can be written asµ
G



¶


=

3X
=1

µ




¶


ê (10.13)

The inertial-frame time derivative taken with components along the rotating coordinate basis ê , equation

1011, is µ
G



¶


=

3X
=1

µ




¶


ê +

3X
=1

()
ê


(10.14)

Substitute the unit vector ê for r0 in equation 109 plus using equation 1012 gives thatµ
ê



¶


= ω × ê (10.15)

Substitute this into the second term of equation 1014 givesµ
G



¶


=

µ
G



¶


+ ω ×G (10.16)

This important identity relates the time derivatives of any vector expressed in both the inertial frame and

the rotating non-inertial frame bases. Note that the ω × G term originates from the fact that the unit

basis vectors of the rotating reference frame are time dependent with respect to the non-rotating frame basis

vectors as given by equation (1015). Equation (1016) is used extensively for problems involving rotating

frames. For example, for the special case where G = r0, then equation (1016) relates the velocity vectors in
the fixed and rotating frames as given in equation (109).

As another example, consider the vector ω̇

ω̇ =

µ
ω



¶


=

µ
ω



¶


+ ω × ω =

µ
ω



¶


= ω̇ (10.17)

That is, the angular acceleration ̇ has the same value in both the fixed and rotating frames of reference.
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10.4 Reference frame undergoing rotation plus translation

Consider the case where the system is accelerating in translation as well as rotating, that is, the primed

frame is the non-rotating translating frame. The position vector r is taken with respect to the inertial

fixed unprimed frame which can be written in terms of the fixed unit basis vectors (bibj bk) This r
vector can be written as the vector sum of the translational motion R of the origin of the rotating system

with respect to the fixed frame plus the position r0 with respect to this translating primed frame basis

r = R + r
0
 (10.18)

The time differential is µ
r



¶


=

µ
R



¶


+

µ
r0



¶
(10.19)

The vector r0 is the position with respect to the translating frame of reference which can be expressed in
terms of the unit vectors

³bi0 bj0
bk0

´
.

Equation 1019 takes into account the translational motion of the moving primed frame basis. Now,

assuming that the double primed frame rotates about the origin of the moving primed frame, then the net

displacement with respect to the original inertial frame basis can be combined with equation 109 leading to

the relation µ
r



¶


=

µ
R



¶


+

µ
r00



¶


+ ω × r0 (10.20)

Here the double-primed frame is both rotating and translating. Vectors in this frame are expressed in terms

of the unit basis vectors
³bi00 bj00ck00´ 

Expressed as velocities, equation 1020 can be written as

v = V + v
00
 + ω × r0 (10.21)

where:

v is the velocity measured with respect to the inertial (unprimed) frame basis.

V is the velocity of the origin of the non-inertial translating (primed) frame basis with respect to the

origin of the inertial (unprimed) frame basis.

v00 is the velocity of the particle with respect to the non-inertial rotating (double-primed) frame basis
the origin of which is both translating and rotating.

ω × r0 is the motion of the rotating (double-primed) frame with respect to the linearly-translating

(primed) frame basis.

Thus this relation takes into account both the translational velocity plus rotation of the reference coor-

dinate frame basis vectors.

10.5 Newton’s law of motion in a non-inertial frame

The acceleration of the system in the rotating inertial frame can be derived by differentiating the general

velocity relation for v equation 1021 in the fixed frame basis which gives

a =

µ
v



¶


=

µ
V



¶


+

µ
v00


¶


+

µ
ω



¶


× r0 +ω×
µ
r0



¶


(10.22)

Now we wish to use the general transformation to a rotating frame basis which requires inclusion of the time

dependence of the unit vectors in the rotating frame, that is,µ
v00


¶


=

µ
v00


¶


+ ω × v00 (10.23)µ
ω



¶


× r0 =

µ
ω



¶


× r0 (10.24)

ω ×
µ
r0



¶


= ω × v00 + ω × (ω × r0) (10.25)
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Using equations 1023 1024 1025 gives

a = A + a
00
 + 2ω × v00 + ω × (ω × r0) + ω̇ × r0 (10.26)

where the acceleration in the rotating frame is a00 =
µ
v

00




¶


while the velocity is v00 =
µ
r

00




¶


and

A is with respect to the fixed frame.

Newton’s laws of motion are obeyed in the inertial frame, that is

F = a =  (A + a
00
 + 2ω × v00 + ω × (ω × r0) + ω̇ × r0) (10.27)

In the double-primed frame, which may be both rotating and accelerating in translation, one can ascribe an

effective force F

 that obeys an effective Newton’s law for the acceleration a

00
 in the rotating frame

F

 = a00 = F − (A + 2ω × v00 + ω × (ω × r0) + ω̇ × r0) (10.28)

Note that the effective force F

 comprises the physical force F minus four non-inertial forces that are

introduced to correct for the fact that the rotating reference frame is a non-inertial frame.

10.6 Lagrangian mechanics in a non-inertial frame

The above derivation of the equations of motion in the rotating frame is based on Newtonian mechanics.

Lagrangian mechanics provides another derivation of these equations of motion for a rotating frame of

reference by exploiting the fact that the Lagrangian is a scalar which is frame independent, that is, it is

invariant to rotation of the frame of reference.

The Lagrangian in any frame is given by

 =
1

2
v · v− () (10.29)

The scalar product v · v is the same in any rotated frame and can be evaluated in terms of the rotating
frame variables using the same decomposition of the translational plus rotational motion as used previously

and given in equation 1021

Equation (1021) decomposes the velocity in the fixed inertial frame v into four vector terms, the

translational velocity V of the translating frame, the velocity in the rotating-translating frame v
00
 and

rotational velocity (ω × r0). Using equations 1029 and 1021 plus appendix equation 21 for the triple

products, gives that the Lagrangian evaluated using v·v equals

 =
1

2

h
V·V+v

00
·v00 + 2V·v00 + 2V · (ω × r0) + 2v

00
 · (ω × r0) + (ω × r0)

2
i
−()
(10.30)

This can be used to derive the canonical momentum in the rotating frame

p00 =


v00
=  [V+v

00
 + ω × r0] (10.31)

The Lagrange equations can be used to derive the equations of motion in terms of the variables evaluated

in the rotating reference frame. The required Lagrange derivatives are







v00
=  [A+a

00
 + (ω × v00) + (ω̇ × r0)] (10.32)

and


r0
= − [(ω ×V)− (ω × v00)− ω × (ω × r0)] −∇ (10.33)

where the scalar triple product, equation 21 has been used. Thus the Lagrange equations give for the

rotating frame basis that

a00 = −∇ −[A+(ω ×V)+2 (ω × v00) + ω × (ω × r0) + (ω̇ × r0)] (10.34)
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The external force is identified as F = −∇ . Equation 1016 can be used to transform between the

fixed and the rotating bases.

A =
h
A+(ω ×V)

i


(10.35)

This leads to an effective force in the non-inertial translating plus rotating frame that corresponds to an

effective Newtonian force of

F

 = a00 = F−[A + 2ω × v00 + ω × (ω × r0) + (ω̇ × r0)] (10.36)

where A is expressed in the fixed frame. The derivation of equation 1036 using Lagrangian mechanics,

confirms the identical formula 1029 derived using Newtonian mechanics.

The four correction terms for the non-inertial frame basis correspond to the following effective forces.

Translational acceleration: F = −A is the usual inertial force experienced in a linearly acceler-

ating frame of reference, and where A is with respect to the fixed frame .

Coriolis force; F = −2ω × v00 This is a new type of inertial force that is present only when a

particle is moving in the rotating frame. This force is proportional to the velocity in the rotating frame and

is independent of the position in the rotating frame

Centrifugal force: F

 = −ω × (ω × r0) This is due to the centripetal acceleration of the particle

owing to the rotation of the moving axis about the axis of rotation.

Transverse (azimuthal) force: F = −ω̇ × r0 This is a straightforward term due to acceleration of

the particle due to the angular acceleration of the rotating axes.

The above inertial forces are correction terms arising from trying to extend Newton’s laws of motion to

a non-inertial frame involving both translation and rotation. These correction forces are often referred to as

“fictitious” forces. However, these non-inertial forces are very real when located in the non-inertial frame.

Since the centrifugal and Coriolis terms are unusual they are discussed below.

10.7 Centrifugal force

O

r
.

Figure 10.3: Centrifugal force.

The centrifugal force was defined as

F = −ω × (ω × r0) (10.37)

Note that

ω · F = 0 (10.38)

therefore the centrifugal force is perpendicular to the axis of

rotation.

Using the vector identity, equation 24 allows the centrifu-

gal force to be written as

F = −
£
(ω · r0)ω − 2r0

¤
(10.39)

For the case where the radius r0 is perpendicular to ω then ω·r0 =
0 and thus for this case

F = 2r0 (10.40)

The centrifugal force is experienced when a car is driven

rapidly around a bend. The passenger experiences an apparent

centrifugal (center fleeing) force that thrusts them to the outside

of the bend relative to the inside of the turning car. In reality,

relative to the fixed inertial frame, i.e. the road, the friction be-

tween the car tires and the road is changing the direction of the

car towards the inside of the bend and the car seat is causing

the centripetal (center seeking) acceleration of the passenger. A

bucket of water attached to a rope can be swung around in a

vertical plane without spilling any water if the centrifugal force

exceeds the gravitation force at the top of the trajectory.
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10.8 Coriolis force

Figure 10.4: Free-force motion of a hockey puck sliding on

a rotating frictionless table of radius  that is rotating with

constant angular frequency  out of the page.

The Coriolis force was defined to be

F = −2ω × v00 (10.41)

where v00 is the velocity measured in the ro-
tating (double-primed) frame. The Coriolis

force is an interesting force; it is perpendic-

ular to both the axis of rotation and the ve-

locity vector in the rotating frame, that is, it

is analogous to the v ×B Lorentz magnetic
force .

The understanding of the Coriolis effect

is facilitated by considering the physics of a

hockey puck sliding on a rotating frictionless

table. Assume that the table rotates with

constant angular frequency ω = bk about
the  axis. For this system the origin of the

rotating system is fixed, and the angular frequency is constant, thusA and ̇×r0 are zero. Also it is assumed
that there are no external forces acting on the hockey puck, thus the net acceleration of the puck sliding on

the table, as seen in the rotating frame, simplifies to

a00 = −2ω × v00 − ω × (ω × r0) = −2k̂× v00 + 2r0 (10.42)

The centrifugal acceleration +2r0 is radially outwards while the Coriolis acceleration −2bk× v00 is to
the right. Integration of the equations of motion can be used to calculate the trajectories in the rotating

frame of reference.

Figure 104 illustrates trajectories of the hockey puck in the rotating reference frame when no external

forces are acting, that is, in the inertial frame the puck moves in a straight line with constant velocity v0.

In the rotating reference frame the Coriolis force accelerates the puck to the right leading to trajectories

that exhibit spiral motion. The apparent complicated trajectories are a result of the observer being in the

rotating frame for which that the straight inertial-frame trajectories of the moving puck exhibit a spiralling

trajectory in the rotating-frame.

The Coriolis force is the reason that winds circulate in an anticlockwise direction about low-pressure

regions in the Earth’s northern hemisphere. It also has important consequences in many activities on earth

such as ballet dancing, ice skating, acrobatics, nuclear and molecular rotation, and the motion of missiles.

10.1 Example: Accelerating spring plane pendulum

Comparison of the relative merits of using a non-inertial frame versus an inertial frame is given by a

spring pendulum attached to an accelerating fulcrum. As shown in the figure, the spring pendulum comprises

a mass  attached to a massless spring that has a rest length 0 and spring constant . The system is

in a vertical gravitational field  and the fulcrum of the pendulum is accelerating vertically upwards with a

constant acceleration . Assume that the spring pendulum oscillates only in the vertical  plane.

Inertial frame:

This problem can be solved in the fixed inertial coordinate system with coordinates ( ). These coordi-

nates, and their time derivatives, are given in terms of  and  by

 =  sin  ̇ = ̇ sin  + ̇ cos 

 = − cos  + 1
2
2 ̇ = ̇ sin  − ̇ cos  + 

Thus

 =
1

2

¡
̇2 + ̇2

¢− − 1
2
 ( − 0)

2

=
1

2

h
̇2 + 2̇

2
+ 22 + 2

³
̇ sin  − ̇ cos 

´i
+

µ
 cos  − 1

2
2
¶
− 1
2
 ( − 0)

2
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The Lagrange equations of motion are given by

Λ = 0

̈ − ̇
2 − (+ ) cos  +




( − 0) = 0

Λ = 0

̈ +
2


̇̇ +

(+ )


sin  = 0

The generalized momenta are

 =


̇
= ̇ − cos 

 =


̇
= 2̇ + sin 

These lead to the corresponding velocities of

̇ =



+  cos 

̇ =


2
−  sin 



and thus the Hamiltonian is given by

 = ̇ + ̇ − 

=
2
2

+


22
− 


 sin  +  cos  +

1

2
 ( − 0)

2
+
1

2
2 − cos 

The Hamilton equations of motion give that

̇ =



=




+  cos 

̇ =



=



2
−  sin 



These radial and angular velocities are the same as obtained using Lagrangian mechanics.

The Hamilton equations for ̇ and ̇ are given by

̇ = −


= −
2
 sin  −  ( − 0) + cos  +

2
3

Similarly

̇ = −


=



 cos  +  sin  − sin 

The transformation equations relating the generalized coordinates   are time dependent so the Hamil-

tonian  does not equal the total energy . In addition neither the Lagrangian nor the Hamiltonian are

conserved since they both are time dependent. The fact that the Hamiltonian is not conserved is obvious since

the whole system is accelerating upwards leading to increasing kinetic and potential energies. Moreover, the

time derivative of the angular momentum ̇ is non-zero so the angular momentum  is not conserved.

Non-inertial fulcrum frame:

This system also can be addressed in the accelerating non-inertial fulcrum frame of reference which is

fixed to the fulcrum of the spring of the pendulum. In this non-inertial frame of reference, the acceleration

of the frame can be taken into account using an effective acceleration  which is added to the gravitational

force; that is,  is replaced by an effective gravitational force ( + ). Then the Lagrangian in the fulcrum

frame simplifies to

 =
1

2
̇2 + 2̇

2
+ ( + ) ( cos )− 1

2
 ( − 0)

2

The Lagrange equations of motion in the fulcrum frame are given by
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Λ = 0

̈ − ̇
2 − (+ ) cos  +




( − 0) = 0

Λ = 0

̈ +
2


̇̇ +

(+ )


sin  = 0

These are identical to the Lagrange equations of motion derived in the inertial frame.

The  can be used to derive the momenta in the non-inertial fulcrum frame

̃ =


̇
= ̇

̃ =


̇
= 2̇

which comprise only a part of the momenta derived in the inertial frame. These partial fulcrum momenta

lead to a fulcum-frame Hamiltonian

 = ̃ ̇ + ̃̇ −  =
̃2
2

+
̃

22
+
1

2
 ( − 0)

2 − ( + )  cos 

Both  and  are time independent and thus the fulcrum Hamiltonian  is a constant

of motion in the fulcrum frame. However,  does not equal the total energy which is increasing with

time due to the acceleration of the fulcrum frame relative to the inertial frame. This example illustrates that

use of non-inertial frames can simplify solution of accelerating systems.

10.2 Example: Surface of rotating liquid

F’ 

mg mg

2

Find the shape of the surface of liquid in a bucket

that rotates with angular speed  as shown in the ad-

jacent figure. Assume that the liquid is at rest in the

frame of the bucket. Therefore, in the coordinate system

rotating with the bucket of liquid, the Centrifugal force is

important whereas the Coriolis, translational, and trans-

verse forces are zero. The external force

F = F0 −g

where F0 is the pressure which is perpendicular to the
surface. At equilibrium the acceleration of the surface is

zero that is

a00 = 0 = F0 + (g− ω × (ω × r0))

The effective gravitational force is

g = (g− ω × (ω × r0))
which must be perpendicular to the surface of the liquid since F0 is perpendicular to the surface of a fluid,
and the net force is zero. In cylindrical coordinates this can be written as

g = −bz+ 2bρ
From the figure it can be deduced that

tan  =



=

2



By integration

 =
2

2
2 + constant
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This is the equation of a paraboloid and corresponds to a parabolic gravitational equipotential energy surface.

Astrophysicists build large parabolic mirrors for telescopes by continuously spinning a large vat of glass while

it solidifies. This is much easier than grinding a large cylindrical block of glass into a parabolic shape.

10.3 Example: The pirouette

An interesting application of the Coriolis force is the problem of a spinning ice skater or ballet dancer.

Her angular frequency increases when she draws in her arms. The conventional explanation is that angular

momentum is conserved in the absence of any external forces which is correct. Thus since her moment of

inertia decreases when she retracts her arms, her angular velocity must increase to maintain a constant

angular momentum L =  ω But this explanation does not address the question as to what are the forces

that cause the angular frequency to increase? The real radial forces the skater feels when she retracts her

arms cannot directly lead to angular acceleration since radial forces are perpendicular to the rotation. The

following derivation shows that the Coriolis force −2ω × v00 acts tangentially to the radial retraction
velocity of her arms leading to the angular acceleration required to maintain constant angular momentum.

Consider that a mass  is moving radially at a velocity ̇00 then the Coriolis force in the rotating frame
is

F = −2ω × ṙ00
This Coriolis force leads to an angular acceleration of the mass of

ω̇ =− 2ω × ṙ
00


”
()

that is, the rotational frequency decreases if the radius is increased. Note that, as shown in equation 1017

̇ = ̇00. This nonzero value of ̇ obviously leads to an azimuthal force in addition to the Coriolis force.

Consider the rate of change of angular momentum for the rotating mass  assuming that the angular

momentum comes purely from the rotation  Then in the rotating frame

ṗ00 =



(”2ω) = 200̇00ω +002ω̇

Substituting equation  for ̇ in the second term gives

ṗ” = 200̇00ω−200̇00ω =0

That is, the two terms cancel. Thus the angular momentum is conserved for this case where the velocity is

radial. Note that, since ” is assumed to be colinear with  then it is the same in both the stationary and

rotating frames of reference and thus angular momentum is conserved in both frames. In addition, in the

fixed frame, the angular momentum is conserved if no external torques are acting as assumed above.

Note that since the rotational energy is

 =
1

2
2

Also the angular momentum is conserved, that is

p = ω = ω̂

Substituting ω = p

in the rotational energy gives

 =
2
2
=

2

2

Therefore the rotational energy actually increases as the moment of inertia decreases when the ice skater

pulls her arms close to her body. This increase in rotational energy is provided by the work done as the

dancer pulls her arms inward against the centrifugal force.
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10.9 Routhian reduction for rotating systems

The Routhian reduction technique, that was introduced in chapter 86 is a hybrid variational approach. It

was devised by Routh to handle the cyclic and non-cyclic variables separately in order to simultaneously

exploit the differing advantages of the Hamiltonian and Lagrangian formulations. The Routhian reduction

technique is a powerful method for handling rotating systems ranging from galaxies to molecules, or deformed

nuclei, as well as rotating machinery in engineering. A valuable feature of the Hamiltonian formulation is

that it allows elimination of cyclic variables which reduces the number of degrees of freedom to be handled.

As a consequence, cyclic variables are called ignorable variables in Hamiltonian mechanics. The Lagrangian,

the Hamiltonian and the Routhian all are scalars under rotation and thus are invariant to rotation of the

frame of reference. Note that often there are only two cyclic variables for a rotating system, that is, θ̇ = ω

and the corresponding canonical total angular momentum p = J.

As mentioned in chapter 86, there are two possible Routhians that are useful for handling rotation frames

of reference. For rotating systems the cyclic Routhian  simplifies to

(1  ; ̇1  ̇; +1  ; ) =  −  = ω · J−  (10.43)

This Routhian behaves like a Hamiltonian for the ignorable cyclic coordinates ωJ Simultaneously it behaves

like a negative Lagrangian  for all the other coordinates

The non-cyclic Routhian  complements  in that it is defined as

(1  ; 1  ; ̇+1  ̇; ) =  −  =  − ω · J (10.44)

This non-cyclic Routhian behaves like a Hamiltonian for all the non-cyclic variables and behaves like a

negative Lagrangian for the two cyclic variables  . Since the cyclic variables are constants of motion,

then  is a constant of motion that equals the energy in the rotating frame if  is a constant of

motion. However,  does not equal the total energy since the coordinate transformation is time

dependent, that is, the Routhian  corresponds to the energy of the non-cyclic parts of the motion.

For example, the Routhian  for a system that is being cranked about the  axis at some fixed

angular frequency ̇ =  with corresponding total angular momentum p = J can be written as
1

 =  − ω · J (10.45)

=
1

2

h
V ·V+ v” · v” + 2V · v” + 2V · (ω × r0) + 2v” · (ω × r0) + (ω × r0)2

i
− ω · J+ ()

Note that  is a constant of motion if


= 0 which is the case when the system is being cranked

at a constant angular frequency. However the Hamiltonian in the rotating frame  =  − ω · J is given
by  =  6=  since the coordinate transformation is time dependent. The canonical Hamilton

equations for the fourth and fifth terms in the bracket can be identified with the Coriolis force 2ω × v00
while the last term in the bracket is identified with the centrifugal force. That is, define

 ≡ −1
2
 (ω × r0)2 (10.46)

where the gradient of  gives the usual centrifugal force.

F = −∇ = 

2
∇
h
202 − (ω · r0)2

i
= 

£
2r0 − (ω · r0)ω¤ = −ω × (ω × r0) (10.47)

The Routhian reduction method is used extensively in science and engineering to describe rotational

motion of rigid bodies, molecules, deformed nuclei, and astrophysical objects. The cyclic variables describe

the rotation of the frame and thus the Routhian  =  corresponds to the Hamiltonian for the

non-cyclic variables in the rotating frame.

1For clarity sections 101 to 108 of this chapter adopted a naming convention that uses unprimed coordinates with the

subscript  for the inertial frame of reference, primed coordinates with the subscript  for the translating coordinates, and

double-primed coordinates with the subscript  for the translating plus rotating frame. For brevity the subsequent discussion

omits the redundant subscripts   since the single and double prime superscripts completely define the moving and

rotating frames of reference.
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10.4 Example: Cranked plane pendulum

g

m

Cranked plane pendulum that is

cranked around the vertical axis

with angular velocity ̇ = .

The cranked plane pendulum, which is also called the rotating plane

pendulum, comprises a plane pendulum that is cranked around a verti-

cal axis at a constant angular velocity ̇ =  as determined by some

external drive mechanism. The parameters are illustrated in the adja-

cent figure. The cranked pendulum nicely illustrates the advantages of

working in a non-inertial rotating frame for a driven rotating system.

Although the cranked plane pendulum looks similar to the spherical pen-

dulum, there is one very important difference; for the spherical pendulum

 = 2 sin2 ̇ is a constant of motion and thus the angular velocity

varies with , i.e. ̇ =


2 sin2 
 whereas for the cranked plane pendulum,

the constant of motion is ̇ =  and thus the angular momentum varies

with  i.e.  =  sin2 . For the cranked plane pendulum, the energy

must flow into and out of the cranking drive system that is providing the

constraint force to satisfy the equation of constraint

 = ̇−  = 0

The easiest way to solve the equations of motion for the cranked plane pendulum is to use generalized coor-

dinates to absorb the equation of constraint and applied constraint torque. This is done by incorporating the

̇ =  constraint explicitly in the Lagrangian or Hamiltonian and solving for just  in the rotating frame.

Assuming that ̇ =  and using generalized coordinates to absorb the cranking constraint forces, then

the Lagrangian for the cranked pendulum can be written as.

 =
1

2
2(̇

2
+ sin2 2) + cos 

The momentum conjugate to  is

 =


̇
= 2̇

Consider the Routhian  = ̇ −  =  − ̇ which acts as a Hamiltonian  in the rotating

frame

 =  ̇ −  =  − ̇ =
2
22

− 1
2
22 sin2  − cos 

Note that if ̇ =  is constant, then  is a constant of motion for rotation about the  axis since

it is independent of  Also



= −


= 0 thus the energy in the rotating non-inertial frame of the

pendulum  =  =  − ̇ is a constant of motion, but it does not equal the total energy since

the rotating coordinate transformation is time dependent. The driver that cranks the system at a constant 

provides or absorbs the energy  =  =  as  changes in order to maintain a constant .

The Routhian  can be used to derive the equations of motion using Hamiltonian mechanics.

̇ =



=



2

̇ = −


= − sin 

∙
1− 


cos 2

¸
Since ̇ = 2̈ then the equation of motion is

̈ +



sin 

∙
1− 


cos 2

¸
= 0 ()

Assuming that sin  ≈ , then equation  leads to linear harmonic oscillator solutions about a minimum at

 = 0 if the bracket is positive. That is, when the bracket
h
1− 


cos 2

i
 0 then equation  corresponds

to a harmonic oscillator with angular velocity Ω given by

Ω2 =




∙
1− 


cos 2

¸
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(a)

P

(b)

P

Phase-space diagrams for the plane

pendulum cranked at angular velocity

 about a vertical axis. Figure () is

for   

while () is for   


.

The adjacent figure shows the phase-space diagrams for a plane

pendulum rotating about a vertical axis at angular velocity  for (a)

 
p



and (b)  

p


 The upper phase plot shows small  when

the square bracket of equation  is positive and the the phase space

trajectories are ellipses around the stable equilibrium point (0 0).

As  increases the bracket becomes smaller and changes sign when

2 cos  = 

. For larger  the bracket is negative leading to hyper-

bolic phase space trajectories around the ( ) = (0 0) equilibrium

point, that is, an unstable equilibrium point. However, new sta-

ble equilibrium points now occur at angles ( ) = (±0 0) where
cos 0 =


2

 That is, the equilibrium point (0 0) undergoes bifurca-

tion as illustrated in the lower figure. These new equilibrium points

are stable as illustrated by the elliptical trajectories around these

points. It is interesting that these new equilibrium points ±0 move
to larger angles given by 0 =


2

beyond the bifurcation point

at 
2

= 1. For low energy the mass oscillates about the minimum

at  = 0 whereas the motion becomes more complicated for higher

energy. The bifurcation corresponds to symmetry breaking since,

under spatial reflection, the equilibrium point is unchanged at low

rotational frequencies but it transforms from +0 to −0 once the
solution bifurcates, that is, the symmetry is broken. Also chaos can

occur at the separatrix that separates the bifurcation. Note that

either the Lagrange multiplier approach, or the generalized force ap-

proach, can be used to determine the applied torque required to ensure a constant  for the cranked pendulum.

10.5 Example: Nucleon orbits in deformed nuclei

Schematic diagram for the strong coupling of a

nucleon to the deformation axis. The projection of 

on the symmetry axis is , and the projection of  is

Ω. For axial symmetry Noether’s theroem gives that

the projection of the angular momentum  on the

symmetry axis is a conserved quantity.

Consider the rotation of axially-symmetric,

prolate-deformed nucleus. Many nuclei have a pro-

late spheroidal shape, (the shape of a rugby ball)

and they rotate perpendicular to the symmetry axis.

In the non-inertial body-fixed frame, pairs of nucle-

ons, each with angular momentum  are bound in

orbits with the projection of the angular momentum

along the symmetry axis being conserved with value

Ω =  which is a cyclic variable. Since the nucleus

is of dimensions 10−14 quantization is important

and the quantized binding energies of the individual

nucleons are separated by spacings ≤ 500
The Lagrangian and Hamiltonian are scalars

and can be evaluated in any coordinate frame of

reference. It is most useful to calculate the Hamil-

tonian for a deformed body in the non-inertial ro-

tating body-fixed frame of reference. The body-

fixed Hamiltonian corresponds to the Routhian



 =  − ω · J

where it is assumed that the deformed nucleus has the symmetry axis along the  direction and rotates about

the  axis. Since the Routhian is for a non-inertial rotating frame of reference it does not include the total

energy but, if the shape is constant in time, then  and the corresponding body-fixed Hamiltonian

are conserved and the energy levels for the nucleons bound in the spheroidal potential well can be calculated

using a conventional quantum mechanical model.

For a prolate spheroidal deformed potential well, the nucleon orbits that have the angular momentum

nearly aligned to the symmetry axis correspond to nucleon trajectories that are restricted to the narrowest



280 CHAPTER 10. NON-INERTIAL REFERENCE FRAMES

part of the spheroid, whereas trajectories with the angular momentum vector close to perpendicular to the

symmetry axis have trajectories that probe the largest radii of the spheroid. The Heisenberg Uncertainty

Principle, mentioned in chapter 312, describes how orbits restricted to the smallest dimension will have

the highest linear momentum, and corresponding kinetic energy, and vise versa for the larger sized orbits.

Thus the binding energy of different nucleon trajectories in the spheroidal potential well depends on the angle

between the angular momentum vector and the symmetry axis of the spheroid as well as the deformation of

the spheroid. A quantal nuclear model Hamiltonian is solved for assumed spheroidal-shaped potential wells.

The corresponding orbits each have angular momenta j for which the projection of the angular momentum

along the symmetry axis Ω is conserved, but the projection of j in the laboratory frame  is not conserved

since the potential well is not spherically symmetric. However, the total Hamiltonian is spherically symmetric

in the laboratory frame, which is satisfied by allowing the deformed spheroidal potential well to rotate freely in

the laboratory frame, and then 2   and Ω all are conserved quantities. The attractive residual nucleon-

nucleon pairing interaction results in pairs of nucleons being bound in time-reversed orbits ( × )0, that

is, with resultant total spin zero, in this spheroidal nuclear potential. Excitation of an even-even nucleus

can break one pair and then the total projection of the angular momentum along the symmetry axis is

 = |Ω1 ±Ω2|, depending on whether the projections are parallel or antiparallel. More excitation energy
can break several pairs and the projections continue to be additive. The binding energies calculated in the

spheroidal potential well must be added to the rotational energy  =
J
2
2 to get the total energy, where

J is the moment of inertia. Nuclear structure measurements are in good agreement with the predictions of

nuclear structure calculations that employ the Routhian approach.

10.10 Effective gravitational force near the surface of the Earth

r’

r

O x 1

 x  2

 x  3

O’
P

Figure 10.5: Rotating frame at the surface of

the Earth.

Consider that the translational acceleration of the center of

the Earth can be neglected, and thus a set of non-rotating

axes through the center of the Earth can be assumed to be

approximately an inertial frame. The effects of the motion of

the Earth around the Sun, or the motion of the Solar system

in our Galaxy, are small compared with the effects due to the

rotation of the Earth.

Consider a rotating frame attached to the surface of the

earth as shown in figure 105. The vector with respect to the

center of the Earth r can be decomposed into a vector to the

origin of the reference frame fixed to the surface of the Earth

R plus the vector with respect to this surface reference frame

r0

r = R+ r0 (10.48)

If the external force is separated into the gravitational

term g plus some other physical force F then the acceler-

ation in the non-inertial surface frame of reference is

a0 =
F


+g−(A+ 2ω × v0 + ω × (ω × r0) + ω̇ × r0) (10.49)

But

V =

µ
R



¶


=

µ
R



¶


+ ω ×R = ω ×R (10.50)

since in the rotating frame
¡
R


¢


= 0 Also the acceleration

A =

µ
V



¶


=

µ
V



¶


+ ω ×V = ω × (ω ×R) (10.51)
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since
¡
V


¢


= 0 Substituting this into the above equation gives

a0 =
F


+ g− (2ω × v0 + ω × (ω × [r0 +R]) + ω̇ × r0)

=
F


+ g− (2ω × v0 + ω × (ω × r) + ω̇ × r0)

where r is with respect to the center of the Earth. This is as expected directly from equation 1036. Since

the angular frequency of the earth is a constant then ̇ × r0 = 0 Thus the acceleration can be written as

a0 =
F


+ [g− ω × (ω × r)]− 2ω × v0 (10.52)

The term in the square brackets combines the gravitational acceleration plus the centrifugal acceleration.

g

g

Figure 10.6: Effective gravitational acceleration.

A measurement of the Earth’s gravitational accel-

eration actually measures the term in the square brack-

ets in equation 1052, that is, an effective gravitational

acceleration where

g = g− ω × (ω × r) (10.53)

near the surface of the earth r ≈ R. The effective grav-
itational force does not point towards the center of the

Earth as shown in figure 106. A plumb line points,

or an object falls, in the direction of g  The shape

of the earth is such that the Earth’s surface is per-

pendicular to g . This is the reason why the earth is

distorted into an oblate ellipsoid, that is, it is flattened

at the poles.

The angle  between g and the line pointing

to the center of the earth is dependent on the latitude

 = 
2
− Note that the colatitude  is taken to be zero

at the North pole whereas the latitude  is taken to

be zero at the equator. The angle  can be estimated

by assuming that 0   then the centrifugal term

then can be approximated by

|ω × (ω × r)| ≈ 2 sin  = 2 cos (10.54)

This is quite small for the Earth since  = 073× 10−4  and  = 6371 leading to a correction

term 2 cos = 003 cos 2 Since

 = 2 cos sin (10.55)

and

 =  − 2 cos2  (10.56)

Then the angle  between g and g is given by

 ' tan = 



=
2 cos sin

 − 2 cos2 
(10.57)

This has a maximum value at  = 45 which is  = 00088◦.
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10.11 Free motion on the earth

Equator

(North)y
z

x 

(vertical)

(East)

Figure 10.7: Rotating frame fixed on the sur-

face of the Earth.

The calculation of trajectories for objects as they move near

the surface of the earth is frequently required for many ap-

plications. Such calculations require inclusion of the non-

inertial Coriolis force. In the frame of reference fixed to

the earth’s surface, assuming that air resistance and other

forces can be neglected, then the acceleration equals

a0 = g − 2ω × v0 (10.58)

Neglect the centrifugal correction term since it is very small,

that is, let g = g. Using the coordinate axis shown in

figure 107, the surface-frame vectors have components

ω = 0bi0 +  cosbj0 +  sinbk0 (10.59)

and

g = − bk0 (10.60)

Thus the Coriolis term is

2ω × v0 = 2

¯̄̄̄
¯̄ bi0 bj0 bk0
0  cos  sin


0 


0 


0

¯̄̄̄
¯̄

= 2
h³



0
cos− 



0
sin

´ bi0 + ³ 

0
sin

´ bj0 − ³ 

0
cos

´ bk0i
Therefore the equations of motion are

r̈0 = − bk0−2[bi0(̇0 cos− ̇0 sin) + bj0̇0 sin− bk0̇0 cos] (10.61)

That is, the components of this equation of motion are

̈0 = −2 (̇0 cos− ̇0 sin) (10.62)

̈0 = −2̇0 sin
̈0 = − + 2̇0 cos

Integrating these differential equations gives

̇0 = −2 (0 cos− 0 sin) + ̇00 (10.63)

̇0 = −20 sin+ ̇00
̇0 = −+ 20 cos+ ̇00

where ̇00 ̇
0
0 ̇

0
0 are the initial velocities. Substituting the above velocity relations into the equation of motion

for ̈ gives

̈0 = 2 cos− 2 (̇00 cos− ̇00 sin)− 420 (10.64)

The last term 42 is small and can be neglected leading to a simple uncoupled second-order differential

equation in . Integrating this twice assuming that 00 = 00 = 00 = 0 plus the fact that 2 cos and

2 (̇00 cos− ̇00 sin) are constant, gives

0 =
1

3
3 cos− 2 (̇00 cos− ̇00 sin) + ̇00 (10.65)

Similarly,

0 =
¡
̇00− ̇00

2 sin
¢

(10.66)

0 = −1
2
2 + ̇00+ ̇00

2 cos (10.67)
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Consider the following special cases;

10.6 Example: Free fall from rest

Assume that an object falls a height  starting from rest at  = 0,  = 0,  = 0,  = . Then

0 =
1

3
3 cos

0 = 0

0 = − 1
2
2

Substituting for  gives

0 =
1

3
 cos

s
83



Thus the object drifts eastward as a consequence of the earth’s rotation. Note that relative to the fixed frame

it is obvious that the angular velocity of the body must increase as it falls to compensate for the reduced

distance from the axis of rotation in order to ensure that the angular momentum is conserved.

10.7 Example: Projectile fired vertically upwards

An upward fired projectile with initial velocities ̇00 = ̇00 = 0 and ̇00 = 0 leads to the relations

0 =
1

3
3 cos− 20 cos

0 = 0

0 = −1
2
2 + 0

Solving for  when 0 = 0 gives  = 0 and  = 20

 Also since the maximum height  that the projectile

reaches is related by

0 =
p
2

then the final deflection is

0 = −4
3
 cos

s
83



Thus the body drifts westwards.

10.8 Example: Motion parallel to Earth’s surface

For motion in the horizontal 0−0 plane the deflection is always to the right in the northern hemisphere
of the Earth since the vertical component of  is upwards and thus −2−→ω × −→v0 points to the right. In the
southern hemisphere the vertical component of  is downward and thus −2−→ω × −→v0 points to the left. This
is also shown using the above relations for the case of a projectile fired upwards in an easterly direction with

components


0
0 0



0
0 The resultant displacements are

0 =
1

3
3 cos− 2̇00 cos+ ̇00

Similarly,

0 = −̇002 sin
0 = −1

2
2 + ̇00+ ̇00

2 cos

The trajectory is non-planar and, in the northern hemisphere, the projectile drifts to the right, that is

southerly.

In the battle of the River de la Plata, during World War 2, the gunners on the British light cruisers

Exeter, Ajax and Achilles found that their accurately aimed salvos against the German pocket battleship Graf

Spee were falling 100 yards to the left. The designers of the gun sighting mechanisms had corrected for the

Coriolis effect assuming the ships would fight at latitudes near 50 north, not 50 south.
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10.12 Weather systems

Weather systems are a classic example of motion in a rotating coordinate system. In the northern hemisphere,

air flowing into a low-pressure region is deflected to the right causing counterclockwise circulation, whereas

air flowing out of a high-pressure region is deflected to the right causing a clockwise circulation. Trade winds

on the Earth result from air rising or sinking due to thermal activity combined with the Coriolis effect.

Similar behavior is observed on other planets such as the Red Spot on Jupiter.

For a fluid or gas, equation (1036) can be written in terms of the fluid density  in the form

a” = −∇ − [2ω × v”− ω × (ω × r0)] (10.68)

where the translational acceleration A, the gravitational force, and the azimuthal acceleration (ω̇ × r0) terms
are ignored. The external force per unit volume equals the pressure gradient −∇ while ω is the rotation

vector of the earth.

In fluid flow, the Rossby number  is defined to be

 =
inertial force

Coriolis force
≈ a”

2ω × v” (10.69)

For large dimensional pressure systems in the atmosphere, e.g.  ' 1000, the Rossby number is  ∼ 01
and thus the Coriolis force dominates and the radial acceleration can be neglected. This leads to a flow

velocity  ' 10 which is perpendicular to the pressure gradient ∇ , that is, the air flows horizontally
parallel to the isobars of constant pressure which is called geostrophic flow. For much smaller dimension

systems, such as at the wall of a hurricane,  ' 50, and  ' 50 the Rossby number  ' 10 and

the Coriolis effect plays a much less significant role compared to the balance between the radial centrifugal

forces and the pressure gradient. The same situation of the Coriolis forces being insignificant occurs for most

small-scale vortices such as tornadoes, typical thermal vortices in the atmosphere, and for water draining a

bath tub.

10.12.1 Low-pressure systems:

Low S

Figure 10.8: Air flow and pressures around a low-

pressure region.

It is interesting to analyze the motion of air circulat-

ing around a low pressure region at large radii where

the motion is tangential. As shown in figure 109,

a parcel of air circulating anticlockwise around the

low with velocity  involves a pressure difference ∆

acting on the surface area  plus the centrifugal and

Coriolis forces. Assuming that these forces are bal-

anced such that a” ' 0 then equation 1068 simpli-
fies to

2


=
1


∇ − 2 sin (10.70)

where the latitude  = −. Thus the force equation
can be written

1






=

2


+ 2 sin (10.71)

It is apparent that the combined outward Coriolis

force plus outward centrifugal force, acting on the

circulating air, can support a large pressure gradient.

The tangential velocity  can be obtained by solving this equation to give

 =

s
( sin)

2
+








−  sin (10.72)

Note that the velocity equals zero when  = 0 assuming that 

is finite. That is, the velocity reaches a

maximum at a radius

 =
1

4
(1 +

1

 sin




) (10.73)
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Figure 10.9: Hurricane Katrina over the Gulf of Mexico on 28 August 2005. [Published by the NOAA]

which occurs at the wall of the eye of the circulating low-pressure system.

Low pressure regions are produced by heating of air causing it to rise and resulting in an inflow of air

to replace the rising air. Hurricanes form over warm water when the temperature exceeds 26◦ and the

moisture levels are above average. They are created at latitudes between 10◦−15◦ where the sea is warmest,
but not closer to the equator where the Coriolis force drops to zero. About 90% of the heating of the air comes

from the latent heat of vaporization due to the rising warm moist air condensing into water droplets in the

cloud similar to what occurs in thunderstorms. For hurricanes in the northern hemisphere, the air circulates

anticlockwise inwards. Near the wall of the eye of the hurricane, the air rises rapidly to high altitudes at

which it then flows clockwise and outwards and subsequently back down in the outer reaches of the hurricane.

Both the wind velocity and pressure are low inside the eye which can be cloud free. The strongest winds

are in vortex surrounding the eye of the hurricane, while weak winds exist in the counter-rotating vortex of

sinking air that occurs far outside the hurricane.

Figure 109 shows the satellite picture of the hurricane Katrina, recorded on 28 August 2005. The eye of

the hurricane is readily apparent in this picture. The central pressure was 902002 (902) compared

with the standard atmospheric pressure of 1013002 (1013). This 111 pressure difference produced

steady winds in Katrina of 280 ( 175) with gusts up to 344 which resulted in 1833 fatalities.

Tornadoes are another example of a vortex low-pressure system that are the opposite extreme in both

size and duration compared with a hurricane. Tornadoes may last only ∼ 10 minutes and be quite small in
radius. Pressure drops of up to 100 have been recorded, but since they may only be a few 100 meters in

diameter, the pressure gradient can be much higher than for hurricanes leading to localized winds thought to

approach 500. Unfortunately, the instrumentation and buildings hit by a tornado often are destroyed

making study difficult. Note that the the pressure gradient in small diameter of rope tornadoes is much

more destructive than the larger 14 mile diameter tornadoes, resulting in much higher winds.
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10.12.2 High-pressure systems:

In contrast to low-pressure systems, high-pressure systems are very different in that the Coriolis force points

inward opposing the outward pressure gradient and centrifugal force. That is,

2


= 2 sin− 1






(10.74)

which gives that

 =  sin−
s
( sin)

2 − 






(10.75)

This implies that the maximum pressure gradient plus centrifugal force supported by the Coriolis force is








≤ ( sin)2 (10.76)

As a consequence, high pressure regions tend to have weak pressure gradients and light winds in contrast

to the large pressure gradients plus concomitant damaging winds possible for low pressure systems such a

hurricanes or tornados.

The circulation behavior, exhibited by weather patterns, also applies to ocean currents and other liquid

flow on earth. However, the residual angular momentum of the liquid often can overcome the Coriolis terms.

Thus often it will be found experimentally that water exiting the bathtub does not circulate anticlockwise in

the northern hemisphere as predicted by the Coriolis force. This is because it was not stationary originally,

but rotating slowly.

Reliable prediction of weather is an extremely difficult, complicated and challenging task, which is of con-

siderable importance in modern life. As discussed in chapter 158, fluid flow can be much more complicated

than assumed in this discussion of air flow and weather. Both turbulent and laminar flow are possible. As a

consequence, computer simulations of weather phenomena are difficult because the air flow can be turbulent

and the transition from order to chaotic flow is very sensitive to the initial conditions. Typically the air

flow can involve both macroscopic ordered coherent structures over a wide dynamic range of dimensions,

coexisting with chaotic regions. Computer simulations of fluid flow often are performed based on Lagrangian

mechanics to exploit the scalar properties of the Lagrangian. Ordered coherent structures, ranging from

microscopic bubbles to hurricanes, can be recognized by exploiting Lyapunov exponents to identify the or-

dered motion buried in the underlying chaos. Thus the techniques discussed in classical mechanics are of

considerable importance outside of physics.

10.13 Foucault pendulum
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Figure 10.10: Foucault pendulum.

A classic example of motion in non-inertial frames is the rotation

of the Foucault pendulum on the surface of the earth. The Fou-

cault pendulum is a spherical pendulum with a long suspension

that oscillates in the  −  plane with sufficiently small ampli-

tude that the vertical velocity ̇ is negligible. Assume that the

pendulum is a simple pendulum of length  and mass as shown

in figure 1010. The equation of motion is given by

r̈ = g+
T


− 2Ω× ṙ (10.77)

where 

is the acceleration produced by the tension in the pen-

dulum suspension and the rotation vector of the earth is des-

ignated by Ω to avoid confusion with the oscillation frequency

of the pendulum . The effective gravitational acceleration g is

given by

g = g0 −Ω× [Ω× (r+R)] (10.78)
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that is, the true gravitational field g0 corrected for the centrifugal

force.

Assume the small angle approximation for the deflection angle of the pendulum  then  =  cos ' 

and  = , thus  ' . Then has shown in figure 1010, the horizontal components of the restoring

force are

 = −



(10.79)

 = −



(10.80)

Since g is vertical, and neglecting terms involving ̇ then evaluating the cross product in equation (1078)

simplifies to

̈ = −

+ 2̇Ω cos  (10.81)

̈ = − 

− 2̇Ω cos  (10.82)

where  is the colatitude which is related to the latitude  by

cos  = sin (10.83)

The natural angular frequency of the simple pendulum is

0 =

r



(10.84)

while the  component of the earth’s angular velocity is

Ω = Ω cos  (10.85)

Thus equations 1081 and 1082 can be written as

̈− 2Ω̇ + 20 = 0

̈ − 2Ω̇+ 20 = 0 (10.86)

These are two coupled equations that can be solved by making a coordinate transformation.

Define a new coordinate that is a complex number

 = +  (10.87)

Multiply the second of the coupled equations 1086 by  and add to the first equation gives

(̈+ ̈)− 2Ω (̇ − ̇) + 20 (+ ) = (10.88)

(̈+ ̈) + 2Ω (̇+ ̇) + 20 (+ ) = 0

which can be written as a differential equation for 

̈ + 2Ω̇ + 20 = 0 (10.89)

Note that the complex number  contains the same information regarding the position in the −  plane

as equations 1086. The plot of  in the complex plane, the Argand diagram, is a birds-eye view of the

position coordinates ( ) of the pendulum. This second-order homogeneous differential equation has two

independent solutions that can be derived by guessing a solution of the form

() = − (10.90)

Substituting equation 1090 into 1089 gives

2 − 2Ω− 2 = 0
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Therefore

 = Ω ±
q
Ω2 + 20 (10.91)

Assume that the angular velocity of the pendulum 0 is very much higher than the angular velocity of

the earth, i.e. 0  Ω, then

 ' Ω ± 0 (10.92)

Thus the solution is of the form

() = −Ω(+0 +−0) (10.93)

This can be written as

() = −Ω cos(0+ ) (10.94)

where the phase  and amplitude  depend on the initial conditions. Thus the plane of oscillation of the

pendulum is defined by the ratio of the  and  coordinates, that is the phase angle Ω This phase angle

rotates with angular velocity Ω where

Ω = Ω cos  = Ω sin (10.95)

At the north pole the earth rotates under the pendulum with angular velocity Ω and the axis of the

pendulum is fixed in an inertial frame of reference. At lower latitudes, the pendulum precesses at the lower

angular frequency Ω = Ω sin that goes to zero at the equator. For example, in Rochester, NY,  = 43
◦

and therefore a Foucault pendulum precesses at Ω = 0682Ω. That is, the pendulum precesses 2455◦/day.

10.14 Summary

This chapter has focussed on describing motion in non-inertial frames of reference. It has been shown that

the force and acceleration in non-inertial frames can be related using either Newtonian and Lagrangian

mechanics by introducing additional inertial forces in the non-inertial reference frame.

Translational acceleration of a reference frame In a primed frame, that is undergoing translational

acceleration A the motion in this non-inertial frame can be calculated by addition of an inertial force -A,

that leads to an equation of motion

a0 = F−A (106)

Note that the primed frame is an inertial frame if A = 0.

Rotating reference frame It was shown that the time derivatives of a general vector G in both an

inertial frame and a rotating reference frame are related byµ
G



¶


=

µ
G



¶


+ ω ×G (1016)

where the ω×G term originates from the fact that the unit vectors in the rotating reference frame are time

dependent with respect to the inertial frame.

Reference frame undergoing both rotation and translation Both Newtonian and Lagrangian me-

chanics were used to show that for the case of translational acceleration plus rotation, the effective force in

the non-inertial (double-primed) frame can be written as

F = a00 = F− (A+ ω ×V+ 2ω × v00 + ω × (ω × r0) + ω̇ × r0) (1028 1036)

These inertial correction forces result from describing the system in a non-inertial frame. These inertial

forces are felt when in the rotating-translating frame of reference. Thus the notion of these inertial forces

can be very useful for solving problems in non-inertial frames. For the case of rotating frames, two important

inertial forces are the centrifugal force, −ω × (ω × r0)  and the Coriolis force −2ω × v00.
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Routhian reduction for rotating systems It was shown that for non-inertial systems, identical equa-

tions of motion are derived using Newtonian, Lagrangian, Hamiltonian, and Routhian mechanics.

Terrestrial manifestations of rotation Examples of motion in rotating frames presented in the chapter

included projectile motion with respect to the surface of the Earth, rotation alignment of nucleons in rotating

nuclei, and weather phenomena.

Workshop exercises

1. Consider a fixed reference frame  and a rotating frame 0. The origins of the two coordinate systems always
coincide. By carefully drawing a diagram, derive an expression relating the coordinates of a point  in the two

systems. (This was covered in Chapter 2, but it is worth reviewing now.

2. The effective force observed in a rotating coordinate system is given by equation 1028.

(a) What is the significance of each term in this expression?

(b) Suppose you wanted to measure the gravitational force, both magnitude and direction, on a body of mass

 at rest on the surface of the Earth. What terms in the effective force can be neglected?

(c) Suppose you wanted to calculate the deflection of a projectile fired horizontally along the Earth’s surface.

What terms in the effective force can be neglected?

(d) Suppose you wanted to calculate the effective force on a small block of mass  placed on a frictionless

turntable rotating with a time-dependent angular velocity (). What terms in the effective force can be

neglected?

3. A plumb line is carried along in a moving train, with  the mass of the plumb bob. Neglect any effects due to

the rotation of the Earth and work in the noninertial frame of reference of the train.

(a) Find the tension in the cord and the deflection from the local vertical if the train is moving with constant

acceleration 0.

(b) Find the tension in the cord and the deflection from the local vertical if the train is rounding a curve of

radius  with constant speed 0.

4. A bead on a rotating rod is free to slide without friction. The rod has a length  and rotates about its end

with angular velocity . The bead is initially released from rest (relative to the rod) at the midpoint of the

rod.

(a) Find the displacement of the bead along the wire as a function of time.

(b) Find the time when the bead leaves the end of the rod.

(c) Find the velocity (relative to the rod) of the bead when it leaves the end of the rod.

5. Here is a “thought experiment” for you to consider. Suppose you are in a small sailboat of mass  at the

Earth’s equator. At the equator there is very little wind (this is known as the “equatorial doldrums”), so your

sailboat is, more or less, sitting still. You have a small anchor of mass  on deck and a single mast of height

 in the middle of the boat. How can you use the anchor to put the boat into motion? In which direction will

the boat move?

6. Does water really flow in the other direction when you flush a toilet in the southern hemisphere? What (if

anything) does the Coriolis force have to do with this?

7. We are presently at a latitude  (with respect to the equator) and Earth is rotating with constant angular

velocity . Consider the following two scenarios: Scenario A: A particle is thrown upward with initial speed

0. Scenario B: An identical particle is dropped (at rest) from the maximum height of the particle in Scenario

A. Circle all the true statements regarding the Coriolis deflection assuming that the particles have landed for

a) and b), .
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(a) The magnitude is greater in A than in B.

(b) The direction in A and B are the same.

(c) The direction in A does not change throughout flight.

Problems

1. If a projectile is fired due east from a point on the surface of the Earth at a northern latitude  with a velocity

of magnitude 0 and at an inclination to the horizontal of  show that the lateral deflection when the projectile

strikes the Earth is

 =
4 3

0

2
 sin sin2  cos

where  is the rotation frequency of the Earth.

2. In the preceding problem, if the range of the projectile is 00 for the case  = 0 show that the change of range
due to rotation of the Earth is

∆0 =

s
2030


 cos

µ
cot

1
2 − 1

3
tan

3
2 

¶
3. Obtain an expression for the angular deviation of a particle projected from the North Pole in a path that lies

close to the surface of the earth. Is the deviation significant for a missile that makes a 4800-km flight in 10

minutes? What is the ”miss distance” if the missile is aimed directly at the target? Is the miss difference

greater for a 19300-km flight at the same velocity?



Chapter 11

Rigid-body rotation

11.1 Introduction

Rigid-body rotation features prominently in science, engineering, and sports. Prior chapters have focussed

primarily on motion of point particles. This chapter extends the discussion to motion of finite-sized rigid

bodies. A rigid body is a collection of particles where the relative separations remain rigidly fixed. In real

life, there is always some motion between individual atoms, but usually this microscopic motion can be

neglected when describing macroscopic properties. Note that the concept of perfect rigidity has limitations

in the theory of relativity since information cannot travel faster than the velocity of light, and thus signals

cannot be transmitted instantaneously between the ends of a rigid body which is implied if the body had

perfect rigidity.

The description of rigid-body rotation is most easily handled by specifying the properties of the body

in the rotating body-fixed coordinate frame whereas the observables are measured in the stationary iner-

tial laboratory coordinate frame. In the body-fixed coordinate frame, the primary observable for classical

mechanics is the inertia tensor of the rigid body which is well defined and independent of the rotational

motion. By contrast, in the stationary inertial frame the observables depend sensitively on the details of

the rotational motion. For example, when observed in the stationary fixed frame, rapid rotation of a pencil

about the longitudinal symmetry axis gives a time-averaged shape of the pencil that looks like a thin cylin-

der, whereas the time-averaged shape is a flat disk for rotation perpendicular to the symmetry axis of the

pencil. In spite of this, the pencil always has the same unique inertia tensor in the body-fixed frame. Thus

the best solution for describing rotation of a rigid body is to use a rotation matrix that transforms from

the stationary fixed frame to an instantaneous body-fixed frame for which the moment of inertia tensor can

be evaluated. Moreover, the problem can be greatly simplified by transforming to a body-fixed coordinate

frame that is aligned with any symmetry axes of the body since then the inertia tensor can be diagonal; this

is called a principal axis system.

Rigid-body rotation can be broken into the following two classifications.

1) Rotation about a fixed axis:

A body can be constrained to rotate about an axis that has a fixed location and orientation relative to

the body. The hinged door is a typical example. Rotation about a fixed axis is straightforward since the

axis of rotation, plus the moment of inertia about this axis, are well defined and this case was discussed in

chapter 2127.

2) Rotation about a point

A body can be constrained to rotate about a fixed point of the body but the orientation of this rotation

axis about this point is unconstrained. One example is rotation of an object flying freely in space which can

rotate about the center of mass with any orientation. Another example is a child’s spinning top which has

one point constrained to touch the ground but the orientation of the rotation axis is undefined.

The prior discussion in chapter 2127 showed that rigid-body rotation is more complicated than assumed

in introductory treatments of rigid-body rotation. It is necessary to expand the concept of moment of inertia

to the concept of the inertia tensor, plus the fact that the angular momentum may not point along the

rotation axis. The most general case requires consideration of rotation about a body-fixed point where the

orientation of the axis of rotation is unconstrained. The concept of the inertia tensor of a rotating body is

291
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crucial for describing rigid-body motion. It will be shown that working in the body-fixed coordinate frame of

a rotating body allows a description of the equations of motion in terms of the inertia tensor for a given point

of the body, and that it is possible to rotate the body-fixed coordinate system into a principal axis system

where the inertia tensor is diagonal. For any principal axis, the angular momentum is parallel to the angular

velocity if it is aligned with a principal axis. The use of a principal axis system greatly simplifies treatment

of rigid-body rotation and exploits the powerful and elegant matrix algebra mentioned in appendix .

The following discussion of rigid-body rotation is broken into three topics, (1) the inertia tensor of the

rigid body, (2) the transformation between the rotating body-fixed coordinate system and the laboratory

frame, i.e., the Euler angles specifying the orientation of the body-fixed coordinate frame with respect to the

laboratory frame, and (3) Lagrange and Euler’s equations of motion for rigid-bodies. This is followed by a

discussion of practical applications.

11.2 Rigid-body coordinates

Motion of a rigid body is a special case for motion of the  -body system when the relative positions of

the  bodies are related. It was shown in chapter 2 that the motion of a rigid body can be broken into

a combination of a linear translation of some point in the body, plus rotation of the body about an axis

through that point. This is called Chasles’ Theorem. Thus the position of every particle in the rigid body

is fixed with respect to one point in the body. If the fixed point of the body is chosen to be the center of

mass, then, as discussed in chapter 2, it is possible to separate the kinetic energy, linear momentum, and

angular momentum into the center-of-mass motion, plus the motion about the center of mass. Thus the

behavior of the body can be described completely using only six independent coordinates governed by six

equations of motion, three for translation and three for rotation.

Referred to an inertial frame, the translational motion of the center of mass is governed by

F =
P


(11.1)

while the rotational motion about the center of mass is determined by

N =
L


(11.2)

where the external force F and external torque N are identified separately from the internal forces acting

between the particles in the rigid body. It will be assumed that the internal forces are central and thus do

not contribute to the angular momentum.

The location of any fixed point in the body, such as the center of mass, can be specified by three

generalized cartesian coordinates with respect to a fixed frame. The rotation of the body-fixed axis system

about this fixed point in the body can be described in terms of three independent angles with respect to the

fixed frame. There are several possible sets of orthogonal angles that can be used to describe the rotation.

This book uses the Euler angles    which correspond first to a rotation  about the -axis, then a rotation

 about the  axis following the first rotation, and finally a rotation  about the new  axis following the

first two rotations. The Euler angles will be discussed in detail following introduction of the inertia tensor

and angular momentum.

11.3 Rigid-body rotation about a body-fixed point

With respect to some point  fixed in the body coordinate system, the angular momentum of the body  is

given by

L =

X


L =

X


r × p (11.3)

There are two especially convenient choices for the fixed point . If no point in the body is fixed with

respect to an inertial coordinate system, then it is best to choose  as the center of mass. If one point of

the body is fixed with respect to a fixed inertial coordinate system, such as a point on the ground where a

child’s spinning top touches, then it is best to choose this stationary point as the body-fixed point 
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Figure 11.1: Infinitessimal displacement 0
in the primed frame, broken into a part 

due to rotation of the primed frame plus a

part 00due to displacement with respect to
this rotating frame.

Consider a rigid body composed of  particles of mass

 where  = 1 2 3  As discussed in chapter 104, if the

body rotates with an instantaneous angular velocity ω about

some fixed point, with respect to the body-fixed coordinate

system, and this point has an instantaneous translational ve-

locityV with respect to the fixed (inertial) coordinate system,

see figure 111, then the instantaneous velocity v of the 


particle in the fixed frame of reference is given by

v = V+ v
00
 + ω × r0 (11.4)

However, for a rigid body, the velocity of a body-fixed point

with respect to the body is zero, that is v00 = 0 thus

v = V+ ω × r0 (11.5)

Consider the translational velocity of the body-fixed point

 to be zero, i.e. V = 0 and let R = 0 then r = r
0
 . These

assumptions allow the linear momentum of the particle  to

be written as

p = v = ω × r (11.6)

Therefore

L =

X


r × p =
X


r × (ω × r) (11.7)

Using the vector identity

A× (B×A) = 2B−A (A ·B)
leads to

L =

X




£
2ω − r (r · ω)

¤
(11.8)

The angular momentum can be expressed in terms of components of ω and r0 relative to the body-fixed
frame. The following formulae can be written more compactly if r = (  ) in the rotating body-fixed

frame, is written in the form r = (1 2 3) where the axes are defined by the numbers 1 2 3 rather

than   . In this notation, the angular momentum is written in component form as

 =

X




⎡⎣X


2 − 

⎛⎝X




⎞⎠⎤⎦ (11.9)

Assume the Kronecker delta relation

 =

3X


 (11.10)

where

 = 1  = 

 = 0  6= 

Substitute (1110) in (119) gives

 =

X




X


"


X


2 − 

#

=

3X




"
X




Ã

X


2 − 

!#
(11.11)
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11.4 Inertia tensor

The square bracket term in (1111) is called the moment of inertia tensor I which is usually referred to

as the inertia tensor

 ≡
X




"


Ã
3X


2

!
− 

#
(11.12)

In most cases it is more useful to express the components of the inertia tensor in an integral form over

the mass distribution rather than a summation for  discrete bodies. That is,

 =

Z
 (r0)

Ã


Ã
3X


2

!
− 

!
 (11.13)

The inertia tensor is easier to understand when written in cartesian coordinates r0 = (  ) rather
than in the form r0 = (1 2 3) Then, the diagonal moments of inertia of the inertia tensor are

 ≡
X




£
2 + 2 + 2 − 2

¤
=

X




£
2 + 2

¤
(11.14)

 ≡
X




£
2 + 2 + 2 − 2

¤
=

X




£
2 + 2

¤
 ≡

X




£
2 + 2 + 2 − 2

¤
=

X




£
2 + 2

¤
while the off-diagonal products of inertia are

 =  ≡ −
X


 [] (11.15)

 =  ≡ −
X


 []

 =  ≡ −
X


 []

Note that the products of inertia are symmetric in that

 =  (11.16)

The above notation for the inertia tensor allows the angular momentum (1112) to be written as

 =

3X


 (11.17)

Expanded in cartesian coordinates

 =  +  +  (11.18)

 =  +  + 

 =  +  + 

Note that every fixed point in a body has a specific inertia tensor. The components of the inertia tensor

at a specified point depend on the orientation of the coordinate frame whose origin is located at the specified

fixed point. For example, the inertia tensor for a cube is very different when the fixed point is at the center

of mass compared with when the fixed point is at a corner of the cube.
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11.5 Matrix and tensor formulations of rigid-body rotation

The above notation is clumsy and can be streamlined by use of matrix methods. Write the inertia tensor in

a matrix form as

{I}=
⎛⎝ 11 12 13

21 22 23
31 32 33

⎞⎠ (11.19)

The angular velocity and angular momentum both can be written as a column vectors, that is

ω =

⎛⎝ 1
2
3

⎞⎠ L =

⎛⎝ 1
2
3

⎞⎠ (11.20)

As discussed in appendix 2, equation (1118) now can be written in tensor notation as an inner product

of the form

L = {I} · ω (11.21)

Note that the above notation uses boldface for the inertia tensor I, implying a rank-2 tensor representation,
while the angular velocity ω and the angular momentum L are written as column vectors. The inertia tensor

is a 9-component rank-2 tensor defined as the ratio of the angular momentum vector L and the angular

velocity ω.

{I} = L

ω
(11.22)

Note that, as described in appendix , the inner product of a vector ω, which is the rank 1 tensor, and a

rank 2 tensor {I}  leads to the vector L. This compact notation exploits the fact that the matrix and tensor
representation are completely equivalent, and are ideally suited to the description of rigid-body rotation.

11.6 Principal axis system

The inertia tensor is a real symmetric matrix because of the symmetry given by equation (1116)  A property

of real symmetric matrices is that there exists an orientation of the coordinate frame, with its origin at the

chosen body-fixed point  such that the inertia tensor is diagonal. The coordinate system for which the

inertia tensor is diagonal is called the Principal axis system which has three perpendicular principal

axes. Thus, in the principal axis system, the inertia tensor has the form

{I}=
⎛⎝ 11 0 0

0 22 0

0 0 33

⎞⎠ (11.23)

where  are real numbers, which are called the principal moments of inertia of the body, and are

usually written as  . When the angular velocity vector ω points along any principal axis unit vector ̂, then

the angular momentum L is parallel to ω and the magnitude of the principal moment of inertia about this

principal axis is given by the relation

 ̂ =  ̂ (11.24)

The principal axes are fixed relative to the shape of the rigid body and they are invariant to the orientation

of the body-fixed coordinate system used to evaluate the inertia tensor. The advantage of having the body-

fixed coordinate frame aligned with the principal axis coordinate frame is that then the inertia tensor is

diagonal, which greatly simplifies the matrix algebra. Even when the body-fixed coordinate system is not

aligned with the principal axis frame, if the angular velocity is specified to point along a principal axis then

the corresponding moment of inertia will be given by (1124) 

In principle it is possible to locate the principal axes by varying the orientation of the angular velocity

vector ω to find those orientations for which the angular momentum L and angular velocity ω are parallel

which characterizes the principal axes. However, the best approach is to diagonalize the inertia tensor.
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11.7 Diagonalize the inertia tensor

Finding the three principal axes involves diagonalizing the inertia tensor, which is the classic eigenvalue

problem discussed in appendix . Solution of the eigenvalue problem for rigid-body motion corresponds to

a rotation of the coordinate frame to the principal axes resulting in the matrix

{I} · ω = ω (11.25)

where  comprises the three-valued eigenvalues, while the corresponding vector ω is the eigenvector. Ap-

pendix 4 gives the solution of the matrix relation

{I} · ω =  {I}ω (11.26)

where  are three-valued eigen values for the principal axis moments of inertia, and {I} is the unity tensor,
equation 24.

{I} ≡
⎧⎨⎩ 1 0 0

0 1 0

0 0 1

⎫⎬⎭ (11.27)

Rewriting (1126) gives

({I}−  {I}) · ω = 0 (11.28)

This is a matrix equation of the form A · ω =0 where A is a 3 × 3 matrix and ω is a vector with values

   The matrix equation A · ω =0 really corresponds to three simultaneous equations for the three
numbers   . It is a well-known property of equations like (1128) that they have a non-zero solution

if, and only if, the determinant det(A) is zero, that is

det(I−I)=0 (11.29)

This is called the characteristic equation, or secular equation for the matrix I. The determinant

involved is a cubic equation in the value of  that gives the three principal moments of inertia. Inserting

one of the three values of  into equation (1117) gives the corresponding eigenvector . Applying the above

eigenvalue problem to rigid-body rotation corresponds to requiring that some arbitrary set of body-fixed

axes be the principal axes of inertia. This is obtained by rotating the body-fixed axis system such that

1 = 111 + 122 + 133 = 1 (11.30)

2 = 211 + 222 + 233 = 2

3 = 311 + 322 + 333 = 3

or

(11 − )1 + 122 + 133 = 0 (11.31)

211 + (22 − )2 + 233 = 0

311 + 322 + (33 − )3 = 0

These equations have a non-trivial solution for the ratios 1 : 2 : 3 since the determinant vanishes, that is¯̄̄̄
¯̄ (11 − ) 12 13
21 (22 − ) 23
31 32 (33 − )

¯̄̄̄
¯̄ = 0 (11.32)

The expansion of this determinant leads to a cubic equation with three roots for  This is the secular

equation for  whose eigenvalues are the principal moments of inertia.

The directions of the principal axes, that is the eigenvectors, can be found by substituting the cor-

responding solution for  into the prior equation. Thus for eigensolution 1 the eigenvector is given by

solving

(11 − 1)11 + 1221 + 1331 = 0 (11.33)

2111 + (22 − 1)21 + 2331 = 0

3111 + 3221 + (33 − 1)31 = 0
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These equations are solved for the ratios 11 : 21 : 31 which are the direction numbers of the principle axis

system corresponding to solution 1 This principal axis system is defined relative to the original coordinate

system. This procedure is repeated to find the orientation of the other two mutually perpendicular principal

axes.

11.8 Parallel-axis theorem

a
r

R

X

X

X

x

x

x

1

2

3

1

2

3

O

Q

Figure 11.2: Transformation be-

tween two parallel body-coordinate

systems, O and Q.

The values of the components of the inertia tensor depend on the point

and the orientation about which the body rotates relative to the body-

fixed coordinate system. The parallel-axis theorem is valuable for relat-

ing the inertia tensor for rotation about parallel axes passing through

different points fixed with respect to the rigid body. For example, one

may wish to relate the inertia tensor through the center of mass to an-

other location that may be constrained to remain stationary, like the

tip of the spinning top.

Consider the mass  at the location r = (1 2 3) with respect

to the origin of the center of mass body-fixed coordinate system .

Transform to an arbitrary but parallel body-fixed coordinate system

, that is, the coordinate axes have the same orientation as the center

of mass coordinate system. The location of the mass  with respect

to this arbitrary coordinate system is R = (123) That is, the

general vectors for the two coordinates systems are related by

R = a+ r (11.34)

where a is the vector connecting the origins of the coordinate systems

 and  illustrated in figure 112. The elements of the inertia tensor

with respect to axis system  are given by equation 1112 to be

 ≡
X




"


Ã
3X


2


!
−

#
(11.35)

The components along the three axes for each of the two coordinate systems are related by

 =  +  (11.36)

Substituting these into the above inertia tensor relation gives

 =

X




"


Ã
3X


( + )
2

!
− ( + ) ( + )

#
(11.37)

=

X




"


Ã
3X


2

!
− 

#
+

X




"


Ã
3X


¡
2 + 2

¢!− ( +  + )

#

The first summation on the right-hand side corresponds to the elements  of the inertia tensor in the

center-of-mass frame. Thus the terms can be regrouped to give

 ≡  +

X




Ã


3X


2 − 

!
+

X




"
2

3X


 −  − 

#
(11.38)

However, each term in the last bracket involves a sum of the form
P

  Take the coordinate system

 to be with respect to the center of mass for which

X


r
0 = 0 (11.39)
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This also applies to each component , that is

X


 = 0 (11.40)

Therefore all of the terms in the last bracket cancel leaving

 ≡  +

X




Ã


3X


2 − 

!
(11.41)

But
P

  = and
P3

 
2
 = 2 thus

 ≡  +
¡
2 − 

¢
(11.42)

where  is the center-of-mass inertia tensor. This is the general form of Steiner’s parallel-axis theorem.

As an example, the moment of inertia around the 1 axis is given by

11 ≡ 11 +
¡¡
21 + 22 + 23

¢
11 − 21

¢
= 11 +

¡
22 + 23

¢
(11.43)

which corresponds to the elementary statement that the difference in the moments of inertia equals the

mass of the body multiplied by the square of the distance between the parallel axes, 11 Note that the

minimum moment of inertia of a body is  which is about the center of mass.

11.1 Example: Inertia tensor of a solid cube rotating about the center of mass.

O

Inertia tensor of a uniform solid cube of

side  about the center of mass  and a

corner of the cube . The vector  is the

vector distance between  and .

The complicated expressions for the inertia tensor can be un-

derstood using the example of a uniform solid cube with side ,

density  and mass  = 3 rotating about different axes. As-

sume that the origin of the coordinate system  is at the center

of mass with the axes perpendicular to the centers of the faces of

the cube.

The components of the inertia tensor can be calculated using

(1113) written as an integral over the mass distribution rather

than a summation.

 =

Z
 (r0)

Ã


Ã
3X


2

!
− 

!


Thus

11 = 

Z 2

−2

Z 2

−2

Z 2

−2

¡
22 + 23

¢
321

=
1

6
5 =

1

6
2 = 22 = 33

By symmetry the diagonal moments of inertia about each face

are identical. Similarly the products of inertia are given by

12 = −
Z 2

−2

Z 2

−2

Z 2

−2
(12) 321 = 0

Thus the inertia tensor is given by

I =
1

6
2

⎛⎝ 1 0 0

0 1 0

0 0 1

⎞⎠
Note that this inertia tensor is diagonal implying that this is the principal axis system. In this case all three

principal moments of inertia are identical and perpendicular to the centers of the faces of the cube. This is

as expected from the symmetry of the cubic geometry.
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11.2 Example: Inertia tensor of about a corner of a solid cube.

a) Direct calculation Let one corner of the cube be the origin of the coordinate system  and assume

that the three adjacent sides of the cube lie along the coordinate axes. The components of the inertia tensor

can be calculated using (1113)  Thus

11 = 

Z 

0

Z 

0

Z 

0

¡
22 + 23

¢
321 =

2

3
5 =

2

3
2

12 = −
Z 

0

Z 

0

Z 

0

(12) 321 = −1
4
5 = −1

4
2

Thus, evaluating all the nine components gives

I=
1

12
2

⎛⎝ 8 −3 −3
−3 8 −3
−3 −3 8

⎞⎠
b) Parallel-axis theorem This inertia tensor also can be calculated using the parallel-axis theorem to

relate the moment of inertia about the corner, to that at the center of mass. As shown in the figure, the

vector  has components

1 = 2 = 3 =


2

Applying the parallel-axis theorem gives

11 = 11 +
¡
2 − 21

¢
= 11 +

¡
22 + 23

¢
=
1

6
2 +

1

2
2 =

2

3
2

and similarly for 22 and 33. The off-diagonal terms are given by

12 = 12 + (−12) = −1
4
2

Thus the inertia tensor, transposed from the center of mass, to the corner of the cube is

I=

⎛⎝ 2
3
2 −1

4
2 −1

4
2

−1
4
2 2

3
2 −1

4
2

−1
4
2 −1

4
2 2

3
2

⎞⎠ =
1

12
2

⎛⎝ 8 −3 −3
−3 8 −3
−3 −3 8

⎞⎠
This inertia tensor about the corner of the cube, is the same as that obtained by direct integration.

c) Principal moments of inertia The coordinate axis frame used for rotation about the corner of the

cube is not a principal axis frame. Therefore let us diagonalize the inertia tensor to find the principal

axis frame the principal moments of inertia about a corner. To achieve this requires solving the secular

determinant ¯̄̄̄
¯̄
¡
2
3
2 − 

¢ −1
4
2 −1

4
2

−1
4
2

¡
2
3
2 − 

¢ −1
4
2

−1
4
2 −1

4
2

¡
2
3
2 − 

¢
¯̄̄̄
¯̄ = 0

The value of a determinant is not affected by adding or subtracting any row or column from any other

row or column. Subtract row 1 from row 2 gives¯̄̄̄
¯̄
¡
2
3
2 − 

¢ −1
4
2 −1

4
2

−11
12
2 + 

¡
11
12
2 − 

¢
0

−1
4
2 −1

4
2

¡
2
3
2 − 

¢
¯̄̄̄
¯̄ = 0

The determinant of this matrix is straightforward to evaluate and equalsµ
1

6
2 − 

¶µ
11

12
2 − 

¶µ
11

12
2 − 

¶
= 0
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Thus the roots are

I =

⎛⎝ 1
6
2 0 0

0 11
12
2 0

0 0 11
12
2

⎞⎠
The identical roots 22 = 33 =

11
12
2 imply that the principal axis associated with 11 must be a symmetry

axis. The orientation can be found by substituting 11 into the above equation

({I}−  {I}) · ω = 1

12
2

⎛⎝ 6 −3 −3
−3 6 −3
−3 −3 6

⎞⎠⎛⎝ 11
21
31

⎞⎠ = 0

where the second subscript 1 attached to  signifies that this solution corresponds to 11 This gives

211 − 21 − 31 = 0

−11 + 221 − 31 = 0

−11 − 21 + 231 = 0

Solving these three equations gives the unit vector for the first principal axis for which 11 =
1
6
2 to be

ê1=
1√
3

⎛⎝ 1

1

1

⎞⎠. This can be repeated to find the other two principal axes by substituting 22 =
11
12
2 This

gives for the second principal moment 22

({I}−  {I}) · ω = 1

12
2

⎛⎝ −3 −3 −3
−3 −3 −3
−3 −3 −3

⎞⎠⎛⎝ 12
22
32

⎞⎠ = 0

This results in three identical equations for the components of  but all three equations are the same, namely

12 + 22 + 32 = 0

This does not uniquely determine the direction of  However, it does imply that 2 corresponding to the

second principal axis has the property that

ω̂ · ê1 = 0
that is, any direction of ̂2 that is perpendicular to ̂1 is acceptable. In other words; any two orthogonal unit

vectors ̂2 and ̂3 that are perpendicular to ̂1 are acceptable. This ambiguity exists whenever two eigenvalues

are equal; the three principal axes are only uniquely defined if all three eigenvalues are different. The same

ambiguity exist when all three eigenvalues are identical as occurs for the principal moments of inertia about

the center-of-mass of a uniform solid cube. This explains why the principal moment of inertia for the diagonal

of the cube, that passes through the center of mass, has the same moment as when the principal axes pass

through the center of the faces of the cube.

11.9 Perpendicular-axis theorem for plane laminae

Rigid-body rotation of thin plane laminae objects is encountered frequently. Examples of such laminae

bodies are a plane sheet of metal, a thin door, a bicycle wheel, a thin envelope or book. Deriving the inertia

tensor for a plane lamina is relatively simple because there are limits on the possible relative magnitude

of the principal moments of inertia. Consider that the principal axis are along the    coordinate axes.

Then the sum of two principal moments of inertia about the center of mass are

 +  =

Z
(2 + 2) +

Z
(2 + 2)

=

Z
(2 + 2) + 2

Z
2 ≥

Z
(2 + 2) =  (11.44)
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Note that for any body the three principal moments of inertia must satisfy the triangle rule that the sum of

any pair must exceed or equal the third. Moreover, if the body is a thin lamina with thickness  = 0 that

is, a thin plate in the −  plane, then

 +  =  (11.45)

This perpendicular-axis theorem can be very useful for solving problems involving rotation of plane laminae.

The opposite of a plane laminae is a long thin cylindrical needle of mass , length , and radius 

Along the symmetry axis the principal moments are  =
1
2
2 → 0 as  → 0 while perpendicular to the

symmetry axis  =  =
1
12
2. These satisfy the triangle rule.

11.3 Example: Inertia tensor of a hula hoop

The hula hoop is a thin plane circular ring or radius  and mass  . Assume that the symmetry axis of

the circular ring is the 3 axis.

a) The principal moments of inertia about the center of mass: The principal moment of inertia along the

3 axis is 33 =2. Then equation 1145 plus symmetry tells us that the two principal moments of inertia

in the plane of the hula hoop must be 11 = 22 =
1
2
2.

b) The principal moments of inertia about the periphery of the ring: Using the Parallel-axis theorem

tells us that the moment perpendicular to the plane of the hula hoop 33 = 22. In the plane of the hoop

the moment tangential to the hoop is 11 =
3
2
2 and the moment radial to the hoop 22 =

1
2
2. The

hula dancer often swings the hoop about the periphery and perpendicular to the plane by swinging their hips.

Another movement is jumping through the hoop by rotating the hoop tangential to the periphery. Calculation

of such maneuvers requires knowledge of these principal moments of inertia.

11.4 Example: Inertia tensor of a thin book

Consider a thin rectangular book of mass  width  and length  with thickness    and   .

About the center of mass the inertia tensor perpendicular to the plane of the book is 33 =

12
(2 + 2). The

other two moments are 11 =

12
2 and 22 =


12
2 which satisfy equation 1145.

11.10 General properties of the inertia tensor

11.10.1 Inertial equivalence

The elements of the inertia tensor, the values of the principal moments of inertia, and the orientation of the

principal axes for a rigid body, all depend on the choice of origin for the system. Recall that for the kinetic

energy to be separable into translational and rotational portions, the origin of the body coordinate system

must coincide with the center of mass of the body. However, for any choice of the origin of any body, there

always exists an orientation of the axes that diagonalizes the inertia tensor.

The inertial properties of a body for rotation about a specific body-fixed location is defined completely

by only three principal moments of inertia irrespective of the detailed shape of the body. As a result, the

inertial properties of any body about a body-fixed point are equivalent to that of an ellipsoid that has the

same three principal moments of inertia. The symmetry properties of this equivalent ellipsoidal body define

the symmetry of the inertial properties of the body. If a body has some simple symmetry then usually it is

obvious as to what will be the principal axes of the body.

Spherical top: 1 = 2 = 3

A spherical top is a body having three degenerate principal moments of inertia. Such a body has the same

symmetry as the inertia tensor about the center of a uniform sphere. For a sphere it is obvious from the

symmetry that any orientation of three mutually orthogonal axes about the center of the uniform sphere are

equally good principal axes. For a uniform cube the principal axes of the inertia tensor about the center of

mass were shown to be aligned such that they pass through the center of each face, and the three principal

moments are identical; that is, inertially it is equivalent to a spherical top. A less obvious consequence of the

spherical symmetry is that any orientation of three mutually perpendicular axes about the center of mass of

a uniform cube is an equally good principal axis system.
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Symmetric top: 1 = 2 6= 3

The equivalent ellipsoid for a body with two degenerate principal moments of inertia is a spheroid which has

cylindrical symmetry with the cylindrical axis aligned along the third axis. A body with 3  1 = 2 is a

prolate spheroid while a body with 3  1 = 2 is an oblate spheroid. Examples with a prolate spheroidal

equivalent inertial shape are a rugby ball, pencil, or a baseball bat. Examples of an oblate spheroid are an

orange, or a frisbee. A uniform sphere, or a uniform cube, rotating about a point displaced from the center-

of-mass also behave inertially like a symmetric top. The cylindrical symmetry of the equivalent spheroid

makes it obvious that any mutually perpendicular axes that are normal to the axis of cylindrical symmetry

are equally good principal axes even when the cross section in the 1−2 plane is square as opposed to circular.
A rotor is a diatomic-molecule shaped body which is a special case of a symmetric top where 1 = 0

and 2 = 3. The rotation of a rotor is perpendicular to the symmetry axis since the rotational energy and

angular momentum about the symmetry axis are zero because the principal moment of inertia about the

symmetry axis is zero.

Asymmetric top: 1 6= 2 6= 3

A body where all three principal moments of inertia are distinct, 1 6= 2 6= 3 is called an asymmetric

top. Some molecules, and nuclei have asymmetric, triaxially-deformed, shapes.

11.10.2 Orthogonality of principal axes

The body-fixed principal axes comprise an orthogonal set, for which the vectors L and ω are simply related.

Components of L and ω can be taken along the three body-fixed axes denoted by  Thus for the 

principal moment 
 =  (11.46)

Written in terms of the inertia tensor

 =

3X


 =  (11.47)

Similarly the  principal moment can be written as

 =

3X


 =  (11.48)

Multiply the equation 1147 by  and sum over  givesX


 =
X


 (11.49)

Similarly multiplying equation 1148 by  and summing over  givesX


 =
X


 (11.50)

The left-hand sides of these equations are identical since the inertia tensor is symmetric, that is  = 

Therefore subtracting these equations givesX


 −
X


 = 0 (11.51)

That is

( − )
X


 = 0 (11.52)

or

( − )ω · ω = 0 (11.53)
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If  6=  then

ω · ω = 0 (11.54)

which implies that the  and  principal axes are perpendicular. However, if  =  then equation

1153 does not require that ω · ω = 0, that is, these axes are not necessarily perpendicular, but, with

no loss of generality, these two axes can be chosen to be perpendicular with any orientation in the plane

perpendicular to the symmetry axis.

Summarizing the above discussion, the inertia tensor has the following properties.

1) Diagonalization may be accomplished by an appropriate rotation of the axes in the body.

2) The principal moments (eigenvalues) and principal axes (eigenvectors) are obtained as roots of the

secular determinant and are real.

3) The principal axes (eigenvectors) are real and orthogonal.

4) For a symmetric top with two identical principal moments of inertia, any orientation of two orthogonal

axes perpendicular to the symmetry axis are satisfactory eigenvectors.

5) For a spherical top with three identical principal moment of inertia, the principal axes system can

have any orientation with respect to the origin.

11.11 Angular momentum L and angular velocity ω vectors

The angular momentum is a primary observable for rotation. As discussed in chapter 115, the angular

momentum L is compactly and elegantly written in matrix form using the tensor algebra relation

L=

⎛⎝ 11 12 13
21 22 23
31 32 33

⎞⎠ ·
⎛⎝ 1

2
3

⎞⎠ = {I} · ω (11.55)

where ω is the angular velocity, {I} the inertia tensor, and L the corresponding angular momentum.
Two important consequences of equation 1155 are that:

• The angular momentum L and angular velocity ω are not necessarily colinear.

• In general the Principal axis system of the rotating rigid body is not aligned with either the angular

momentum or angular velocity vectors.

An exception to these statements occurs when the angular velocity ω is aligned along a principal axes

for which the inertia tensor is diagonal, i.e.  =  , and then both L and ω point along this principal

axis. In general the angular momentum L and angular velocity ω precess around each other. An important

special case is for torque-free systems where Noether’s theorem implies that the angular momentum vector

L is conserved both in magnitude and amplitude. In this case, the angular velocity ω and the Principal axis

system, both precesses around the angular momentum vector L. That is, the body appears to tumble with

respect to the laboratory fixed frame. Understanding rigid-body rotation requires care not to confuse the

body-fixed Principal axis coordinate frame, used to determine the inertia tensor, and the fixed laboratory

frame where the motion is observed.

11.5 Example: Rotation about the center of mass of a solid cube

It is illustrative to use the inertia tensors of a uniform cube to compute the angular momentum for any

applied angular velocity vector  using equation (1155). If the angular velocity is along the  axis, then

using the inertia tensor for a solid cube, derived earlier, in equation (1155) gives the angular momentum to

be

L = {I} · ω = 1

6
2

⎛⎝ 1 0 0

0 1 0

0 0 1

⎞⎠ ·
⎛⎝ 1

0

0

⎞⎠ =
1

6
2

⎛⎝ 1

0

0

⎞⎠
This shows that L and ω are colinear and thus the  axis is a principal axis. By symmetry, the  and 

body fixed axis also must be principal axes.
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Consider that the body is rotated about a diagonal of the cube for which the center of mass will be on

the rotation axis. Then the angular velocity vector is written as ω = 1√
3

⎛⎝ 1

1

1

⎞⎠ where the components of

 =  =  =  1√
3
with the angular velocity magnitude

q
2 + 2 + 2 = 

L = {I} · ω = 1

6
2

1√
3

⎛⎝ 1 0 0

0 1 0

0 0 1

⎞⎠ ·
⎛⎝ 1

1

1

⎞⎠ =
1

6
2

1√
3

⎛⎝ 1

1

1

⎞⎠ =
1

6
2ω

Note that L and ω again are colinear showing it also is a principal axis. Moreover, the magnitude of L

is identical for orientations of the rotation axes  passing through the center of mass when centered on

either one face, or the diagonal, of the cube implying that the principal moments of inertia about these axes

are identical. This illustrates the important property that, when the three principal moments of inertia are

identical, then any orientation of the coordinate system is an equally good principal axis system. That is,

this corresponds to the spherical top where all orientations are principal axes, not just along the obvious

symmetry axes.

11.6 Example: Rotation about the corner of the cube

Let us repeat the above exercise for rotation about one corner of the cube. Consider that the angular

velocity is along the  axis. Then example (112) gives the angular momentum to be

L = {I} · ω = 1

12
2

⎛⎝ +8 −3 −3
−3 +8 −3
−3 −3 +8

⎞⎠ ·
⎛⎝ 1

0

0

⎞⎠ =
1

12
2ω

⎛⎝ +8

−3
−3

⎞⎠
The angular momentum is far from being aligned with the axis  that is, it is not a principal axis.

Consider that the body is rotated with the angular velocity aligned along a diagonal of the cube through

the center of mass on this axis. Then the angular velocity is written as ω = 1√
3

⎛⎝ 1

1

1

⎞⎠ where the components

of  =  =  =
1√
3
ensuring that the magnitude equals

q
2 + 2 + 2 = 

L = {I} · ω = 1

12
2

1√
3

⎛⎝ +8 −3 −3
−3 +8 −3
−3 −3 +8

⎞⎠ ·
⎛⎝ 1

1

1

⎞⎠ =
1

12
2

1√
3

⎛⎝ 2

2

2

⎞⎠ =
1

6
2ω

This is a principal axis since L and  again are colinear and the angular momentum is the same as for any

axis through the center of mass of a uniform solid cube due to the high symmetry of the cube. If the angular

velocity is perpendicular to the diagonal of the cube, then, for either of these perpendicular axes, the relation

between  and  is given by

L =
1

12
2

1√
2

⎛⎝ +8 −3 −3
−3 +8 −3
−3 −3 +8

⎞⎠ ·
⎛⎝ −1+1

0

⎞⎠ =
1

12
2

1√
2

⎛⎝ −11+11

0

⎞⎠ =
11

12
2

⎛⎝ −1+1
0

⎞⎠
Note that this must be a principal axis for rotation about a corner of the cube since L and ω are colinear.

The angular momentum is the same for both possible orientations of  that are perpendicular to the diagonal

through the center of mass. Diagonalizing the inertia tensor in example 112 also gave the above result with

the symmetry axis along the diagonal of the cube.

This example illustrates that it is not necessary to diagonalize the inertia tensor matrix to obtain the

principal axes. The corner of the cube has three mutually perpendicular principal axes independent of the

choice of a body-fixed coordinate frame. The advantage of the principal axis coordinate frame is that the

inertia tensor is diagonal making evaluation of the angular momentum trivial. That is, there is no physics

associated with the orientation chosen for the body-fixed coordinate frame, this frame only determines the

ratio of the components of the inertia tensor along the chosen coordinates. Note that, if a body has an obvious

symmetry, then intuition is a powerful way to identify the principal axis frame.



11.12. KINETIC ENERGY OF ROTATING RIGID BODY 305

11.12 Kinetic energy of rotating rigid body

Another important observable is the kinetic energy of rotation. Consider a rigid body composed of 

particles of mass  where  = 1 2 3  If the body rotates with an instantaneous angular velocity ω

about some fixed point, with respect to the body coordinate system, and this point has an instantaneous

translational velocity V with respect to the fixed (inertial) coordinate system, see figure 111, then the

instantaneous velocity v of the 
 particle in the fixed frame of reference is given by

v = V+ v
00
 + ω × r0 (11.56)

However, for a rigid body, the velocity of a body-fixed point with respect to the body is zero, that is v00 = 0
thus

v = V+ ω × r0 (11.57)

The total kinetic energy is given by

 =

X


1

2
v · v =

X


1

2
 (V+ ω × r0) · (V+ ω × r0)

=
1

2

X



2 +

X


V · ω × r0 +
1

2

X


 (ω × r0) · (ω × r0) (11.58)

This is a general expression for the kinetic energy that is valid for any choice of the origin from which the

body-fixed vectors r0 are measured. However, if the origin is chosen to be the center of mass, then, and only
then, the middle term cancels. That is, since V · ω is independent of the specific particle, then

X


V · ω × r0 = V · ω ×
Ã

X


r
0


!
(11.59)

But the definition of the center of mass is X


r
0 =R (11.60)

and R = 0 in the body-fixed frame if the selected point in the body is the center of mass. Thus, when using

the center of mass frame, the middle term of equation 1158 is zero. Therefore, for the center of mass frame,

the kinetic energy separates into two terms in the body-fixed frame

 =  +  (11.61)

where

 =
1

2

X



2 (11.62)

 =
1

2

X


 (ω × r0) · (ω × r0)

The vector identity

(A×B) · (A×B) = 22 − (A ·B)2 (11.63)

can be used to simplify 

 =
1

2

X




h
202 − (ω · r0)2

i
(11.64)

The rotational kinetic energy  can be expressed in terms of components of ω and r
0
 in the body-fixed

frame. Also the following formulae are greatly simplified if r0 = (  ) in the rotating body-fixed frame
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is written in the form r0 = (1 2 3) where the axes are defined by the numbers 1 2 3 rather than
  . In this notation the rotational kinetic energy is written as

 =
1

2

X




⎡⎣ÃX


2

!ÃX


2

!
−
ÃX





!⎛⎝X




⎞⎠⎤⎦ (11.65)

Assume the Kronecker delta relation

 =

3X


 (11.66)

where  = 1 if  =  and  = 0 if  6= 

Then the kinetic energy can be written more compactly

 =
1

2

X
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⎞⎠⎤⎦
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##
(11.67)

The term in the outer square brackets is the inertia tensor defined in equation 1112 for a discrete body. The

inertia tensor components for a continuous body are given by equation 1113.

Thus the rotational component of the kinetic energy can be written in terms of the inertia tensor as

 =
1

2

3X


 (11.68)

Note that when the inertia tensor is diagonal ,then the evaluation of the kinetic energy simplifies to

 =
1

2

3X



2
 (11.69)

which is the familiar relation in terms of the scalar moment of inertia  discussed in elementary mechanics.

Equation 1168 also can be factored in terms of the angular momentum L.

 =
1

2

X


 =
1

2

X



X


 =
1

2

X


 (11.70)

As mentioned earlier, tensor algebra is an elegant and compact way of expressing such matrix operations.

Thus it is possible to express the rotational kinetic energy as

 =
1

2

¡
1 2 3

¢ ·
⎛⎝ 11 12 13

21 22 23
31 32 33

⎞⎠ ·
⎛⎝ 1

2
3

⎞⎠ (11.71)

 ≡ T =
1

2
ω · {I} · ω (11.72)

where the rotational energy T is a scalar. Using equation 1155 the rotational component of the kinetic

energy also can be written as

 ≡ T = 1

2
ω · L (11.73)

which is the same as given by (1170). It is interesting to realize that even though L = {I} · ω is the inner

product of a tensor and a vector, it is a vector as illustrated by the fact that the inner product  =
1
2
ω ·L =

1
2
ω · ({I} · ω) is a scalar. Note that the translational kinetic energy  must be added to the rotational

kinetic energy  to get the total kinetic energy as given by equation 1161
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11.13 Euler angles

Figure 11.3: The  −  −  sequence of rotations

   corresponding to the Eulerian angles

(  ). The first rotation  about the space-

fixed z axis (blue) is from the -axis (blue) to the

line of nodes n (green). The second rotation 

about the line of nodes (green) is from the space-

fixed  axis (blue) to the body-fixed 3-axis (red).

The third rotation  about the body-fixed 3-axis

(red) is from the line of nodes (green) to the body-

fixed 1 axis (red).

The description of rigid-body rotation is greatly facil-

itated by transforming from the space-fixed coordinate

frame (x̂ ŷ ẑ) to a rotating body-fixed coordinate frame¡
1̂ 2̂ 3̂

¢
for which the inertia tensor is diagonal. Appen-

dix  introduced the rotation matrix {λ} which can be
used to rotate between the space-fixed coordinate sys-

tem, which is stationary, and the instantaneous body-

fixed frame which is rotating with respect to the space-

fixed frame. The transformation can be represented by

a matrix equation¡
1̂ 2̂ 3̂

¢
= {λ} · (x̂ ŷ ẑ) (11.74)

where the space-fixed system is identified by unit vectors

(x̂ ŷ ẑ) while
¡
1̂ 2̂ 3̂

¢
defines unit vectors in the rotated

body-fixed system. The rotation matrix {λ} completely
describes the instantaneous relative orientation of the

two systems. Rigid-body rotation requires three inde-

pendent angular parameters that specify the orientation

of the rigid body such that the corresponding orthog-

onal transformation matrix is proper, that is, it has a

determinant || = +1 as given by equation (33).

As discussed in Appendix 2, the 9 component ro-

tation matrix involves only three independent angles.

There are many possible choices for these three angles.

It is convenient to use the Euler angles,    (also

called Eulerian angles) shown in figure 113.1 The Euler

angles are generated by a series of three rotations that

rotate from the space-fixed (x̂ ŷ ẑ) system to the body-

fixed
¡
1̂ 2̂ 3̂

¢
system. The rotation must be such that

the space-fixed  axis rotates by an angle  to align with

the body-fixed 3 axis. This can be performed by rotating

through an angle  about the n̂ ≡ ẑ× 3̂ direction, where
ẑ and 3̂ designate the unit vectors along the ”” axes

of the space and body fixed frames respectively. The

unit vector n̂ ≡ ẑ× 3̂ is the vector normal to the plane
defined by the ẑ and 3̂ unit vectors and this unit vector n̂ = ẑ× 3̂ is called the line of nodes. The chosen
convention is that the unit vector n̂ = ẑ× 3̂ is along the ”” axis of an intermediate-axis frame designated
by
¡
n̂ ŷ0 ẑ

¢
, that is, the unit vector n̂ = ẑ× 3̂ plus the unit vectors ŷ0 and ẑ are in the same plane as the ẑ

and 3̂ unit vectors. The sequence of three rotations is performed as summarized below.

1) Rotation  about the space-fixed ẑ axis from the space x̂ axis to the line of nodes n̂ : The

first rotation (xy z) · λ → (ny0 z) is in a right-handed direction through an angle  about the space-fixed
z axis. Since the rotation takes place in the x− y plane, the transformation matrix is

{λ}=
⎛⎝ cos sin 0

− sin cos 0

0 0 1

⎞⎠ (11.75)

1The space-fixed coordinate frame and the body-fixed coordinate frames are unambiguously defined, that is, the space-fixed

frame is stationary while the body-fixed frame is the principal-axis frame of the body. There are several possible intermediate

frames that can be used to define the Euler angles. The  −  −  sequence of rotations, used here, is used in most physics

textbooks in classical mechanics. Unfortunately scientists and engineers use slightly different conventions for defining the Euler

angles. As discussed in Appendix A of "Classical Mechanics" by Goldstein, nuclear and particle physicists have adopted the

 −  −  sequence of rotations while the US and UK aerodynamicists have adopted a −  −  sequence of rotations.
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This leads to the intermediate coordinate system (ny0 z) where the rotated x axis now is colinear with the
n axis of the intermediate frame, that is, the line of nodes.

(ny0 z) = {λ} · (xy z) (11.76)

The precession angular velocity ̇ is the rate of change of angle of the line of nodes with respect to the space

 axis about the space-fixed  axis.

2) Rotation  about the line of nodes n̂ from the space ẑ axis to the body-fixed 3̂ axis: The

second rotation

(ny0 z) ·  → (ny003) (11.77)

is in a right-handed direction through the angle  about the n̂ axis (line of nodes) so that the ”” axis becomes

colinear with the body-fixed 3̂ axis. Because the rotation now is in the ẑ−3̂ plane, the transformation matrix
is

{λ}=
⎛⎝ 1 0 0

0 cos  sin 

0 − sin  cos 

⎞⎠ (11.78)

The line of nodes which is at the intersection of the space-fixed and body-fixed planes, shown in figure 113

points in the n̂ = ẑ× 3̂ direction. The new ”” axis now is the body-fixed 3̂ axis. The angular velocity ̇ is
the rate of change of angle of the body-fixed 3̂-axis relative to the space-fixed ẑ-axis about the line of nodes.

3) Rotation  about the body-fixed 3̂ axis from the line of nodes to the body-fixed 1̂ axis: The

third rotation

(ny003) ·  → (1̂ 2̂ 3̂) (11.79)

is in a right-handed direction through the angle  about the new body-fixed 3̂ axis This third rotation

transforms the rotated intermediate (ny003) frame to final body-fixed coordinate system (1̂ 2̂ 3̂) The

transformation matrix is

{λ}=
⎛⎝ cos sin 0

− sin cos 0

0 0 1

⎞⎠ (11.80)

The spin angular velocity ̇ is the rate of change of the angle of the body-fixed 1-axis with respect to the

line of nodes about the body-fixed 3 axis.

The total rotation matrix {λ} is given by

{λ}= {λ} · {λ} · {λ} (11.81)

Thus the complete rotation from the space-fixed (xy z) axis system to the body-fixed (123) axis system

is given by

(123) = {λ} · (xy z) (11.82)

where {λ} is given by the triple product equation (1181) leading to the rotation matrix

{λ} =
⎛⎝ cos cos − sin cos  sin sin cos + cos cos  sin sin  sin

− cos sin − sin cos  cos − sin sin + cos cos  cos sin  cos

sin sin  − cos sin  cos 

⎞⎠ (11.83)

The inverse transformation from the body-fixed axis system to the space-fixed axis system is given by

(xy z) = {λ}−1 · (123) (11.84)

where the inverse matrix {λ}−1 equals the transposed rotation matrix {λ} , that is,

{λ}−1 = {λ} =
⎛⎝ cos cos − sin cos  sin − cos sin − sin cos  cos sin sin 

sin cos + cos cos  sin − sin sin + cos cos  cos − cos sin 
sin  sin sin  cos cos 

⎞⎠ (11.85)
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Taking the product {λ} {λ}−1 = 1 shows that the rotation matrix is a proper, orthogonal, unit matrix.
The use of three different coordinate systems, space-fixed, the intermediate line of nodes, and the body-

fixed frame can be confusing at first glance. Basically the angle  specifies the rotation about the space-fixed

 axis between the space-fixed  axis and the line of nodes of the Euler angle intermediate frame. The angle

 specifies the rotation about the body-fixed 3 axis between the line of nodes and the body-fixed 1 axis. Note

that although the space-fixed and body-fixed axes systems each are orthogonal, the Euler angle basis in

general is not orthogonal. For rigid-body rotation the rotation angle  about the space-fixed  axis is time

dependent, that is, the line of nodes is rotating with an angular velocity ̇ with respect to the space-fixed

coordinate frame. Similarly the body-fixed coordinate frame is rotating about the body-fixed 3 axis with

angular velocity ̇ relative to the line of nodes.

11.7 Example: Euler angle transformation

The definition of the Euler angles can be confusing, therefore it is useful to illustrate their use for a

rotational transformation of a primed frame (0 0 0) to an unprimed frame (  ) Assume the first
rotation about the 0 axis, is  = 30◦

 =

⎛⎜⎝
√
3
2

1
2

0

− 1
2

√
3
2

0

0 0 1

⎞⎟⎠
Let the second rotation be  = 45◦ about the line of nodes, that is, the intermediate ” axis. Then

 =
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0 1√
2

1√
2

0 − 1√
2

1√
2
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Let the third rotation be  = 90◦ about the  axis.

 =

⎛⎝ 0 1 0

−1 0 0

0 0 1
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Thus the net rotation corresponds to  = 
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11.14 Angular velocity ω

It is useful to relate the rigid-body equations of motion in the space-fixed (x̂ ŷ ẑ) coordinate system to

those in the body-fixed (ê1 ê2 ê3) coordinate system where the principal axis inertia tensor is defined. It

was shown in appendix  that an infinitessimal rotation can be represented by a vector. Thus the time

derivatives of these rotation angles can be associated with the components of the angular velocity ω where

the precession  = ̇, the nutation  = ̇, and the spin  = ̇. Unfortunately the coordinates (  )

are with respect to mixed coordinate frames and thus are not orthogonal axes. That is, the Euler angular

velocities are expressed in different coordinate frames, where the precession ̇ is around the space-fixed ẑ

axis measured relative to the x̂-axis, the spin ̇ is around the body-fixed ê3 axis relative to the rotating

line-of-nodes, and the nutation ̇ is the angular velocity between the ẑ and ê3 axes and points along the

instantaneous line-of-nodes in the ê3 × ẑ direction. By reference to figure 113 it can be seen that the
components along the body-fixed axes are as given in Table 111.

Table 111; Euler angular velocity components in the body-fixed frame

Precession ̇ Nutation ̇ Spin ̇

̇1 = ̇ sin  sin ̇1 = ̇ cos ̇1 = 0

̇2 = ̇ sin  cos ̇2 = −̇ sin ̇2 = 0

̇3 = ̇ cos  ̇3 = 0 ̇3 = ̇
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Note that the precession angular velocity ̇ is the angular velocity that the body-fixed ê3 and ẑ× 3̂ axes
precess around the space-fixed ẑ axis. Table 111 gives the Euler angular velocities required to calculate

the components of the angular velocity ω for the body-fixed (123) axis system. Collecting the individual

components of ω gives the components of the angular velocity of the body, relative to the space-fixed axes,

in the body-fixed axis system (1 2 3)

1 = ̇1 + ̇1 + ̇1 = ̇ sin  sin + ̇ cos (11.86)

2 = ̇2 + ̇2 + ̇2 = ̇ sin  cos − ̇ sin (11.87)

3 = ̇3 + ̇3 + ̇3 = ̇ cos  + ̇ (11.88)

The angular velocity of the body about the body-fixed 3-axis, 3, is the sum of the projection of the

precession angular velocity of the line-of-nodes ̇ with respect to the space-fixed x-axis, plus the angular

velocity ̇ of the body-fixed 3-axis with respect to the rotating line-of-nodes.

Similarly, the components of the body angular velocity ω for the space-fixed axis system (  ) can be

derived to be

 = ̇ cos+ ̇ sin  sin (11.89)

 = ̇ sin− ̇ sin  cos (11.90)

 = ̇+ ̇ cos  (11.91)

Note that when  = 0 then the Euler angles are singular in that the space-fixed  axis is parallel with

the body-fixed 3 axis and there is no way of distinguishing between precession ̇ and spin ̇, leading to

 = 3 = ̇+ ̇. When  =  then the  axis and 3 axis are antiparallel and  = ̇− ̇ = −3. The other
special case is when cos  = 0 for which the Euler angle system is orthogonal and the space-fixed  = ̇,

that is, it equals the precession, while the body-fixed 3 = ̇, that is, it equals the spin. When the Euler

angle basis is not orthogonal then equations (1186− 88) and (1189− 91) are needed for expressing the
Euler equations of motion in either the body-fixed frame or the space-fixed frame respectively.

Equations 1186−88 for the components of the angular velocity in the body-fixed frame can be expressed
in terms of the Euler angle velocities in a matrix form as⎛⎝ 1

2
3

⎞⎠ =

⎛⎝ sin  sin cos 0

sin  cos − sin 0

cos  0 1

⎞⎠ ·
⎛⎝ ̇

̇

̇

⎞⎠ (11.92)

again note that the transformation matrix is not orthogonal which is to be expected since the Euler angular

velocities are about axes that do not form a rectangular system of coordinates. Similarly equations 1189−91
for the angular velocity in the space-fixed frame can be expressed in terms of the Euler angle velocities in

matrix form as ⎛⎝ 



⎞⎠ =

⎛⎝ 0 cos sin  sin

0 sin sin  cos

1 0 cos 

⎞⎠ ·
⎛⎝ ̇

̇

̇

⎞⎠ (11.93)

11.15 Kinetic energy in terms of Euler angular velocities

The kinetic energy is a scalar quantity and thus is the same in both stationary and rotating frames of

reference. It is much easier to evaluate the kinetic energy in the rotating Principal-axis frame since the

inertia tensor is diagonal in the Principal-axis frame as given in equation 1169

 =
1

2

3X



2
 (11.94)

Using equation 1186− 88 for the body-fixed angular velocities gives the rotational kinetic energy in terms
of the Euler angular velocities and principal-frame moments of inertia to be

 =
1

2

∙
1

³
̇ sin  sin + ̇ cos

´2
+ 2

³
̇ sin  cos − ̇ sin

´2
+ 3

³
̇ cos  + ̇

´2¸
(11.95)
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11.16 Rotational invariants

The scalar properties of a rotating body, such as mass Lagrangian , and Hamiltonian  are rotationally

invariant, that is, they are the same in any body-fixed or laboratory-fixed coordinate frame. This fact also

applies to scalar products of all vector observables such as angular momentum. For example the scalar

product

L · L =2 (11.96)

where  is the root mean square value of the angular momentum. An example of a scalar invariant is the

scalar product of the angular velocity

ω · ω =2 (11.97)

where 2 is the mean square angular velocity. The scalar product  ·  = ||2 can be calculated using the
Euler-angle velocities for the body-fixed frame, equations 1186− 88, to be

ω · ω = ||2 = 21 + 22 + 23 = ̇
2
+ ̇

2
+ ̇

2
+ 2̇̇ cos 

Similarly, the scalar product can be calculated using the Euler angle velocities for the space-fixed frame

using equations 1189− 91.

ω · ω = ||2 = 2 + 2 + 2 = ̇
2
+ ̇

2
+ ̇

2
+ 2̇̇ cos 

This shows the obvious result that the scalar product  ·  = ||2 is invariant to rotations of the coordinate
frame, that is, it is identical when evaluated in either the space-fixed, or body-fixed frames.

Note that for  = 0, the 3̂ and ̂ axes are parallel, and perpendicular to the ̂ axis, then

||2 =
³
̇+ ̇

´2
+ ̇

2

For the case when  = 180◦, the 3̂ and ̂ axes are antiparallel, and perpendicular to the ̂ axis, then

||2 =
³
̇− ̇

´2
+ ̇

2

For the case when  = 90◦, the 3̂ , ̂, and ̂ axes are mutually perpendicular, that is, orthogonal, and then

||2 = ̇
2
+ ̇

2
+ ̇

2

The time-averaged shape of a rapidly-rotating body, as seen in the fixed inertial frame, is very different

from the actual shape of the body, and this difference depends on the rotational frequency. For example, a

pencil rotating rapidly about an axis perpendicular to the body-fixed symmetry axis has an average shape

that is a flat disk in the laboratory frame which bears little resemblance to a pencil. The actual shape of the

pencil could be determined by taking high-speed photographs which display the instantaneous body-fixed

shape of the object at given times. Unfortunately for fast rotation, such as rotation of a molecule or a

nucleus, it is not possible to take photographs with sufficient speed and spatial resolution to observe the

instantaneous shape of the rotating body. What is measured is the average shape of the body as seen in the

fixed laboratory frame. In principle the shape observed in the fixed inertial frame can be related to the shape

in the body-fixed frame, but this requires knowing the body-fixed shape which in general is not known. For

example, a deformed nucleus may be both vibrating and rotating about some triaxially deformed average

shape which is a function of the rotational frequency. This is not apparent from the shapes measured in the

fixed frame for each of the excited states.

The fact that scalar products are rotationally invariant, provides a powerful means of transforming prod-

ucts of observables in the body-fixed frame, to those in the laboratory frame. In 1971 Cline developed

a powerful model-independent method that utilizes rotationally-invariant products of the electromagnetic

quadrupole operator 2 to relate the electromagnetic 2 properties for the observed levels of a rotating

nucleus measured in the laboratory frame, to the electromagnetic 2 properties of the deformed rotating

nucleus measured in the body-fixed frame.[Cli71, Cli72, Cli86] The method uses the fact that scalar products

of the electromagnetic multipole operators are rotationally invariant. This allows transforming scalar prod-

ucts of a complete set of measured electromagnetic matrix elements, measured in the laboratory frame, into
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the electromagnetic properties in the body-fixed frame of the rotating nucleus. These rotational invariants

provide a model-independent determination of the magnitude, triaxiality, and vibrational amplitudes of the

average shapes in the body-fixed frame for individual observed nuclear states that may be undergoing both

rotation and vibration. When the bombarding energy is below the Coulomb barrier, the scattering of a

projectile nucleus by a target nucleus is due purely to the electromagnetic interaction since the distance

of closest approach exceeds the range of the nuclear force. For such pure Coulomb collisions, the electro-

magnetic excitation of collective nuclei populates many excited states, as illustrated in figure 1213, with

cross sections that are a direct measure of the 2 matrix elements. These measured matrix elements are

precisely those required to evaluate, in the laboratory frame, the 2 rotational invariants from which it is

possible to deduce the intrinsic quadrupole shapes of the rotating-vibrating nuclear states in the body-fixed

frame[Cli86].

11.17 Euler’s equations of motion for rigid-body rotation

Rigid-body rotation can be confusing in that two coordinate frames are involved and, in general, the angular

velocity and angular momentum are not aligned. The motion of the rigid body is observed in the space-fixed

inertial frame whereas it is simpler to calculate the equations of motion in the body-fixed principal axis

frame, for which the inertia tensor is known and is constant. The rigid body is rotating about the angular

velocity vector ω, which is not aligned with the angular momentum L. For torque-free motion, L is conserved

and has a fixed orientation in the space-fixed axis system. Euler’s equations of motion, presented below,

are given in the body-fixed frame for which the inertial tensor is known since this simplifies solution of the

equations of motion. However, this solution has to be rotated back into the space-fixed frame to describe

the rotational motion as seen by an observer in the inertial frame.

This chapter has introduced the inertial properties of a rigid body, as well as the Euler angles for

transforming between the body-fixed and inertial frames of reference. This has prepared the stage for

solving the equations of motion for rigid-body motion, namely, the dynamics of rotational motion about a

body-fixed point under the action of external forces. The Euler angles are used to specify the instantaneous

orientation of the rigid body.

In Newtonian mechanics, the rotational motion is governed by the equivalent Newton’s second law given

in terms of the external torque N and angular momentum L

N =

µ
L



¶


(11.98)

Note that this relation is expressed in the inertial space-fixed frame of reference, not the non-inertial body-

fixed frame. The subscript  is added to emphasize that this equation is written in the inertial space-fixed

frame of reference. However, as already discussed, it is much more convenient to transform from the space-

fixed inertial frame to the body-fixed frame for which the inertia tensor of the rigid body is known. Thus the

next stage is to express the rotational motion in terms of the body-fixed frame of reference. For simplicity,

translational motion will be ignored.

The rate of change of angular momentum can be written in terms of the body-fixed value, using the

transformation from the space-fixed inertial frame (x̂ ŷ ẑ) to the rotating frame (ê1 ê2 ê3) as given in

chapter 103,

N =

µ
L



¶


=

µ
L



¶


+ ω × L (11.99)

However, the body axis ê is chosen to be the principal axis such that

 =  (11.100)

where the principal moments of inertia are written as . Thus the equation of motion can be written using

the body-fixed coordinate system as

N = 1̇1ê1 + 2̇2ê2 + 3̇3ê3 +

¯̄̄̄
¯̄ ê1 ê2 ê3

1 2 3
11 22 33

¯̄̄̄
¯̄ (11.101)

= (1̇1 − (2 − 3)23) ê1 + (2̇2 − (3 − 1)31) ê2 + (3̇3 − (1 − 2)12) ê3(11.102)
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where the components in the body-fixed axes are given by

1 = 1̇1 − (2 − 3)23 (11.103)

2 = 2̇2 − (3 − 1)31

3 = 3̇3 − (1 − 2)12

These are the Euler equations for rigid body in a force field expressed in the body-fixed coordinate

frame. They are applicable for any applied external torque N.

The motion of a rigid body depends on the structure of the body only via the three principal moments

of inertia 12 and 3 Thus all bodies having the same principal moments of inertia will behave exactly the

same even though the bodies may have very different shapes. As discussed earlier, the simplest geometrical

shape of a body having three different principal moments is a homogeneous ellipsoid. Thus, the rigid-body

motion often is described in terms of the equivalent ellipsoid that has the same principal moments.

A deficiency of Euler’s equations is that the solutions yield the time variation of ω as seen from the body-

fixed reference frame axes, and not in the observers fixed inertial coordinate frame. Similarly the components

of the external torques in the Euler equations are given with respect to the body-fixed axis system which

implies that the orientation of the body is already known. Thus for non-zero external torques the problem

cannot be solved until the the orientation is known in order to determine the components 
 . However,

these difficulties disappear when the external torques are zero, or if the motion of the body is known and it

is required to compute the applied torques necessary to produce such motion.

11.18 Lagrange equations of motion for rigid-body rotation

The Euler equations of motion were derived using Newtonian concepts of torque and angular momentum.

It is of interest to derive the equations of motion using Lagrangian mechanics. It is convenient to use a

generalized torque  and assume that  = 0 in the Lagrange-Euler equations. Note that the generalized

force is a torque since the corresponding generalized coordinate is an angle, and the conjugate momentum

is angular momentum. If the body-fixed frame of reference is chosen to be the principal axes system, then,

since the inertia tensor is diagonal in the principal axis frame, the kinetic energy is given in terms of the

principal moments of inertia as

 =
1

2

X



2
 (11.104)

Using the Euler angles as generalized coordinates, then the Lagrange equation for the specific case of the 

coordinate and including a generalized force  gives







̇
− 


=  (11.105)

which can be expressed as





3X








̇
−

3X









=  (11.106)

Equation 11104 gives



=  (11.107)

Differentiating the angular velocity components in the body-fixed frame, equations (1186− 1188)  give
1


= ̇ sin  cos − ̇ sin = 2
1
̇

= 2
̇

= 0

2


= −̇ sin  sin − ̇ cos = −1 1
̇

= 2
̇

= 0
3


= 0 3
̇

= 1

Substituting these into the Lagrange equation (11106) gives




33 − 112 + 22 (−1) = 3 (11.108)
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since the  and be3 axes are colinear. This can be rewritten as
3̇3 − (1 − 2)12 = 3 (11.109)

Any axis could have been designated the be3 axis, thus the above equation can be generalized to all three
axes to give

1̇1 − (2 − 3)23 = 1 (11.110)

2̇2 − (3 − 1)31 = 2

3̇3 − (1 − 2)12 = 3

These are the Euler’s equations given previously in (11103). Note that although ̇3 is the equation

of motion for the  coordinate, this is not true for the φ and θ rotations which are not along the body-fixed

1 and 2 axes as given in table 111.

11.8 Example: Rotation of a dumbbell

Consider the motion of the symmetric dumbbell shown in the adjacent figure. Let |1| = |2| =  Let the

body-fixed coordinate system have its origin at  and symmetry axis be3 be along the weightless shaft toward
1 and  = ̂1 The angular momentum is given by

L =
X


r × v

Because L is perpendicular to the shaft, and L rotates around ω as the shaft rotates, let be2 be along L
L = 2 be2

O

L

Rotation of a dumbbell.

If  is the angle between ω and the shaft, the components of ω

are

1 = 0

2 =  sin

3 =  cos

Assume that the principal moments of the dumbbell are

1 = (1 +2) 
2

2 = (1 +2) 
2

3 = 0

Thus the angular momentum is given by

1 = 11 = 0

2 = 22 = (1 +2) 
2 sin

3 = 33 = 0

which is consistent with the angular momentum being along the be2 axis.
Using Euler’s equations, and assuming that the angular velocity is constant, i.e. ̇ = 0 then the compo-

nents of the torque required to satisfy this motion are

1 = − (1 +2) 
22 sin cos

2 = 0

3 = 0

That is, this motion can only occur in the presence of the above applied torque which is in the direction

− be1 that is, mutually perpendicular to be2 and be3 . This torque can be written as N = ω × L.
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11.19 Hamiltonian equations of motion for rigid-body rotation

The Hamiltonian equations of motion are expressed in terms of the Euler angles plus their corresponding

canonical angular momenta (     ) in contrast to Lagrangian mechanics which is based on the

Euler angles plus their corresponding angular velocities (   ̇ ̇ ̇). The Hamiltonian approach is con-

veniently expressed in terms of a set of Andoyer-Deprit action-angle coordinates that include the three Euler

angles, specifying the orientation of the body-fixed frame, plus the corresponding three angles specifying the

orientation of the spin frame of reference. This phase space approach[Dep67] can be employed for calcu-

lations of rotational motion in celestial mechanics that can include spin-orbit coupling. This Hamiltonian

approach is beyond the scope of the present textbook.

11.20 Torque-free rotation of an inertially-symmetric rigid rotor

11.20.1 Euler’s equations of motion:

Figure 11.4: The force-free symmetric top

angular velocity  precesses on a conical

trajectory about the body-fixed symme-

try axis 3̂.

There are many situations where one has rigid-body motion free

of external torques, that is, N = 0. The tumbling motion of a

jugglers baton, a diver, a rotating galaxy, or a frisbee, are exam-

ples of rigid-body rotation. For torque-free rotation, the body

will rotate about the center of mass, and thus the inertia tensor

with respect to the center of mass is required. An inertially-

symmetric rigid body has two identical principal moments of

inertia with 1 = 2 6= 3, and provides a simple example that

illustrates the underlying motion. The force-free Euler equations

for the symmetric body in the body-fixed principal axis system

are given by

(2 − 3)23 − 1̇1 = 0 (11.111)

(3 − 1)31 − 2̇2 = 0 (11.112)

3̇3 = 0 (11.113)

where 1 = 2 and  = 0 apply.

Note that for torque-free motion of an inertially symmetric

body equation 11113 implies that ̇3 = 0 i.e. 3 is a constant

of motion and thus is a cyclic variable for the symmetric rigid

body.

Equations 11111 and 11112 can be written as two coupled

equations

̇1 +Ω2 = 0 (11.114)

̇2 −Ω1 = 0 (11.115)

where the precession angular velocity Ω =̇ with respect to the body-fixed frame is defined to be

Ω ≡
µ
(3 − 1)

1
ω3

¶
(11.116)

Combining the time derivatives of equations 11114 and 11115 leads to two uncoupled equations

̈1 +Ω
21 = 0 (11.117)

̈2 +Ω
22 = 0 (11.118)

These are the differential equations for a harmonic oscillator with solutions

1 =  cosΩ (11.119)

2 =  sinΩ
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These equations describe a vector  rotating in a circle of radius  about an axis perpendicular to ̂3 that

is, rotating in the ̂1 − ̂2 plane with angular frequency Ω = −̇. Note that

21 + 22 = 2 (11.120)

which is a constant. In addition 3 is constant, therefore the magnitude of the total angular velocity

|ω| =
q
21 + 22 + 23 = constant (11.121)

The motion of the torque-free symmetric body is that the angular velocity ω precesses around the

symmetry axis ̂3 of the body at an angle  with a constant precession frequency Ω with respect to the

body-fixed frame as shown in figure 114. Thus, to an observer on the body, ω traces out a cone around the

body-fixed symmetry axis. Note from (11116) that the vectors Ω̂3 and 3̂3 are parallel when Ω is positive,

that is, 3   (oblate shape) and antiparallel if 3   (prolate shape).

For the system considered, the orientation of the angular momentum vector L must be stationary in the

space-fixed inertial frame since the system is torque free, that is, L is a constant of motion. Also we have

that the projection of the angular momentum on the body-fixed symmetry axis is a constant of motion, that

is, it is a cyclic variable. Thus

3 = 33 =
13

(3 − 1)
Ω (11.122)

Understanding the relation between the angular momentum and angular velocity is facilitated by consid-

ering another constant of motion for the torque-free symmetric rotor, namely the rotational kinetic energy.

 =
1

2
ω · L = constant (11.123)

Since L is a constant for torque-free motion, and also the magnitude of ω was shown to be constant, therefore

the angle between these two vectors must be a constant to ensure that also rot =
1
2
ω ·L = constant. That

is, ω precesses around L at a constant angle (− ) such that the projection of ω onto L is constant. Note

that

ω × be3 = 2 be1 − 1 be2 (11.124)

and, for a symmetric rotor,

L · ω × be3 = 112 − 212 = 0 (11.125)

since 1 = 2 for the symmetric rotor. Because L · ω × be3 = 0 for a symmetric top then Lω and be3 are
coplanar.

Figure 115 shows the geometry of the motion for both oblate and prolate axially-deformed bodies. To

an observer in the space-fixed inertial frame, the angular velocity ω traces out a cone that precesses with

angular velocity Ω around the space fixed L axis called the space cone. For convenience, figure 115 assumes

that L and the space-fixed inertial frame ẑ axis are colinear. The angular velocity ω also traces out the

body cone as it precesses about the body-fixed ê3 axis. Since Lω and be3 are coplanar, then the ω vector is
at the intersection of the space and body cones as the body cone rolls around the space cone. That is, the

space and body cones have one generatrix in common which coincides with ω. As shown in figure 115, for

a needle the body cone appears to roll without slipping on the outside of the space cone at the precessional

velocity of Ω = − By contrast, as shown in figure 115 for an oblate (disc-shaped) symmetric top the
space cone rolls inside the body cone and the precession Ω is faster than .

Since no external torques are acting for torque-free motion, then the magnitude and direction of the total

angular momentum are conserved. The description of the motion is simplified if L is taken to be along the

space-fixed ẑ axis, then the Euler angle  is the angle between the body-fixed basis vector ê3 and space-fixed

basis vector ẑ. If at some instant in the body frame, it is assumed that be2 is aligned in the plane of Lω
and be3 then

1 = 0 2 =  sin  3 =  cos  (11.126)

If  is the angle between the angular velocity ω and the body-fixed ê3 axis, then at the same instant

1 = 0 2 =  sin 3 =  cos (11.127)
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Space cone

Body cone
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Figure 11.5: Torque-free rotation of symmetric tops; (a) circular flat disk, (b) circular rod. The space-fixed

and body-fixed cones are shown by fine lines. The space-fixed axis system is designated by the unit vectors

(x̂ ŷ ẑ) and the body-fixed principal axis system by unit vectors (1̂ 2̂ 3̂)

The components of the angular momentum also can be derived from L = I · ω to give
1 = 11 = 0 2 = 22 = 1 sin 3 = 33 = 3 cos (11.128)

Equations 11126 and 11128 give two relations for the ratio 2
3
, that is,

2

3
= tan  =

1

3
tan (11.129)

For a prolate spheroid 1  3 therefore    while Ω and 3 have opposite signs.

For a oblate spheroid 1  3 therefore    while Ω and 3 have the same sign.

The sense of precession can be understood if the body cone rolls without slipping on the outside of the

space cone with Ω in the opposite orientation to  for the prolate case, while for the oblate case the space

cone rolls inside the body cone with Ω and  oriented in similar directions. Note from (11129) that  = 0

if  = 0, that is Lω and the 3 axis are aligned corresponding to a principal axis. Similarly,  = 90◦ if
 = 90◦, then again L and ω are aligned corresponding to them being principal axes.

Lagrangian mechanics has been used to calculate the motion with respect to the body-fixed principal

axis system. However, the motion needs to be known relative to the space-fixed inertial frame where the

motion is observed. This transformation can be done using the following relationµ
ê3



¶


=

µ
ê3



¶


+ ω × ê3 = ω × ê3 (11.130)

since the unit vector ê3 is stationary in the body-fixed frame. The vector product of ω × ê3 and ê3 gives

ê3 ×
µ
ê3



¶


= ê3 × ω × ê3 = (ê3 · ê3)ω − (ê3 · ω) ê3 = ω − 3ê3

therefore

ω = ê3 ×
µ
ê3



¶


+ 3ê3 (11.131)

The angular momentum equals L = {I} ·ω. Since ê3 ×
¡
ê3


¢


is perpendicular to the ê3 axis, then

for the case with 1 = 2,

L =1ê3 ×
µ
ê3



¶


+ 33ê3 (11.132)
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Thus the angular momentum for a torque-free symmetric rigid rotor comprises two components, one being

the perpendicular component that precesses around ê3, and the other is 3.

In the space-fixed frame assume that the ẑ axis is colinear with L Then taking the scalar product of ê3
and L, using equation 11126 gives

3 = ê3 · L =1ê3 · ê3 ×
µ
ê3



¶


+ 33ê3 · ê3 (11.133)

The first term on the right is zero and thus equation 11133 and 11126 give

3 = 33 =  cos  (11.134)

The time dependence of the rotation of the body-fixed symmetry axis with respect to the space-fixed

axis system can be obtained by taking the vector product ê3 × L using equation 11132 and using equation
24 to expand the triple vector product,

ê3 × L = 1ê3 ×
Ã
ê3 ×

µ
ê3



¶


!
+ 33ê3 × ê3 (11.135)

= 1

"Ã
ê3 ·

µ
ê3



¶


!
ê3 − (ê3 · ê3)

µ
ê3



¶


#
+ 0

since (ê3 × ê3) = 0. Moreover (ê3 · ê3) = 1, and ê3 ·
¡
ê3


¢


= 0 since they are perpendicular, thenµ
ê3



¶


=
L

1
× ê3 (11.136)

This equation shows that the body-fixed symmetry axis ê3 precesses around the L where L is a constant

of motion for torque-free rotation. The true rotational angular velocity ω in the space-fixed frame, given by

equations 11131 can be evaluated using equation 11136 Remembering that it was assumed that L is in

the ẑ direction, that is, L =ẑ then

ω = ê3 ×
µ
ê3



¶


+ 3ê3

=


1
ê3 × (ẑ× ê3) +

µ
 cos

3

¶
ê3

=


1
ẑ+  cos

µ
1 − 3

13

¶
ê3 (11.137)

That is, the symmetry axis of the axially-symmetric rigid rotor makes an angle  to the angular momentum

vector ẑ and precesses around ẑ with a constant angular velocity 
1
while the axial spin of the rigid body

has a constant value 
3
. Thus, in the precessing frame, the rigid body appears to rotate about its fixed

symmetry axis with a constant angular velocity  cos
3
−  cos

1
=  cos

³
1−3
13

´
. The precession of the

symmetry axis looks like a wobble superimposed on the spinning motion about the body-fixed symmetry

axis. The angular precession rate in the space-fixed frame can be deduced by using the fact that

̇ sin  =  sin (11.138)

Then using equation 11129 allows equation 11138 to be written as

̇ = 

vuut"1 +Ãµ3
1

¶2
− 1
!
cos2 

#
(11.139)

which gives the precession rate about the space-fixed axis in terms of the angular velocity . Note that the

precession rate ̇   if 3
1

 1, that is, for oblate shapes, and ̇   if 3
1

 1, that is, for prolate shapes.
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11.20.2 Lagrange equations of motion:

It is interesting to compare the equations of motion for torque-free rotation of an inertially-symmetric

rigid rotor derived using Lagrange mechanics with that derived previously using Euler’s equations based on

Newtonian mechanics. Assume that the principal moments about the fixed point of the symmetric top are

1 = 2 6= 3 and that the kinetic energy equals the rotational kinetic energy, that is, it is assumed that the

translational kinetic energy  = 0 Then the kinetic energy is given by

 =
1

2

X



2
 =

1

2
1
¡
21 + 22

¢
+
1

2
3

2
3 (11.140)

Equations (1186− 88) for the body-fixed frame give

21 =
³
̇ sin  sin + ̇ cos

´2
= ̇

2
sin2  sin2  + 2̇ sin  sin cos + ̇

2
cos2  (11.141)

22 =
³
̇ sin  cos − ̇ sin

´2
= ̇

2
sin2  cos2  − 2̇ sin  sin cos + ̇

2
sin2  (11.142)

Therefore

21 + 22 = ̇
2
sin2  + ̇

2
(11.143)

and

23 =
³
̇ cos  + ̇

´2
(11.144)

Therefore the kinetic energy is

 =
1

2
1

³
̇
2
sin2  + ̇

2
´
+
1

2
3

³
̇ cos  + ̇

´2
(11.145)

Since the system is torque free, the scalar potential energy  can be assumed to be zero, and then the

Lagrangian equals

 =
1

2
1

³
̇
2
sin2  + ̇

2
´
+
1

2
3

³
̇ cos  + ̇

´2
(11.146)

The angular momentum about the space-fixed  axis  is conjugate to . From Lagrange’s equations

̇ =



= 0 (11.147)

that is, the angular momentum about the space-fixed  axis,  is a constant of motion given by

 =


̇
=
¡
1 sin

2  + 3 cos
2 
¢
̇+ 3̇ cos  = constant. (11.148)

Similarly, the angular momentum about the body-fixed 3 axis is conjugate to  From Lagrange’s equations

̇ =



= 0 (11.149)

that is,  is a constant of motion given by

 =


̇
= 3

µ 

̇ cos  + ̇

¶
= 33 = constant (11.150)

The above two relations derived from the Lagrangian can be solved to give the precession angular velocity

̇ about the space-fixed ẑ axis

̇ =
 −  cos 

1 sin
2 

(11.151)

and the spin about the body-fixed 3̂ axis ̇ which is given by

̇ =


3
− ( −  cos ) cos 

1 sin
2 

(11.152)
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Since  and  are constants of motion, then the precessional angular velocity ̇ about the space-fixed ẑ

axis, and the spin angular velocity ̇, which is the spin frequency about the body-fixed 3̂ axis, are constants

that depend directly on 1 3 and 

There is one additional constant of motion available if no dissipative forces act on the system, that is,

energy conservation which implies that the total energy

 =
1

2
1

³
̇
2
sin2  + ̇

2
´
+
1

2
3

³
̇ cos  + ̇

´2
(11.153)

will be a constant of motion. But the second term on the right-hand side also is a constant of motion since

 and 3 both are constants, that is

1

2
3

2
3 =

1

2
3

³
̇ cos  + ̇

´2
=

2

3
= constant (11.154)

Thus energy conservation implies that the first term on the right-hand side also must be a constant given by

1

2
1
¡
21 + 22

¢
=
1

2
1

³
̇
2
sin2  + ̇

2
´
=  − 2

3
= constant (11.155)

These results are identical to those given in equations 11120 and 11121 which were derived using Euler’s

equations. These results illustrate that the underlying physics of the torque-free rigid rotor is more easily

extracted using Lagrangian mechanics rather than using the Euler-angle approach of Newtonian mechanics.

11.9 Example: Precession rate for torque-free rotating symmetric rigid rotor

Table 112 lists the precession and spin angular velocities, in the space-fixed frame, for torque-free rotation

of three extreme symmetric-top geometries spinning with constant angular momentum  when the motion

is slightly perturbed such that  is at a small angle  to the symmetry axis. Note that this assumes the

perpendicular axis theorem, equation 1145 which states that for a thin laminae 1 + 2 = 3 giving, for a

thin circular disk, 1 = 2 and thus 3 = 21

Table 112: Precession and spin rates for torque-free axial rotation of symmetric rigid rotors

Rigid-body symmetric shape Principal moment ratio 3
1

Precession rate ̇ Spin rate ̇

Symmetric needle 0 0 

Sphere 1  0

Thin circular disk 2 2 −

The precession angular velocity in the space frame ranges between 0 to 2 depending on whether the

body-fixed spin angular velocity is aligned or anti-aligned with the rotational frequency . For an extreme

prolate spheroid 3
1
= 0 the body-fixed spin angular velocity Ω = −3 which cancels the angular velocity

 of the rotating frame resulting in a zero precession angular velocity of the body-fixed ê3 axis around the

space-fixed frame. The spin Ω = 0 in the body-fixed frame for the rigid sphere 3
1
= 1 and thus the precession

rate of the body-fixed ̂3 axis of the sphere around the space-fixed frame equals . For oblate spheroids and

thin disks, such as a frisbee, 3
1
= 2 making the body-fixed precession angular velocity Ω = + which adds

to the angular velocity  and increases the precession rate up to 2 as seen in the space-fixed frame. This

illustrates that the spin angular velocity can add constructively or destructively with the angular velocity 2

2 In his autobiography Surely You’re Joking Mr Feynman, he wrote " I was in the [Cornell] cafeteria and some guy, fooling

around, throws a plate in the air. As the plate went up in the air I saw it wobble, and noticed that the red medallion of

Cornell on the plate going around. It was pretty obvious to me that the medallion went around faster than the wobbling. I

started to figure out the motion of the rotating plate. I discovered that when the angle is very slight, the medallion rotates

twice as fast as the wobble rate. It came out of a very complicated equation! ". The quoted ratio (2 : 1) is incorrect, it should

be (1 : 2). Benjamin Chao in Physics Today of February 1989 speculated that Feynman’s error in inverting the factor of

two might be "in keeping with the spirit of the author and the book, another practical joke meant for those who do physics

without experimenting". He pointed out that this story occurred on page 157 of a book of length 314 pages (1:2). Observe the

dependence of the ratio of wobble to rotation angular velocities on the tilt angle .
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11.21 Torque-free rotation of an asymmetric rigid rotor

The Euler equations of motion for the case of torque-free rotation of an asymmetric (triaxial) rigid rotor

about the center of mass, with principal moments of inertia 1 6= 2 6= 3 lead to more complicated motion

than for the symmetric rigid rotor.3 The general features of the motion of the asymmetric rotor can be

deduced using the conservation of angular momentum and rotational kinetic energy.

Figure 11.6: Rotation of an asymmetric

rigid rotor. The dark lines correspond to

contours of constant total rotational ki-

netic energy T, which has an ellipsoidal

shape, projected onto the angular momen-

tum L sphere in the body-fixed frame.

Assuming that the external torques are zero then the Euler

equations of motion can be written as

1̇1 = (2 − 3)23 (11.156)

2̇2 = (3 − 1)31

3̇3 = (1 − 2)12

Since  =  for  = 1 2 3, then equation 11156 gives

23̇1 = (2 − 3)23 (11.157)

13̇2 = (3 − 1)31

12̇3 = (1 − 2)12

Multiply the first equation by 11, the second by 22 and the

third by 33 and sum, which gives

123

³
1̇1 + 2̇2 + 3̇3

´
= 0 (11.158)

The bracket is equivalent to 

(21+22+23) = 0 which implies

that the total rotational angular momentum  is a constant of

motion as expected for this torque-free system, even though the

individual components 1 2 3 may vary. That is

21 + 22 + 23 = 2 (11.159)

Note that equation 11159 is the equation of a sphere of radius .

Multiply the first equation of 11157 by 1, the second by 2, and the third by 3, and sum gives

231̇1 + 132̇2 + 123̇3 = 0 (11.160)

Divide 11160 by 123 gives


(
21
21
+

22
22
+

23
23
) = 0. This implies that the total rotational kinetic energy

 , given by
21
21

+
22
22

+
23
23

=  (11.161)

is a constant of motion as expected when there are no external torques and zero energy dissipation. Note

that 11161 is the equation of an ellipsoid.

Equations 11159 and 11161 both must be satisfied by the rotational motion for any value of the total

angular momentum L and kinetic energy  . Fig 116 shows a graphical representation of the intersection of

the  sphere and  ellipsoid as seen in the body-fixed frame. The angular momentum vector L must follow

the constant-energy contours given by where the  -ellipsoids intersect the -sphere, shown for the case where

3  2  1. Note that the precession of the angular momentum vector L follows a trajectory that has

closed paths that circle around the principal axis with the smallest , that is, ê1 or the principal axis with

the maximum , that is, ê3. However, the angular momentum vector does not have a stable minimum for

precession around the intermediate principal moment of inertia axis ê2. In addition to the precession, the

angular momentum vector L executes nutation, that is a nodding of the angle 

For any fixed value of , the kinetic energy has upper and lower bounds given by

2

23
≤  ≤ 2

21
(11.162)

3Similar discussions of the freely-rotating asymmetric top are given by Landau and Lifshitz [La60] and by Gregory [Gr06].
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Thus, for a given value of  when  = min =
2

23
 the orientation of L in the body-fixed frame is either

(0 0+) or (0 0−), that is, aligned with the ê3 axis along which the principal moment of inertia is largest.
For slightly higher kinetic energy the trajectory of  follows closed paths precessing around ê3. When the

kinetic energy  =
22
22

the angular momentum vector  follows either of the two thin-line trajectories each

of which are a separatrix. These do not have closed orbits around ê2 and they separate the closed solutions

around either ê3 or ê1 For higher kinetic energy the precessing angular momentum vector follows closed

trajectories around ê1 and becomes fully aligned with ê1 at the upper-bound kinetic energy.

Note that for the special case when 3  2 = 1 then the asymmetric rigid rotor equals the symmetric

rigid rotor for which the solutions of Euler’s equations were solved exactly in chapter 1119. For the symmetric

rigid rotor the  -ellipsoid becomes a spheroid aligned with the symmetry axis and thus the intersections

with the -sphere lead to circular paths around the ê3 body-fixed principal axis, while the separatrix circles

the equator corresponding to the ê3 axis separating clockwise and anticlockwise precession about L3. This

discussion shows that energy, plus angular momentum conservation, provide the general features of the

solution for the torque-free symmetric top that are in agreement with those derived using Euler’s equations

of motion

11.22 Stability of torque-free rotation of an asymmetric body

It is of interest to extend the prior discussion to address the stability of an asymmetric rigid rotor undergoing

force-free rotation close to a principal axes, that is, when subject to small perturbations. Consider the case

of a general asymmetric rigid body with 3  2  1 Let the system start with rotation about the ê1 axis,

that is, the principal axis associated with the moment of inertia 1 Then

ω =1be1 (11.163)

Consider that a small perturbation is applied causing the angular velocity vector to be

ω =1be1 + be2 + be3 (11.164)

where   are very small. The Euler equations (11156) become

(2 − 3)− 1̇1 = 0

(3 − 1)1 − 2̇ = 0

(1 − 2)1− 3̇ = 0

Assuming that the product  in the first equation is negligible, then ̇1 = 0 that is, 1 is constant.

The other two equations can be solved to give

̇ =

µ
(3 − 1)

2
1

¶
 (11.165)

̇ =

µ
(1 − 2)

3
1

¶
 (11.166)

Take the time derivative of the first equation

̈ =

µ
(3 − 1)

2
1

¶
̇ (11.167)

and substitute for ̇ gives

̈+

µ
(1 − 3) (1 − 2)

23
21

¶
 = 0 (11.168)

The solution of this equation is

() = Ω1 +−Ω1 (11.169)

where

Ω1 = 1

s
(1 − 3) (1 − 2)

23
(11.170)
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Note that since it was assumed that 3  2  1 then Ω1 is real. The solution for () therefore represents a

stable oscillatory motion with precession frequency Ω1 The identical result is obtained for Ω1 = Ω1 = Ω1

Thus the motion corresponds to a stable minimum about the ê1 axis with oscillations about the  =  = 0

minimum with period.

Ω1 = 1

s
(1 − 3) (1 − 2)

23
(11.171)

Permuting the indices gives that for perturbations applied to rotation about either the 2 or 3 axes give

precession frequencies

Ω2 = 2

s
(2 − 1) (2 − 3)

13
(11.172)

Ω3 = 3

s
(3 − 2) (3 − 1)

12
(11.173)

Since 3  2  1 then Ω1 and Ω3 are real while Ω2 is imaginary. Thus, whereas rotation about either

the 3 or the 1 axes are stable, the imaginary solution about ê2 corresponds to a perturbation increasing

with time. Thus, only rotation about the largest or smallest moments of inertia are stable. Moreover for

the symmetric rigid rotor, with 1 = 2 6= 3 stability exists only about the symmetry axis ê3 independent

on whether the body is prolate or oblate. This result was implied from the use of energy and angular

momentum conservation in chapter 1120. Friction was not included in the above discussion. In the presence

of dissipative forces, such as friction or drag, only rotation about the principal axis corresponding to the

maximum moment of inertia is stable.

Stability of rigid-body rotation has broad applications to rotation of satellites, molecules and nuclei.

The first U.S. satellite, Explorer 1, was launched in 1958 with the rotation axis aligned with the cylindrical

axis which was the minimum principal moment of inertia. After a few hours the satellite started tumbling

with increasing amplitude due to a flexible antenna dissipating and transferring energy to the perpendicular

axis which had the largest moment of inertia. Torque-free motion of a deformed rigid body is a ubiquitous

phenomena in many branches of science, engineering, and sports as illustrated by the following examples.

11.10 Example: Tennis racquet dynamics

M

M

2

1

Principal rotation axes for the

center of mass of a tennis racket.

The 1 and 2 -axes are in the

plane of the racket head and the

3 axis is perpendicular to the

plane of the racket head.

A tennis racquet is an asymmetric body that exhibits the above rota-

tional behavior. Assume that the head of a tennis racquet is a uniform

thin circular disk of radius  and mass  which is attached to a cylin-

drical handle of diameter  = 
10
, length 2, and mass  as shown in

the figure. The principle moments of inertia about the three axes through

the center-of-mass can be calculated by addition of the moments for the

circular disk and the cylindrical handle and using both the parallel-axis

and the perpendicular-axis theorems.

Axis Head Handle Racquet

1 1
4
2+2=5

4
2 4

3
2 31

12
2

2 1
4
2+0 =1

4
2 1

200
2 51

200
2

3 1
2
2+2=3

2
2 4

3
2 17

6
2

Note that 11 : 22 : 33 = 25833 : 02550 : 28333. Inserting these

principle moments of inertia into equations 11171 − 11173 gives the
following precession frequencies

Ω1= i0 89761 Ω2= 0 90562 Ω3= 0 98923

The imaginary precession frequency Ω1 about the 1 axis implies unstable rotation leading to tumbling

whereas the minimum moment 22 and maximum moment 33 imply stable rotation about the 2 and 3 axes.

This rotational behavior is easily demonstrated by throwing a tennis racquet and is called the tennis racquet

theorem. The center of percussion, example 214 also is an important inertial property of a tennis racquet.
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11.11 Example: Rotation of asymmetrically-deformed nuclei

Some nuclei and molecules have average shapes that have significant asymmetric deformation leading to

interesting quantal analogs of the rotational properties of an asymmetrically-deformed rigid body. The major

difference between a quantal and a classical rotor is that the energies, and angular momentum are quantized,

rather than being continuously variable quantities. Otherwise, the quantal rotors exhibit general features

similar to the classical analog. Studies [Cli86] of the rotational behavior of asymmetrically-deformed nuclei

exploit three aspects of classical mechanics, namely classical Coulomb trajectories, rotational invariants, and

the properties of ellipsoidal rigid-bodies.

Ellipsoidal deformation can be specified by the dimensions along each of the three principle axes. Bohr

and Mottelson parameterized the ellipsoidal deformation in terms of three parameters, 0 which is the radius

of the equivalent sphere,  which is a measure of the magnitude of the ellipsoidal deformation from the sphere,

and  which specifies the deviation of the shape from axial symmetry. The ellipsoidal intrinsic shape can be

expressed in terms of the deviation from the equivalent sphere by the equation

( ) = ( )−0 = 0

+2X
=−2

∗22( ) ()

where ( ) is a Laplace spherical harmonic defined as

( ) =

s
(2+ 1)

4

(− )!

(+ )!
(cos )

−

and (cos ) is an associated Legendre function of cos . Spherical harmonics are the angular portion of a

set of solutions to Laplace’s equation. Represented in a system of spherical coordinates, Laplace’s spherical

harmonics ( ) are a specific set of spherical harmonics that form an orthogonal system. Spherical

harmonics are important in many theoretical and practical applications.

In the principal axis frame of the body, there are three non-zero quadrupole deformation parameters

which can be written in terms of the deformation parameters   where 20 =  cos , 21 = 2−1 = 0 and
22 = 2−2 = 1√

2
 sin  Using these in equations () give the three semi-axis dimensions in the principal

axis frame, (primed frame),

 =

r
5

4
0 cos( − 2

3
) ()

Note that for  = 0, then 1 = 2 = −12
q

5
4
0 while 3 = +

q
5
4
0, that is the body has prolate

deformation with the symmetry axis along the 3 axis. The same prolate shape is obtained for  = 2
3
and

 = 4
3
with the prolate symmetry axes along the 1 and 2 axes respectively. For  = 

3
then 1 = 3 =

+1
2

q
5
4
0 while 2 = −

q
5
4
0, that is the body has oblate deformation with the symmetry axis along

the 2 axis. The same oblate shape is obtained for  =  and  = 5
3
with the oblate symmetry axes along

the 3 and 1 axes respectively. For other values of  the shape is ellipsoidal.

For the asymmetric deformed rigid body, the rotational Hamiltonian can be expressed in the form[Dav58]

 =

3X
=1

||2
42 sin2(0 − 2

3
)

where the rotational angular momentum is R The principal moments of inertia are related by the triaxiality

parameter 0 which they assumed is identical to the shape parameter . For axial symmetry the moment of

inertia about the symmetry axis is taken to be zero for a quantal system since rotation of the potential well

about the symmetry axis corresponds to no change in the potential well, or corresponding rotation of the bound

nucleons. That is, the nucleus is not a rigid body, the nucleons only rotate to the extent that the ellipsoidal

potential well is cranked around such that the nucleons must follow the rotation of the potential well. In

addition, vibrational modes coexist about the average asymmetric deformation, plus octupole deformation

often coexists with the above quadrupole deformed modes.
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11.23 Symmetric rigid rotor subject to torque about a fixed point

y

x

z

Mg

1

2

3

h

Line of nodes

Figure 11.7: Symmetric top spinning

about one fixed point.

The motion of a symmetric top rotating in a gravitational field, with

one point at a fixed location, is encountered frequently in rotational

motion. Examples are the gyroscope and a child’s spinning top.

Rotation of a rigid rotor subject to torque about a fixed point, is a

case where it is necessary to take the inertia tensor with respect to

the fixed point in the body, and not at the center of mass.

Consider the geometry, shown in figure 117, where the symmet-

ric top of mass  is spinning about a fixed tip that is displaced by

a distance  from the center of mass. The tip of the top is assumed

to be at the origin of both the space-fixed frame (  ) and the

body-fixed frame (1 2 3)  Assume that the translational velocity

is zero and let the principal moments about the fixed point of the

symmetric top be 1 = 2 6= 3

The Lagrange equations of motion can be derived assuming that

the kinetic energy equals the rotational kinetic energy, that is, it is

assumed that the translational kinetic energy  = 0 Then the

kinetic energy of an inertially-symmetric rigid rotor can be derived

for the torque-free symmetric top as given in equation 11145 to be

 =
1

2

X



2
 =

1

2
1
¡
21 + 22

¢
+
1

2
3

2
3 (11.174)

=
1

2
1

³
̇
2
sin2  + ̇

2
´
+
1

2
3

³
̇ cos  + ̇

´2
(11.175)

Since the potential energy is  =  cos  then the Lagrangian

equals

 =
1

2
1

³
̇
2
sin2  + ̇

2
´
+
1

2
3

³
̇ cos  + ̇

´2
− cos  (11.176)

The angular momentum about the space-fixed  axis  is conjugate to . From Lagrange’s equations

̇ =



= 0 (11.177)

that is,  is a constant of motion given by the generalized momentum

 =


̇
=
¡
1 sin

2  + 3 cos
2 
¢
̇+ 3̇ cos  =  = constant (11.178)

where  is the angular momentum projection along the space-fixed  axis.

Similarly, the angular momentum about the body-fixed 3 axis is conjugate to  From Lagrange’s equations

̇ =



= 0 (11.179)

that is,  is a constant of motion given by the generalized momentum

 =


̇
= 3

µ 

̇ cos  + ̇

¶
= 3 = constant (11.180)

where 3 is the angular momentum projection along the body-fixed 3 axis. The above two relations can be

solved to give the precessional angular velocity ̇ about the space-fixed  axis

̇ =
 −  cos 

1 sin
2 

=
 −3 cos 

1 sin
2 

(11.181)

and the spin angular velocity ̇ about the body-fixed 3 axis

̇ =


3
− ( −  cos ) cos 

1 sin
2 

=
3

3
− ( −3 cos ) cos 

1 sin
2 

(11.182)

Since  and  are constants of motion, i.e. 3 3 then these rotational angular velocities depend on only

1 3 and 
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0

Figure 11.8: Effective potential dia-

gram for a spinning symmetric top

as a function of theta.

There is one further constant of motion available if no frictional

forces act on the system, that is, energy conservation. This implies

that the total energy

 =
1

2
1

³
̇
2
sin2  + ̇

2
´
+
1

2
3

³
̇ cos  + ̇

´2
+ cos  (11.183)

will be a constant of motion. But the middle term on the right-hand

side also is a constant of motion

1

2
3

³
̇ cos  + ̇

´2
=

2

3
=

2
3

3
= constant (11.184)

Thus energy conservation can be rewritten by defining an energy 0

where

0 ≡ −
2


3
=
1

2
1

³
̇
2
sin2  + ̇

2
´
+ cos  = constant (11.185)

This can be written as

0 =
1

2
1̇

2
+
( −  cos )

2

21 sin
2 

+ cos  (11.186)

which can be expressed as

0 =
1

2
1̇

2
+  () (11.187)

where  () is an effective potential

 () ≡ ( −  cos )
2

21 sin
2 

+ cos  =
( −3 cos )

2

21 sin
2 

+ cos  (11.188)

The effective potential  () is shown in figure 118. It is clear that the motion of a symmetric top with

effective energy 0 is confined to angles 1    2

Note that the above result also is obtained if the Routhian is used, rather than the Lagrangian, as

mentioned in chapter 87, and defined by equation (865). That is, the Routhian can be written as

( ̇ ) = ̇ + ̇ −  = (   )− ( ̇)

= −1
2
1̇

2
+
( −  cos )

2

21 sin
2 

+
2

23
+ cos  (11.189)

The Routhian ( ̇ ) acts like a Hamiltonian for the ( ) and ( ) variables which are

constants of motion, and thus are ignorable variables. The Routhian acts as the negative Lagrangian for the

remaining variable  with rotational kinetic energy 1
2
1̇

2
and effective potential energy 

 =
( −  cos )

2

21 sin
2 

+
2

3
+ cos  =  () +

2

3

The equation of motion describing the system in the rotating frame is given by one Lagrange equation




(


̇
)− 


= 0

The negative sign of the Routhian cancels out when used in the Lagrange equation. Thus, in the rotating

frame of reference, the system is reduced to a single degree of freedom, the nutation angle  with effective

energy 0 given by equations 11186− 11188.
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(a) (b) (c)

Figure 11.9: Nutational motion of the body-fixed symmetry axis projected onto the space-fixed unit sphere.

The three case are (a) ̇ never vanishes, (b) ̇ = 0 at  = 2 (c) ̇ changes sign between 1 and 2

The motion of the symmetric top is simplest at the minimum value of the effective potential curve, where

0 = min at which the nutation  is restricted to a single value  = 0 The motion is a steady precession

at a fixed angle of inclination, that is, the "sleeping top". Solving for
¡



¢
=0

= 0 gives that

 −  cos  =
 sin

2 0

2 cos 0

"
1±

s
1− 41 cos 0

2

#
(11.190)

If 0 

2
 then to ensure that the solution is real requires a minimum value of the angular momentum on the

body-fixed axis of 2 ≥ 41 cos 0. If 0 

2
then there is no minimum angular momentum projection

on the body-fixed axis. There are two possible solutions to the quadratic relation corresponding to either a

slow or fast precessional frequency. Usually the slow precession is observed.

For the general case, where 0
1  min the nutation angle  between the space-fixed and body-fixed 3

axes varies in the range 1    2 This axis exhibits a nodding variation which is called nutation. Figure

119 shows the projection of the body-fixed symmetry axis on the unit sphere in the space-fixed frame. Note

that the observed nutation behavior depends on the relative sizes of  and  cos  For certain values, the

precession ̇ changes sign between the two limiting values of  producing a looping motion as shown in figure

119. Another condition is where the precession is zero for 2 producing a cusp at 2 as illustrated in figure

119. This behavior can be demonstrated using the gyroscope or the symmetric top.

11.12 Example: The Spinning "Jack"

O

z
3

S

Jack comprises six bodies of

mass  at each end of

orthogonal arms of length 

The game "Jacks" is played using metal Jacks, each of which com-

prises six equal masses  at the opposite ends of orthogonal axes of length

 Consider one jack spinning around the body-fixed 3−axis with the lower
mass at a fixed point on the ground, and with a steady precession around

the space-fixed vertical axis  with angle  as shown. Assume that the

body-fixed axes align with the arms of the jack.

The principal moments of inertia about one mass is given by the par-

allel axis theorem to be 2 = 1 = 42+62 = 102 and 3 = 42.

In the rotating body-fixed frame the torque due to gravity has compo-

nents

N =

⎛⎝ 6 sin  sin

6 sin  cos

0

⎞⎠
and the components of the angular velocity are

ω =

⎛⎝ ̇ sin  sin + ̇ cos

̇ sin  cos − ̇ sin

̇ cos  + ̇

⎞⎠
Using Euler’s equations ( 11103) for the above components of  and

 in the body-fixed frame, gives
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10̇1 − 623 =
6


sin  sin (a)

10̇2 − 613 =
6


sin  cos (b)

4̇3 = 0 (c)

Equation () relates the spin about the 3 axis, the precession, and the angle to the vertical  that is

3 = ̇ cos  + ̇ = Ω cos  +  = constant

where ̇ ≡  is the spin and ̇ ≡ Ω is the precession angular velocity.
If the spin axis is nearly vertical,  ≈ 0 and thus sin  ≈  and cos  ≈ 1. Multiply equation ()× sin+

()× cos and using the equations of the components of  gives

5̈ +

µ
2Ω− 3Ω2 − 3



¶
 = 0

The bracket must be positive to have stable sinusoidal oscillations. That is, the spin angular velocity 

required for the jack to spin about a stable vertical axis is given by.

 
3Ω

2
+
3

2Ω

This illustrates the conditions required for stable rotation of any axially-symmetric top.

11.13 Example: The Tippe Top

CG

a

r

3 axis

z

The geometry of the Tippe Top of radius 

spinning on a horizontal surface with slipping

friction acting between the top and the

horizontal plane. The center of mass is a distance

 from the center of the spherical section along

the axis of symmetry of the top.

The Tippe Top comprises a section of a sphere, to

which a short cylindrical rod is mounted on the planar

section, as illustrated. When the Tippe Top is spun on

a horizontal surface this top exhibits the perverse behav-

ior of transitioning from rotation with the spherical head

resting on the horizontal surface, to flipping over such

that it rotates resting on its elongated cylindrical rod.

The orientation of angular momentum remains roughly

vertical as expected from conservation of angular mo-

mentum. This implies that the rotation with respect to

the body-fixed axes must invert as the top inverts. The

center of mass is raised when the top inverts; the addi-

tional potential energy is provided by a reduction in the

rotational kinetic energy.

The Tippe Top behavior was first discovered in the

1890’s but adequate solutions of the equations of motion

have only been developed since the 1950’s. Since the top

precesses around the vertical axis, the point of contact is

not on the symmetry axis of the top. Sliding friction be-

tween the surface of the spinning top and the horizontal

surface provides a torque that causes the precession of

the top to increase and eventually flip up onto the cylin-

drical peg. The Tippe Top is typical of many phenomena

in physics where the underlying physics principle can be

recognized but a detailed and rigorous solution can be complicated.

The system has five degrees of freedom,   which specify the location on the horizontal plane, plus the

three Euler angles (  ). The paper by Cohen[Coh77] explains the motion in terms of Euler angles using

the laboratory to body-fixed transformation relation. It shows that friction plays a pivotal role in the motion

contrary to some earlier claims. Ciocci and Langerock[Cio07] used the Routhian  to reduce the number
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of degrees of freedom from 5 to 2, namely  which is the tilt angle, and 0 which is the orientation of the
tilt. This Routhian  is a Lagrangian in two dimension that was used to derive the equations of motion

via the Lagrange Euler equation




(


̇
)− 


= 




(


̇0
)− 

0
= 0

where the  0 are generalized torques about the 2 angles that take into account the sliding frictional

forces. This sophisticated Routhian reduction approach provides an exhaustive and refined solution for the

Tippe Top and confirms that sliding friction plays a key role in the unusual behavior of the Tippe Top.

11.24 The rolling wheel

As discussed in chapter 57 the rolling wheel is a non-holonomic system that is simple in principle, but in

practice the solution can be complicated, as was illustrated by the Tippe Top. Chapter 1122 discussed the

motion of a symmetric top rotating about a fixed point on the symmetry axis when subject to a torque. The

rolling wheel also involves rotation of a symmetric body that is subject to torques. However, the point of

contact of the wheel with a static plane is on the periphery of the wheel, and friction at the point of contact

is assumed to ensure zero slip. Note that friction is necessary to ensure that the rotating object rolls without

slipping, but the frictional force does no work for pure rolling.

The coordinate system employed is shown in Figure 1110. For simplicity it is better to use a moving

coordinate frame (123) that is fixed to the orientation of the wheel with the origin at the center of mass

of the wheel, but this moving reference frame does not include the angular velocity ̇ of the disk about the

3 axis. That is, the moving (123) frame has angular velocities

1 = ̇ (11.191)

2 = ̇ sin 

3 = ̇ cos 

The frame fixed in the rotating wheel must include the additional angular velocity of the disk ̇ about

the ê3 axis, that is

Ω1 = 1 = ̇ (11.192)

Ω2 = 2 = ̇ sin 

Ω3 = 3 + ̇ = ̇ cos  + ̇

where Ω designates the angular velocity of the rotating disk, while ω designates the rotation of the moving

frame (123).

For a thin disk the moment of inertia are related by the perpendicular axis theorem (chapter 119)

1 + 2 = 3

Since 1 = 2 for a uniform disk, therefore 3 = 21.

Equation 1016 can be used to relate the vector forces F in the space-fixed frame to the rate of change

of momenta in the moving frame (123) 

F = ṗ = ṗ + ω × p (11.193)

This leads to the following relations for the three components in the moving frame

1 = ̇1 + 23 − 32 (11.194)

2 − sin  = ̇2 + 31 − 13

3 − cos  = ̇3 + 12 − 21
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Figure 11.10: Uniform disk rolling on a horizontal plane. The space-fixed axis system is (xy z) , while

the moving reference frame (123) is centered at the center of mass of the disk with the 12 axes in the

plane of the disk. The disk is rotating with a uniform angular velocity ̇ about the 3 axis and rolling in the

direction that is an angle  relative to the  axis.

where 1 2 3 are the reactive forces acting shown in figure 1110.

Similarly, the torquesN in the space-fixed frame can be related to the rate of change of angular momentum

by

N = L̇ = L̇ + ω × L (11.195)

where = IΩ. This leads to the following relations for the three torque equations in the moving frame

1 = −3 = 1Ω̇1 + 3Ω32 − 2Ω23 (11.196)

2 = 0 = 1Ω̇2 + 1Ω13 − 3Ω31

3 = 1 = 3Ω̇3 + 2Ω21 − 1Ω12

The rolling constraints are

1 +Ω3 = 0 (11.197)

2 = 0

3 −Ω1 = 0

where  =. Combining equations 11194 11196 11197 gives¡
1 +2

¢
Ω̇1 +

¡
3 +2

¢
2Ω3 − 23Ω2 = − cos  (11.198)

1Ω̇2 + 13Ω1 − 31Ω3 = 0¡
3 +2

¢
Ω̇3 + 21Ω2 −

¡
1 +2

¢
2Ω1 = 0

These can be recognized to be the torque equations about the point of contact .

Introduction of equations 11191 and 11192 into equation 11198 expresses the equations of motion in

terms of the Euler angles to be¡
1 +2

¢
̈ +

¡
3 +2

¢
̇ sin 

³
̇ cos  + ̇

´
− 1̇

2
sin  cos  = − cos  (11.199)

1̈ sin  + 21̇̇ cos  − 3̇
³
̇ cos  + ̇

´
= 0¡

3 +2
¢ ³

̈ cos  − ̇̇ sin  + ̈
´
−2̇̇ sin  = 0
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Equations 11199 are non-linear, and a closed-form solution is possible only for limited cases such as when

 = 90◦.
Note that the above equations of motion also can be derived using Lagrangian mechanics knowing that

 =
1

2

¡
21 + 22 + 23

¢
+
1

2
1
¡
Ω21 +Ω

2
2

¢
+
1

2
3Ω

2
3 − cos 

The differential equations of constraint can be derived from equations 11197 to be

− cos = 0

 − sin = 0

Use of generalized forces plus the Lagrange-Euler equations (647) can be used to derive the equations of

motion and solve for the components of the constraint force 1 2 and 3.

11.14 Example: Tipping stability of a rolling wheel

A circular wheel rolling in a vertical plane at high angular velocity initially rolls in a straight line and

remains vertical. However, below a certain angular velocity, gyroscopic forces become weaker and it will

tip sideways and veer rapidly from the initial direction. It is interesting to estimate the minimum angular

velocity of the disk such that it does not start to tip over sideways.

Note that equations 11199 are satisfied for  = 
2
  = 0 and ̇ = Ω3 = constant. Assume a small

disturbance causes the tilt angle  = 
2
+  where  is small and that  is non-zero but small, that is ̇ = ̇

and ̇ are small. Keeping only terms to first order in the third of equations 11199 and integrating gives

̇ cos  + ̇ = Ω3 (a)

The first two of equations 11198 become¡
1 +2

¢
̈+

¡
3 +2

¢
̇Ω3 − = 0 (b)

1̈− 3Ω3̇ = 0 (c)

Integrating equation () gives

̇ =
3Ω3

1
 (d)

Inserting () into () gives ¡
1 +2

¢
̈+

∙¡
3 +2

¢ 3Ω23
1
−

¸
 = 0 (e)

Equation () has a stable oscillatory solution when the square bracket in positive, that is,

Ω23 
1

3 (3 +2)
(f)

which gives the minimum angular velocity required for stable rolling motion. For angular velocity less than

the minimum, the square bracket in equation () is negative leading to an exponentially decaying divergent

solution. For a uniform disk the perpendicular axis theorem gives 3 = 21 =
1
2
2 for which equation 

gives

Ω23 


3
(g)

Therefore the critical linear velocity of the wheel is

 = Ω3 

r


3
(h)

The bicycle wheel provides a common example of the tipping of a rolling wheel. For the typical 035

radius of a bicycle wheel, this gives a critical velocity of   107 = 24.4

4The stability of the bicycle is sensitive to the castor and other aspects of the steering geometry of the front wheel, in addition

to gyroscopic effects. Excellent articles on this subject have been written by D.E.H. Jones Physics Today 23(4) (1970) 34, and

also by J. Lowell & H.D. McKell, American Journal of Physics 50 (1982) 1106.
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11.15 Example: Pivoting

The difference between a rolling and a pivoting body can lead to confusion as to whether to compute the

angular momentum and kinetic energy with respect to the center of mass, or the point of contact on the

circumference of the body for rolling, or of the pivot point for a fixed pivot. It is useful to compare the

angular momentum and total energy computed with respect to (1) the center of mass of a cylinder and (2)

with respect to the point of contact of the cylinder and the plane for pivoting or rolling.

Consider a cylinder of radius  and mass  pivoting about the point of contact with the plane with

angular velocity  = 

where  is the instantaneous velocity of the center of mass. The angular momentum

about the pivot point is

L = R× v =ω

The parallel-axis theorem relates the moment of inertia with respect to the pivot point and center of mass

 = 2 + 

The angular velocities of the center of mass, and about the center of mass, are identical since the pivot point

is fixed, that is

 =  = 

Thus the angular momentum about the pivot point is given by the sum of the angular momenta

L = ω = 2ω + ω

That is, the angular momentum is the sum of the angular momentum of the body about the center of mass

plus the angular momentum of the center of mass about the pivot point. This is an example of Chasles

theorem.

The kinetic energy is given only by the rotational energy since the pivot point is stationary

 =
1

2


2 =
1

2
22 +

1

2


2 =
1

2
2 +

1

2


2

That is, it equals the kinetic energy of rotation about the center of mass plus the instantaneous kinetic energy

for translation of the center of mass in agreement with Chasles theorem. Thus for pivoting the angular

momentum and kinetic energy are the same if evaluated using either center of mass coordinates or using the

pivot point as the reference point.

11.16 Example: Rolling

Consider the same system except the cylinder is rolling without slipping on a plane. The subtle difference

between pivoting and rolling is that the rolling point of contact and the center of mass are moving at the same

velocity in contrast to pivoting where the point of contact is stationary. Thus for rolling there is no angular

momentum of the center of mass with respect to the point of contact. Therefore the angular momentum about

the instantaneous point of contact is

L =  +  = 20 + ω =ω

That is, the angular momentum only includes the angular momentum about the center of mass which is

smaller than the angular momentum for the same body pivoting about a point on the periphery of the cylinder.

The kinetic energy is given by

 =
1

2
2 +

1

2


2 =
1

2
2 +

1

2


2

Thus the angular momentum is significantly smaller for rolling relative to pivoting of a given body, whereas

the kinetic energy is the same for both rolling or pivoting of a given body.
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11.25 Dynamic balancing of wheels

It is crucial for rotating machinery that rotors be both statically and dynamically balanced. Static balance

means that the center of mass is on the axis of rotation. Dynamic balance means that the axis of rotation is

a principal axis.

For example, consider the symmetric rotor that has its symmetry axis at an angle  to the axis of rotation.

In this case the system is statically balanced since the center of gravity is on the axis of rotation. However,

the rotation axis is at an angle  to the symmetry axis. This implies that the axle has to provide a torque

to maintain rotation that is not along a principal axis. If you distort the front wheel of your car by hitting it

sideways against the sidewalk curb, or if the wheel is not dynamically balanced, then you will find that the

steering wheel can vibrate wildly at certain speeds due to the torques caused by dynamic imbalance shaking

the steering mechanism. This can be especially bad when the frequency is close to a resonant frequency

of the suspension system. Insist that your automobile wheels are dynamically balanced when you change

tires, static balancing will not eliminate the dynamic imbalance forces. Another example is that the ailerons,

rudder, and elevator on aircraft usually are dynamically balanced to stop the build up of oscillations that

can couple to flexing and flutter of the airframe which can lead to airframe failure.

11.17 Example: Forces on the bearings of a rotating circular disk

Rotation of circular disk about an axis that

is at an angle  to the symmetry axis of the

circular disk.

A homogeneous circular disk of mass  , and radius ,

rotates with constant angular velocity  about a body-fixed

axis passing through the center of the circular disk as shown

in the adjacent figure. The rotation axis is inclined at an

angle  to the symmetry axis of the circular disk by bearings

on both sides of the disk spaced a distance  apart. Determine

the forces on the bearings.

Choose the body-fixed axes such that ̂3 is along the sym-

metry axis of the circular disk, and ̂1 points in the plane of

the disk symmetry axis and the rotation axis. These axes are

the principal axes for which the inertia tensor can be calcu-

lated to be

I =
2

4

⎛⎝ 1 0 0

0 1 0

0 0 2

⎞⎠
Note that for this thin plane laminae disk 11 + 22 = 33.

The components of the angular velocity vector  along the

three body-fixed axes are given by

ω =( sin 0  cos)

Since it is assumed that ̇ = 0 then substituting into Euler’s equations (11103) gives the torques acting to

be

1 = 3 = 0

2 = −2 sin cos1
4
2

That is, the torque is in the ̂2 direction. Thus the forces  on the bearings can be calculated since N = r×F,
thus

| | = |2|
2

=22
sin 2

16

Estimate the size of these forces for the front wheel of your car travelling at 70 m.p.h. if the rotation axis is

displaced by 2◦ from the symmetry axis of the wheel.
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Figure 11.11: Forward two-and-a-half somersaults with two twists demonstrates unequivocally that a diver

can initiate continuous twisting in midair. In the illustrated maneuver the diver does more than one full

somersault before he starts to twist. To maintain the twisting the diver does not have to move his legs.[Fro80]

11.26 Rotation of deformable bodies

The discussion in this chapter has assumed that the rotating body is a rigid body. However, there is broad

and important class of problems in classical mechanics where the rotating body is deformable which leads

to intriguing new phenomena. The classic example is the cat, which, if dropped upside down with zero

angular momentum, is able to distort its body plus tail in order to rotate such that it lands on its feet in

spite of the fact that there are no external torques acting and thus the angular momentum is conserved.

Another example is the high diver doing a forward two—and-a-half somersault with two twists.[Fro80] Once

the diver leaves the board then the total angular momentum must be conserved since there are no external

torques acting on the system. The diver begins a somersault by rotating about a horizontal axis which is a

principal axis that is perpendicular to the axis of his body passing through his hips. Initially the angular

momentum, and angular velocity, are parallel and point perpendicular to the symmetry axis. Initially the

diver goes into a tuck which greatly reduces his moment of inertia along the axis of his somersault which

concomitantly increases his angular velocity about this axis and he performs one full somersault prior to

initiating twisting. Then the diver twists its body and moves its arms to destroy the axial symmetry of his

body which changes the direction of the principal axes of the inertia tensor. This causes the angular velocity

to change in both direction and magnitude such that the angular momentum remains conserved. The angular

velocity now is no longer parallel to the angular momentum resulting in a component along the length of

the body causing it to twist while somersaulting. This twisting motion will continue until the symmetry

of the diver’s body is restored which is done just before entering the water. By skilled timing, and body

movement, the diver restores the symmetry of his body to the optimum orientation for entering the water.

Such phenomena involving deformable bodies are important to motion of ballet dancers, jugglers, astronauts

in space, and satellite motion. The above rotational phenomena would be impossible if the cat or diver were

rigid bodies having a fixed inertia tensor. Calculation of the dynamics of the motion of deformable bodies

is complicated and beyond the scope of this book, but the concept of a time dependent transformation of

the inertia tensor underlies the subsequent motion. The theory is complicated since it is difficult even to

quantify what corresponds to rotation as the body morphs from one shape to another. Further information

on this topic can be found in the literature. [Fro80]
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11.27 Summary

This chapter has introduced the important, topic of rigid-body rotation which has many applications in

physics, engineering, sports, etc.

Inertia tensor The concept of the inertia tensor was introduced where the 9 components of the inertia

tensor are given by

 =

Z
 (r0)

Ã


Ã
3X


2

!
− 

!
 (1114)

Steiner’s parallel-axis theorem

11 ≡ 11 +
¡¡
21 + 22 + 23

¢
11 − 21

¢
= 11 +

¡
22 + 23

¢
(1143)

relates the inertia tensor about the center-of-mass to that about parallel axis system not through the center

of mass.

Diagonalization of the inertia tensor about any point was used to find the corresponding Principal axes

of the rigid body.

Angular momentum The angular momentum L for rigid-body rotation is expressed in terms of the

inertia tensor and angular frequency  by

L=

⎛⎝ 11 12 13
21 22 23
31 32 33

⎞⎠ ·
⎛⎝ 1

2
3

⎞⎠ = {I} · ω (1156)

Rotational kinetic energy The rotational kinetic energy is

 =
1

2

¡
1 2 3

¢ ·
⎛⎝ 11 12 13

21 22 23
31 32 33

⎞⎠ ·
⎛⎝ 1

2
3

⎞⎠ (1172)

 ≡ T =
1

2
ω · {I} · ω = 1

2
ω · L (1173)

Euler angles The Euler angles relate the space-fixed and body-fixed principal axes. The angular velocity

ω expressed in terms of the Euler angles has components for the angular velocity in the body-fixed axis system

(1 2 3)

1 = ̇1 + ̇1 +


1 = ̇ sin  sin + ̇ cos (1186)

2 = ̇2 + ̇2 +


2 = ̇ sin  cos − ̇ sin (1187)

3 = ̇3 + ̇3 +


3 = ̇ cos  + ̇ (1188)

Similarly, the components of the angular velocity for the space-fixed axis system (  ) are

 = ̇ cos+ ̇ sin  sin (1189)

 = ̇ sin− ̇ sin  cos (1190)

 = ̇+ ̇ cos  (1191)

Rotational invariants The powerful concept of the rotational invariance of scalar properties was intro-

duced. Important examples of rotational invariants are the Hamiltonian, Lagrangian, and Routhian.

Euler equations of motion for rigid-body motion The dynamics of rigid-body rotational motion was

explored and the Euler equations of motion were derived using both Newtonian and Lagrangian mechanics.


1 = 1


1 − (2 − 3)23 (11103)


2 = 2


2 − (3 − 1)31


3 = 3


3 − (1 − 2)12
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Lagrange equations of motion for rigid-body motion The Euler equations of motion for rigid-body

motion, given in equation 11103 were derived using the Lagrange-Euler equations.

Torque-free motion of rigid bodies The Euler equations and Lagrangian mechanics were used to study

torque-free rotation of both symmetric and asymmetric bodies including discussion of the stability of torque-

free rotation.

Rotating symmetric body subject to a torque The complicated motion exhibited by a symmetric top,

that is spinning about one fixed point and subject to a torque, was introduced and solved using Lagrangian

mechanics.

The rolling wheel The non-holonomic motion of rolling wheels was introduced, as well as the importance

of static and dynamic balancing of rotating machinery..

Rotation of deformable bodies The complicated non-holonomic motion involving rotation of deformable

bodies was introduced.
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Workshop exercises

1. Three objects are described below. Break up into three groups, one group per object, and determine the inertia

tensor.

• A very thin sheet with a mass density  =  where  is a positive constant. The sheet lies in the 

plane and its sides are both of length .

• An inclined-plane shaped block of mass  is oriented with one corner at the origin as shown.

x

y

z

• An equilateral triangle made up of three thin rods of length  and uniform mass density .

2. Consider the objects described in problem 1.

(a) For the first object (the thin sheet), determine the principal moments of inertia.

(b) For the second object (the inclined plane), determine the principal axes.

(c) For the third object (the equilateral triangle), determine the products of inertia.

3. Consider the inertia tensor.

(a) What are the advantages of diagonalizing the inertia tensor?

(b) How can the inertia tensor be diagonalized?

(c) What can you say about a tensor that is real and symmetric?

4. A hollow spherical shell has a mass  and radius .

(a) Calculate the inertia tensor for a set of coordinates whose origin is at the center of mass of the shell.

(b) Now suppose that the shell is rolling without slipping toward a step of height , where   . The shell

has a linear velocity . What is the angular momentum of the shell relative to the tip of the step?

(c) The shell now strikes the tip of the step inelastically (so that the point of contact sticks to the step,

but the shell can still rotate about the tip of the step). What is the angular momentum of the shell

immediately after contact?

(d) Finally, find the minimum velocity which enables the shell to surmount the step. Express your result in

terms of   and .

5. The vectors ̂, ̂, and ̂ constitute a set of orthogonal right-handed axes. The vectors ̂+ ̂− 2̂, −̂+ ̂, and

̂+ ̂ + ̂ are also perpendicular to one another.

(a) Write out the set of direction cosines relating the new axes to the old.

(b) How are the Eulerian angles defined? Describe this transformation by a set of Eulerian angles.
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6. A torsional pendulum consists of a vertical wire attached to a mass which can rotate about the vertical axis.

Consider three torsional pendula which consist of identical wires from which identical homogeneous solid cubes

are hung. One cube is hung from a corner, one from midway along an edge, and one from the middle of a face

as shown. What are the ratios of the periods of the three pendula?

7. A dumbbell comprises two equal point masses  connected by a massless rigid rod of length 2 which is

constrained to rotate about an axle fixed to the center of the rod at an angle  as shown in the figure. The

center of the rod is at the origin of the coordinates, the axle along the -axis, and the dumbbell lies in the

−  plane at  = 0. The angular velocity  is a constant in time and is directed along the  axis.

a) Calculate all elements of the inertia tensor. Be sure to specify the coordinate system used.

b) Using the calculated inertia tensor find the angular momentum of the dumbbell in the laboratory frame as

a function of time.

c) Using the equation  =  × , calculate the angular momentum and show that it it is equal to the answer

of part (b).

d) Calculate the torque on the axle as a function of time.

e) Calculate the kinetic energy of the dumbbell.

z

x

O

8. A heavy symmetric top has a mass  with the center of mass a distance  from the fixed point about which

it spins and 1 = 2 6= 3. The top is precessing at a steady angular velocity Ω about the vertical space-fixed

 axis. What is the minimum spin 0 about the body-fixed symmetry axis, that is, the 3 axis assuming that
the 3 axis is inclined at an angle  =  with respect to the vertical  axis. Solve the problem at the instant

when the   3 1 axes all are in the same plane as shown in the figure.

z

O

1

3

x
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9. Consider an object with the center of mass is at the origin and inertia tensor,

 = 

⎛⎝ 12 −12 0

−12 12 0

0 0 1

⎞⎠
(a) Determine the principal moments of inertia and the principal axes. Guess the object.

(b) Determine the rotation matrix  and compute †. Do the diagonal elements match with your results
from (a)? Note: columns of  are eigenvectors of .

(c) Assume  = √
2
(̂ + ̂). Determine  in the rotating coordinate system. Are  and  in the same

direction? What does this mean?

(d) Repeat (c) for  = √
2
(̂− ̂). What is different and why?

(e) For which case will there be a non-zero torque required?

(f) Determine the rotational kinetic energy for the case  = √
2
(̂− ̂)?

10. Consider a wheel (solid disk) of mass  and radius . The wheel is subject to angular velocities  =  ̂

where ̂ is normal to the surface and  =  ̂.

(a) Choose a set of principal axes by observation.

(b) Determine the angular velocities and angular momentum along the principal axes. Note: 1 =
1
2
2 and

2 = 3 =
1
4
2.

(c) Determine the torque.

(d) Determine the rotation matrix that rotates the fixed coordinate system to the body coordinate system.

11. Determine the principal moments of inertia of an ellipsoid given by the equation,

2

2
+

2

2
+

2

2
= 1

12. Determine the principal moments of inertia of a sphere of radius  with a cavity of radius  located  from the

center of the sphere.

13. Three equal masses  form the vertices of an equilateral triangle of side length . The masses are located at³
0 0 √

3

´
,

³
0 

2
− 

2
√
3

´
, and

³
0−

2
− 

2
√
3

´
, such that the center-of-mass is located at the origin.

(a) Determine the principal moments of inertia and principal axes.

Now consider the same system rotated 45◦ about the ̂-axis. The masses are located at
³
0 0 √

3

´
,

³
− 

2
√
2
 

2
√
2
− 

2
√
3

´
,

and

³


2
√
2
− 

2
√
2
− 

2
√
3

´
, respectively.

(b) Determine the principal moments of inertia and principal axes.

(c) Could you have answered (b) without explicitly determining the inertia tensor? How?
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Problems

1. Calculate the moments of inertia 1 2 3 for a homogeneous cone of mass  whose height is  and whose

base has a radius  Choose the 3-axis along the symmetry axis of the cone.

a) Choose the origin at the apex of the cone, and calculate the elements of the inertia tensor.

b) Make a transformation such that the center of mass of the cone is the origin and find the principal moments

of inertia.

2. Four masses, all of mass  lie in the  −  plane at positions ( ) = ( 0) (− 0) (0+2) (0−2)
These are joined by massless rods to form a rigid body

(a) Find the inertial tensor, using the    axes as a reference system. Exhibit the tensor as a matrix.

(b) Consider a direction given by the unit vector ̂ that lies equally between the positive    axes; that is

it makes equal angles with these three directions. Find the moment of inertia for rotation about this ̂ axis.

(c) Given that at a certain time  the angular velocity vector lies along the above direction ̂, find, for that

instant, the angle between the angular momentum vector and ̂

3. A homogeneous cube, each edge of which has a length  initially is in a position of unstable equilibrium with

one edge of the cube in contact with a horizontal plane. The cube then is given a small displacement causing

it to tip over and fall. Show that the angular velocity of the cube when one face strikes the plane is given by

2 = 




³√
2− 1

´
where  = 3

2
if the edge cannot slide on the plane, and where  = 12

5
if sliding can occur without friction.

4. A symmetric body moves without the influence of forces or torques. Let 3 be the symmetry axis of the body

and  be along 03. The angle between  and 3 is . Let  and  initially be in the 2 − 3 plane. What is

the angular velocity of the symmetry axis about  in terms of 1 3 and ?

5. Consider a thin rectangular plate with dimensions  by  and mass  Determine the torque necessary to

rotate the thin plate with angular velocity  about a diagonal. Explain the physical behavior for the case when

 = .



Chapter 12

Coupled linear oscillators

12.1 Introduction

Chapter 3 discussed the behavior of a single linearly-damped linear oscillator subject to a harmonic force.

No account was taken for the influence of the single oscillator on the driver for the case of forced oscillations.

Many systems in nature comprise complicated free or forced oscillations of coupled-oscillator systems. Ex-

amples of coupled oscillators are; automobile suspension systems, electronic circuits, electromagnetic fields,

musical instruments, atoms bound in a crystal, neural circuits in the brain, networks of pacemaker cells in

the heart, etc. Energy can be transferred back and forth between coupled oscillators as the motion evolves.

However, it is possible to describe the motion of coupled linear oscillators in terms of a sum over independent

normal coordinates, i.e. normal modes, even though the motion may be very complicated. These normal

modes are constructed from the original coordinates in such a way that the normal modes are uncoupled.

The topic of finding the normal modes of coupled oscillator systems is a ubiquitous problem encountered in

all branches of science and engineering. As discussed in chapter 4 oscillatory motion of non-linear systems

can be complicated. Fortunately most oscillatory systems are approximately linear when the amplitude of

oscillation is small. This discussion assumes that the oscillation amplitudes are sufficiently small to ensure

linearity.

12.2 Two coupled linear oscillators

cm

m m 

x 1  x  2

Figure 12.1: Two coupled linear oscillators.

The equilibrium spring-lengths are  for the

outer springs and 0 for the coupling spring.
The displacement from the stable locations

are given by 1 and 2. The separation be-

tween the two masses is  and the location of

the center-of-mass is .

Consider the two-coupled linear oscillator, shown in figure

121, which comprises two identical masses each connected to

fixed locations by identical springs having a force constant

. A spring with force constant 0 couples the two oscilla-
tors. The equilibrium lengths of the outer two springs are 

while that of the coupling spring is 0. The problem is simpli-
fied by restricting the motion to be along the line connecting

the masses and assuming fixed endpoints. The small displace-

ments of1 and2 are taken to be 1 and 2 with respect to

the equilibrium positions  and + 0 respectively. The restor-
ing force on1 is −1−0 (1 − 2) while the restoring force

on 2 is −2 − 0 (2 − 1)  This coupled double-oscillator

system exhibits basic features of coupled linear oscillator sys-

tems.

Assuming 1 = 2 =  then the equations of motion

are

̈1 + (+ 0)1 − 02 = 0 (12.1)

̈2 + (+ 0)2 − 01 = 0

Assume that the motion for these coupled equations is oscil-

341
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latory with a solution of the form

1 = 1
 (12.2)

2 = 2


where the constants  may be complex to take into account both the magnitude and phase. Substituting

these possible solutions into the equations of motion gives

−21
 + (+ 0)1 − 02 = 0 (12.3)

−22
 + (+ 0)2 − 01 = 0

Figure 12.2: Displacement of each of two

coupled linear harmonic oscillators with

 = 4 and 0 = 1 in relative units.

Collecting terms, and cancelling the common exponential fac-

tor, gives ¡
+ 0 −2

¢
1 − 02 = 0 (12.4)¡

+ 0 −2
¢
2 − 01 = 0

The existence of a non-trivial solution of these two simultane-

ous equations requires that the determinant of the coefficients of

1 and 2 must vanish, that is¯̄̄̄
+ 0 −2 −0

−0 + 0 −2

¯̄̄̄
= 0 (12.5)

The expansion of this secular determinant yields¡
+ 0 −2

¢2 − 02 = 0 (12.6)

Solving for  gives

 =

r
+ 0 ± 0


(12.7)

That is, there are two characteristic frequencies (or eigenfrequen-

cies) for the system

1 =

r
+ 20


(12.8)

2 =

r



(12.9)

Since superposition applies for these linear equations, then the

general solution can be written as a sum of the terms that account

for the two possible values of .

Figure 122 shows the solutions for a case where  = 4 and 0 = 1 in arbitrary units, with the initial

condition that 2 =  and 1 = ̇1 = ̇2 = 0. The two characteristic frequencies are 1 =
q

6

and

2 =
q

4

. The characteristic beats phenomenon is exhibited where the envelope over one complete cycle of

the low frequency encompasses several higher frequency oscillations. That is, the solution is

2 () =


4

£
1 + −1 + 2 + −2

¤
=  cos

∙µ
1 + 2

2

¶


¸
cos

∙µ
1 − 2

2

¶


¸
(12.10)

while

1 () =


4

£
1 + −1 − 2 − −2

¤
=  sin

∙µ
1 + 2

2

¶


¸
sin

∙µ
1 − 2

2

¶


¸
(12.11)

The energy in the two-coupled oscillators flows back and forth between the coupled oscillators as illus-

trated in figure 122.

A better understanding of the energy flow occurring between the two coupled oscillators is given by

using a (1 2) configuration-space plot, shown in figure 123 The flow of energy occurring between the two

coupled oscillators can be represented by choosing normal-mode coordinates 1 and 2 that are rotated by

45◦ with respect to the spatial coordinates (1 2). These normal-mode coordinates (1 2) correspond to
the two normal modes of the coupled double-oscillator system.
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12.3 Normal modes

Figure 12.3: Motion of two coupled har-

monic oscillators in the (1 2) spatial

configuration space and in terms of the

normal modes (1 2). Initial conditions

are 2 = 1 = ̇1 = ̇2 = 0

The normal modes of the two-coupled oscillator system are

obtained by a transformation to a pair of normal coordinates

(1 2) that are independent and correspond to the two normal

modes. The pair of normal coordinates for this case are

1 ≡ 1 − 2 (12.12)

2 ≡ 1 + 2

that is

1 =
1

2
(2 + 1) (12.13)

2 =
1

2
(2 − 1)

Substitute these into the equations of motion (121), gives


¡
1 +


2
¢
+ (+ 20) 1 + 02 = 0 (12.14)


¡
1 −


2
¢
+ (+ 20) 1 − 02 = 0

Adding and subtracting these two equations gives

̈1 + (+ 2
0) 1 = 0 (12.15)

̈2 + 2 = 0

Note that the two coordinates 1 and 2 are uncoupled and there-

fore independent. The solutions of these equations are

1 () = +1 
1 + −1 

−1 (12.16)

2 () = +2 
2 + −2 

−2

where 1 corresponds to angular frequencies 1, and 2 corresponds to 2. The two coordinates 1 and 2 are

called the normal coordinates and the two solutions are the normal modes with corresponding

angular frequencies, 1 and 2.

1

2

Antisymmetric mode
(out of phase)

Symmetric mode
(in phase)

Figure 12.4: Normal modes for two cou-

pled oscillators.

The (1 2) axes of the two normal modes correspond to a

rotation of 45◦ in configuration space, figure 123. The initial
conditions chosen correspond to 1 = −2 and thus both modes
are excited with equal intensity. Note that there are 5 lobes along

the 2 axis versus 4 lobes along the 1 axis reflecting the ratio

of the eigenfrequencies 1 and 2 Also note that the diamond

shape of the motion in the (1 2) configuration space illustrates

that the extrema amplitudes for 2 are a maximum when 1 is

zero, and vise versa. This is equivalent to the statement that

the energies in the two modes are coupled with the energy for

the first oscillator being a maximum when the energy is a min-

imum for the second oscillator, and vise versa. By contrast, in

the (1 2) configuration space, the motion is bounded by a rec-

tangle parallel to the (1 2) axes reflecting the fact that the

extrema amplitudes, and corresponding energies, for the 1 nor-

mal mode are constant and independent of the motion for the 2
normal mode, and vise versa. The decoupling of the two normal

modes is best illustrated by considering the case when only one

of these two normal modes is excited. For the initial conditions

1 (0) = −2 (0)  and 
1 (0) = − 

2 (0)  then 2 () = 0 That is,

only the 1 () normal mode is excited with frequency 1 which

corresponds to motion confined to the 1 axis of figure 123
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As shown in figure 124, 1 () is the antisymmetric mode in which the two masses oscillate out of phase

such as to keep the center of mass of the two masses stationary. For the initial conditions 1 (0) = 2 (0) 

and

1 (0) =


2 (0)  then 1 () = 0 that is, only the 2 () normal mode is excited. The 2 () normal mode

is the symmetric mode where the two masses oscillate in phase with frequency 2; it corresponds to motion

along the 2 axis For the symmetric phase, both masses move together leading to a constant extension of

the coupling spring. As a result the frequency 2 of the symmetric mode 2 () is lower than the frequency

1 of the asymmetric mode 1 ()  That is, the asymmetric mode is stiffer since all three springs provide

active restoring forces, compared to the symmetric mode where the coupling spring is uncompressed. In

general, for attractive forces the lowest frequency always occurs for the mode with the highest symmetry.

12.4 Center of mass oscillations

Transforming the coordinates into the center of mass of the two oscillating masses elucidates an interesting

feature of the normal modes for the two-coupled linear oscillator. As illustrated in figure 121, the center-

of-mass coordinate for the two mass system is

2 =  + 1 +  + 0 + 2 = 2 + 0 + 2

while the relative separation distance is

 = ( + 0 + 2)− ( + 1) = 0 − 1

That is, the two normal modes are

1 = 0 −  (12.17)

2 = 2 − 2 − 0

The 1 mode, which has angular frequency 1 =

q
+20


corresponds to an oscillations of the relative

separation , while the center-of-mass location  is stationary. By contrast, the 2 mode, with angular

frequency 2 =
p



 corresponds to an oscillation of the center of mass  with the relative separation 

being a constant.

0 1 2 3 4 5 6 7 8 9 10
0.0

0.5

1.0
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R

r

cm

t

Figure 12.5: Time dependence of the center-of-

mass  and relative separation  for two cou-

pled linear oscillators assuming spring constants

of  = 4 and 0 = .

Figure 125 illustrates the decoupled center-of-mass

, and relative motions  for both normal modes of

the coupled double-oscillator system. The difference in

angular frequencies and amplitudes is readily apparent.

It is of interest to consider the special case where the

spring constant  = 0 for the two outside springs. Then

the angular frequencies are 1 =

q
20

and 2 = 0 for

the two normal modes. When  = 0 the 2 mode is a

spurious center-of-mass mode since it corresponds to an

oscillation with 2 = 0 in spite of the fact that there

are no forces acting on the center of mass. That is, the

center-of-mass momentum must be a constant of motion.

This spurious center-of-mass oscillation is a consequence

of measuring the displacements (1 2) with respect to

an arbitrary external reference that is not related to the

center of mass of the coupled system. Spurious center-

of-mass modes are encountered frequently in many-body

coupled oscillator systems such as molecules and nuclei.

In such cases it is necessary to project out the center-of-

mass motion to eliminate such spurious solutions as will

be discussed later.
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12.5 Weak coupling

If one of the two coupled linear oscillator masses is held fixed, then the other free mass will oscillate with a

frequency.

0 =

r
+ 0


(12.18)

The effect of coupling of the two oscillators is to split the degeneracy of the frequency for each mass to

1 =

r
+ 20


 0 =

r
+ 0


 2 =

r



 (12.19)

Thus the degeneracy is broken, and the two normal modes have frequencies straddling the single-oscillator

frequency.

It is interesting to consider the case where the coupling is weak because this situation occurs frequently

in nature. The coupling is weak if the coupling constant 0   Then

1 =

r
+ 20


=

r




√
1 + 4 (12.20)

where

 ≡ 0

2
 1 (12.21)

Thus

1 ≈
r




(1 + 2) (12.22)

The natural frequency of a single oscillator was shown to be

0 =

r
+ 0


≈
r




(1 + ) (12.23)

0

0

1

2

1

2

3

n=2

n=3

Figure 12.6: Normal-mode frequencies for

n=2 and n=3 weakly-coupled oscillators.

that is r



= 0 (1− ) (12.24)

Thus the frequencies for the normal modes for weak coupling

can be written as

1 =

r



(1 + 2)

≈ 0 (1− ) (1 + 2) ≈ 0 (1 + ) (12.25)

while

2 =

r



≈ 0 (1− ) (12.26)

That is the two solutions are split equally spaced about the

single uncoupled oscillator value given by 0 =

q
+0

≈p



(1 + ). Note that the single uncoupled oscillator fre-

quency 0 depends on the coupling strength 0.
This splitting of the characteristic frequencies is a feature

exhibited by many systems of  identical oscillators where

half of the frequencies are shifted upwards and half down-

ward. If  is odd, then the central frequency is unshifted as

illustrated for the case of  = 3. An example of this behav-

ior is the Zeeman effect where the magnetic field couples the

atomic motion resulting in a hyperfine splitting of the energy

levels of the form illustrated.
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There are myriad examples involving weakly-coupled oscillators in many aspects of the natural world.

The example of collective modes in nuclear physics, illustrated in example 1213, is typical of applications to

physics, while there are many examples applied to musical instruments, acoustics, and engineering. Weakly-

coupled oscillators are a dominant theme throughout biology as illustrated by congregations of synchronously

flashing fireflies, crickets that chirp in unison, an audience clapping at the end of a performance, networks

of pacemaker cells in the heart, insulin-secreting cells in the pancreas, and neural networks in the brain and

spinal cord that control rhythmic behaviors such as breathing, walking, and eating. Synchronous motion of

a large number of weakly-coupled oscillators often leads to large collective motion of weakly-coupled systems

as discussed in chapter 1212

12.1 Example: The Grand Piano

Key

Pin block
Hammer

Jack

Damper String Bridge Hitchpin

Ribs
Soundboard

Schematic diagram of the action for a grand piano, including the strings, bridge and sounding board. Note

that there are either two or three parallel strings per note all hit by a single hammer.

The grand piano provides an excellent example of a weakly-coupled harmonic oscillator system that has

normal modes. There are either two or three parallel strings per note that are stretched tightly parallel to the

top of the horizontal sounding board. The strings press downwards on the bridge that is attached to the top of

the sounding board. The strings for each note are excited when struck vertically upwards by a single hammer.

In the base section of the piano each note comprises two strings tuned to nearly the same frequency. The

coupling of the motion of the strings is via the bridge plus sounding board. Normally, the hammer strikes both

strings simultaneously exciting the vertical symmetric mode, not the vertical antisymmetric mode. The bridge

is connected to the sounding board which moves the largest amount for the symmetric mode where both strings

move the bridge in phase. This strong coupling produces a loud sound. The antisymmetric mode does not

move the sounding board much since the strings at the bridge move out of phase. Consequently, the symmetric

mode, that is strongly coupled to the sounding board, damps out more rapidly than the antisymmetric mode

which is weakly coupled to the sound board and thus has a longer time constant for decay since the radiated

sound energy is lower than the symmetric mode.

The una-corda pedal (soft pedal) for a grand piano moves the action sideways such that the hammer strikes

only one of the two strings, or two of the three strings, resulting in both the symmetric and antisymmetric

modes being excited equally. The una-corda pedal produces a characteristically different tone than when

the hammer simultaneously hits all the strings; that is, it produces a smaller transient component. The

symmetric mode rapidly damps due to energy propagation by the sounding board. Thus the longer lasting

antisymmetric mode becomes more prominent when both modes are equally excited using the una-corda pedal.

The symmetric and antisymmetric modes have slightly different frequencies and produce beats which also

contributes to the different timbre produced using the una-corda pedal. For the mid and upper frequency

range, the piano has three strings per note which have one symmetric mode and two separate antisymmetric

modes. To further complicate matters, the strings also can oscillate horizontally which couples weakly to the

bridge plus sounding board. The strengths that these different modes are excited depend on subtle differences

in the shape and roughness of the hammer head striking the strings. Primarily the hammer excites the two

vertical modes rather than the horizontal modes.
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12.6 General analytic theory for coupled linear oscillators

The above discussion of a coupled double-oscillator system has shown that it is possible to select symmetric

and antisymmetric normal modes that are independent and each have characteristic frequencies. The normal

coordinates for these two normal modes correspond to linear superpositions of the spatial amplitudes of the

two oscillators and can be obtained by a rotation into the appropriate normal coordinate system. Extension

of this to systems comprising  coupled linear oscillators, requires development of a general analytic theory,

that is capable of finding the normal modes and their eigenvalues and eigenvectors. As illustrated for the

double oscillator, the solution of many coupled linear oscillators is a classic eigenvalue problem where one has

to rotate to the principal axis system to project out the normal modes. The following discussion presents a

general approach to the problem of finding the normal coordinates for a system of  coupled linear oscillators.

Consider a conservative system of  coupled oscillators, described in terms of generalized coordinates

 and  with subscript  = 1 2 3 for a system with  degrees of freedom The coupled oscillators are

assumed to have a stable equilibrium with generalized coordinates 0 at equilibrium. In addition, it is

assumed that the oscillation amplitudes are sufficiently small to ensure that the system is linear.

For the equilibrium position  = 0 the Lagrange equations must satisfy

̇ = 0 (12.27)

̈ = 0

Every non-zero term of the form 



̇

in Lagrange’s equations must contain at least either ̇ or ̈ which

are zero at equilibrium; thus all such terms vanish at equilibrium. At equilibriumµ




¶
0

=

µ




¶
0

−
µ




¶
0

= 0 (12.28)

where the subscript 0 designates at equilibrium.

12.6.1 Kinetic energy tensor T

In chapter 76 it was shown that, in terms of fixed rectangular coordinates, the kinetic energy for  bodies,

with  generalized coordinates, is expressed as

 =
1

2

X
=1

3X
=1

̇
2
 (12.29)

Expressing these in terms of generalized coordinates  = (  ) where  = 1 2  then the generalized

velocities are given by

̇ =

X
=1




̇ +




(12.30)

As discussed in chapter 76 if the system is scleronomic then the partial derivative




= 0 (12.31)

Thus the kinetic energy, equation 1229, of a scleronomic system can be written as a homogeneous quadratic

function of the generalized velocities

 =
1

2

X


̇ ̇ (12.32)

where the components of the kinetic energy tensor T are

 ≡
X




3X









(12.33)

Note that if the velocities ̇ correspond to translational velocity, then the kinetic energy tensor T corresponds

to an effective mass tensor, whereas if the velocities correspond to angular rotational velocities, then the

kinetic energy tensor T corresponds to the inertia tensor.
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It is possible to make an expansion of the  about the equilibrium values of the form

 (1 2 ) =  (0) +
X


µ




¶
0

 +  (12.34)

Only the first-order term will be kept since the second and higher terms are of the same order as the higher-

order terms ignored in the Taylor expansion of the potential. Thus, at the equilibrium point, assume that³



´
0
= 0 where  = 1 2 3 .

12.6.2 Potential energy tensor V

Equations 1228 plus 1234 imply that µ




¶
0

= 0 (12.35)

where  = 1 2 3 

Make a Taylor expansion about equilibrium for the potential energy, assuming for simplicity that the

coordinates have been translated to ensure that  = 0 at equilibrium. This gives

 (1 2 ) = 0 +
X


µ




¶
0

 +
1

2

X


µ
2



¶
0

 +  (12.36)

The linear term is zero since
³



´
0
= 0 at the equilibrium point, and without loss of generality, the

potential can be measured with respect to 0. Assume that the amplitudes are small, then the expansion

can be restricted to the quadratic term, corresponding to the simple linear oscillator potential

 (1 2 )− 0 =  0 (1 2 ) =
1

2

X


µ
2



¶
0

 =
1

2

X


 (12.37)

That is

 0 (1 2 ) =
1

2

X


 (12.38)

where the components of the potential energy tensor V are defined as

 ≡
µ

2 0



¶
0

(12.39)

Note that the order of differentiation is unimportant and thus the quantity  is symmetric

 =  (12.40)

The motion of the system has been specified for small oscillations around the equilibrium position and

it has been shown that  0 (1 2 ) has a minimum value at equilibrium which is taken to be zero for

convenience.

In conclusion, equations (1232) and (1238) give

 =
1

2

X


̇ ̇ (12.41)

 0 =
1

2

X


 (12.42)

where the components of the kinetic energy tensor T and potential energy tensor V are

 ≡
Ã

X




3X










!
0

(12.43)

 ≡
µ

2 0



¶
0

(12.44)
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Note that  and  may have different units, but all the terms in the summations for both  and  0 have
units of energy. The  and  values are evaluated at the equilibrium point, and thus both  and 
are ×  arrays of values evaluated at the equilibrium location.

12.6.3 Equations of motion

Both the kinetic energy and potential energy terms are products of the coordinates leading to a set of

coupled equations that are complicated to solve. The problem is greatly simplified by selecting a set of

normal coordinates for which both  and  are diagonal, then the coupling terms disappear. Thus a

coordinate transformation must be found that simultaneously diagonalizes  and  in order to obtain a

set of normal coordinates.

The kinetic energy  is only a function of generalized velocities

 while the conservative potential energy

is only a function of the generalized coordinates  Thus the Lagrange equations




− 





̇
= 0 (12.45)

reduce to



+







̇
= 0 (12.46)

But



=

X


 (12.47)

and


̇
=

X


̇ (12.48)

Thus the Lagrange equations reduce to the following set of equations of motion,

X


( + ̈) = 0 (12.49)

For each  where 1 ≤  ≤  there exists a set of  second-order linear homogeneous differential equations

with constant coefficients. Since the system is oscillatory, it is natural to try a solution of the form

() = 
(−) (12.50)

Assuming that the system is conservative, then this implies that  is real, since an imaginary term for 

would lead to an exponential damping term. The arbitrary constants are the real amplitude  and the

phase  Substitution of this trial solution for each  leads to a set of equationsX


¡
 − 2

¢
 = 0 (12.51)

where the common factor (−) has been removed. Equation 1251 corresponds to a set of  linear

homogeneous algebraic equations that the  amplitudes must satisfy for each . For a non-trivial solution

to exist, the determinant of the coefficients must vanish, that is¯̄̄̄
¯̄̄̄ 11 − 211 12 − 212 13 − 213 

12 − 212 22 − 222 23 − 223 

13 − 213 23 − 223 33 − 233 

   

¯̄̄̄
¯̄̄̄ = 0 (12.52)

where the symmetry  =  has been included. This is the standard eigenvalue problem for which

the above determinant gives the secular equation or the characteristic equation. It is an equation

of degree  in 2 The  roots of this equation are 2 where  are the characteristic frequencies or

eigenfrequencies of the normal modes.

Substitution of 2 into equation 1252 determines the ratio 1 : 2 : 3 :  :  for this solution

which defines the components of the -dimensional eigenvector a. That is, solution of the secular equations

have determined the eigenvalues and eigenvectors of the  solutions of the coupled-channel system.
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12.6.4 Superposition

The equations of motion
P

 ( + ̈) = 0 are linear equations that satisfy superposition. Thus the

most general solution  () can be a superposition of the  eigenvectors a, that is

 () =

X



(−) (12.53)

Only the real part of  () is meaningful, that is,

 () = Re

X



(−) =

X


 cos (− ) (12.54)

Thus the most general solution of these linear equations involves a sum over the eigenvectors of the

system which are cosine functions of the corresponding eigenfrequencies.

12.6.5 Eigenfunction orthonormality

It can be shown that the eigenvectors are orthogonal. In addition, the above procedure only determines ratios

of amplitudes, thus there is an indeterminacy that can be used to normalize the . Thus the eigenvectors

form an orthonormal set. Orthonormality of the eigenfunctions for the rank 3 inertia tensor was illustrated

in chapter 11102 Similar arguments apply that allow extending orthonormality to higher rank cases such

that for -body coupled oscillators.

The eigenfunction orthogonality for  coupled oscillators can be proved by writing equation 1251

for both the  root and the  root. That is,X


 = 2

X


 (12.55)

X


 = 2

X


 (12.56)

Multiply equation 1255 by  and sum over . Similarly multiply equation 1256 by  and sum over .

These summations lead to X


 = 2

X


 (12.57)

X


 = 2

X


 (12.58)

Note that the left-hand sides of these two equations are identical. Thus taking the difference between these

equations gives ¡
2 − 2

¢X


 = 0 (12.59)

Note that if
¡
2 − 2

¢ 6= 0, that is, assuming that the eigenfrequencies are not degenerate, then to ensure
that equation 1259 is zero requires thatX



 = 0  6=  (12.60)

This shows that the eigenfunctions are orthogonal. If the eigenfrequencies are degenerate, i.e. 2 = 2,

then, with no loss of generality, the axes  and  can be chosen to be orthogonal.

The eigenfunction normalization can be chosen freely since only ratios of the eigenfunction compo-

nents  are determined when  is used in equation 1251. The kinetic energy, given by equation 1232

must be positive, or zero for the case of a static system. That is

 =
1

2

X


̇ ̇ ≥ 0 (12.61)
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Use the time derivative of equation 1254 to determine ̇ and insert into equation 1261 gives that the kinetic

energy is

 =
1

2

X


̇ ̇ =
1

2

X



X


 cos (− )  cos (− ) (12.62)

For the diagonal term  = 

 =
1

2

X


̇ ̇ =

"
1

2

X


2 cos
2 (− )

#X


 ≥ 0 (12.63)

Since the term in the square brackets must be positive, thenX


 ≥ 0 (12.64)

Since this sum must be a positive number, and the magnitude of the amplitudes can be chosen freely, then

it is possible to normalize the eigenfunction amplitudes to unity. That is, choose thatX


 = 1 (12.65)

The orthogonality equation, 1260 and the normalization equation 1265 can be combined into a single

orthonormalization equation X


 =  (12.66)

This has shown that the eigenvectors form an orthonormal set.

Since the  component of the  eigenvector is , then the 
 eigenvector can be written in the form

a =
X


 be (12.67)

where be are the unit vectors for the generalized coordinates.
12.6.6 Normal coordinates

The above general solution of the coupled-oscillator problem is best expressed in terms of the normal coor-

dinates which are independent. It is more transparent if the superposition of the normal modes are written

in the form

 () =

X



 (12.68)

where the complex factor  includes the arbitrary scale factor to allow for arbitrary amplitudes  as well

as the fact that the amplitudes  have been normalized and the phase factor  has been chosen.

Define

 () ≡ 
 (12.69)

then equation 1268 can be written as

 () =

X


 () (12.70)

Equation 1270 can be expressed schematically as the matrix multiplication

q = {a} · η (12.71)

The  () are the normal coordinates which can be expressed in the form

η = {a}−1 q (12.72)

Each normal mode  corresponds to a single eigenfrequency,  which satisfies the linear oscillator equation

̈ + 2 = 0 (12.73)
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12.7 Two-body coupled oscillator systems

The two-body coupled oscillator is the simplest coupled-oscillator system that illustrates the general fea-

tures of coupled oscillators. The following four examples involve parallel and series couplings of two linear

oscillators or two plane pendula.

12.2 Example: Two coupled linear oscillators

The coupled double-oscillator problem, figure 121 discussed in chapter 122, can be used to demonstrate

that the general analytic theory gives the same solution as obtained by direct solution of the equations of

motion in chapter 122.

1) The first stage is to determine the potential and kinetic energies using an appropriate set of generalized

coordinates, which here are 1 and 2. The potential energy is

 =
1

2
21 +

1

2
22 +

1

2
0 (2 − 1)

2
=
1

2
(+ 0)21 +

1

2
(+ 0)22 − 012

while the kinetic energy is given by

 =
1

2
̇21 +

1

2
̇22

2) The second stage is to evaluate the potential energy  and kinetic energy  tensors. The potential

energy tensor  is nondiagonal since  gives

11 ≡
µ

2

11

¶
0

= + 0 = 22

12 =

µ
2

12

¶
0

= −0 = 21

That is, the potential energy tensor  is

V =

½
+ 0 −0
−0 + 0

¾
Similarly, the kinetic energy is given by

 =
1

2
̇21 +

1

2
̇22 =

1

2

X


̇ ̇

Since 11 = 22 = and 12 = 21 = 0 then the kinetic energy tensor  is

T =

½
 0

0 

¾
Note that for this case, the kinetic energy tensor  equals the mass tensor, which is diagonal, whereas the

potential energy tensor equals the spring constant tensor, which is nondiagonal.

3) The third stage is to use the potential energy  and kinetic energy  tensors to evaluate the secular

determinant using equations 1252 ¯̄̄̄
+ 0 −2 −0

−0 + 0 −2

¯̄̄̄
= 0

The expansion of this secular determinant yields¡
+ 0 −2

¢2 − 02 = 0

That is ¡
+ 0 −2

¢
= ±0



12.7. TWO-BODY COUPLED OSCILLATOR SYSTEMS 353

Solving for  gives

 =

r
+ 0 ± 0



The solutions are

1 =

r
+ 20



2 =

r




which is the same as derived previously, (equations 127− 9).
4) The fourth step is to insert either one of these eigenfrequencies into the secular equationX



¡
 − 2

¢
 = 0 ()

Consider the secular equation  for  = 1¡
+ 0 − 2

¢
1 − 02 = 0

Then for the first eigenfrequency 1 that is,  = 1  = 1

(+ 0 − − 20) 11 − 021 = 0

which simplifies to

 = 11 = −21
Similarly, for the other eigenfrequency 2, that is,  = 1  = 2

(+ 0 − ) 12 − 022 = 0

which simplifies to

 = 12 = 22

5) The final stage is to write the general coordinates in terms of the normal coordinates  () ≡


 Thus

1 = 111 + 122 = 111 + 222

and

2 = 211 + 222 = −111 + 222

Adding or subtracting gives that the normal modes are

1 =
1

211
(1 − 2)

2 =
1

222
(2 + 1)

Thus the symmetric normal mode 2 corresponds to an oscillation of the center-of-mass with the lower

frequency 2 =
p



 This frequency is the same as for one single mass on a spring of spring constant

 which is as expected since they vibrate in unison and thus the coupling spring force does not act. The

antisymmetric mode 1 has the higher frequency 1 =

q
+20


since the restoring force includes both the

main spring plus the coupling spring.

The above example illustrates that the general analytic theory for coupled linear oscillators gives the

same answer as obtained in chapter 122 using Newton’s equations of motion. However, the general analytic

theory is a more powerful technique for solving complicated coupled oscillator systems. Thus the general

analytic theory will be used for solving all the following coupled oscillator problems.
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12.3 Example: Two equal masses series-coupled by two equal springs

1 2

Two equal masses series-coupled by two

equal springs.

Consider the series-coupled system shown in the figure.

1) The first stage is to determine the potential and kinetic

energies using an appropriate set of generalized coordinates,

which here are 1 and 2. The potential energy is

 =
1

2
21 +

1

2
 (2 − 1)

2
= 21 +

1

2
22 − 12

while the kinetic energy is given by

 =
1

2
̇21 +

1

2
̇22

2) The second stage is to evaluate the potential energy  and mass  tensors. The potential energy tensor

 is nondiagonal since  gives

11 ≡
µ

2

11

¶
0

= 2

12 =

µ
2

12

¶
0

= − = 21

22 =

µ
2

22

¶
0

= 

That is, the potential energy tensor  is

V =

½
2 −
− 

¾
Similarly, since the kinetic energy is given by

 =
1

2
̇21 +

1

2
̇22 =

1

2

X


̇ ̇

then 11 = 22 = and 12 = 21 = 0 Thus the kinetic energy tensor  is

T =

½
 0

0 

¾
Note that for this case the kinetic energy tensor is diagonal whereas the potential energy tensor is nondiagonal.

3) The third stage is to use the potential energy  and kinetic energy  tensors to evaluate the secular

determinant using equation 1252 ¯̄̄̄
2−2 −
− −2

¯̄̄̄
= 0

The expansion of this secular determinant yields¡
2−2

¢ ¡
−2

¢− 2 = 0

That is

4 − 3 


2 +

2

2
= 0

The solutions are

1 =

√
5 + 1

2

r



2 =

√
5− 1
2

r




4) The fourth step is to insert these eigenfrequencies into the secular equation 1251X


¡
 − 2

¢
 = 0
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Consider  = 1 in the above equation ¡
2− 2

¢
1 − 2 = 0

Then for eigenfrequency 1, that is,  = 1  = 1

√
5− 1
2

11 = −21

Similarly, for  = 1  = 2 √
5 + 1

2
12 = 22

5) The final stage is to write the general coordinates in terms of the normal coordinates  () ≡




Thus

1 = 111 + 122 = 111 +
222√
5 + 1

2

and

2 = 211 + 222 = −
Ã√

5− 1
2

!
111 + 222

Adding or subtracting gives that the normal modes are

1 =
1

11
√
5

Ã
1 −

Ã√
5− 1
2

!
2

!

2 =
1

22
√
5

Ã
1 +

Ã√
5 + 1

2

!
2

!

Thus the symmetric normal mode has the lower frequency 2 =
√
5−1
2

p


 The antisymmetric mode has the

frequency 1 =
√
5+1
2

p


since both springs provide the restoring force. This case is interesting in that for

both normal modes, the amplitudes for the motion of the two masses are different.

12.4 Example: Two parallel-coupled plane pendula

k

1 2

Two parallel-coupled plane pendula.

Consider the coupled double pendulum system shown in

the adjacent figure, which comprises two parallel plane pen-

dula weakly coupled by a spring. The angles 1 and 2 are

chosen to be the generalized coordinates and the potential en-

ergy is chosen to be zero at equilibrium. Then the kinetic

energy is

 =
1

2

³
̇1

´2
+
1

2

³
̇2

´2
As discussed in chapter 4, it is necessary to make the small-

angle approximation in order to make the equations of motion

for the simple pendulum linear and solvable analytically. That

is,

 =  (1− cos 1) + (1− cos 2) + 1
2
 ( sin 1 −  sin 2)

2

' 

2

¡
21 + 22

¢
+

2

2
(1 − 2)

2

assuming the small angle approximation sin  ≈  and (1− cos 1) = 2

2


The second stage is to evaluate the kinetic energy  and potential energy  tensors

T =

½
2 0

0 2

¾
V =

½
+ 2 −2
−2 + 2

¾
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Note that for this case the kinetic energy tensor is diagonal whereas the potential energy tensor is nondiagonal.

The third stage is to evaluate the secular determinant¯̄̄̄
+ 2 − 22 −2

−2 + 2 − 22

¯̄̄̄
= 0

which gives the characteristic equation¡
+ 2 − 22

¢2
=
¡
2
¢2

or

 + − 2 = ±
The two solutions are

21 =



22 =




+
2



The fourth step is to insert these eigenfrequencies into equation 1251

X


¡
 − 2

¢
 = 0

Consider  = 1 ¡
+ 2 − 22

¢
1 − 22 = 0

Then for the first eigenfrequency, 1, the subscripts are  = 1  = 1³
+ 2 − 


2

´
11 − 221 = 0

which simplifies to

11 = 21

Similarly, for  = 1  = 2 µ
+ 2 −

µ



+
2



¶
2

¶
12 − 222 = 0

which simplifies to

12 = −22
The final stage is to write the general coordinates in terms of the normal coordinates

1 = 111 + 122 = 111 − 222

and

2 = 211 + 222 = 111 + 222

Adding or subtracting these equations gives that the normal modes are

1 =
1

211
(1 + 2) 2 =

1

222
(2 − 1)

As for the case of the double oscillator discussed in example 122, the symmetric normal mode corresponds

to an oscillation of the center-of-mass, with zero relative motion of the two pendula, which has the lower

frequency 1 =
p



 This frequency is the same as for one independent pendulum as expected since they

vibrate in unison and thus the only restoring force is gravity. The antisymmetric mode corresponds to

relative motion of the two pendula with stationary center-of-mass and has the frequency 2 =
q¡



+ 2



¢
since the restoring force includes both the coupling spring and gravity.

This example introduces the role of degeneracy which occurs in this system if the coupling of the pendula

is zero, that is,  = 0 leading to both frequencies being equal, i.e. 1 = 2 =
p



. When  = 0, then both

{T} and {V} are diagonal and thus in the (1 2) space the two pendula are independent normal modes.
However, the symmetric and asymmetric normal modes, as derived above, are equally good normal modes.

In fact, since the modes are degenerate, any linear combination of the motion of the independent pendula are

equally good normal modes and thus one can use any set of orthogonal normal modes to describe the motion.
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12.5 Example: The series-coupled double plane pendula

Two series-coupled plane pendula.

The double-pendula system comprises one plane pendulum attached

to the end of another plane pendulum both oscillating in the same plane.

The kinetic and potential energies for this system are given in example

623 to be

 =
1

2
(1 +2)

2
1̇
2

1 +212̇1̇2 cos(1 − 2) +
1

2
2

2
2̇
2

2

 = (1 +2)1(1− cos1) +22(1− cos2)

a) Small-amplitude linear regime

Use of the small-angle approximation makes this system linear and

solvable analytically. That is,  and  become

 =
1

2
(1 +2)1

2
1 +

1

2
22

2
2

 =
1

2
(1 +2)

2
1̇
2

1 +212̇1̇2 +
1

2
2

2
2̇
2

2

Thus the kinetic energy and potential energy tensors are

T =

½
(1 +2)

2
1 212

212 2
2
2

¾
V =

½
(1 +2)1 0

0 22

¾
Note that T is nondiagonal, whereas V is diagonal which is opposite

to the case of the two parallel-coupled plane pendula.

Normal modes for two

series-coupled plane pendula.

The solution of this case is simpler if it is assumed that 1 = 2 = 

and 1 = 2 = . Then

T = 2
½
2 1

1 1

¾
V = 2

½
220 0

0 20

¾
where 0 =

p


which is the frequency of a single pendulum.

The next stage is to evaluate the secular determinant

2
¯̄̄̄
2(20 − 2) −2
−2 (20 − 2)

¯̄̄̄
= 0

The eigenvalues are

21 = (2−
√
2)20 22 = (2 +

√
2)20

As shown in the adjacent figure, the normal modes for this system

are

1 =
1

211
(1 +

2√
2
) 2 =

1

222
(1 −

2√
2
)

The second mass has a
√
2 larger amplitude that is in phase for solution 1 and out of phase for solution 2.

b) Large amplitude chaotic regime

Stachowiak and Okada [Sta05] used computer simulations to numerically analyze the behavior of this

system with increase in the oscillation amplitudes. Poincaré sections, bifurcation diagrams, and Lyapunov

exponents all confirm that this system evolves from regular normal-mode oscillatory behavior in the linear

regime at low energy, to chaotic behavior at high excitation energies where non-linearity dominates. This

behavior is analogous to that of the driven, linearly-damped, harmonic pendulum described in chapter 45
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12.8 Three-body coupled linear oscillator systems

Chapter 127 discussed parallel and series arrangements of two coupled oscillators. Extending from two to

three coupled linear oscillators introduces interesting new characteristics of coupled oscillator systems. For

more than two coupled oscillators, coupled oscillator systems separate into two classifications depending on

whether each oscillator is coupled to the remaining  − 1 oscillators, or when the coupling is only to the
nearest neighbors as illustrated below.

12.6 Example: Three plane pendula; mean-field linear coupling

b b b

m m m

Three plane pendula with complete linear

coupling.

Consider three identical pendula with mass m and length

, suspended from a common support that yields slightly to

pendulum motion leading to a coupling between all three pen-

dula as illustrated in the adjacent figure. Assume that the

motion of the three pendula all are in the same plane. This

case is analogous to the piano where three strings in the tre-

ble section are coupled by the slightly-yielding common bridge

plus sounding board leading to coupling between each of the

three coupled oscillators. This case illustrates the important

concept of degeneracy.

The generalized coordinates are the angles 1 2 and 3

Assume that the support yields such that the actual deflection

angle for pendulum 1 is

01 = 1 − 

2
(2 + 3)

where the coupling coefficient  is small and involves all the pendula, not just the nearest neighbors. The

same relation exists for the other angle coordinates. The gravitational potential energy of each pendulum is

given by

1 = (1− cos 1) ≈ 1
2
21

assuming the small angle approximation. Ignoring terms of order 2 gives that the potential energy

 =


2

¡
021 + 022 + 023

¢
=



2

¡
21 + 22 + 23 − 212 − 213 − 223

¢
The kinetic energy evaluated at the equilibrium location is

 =
1

2

³
̇1

´2
+
1

2

³
̇2

´2
+
1

2

³
̇3

´2
The next stage is to evaluate the {T} and {V} tensors

T = 2

⎧⎨⎩ 1 0 0

0 1 0

0 0 1

⎫⎬⎭ V = 

⎧⎨⎩ 1 − −
− 1 −
− − 1

⎫⎬⎭
The third stage is to evaluate the secular determinant which can be written as



¯̄̄̄
¯̄̄ 1− 


2 − −

− 1− 

2 −

− − 1− 

2

¯̄̄̄
¯̄̄ = 0

Expanding and factoring givesµ



2 − 1− 

¶µ



2 − 1− 

¶µ



2 − 1 + 2

¶
= 0
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The roots are

1 =

r




√
1 +  2 =

r




√
1 +  3 =

r




√
1− 2

This case results in two degenerate eigenfrequencies, 1 = 2 while 3 is the lowest eigenfrequency.

The eigenvectors can be determined by substitution of the eigenfrequencies into

X


¡
 − 2

¢
 = 0

Consider the lowest eigenfrequency 3 i.e.  = 3 for  = 1 and substitute for 3 =
p




√
1− 2 gives

213 − 23 − 33 = 0

while for  = 3  = 2

−13 + 223 − 33 = 0

Solving these gives

13 = 23 = 33

Assuming that the eigenfunction is normalized

213 + 223 + 233 = 1

then for the third eigenvector 3

13 = 23 = 33 =
1√
3

This solution corresponds to all three pendula oscillating in phase with the same amplitude, that is, a coherent

oscillation.

Derivation of the eigenfunctions for the other two eigenfrequencies is complicated because of the degen-

eracy 1 = 2 there are only five independent equations to specify the six unknowns for the eigenvectors

1 and 2 That is, the eigenvectors can be chosen freely as long as the orthogonality and normalization are

satisfied. For example, setting 31 = 0 to remove the indeterminacy, results in the a matrix

{a} =
⎧⎨⎩

1
2

√
2 1

6

√
6 1

3

√
3

−1
2

√
2 1

6

√
6 1

3

√
3

0 −1
3

√
6 1

3

√
3

⎫⎬⎭
and thus the solution is given by⎧⎨⎩ 1

2
3

⎫⎬⎭ =

⎧⎨⎩
1
2

√
2 1

6

√
6 1

3

√
3

−1
2

√
2 1

6

√
6 1

3

√
3

0 −1
3

√
6 1

3

√
3

⎫⎬⎭
⎧⎨⎩ 1

2
3

⎫⎬⎭
The normal modes are obtained by taking the inverse matrix {a}−1 and using {η} = {a}−1 {θ}  Note

that since {a} is real and orthogonal, then {a}−1 equals the transpose of {a}  That is;⎧⎨⎩ 1
2
3

⎫⎬⎭=
⎧⎨⎩

1
2

√
2 − 1

2

√
2 0

1
6

√
6 1

6

√
6 −1

3

√
6

1
3

√
3 1

3

√
3 1

3

√
3

⎫⎬⎭
⎧⎨⎩ 1

2
3

⎫⎬⎭
The normal mode 3 has eigenfrequency

3 =

r




√
1− 2

and eigenvector

η3 =
1√
3
(1 2 3)
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This corresponds to the in-phase oscillation of all three pendula.

The other two degenerate solutions are

η1 =
1√
2
(1−2 0) η2 =

1√
6
(1 2−23)

with eigenvalues

1 = 2 =

r




√
1 + 

These two degenerate normal modes correspond to two pendula oscillating out of phase with the same ampli-

tude, or two oscillating in phase with the same amplitude and the third out of phase with twice the amplitude.

An important result of this toy model is that the most symmetric mode 3 is pushed far from all the other

modes. Note that for this example, the coherent mode 3 corresponds to the center-of-mass oscillation with

no relative motion between the three pendula. This is in contrast to the eigenvectors 1 and 2 which both

correspond to relative motion of the pendula such that there is zero center-of-mass motion. This mean-field

coupling behavior is exhibited by collective motion in nuclei as discussed in example 1213.

12.7 Example: Three plane pendula; nearest-neighbor coupling

1 2 3

Three plane pendula with nearest-neighbour

coupling.

There is a large and important class of coupled oscillators

where the coupling is only between nearest neighbors; a crys-

talline lattice is a classic example. A toy model for such a

system is the case of three identical pendula coupled by two

identical springs, where only the nearest neighbors are cou-

pled as shown in the adjacent figure. Assume the identical

pendula are of length  and mass . As in the last example,

the kinetic energy evaluated at the equilibrium location is

 =
1

2
2̇

2

1 +
1

2
2̇

2

2 +
1

2
2̇

2

3

The gravitational potential energy of each pendulum equals

(1− cos ) ≈ 1
2
2 thus

 =
1

2
(21 + 22 + 23)

while the potential energy in the springs is given by

 =
1

2
2

h
(2 − 1)

2
+ (3 − 2)

2
i
=
1

2
2

£
21 + 2

2
2 + 23 − 212 − 223

¤
Thus the total potential energy is given by

 =
1

2
(21 + 22 + 23) +

1

2
2

£
21 + 2

2
2 + 23 − 212 − 223

¤
The Lagrangian then becomes

 =
1

2
2

³
̇
2

1 + ̇
2

2 + ̇
2

3

´
− 1
2

¡
+ 2

¢
21 +

1

2

¡
+ 22

¢
22 +

1

2

¡
+ 2

¢
23 − 2 (12 + 23)

Using this in the Euler-Lagrange equations gives the equations of motion

2̈1 − (+ 2)1 + 22 = 0

2̈2 − (+ 22)2 + 2 (1 + 3) = 0

2̈3 − (+ 2)3 + 22 = 0

The general analytic approach requires the  and  energy tensors given by

T = 2

⎧⎨⎩ 1 0 0

0 1 0

0 0 1

⎫⎬⎭ V =

⎧⎨⎩ + 2 −2 0

−2 + 22 −2
0 −2 + 2

⎫⎬⎭
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Note that in contrast to the prior case of three fully-coupled pendula, for the nearest neighbor case the potential

energy tensor {V} is non-zero only on the diagonal and ±1 components parallel to the diagonal.
The third stage is to evaluate the secular determinant of the

¡
V− 2T

¢
matrix, that is¯̄̄̄

¯̄ + 2 − 22 −2 0

−2 + 22 − 22 −2
0 −2 + 2 − 22

¯̄̄̄
¯̄ = 0

This results in the characteristic equation¡
− 22

¢ ¡
+ 2 − 22

¢ ¡
+ 32 − 22

¢
= 0

which results in the three non-degenerate eigenfrequencies for the normal modes.

1

2

3

Normal modes of three plane

pendula with nearest-neighbour

coupling.

The normal modes are similar to the prior case of complete linear

coupling, as shown in the adjacent figure.

1 =
p



This lowest mode 1 involves the three pendula oscillating

in phase such that the springs are not stretched or compressed thus the

period of this coherent oscillation is the same as an independent pendulum

of mass  and length . That is

η1 =
1√
3
(1 2 3)

2 =
p



+ 


 This second mode 2 has the central mass stationary with

the outer pendula oscillating with the same amplitude and out of phase.

That is

η2 =
1√
2
(1 0−3)

3 =
q



+ 3


. This third mode 3 involves the outer pendula in phase

with the same amplitude while the central pendulum oscillating with angle

3 = −21. That is
η3 =

1√
6
(1−22 3)

Similar to the prior case of three completely-coupled pendula, the coherent

normal mode η1 corresponds to an oscillation of the center-of-mass with

no relative motion, while η2 and η3 correspond to relative motion of

the pendula with stationary center of mass motion. In contrast to the

prior example of complete coupling, for nearest neighbor coupling the two

higher lying solutions are not degenerate. That is, the nearest neighbor

coupling solutions differ from when all masses are linearly coupled.

It is interesting to note that this example combines two coupling mech-

anisms that can be used to predict the solutions for two extreme cases

by switching off one of these coupling mechanisms. Switching off the

coupling springs, by setting  = 0, makes all three normal frequencies

degenerate with 1 = 2 = 3 =
p



. This corresponds to three inde-

pendent identical pendula each with frequency  =
p



. Also the three

linear combinations 1 2 3 also have this same frequency, in particular

1 corresponds to an in-phase oscillation of the three pendula. The three

uncoupled pendula are independent and any combination the three modes is allowed since the three frequencies

are degenerate.

The other extreme is to let 

= 0 that is switch off the gravitational field or let  → ∞, then the only

coupling is due to the two springs. This results in 1 = 0 because there is no restoring force acting on the

coherent motion of the three in-phase coupled oscillators; as a result, oscillatory motion cannot be sustained

since it corresponds to the center of mass oscillation with no external forces acting which is spurious. That

is, this spurious solution corresponds to constant linear translation.
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12.8 Example: System of three bodies coupled by six springs

Consider the completely-coupled mechanical system shown in the adjacent figure.

1) The first stage is to determine the potential and kinetic energies using an appropriate set of

generalized coordinates, which here are 1 and 2. The potential energy is the sum of the potential energies

for each of the six springs

 =
3

2
21 +

3

2
22 +

3

2
23 − 12 − 13 − 23

while the kinetic energy is given by

 =
1

2
̇21 +

1

2
̇22 +

1

2
̇23

k

k

k

k

k

k

m

m

m

System of three bodies coupled by six

springs.

2) The second stage is to evaluate the potential energy  and

kinetic energy  tensors.

V =

⎧⎨⎩ 3 − −
− 3 −
− − 3

⎫⎬⎭ T =

⎧⎨⎩  0 0

0  0

0 0 

⎫⎬⎭
Note that for this case the kinetic energy tensor is diagonal whereas

the potential energy tensor is nondiagonal and corresponds to com-

plete coupling of the three coordinates.

3) The third stage is to use the potential  and kinetic 

energy tensors to evaluate the secular determinant giving¯̄̄̄
¯̄
¡
3−2

¢ − −
− ¡

3−2
¢ −

− − ¡
3−2

¢
¯̄̄̄
¯̄ = 0

The expansion of this secular determinant yields¡
−2

¢ ¡
4−2

¢ ¡
4−2

¢
= 0

The solution for this complete-coupled system has two degenerate eigenvalues.

1 = 2 = 2

r



3 =

r




4) The fourth step is to insert these eigenfrequencies into the secular equationX


¡
 − 2

¢
 = 0

to determine the coefficients 

5) The final stage is to write the general coordinates in terms of the normal coordinates

The result is that the angular frequency 3 =
p



corresponds to a normal mode for which the three

masses oscillate in phase corresponding to a center-of-mass oscillation with no relative motion of the masses.

3 =
1√
3
(1 + 2 + 3)

For this coherent motion only one spring per mass is stretched resulting in the same frequency as one

mass on a spring. The other two solutions correspond to the three masses oscillating out of phase which

implies all three springs are stretched and thus the angular frequency is higher. Since the two eigenvalues

1 = 2 = 2
p



are degenerate then there are only five independent equations to specify the six unknowns

for the degenerate eigenvalues. Thus it is possible to select combination of the eigenvectors 1 and 2 such

that the combination is orthogonal to 3 Choose 31 = 0 to removes the indeterminacy. Then adding or

subtracting gives that the normal modes are

1 =
1√
2
(1 − 2 + 0) 2 =

1√
2
(1 + 2 − 23)

These two degenerate normal modes correspond to relative motion of the masses with stationary center-of-

mass.
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12.9 Molecular coupled oscillator systems

There are many examples of coupled oscillations in atomic and molecular physics most of which involve

nearest-neighbor coupling. The following two examples are for molecular coupled oscillators. The triatomic

molecule is a typical linearly-coupled molecular oscillator. The benzene molecule is an elementary example

of a ring structure coupled oscillator.

12.9 Example: Linear triatomic molecular CO2

Molecules provide excellent examples of vibrational modes involving nearest neighbor coupling. Depending

on the atomic structure, triatomic molecules can be either linear, like 2, or bent like water, 2 which

has a bend angle of  = 109◦ A molecule with  atoms has 3 degrees of freedom. There are three degrees

of freedom for translation and three degrees of freedom for rotation leaving 3 − 6 degrees of freedom for

vibrations. A triatomic molecule has three vibrational modes, two longitudinal and one transverse. Consider

the normal modes for vibration of the linear molecule 2

Longitudinal modes

The coordinate system used is illustrated in the adjacent figure.

The Lagrangian for this system is

 =

µ


2
̇21 +



2
̇22 +



2
̇23

¶
− 

2
[(2 − 1)

2
+ (3 − 2)

2
]

Evaluating the kinetic energy tensor gives

T =

⎧⎨⎩  0 0

0  0

0 0 

⎫⎬⎭
while the potential energy tensor gives

V = 

⎧⎨⎩ 1 −1 0

−1 2 −1
0 −1 1

⎫⎬⎭
The secular equation becomes¯̄̄̄

¯̄
¡−2 + 

¢ − 0

− ¡−2 + 2
¢ −

0 − ¡−2 + 
¢
¯̄̄̄
¯̄ = 0

Note that the same answer is obtained using Newtonian mechanics. That is, the force equation gives

̈1 −  (2 − 1) = 0

̈2 +  (2 − 1)−  (3 − 2) = 0

̈3 −  (3 − 2) = 0

Let the solution be of the form

 = 
  = 1 2 3

Substitute this solution gives ¡−2 + 
¢
1 − 2 = 0

−1 +
¡−2 + 2

¢
2 − 3 = 0

−2 +
¡
2 + 

¢
3 = 0

This leads to the same secular determinant as given above with the matrix elements clustered along the

diagonal for nearest-neighbor problems.
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Km M mK
x

1

2

3

4

Normal modes of a linear triatomic molecule

Expanding the determinant and collecting terms

yields

2
¡−2 + 

¢ ¡−2 +  + 2
¢
= 0

Equating each of three factors to zero gives

1 = 0

2 =

r




3 =

sµ



+
2



¶
The solutions are:

1) 1 = 0; This solution gives 1 =  {1 1 1}. This
mode is not an oscillation at all, but is a pure transla-

tion of the system as a whole as shown in the adjacent

figure. There is no change in the restoring forces since

the system moves such as not to change the length of the

springs, that is, they stay in their equilibrium positions.

This motion corresponds to a spurious oscillation of the center of mass that results from referencing the

three atom locations with respect to some fixed reference point. This reference point should have been chosen

as the center of mass since the motion of the center-of-mass already has been taken into account separately.

Spurious center of mass oscillations occur any time that the reference point is not at the center of mass for

an isolated system with no external forces acting.

2) 2 =
p



: This solution corresponds to 2 =  {1 0−1} and is shown in the adjacent figure. The

central mass  remains stationary while the two end masses vibrate longitudinally in opposite directions

with the same amplitude. This mode has a stationary center of mass. For 2 the electrical geometry is

−++− Mode 2 for 2 does not radiate electromagnetically because the center of charge is stationary

with respect to the center of mass, that is, the electric dipole moment is constant.

3) 3 =
q¡



+ 2



¢
: This solution corresponds to 3 = 

©
1−2 ¡



¢
 1
ª
 As shown in the adjacent

figure, this motion corresponds to the two end masses vibrating in unison while the central mass vibrates

oppositely with a different amplitude such that the center-of-mass is stationary. This 2 mode does radiate

electromagnetically since it corresponds to an oscillating electric dipole.

It is interesting to note that the ratio 3
2
= 1915 for 2 and the ratio of the two modes is independent

of the potential energy tensor  That is

3

2
=

r³
1 + 2





´
Transverse modes

The solutions are:

4) 4 =

q
2
¡
2+


¢


 This is the only non-spurious transverse mode 4 which corresponds to the two

outside masses vibrating in unison transverse to the symmetry axis while the central mass vibrates oppositely.

This mode radiates electric dipole radiation since the electric dipole is oscillating.

5) 5 = 0. This transverse solution 5 has all three nuclei vibrating in unison transverse to the symmetry

axis and corresponds to a spurious center of mass oscillation.

6) 6 = 0 This transverse solution 6 corresponds to a stationary central mass with the two outside

masses vibrating oppositely. This corresponds to a rotational oscillation of the molecule which is spurious

since there are no torques acting on the molecule for a central force. Rotational motion usually is taken into

account separately.

The normal modes for the bent triatomic molecule are similar except that the oscillator coupling strength

is reduced by the factor cos  where  is the bend angle.
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12.10 Example: Benzene ring

The benzene ring comprises six carbon atoms bound in a plane hexagonal ring. A classical analog of the

benzene ring comprises 6 identical masses  on a frictionless ring bound by 6 identical springs with linear

spring constant  as illustrated in the adjacent figure Consider only the in-plane motion, then the kinetic

energy is given by

 =
1

2
2

6X
=1

̇
2



The potential energy equals

 =
1

2
2

6X
=1

(+1 − )
2 = 2

"
6X

=1

2 − 12 − 23 − 34 − 45 − 56 − 61

#
where  = 7 ≡ 1. Thus the kinetic energy and potential energy tensors are given by

 = 2

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠  = 2

⎛⎜⎜⎜⎜⎜⎜⎝
2 −1 0 0 0 −1
−1 2 −1 0 0 0

0 −1 2 −1 0 0

0 0 −1 2 −1 0

0 0 0 −1 2 −1
−1 0 0 0 −1 2

⎞⎟⎟⎟⎟⎟⎟⎠
This nearest-neighbor system includes non-zero ( 1) and (1 ) elements due to the ring structure. Define

 = 2


− 2 then the solution of the set of linear homogeneous equations requires that¯̄̄̄

¯̄̄̄
¯̄̄̄
 1 0 0 0 1

1  1 0 0 0

0 1  1 0 0

0 0 1  1 0

0 0 0 1  1

1 0 0 0 1 

¯̄̄̄
¯̄̄̄
¯̄̄̄ = 0

that is

(− 2) (− 1)2 (+ 1)2 (+ 2) = 0

1

23

4

5 6

m

mm

m

m m

K

K

K

K

K

K

The eigenvalues and eigenfunctions are given in the table

Classical analog of a benzene molecular ring.

n x 2 Normal modes

1 2 4


1−2+3−4+5−6
2 1 3


−1+3−4+6

3 1 3


−1+2−4+5
4 −1 


1−3−4+6

5 −1 


−1−2+4+5
6 −2 0 1+2+3+4+5+6

Note the following properties of the normal modes and their frequencies.

 = 1: Adjacent masses vibrate 180◦ out of phase, thus each spring has maximal compression or extension,
leading to the energy of this normal mode being the highest.

 = 2 3: These two solutions are degenerate and correspond to two pairs of masses vibrating out of phase

while the third pair of masses are stationary. Thus the energy of this normal mode is slightly lower than the

 = 1 normal mode. Any combination of these degenerate normal modes are equally good solutions.

 = 4 5: From the figure it can be seen that both of these solutions correspond to a center of mass

oscillation and thus these modes are spurious.

 = 6: This vibrational mode has zero energy corresponding to zero restoring force and all six masses

moving uniformly in the same direction. This mode corresponds to the rotation of the benzene molecule about

the symmetry axis of the ring which usually is taken into account assuming a separate rotational component.

This classical analog of the benzene molecule is interesting because it simultaneously exhibits degenerate

normal modes, spurious center of mass oscillation, and a rotational mode.
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12.10 Discrete Lattice Chain

Crystalline lattices and linear molecules are important classes of coupled oscillator systems where nearest

neighbor interactions dominate. A crystalline lattice comprises thousands of coupled oscillators in a three-

dimensional matrix with atomic spacing of a few 10−10. Even though a full description of the dynamics of
crystalline lattices demands a quantal treatment, a classical treatment is of interest since classical mechanics

underlies many features of the motion of atoms in a crystalline lattice. The linear discrete lattice chain is

the simplest example of many-body coupled oscillator systems that can illuminate the physics underlying a

range of interesting phenomena in solid-state physics. As illustrated in example 27 the linear approxima-

tion usually is applicable for small-amplitude displacements of nearest-neighbor interacting systems which

greatly simplifies treatment of the lattice chain. The linear discrete lattice chain involves three independent

polarization modes, one longitudinal mode, plus two perpendicular transverse modes. The 3 degrees of

freedom for the  atoms, on a discrete linear lattice chain, are partitioned with  degrees of freedom for each

of the three polarization modes. These three polarization modes each have  normal modes, or  travelling

waves, quantization, dispersion, and can have a complex wave number.

12.10.1 Longitudinal motion

The equations of motion for longitudinal modes of the lattice chain can be derived by considering a linear

chain of  identical masses, of mass  separated by a uniform spacing  as shown in Fig 127. Assume

that the  masses are coupled by  + 1 springs, with spring constant , where both ends of the chain are

fixed, that is, the displacements 0 = +1 = 0 and velocities ̇0 = ̇+1 = 0 The force required to stretch a

length  of the chain a longitudinal displacements,  for mass  is  =   Thus the potential energy for

stretching the spring for segment (−1 − ) is  =

2
(−1 − ). The total potential and kinetic energies

are

 =


2

+1X
=1

(−1 − )
2

(12.74)

 =
1

2


X
=1

̇2 (12.75)

d d d d

qj-2 q j-1
q

j
q

j+1
qj+2

Figure 12.7: Portion of a lattice chain of iden-

tical masses  connected by identical springs

of spring constant . The displacement of the

 mass from the equilibrium position is 
assumed to be positive to the right.

Since ̇+1 = 0 the kinetic energy and Lagrangian can be

extended to  = +1, that is, the Lagrangian can be written

as

 =
1

2

+1X
=1

³
̇2 −  (−1 − )

2
´

(12.76)

Using this Lagrangian in the Lagrange-Euler equations

gives the following second-order equation of motion for lon-

gitudinal oscillations

̈ = 2 (−1 − 2 + +1) (12.77)

where  = 1 2  and where

 ≡
r




(12.78)

12.10.2 Transverse motion

The equations of motion for transverse motion on a linear discrete lattice chain, illustrated in figure 128,

can be derived by considering the displacements  of the  mass for  identical masses, with mass 

separated by equal spacings  and assuming that the tension in the string is  =
¡



¢
. Assuming that the

transverse deflections  are small, then the  − 1 to  spring is stretched to a length

0 =
q
2 + ( − −1)

2
(12.79)
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Thus the incremental stretching is

 ∼ ( − −1)
2

2
(12.80)

d d d d

Figure 12.8: Transverse motion of a

linear discrete lattice chain

The work done against the tension  is  ·  per segment. Thus the
total potential energy is

 =


2

+1X
=1

(−1 − )
2

(12.81)

where 0 and +1 are identically zero.

The kinetic energy is

 =
1

2


X
=1

̇2 (12.82)

Since ̇+1 = 0 the kinetic energy and Lagrangian summations can

be extended to  = + 1, that is

 =
1

2

+1X
=1

³
̇2 −




(−1 − )

2
´

(12.83)

Using this Lagrangian in the Lagrange Euler equations gives the following second-order equation of motion

for transverse oscillations

̈ = 2 (−1 − 2 + +1) (12.84)

where  = 1 2  and

 ≡
r




(12.85)

The normal modes for the transverse modes comprise standing waves that satisfy the same boundary

conditions as for the longitudinal modes. The  equations of motion for longitudinal motion, equation

1277 or transverse motion, equation 1284 are identical in form. The major difference is that 0 for the

transverse normal modes  ≡
p




differs from that for the longitudinal modes which is  ≡
p



. Thus

the following discussion of the normal modes on a discrete lattice chain is identical in form for both transverse

and longitudinal waves.

12.10.3 Normal modes

The normal modes of the  equations of motion on the discrete lattice chain, are either longitudinal or

transverse standing waves that satisfy the boundary conditions at the extreme ends of the lattice chain.

The solutions can be given by assuming that the  identical masses on the chain oscillate with a common

frequency . Then the displacement amplitude for the  mass can be written in the form

() = 
 (12.86)

where the amplitude  can be complex. Substitution into the preceding  equations of motion, 1277 1284

yields the following recursion relation¡−2 + 22¢  − 20 (−1 + +1) = 0 (12.87)

where  = 1 2  Note that the boundary conditions, 0 = 0 and +1 = 0 require that  = +1 = 0

The above recursion relation corresponds to a system of  homogeneous algebraic equations with 

unknowns 1 2  A non-trivial solution is given by setting the determinant of its coefficients equal to

zero ¯̄̄̄
¯̄̄̄
¯̄
−2 + 22 −2 0 0

−2 −2 + 22 −2 0

0 −2 −2 + 22 −2
   

0 0 −2 −2 + 22

¯̄̄̄
¯̄̄̄
¯̄ = 0 (12.88)
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This secular determinant corresponds to the special case of nearest neighbor interactions with the kinetic

energy tensor T being diagonal and the potential energy tensor V involving coupling only to adjacent

masses. The secular determinant is of order  and thus determines exactly  eigen frequencies  for each

polarization mode.

For large  the solution of this problem is more efficiently obtained by using a recursion relation approach,

rather than solving the above secular determinant. The trick is to assume that the phase differences 
between the motion of adjacent masses all are identical for a given polarization. Then the amplitude for the

 mass for the  frequency mode  is of the form

 = 
(−) (12.89)

Insert the above into the recursion relation (1287) gives¡−2 + 22¢− 20
£
− + 

¤
= 0 (12.90)

which reduces to

2 = 2
2
 − 22 cos = 42 sin2


2

that is

 = 2 sin

2

(12.91)

where  = 1 2 3 

Now it is necessary to determine the phase angle  which can be done by applying the boundary

conditions for standing waves on the lattice chain. These boundary conditions for stationary modes require

that the ends of the lattice chain are nodes, that is  = (+1) = 0 Using the fact that only the real

part of  has physical meaning, leads to the amplitude for the 
 mass for the  mode to be

 =  cos ( − ) (12.92)

The boundary condition 0 = 0 requires that the phase  =

2
 That is

 =  cos
³
 −



2

´
=  sin  (12.93)

where  = 1 2  

The boundary condition for  = + 1 gives

(+1) = 0 =  sin (+ 1) (12.94)

Therefore

(+ 1) =  (12.95)

where  = 1 2 3  . That is

 =


+ 1
=



(+ 1) 
=




=



2
(12.96)

where  = (+ 1) is the total length of the discrete lattice chain.

The  eigen frequencies for a given polarization are given by

 = 2 sin


2 (+ 1)
= 2 sin



2 (+ 1) 
= 2 sin



2
= 2 sin



2
(12.97)

where the corresponding wavenumber  is given by

 =


(+ 1) 
=




=
2


(12.98)

This implies that the normal modes are quantized with half-wavelengths 
2
= 


.
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Figure 12.9: Plots of the maximal vibrational amplitudes  for the 
 frequency sinusoidal mode, versus

distance along the chain, for transverse normal modes of a vibrating discrete lattice with  = 5. Only  =

1 2 3 4 5 are distinct modes because  = 6 is a null mode. Note that the modes with  = 7 8 9 10 11 12

shown dashed, duplicate the locations of the mass displacement given by the lower-order modes.

Combining equations 1296 and 1293 gives the maximum amplitudes for the eigenvectors to be

 =  sin 


2
(12.99)

For  independent linear oscillators there are only  independent normal modes, that is, for  = + 1 the

sine function in equation 1297 must be zero. Beyond  =  the equations do not describe physically new

situations. This is illustrated by figure 129 which shows the transverse modes of a lattice chain with  = 5.

There are only  = 5 independent normal modes of this system since  =  + 1 = 6 corresponds to a null

mode with all () = 0. Also note that the solutions for    + 1 shown dashed, replicate the mass

locations of modes with   + 1, that is, the modes with   6 are replicas of the lower-order modes.

Note that  has a maximum value  ≤ 20 since the sine function cannot exceed unity. This leads
to a maximum frequency  = 20 called the cut-off frequency, which occurs when  = . That is, the

null-mode occurs when  =  + 1 for which equation 1299 equals zero The range of  quantized normal

modes that can occur is intuitive. That is, the longest half-wavelength max
2
=  = (+1) equals the total

length of the discrete lattice chain. The shortest half-wavelength
−

2
=  is set by the lattice spacing.

Thus the discrete wavenumbers of the normal modes, for each polarization, range from 1 to 1 where  is

an integer.

Assuming real  the normal coordinate  and corresponding frequency  are,

 = 
 (12.100)

Equations 1297 and 1299 give the angular frequency and displacement. Note that superposition applies

since this system is linear. Therefore the most general solution for each polarization can be any superposition

of the form

() =

X
=1

 sin

∙


(+ 1)

¸
(12.101)
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12.10.4 Travelling waves

Travelling waves are equally good solutions of the equations of motion 1277 1284 as are the normal modes.

Travelling waves on the one-dimensional lattice chain will be of the form

( ) = (±) (12.102)

where the distance along the chain  = , that is, it is quantized in units of the cell spacing , with  being

an integer. The positive sign in the exponent corresponds to a wave travelling in the − direction while
the negative sign corresponds to a wave travelling in the + direction. The velocity of a fixed phase of the

travelling wave must satisfy that ±  is a constant. This will occur if the phase velocity of the wave is

given by

 =



=




(12.103)

The wave has a frequency  = 
2
and wavelength  = 2


 thus the phase velocity  =



=  .

Inserting the travelling wave 12102 into the transverse equation of motion 1284 for the discrete lattice

chain gives

−2 = 20(
− − 2 + ) (12.104)

where  = 1 2  That is

 = ±20 sin 
2

(12.105)

The phase  is determined by the Born-von Karman periodic boundary condition that assumes that the

chain is duplicated indefinitely on either side of  = ±

. Thus, for  discrete masses,  must satisfy the

condition that  = +. That is

 = 1 (12.106)

That is

 =
2


(12.107)

0
kd

First Brillouin zone

Figure 12.10: Plot of the dispersion

curve ( versus ) for a monoatomic

linear lattice chain subject to only

nearest neighbor interactions. The

first Brillouin zone is the segment be-

tween −

≤  ≤ 


which covers all

independent solutions.

Note that the periodic boundary condition gives  discrete modes

for wavenumbers between

−

≤  ≤ +


(12.108)

where the index

 = −
2
−
2
+ 1 



2
− 1 

2

Thus equation 12105 becomes

 = ±20 sin 
2

(12.109)

Equation 12109 is a dispersion relation that is identical to equa-

tion 1297 derived during the discussion of the normal modes of the

lattice chain. This confirms that the travelling waves on the lat-

tice chain are equally good solutions as the normal standing-wave

modes. Clearly, superposition of the standing-wave normal modes

can lead to travelling waves and vice versa.

12.10.5 Dispersion

The lattice chain is an interesting example of a dispersive system in that  is a function of  Figure 1210

shows a plot of the dispersion curve ( versus ) for a monoatomic linear lattice chain subject to only nearest

neighbor interactions. Note that  depends linearly on  for small  and that 

= 0 at the boundaries of

the first Brillouin zone.
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The lattice chain has a phase velocity for the  wave given by

 =



= 0

¯̄
sin 

2

¯̄

2

(12.110)

while the group velocity is

 =

µ




¶


= 0 cos


2
(12.111)

Note that in the limit when 
2
→ 0 the phase velocity and group velocity are identical, that is,  =

 = 0

12.10.6 Complex wavenumber

The maximum allowed frequency, which is called the cut-off frequency,  = 20 occurs when  = , that

is, 
2
= . That is, the minimum half-wavelength equals the spacing  between the discrete masses. At the

cut-off frequency, the phase velocity is  = 2

0 and the group velocity 


 = 0

It is interesting to note that  can exceed the cut-off frequency  = 20 if  is assumed to be complex,

that is, if

 =  − Γ (12.112)

Then

 = 20 sin


2
= 20 sin



2
( − Γ) = 20

µ
sin



2
cosh

Γ

2
−  cos



2
sinh

Γ

2

¶
(12.113)

To ensure that  is real, the imaginary term must be zero, that is

cos


2
= 0 (12.114)

Therefore

sin


2
= 1 (12.115)

that is,  =


, and the dispersion relation between  and  for   20 becomes

 = 20 cosh
Γ

2
(12.116)

which increases with Γ. Thus, when    = 20 then the amplitude of the wave is of the form

 () = 
−Γ(−) (12.117)

which corresponds to a spatially damped oscillatory wave with phase velocity

 =



(12.118)

and damping factor Γ.

There are many examples in physics where the wavenumber is complex as exhibited by the discrete lattice

chain for 
2
≤ . Other examples are electromagnetic waves in conductors or plasma (example 35), matter

waves tunnelling through a potential barrier, or standing waves on musical instruments which have a complex

wavenumber  due to damping.

This simple toy model of the discrete linear lattice chain has illustrated that classical mechanics explains

many features of the many-body nearest-neighbor coupled linear oscillator system, including normal modes,

standing and travelling waves, cut-off frequency dispersion, and complex wavenumber. These phenomena

feature prominently in applications of the quantal discrete coupled-oscillator system to solid-state physics.
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12.11 Damped coupled linear oscillators

The discussion of coupled linear oscillators has neglected non-conservative damping forces which always exist

to some extent in physical systems. In general, dissipative forces are non linear which greatly complicates

solving the equations of motion for such coupled oscillator systems. However, for some systems the dissipative

forces depend linearly on velocity which allows use of the Rayleigh dissipation function, described in chapter

872. The most general definition of the Rayleigh dissipation function, 872 was given to be

F = 1

2

X
=1

X
=1

 ̇̇ (12.119)

For this special case, it was shown in chapter 8 that the Lagrange equations can be written in terms of the

Rayleigh dissipation function as ½




µ


̇

¶
− 



¾
+

F
̇

=  (12.120)

where  are generalized forces acting on the system that are not absorbed into the potential  Using

equations 1243 1244 and 12120 allows the equations of motion for damped coupled linear oscillators to

be written in a matrix form as

{T} q̈+ {C} q̇+ {V}q = {Q} (12.121)

where the symmetric matrices {T}  {C}  and {V} are positive definite for positive definite systems. Rayleigh
pointed out that in the special case where the damping matrix {C} is a linear combination of the {T} and
{V} matrices, then the matrix {C} is diagonal leading to a separation of the damped system into normal

modes. As discussed in chapter 4 many systems in nature are linear for small amplitude oscillations allowing

use of the Rayleigh dissipation function which provides an analytic solution. However, in general, except for

when {C} is small, this separation into normal modes is not possible for damped systems and the solutions
must be obtained numerically.

The following two examples illustrate approaches used to handle linearly-damped coupled-oscillator sys-

tems.

12.11 Example: Two linearly-damped coupled linear oscillators

Two linearly-damped coupled linear oscillators.

Consider the two coupled oscillator system shown

where the two carts have spring constants 1 2 and

linear damping constants 12. As discussed in exam-

ple 123, the kinetic energy tensor is given by

 =
1

2
1̇

2
1 +

1

2
2̇

2
2 ()

and the potential energy is given by

 =
1

2

h
1

2
1 + 2 (2 − 1)

2
i

=
1

2

£
(1 + 2) 

2
1 − 2212 + 2

2
2

¤
()

Similarly the Rayleigh dissipation function has the form

F=1
2

£
1̇

2
1 + 2

¡
̇22 − ̇21

¢¤
=
1

2

£
(1 + 2) ̇

2
1 − 22̇1̇2 + 2̇

2
2

¤
()

Inserting   and  into equation 12120 gives the two equations of motion to be

1̈1 + (1 + 2) ̇1 − 2̇2 + (1 + 2) 1 − 22 = 0

2̈2 − 2̇1 + 2̇2 − 21 + 22 = 0

When the drag is zero the solution of these two coupled equations can be separated into two independent

normal modes of the system as described earlier. Usually it is not possible to separate the motion into

decoupled normal modes except for certain cases where the dissipative forces can be described by Rayleigh’s

dissipation function.
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12.12 Collective synchronization of coupled oscillators

Collective synchronization of coupled oscillators is a multifaceted phenomenon where large ensembles of

coupled oscillators, with comparable natural frequencies, self synchronize leading to coherent collective modes

of motion. Biological examples include congregations of synchronously flashing fireflies, crickets that chirp in

unison, an audience clapping at the end of a performance, networks of pacemaker cells in the heart, insulin-

secreting cells in the pancreas, and neural networks in the brain and spinal cord that control rhythmic

behaviors such as breathing, walking, and eating. Example 1213 illustrates an application to nuclei.

An ensemble of coupled oscillators will have a frequency distribution with a finite width. It is interesting

to elucidate how an ensemble of coupled oscillators, that have a finite width frequency distribution, can self

synchronize their motion to a unique common frequency, and how that synchronization is maintained over

long time periods. The answers to these issues provide insight into the dynamics of coupled oscillators.

The discussion of coupled oscillators has implicitly assumed  identical undamped linear oscillators that

have identical, infinitely-sharp, natural frequencies . In nature typical coupled oscillators can have a finite-

width frequency distribution () about some average value, due to the natural variability of the oscillator

parameters for biological systems, the manufacturing tolerances for mechanical oscillators, or the natural

Lorentzian frequency distribution associated with the uncertainty principle that occurs even for atomic clocks

where the oscillator frequencies are defined directly by the physical constants. Assume that the ensemble of

coupled oscillators has a frequency distribution () about some average value.

Undamped linear oscillators have elliptical closed-path trajectories in phase space whereas dissipation

leads to a spiral attractor unless the system is driven such as to preserve the total energy. As described

in chapter 44 many systems in nature, especially biological systems, have closed limit cycles in phase

space where the energy lost to dissipation is replenished by a driving mechanism. The simplest systems for

understanding collective synchronization of coupled oscillators are those that involve closed limit cycles in

phase space.

N. Wiener first recognize the ubiquity of collective synchronization in the natural world, but his mathe-

matical approach, based on Fourier integrals, was not suited to this problem. A more fruitful approach was

pioneered in 1975 by an undergraduate student A.T. Winfree[Win67] who recognized that the long-time be-

havior of a large ensemble of limit-cycle oscillators can be characterized in the simplest terms by considering

only the phase of closed phase-space trajectories. He assumed that the instantaneous state of an ensemble

of oscillators can be represented by points distributed around the circular phase-space diagram shown in

figure 1211. For uncoupled oscillators these points will be distributed randomly around the circle, whereas

coupling of the oscillators will result in a spatial correlation of the points. That is, the dynamics of the

phases can be visualized as a swarm of points running around the unit circle in the complex plane of the

phase space diagram. The complex order parameter of this swarm can be defined to be the magnitude and

phase of the centroid of this swarm

 =
1



X
=1

 (12.122)

Figure 12.11: Order parameter for

weakly-coupled oscillators.

The centroid of the ensemble of points on the phase diagram has a

magnitude  designating the offset of the centroid from the center of

the circular phase diagram, and  which is the phase of this centroid.

A uniform distribution of points around the unit circle will lead to a

centroid  = 0. Correlated motion leads to a bunching of the points

around some phase value leading to a non-zero centroid  and angle

. If the swarm acts like a fully-coupled single oscillator then  ≈ 1
with an appropriate phase .

The Kuramoto model[Kur75, Str00] incorporates Winfree’s

intuition by mapping the limit cycles onto a simple circular phase

diagram and incorporating the long-term dynamics of coupled oscil-

lators in terms of the relative phases for a mean-field system. That

is, the angular velocity of the phase ̇ for the 
 oscillator is

̇ =  +

X
=1

Γ( − ) (12.123)



374 CHAPTER 12. COUPLED LINEAR OSCILLATORS

Figure 12.12: Kuramoto model of collective synchronization of coupled oscillators. The left and center

plots show the time and coupling strength dependence of the order parameter . The right plot shows the

frequency dependence including coupling (solid line) and without coupling (dashed line).

where  = 1 2    . Kuramoto recognized that mean-field coupling was the most tractable system to solve,

that is, a system where the coupling is applicable equally to all the oscillators. Moreover, he assumed an

equally-weighted, pure sinusoidal coupling for the coupling term Γ(−) between the coupled oscillators.
That is, he assumed

Γ( − ) =



sin( − ) (12.124)

where  ≥ 0 is the coupling strength, and the factor 1

ensures that the model is well behaved as  →∞.

Kuramoto assumed that the frequency distribution () was unimodular and symmetric about the mean

frequency Ω, that is (Ω+ ) = (Ω− ).

This problem can be simplified by exploiting the rotational symmetry and transforming to a frame of

reference that is rotating at an angular frequency Ω. That is, use the transformation  =  − Ω where
 is measured in the rotating frame. This makes () unimodular with a symmetric frequency distribution

about  = 0. The phase velocity in this rotating frame is

̇ =  +

X
=1




sin( − ) (12.125)

Kuramoto observed that the phase-space distribution can be expressed in terms of the order parameters  

in that equation 12122 can be multiplied on both sides by − to give

(−) =
1



X
=1

(−) (12.126)

Equating the imaginary parts yields

 sin ( − ) =
1



X
=1

sin ( − ) (12.127)

This allows equation 12125 to be written as

̇ =  + sin( − ) (12.128)

for  = 1 2   . Equation 12128 reflects the mean-field aspect of the model in that each oscillator  is

attracted to the phase of the mean field  rather than to the phase of another individual oscillator.

Simulations showed that the evolution of the order parameter with coupling strength  is as illustrated

in figure 1212. This simulation shows (1) for all  when below a certain threshold , the order parameter

decays to an incoherent jitter as expected for random scatter of  points. (2) When    this incoherent

state becomes unstable and the order parameter  grows exponentially reflecting the nucleation of small

clusters of oscillators that are mutually synchronized. (3) The population of individual oscillators splits

into two groups. The oscillators near the center of the distribution lock together in phase at the mean



12.12. COLLECTIVE SYNCHRONIZATION OF COUPLED OSCILLATORS 375

angular frequency Ω and co-rotate with average phase (), whereas those frequencies lying further from

the center continue to rotate independently at their natural frequencies and drift relative to the coherent

cluster frequency Ω. As a consequence this mixed state is only partially synchronized as illustrated on the

right side of figure 1212. The synchronized fraction has a -function behavior for the frequency distribution

which grows in intensity with further increase in . The unsynchronized component has nearly the original

frequency distribution () except that it is depleted in the region of the locked frequency due to strength

absorbed by the -function component.

Kuramoto’s toy model nicely illustrates the essential features of the evolution of collective synchronization

with coupling strength. It has been applied to the study neuronal synchronization in the brain[Cum07]. The

model illustrates that the collective synchronization of coupled oscillators leads to a component that has a

single frequency for correlated motion which can be much narrower than the inherent frequency distribution

of the ensemble of coupled oscillators.

12.12 Example: Collective motion in nuclei

The nucleus is an unusual quantal system that involves the coupled motion of the many nucleons. It

exhibits features characteristic of the many-body classical coupled oscillator with coupling between all the

valence nucleons. Nuclear structure can be described by a shell model of individual nucleons bound in weakly

interacting orbits in a central average mean field that is produced by the summed attraction of all the nucleons

in the nucleus. However, nuclei also exhibit features characteristic of collective rotation and vibration of a

quantal fluid. For example, beautiful rotational bands up to spin over 60~ are observed in heavy nuclei. These
rotational bands are similar to those observed in the rotational structure of diatomic molecules. Actinide

nuclei also can fission into two large fragments which is another manifestation of collective motion.

Figure 1213 shows the case of collective bands in 238 populated by Coulomb exciting a 1355
238 beam by a 208 target. This case exhibits both quadrupole and octupole collective rotational bands up

to spin 40. The inset shows the moment of inertia plotted versus the angular rotational energy ~ The
electromagnetic 2 transition rates correspond to collective motion of ≈ 32 nucleons. Collective motion of
many nucleons is the antithesis of shell model motion where the nucleons are assumed to follow independent

orbiting motion like planets around the Sun. Although the nucleus is a quantal system, this strange dichotomy

can be understood in terms of a classical rotating system having weak linear coupling between each of many

similar harmonic oscillators; which in this case, are nucleons bound in a spheroidally-deformed shell-model

potential well.

The essential general feature of weakly-coupled identical oscillators is illustrated by the solutions of the

three linearly-coupled identical oscillators where the most symmetric state is displaced in frequency from the

remaining states For  identical oscillators, one state is displaced significantly in energy from the remaining

 − 1 degenerate states. This most symmetric state is pushed downwards in energy if the residual coupling
force is attractive, and it is pushed upwards if the coupling force is repulsive. This symmetric state corresponds

to the coherent oscillation of all the coupled oscillators, and carries all of the strength for the corresponding

dominant multipole for the coupling force. In the nucleus this state corresponds to coherent shape oscillations

of many nucleons.

The weak residual electric quadrupole and octupole nucleon-nucleon correlations in the nucleon-nucleon

interactions generate collective quadrupole and octupole motion in nuclei. The collective synchronization

of such coherent quadrupole and octupole excitation leads to collective bands of states, that correspond to

synchronized in-phase motion of the protons and neutrons in the valence oscillator shell. These modes

correspond to rotations and vibrations about the center of mass. The attractive residual nucleon-nucleon

interaction couples the many individual particle excitations in a given shell producing one coherent state

that is pushed downwards in energy far from the remaining  − 1 degenerate states. This coherent state
involves correlated motion of the nucleons that corresponds to a macroscopic oscillation of a charged fluid.

For non-closed shell nuclei like 238U, the dominant quadrupole multipole in the residual nucleon-nucleon

interaction leads to the ground state being a coherent state corresponding to ≈ 16 protons plus ≈ 20 neutrons
oscillating in phase. The collective motion of the charged protons leads to electromagnetic 2 radiation

with a transition decay amplitude being about 16 times larger than for a single proton. This corresponds to

radiative decay probability being enhanced by a factor of ≈ 256 relative to radiation by a single proton. This
collective state corresponds to a macroscopic quadrupole deformation at low excitation energies that exhibits

both collective rotational and vibrational degrees of freedom as shown in the figure. This coherent state is
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Figure 12.13: Collective rotational bands in the nucleus 238U excited by Coulomb excitation. [Sim98]

analogous to the correlated flow of individual water molecules in a tidal wave. The weaker octupole term in

the residual interaction leads to an octupole [pear-shaped] coupled oscillator coherent state lying slightly above

the quadrupole coherent state. In contrast to the rotational motion of strongly-deformed quadrupole-deformed

nuclei, the octupole deformation exhibits more vibrational-like properties than rotational motion of a charged

tidal wave. The observed large increase in moment of inertia at higher rotational frequencies, shown in the

insert, is due to the Coriolis force aligning the individual valence nucleons along the rotational axis. Thus,

although the nucleus 238U is the epitome of a complicated many-body quantal system, it is apparent that

basic classical mechanics of coupled oscillators, and rotation, underlie the physics phenomena exhibited by

synchronized collective motion in the nuclear many-body system.

The close correspondence between classical mechanics predictions, and the observed excitation phenomena

observed for the 238 nucleus, is surprising for a system that is the epitome of a many-body quantal fluid.

The following list identifies other manifestations of classical mechanics discussed in this book, that play a

role in this experimental study.

1. Coincident detection of the excited nuclei recoiling in vacuum was used to identify the exact scattering

angles, plus recoil velocities, of the scattered nuclei. This specifies the hyperbolic Rutherford trajectory

for each scattered nucleus, the nuclear masses, and their recoil velocities. The deexcitation −rays
emitted in flight by each recoiling nucleus, were detected in coincidence with the scattered nuclei. Knowl-

edge of the recoil velocities and scattering angles enabled correction for the Doppler shift in energy of

each detected coincident -ray.

2. The transition energies and angular distribution of the deexcitation -rays determined the energies,

spins, and parities of the excited states in 235 .

3. The measured yields of the coincident deexcitation -rays determined the excitation cross section as a

function of the nuclear scattering angle.
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4. A full quantal calculation for this system is beyond the capabilities of modern computers since the

experiment involves excitation of ∼ 100 excited levels, coupled by about ∼ 1000 electromagnetic matrix
elements, and the scattering involves inclusion of thousands of partial wave due to the long range of the

Coulomb potential and the heavy mass of the scattered nuclei. Therefore a semi-classical approximation

is used for the quantal calculation of the electromagnetic excitation cross sections as a function of time

as the scattered nuclei traverse Rutherford’s hyperbolic Coulomb scattering trajectory for each scattered

nucleus.

5. The measured cross section for the deexcitation -rays are compared with the predicted cross sections

to determine the ∼ 1000 electromagnetic matrix elements connecting the states in 235 .

6. The measured electromagnetic matrix elements have been measured in the laboratory frame of reference.

Much more insight into the collective motion in 235 is obtained by transforming the electromagnetic

matrix elements into the body-fixed frame of reference for this rotating deformed body. Rotational

invariants, described in chapter 1116, are used to derive the electromagnetic properties in the rotating

body-fixed frame of reference which unambiguously determines the electromagnetic shape for each excited

nuclear state observed in 235 .

7. Hamiltonian mechanics, based on the Routhian  is used to make theoretical model calculations

of the nuclear structure of 235 in the rotating body-fixed frame for comparison with the experimental

data derived from this experiment.

This experiment illustrates that classical mechanics plays a key role in all aspects of the study of the

nuclear structure of this many-body quantal system.

12.13 Summary

This chapter has focussed on many—body coupled linear oscillator systems which are a ubiquitous feature in

nature. A summary of the main conclusions are the following.

Normal modes: It was shown that coupled linear oscillators exhibit normal modes and normal coordinates

that correspond to independent modes of oscillation with characteristic eigenfrequencies .

General analytic theory for coupled linear oscillators Lagrangian mechanics was used to derive the

general analytic procedure for solution of the many-body coupled oscillator problem which reduces to the

conventional eigenvalue problem. A summary of the procedure for solving coupled oscillator problems is as

follows:.

1) Choose generalized coordinates  and evaluate  and  .

 =
1

2

X


̇ ̇ (1241)

and

 =
1

2

X


 (1242)

where the components of the T and V tensors are

 ≡
X




3X









(1243)

and

 ≡
µ

2



¶
0

(1244)
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2) Determine the eigenvalues  using the secular determinant.¯̄̄̄
¯̄̄̄ 11 − 211 12 − 212 13 − 213 

12 − 212 22 − 222 23 − 223 

13 − 213 23 − 223 33 − 233 

   

¯̄̄̄
¯̄̄̄ = 0 (1252)

3) The eigenvectors are obtained by inserting the eigenvalues  into

X


¡
 − 2

¢
 = 0 (1251)

4) From the initial conditions determine the complex scale factors  where

 () ≡ 
 (1258)

5) Determine the normal coordinates where each  is a normal mode. The normal coordinates can be

expressed as

η = {a}−1 q (1261)

Few-body coupled oscillator systems The general analytic theory was used to determine the solutions

for parallel and series couplings of two and three linear oscillators. The phenomena observed include degen-

erate and non-degenerate eigenvalues and spurious center-of-mass oscillatory modes. There are two broad

classifications for three or more coupled oscillators, that is, either complete coupling of all oscillators, or

coupling of the nearest-neighbor oscillators. It is observed that the eigenvalue corresponding to the most

coherent motion of the coupled oscillators corresponds to the most collective motion and its eigenvalue is dis-

placed the most in energy from the remaining eigenvalues. For some systems this coherent collective mode

corresponded to a center-of-mass motion with no internal excitation of the other modes, while the other

eigenvalues corresponded to modes with internal excitation of the oscillators such that the center of mass

is stationary. The above procedure has been applied to two classification of coupling, complete coupling of

many oscillators, and nearest neighbor coupling. Both degenerate and spurious center-of-mass modes were

observed. Strong collective shape degrees of freedom in nuclei are examples of complete coupling due to the

weak residual interactions between nucleons in the nucleus. It was seen that, for many coupled oscillators,

one coherent state separates from the other states and this coherent state carries the bulk of the collective

strength.

Discrete lattice chain Transverse and longitudinal modes of motion on the discrete lattice chain were dis-

cussed because of the important role it plays in nature, such as in crystalline lattice structures. Both normal

modes and travelling waves were discussed including the phenomena of dispersion and cut-off frequencies.

Molecules and the crystalline lattice chains are examples where nearest neighbor coupling is manifest. It

was shown that, for the −oscillator discrete lattice chain, there are only  independent longitudinal modes
plus  modes for the two transverse polarizations, and that the angular frequency  ≤ 20 that is, a cut-off
frequency exists.

Damped coupled linear oscillators It was shown that linearly-damped coupled oscillator systems can

be solved analytically using the concept of the Rayleigh dissipation function.

Collective synchronization of coupled oscillators The Kuramoto schematic phase model was used

to illustrate how weak residual forces can cause collective synchronization of the motion of many coupled

oscillators. This is applicable to biological systems as well as mechanical systems.
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Workshop exercises

1. Consider two masses (each of mass  ) connected by a spring to each other and by springs to fixed positions.

Motion is only allowed along one dimension. (This is exactly the same system that is discussed in chapter 152

of the lecture notes on coupled oscillations.) Let each of the two oscillator springs have a force constant  and

let the force constant of the coupling spring be 12. Let 1 and 2 be the coordinates as described in the

textbook.

(a) Draw a picture of the two masses displaced by a small amount. Using the picture, try to make sense of

the equations of motion as given in the text:

̈1 + (+ 0)1 − 02 = 0 ::::̈2 + (+ 0)2 − 01 = 0

(b) Each of the trial solutions is written in the form . Why are the trial solutions written this way?

Are there any other ways to write the trial solution?

(c) For a nontrivial solution to exist for the pair of simultaneous equations resulting from the substitution of

the trial solution, the determinant of the coefficients of 1 and 2 must vanish. Why must this be the

case? Is a similar statement true when considering three masses? What about  masses?

(d) Suppose you had the actual two-mass system sitting in front of you. How could you create antisymmetric

motion? How could you create symmetric motion? Can you describe each of these motions using a set of

suitable initial conditions?

2. Two particles, each with mass , move in one dimension in a region near a local minimum of the potential

energy where the potential energy is approximately given by

 =
1

2
(721 + 4

2
2 + 412)

where  is a constant.

(a) Determine the frequencies of oscillation.

(b) Determine the normal coordinates.

3. What is degeneracy? When does it arise?

4. The Lagrangian of three coupled oscillators is given by:

3X
=1

∙
̇2
2
− 2

2

¸
+ 0(12 + 23)

Find 2() for the following initial conditions (at  = 0):

(1 2 3) = (0 0 0) :::::: (̇1 ̇2 ̇3) = (0 0 0)

5. A mechanical analog of the benzene molecule comprises a discrete lattice chain of 6 point masses connected

in a plane hexagonal ring by 6 identical springs each with spring constant  and length .

a) List the wave numbers of the allowed undamped longitudinal standing waves.

b) Calculate the phase velocity and group velocity for longitudinal travelling waves on the ring.

c) Determine the time dependence of a longitudinal standing wave for a angular frequency  = 2 , that

is, twice the cut-off frequency.

6. Consider a one dimensional, two-mass, three-spring system governed by the matrix ,

 =

µ
4 −2
−2 7

¶
such that  = 2,

(a) Determine the eigenfrequencies and normal coordinates.

(b) Choose a set of initial conditions such that the system oscillates at its highest eigenfrequency.

(c) Determine the solutions 1() and 2().
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Problems

1. Four identical masses  are connected by four identical springs, spring constant  and constrained to move

on a frictionless circle of radius  as shown on the left in the figure.

a) How many normal modes of small oscillation are there?

b) What are the eigenfrequencies of the small oscillations?

c) Describe the motion of the four masses for each eigenfrequency.

2. Consider the two identical coupled oscillators given on the right in the figure assuming 1 = 2 = . Let both

oscillators be linearly damped with a damping constant . A force  = 0 cos() is applied to mass 1.

Write down the pair of coupled differential equations that describe the motion. Obtain a solution by expressing

the differential equations in terms of the normal coordinates. Show that the normal coordinates 1 and 2
exhibit resonance peaks at the characteristic frequencies 1 and 2 respectively.

3. As shown on the left below the mass  moves horizontally along a frictionless rail. A pendulum is hung from

 with a weightless rod of length  with a mass  at its end.

a) Prove that the eigenfrequencies are

1 = 0 2 =

r



( +)

b) Describe the normal modes.

M
x



Chapter 13

Hamilton’s principle of least action

13.1 Introduction

In two papers published in 1834 and 1835, Hamilton announced a dynamical principle upon which it is

possible to base all of mechanics, and indeed most of classical physics. Hamilton was seeking a theory of

optics when he developed Hamilton’s Principle, plus the field of Hamiltonian mechanics, both of which play

a pivotal role in classical mechanics.

Hamilton’s Principle is based on defining the action functional1  of the  generalized coordinates

q and their corresponding velocities q̇.

 =

Z 2

1

(q q̇) (13.1)

The scalar quantity  is a functional of the Lagrangian (q q̇). In principle, higher order time derivatives

of the generalized coordinates could be included, but most systems in classical mechanics are described

adequately by including only the generalized coordinates, plus their velocities. Note that the definition of

the action functional does not limit the specific form of the Lagrangian. That is, it allows for more general

Lagrangians than the standard Lagrangian (q q̇) =  (q̇) − (q ) that was used throughout chapters

5 − 12. Hamilton stated that the actual trajectory of a mechanical system is given by requiring that the

action functional is stationary. The action functional is stationary if the variational principle is written in

terms of virtual infinitessimal displacement  to be

 = 

Z 2

1

(q q̇) = 0 (13.2)

Typically this stationary point corresponds to a minimum of the action functional. Applying variational

calculus to the action functional leads to the Lagrange equations of motion for the system. That is, Hamilton’s

Principle, applied to the Lagrangian function (q q̇), generates the Lagrangian equations of motion.







̇
− 


= 0 (13.3)

These Lagrange equations agree with those derived using d’Alembert’s Principle, if the
P

=1 


(q ) +


 generalized force terms are ignored.

Hamilton’s Principle can be considered to be the fundamental postulate of classical mechanics. It replaces

Newton’s postulated three laws of motion. As illustrated in chapters 6− 12, Lagrangian mechanics based on
the standard Lagrangian  =  − provides a remarkably powerful and consistent approach to solving the

equations of motion in classical mechanics. This chapter extends the discussion to non-standard Lagrangians.

Chapter 512 developed a plausibility argument, based on Newton’s laws of motion, that led to the

Lagrange equations of motion using the standard Lagrangian. d’Alembert’s Principle of virtual work was

used in chapter 6 to provide a more fundamental derivation of Lagrange’s equations of motion which was

based on the standard Lagrangian. An important feature is that Hamilton’s Principle extends Lagrangian

mechanics to the use of non-standard Lagrangians.

1The term action functional often is abbreviated to action. It is called Hamilton’s Principal Function in older texts.
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13.2 Principle of Least Action

q
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t = t2
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(t)j

(t)j q (t)j
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t

2

1

A
B

Figure 13.1: Extremum path A, plus

the neighboring path B, shown in con-

figuration space.

Hamilton’s crowning achievement was deriving both Lagrangian me-

chanics, and Hamiltonian mechanics, directly in terms of a general

form of his principle of least action , equation 132. Consider the

action  for the extremum path of a system in configuration space,

that is, along path  from coordinates (1) at  = 1 to (2) at

 = 2 shown in figure 131 where  = 1 2   coordinates. Then

the action  is given by

 =

Z 2

1

(q() q̇()) (13.4)

As used in chapter 52 a family of neighboring paths is defined

by adding an infinitessimal fraction  of a continuous, well-behaved

neighboring function  where  = 0 for the extremum path.

( ) = ( 0) + () (13.5)

In contrast to the variational case discussed when deriving La-

grangian mechanics, the variational path used here does not assume

that the functions () vanish at the end points. Assume that the

neighboring path  has an action  where

 =

Z 2+∆

1+∆

(q()+δq() q̇()+δq̇()) (13.6)

Expanding the integrand of  in equation 136 gives that, relative to the extremum path , the incremental

change in action is

 =  −  =

Z 2

1

X


µ



 +



̇
̇

¶
+ [∆]

2
1

(13.7)

The second term in the integral can be integrated by parts since ̇ = 
³



´
leading to

 =

Z 2

1

X


µ



− 





̇

¶
+

⎡⎣X




̇
 + ∆

⎤⎦2
1

(13.8)

Note that equation 138 includes contributions from the entire path of the integral as well as the variations

at the ends of the curve and the ∆ terms. Equation 138 leads to the following two pioneering principles of

least action in variational mechanics that were developed by Hamilton.

13.2.1 Hamilton’s Principle

Derivation of Lagrangian mechanics in chapter 6 was based on the extremum path for neighboring paths

between two given locations q(1) and q(2) that the system occupies at times 1 and 2 respectively. For

this special case, where the end points do not vary, that is, when (1) = (2) = 0, and ∆1 = ∆2 = 0,

then the least action  for the stationary path (138) reduces to

 =

Z 2

1

X


µ



− 





̇

¶
 = 0 (13.9)

For independent generalized coordinates , the integrand in brackets vanishes leading to the Euler-Lagrange

equations. Conversely, if the Euler-Lagrange equations in 139 are satisfied, then,  = 0 that is, the path

is stationary. This leads to the statement that the path in configuration space between two configurations

q(1) and q(2) that the system occupies at times 1 and 2 respectively, is that for which the action  is

stationary. This is a statement of Hamilton’s Principle.



13.2. PRINCIPLE OF LEAST ACTION 383

13.2.2 Least-action principle in Hamiltonian mechanics

Consideration of the general variation of the least-action path leads to Hamilton’s basic equations of Hamil-

tonian mechanics. For the general path, the integral term in equation 138 vanishes because the Euler-

Lagrange equations are obeyed for the stationary path. Thus the only remaining non-zero contributions are

due to the end point terms, which can be written by defining the total variation of each end point to be

∆ =  + ̇∆ (13.10)

where  and ̇ are evaluated at 1 and 2. Then equation 138 reduces to

 =

⎡⎣X




̇
 + ∆

⎤⎦2
1

=

⎡⎣X




̇
∆ +

⎛⎝−X




̇
̇ + 

⎞⎠∆
⎤⎦2
1

(13.11)

Since the generalized momentum  =

̇
, then equation 1311 can be expressed in terms of the Hamiltonian

and generalized momentum as

 =

⎡⎣X


∆ −∆

⎤⎦2
1

= [p·∆q−∆]
2
1

(13.12)




=  (13.13)

Equation 1312 contains Hamilton’s Principle of Least-action. Equation 1313 gives an alternative relation

of the generalized momentum  that is in terms of the action functional 

Integrating the action , equation 1311, between the end points gives the action for the path between

 = 1 and  = 2, that is, ((1) 1 (2) 2) to be

((1) 1 (2) 2) =

Z 2

1

[p · q̇−(qp)]  (13.14)

The stationary path is obtained by using the variational principle

 = 

Z 2

1

[p · q̇−(qp)]  = 0 (13.15)

The integrand in the modified Hamilton’s principle,  = [p · q̇−(qp)]  can be used in the  Euler-

Lagrange equations for  = 1 2 3   to give





µ


̇

¶
− 


= ̇ +




= 0 (13.16)

Similarly, the other  Euler-Lagrange equations give





µ


̇

¶
− 


= −̇ + 


= 0 (13.17)

Thus Hamilton’s principle of least-action leads to Hamilton’s equations of motion, that is equations 1316 1317..

The total time derivative of the action , which is a function of the coordinates and time, is




=




+

X





̇ =




+ p · q̇ (13.18)

But the total time derivative of equation 1315 equals




= p · q̇−(qp) (13.19)
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Combining equations 1318 and 1319 gives the Hamilton-Jacobi equation which is discussed in chapter 145.




+(qp) = 0 (13.20)

In summary, Hamilton’s principle of least action led directly to Hamilton’s equations of motion (1316 1317)

plus the Hamilton-Jacobi equation (1320). Note that both Hamilton’s Principle (138) and Hamilton’s equa-

tions of motion (1316 1317) have been derived directly from Hamilton’s concept of Least Action  without

explicitly invoking the Lagrangian.

13.2.3 Abbreviated action

Hamilton’s Principle determines completely the path of the motion and the position on the path as a function

of time. If the Lagrangian and the Hamiltonian are time independent, that is, conservative, then  = 

and equation 1314 equals

((1) 1 (2) 2) =

Z 2

1

[p · q̇−]  =

Z 2

1

p·q−(2 − 1) (13.21)

The
R 2
1
p · δq̇ term in equation 1321, is called the abbreviated action which is defined as

0 ≡
Z 2

1

p·q̇ =
Z 2

1

p·q (13.22)

The abbreviated action can be simplified assuming the standard Lagrangian  =  −  has a velocity-

independent potential  , then equation 84 gives.

0 ≡
Z 2

1

X


 ̇ =

Z 2

1

(+)  =

Z 2

1

2 =

Z 2

1

p·q (13.23)

Abbreviated action provides for use of a simplified form of the principle of least action that is based

on the kinetic energy and not potential energy. For conservative systems it determines the path of the

motion, but not the time dependence of the motion. Consider virtual motions where the path satisfies

energy conservation, and where the end points are held fixed, that is  = 0 but allow for a variation  in

the final time. Then using equation 1321

 = − = − (13.24)

However, equation 1321 gives that

 = 0 − (13.25)

Therefore

0 = 0 (13.26)

That is, the abbreviated action has a minimum with respect to all paths that satisfy the conservation of

energy which can be written as

0 = 

Z 2

1

2 = 0 (13.27)

Equation 1327 is called the Maupertuis’ least-action principle which he proposed in 1744 based on Fermat’s

Principle in optics. Credit for the formulation of least action commonly is given to Maupertuis; however, the

Maupertuis principle is identical to use of least action applied to the "vis viva", as was proposed by Leibniz

four decades earlier. Maupertuis used teleological arguments, rather than scientific rigor, because of his

limited mathematical capabilities. In 1744 Euler provided a scientifically rigorous argument, presented above,

that underlies the Maupertuis principle. Euler derived the correct variational relation for the abbreviated

action to be

0 =

Z X


 = 0 (13.28)

Hamilton’s use of the principle of least action to derive both Lagrangian and Hamiltonian mechanics is a

remarkable accomplishment. It underlies Hamiltonian mechanics and confirmed the conjecture of Mauper-

tuis.
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13.3 Standard Lagrangian

Lagrangian mechanics, as introduced in chapters 5 6 was based on the concepts of kinetic energy and

potential energy. The derivation of Lagrangian mechanics, given in chapter 6 was based on d’Alembert’s

principle of virtual work which led to the definition of the standard Lagrangian. The standard Lagrangian

was defined in chapter 62 to be the difference between the kinetic and potential energies.

(q q̇) =  (q̇)− (q ) (13.29)

Hamilton extended Lagrangian mechanics by defining Hamilton’s Principle, equation 132, which states that

a dynamical system follows a path for which the action functional is stationary, that is, time integral of the

Lagrangian. Chapter 6 showed that using the standard Lagrangian in the action functional leads to the

Euler-Lagrange variational equations½




µ


̇

¶
− 



¾
= 

 +

X
=1





(q ) (13.30)

The Lagrange multiplier terms handle the holonomic constraint forces and 
 handles the remaining

excluded generalized forces. Chapters 6 − 12 showed that the use of the standard Lagrangian, with the
Euler-Lagrange equations (133) provides a remarkably powerful and flexible way to derive second-order

equations of motion for dynamical systems in classical mechanics.

Note that the Euler-Lagrange equations, expressed solely in terms of the standard Lagrangian (1329)

that is, excluding the 
 +

P
=1 



(q ) terms, are valid only under the following conditions:

1. The forces acting on the system, apart from any forces of constraint, must be derivable from scalar

potentials.

2. The equations of constraint must be relations that connect the coordinates of the particles and may

be functions of time, that is, the constraints are holonomic.

The 
 +

P
=1 



(q ) terms extend the range of validity of using the standard Lagrangian in the

Lagrange-Euler equations by introducing constraint and additional force explicitly.

Chapters 6−12 exploited Lagrangian mechanics based on use of the standard definition of the Lagrangian.
This chapter shows that the powerful Lagrangian formulation, using the standard Lagrangian, can be ex-

tended to include alternative non-standard Lagrangians that may be applied to dynamical systems where

use of the standard definition is inapplicable. If these non-standard Lagrangians satisfy Hamilton’s Action

Principle, 132, then they can be used with the Euler-Lagrange equations to generate the correct equations

of motion, even though the Lagrangian may have no direct relation to the kinetic and potential energies

as is the case for the standard Lagrangian. Currently, the development and exploitation of non-standard

Lagrangians is an active field of Lagrangian mechanics.

13.4 Gauge invariance of the Lagrangian

Note that the standard Lagrangian is not unique in that there is a continuous spectrum of equivalent

standard Lagrangians that all lead to identical equations of motion. This is because the Lagrangian  is a

scalar quantity that is invariant with respect to coordinate transformations. The following transformations

change the standard Lagrangian, but leave the equations of motion unchanged.

1. The Lagrangian is indefinite with respect to addition of a constant to the scalar potential which cancels

out when the derivatives in the Euler-Lagrange differential equations are applied.

2. The Lagrangian is indefinite with respect to addition of a constant kinetic energy.

3. The Lagrangian is indefinite with respect to addition of a total time derivative of the form 2 →
1 +



[Λ( )]  for any differentiable function Λ() of the generalized coordinates plus time, that

has continuous second derivatives.
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This last statement can be proved by considering a transformation between two related standard La-

grangians of the form

2(q

 ) = 1(q


 ) +

Λ(q )


= 1(q


 ) +

µ
Λ(q )


̇ +

Λ(q )



¶
(13.31)

This leads to a standard Lagrangian 2 that has the same equations of motion as 1 as is shown by

substituting equation 1331 into the Euler-Lagrange equations. That is,





µ
2

̇

¶
− 2


=





µ
1

̇

¶
− 1


+

2Λ(q )


− 2Λ(q )


=





µ
1

̇

¶
− 1


(13.32)

Thus even though the 1 and 2 are different, they are completely equivalent in that they generate identical

equations of motion.

There is an unlimited range of equivalent standard Lagrangians that all lead to the same equations of

motion and satisfy the requirements of the Lagrangian. That is, there is no unique choice among the wide

range of equivalent standard Lagrangians expressed in terms of generalized coordinates. This discussion is

an example of gauge invariance in physics.

Modern theories in physics describe reality in terms of potential fields. Gauge invariance, which also is

called gauge symmetry, is a property of field theory for which different underlying fields lead to identical

observable quantities. Well-known examples are the static electric potential field and the gravitational

potential field where any arbitrary constant can be added to these scalar potentials with zero impact on the

observed static electric field or the observed gravitational field. Gauge theories constrain the laws of physics

in that the impact of gauge transformations must cancel out when expressed in terms of the observables.

Gauge symmetry plays a crucial role in both classical and quantal manifestations of field theory, e.g. it is

the basis of the Standard Model of electroweak and strong interactions.

Equivalent Lagrangians are a clear manifestation of gauge invariance as illustrated by equations 1331 1332

which show that adding any total time derivative of a scalar function Λ(q) to the Lagrangian has no ob-

servable consequences on the equations of motion. That is, although addition of the total time derivative of

the scalar function Λ(q ) changes the value of the Lagrangian, it does not change the equations of motion

for the observables derived using equivalent standard Lagrangians.

In Lagrangian formulations of classical mechanics, the gauge invariance is readily apparent by direct

inspection of the Lagrangian.

13.1 Example: Gauge invariance in electromagnetism

The scalar electric potential Φ and the vector potential  fields in electromagnetism are examples of gauge-

invariant fields. These electromagnetic-potential fields are not directly observable, that is, the electromagnetic

observable quantities are the electric field  and magnetic field  which can be derived from the scalar and

vector potential fields Φ and . An advantage of using the potential fields is that they reduce the problem

from 6 components, 3 each for  and  to 4 components, one for the scalar field Φ and 3 for the vector

potential . The Lagrangian for the velocity-dependent Lorentz force, given by equation 667 provides an

example of gauge invariance. Equations 663 and 665 showed that the electric and magnetic fields can be

expressed in terms of scalar and vector potentials Φ and A by the relations

B =∇×A

E = −∇Φ− A



The equations of motion for a charge  in an electromagnetic field can be obtained by using the Lagrangian

 =
1

2
v · v− (Φ−A · v)

Consider the transformations (AΦ)→ (A0Φ0) in the transformed Lagrangian 0where

A0 = A+∇Λ(r)

Φ0 = Φ− Λ(r)
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The transformed Lorentz-force Lagrangian 0 is related it to the original Lorentz-force Lagrangian  by

0 = + 

∙
ṙ·∇Λ(r) + Λ(r)



¸
= + 




Λ(r)

Note that the additive term  

Λ(r) is an exact time differential. Thus the Lagrangian 0 is gauge invariant

implying identical equations of motion are obtained using either of these equivalent Lagrangians.

The force fields E and B can be used to show that the above transformation is gauge-invariant. That is,

E0 = −∇Φ0 − A0


= −∇Φ− A


= E

B0 =∇×A0 =∇×A = B

That is, the additive terms due to the scalar field Λ(r) cancel. Thus the electromagnetic force fields following

a gauge-invariant transformation are shown to be identical in agreement with what is inferred directly by

inspection of the Lagrangian.

13.5 Non-standard Lagrangians

The definition of the standard Lagrangian was based on d’Alembert’s differential variational principle. The

flexibility and power of Lagrangian mechanics can be extended to a broader range of dynamical systems

by employing an extended definition of the Lagrangian that is based on Hamilton’s Principle, equation

131. Hamilton’s Principle was introduced 46 years after the standard formulation of Lagrangian mechanics.

Hamilton’s Principle provides a general definition of the Lagrangian that applies to standard Lagrangians,

which are expressed as the difference between the kinetic and potential energies, as well as to non-standard

Lagrangians where there may be no clear separation into kinetic and potential energy terms. These non-

standard Lagrangians can be used with the Euler-Lagrange equations to generate the correct equations of

motion even though they may have no relation to the kinetic and potential energies. The extended definition

of the Lagrangian based on Hamilton’s action functional 131 can be exploited for developing non-standard

definitions of the Lagrangian that may be applied to dynamical systems where use of the standard definition

is inapplicable. Non-standard Lagrangians can be equally as useful as the standard Lagrangian for deriving

equations of motion for a system. Secondly, non-standard Lagrangians, that have no energy interpretation,

are available for deriving the equations of motion for many nonconservative systems. Thirdly, Lagrangians

are useful irrespective of how they were derived. For example, they can be used to derive conservation laws or

the equations of motion. Coordinate transformations of the Lagrangian is much simpler than that required

when using the equations of motion. The relativistic Lagrangian defined in chapter 166 is a well-known

example of a non-standard Lagrangian.

13.6 Inverse variational calculus

Non-standard Lagrangians and Hamiltonians are not based on the concept of kinetic and potential energies.

Therefore, development of non-standard Lagrangians and Hamiltonians require an alternative approach

that ensures that they satisfy Hamilton’s Principle, equation 132 which underlies the Lagrangian and

Hamiltonian formulations. One useful alternative approach is to derive the Lagrangian or Hamiltonian via

an inverse variational process based on the assumption that the equations of motion are known. Helmholtz

developed the field of inverse variational calculus which plays an important role in development of non-

standard Lagrangians. An example of this approach is use of the well-known Lorentz force as the basis for

deriving a corresponding Lagrangian to handle systems involving electromagnetic forces. Inverse variational

calculus is a branch of mathematics that is beyond the scope of this textbook. The Douglas theorem[Dou41]

states that, if the three Helmholtz conditions are satisfied, then there exists a Lagrangian that, when used

with the Euler-Lagrange differential equations, leads to the given set of equations of motion. Thus, it will

be assumed that the inverse variational calculus technique can be used to derive a Lagrangian from known

equations of motion
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13.7 Dissipative Lagrangians

Energy dissipation is an irreversible process that plays an important role for most physical systems encoun-

tered in nature. This irreversibility contrasts with the reversible nature of the basic models employed to

describe conservative systems. Dissipation for an observed system usually arises from interactions between

the observed system and a bath of unobserved systems that absorb the energy. Usually the detailed structure

of the many systems that absorb the dissipated energy is irrelevant for the calculation of the dissipation.

However, calculation of the interactions, and the transition from reversibility to irreversibility, are challeng-

ing problems to solve. In the Newtonian formulation the dissipation can be handled via a phenomenological

approach. Unfortunately incorporating dissipative processes into the Lagrangian and Hamiltonian varia-

tional framework is more difficult. This difficulty stems from the fact that these variational formulations

were derived from d’Alembert’s principle which assumes that the virtual work done by the constraint forces

is zero, which is not true for dissipative forces.

As discussed in chapter 87, the following three approaches can be used to introduce dissipative forces

into Lagrangian mechanics.

1. The dissipative force can be introduced as an external generalized force 
 .

2. For the special case of linear dissipation, it is possible to use the Rayleigh dissipation function

F ≡1
2

X
=1

X
=1

 ̇̇ (13.33)

as discussed in chapter 872. Note that

2F = 


(13.34)

which is the rate of energy loss due to the dissipative forces involved.

3. Extensions of Lagrangian mechanics using non-standard Lagrangians can be used that build dissipation

directly into the Lagrangian This can allow exploitation of Lagrangian mechanics for a wide range of

dissipative systems.

The use of non-standard Lagrangians is based on the inverse variational problem where known second-

order equations of motion, plus the inverse variational approach, are used to derive a Lagrangian or Hamil-

tonian that generates the assumed equations of motion. Non-standard Lagrangians can have very different

functional dependences on q̇qand  compared with standard Lagrangians, and yet still can lead to the

required equations of motion, the generalized momenta, and the corresponding Hamiltonian, needed to solve

problems in classical mechanics. The reason for exploring the capabilities of use of non-standard Lagrangians

is that they have the potential to eliminate some of the limitations endemic to Lagrangian and Hamiltonian

mechanics.

Dissipation plays a prominent role in the burgeoning field of non-linear dynamical systems in classical

mechanics. This prominence has stimulated recent studies of the applicability of standard, and non-standard,

Lagrangians to a wide range of dissipative dynamical systems. Musielak et al, and others, [Mus08a, Mus08b,

Cei10] considered dynamical systems that were described by equations of motion with first-order time-

derivative dissipative terms of even and odd powers, and coefficients varying in time or space. They found

that there are at least three different classes of equations of motion, two of which use standard Lagrangians

and can be classified as general. However, the third class is special in that it can be derived only using non-

standard Lagrangians. Each general class has a subset of equations with non-standard Lagrangians. The

existence of standard Lagrangians is limited to equations of motion with either time-dependent coefficients

plus linear dissipative terms, or space-dependent coefficients and quadratic dissipative terms. However, the

equations of motion that can be derived from non-standard Lagrangians are restricted by conditions that must

be satisfied by the coefficients and functions of these equations. Although these non-standard Lagrangians

may have restricted applicability, they do provide hope that such techniques can be used to broaden the scope

of problems that can be addressed using the basic Lagrangian and Hamiltonian mechanics formalisms. Note

that, even though Lagrange published his treatise on analytical mechanics in 1788, fundamental problems

remain to be solved in order to attain the full potential capabilities of analytical mechanics.
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13.8 Linear velocity-dependent dissipation

As discussed in chapter 158, dissipative forces for fluids and gases depend linearly on velocity at low velocities,

that is, for Reynolds numbers Re ≤ 1. Such linear-velocity dissipative forces occur frequently in nature. The
wide range of electrical conductors that obey Ohm’s Law provides an example of a dissipative force that

depends linearly on velocity. By contrast, dissipative forces in fluids and gases at high velocities, that

is, at Reynolds numbers 103 ≤ Re ≤ 105, have dissipation forces that depend quadratically on velocity.

Thus Lagrangians, or Hamiltonians, are needed that can account for dissipation that may have a non-linear

dependence on velocity.

The special case of linear velocity-dependent dissipation is used below to illustrate the potential capabil-

ities of standard and non-standard Lagrangians to derive the equations of motion for dissipative dynamical

systems.

Linear velocity-dependent dissipation was considered by Bauer [Bau31] who stated two theorems that

show that the equations of motion, for dissipative dynamical systems having a linear dependence on velocity

with constant coefficients, cannot be derived from a variational principle. These theorems are:

1. The equations of motion of a conservative linear dynamical system are given by a variational principle

only if the masses of the system are constant.

2. The equations of motion of a dissipative linear dynamical system are given by a variational principle if,

and only if, the dissipation coefficients are identically equal to the rates of change of the corresponding

masses.

Bateman[Bat31] pointed out that an isolated dissipative system is physically incomplete, that is, a com-

plete system must comprise at least two coupled subsystems where energy is transferred from a dissipating

subsystem to an absorbing subsystem. A complete system should comprise both the dissipating and ab-

sorbing systems to ensure that the total system Lagrangian and Hamiltonian are conserved, as is assumed

in conventional Lagrangian and Hamiltonian mechanics. Both Bateman and Dekker[Dek75] have illustrated

that the equations of motion for a linearly-damped, free, one-dimensional harmonic oscillator are derivable

using the Hamilton variational principle via introduction of a fictitious complementary subsystem that ab-

sorbs the energy, and is a function of a second variable that mirrors the function of the variable for the

dissipative subsystem of interest.

Example 132 illustrates that the linearly-damped, linear oscillator may be handled by three alterna-

tive equivalent non-standard Lagrangians that assume either: (1) a multidimensional system, (2) explicit

time dependent Lagrangians and Hamiltonians, or (3) complex non-standard Lagrangians, to generate the

equations of motion.

13.2 Example: The linearly-damped, linear oscillator:

Three toy dynamical models have been used to describe the linearly-damped, linear oscillator employing

very different non-standard Lagrangians to generate the required Hamiltonians, and to derive the correct

equations of motion.

1: Dual-component Lagrangian: 

Bateman proposed a dual system comprising a mass  subject to two coupled one-dimensional variables

( ) where  is the observed variable and  is the mirror variable for the subsystem that absorbs the energy

dissipated by the subsystem .

Assume a non-standard Lagrangian of the form

 =


2

∙
̇̇ − Γ

2
[̇− ̇]− 20

¸
()

where Γ = 

is the damping coefficient. Minimizing by variation of the auxiliary variable , that is, Λ = 0,

leads to the uncoupled equation of motion for 



2

£
̈+ Γ̇+ 20

¤
= 0 ()
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Similarly minimizing by variation of the primary variable  that is Λ = 0 leads to the uncoupled equation

of motion for 


2

£
̈ − Γ̇ + 20

¤
= 0 ()

Note that equation of motion () which was obtained by variation of the auxiliary variable  corresponds

to that for the usual free, linearly-damped, one-dimensional harmonic oscillator for the  variable which

dissipates energy as is discussed in chapter 35. The equation of motion () is obtained by variation of the

primary variable  and corresponds to a free linear, one-dimensional, oscillator for the  variable that is

absorbing the energy dissipated by the dissipating  system.

The generalized momenta,

 ≡ 

̇

can be used to derive the corresponding Hamiltonian

(   ) = [̇+ ̇ − ] =


2
− Γ
2
[ − ] +



2

Ã
20 −

µ
Γ

2

¶2!
 ()

Note that this Hamiltonian is time independent, and thus is conserved for this complete dual-variable system.

Using Hamilton’s equations of motion gives the same two uncoupled equations of motion as obtained using

the Lagrangian, i.e. () and ().

2: Time-dependent Lagrangian: 

The complementary subsystem of the above dual-component Lagrangian, that is added to the primary

dissipative subsystem, is the adjoint to the equations for the primary subsystem of interest. In some cases, a

set of the solutions of the complementary equations can be expressed in terms of the solutions of the primary

subsystem allowing the equations of motion to be expressed solely in terms of the variables of the primary

subsystem. Inspection of the solutions of the damped harmonic oscillator, presented in chapter 35, implies

that  and  must be related by the function

 = Γ ()

Therefore Bateman proposed a time-dependent, non-standard Lagrangian 2 of the form

 =


2
Γ
£
̇2 − 20

2
¤

()

This Lagrangian  corresponds to a harmonic oscillator for which the mass  = 0
Γ is accreting

exponentially with time in order to mimic the exponential energy dissipation. Use of this Lagrangian in the

Euler-Lagrange equations gives the solution

Γ
£
̈+ Γ̇+ 20

¤
= 0 ()

If the factor outside of the bracket is non-zero, then the equation in the bracket must be zero. The expression

in the bracket is the required equation of motion for the linearly-damped linear oscillator. This Lagrangian

generates a generalized momentum of

 = Γ̇

and the Hamiltonian is

 = ̇− 2 =
2
2

−Γ +


2
20

Γ2 ()

The Hamiltonian is time dependent as expected. This leads to Hamilton’s equations of motion

̇ =



=




−Γ ()

−̇ =



= 20

Γ ()

Take the total time derivative of equation  and use equation  to substitute for ̇ gives

Γ
£
̈+ Γ̇+ 20

¤
= 0 ()
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If the term Γ is non-zero, then the term in brackets is zero. The term in the bracket is the usual equation

of motion for the linearly-damped harmonic oscillator.

3: Complex Lagrangian: 

Dekker proposed use of complex dynamical variables for solving the linearly-damped harmonic oscillator.

It exploits the fact that, in principle, each second order differential equation can be expressed in terms of

a set of first-order differential equations. This feature is the essential difference between Lagrangian and

Hamiltonian mechanics. Let  be complex and assume it can be expressed in the form of a real variable  as

 = ̇−
µ
 +

Γ

2

¶
 ()

Substituting this complex variable into the relation

̇ +

∙
 +

Γ

2

¸
 = 0 ()

leads to the second-order equation for the real variable  of

̈+ Γ̇+ 20 = 0 ()

This is the desired equation of motion for the linearly-damped harmonic oscillator. This result also can be

shown by taking the time derivative of equation () and taking only the real part, i.e.

̈ + ̇ +
Γ

2
̇ = ̈ +

µ
 − Γ

2

¶
̇ + Γ̇ = ̈ + Γ̇ + 20 = 0 ()

This feature is exploited using the following Lagrangian

 =


2
(∗̇ − ̇∗)−

∙
 − 

Γ

2

¸
∗ ()

where 2 ≡ 20 −
¡
Γ
2

¢2
. The Lagrangian  is real for a conservative system and complex for a

dissipative system. Using the Lagrange-Euler equation for variation of ∗, that is, Λ∗ = 0, gives

equation () which leads to the required equation of motion ()

The canonical conjugate momenta are given by

 =


̇
̃ =



̇∗
()

The above Lagrangian plus canonically conjugate momenta lead to the complimentary Hamiltonians

(  ̃ 
∗) =

µ
 +

Γ

2

¶
(̃∗∗ − ) ()

̃(  ̃ 
∗) =

µ
 − Γ

2

¶
(̃∗∗ − ) ()

These Hamiltonians give Hamilton equations of motion that lead to the correct equations of motion for 

and ∗

The above examples have shown that three very different, non-standard, Lagrangians, plus their corre-

sponding Hamiltonians, all lead to the correct equation of motion for the linearly-damped harmonic oscilla-

tor. This illustrates the power of using non-standard Lagrangians to describe dissipative motion in classical

mechanics. However, postulating non-standard Lagrangians to produce the required equations of motion

appears to be of questionable usefulness. A fundamental approach is needed to build a firm foundation upon

which non-standard Lagrangian mechanics can be based. Non-standard Lagrangian mechanics remains an

active, albeit narrow, frontier of classical mechanics
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13.9 Summary

This chapter introduced Hamilton’s use of least action to derive Hamilton’s Principle, and its application to

Lagrangian and Hamiltonian mechanics. Gauge invariance of the Lagrangian was discussed. The concept of

alternative standard, and non-standard, Lagrangians was introduced and their applicability was illustrated.

The following summarizes the conclusions.

Hamilton’s Principle Hamilton’s Principle is based on use of variational calculus to determine the equa-

tions of motion for which the action functional  has a stationary solution, where

 =

Z 2

1

(q q̇) (131)

That is

 = 

Z 2

1

 = 0 (132)

Hamilton’s Principle of least action leads directly to the Lagrange-Euler equations without assuming that

the Lagrangian is of the standard form. That is, Hamilton’s Principle allows for a wide range of allowable

functional forms for the Lagrangian.

Hamilton’s Principle leads to a direct relation between the generalized momentum and the action.

 =



(1313)

It was shown that Hamilton’s Principle of least action predicts Hamilton’s equations of motion

̇ +



= 0 − ̇ +




= 0

In addition, it predicts the Hamiltonian-Jacobi equation.




+(qp) = 0 (1320)

Gauge invariance of the standard Lagrangian: It was shown that there is a continuum of equivalent

standard Lagrangians that lead to the same set of equations of motion for a system. This feature is related

to gauge invariance in mechanics. The following transformations change the standard Lagrangian, but leave

the equations of motion unchanged.

1. The Lagrangian is indefinite with respect to addition of a constant to the scalar potential which cancels

out when the derivatives in the Euler-Lagrange differential equations are applied.

2. Similarly the Lagrangian is indefinite with respect to addition of a constant kinetic energy.

3. The Lagrangian is indefinite with respect to addition of a total time derivative of the form  →
+ 


[Λ( )] for any differentiable function Λ() of the generalized coordinates, plus time, that has

continuous second derivatives.

Non-standard Lagrangians: The flexibility and power of Lagrangian mechanics can be extended to a

broader range of dynamical systems by employing an extended definition of the Lagrangian that is allowed

by Hamilton’s variational action principle, equation 132. It was illustrated that the inverse variational

calculus formalism can be used to identify non-standard Lagrangians that generate the required equations

of motion. These non-standard Lagrangians can be very different from the standard Lagrangian and do not

separate into kinetic and potential energy components. These alternative Lagrangians can be used to handle

dissipative systems which are beyond the range of validity when using standard Lagrangians. That is, it

was shown that several very different Lagrangians and Hamiltonians can be equivalent for generating useful

equations of motion of a system. Currently the use of non-standard Lagrangians is a narrow, but active,

frontier of classical mechanics.



Chapter 14

Advanced Hamiltonian mechanics

14.1 Introduction

This study of classical mechanics has involved climbing a vast mountain of knowledge, while the pathway

to the top has led us to elegant and beautiful theories that underlie much of modern physics. Being so

close to the summit provides the opportunity to take a few extra steps in order to glimpse at applications of

variational techniques to physics at the summit. These are described next in chapters 14− 17.
Hamilton’s development of Hamiltonian mechanics in 1834 is the crowning achievement for applying vari-

ational principles to classical mechanics. A fundamental advantage of Hamiltonian mechanics is that it uses

the conjugate coordinates qp plus time , which is a considerable advantage in most branches of physics

and engineering. Compared to Lagrangian mechanics, Hamiltonian mechanics has a significantly broader

arsenal of powerful techniques that can be exploited to obtain an analytical solution of the integrals of the

motion for complicated systems. In addition, Hamiltonian dynamics provides a means of determining the

unknown variables for which the solution assumes a soluble form, and is ideal for study of the fundamental

underlying physics in applications to fields such as quantum or statistical physics. As a consequence, Hamil-

tonian mechanics is the preeminent variational approach used in modern physics. This chapter introduces

the following four techniques in Hamiltonian mechanics: (1) the elegant Poisson bracket representation of

Hamiltonian mechanics, which played a pivotal role in the development of quantum theory; (2) the pow-

erful Hamilton-Jacobi theory coupled with Jacobi’s development of canonical transformation theory; (3)

action-angle variable theory; and (4) canonical perturbation theory.

Prior to further development of the theory of Hamiltonian mechanics, it is useful to summarize the major

formula relevant to Hamiltonian mechanics that have been presented in chapters 7 8 and 13.

Action functional :

As discussed in chapter 132, Hamiltonian mechanics is built upon Hamilton’s action functional

(qp) =

Z 2

1

(q q̇) (14.1)

Hamilton’s Principle of least action states that

(qp) = 

Z 2

1

(q q̇) = 0 (14.2)

Generalized momentum :

In chapter 72, the generalized (canonical) momentum was defined in terms of the Lagrangian  to be

 ≡ (q q̇)

̇
(14.3)

Chapter 132 defined the generalized momentum in terms of the action functional  to be

 =
(qp)


(14.4)

393
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Generalized energy (q ̇ ) :

Jacobi’s Generalized Energy (q ̇ ) was defined in equation 737 as

(q q̇ ) ≡
X


µ
̇
(q q̇ )

̇

¶
− (q q̇ ) (14.5)

Hamiltonian function:

The Hamiltonian  (qp) was defined in terms of the generalized energy (q q̇ ) plus the generalized

momentum. That is

 (qp) ≡ (q q̇ ) =
X


 ̇ − (q q̇ ) = p · q̇−(q q̇ ) (14.6)

where pq correspond to -dimensional vectors, e.g. q ≡ (1 2  ) and the scalar product p·q̇ =
P

 ̇.

Chapter 82 used a Legendre transformation to derive this relation between the Hamiltonian and Lagrangian

functions. Note that whereas the Lagrangian (q q̇ ) is expressed in terms of the coordinates q plus

conjugate velocities q̇, the Hamiltonian  (qp ) is expressed in terms of the coordinates q plus their

conjugate momenta p. For scleronomic systems, plus assuming the standard Lagrangian, then equations

744 and 729 give that the Hamiltonian simplifies to equal the total mechanical energy, that is,  =  + .

Generalized energy theorem:

The equations of motion lead to the generalized energy theorem which states that the time dependence

of the Hamiltonian is related to the time dependence of the Lagrangian.

 (qp)


=
X


̇

"

 +

X
=1





(q )

#
− (q q̇ )


(14.7)

Note that if all the generalized non-potential forces and Lagrange multiplier terms are zero, and if the

Lagrangian is not an explicit function of time, then the Hamiltonian is a constant of motion.

Hamilton’s equations of motion:

Chapter 83 showed that a Legendre transform plus the Lagrange-Euler equations led to Hamilton’s

equations of motion. Hamilton derived these equations of motion directly from the action functional, as

shown in chapter 132

̇ =
 (qp)


(14.8)

̇ = −


(qp) +

"
X
=1





+



#
(14.9)

 (qp)


= −(q q̇ )


(14.10)

Note the symmetry of Hamilton’s two canonical equations. The canonical variables   are treated

as independent canonical variables Lagrange was the first to derive the canonical equations but he did not

recognize them as a basic set of equations of motion. Hamilton derived the canonical equations of motion

from his fundamental variational principle and made them the basis for a far-reaching theory of dynamics.

Hamilton’s equations give 2 first-order differential equations for   for each of the  degrees of freedom.

Lagrange’s equations give  second-order differential equations for the variables  ̇

Hamilton-Jacobi equation:

Hamilton used Hamilton’s Principle to derive the Hamilton-Jacobi equation.




+(qp) = 0 (14.11)

The solution of Hamilton’s equations is trivial if the Hamiltonian is a constant of motion, or when a set of

generalized coordinate can be identified for which all the coordinates  are constant, or are cyclic (also called

ignorable coordinates). Jacobi developed the mathematical framework of canonical transformation required

to exploit the Hamilton-Jacobi equation.
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14.2 Poisson bracket representation of Hamiltonian mechanics

14.2.1 Poisson Brackets

Poisson brackets were developed by Poisson, who was a student of Lagrange. Hamilton’s canonical equations

of motion describe the time evolution of the canonical variables ( ) in phase space. Jacobi showed that the

framework of Hamiltonian mechanics can be restated in terms of the elegant and powerful Poisson bracket

formalism. The Poisson bracket representation of Hamiltonian mechanics provides a direct link between

classical mechanics and quantum mechanics.

The Poisson bracket of any two continuous functions of generalized coordinates  ( ) and ( ) is

defined to be

[] ≡
X


µ







− 







¶
(14.12)

Note that the above definition of the Poisson bracket leads to the following identity, antisymmetry, linearity,

Leibniz rules, and Jacobi Identity.

[ ] = 0 (14.13)

[] = − [ ] (14.14)

[ +  ] = [ ] + [ ] (14.15)

[ ] = [ ] +  [ ] (14.16)

0 = [ [ ]] + [ [  ]] + [ []] (14.17)

where  and  are functions of the canonical variables plus time. Jacobi’s identity; (1417) states that

the sum of the cyclic permutation of the double Poisson brackets of three functions is zero. Jacobi’s identity

plays a useful role in Hamiltonian mechanics as will be shown.

14.2.2 Fundamental Poisson brackets:

The Poisson brackets of the canonical variables themselves are called the fundamental Poisson brackets.

They are

[ ] =
X


µ







− 







¶
=
X


( · 0− 0 · ) = 0 (14.18)

[ ] =
X


µ







− 







¶
=
X


(0 ·  −  · 0) = 0 (14.19)

[ ] =
X


µ







− 







¶
=
X


( ·  − 0 · 0) =  (14.20)

In summary, the fundamental Poisson brackets equal

[ ] = 0 (14.21)

[ ] = 0 (14.22)

[ ] = − [ ] =  (14.23)

Note that the Poisson bracket is antisymmetric under interchange in  and  It is interesting that the only

non-zero fundamental Poisson bracket is for conjugate variables where  =  that is

[ ] = 1 (14.24)
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14.2.3 Poisson bracket invariance to canonical transformations

The Poisson brackets are invariant under a canonical transformation from one set of canonical variables

( ) to a new set of canonical variables ( ) where  → (qp) and  → (qp). This is shown

by transforming equation 1413 to the new variables by the following derivation

[] =
X


µ







− 







¶
(14.25)

=
X


µ




µ







+









¶
− 



µ







+









¶¶
(14.26)

The terms can be rearranged to give

[] =
X


µ




[] +



[]

¶
(14.27)

Let  =  and replace  by  , and use the fact that the fundamental Poisson brackets [ ] = 0

and [  ] = , then equation 1425 reduces to

[  ] =
X


µ




[  ] +



[  ]

¶
=
X





 (14.28)

That is

[] = − 


(14.29)

Similarly

[  ] =
X


µ




[ ] +



[  ]

¶
(14.30)

leading to

[] =




(14.31)

Substituting equations (1429) and (1431) into equation (1427) gives

[] =
X


µ







− 







¶
= [] (14.32)

Thus the canonical variable subscripts ( ) and ( ) can be ignored since the Poisson bracket is

invariant to any canonical transformation of canonical variables. The counter argument is that if the Poisson

bracket is independent of the transformation then the transformation is canonical.

14.1 Example: Check that a transformation is canonical

The independence of Poisson brackets to canonical transformations can be used to test if a transformation

is canonical. Assume that the transformation equations between two sets of coordinates are given by

 = ln
³
1 + 

1
2 cos 

´
 = 2

³
1 + 

1
2 cos 

´

1
2 sin 

Evaluating the Poisson brackets gives [] = 0, [ ] = 0 while

[ ] =







− 







=
−

1
2 cos 

1 + 
1
2 cos 

[− sin2 + (1 + 
1
2 cos )

1
2 cos ] +


1
2 sin2 

1 + 
1
2 cos 

[cos + (1 + 
1
2 cos )−

1
2 ] = 1

Therefore if   are canonical with a Poisson bracket [ ] = 1, then so are  since [ ] = 1 = [ ] 
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Since it has been shown that this transformation is canonical, it is possible to go further and determine

the function that generates this transformation. Solving the transformation equations for  and  give

 =
¡
 − 1¢2 sec2   = 2

¡
 − 1¢ tan 

Since the transformation is canonical, there exists a generating function 3 ( ) such that

 = −3


 = −3


The transformation function 3 ( ) can be obtained using

3( ) =
3


+

3


 = −− 

= −
h¡
 − 1¢2i tan − ¡ − 1¢2  tan  = − h¡ − 1¢2 tan i

This then gives that the required generating function is

3( ) =
¡
 − 1¢2 tan 

This example illustrates how to determine a useful generating function and prove that the transformation is

canonical.

14.2.4 Correspondence of the commutator and the Poisson Bracket

In classical mechanics there is a formal correspondence between the Poisson bracket and the commutator.

This can be shown by deriving the Poisson Bracket of four functions taken in two pairs. The derivation

requires deriving the two possible Poisson Brackets involving three functions.

[12 ] =
X


½µ
1


2 + 1

2



¶



−
µ
1


2 + 1

2



¶




¾
= [1]2 + 1 [2 ] (14.33)

[12] = [1]2 +1 [2] (14.34)

These two Poisson Brackets for three functions can be used to derive the Poisson Bracket of four functions,

taken in pairs. This can be accomplished two ways using either equation 1433 or 1434

[12 12] = [112]2 + 1 [2 12]

= {[11]2 +1 [1 2]}2 + 1 {[21]2 +1 [2 2]}
= [11]22 +1 [12]2 + 1 [2 1]2 + 11 [2 2] (14.35)

The alternative approach gives

[12 12] = [121]2 +1 [12 2]

= [11]22 + 1 [2 1]2 +1 [12]2 +11 [2 2] (14.36)

These two alternate derivations give different relations for the same Poisson Bracket. Equating the alternative

equations 1435 and 1436 gives that

[1 1] (22 −22) = (11 −11) [2 2]

This can be factored into separate relations, the left-hand side for body 1 and the right-hand side for body

2.
(11 −11)

[1 1]
=
(22 −22)

[2 2]
=  (14.37)
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Since the left-hand ratio holds for 1 1 independent of 2 2, and vise versa, then they must equal

a constant  that does not depend on 1 1 does not depend on 2 2, and  must commute with

(11 −11). That is,  must be a constant number independent of these variables.

(11 −11) =  [1 1] ≡ 
X


µ
1



1


− 1



1



¶
(14.38)

Equation 1438 is an especially important result which states that to within a multiplicative constant number

, there is a one-to-one correspondence between the Poisson Bracket and the commutator of two independent

functions. An important implication is that if two functions,  have a Poisson Bracket that is zero, then

the commutator of the two functions also must be zero, that is,  and  commute.

Consider the special case where the variables 1 and 1 correspond to the fundamental canonical vari-

ables, ( ). Then the commutators of the fundamental canonical variables are given by

 −  =  [ ] =  (14.39)

 −  =  [ ] = 0 (14.40)

 −  =  [ ] = 0 (14.41)

In 1925, Paul Dirac, a 23-year old graduate student at Bristol, recognized that the formal correspondence

between the Poisson bracket in classical mechanics, and the corresponding commutator, provides a logical

and consistent way to bridge the chasm between the Hamiltonian formulation of classical mechanics, and

quantum mechanics. He realized that making the assumption that the constant  ≡ ~, leads to Heisenberg’s
fundamental commutation relations in quantum mechanics, as is discussed in chapter 1732. Assuming that

 ≡ ~ provides a logical and consistent way that builds quantization directly into classical mechanics, rather
than using ad-hoc, case-dependent, hypotheses as was used by the older quantum theory of Bohr.

14.2.5 Observables in Hamiltonian mechanics

Poisson brackets, and the corresponding commutation relations, are especially useful for elucidating which

observables are constants of motion, and whether any two observables can be measured simultaneously and

exactly. The properties of any observable are determined by the following two criteria.

Time dependence:

The total time differential of a function  (  ) is defined by




=




+
X


µ



̇ +




̇

¶
(14.42)

Hamilton’s canonical equations give that

̇ =



(14.43)

̇ = −


(14.44)

Substituting these in the above relation gives




=




+
X


µ







− 







¶
that is




=




+ [] (14.45)

This important equation states that the total time derivative of any function (  ) can be expressed in

terms of the partial time derivative plus the Poisson bracket of (  ) with the Hamiltonian.
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Any observable (  ) will be a constant of motion if 

= 0, and thus equation (1445) gives




+ [] = 0 (If  is a constant of motion)

That is, it is a constant of motion when



= [] (14.46)

Moreover, this can be extended further to the statement that if the constant of motion  is not explicitly

time dependent then

[] = 0 (14.47)

The Poisson bracket with the Hamiltonian is zero for a constant of motion  that is not explicitly time

dependent. Often it is more useful to turn this statement around with the statement that if [] = 0 and


= 0 then 


= 0, implying that  is a constant of motion.

Independence

Consider two observables  (  ) and (  ). The independence of these two observables is determined

by the Poisson bracket

[] = − [ ] (14.48)

If this Poisson bracket is zero, that is, if the two observables  (  ) and (  ) commute, then their

values are independent and can be measured independently. However, if the Poisson bracket [] 6= 0, that
is  (  ) and (  ) do not commute, then  and  are correlated since interchanging the order of

the Poisson bracket changes the sign which implies that the measured value for  depends on whether  is

simultaneously measured.

A useful property of Poisson brackets is that if  and  both are constants of motion, then the double

Poisson bracket [ []] = 0. This can be proved using Jacobi’s identity

[ []] + [ [ ]] + [ []] = 0 (14.49)

If [] = 0 and [] = 0 then [ []] = 0 that is, the Poisson bracket [] commutes with . Note

that if  and  do not depend explicitly on time, that is 

= 


= 0, then combining equations (1445)

and (1449) leads to Poisson’s Theorem that relates the total time derivatives.




[] =

∙





¸
+

∙






¸
(14.50)

This implies that if  and  are invariants, that is 

= 


= 0 then the Poisson bracket [] is an

invariant if  and  are not explicitly time dependent.

14.2 Example: Angular momentum:

Angular momentum,  provides an example of the use of Poisson brackets to elucidate which observables

can be determined simultaneously. Consider that the Hamiltonian is time independent with a spherically

symmetric potential (). Then it is best to treat such a spherically symmetric potential using spherical

coordinates since the Hamiltonian is independent of both  and .

The Poisson Brackets in classical mechanics can be used to tell us if two observables will commute. Since

() is time independent, then the Hamiltonian in spherical coordinates is

 =  +  =
1

2

Ã
2 +

2
2
+

2

2 sin2 

!
+ ()

Evaluate the Poisson bracket using the above Hamiltonian gives

[] = 0
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Since  is not an explicit function of time,



= 0 then


= 0 that is, the angular momentum about

the  axis  =  is a constant of motion.

The Poisson bracket of the total angular momentum 2 commutes with the Hamiltonian, that is

£
2

¤
=

"
2 +

2

sin2 


#
= 0

Since the total angular momentum 2 = 2 +
2
sin2 

is not explicitly time dependent, then it also must be a

constant of motion. Note that Noether’s theorem also gives that both the angular momenta 2 and  are

constants of motion. Also since the Poisson brackets are

[] = 0£
2

¤
= 0

then Jacobi’s identity, equation 1417 can be used to imply that

[
£
2 

¤
] = 0

That is, the Poisson bracket
£
2 

¤
is a constant of motion. Note that if 2 and  commute, that is,£

2 
¤
= 0 then they can be measured simultaneously with unlimited accuracy, and this also satisfies that£

2 
¤
commutes with .

The (  ) components of the angular momentum  are given by

 =

X
=1

(r× p) =
X
=1

( − )

 =

X
=1

(r× p) =
X
=1

( − )

 =

X
=1

(r× p) =
X
=1

( − )

Evaluate the Poisson bracket

[ ] =

X
=1

∙µ







− 







¶
+

µ







− 







¶
+

µ







− 







¶¸

=

X
=1

[(0) + (0) + ( − )] = 

Similarly, Poisson brackets for    are

[ ] = 

[ ] = 

[ ] = 

where   and  are taken in a right-handed cyclic order. This usually is written in the form

[  ] = 

where the Levi-Civita density  equals zero if two of the  indices are identical, otherwise it is +1 for a

cyclic permutation of   , and −1 for a non-cyclic permutation.
Note that since these Poisson brackets are nonzero, the components of the angular momentum   

do not commute and thus simultaneously they cannot be measured precisely. Thus we see that although 2 and

 are simultaneous constants of motion, where the subscript  can be either   or  only one component

 can be measured simultaneously with 2. This behavior is exhibited by rigid-body rotation where the body

precesses around one component of the total angular momentum, , such that the total angular momentum,

2, plus the component along one axis,  are constants of motion. Then 2 + 2 = 2 − 2 is constant

but not the individual  or .
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14.2.6 Hamilton’s equations of motion

An especially important application of Poisson brackets is that Hamilton’s canonical equations of motion

can be expressed directly in the Poisson bracket form. The Poisson bracket representation of Hamiltonian

mechanics has important implications to quantum mechanics as will be described in chapter 17.

In equation (1445) assume that  is a fundamental coordinate, that is,  ≡ . Since  is not explicitly

time dependent, then




=




+ [] (14.51)

= 0 +
X


µ







− 







¶
=

X


µ





− 0 · 



¶
=




(14.52)

That is

̇ = [] =



(14.53)

Similarly consider the fundamental canonical momentum  ≡ . Since it is not explicitly time dependent,

then




=




+ [] (14.54)

= 0 +
X


µ







− 







¶
=

X


µ
0 · 


−  · 



¶
= −


(14.55)

That is

̇ = [] = −


(14.56)

Thus, it is seen that the Poisson bracket form of the equations of motion includes the Hamilton equations

of motion. That is,

̇ = [] =



(14.57)

̇ = [] = −


(14.58)

The above shows that the full structure of Hamilton’s equations of motion can be expressed directly in

terms of Poisson brackets.

The elegant formulation of Poisson brackets has the same form in all canonical coordinates as the Hamil-

tonian formulation. However, the normal Hamilton canonical equations in classical mechanics assume implic-

itly that one can specify the exact position and momentum of a particle simultaneously at any point in time

which is applicable only to classical mechanics variables that are continuous functions of the coordinates,

and not to quantized systems. The important feature of the Poisson Bracket representation of Hamilton’s

equations is that it generalizes Hamilton’s equations into a form (1457 1458) where the Poisson bracket is

equally consistent with both classical and quantum mechanics in that it allows for non-commuting canonical

variables and Heisenberg’s Uncertainty Principle. Thus the generalization of Hamilton’s equations, via use

of the Poisson brackets, provides one of the most powerful analytic tools applicable to both classical and

quantal dynamics. It played a pivotal role in derivation of quantum theory as described in chapter 17.
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14.3 Example: Lorentz force in electromagnetism

Consider a charge  and mass  in a constant electromagnetic fields with scalar potential Φ and vector

potential  Chapter 611 showed that the Lagrangian can be written as

 =
1

2
ẋ · ẋ−(Φ−A · ẋ)

The generalized momentum then is given by

p =


ẋ
=ẋ+ A

Thus the Hamiltonian can be written as

 = (p · ẋ)−  =
(p−A)2
2

+ Φ

The Hamilton equations of motion give

ẋ= [x] =
(p−A)



and

ṗ = [p] = −∇Φ+ 


{(p−A)× (∇×A)}

Define the magnetic field to be

B ≡∇×A
and the electric field to be

E =−∇Φ− A



then the Lorentz force can be written as

F = ṗ = (E+ ẋ×B)

14.4 Example: Wavemotion:

Assume that one is dealing with traveling waves of the form Ψ = (
1

−) for a one-dimensional

conservative system of many identical coupled linear oscillators. Then evaluating the following Poisson

brackets gives

[] = 0

[] = 0

[] = 0

[] = 0

Thus    and  are constants of motion. However,

[ ] 6= 0

[ ] 6= 0

Thus one cannot simultaneously measure the conjugate variables () or ( ). This is the Uncertainty

Principle manifest by all forms of wave motion in classical and quantal mechanics as discussed in chapter

3113
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14.5 Example: Two-dimensional, anisotropic, linear oscillator

Consider a mass  bound by an anisotropic, two-dimensional, linear oscillator potential. As discussed

in chapter 9 , the motion can be described as lying entirely in the  −  plane that is perpendicular to the

angular momentum . It is interesting to derive the equations of motion for this system using the Poisson

bracket representation of Hamiltonian mechanics.

The kinetic energy is given by

 (̇ ̇) =
1

2

¡
̇2 + ̇2

¢
The linear binding is reproduced assuming a quadratic scalar potential energy of the form

 ( ) =
1

2

¡
2 + 2

¢
+ 

where  is the anharmonic strength that coupled the modes of the isotropic linear oscillator.

a) NORMAL MODES: As discussed in chapter 12 , a transformation to the normal modes of the system

is given by using variables ( ) where  ≡ 1√
2
(+ ) and  ≡ 1√

2
(− ), that is

 ≡ 1√
2
(+ )  ≡ 1√

2
(− )

Express the kinetic and potential energies in terms of the new coordinates gives

 (̇ ̇) =
1

4


∙³
̇+ ̇

´2
+
³
̇− ̇

´2¸
=
1

2

³
̇2 + ̇

2
´

 =
1

4

h
(+ )

2
+ (− )

2
i
+
1

2

¡
2 − 2

¢
=
1

2
( + )2 +

1

2
( − )2

Note that the coordinate transformation makes the Lagrangian separable, that is

 =
1

2

³
̇2 + ̇

2
´
− 1
2
( + )2 +

1

2
( − )2 =  + 

where

 =
1

2
̇2 − 1

2
( + )2  =

1

2
̇

2 − 1
2
( − )2

This shows that that the transformation has separated the system into two normal modes that are harmonic

oscillators with angular frequencies

1 =

r
 + 


2 =

r
 − 



Note that non-isotropic harmonic oscillator reduces to the isotropic linear oscillator when  = 0.

b) HAMILTONIAN: The canonical momenta are given by

 =


̇
= ̇

 =


̇
= ̇

The definition of the Hamiltonian gives

 = ̇+ ̇ −  =
1

2

¡
2 + 2

¢
+
1

2
( + )2 +

1

2
( − )2

Note that this can be factored as

 =  +

where

 =
1

2
2 +

1

2
( + )2  =

1

2
2 +

1

2
( − )2
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Using the Poisson Bracket expression for the time dependence, equation 1445 and using the fact that

the Hamiltonian is not explicitly time dependent, that is, 

= 0, gives




=




+ [] = 0 + [ +] = [ ]

=







+








− 






− 






= 0

Similarly



= 0. This implies that the Hamiltonians for both normal modes,  and  are time-

independent constants of motion which are equal to the total energy for each mode.

c) ANGULAR MOMENTUM: The angular momentum for motion in the  plane is perpendicular to

the  with a magnitude of

 =  ( − )

The time dependence of the angular momentum is given by




=




+ [] = 0 +








− 






+








− 







=  ++−  − + = 2

Note that if  = 0 then the two eigenfrequencies, are degenerate,  = , that is, the system reduces to

the isotropic harmonic oscillator in the  plane that was discussed in chapter 99. In addition, 

= 0 for

 = 0 that is, the angular momentum  in the  plane is a constant of motion when  = 0.

d) SYMMETRY TENSOR: The symmetry tensor was defined in chapter 993 to be

0 =


2
+
1

2


where  and  can correspond to either  or . The symmetry tensor defines the orientation of the major

axis of the elliptical orbit for the two-dimensional, isotropic, linear oscillator as described in chapter 993

The isotropic oscillator has been shown to have two normal modes that are degenerate, therefore  and

 are equally good normal modes. The Hamiltonian showed that, for  = 0 the Hamiltonian gives the total

energy is conserved, as well as the energies for each of the two normal modes which are.

 =
2
2

+
1

2
2  =

2

2
+
1

2
2

Consider the matrix element

0 =


2
+
1

2


where   each can represent  or . Then for each matrix element

0


=
0


+ [ ] = 0 +
0





− 0






+

0





− 0






= 0

That is, each matrix element 012 commutes with the Hamiltonian£
0 

¤
= 0

Thus the Poisson Brackets representation of Hamiltonian mechanics has been used to prove that the

symmetry tensor 0 =

2

+ 1
2
 is a constant of motion for the isotropic harmonic oscillator. That is,

all the elements 0 , 
0
  and 0 of the symmetric tensor A

0 commute with the Hamiltonian.
Note that the three constants of motion, L, A0 and H for the isotropic, two-dimensional, linear oscillator

form a closed algebra under the Poisson Bracket formalism.

14.6 Example: The eccentricity vector

Chapter 984 showed that Hamilton’s eccentricity vector for the inverse square-law attractive force,

A ≡ (p× L)+ (r̂)
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is a constant of motion that specifies the major axis of the elliptical orbit. The eccentricity vector for the

inverse-square-law force can be investigated using Poisson Brackets as was done for the symmetry tensor

above. It can be shown that

[  ] = 

[  ] = −2
µ
p2

2
+





¶
 (a)

Note that the bracket on the right-hand side of equation () equals the Hamiltonian  for the inverse square-

law attractive force, and thus the Poisson bracket equals

[  ] = −2
µ
p2

2
+





¶
 = −2

For the Hamiltonian  it can be shown that the Poisson bracket

[A] = 0

That is, the eccentricity vector commutes with the Hamiltonian and thus it is a constant of motion. Previously

this result was obtained directly using the equations of motion as given in equation 987. Note that the three

constants of motion, L, A and H form a closed algebra under the Poisson Bracket formalism similar to

the triad of constants of motion, L, A0 and H that occur for the two-dimensional, isotropic linear oscillator

described above. Examples 145 and 146 illustrate that the Poisson Brackets representation of Hamiltonian

mechanics is a powerful probe of the underlying physics, as well as confirming the results obtained directly

from the equations of motion as described in chapter 984 and 9 9 3 .

14.2.7 Liouville’s Theorem

p

p

dq

dp
q

q

i

i

i

i

i

i

Figure 14.1: Infinitessimal element of area

in phase space

Liouvilles Theorem illustrates the application of Poisson Brack-

ets to Hamiltonian phase space which has important implications

for statistical physics. The trajectory of a single particle in phase

space is completely determined by the equations of motion if the

initial conditions are known. However, many-body systems have

so many degrees of freedom it becomes impractical to solve all

the equations of motion of the many bodies. An example is a

statistical ensemble in a gas, a plasma, or a beam of particles.

Usually it is not possible to specify the exact point in phase space

for such complicated systems, however, it is possible to define an

ensemble of points in phase space that encompasses all possible

trajectories for the complicated system. That is, the statistical

distribution of particles in phase space can be specified.

Consider a density  of representative points in (qp) phase

space. The number  of systems in the volume element  is

 =  (14.59)

where it is assumed that the infinitessimal volume element

 = 1 21 2 contains many possible sys-

tems so that  can be considered a continuous distribution. For

the conjugate variables ( ) shown in figure 141, the number

of representative points moving across the left-hand edge into

the area per unit time is

̇ (14.60)

The number of representative points flowing out of the area along the right-hand edge is∙
̇ +




(̇) 

¸
 (14.61)
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Hence the net increase in  in the infinitessimal rectangular element  due to flow in the horizontal

direction is

− 


(̇)  (14.62)

Similarly, the net gain due to flow in the vertical direction is

− 


(̇)  (14.63)

Thus the total increase in the element  per unit time is therefore

−
∙



(̇) +




(̇)

¸
 (14.64)

Assume that the total number of points must be conserved, then the total increase in the number of

points inside the element  must equal the net changes in  on the infinitessimal surface element per

unit time. That is µ




¶
 (14.65)

Thus summing over all possible values of  gives




+
X


∙



(̇) +




(̇)

¸
= 0 (14.66)

or



+
X


∙
̇



+ ̇





¸
+ 

X


∙
̇


+

̇



¸
= 0 (14.67)

Inserting Hamilton’s canonical equations into both brackets and differentiating the last bracket results in




+
X


∙







− 







¸
+ 

X


∙
2


− 2



¸
= 0 (14.68)

The two terms in the last bracket cancel and thus




+
X


∙







− 







¸
=




+ [] = 0 (14.69)

However, this just equals 

, therefore




=




+ [] = 0 (14.70)

This is called Liouville’s theorem which states that the rate of change of density of representative

points vanishes, that is, the density of points is a constant in the Hamiltonian phase space along a specific

trajectory. Liouville’s theorem means that the system acts like an incompressible fluid that moves such as to

occupy an equal volume in phase space at every instant, even though the shape of the phase-space volume

may change, that is, the phase-space density of the fluid remains constant. Equation (1470) is another

illustration of the basic Poisson bracket relation (1445) and the usefulness of Poisson brackets in physics.

Liouville’s theorem is crucially important to statistical mechanics of ensembles where the exact knowledge

of the system is unknown, only statistical averages are known. An example is in focussing of beams of charged

particles by beam handling systems. At a focus of the beam, the transverse width in  is minimized, while

the width in  is largest since the beam is converging to the focus, whereas a parallel beam has maximum

width  and minimum spreading width . However, the product  remains constant throughout the

focussing system. For a two dimensional beam, this applies equally for the  and  coordinates, etc. It is

obvious that the final beam quality for any beam transport system is ultimately limited by the emittance of

the source of the beam, that is, the initial area of the phase space distribution. Note that Liouville’s theorem

only applies to Hamiltonian  −  phase space, not to  − ̇ Lagrangian state space. As a consequence,

Hamiltonian dynamics, rather than Lagrange dynamics, is used to discuss ensembles in statistical physics.

Note that Liouville’s theorem is applicable only for conservative systems, that is, where Hamilton’s

equations of motion apply. For dissipative systems the phase space volume shrinks with time rather than

being a constant of the motion.
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14.3 Canonical transformations in Hamiltonian mechanics

Hamiltonian mechanics is an especially elegant and powerful way to derive the equations of motion for com-

plicated systems. Unfortunately, integrating the equations of motion to derive a solution can be a challenge.

Hamilton recognized this difficulty, so he proposed using generating functions to make canonical transfor-

mations which transform the equations into a known soluble form. Jacobi, a contemporary mathematician,

recognized the importance of Hamilton’s pioneering developments in Hamiltonian mechanics, and therefore

he developed a sophisticated mathematical framework for exploiting the generating function formalism in

order to make canonical transformations required to solve Hamilton’s equations of motion.

In the Lagrange formulation, transforming coordinates ( ̇) to cyclic generalized coordinates ( ̇),

simplifies finding the Euler-Lagrange equations of motion. For the Hamiltonian formulation, the concept of

coordinate transformations is extended to include simultaneous canonical transformation of both the spatial

coordinates  and the conjugate momenta  from ( ) to ( ), where both of the canonical variables

are treated equally in the transformation. Compared to Lagrangian mechanics, Hamiltonian mechanics has

twice as many variables which is an asset, rather than a liability, since it widens the realm of possible

canonical transformations.

Hamiltonian mechanics has the advantage that generating functions can be exploited to make canonical

transformations to find solutions, which avoids having to use direct integration. Canonical transformations

are the foundation of Hamiltonian mechanics; they underlie Hamilton-Jacobi theory and action-angle variable

theory, both of which are powerful means for exploiting Hamiltonian mechanics to solve problems in physics

and engineering. The concept underlying canonical transformations is that, if the equations of motion are

simplified by using a new set of generalized variables (QP) compared to using the original set of variables

(qp) then an advantage has been gained. The solution, expressed in terms of the generalized variables

(QP) can be transformed back to express the solution in terms of the original coordinates, (qp).

Only a specialized subset of transformations will be considered, namely canonical transformations that

preserve the canonical form of Hamilton’s equations of motion. That is, given that the original set of variables

( ) satisfy Hamilton’s equations

q̇ =
(qp )

p
− ṗ = (qp )

q
(14.71)

for some Hamiltonian (qp ) then the transformation to coordinates ( )  (  ) is canonical

if, and only if, there exists a function H(QP ) such that the P and Q are still governed by Hamilton’s

equations. That is,

Q̇ =
H(QP )

P
− Ṗ = H(QP )

Q
(14.72)

where H(QP ) plays the role of the Hamiltonian for the new variables. Note that H(QP ) may be
very different from the old Hamiltonian (qp ). The invariance of the Poisson bracket to canonical

transformations, chapter 1423, provides a powerful test that the transformation is canonical.

Hamilton’s Principle of least action, discussed in chapter 13, states that

 = 

Z 2

1

(q q̇ ) = 

Z 2

1

[p · q̇−(qp )]  = 0 (14.73)

Similarly, applying Hamilton’s Principle of least action to the new Lagrangian L(Q Q̇ ) gives

 = 

Z 2

1

L(Q Q̇ ) = 

Z 2

1

h
P · Q̇−H(QP )

i
 = 0 (14.74)

The discussion of gauge-invariant Lagrangians, chapter 134 showed that  and L can be related by the
total time derivative of a generating function  where




= L−  (14.75)

The generating function  can be any well-behaved function with continuous second derivatives of both the

old and new canonical variables pq PQ and  Thus the integrands of (1473) and (1474) are related by

p · q̇−(qp ) = 
h
P · Q̇−H(QP )

i
+




(14.76)
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where  is a possible scale transformation. A scale transformation, such as changing units, is trivial, and will

be assumed to be absorbed into the coordinates, making  = 1 Assuming that  6= 1 is called an extended
canonical transformation.

14.3.1 Generating functions

The generating function  has to be chosen such that the transformation from the initial variables (qp)

to the final variables (QP) is a canonical transformation. The chosen generating function contributes to

(1476) only if it is a function of the old plus new variables. The four possible types of generating functions

of the first kind, are 1(qQ ), 2(qP ), 3(pQ ) , and 4(pP ). These four generating functions

lead to relatively simple canonical transformations, are shown below.

Type 1:  = 1(qQ) :

The total time derivative of the generating function  = 1(qQ) is given by

 (qQ)


=

∙
1(qQ)

q
· q̇+ 1(qQ)

Q
· Q̇
¸
+

1(qQ)


(14.77)

Insert equation (1477) into equation (1476), and assume that the trivial scale factor  = 1 then∙
p− 1(qQ)

q

¸
· q̇−(qp ) =

∙
P+

1(qQ)

Q

¸
· Q̇−H(QP ) + 1(qQ)



Assume that the generating function 1 determines the canonical variables p and P to be

p =
1(qQ)

q
P = −1(qQ)

Q
(14.78)

then the terms in each square bracket cancel, leading to the required canonical transformation

H(QP ) = (qp ) +
1(qQ)


(14.79)

Type 2:  = 2(qP)−Q ·P :
The total time derivative of the generating function  = 2(qP)−Q ·P is given by




=

∙
2(qP)

q
· q̇+ 2(qP)

P
· Ṗ−P · Q̇− Ṗ ·Q

¸
+

2(qP)


(14.80)

Insert this into equation (1476)  and assume that the trivial scale factor  = 1 thenµ
p− 2(qP)

q

¶
· q̇−(qp ) = P · Q̇−P · Q̇+

∙
2(qP)

P
−Q

¸
· Ṗ−H(QP ) + 2(qP)



Assume that the generating function 2 determines the canonical variables p and Q to be

p =
2(qP)

q
Q =

2(qP)

P
(14.81)

then the terms in brackets cancel, leading to the required transformation

H(QP ) = (qp ) +
2(qP)


(14.82)
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Type 3:  = 3(pQ) + q · p :
The total time derivative of the generating function  = 3(pQ t) + q · p is given by




=

∙
3(pQ)

p
· ṗ+ 3(pQ)

Q
· Q̇+ q̇ · p + q · ṗ

¸
+

3(pQ)


(14.83)

Insert this into equation (1476)  and assume that the trivial scale factor  = 1 then

−
∙
q+

3(pQ)

p

¸
· ṗ−(qp ) =

∙
P+

3(pQ)

Q

¸
·Q̇−H(QP ) + 3(pQ)



Assume that the generating function 3 determines the canonical variables q and P to be

q = −3(pQ)
p

P = −3(pQ)
Q

(14.84)

then the terms in brackets cancel, leading to the required transformation

H(QP ) = (qp ) +
3(pQ)


(14.85)

Type 4:  = 4(pP) + q · p−Q ·P :
The total time derivative of the generating function  = 4(pP) + q · p−Q ·P is given by




=

∙
4(pP)

p
· ṗ+ 4(pP)

P
· Ṗ+ q̇ · p + q · ṗ− Q̇ ·P−Q · Ṗ

¸
+

4(pP)


(14.86)

Insert this into equation (1476)  and assume that the trivial scale factor  = 1 then

−
∙
q+

4(pP)

p

¸
· ṗ−(qp ) =

∙
4(pP)

P
−Q

¸
·Ṗ−H(QP ) + 4(pP)



Assume that the generating function 4 determines the canonical variables q and Q to be

q = −4(pP)
p

Q =
4(pP)

P
(14.87)

then the terms in brackets cancel, leading to the required transformation

H(QP ) = (qp ) +
4(pP)


(14.88)

Note that the last three generating functions require the inclusion of additional bilinear products of

   in order for the terms to cancel to give the required result. The addition of the bilinear terms,

ensures that the resultant generating function  is the same using any of the four generating functions

1 2 3 4. Frequently the 2(qP ) generating function is the most convenient. The four possible

generating functions of the first kind, given above, are related by Legendre transformations. A canonical

transformation does not have to conform to only one of the four generating functions  for all the degrees

of freedom, they can be a mixture of different flavors for the different degrees of freedom. The properties of

the generating functions are summarized in table 141.

Table 141 Canonical transformation generating functions

Generating function Generating function derivatives Trivial special examples

 = 1(qQ )  =
1


 = − 1


1 =   =   = −
 = 2(qP )−Q ·P  =

2


 =
2


2 =   =   = 

 = 3(pQ ) + q · p  = −3


 = − 3


3 =   = −  = −
 = 4(pP ) + q · p−Q ·P  = −4


 =

4


4 =   =   = −
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The partial derivatives of the generating functions  determine the corresponding conjugate variables

not explicitly included in the generating function . Note that, for the first trivial example 1 =  the

old momenta become the new coordinates,  =  and vice versa,  = −. This illustrates that it is
better to name them "conjugate variables" rather than "momenta" and "coordinates".

In summary, Jacobi has developed a mathematical framework for finding the generating function 

required to make a canonical transformation to a new Hamiltonian H(QP ), that has a known solution.
That is,

H(QP ) = (qp ) +



(14.89)

WhenH(QP ) is a constant, then a solution has been obtained. The inverse transformation for this solution
Q()P()→ q()p() now can be used to express the final solution in terms of the original variables of the

system.

Note the special case when H(QP ) = 0 then equation 1489 has been reduced to the Hamilton-Jacobi
relation (1412)

(qp ) +



= 0 (1412)

In this case, the generating function  determines the action functional  required to solve the Hamilton-

Jacobi equation (1412). Since equation (1489) has transformed the Hamiltonian (qp ) → H(QP )
for which H(QP ) = 0, then the solution Q()P() for the Hamiltonian H(QP ) = 0 is obtained easily.
This approach underlies Hamilton-Jacobi theory presented in chapter 144

14.3.2 Applications of canonical transformations

The canonical transformation procedure may appear unnecessarily complicated for solving the examples

given in this book, but it is essential for solving the complicated systems that occur in nature. For example,

canonical transformations can be used to transform time-dependent, (non-autonomous) Hamiltonians to

time-independent, (autonomous) Hamiltonians for which the solutions are known. Example 1419 describes

such a system. Canonical transformations provide a remarkably powerful approach for solving the equations

of motion in Hamiltonian mechanics, especially when using the Hamilton-Jacobi approach discussed in

chapter 144.

14.7 Example: The identity canonical transformation

The identity transformation 2(qP) = q · P satisfies (1489) if the following relations are satisfied

 =
2


= ,  =
2


= , H=. Note that the new and old coordinates are identical, hence 2 = 
generates the identity transformation  =    = .

14.8 Example: The point canonical transformation

Consider the point transformation 2(q ·P) = (q)·P where (q) is some function of q. This

transformation satisfies (1489) if the following relations are satisfied  =
2


= (),  =
2


=
()




H=. Point transformations correspond to point-to-point transformations of coordinates.

14.9 Example: The exchange canonical transformation

The identity transformation 1(qQ) = q · Q satisfies (1489) if the following relations are satisfied

 =
1


= ,  = − 1


= −, H= That is, the coordinates and momenta have been interchanged.

14.10 Example: Infinitessimal point canonical transformation

Consider an infinitessimal point canonical transformation, that is infinitesimally close to a point identity.

2(q ·P) = q ·P+(qP)
satisfies (1489) if the following relations are satisfied

 =
2


=  + 

(qP )
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 =
2


=  + 

(qP )



Thus the infinitessimal changes in  and  are given by

(qp) =  −  = 
(qP )


= 

(qP )


+(2)

(qp) =  −  = −(qP )


= −(qP )


+(2)

Thus (qP) is the generator of the infinitessimal canonical transformation.

14.11 Example: 1-D harmonic oscillator via a canonical transformation

The classic one-dimensional harmonic oscillator provides an example of the use of canonical transforma-

tions. Consider the Hamiltonian where 2 = 

then

 =
2

2
+

2

2
=

1

2

¡
2 +222

¢
This form of the Hamiltonian is a sum of two squares suggesting a canonical transformation for which

 is cyclic in a new coordinate. A guess for a canonical transformation is of the form  =  cot which

is of the 1(qQ) type where 1 equals 1() =
2

2
cot Using (1478) gives

 =
1()


=  cot

 = −1()


=


2

2

sin2

Solving for the coordinates ( ) yields

 =

r
2


sin (a)

 =
√
2 cos (b)

Inserting these into  gives

H = (cos2+ sin2) = 

which implies that  is a cyclic coordinate.

The Hamiltonian is conservative, since it does not explicitly depend on time, and it equals the total energy

since the transformation to generalized coordinates is time independent. Thus

H = = 

Since

̇ =
H


= 

then

 = + 

Substituting  into () gives the well known solution of the one-dimensional harmonic oscillator

 =

r
2

2
sin(+ )
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14.4 Hamilton-Jacobi theory

Hamilton used the Principle of Least Action to derive the Hamilton-Jacobi relation (chapter 143)

(qp ) +



= 0 (1412)

where qp refer to the 1 ≤  ≤  variables   and ((1) 1 (2) 2) is the action functional. Inte-

gration of this first-order partial differential equation is non trivial which is a major handicap for practical

exploitation of the Hamilton-Jacobi equation. This stimulated Jacobi to develop the mathematical frame-

work for canonical transformation that are required to solve the Hamilton-Jacobi equation. Jacobi’s approach

is to exploit generating functions for making a canonical transformation to a new Hamiltonian H(QP )
that equals zero.

H(QP ) = (qp ) +



= 0 (14.90)

The generating function for solving the Hamilton-Jacobi equation then equals the action functional .

The Hamilton-Jacobi theory is based on selecting a canonical transformation to new coordinates ( )

all of which are either constant, or the  are cyclic, which implies that the corresponding momenta  are

constants. In either case, a solution to the equations of motion is obtained. A remarkable feature of Hamilton-

Jacobi theory is that the canonical transformation is completely characterized by a single generating function,

. The canonical equations likewise are characterized by a single Hamiltonian function, . Moreover, the

generating function  and Hamiltonian function  are linked together by equation 1412 The underlying

goal of Hamilton-Jacobi theory is to transform the Hamiltonian to a known form such that the canonical

equations become directly integrable. Since this transformation depends on a single scalar function, the

problem is reduced to solving a single partial differential equation.

14.4.1 Time-dependent Hamiltonian

Jacobi’s complete integral (  )

The principle underlying Jacobi’s approach to Hamilton-Jacobi theory is to provide a recipe for finding

the generating function  =  needed to transform the Hamiltonian (qp ) to the new Hamiltonian

H(QP ) using equation 1490 When the derivatives of the transformed Hamiltonian H(QP ) are zero,
then the equations of motion become

̇ =
H


= 0 (14.91)

̇ = − H


= 0 (14.92)

and thus  and  are constants of motion. The new Hamiltonian H must be related to the original

Hamiltonian  by a canonical transformation for which

H(QP ) = (qp ) +



(14.93)

Equations 1491 and 1492 are automatically satisfied if the new Hamiltonian H = 0 since then equation

1493 gives that the generating function  satisfies equation 1490

Any of the four types of generating function can be used. Jacobi chose the type 2 generating function

as being the most useful for most practical cases, that is, (  ) which is called Jacobi’s complete

integral.

For generating functions 1 and 2 the generalized momenta are derived from the action by the derivative

 =



(144)

Use this generalized momentum to replace  in the Hamiltonian , given in equation (1493)  leads to the

Hamilton-Jacobi equation expressed in terms of the action 

(1 ;


1
 




; ) +




= 0 (14.94)
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The Hamilton-Jacobi equation, (1494) can be written more compactly using tensors q and∇ to designate
(1 ) and


1

  


respectively. That is

(q∇ ) + 


= 0 (14.95)

Equation (1495) is a first-order partial differential equation in  + 1 variables which are the old spatial

coordinates  plus time . The new momenta  have not been specified except that they are constants

since H = 0

Assume the existence of a solution of (1495) of the form (  ) = (1 ;1 +1; ) where

the generalized momenta  = 1 2  plus  are the  + 1 independent constants of integration in the

transformed frame. One constant of integration is irrelevant to the solution since only partial derivatives of

(  ) with respect to  and  are involved. Thus, if  is a solution of the first-order partial differential

equation, then so is  +  where  is a constant. Thus it can be assumed that one of the +1 constants of

integration is just an additive constant which can be ignored leading effectively to a solution

(  ) = (1 ;1 ; ) (14.96)

where none of the  independent constants are solely additive. Such generating function solutions are called

complete solutions of the first-order partial differential equations since all constants of integration are known.

It is possible to assume that the  generalized momenta,  are constants , where the  are the

constants This allows the generalized momentum to be written as

 =
(qα )


(14.97)

Similarly, Hamilton’s equations of motion give the conjugate coordinate Q = β where  are constants That

is

 =  =
(qα )


(14.98)

The above procedure has determined the complete set of 2 constants (Q = βP = α). It is possible to

invert the canonical transformation to express the above solution, which is expressed in terms of  = 
and  =  back to the original coordinates, that is,  = (  ) and momenta  = (  ) which is

the required solution.

Hamilton’s principle function (q ;q)

Hamilton’s approach to solving the Hamilton-Jacobi equation (1495) is to seek a canonical transformation

from variables (pq) at time  to a new set of constant quantities, which may be the initial values (q0p0)

at time  = 0 Hamilton’s principle function ( ; ) is the generating function for this canonical

transformation from the variables (qp) at time  to the initial variables (q0p0) at time 0. Hamilton’s

principle function ( ; ) is directly related to Jacobi’s complete integral (  ).

Note that  is the generating function of a canonical transformation from the present time (qp )

variables to the initial (q0p0 0), whereas Jacobi’s  is the generating function of a canonical transformation

from the present (qp ) variables to the constant variables (Q = βP = α). For the Hamilton approach,

the canonical transformation can be accomplished in two steps using  by first transforming from (qp )

at time , to (βα), then transforming from (βα) to (q0p0 0)  That is, this two-step process corresponds

to

(q ;q) = (qα )− (q0α 0) (14.99)

Hamilton’s principle function (q ;q) is related to Jacobi’s complete integral (qα ) and it will not

be discussed further in this book.
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14.4.2 Time-independent Hamiltonian

Frequently the Hamiltonian does not explicitly depend on time. For the standard Lagrangian with time-

independent constraints and transformation, then  (qp) =  which is the total energy. For this case,

the Hamilton-Jacobi equation simplifies to give




= −(qp ) = − (α) (14.100)

The integration of the time dependence is trivial, and thus the action integral for a time-independent Hamil-

tonian equals

(qα) = (qα)− (α)  (14.101)

That is, the action integral has separated into a time independent term (qα) which is calledHamilton’s

characteristic function plus a time-dependent term − (α) . Thus using equations 1497 14101 gives
that the generalized momentum is

 =
 (qα)


(14.102)

The physical significance of Hamilton’s characteristic function  (qα) can be understood by taking the

total time derivative



=
X


 (qα)


̇ =

X


̇

Taking the time integral then gives

 (qα) =

Z X
̇ =

Z X
 (14.103)

Note that this equals the abbreviated action described in chapter 1323, that is  (qα) = 0(qα)

Inserting the action  (qα) into the Hamilton-Jacobi equation (1412) gives

(q;
 (qα)


) =  (α) (14.104)

This is called the time-independent Hamilton-Jacobi equation. Usually it is convenient to have 

equal the total energy. However, sometimes it is more convenient to exclude the  energy () in the

set, in which case  = (1 2 −1); the Routhian exploits this feature..
The equations of the canonical transformation expressed in terms of  (qα) are

 =
 (qα)


 +

(α)


 =

 (qα)


(14.105)

These equations show that Hamilton’s characteristic function  (qα) is itself the generating function of a

time-independent canonical transformation from the old variables ( ) to a set of new variables

 =  +
(α)


  =  (14.106)

Table 142 summarizes the time-dependent and time-independent forms of the Hamilton-Jacobi equation.

Table 142; Hamilton-Jacobi formulations

Hamiltonian Time dependent (  ) Time independent ( )

Transformed Hamiltonian H= 0 H is cyclic

Canonical transformed variables All  are constants of motion All  are constants of motion

Transformed equations of motion ̇ =
H


= 0 therefore  =  ̇ =
H


=  therefore  = + 
̇ = − H


= 0 therefore  =  ̇ = − H


= 0 therefore  = 

Generating function Jacobi’s complete integral (qP ) Characteristic Function  (qP)

Hamilton-Jacobi equation (1 ;

1

  

; )+


= 0 (1 ;


1

 

) = 

Transformation equations =



=



=


=  =



= + 
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14.4.3 Separation of variables

Exploitation of the Hamilton-Jacobi theory requires finding a suitable action function . When the Hamil-

tonian is time independent, then equation 14101 shows that the time dependence of the action integral

separates out from the dependence on the spatial variables. For many systems, the Hamilton’s characteristic

function  (qP) separates into a simple sum of terms each of which is a function of a single variable. That

is,

 (qα) =1(1) +2(2) + · · · · ·() (14.107)

where each function in the summation on the right depends only on a single variable. Then equation (14100)

reduces to

(1 ;


1
 




) =  (14.108)

where  is the constant denoting the total energy.

Hamilton’s characteristic function  (qP) can be used with equations (14101), (14102)  (1491),

(1492), and (1493) to derive

 =
 (qα)


 =

 (qα)


(14.109)

̇ =
H


= 0 ̇ =
H


= 0 (14.110)

H =  +



=  − = 0 (14.111)

which has reduced the problem to a simple sum of one-dimensional first-order differential equations.

If the  variable is cyclic, then the Hamiltonian is not a function of  and the 
 term in Hamilton’s

characteristic function equals  =  which separates out from the summation in equation 14107 That

is, all cyclic variables can be factored out of (qα) which greatly simplifies solution of the Hamilton-Jacobi

equation. As a consequence, the ability of the Hamilton-Jacobi method to make a canonical transformation to

separate the system into many cyclic or independent variables, which can be solved trivially, is a remarkably

powerful way for solving the equations of motion in Hamiltonian mechanics.

14.12 Example: Free particle

Consider the motion of a free particle of mass  in a force-free region. Then equation 1493 reduces to

(1 ;


1
 




; ) +




= 0

Since no forces act, and the momentum p =∇, thus the Hamilton-Jacobi equation reduces to
1

2
∇2 + 


= 0 ()

The Hamiltonian is time independent, thus equation 14101 applies

(q ) = (qα)−(α)

Since the Hamiltonian does not explicitly depend on the coordinates (  ) then the coordinates are cyclic

and separation of the variables, 14107, gives that the action

 = α · r− ()

For  to be a solution of  requires that

 =
1

2
α2 ()

Therefore

 = α · r− 1

2
α2 ()
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Since

Q̇ =
S
α

= r−α



the equation of motion and the conjugate momentum are given by

r = Q̇+
α


 p =∇ = α

Thus the Hamilton-Jacobi relation has given both the equation of motion and the linear momentum p.

14.13 Example: Point particle in a uniform gravitational field

The Hamiltonian is

 =
1

2
(2 + 2 + 2) +

Since the system is conservative, then the Hamilton-Jacobi equation can be written in terms of Hamilton’s

characteristic function 

 =
1

2

"µ




¶2
+

µ




¶2
+

µ




¶2#
+

Assuming that the variables can be separated  = () +  () + () leads to

 =
()


= 

 =
 ()


= 

 =
()


=
q
2( −)− 2 − 2

Thus by integration the total  equals

 =

Z 

0

+

Z 

0

 +

Z 

0

³q
2( −)− 2 − 2

´


Therefore using (14106) gives

 = − 0 =

Z 

0

q
2( −)− 2 − 2

 = constant = (− 0)−
Z 

0

q
2( −)− 2 − 2

 = constant = ( − 0)−
Z 

0

q
2( −)− 2 − 2

If 0 0 0 is the position of the particle at time  = 0 then  =  = 0, and from (14106)

− 0 =
³


´
(− 0)

 − 0 =
³


´
(− 0)

 − 0 =

⎛⎝
q
2( −)− 2 − 2



⎞⎠ (− 0)− 1
2
(− 0)

2

This corresponds to a parabola as should be expected for this trivial example.
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14.14 Example: One-dimensional harmonic oscillator

As discussed in example 1411 the Hamiltonian for the one-dimensional harmonic oscillator can be written

as

 =
1

2

¡
2 +222

¢
= 

assuming it is conservative and where  =

q




Hamilton’s characteristic function  can be used where

 (  ) = ( )−

 =




Inserting the generalized momentum  into the Hamiltonian gives

1

2

Ã∙




¸2
+222

!
= 

Integration of this equation gives

 =
√
2

Z


r
1− 22

2

That is

 =
√
2

Z


r
1− 22

2
−

Note that
(  )


=

r
2



Z
q

1− 22

2

− 

This can be integrated to give

 =
1


arcsin

Ã


r
2

2

!
+ 0

That is

 =

r
2

2
sin (− 0)

This is the familiar solution of the undamped harmonic oscillator.

14.15 Example: The central force problem

The problem of a particle acted upon by a central force occurs frequently in physics. Consider the mass 

acted upon by a time-independent central potential energy () The Hamiltonian is time independent and

can be written in spherical coordinates as

 =
1

2

µ
2 +

1

2
2 +

1

2 sin2 
2

¶
+ () = 

The time-independent Hamilton-Jacobi equation is conservative, thus

1

2

"µ




¶2
+
1

2

µ




¶2
+

1

2 sin2 

µ




¶2#
+ () = 

Try a separable solution for Hamilton’s characteristic function  of the form

 = () +Θ() +Φ()



418 CHAPTER 14. ADVANCED HAMILTONIAN MECHANICS

The Hamilton-Jacobi equation then becomes

1

2

"µ




¶2
+
1

2

µ
Θ



¶2
+

1

2 sin2 

µ
Φ



¶2#
+ () = 

This can be rearranged into the form

22 sin2 

(
1

2

"µ




¶2
+
1

2

µ
Θ



¶2#
+ () +

)
= −

µ
Φ



¶2
The left-hand side is independent of  whereas the right-hand side is independent of  and  Both sides

must equal a constant which is set to equal −2, that is

1

2

"µ




¶2
+
1

2

µ
Θ



¶2#
+ () +

2

22 sin2 
= 

µ
Φ



¶2
= 2

The equation in  and  can be rearranged in the form

22

"
1

2

µ




¶2
+ ()−

#
= −

"µ
Θ



¶2
+

2

sin2 

#

The left-hand side is independent of  and the right-hand side is independent of  so both must equal a

constant which is set to be −2
1

2

µ




¶2
+ () +

2

22
= 

µ
Θ



¶2
+

2

sin2 
= 2

The variables now are completely separated and, by rearrangement plus integration, one obtains

() =
√
2

Z r
 − ()− 2

22


Θ() =

Z r
2 − 2

sin2 


Φ() = 

Substituting these into  = () +Θ() +Φ() gives

 =
√
2

Z r
 − ()− 2

22
 +

Z r
2 − 2

sin2 
 + 

The Hamilton’s characteristic function  is the generating function from coordinates (     )

to new coordinates, which are cyclic, and new momenta that are constant and taken to be the separation

constants 

 =



=
√
2

r
 − ()− 2

22

 =



=

r
2 − 2

sin2 

 =



= 
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Similarly, using (14109) gives the new coordinates 

 +  =



=

r


2

Z
q

 − ()− 2

22

 =



=
√
2

Z
q

 − ()− 2

22

µ −
22

¶
+

Z
q

2 − 2
sin2 

 =



=

Z
q

2 − 2
sin2 

µ −
22

¶
+ 

These equations lead to the elliptical, parabolic, or hyperbolic orbits discussed in chapter 9.

14.16 Example: Linearly-damped, one-dimensional, harmonic oscillator

A canonical treatment of the linearly-damped harmonic oscillator provides an example that combines use

of non-standard Lagrangian and Hamiltonians. A canonical transformation to an autonomous system, and

use of Hamilton-Jacobi theory to solve this transformed system. It shows that Hamilton-Jacobi theory can be

used to determine directly the solutions for the linearly-damped harmonic oscillator.

Non-standard Hamiltonian:

In chapter 35 the equation of motion for the linearly-damped, one-dimensional, harmonic oscillator was

given to be


2

£
̈ + Γ̇ + 20

¤
= 0 ()

Example 132 showed that three non-standard Lagrangians give equation of motion  when used with the

standard Euler-Lagrange variational equations. One of these was the Bateman[Bat31] time-dependent La-

grangian

2( ̇ ) =


2
Γ
£
̇2 − 20

2
¤

()

This Lagrangian gave the generalized momentum to be

 =
2

̇
= ̇Γ ()

which was used with equation 143 to derive the Hamiltonian

2(  ) = ̇ − 2( ̇ ) = −Γ
2

2
+
1

2
20

2Γ ()

Note that both the Lagrangian and Hamiltonian are explicitly time dependent and thus they are not

conserved quantities. This is as expected for this dissipative system.

Hamilton-Jacobi theory:

The form of the non-autonomous Hamiltonian () suggests use of the generating function for a canonical

transformation to an autonomous Hamiltonian, for which H is a constant of motion.

(  ) = 2(  ) = 
Γ
2 =  ()

Then the canonical transformation gives

 =



= 

Γ
2 ()

 =



= 

Γ
2

Insert this canonical transformation into the above Hamiltonian leads to the transformed Hamiltonian that

is autonomous.

H( )=2(  ) +
2


=
 2

2
+
Γ

2
 +

20
2

2 ()
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That is, the transformed Hamiltonian H( ) is not explicitly time dependent, and thus is conserved.
Expressed in the original canonical variables ( ), the transformed Hamiltonian H( )

H( )= 2

2
−Γ +

Γ

2
+

20
2

2Γ

is a constant of motion which was not readily apparent when using the original Hamiltonian. This unexpected

result illustrates the usefulness of canonical transformations for solving dissipative systems. The Hamilton-

Jacobi theory now can be used to solve the equations of motion for the transformed variables ( ) plus the

transformed Hamiltonian H( ). The derivative of the generating function



=  ()

Use equation ( ) to substitute for  in the Hamiltonian H( ) (equation ()), then the Hamilton-
Jacobi method gives

1

2

µ




¶2
+
Γ

2




+

20
2

2 +



= 0

This equation is separable as described in 14107 and thus let

( ) = ()− 

where  is a separation constant. Then"
1

2

µ




¶2
+ Γ




+

20
2

2

#
=  ()

To simplify the equations define the variable  as

 ≡ √0 ()

then equation () can be written as µ




¶2
+




+
¡
2 −

¢
= 0 ()

where  = Γ
0
and  = 2

0
. Assume initial conditions (0) = 0 and ̇(0) = 0

For this case the separation constant   0 therefore   0. Note that equation ( ) is a simple second-

order algebraic relation, the solution of which is




= −

2
±
vuut −

"
1−

µ


2

¶2#
2 ()

The choice of the sign is irrelevant for this case and thus the positive sign is chosen. There are three possible

cases for the solution depending on whether the square-root term is real, zero, or imaginary.

Case 1: 
2
 1, that is, 

20
 1

Define  =

rh
1− ¡

2

¢2i
Then equation () can be integrated to give

 = −− 2

4
+

Z p
( − 22) ()

and

 =



= −+ 1

0

Z
p

( − 22)

This integral gives

sin−1
µ
√


¶
= 0 (+ ) ≡ + 
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where

 = 0 = 0

s
1−

µ
Γ

20

¶2
=

s
20 −

µ
Γ

2

¶2
()

Transforming back to the original variable  gives

() = −
Γ
2 sin (+ ) ()

where  and  are given by the initial conditions. Equation  is identical to the solution for the underdamped

linearly-damped linear oscillator given previously in equation 335.

Case 2: 
2
= 1, that is, Γ

20
= 1

In this case  =

rh
1− ¡

2

¢2i
= 0 and thus equation  simplifies to

 = −− 2

4
+ 
√


and

 =



= −+ 

0
√


Therefore the solution is

() = −
Γ
2 ( +) ()

where F and G are constants given by the initial conditions. This is the solution for the critically-damped

linearly-damped, linear oscillator given previously in equation 338.

Case 3: 
2
 1, that is, Γ

20
 1

Define a real constant  where  =

rh¡

2

¢2 − 1i = , then

 = −− 2

4
+

Z p
( +22)

Then

 =



= −+ 1

0

Z
p

( +22)

This last integral gives

sinh−1
µ
√


¶
= 0 (+ ) ≡ + 

where

 = 0 = 0

sµ


20

¶2
− 1

Then the original variable gives

() = −
Γ
2 sinh (+ ) ()

This is the classic solution of the overdamped linearly-damped, linear harmonic oscillator given previously in

equation 337 The canonical transformation from a non-autonomous to an autonomous system allowed use

of Hamiltonian mechanics to solve the damped oscillator problem.

Note that this example used Bateman’s non-standard Lagrangian, and corresponding Hamiltonian, for

handling a dissipative linear oscillator system where the dissipation depends linearly on velocity. This non-

standard Lagrangian led to the correct equations of motion and solutions when applied using either the

time-dependent Lagrangian, or time-dependent Hamiltonian, and these solutions agree with those given in

chapter 35 which were derived using Newtonian mechanics.
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14.4.4 Visual representation of the action function .

Figure 14.2: Surfaces of constant action integral S

(dashed lines) and the corresponding particle mo-

menta (solid lines) with arrows showing the direc-

tion.

The important role of the action integral  can be illu-

minated by considering the case of a single point mass

 moving in a time independent potential (). Then

the action reduces to

(  ) = ( )− (14.112)

Let 1 = , 2 =  3 =  1 =  2 =  3 = .

The momentum components are given by

 =
 ( )


(14.113)

which corresponds to

p =∇ =∇ (14.114)

That is, the time-independent Hamilton-Jacobi equation

is
1

2
|∇ |2 + () =  (14.115)

This implies that the particle momentum is given by

the gradient of Hamilton’s characteristic function and is

perpendicular to surfaces of constant as illustrated in

figure 142. The constant  surfaces are time dependent as given by equation (14101)  Thus, if at time

 = 0 the equi-action surface 0( ) = 0( ) = 0 then at  = 1 the same surface 0( ) = 0 now

coincides with the 0( ) =  surface etc. That is, the equi-action surfaces move through space separately

from the motion of the single point mass.

The above pictorial representation is analogous to the situation for motion of a wavefront for electromag-

netic waves in optics, or matter waves in quantum physics where the wave equation separates into the form

 = 0

~ = 0

(k·r−). Hamilton’s goal was to create a unified theory for optics that was equally applica-
ble to particle motion in classical mechanics. Thus the optical-mechanical analogy of the Hamilton-Jacobi

theory has culminated in a universal theory that describes wave-particle duality; this was a Holy Grail of

classical mechanics since Newton’s time. It played an important role in development of the Schrödinger

representation of quantum mechanics.

14.4.5 Advantages of Hamilton-Jacobi theory

Initially, only a few scientists, like Jacobi, recognized the advantages of Hamiltonian mechanics. In 1843

Jacobi made some brilliant mathematical developments in Hamilton-Jacobi theory greatly enhancing ex-

ploitation of Hamiltonian mechanics. Hamilton-Jacobi theory now serves as a foundation for contemporary

physics, such as quantum and statistical mechanics. A major advantage of Hamilton-Jacobi theory, com-

pared to other formulations of analytic mechanics, is that it provides a single, first-order partial differential

equation for the action  which is a function of the  generalized coordinates q and time . The generalized

momenta no longer appear explicitly in the Hamiltonian in equations 1494 1495. Note that the generalized

momentum do not explicitly appear in the equivalent Euler-Lagrange equations of Lagrangian mechanics,

but these comprise a system of  second-order, partial differential equations for the time evolution of the

generalized coordinate q. Hamilton’s equations of motion are a system of 2 first-order equations for the

time evolution of the generalized coordinates and their conjugate momenta.

An important advantage of the Hamilton-Jacobi theory is that it provides a formulation of classical

mechanics in which motion of a particle can be represented by a wave. In this sense, the Hamilton-Jacobi

equation fulfilled a long-held goal of theoretical physics, that dates back to Johann Bernoulli, of finding an

analogy between the propagation of light and the motion of a particle. This goal motivated Hamilton to

develop Hamiltonian mechanics. A consequence of this wave-particle analogy is that the Hamilton-Jacobi

formalism featured prominently in the derivation of the Schrödinger equation during the development of

quantum-wave mechanics.
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14.5 Action-angle variables

14.5.1 Canonical transformation

Systems possessing periodic solutions are a ubiquitous feature in physics. The periodic motion can be either

an oscillation, for which the trajectory in phase space is a closed loop (libration), or rolling (rotational)

motion as discussed in chapter 344. For many problems involving periodic motion, the interest often lies in

the frequencies of motion rather than the detailed shape of the trajectories in phase space. The action-angle

variable approach uses a canonical transformation to action and angle variables which provide a powerful, and

elegant method to exploit Hamiltonian mechanics. In particular, it can determine the frequencies of periodic

motion without having to calculate the exact trajectories for the motion. This method was introduced by

the French astronomer Ch. E. Delaunay(1816− 1872) for applications to orbits in celestial mechanics, but
it has equally important applications beyond celestial mechanics such as to bound solutions of the atom in

quantum mechanics.

The action-angle method replaces the momenta in the Hamilton-Jacobi procedure by the action phase

integral for the closed loop (libration) trajectory in phase space defined by

 ≡
I
 (14.116)

where for each cyclic variable the integral is taken over one complete period of oscillation. The cyclic variable

 is called the action variable where

 ≡ 1

2
 =

1

2

I
 (14.117)

The canonical variable to the action variable I is the angle variable φ. Note that the name "action variable"

is used to differentiate I from the action functional  =
R
 which has the same units; i.e. angular

momentum.

The general principle underlying the use of action-angle variables is illustrated by considering one body,

of mass , subject to a one-dimensional bound conservative potential energy (). The Hamiltonian is

given by

( ) =
2

2
+ () (14.118)

This bound system has a ( ) phase space contour for each energy  = 

() = ±
p
2( − ()) (14.119)

For an oscillatory system the two-valued momentum of equation 14119 is non-trivial to handle. By contrast,

the area  ≡
I
 of the closed loop in phase space is a single-valued scalar quantity that depends on 

and (). Moreover, Liouville’s theorem states that the area of the closed contour in phase space  ≡
I


is invariant to canonical transformations. These facts suggest the use of a new pair of conjugate variables,

( ) where () uniquely labels the trajectory, and corresponding area, of a closed loop in phase space

for each value of  , and the single-valued function  is a corresponding angle that specifies the exact point

along the phase-space contour as illustrated in Fig 143.

For simplicity consider the linear harmonic oscillator where

() =
1

2
22 (14.120)

Then the Hamiltonian, 14118 equals

( ) =
2

2
+
1

2
22 (14.121)

Hamilton’s equations of motion give that

̇ = −


= −2 (14.122)

̇ =



=




(14.123)
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Figure 14.3: The potential energy

 (), (upper) and corresponding

phase space ( ) (middle) for the

harmonic oscillator at four equally

spaced total energies . The corre-

sponding action-angles ( ) result-

ing from a canonical transformation

of this system are shown in the lower

plot.

The solution of equations 14122 and 14123 is of the form

 =  cos((− 0)) (14.124)

 = − sin(− 0) (14.125)

where  and 0 are integration constants. For the harmonic oscillator,

equations 14124 and 14125 correspond to the usual elliptical contours

in phase space, as illustrated in figure 143.

The action-angle canonical transformation involves making the

transform

( )→ ( ) (14.126)

where  is defined by equation 14117 and the angle  being the cor-

responding canonical angle. The logical approach to this canonical

transformation for the harmonic oscillator is to define  and  in

terms of  and 

 =

r
2


cos (14.127)

 =
√
2 sin (14.128)

Note that the Poisson bracket is unity

[ ]() = 1

which implies that the above transformation is canonical, and thus

the phase space area () ≡ 1
2

I
 is conserved.

For this canonical transformation the transformed Hamiltonian

H ( ) is

H ( ) = 1

2
(2) sin2 +

1

2
2

2


cos2  =  (14.129)

Note that this Hamiltonian is a constant that is independent of the

angle  and thus Hamilton’s equations of motion give

̇ = −H ( )


= 0 (14.130)

̇ =
H ( )


=  (14.131)

Thus we have mapped the harmonic oscillator to new coordinates

( ) where

 =
H ( )


=




(14.132)

 =  (− 0) (14.133)

That is, the phase space has been mapped from ellipses, with area proportional to  in the ( ) phase

space, to a cylindrical ( ) phase space where  = 

are constant values that are independent of the angle,

while  increases linearly with time. Thus the variables ( ) are periodic with modulus ∆ = 2.

(+ 2 ) =  ( ) (14.134)

(+ 2 ) =  ( ) (14.135)

The period  of the periodic oscillatory motion is given simply by ∆ = 2 =  which is the well known re-

sult for the harmonic oscillator. Note that the action-angle variable canonical transformation has determined

the frequency of the periodic motion without solving the detailed trajectory of the motion.
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The above example of the harmonic oscillator has shown that, for integrable periodic systems, it is

possible to identify a canonical transformation to ( ) such that the Hamiltonian is independent of the

angle  which specifies the instantaneous location on the constant energy contour . If the phase space

contour is a separatrix, then it divides phase space into invariant regions containing phase-space contours

with differing behavior. The action-angle variables are not useful for separatrix contours. For rolling motion,

the system rotates with continuously increasing, or decreasing angle, and there is no natural boundary for the

action angle variable since the phase space trajectory is continuous and not closed. However, the action-angle

approach still is valid if the motion involves periodic as well as rolling motion.

The example of the one-dimensional, one-body, harmonic oscillator can be expanded to the more general

case for many bodies in three dimensions. This is illustrated by considering multiple periodic systems for

which the Hamiltonian is conservative and where the equations of the canonical transformation are separable.

The generalized momenta then can be written as

 =
(;1 2 )


(14.136)

for which each  is a function of  and the  integration constants 

 =  ( 1 2 ) (14.137)

The momentum  ( 1 2 ) represents the trajectory of the system in the ( ) phase space that is

characterized by Hamilton’s characteristic function  ( ) Combining equations 14116 14136 gives

 ≡
I

(;1 2 )


 (14.138)

Since  is merely a variable of integration, each active action variable  is a function of the  constants

of integration in the Hamilton-Jacobi equation. Because of the independence of the separable-variable pairs

( ), the  form  independent functions of the  and hence are suitable for use as a new set of constant

momenta. Thus the characteristic function  can be written as

 (1 ;1 ) =
X


 ( ;1 ) (14.139)

while the Hamiltonian is only a function of the momenta  (1 )

The generalized coordinate, conjugate to  is known as the angle variable  which is defined by the

transformation equation

 =



=

X
=1

 ( ;1 )


(14.140)

The corresponding equation of motion for  is given by

̇ =
()


= 2(1 ) (14.141)

where () are constant functions of the action variables  with a solution

 = 2+  (14.142)

that is, they are linear functions of time The constants  can be identified with the frequencies of the

multiple periodic motions.

The action-angle variables appear to be no different than a particular set of transformed coordinates.

Their merit appears when the physical interpretation is assigned to . Consider the change  as the 
are changed infinitesimally

 =
X





 =
X


2


 (14.143)

The derivative with respect to  vanishes except for the  component of  . Thus equation 14143 reduces

to
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 =




X


 (  )  (14.144)

Therefore, the total change in  as the system goes through one complete cycle is

∆ =
X






I
 (  )  = 2 (14.145)

where 


is outside the integral since the  are constants for cyclic motion. Thus ∆ = 2 =   where

  is the period for one cycle of oscillation, where the angular frequency  is given by



2
=  =

1

 
(14.146)

Thus the frequency  associated with the periodic motion is the reciprocal of the period   The secret here is

that the derivative of  with respect to the action variable  given by equation (14141) directly determines

the frequency of the periodic motion without the need to solve the complete equations of motion. Note that

multiple periodic motion can be represented by a Fourier expansion of the form

 =

∞X
1=−∞

∞X
2=−∞



∞X
=−∞

1
2(11+22+33++) (14.147)

Although the action-angle approach to Hamilton-Jacobi theory does not produce complete equations of

motion, it does provide the frequency decomposition that often is the physics of interest. The reason that

the powerful action-angle variable approach has been introduced here is that it is used extensively in celestial

mechanics. The action-angle concept also played a key role in the development of quantum mechanics, in

that Sommerfeld recognized that Bohr’s ad hoc assumption that angular momentum is quantized, could be

expressed in terms of quantization of the angle variable as is mentioned in chapter 17.

14.5.2 Adiabatic invariance of the action variables

When the Hamiltonian depends on time it can be quite difficult to solve for the motion because it is hard

to find constants of motion for time-dependent systems. However, if the time dependence is sufficiently

slow, that is, if the motion is adiabatic, then there exist dynamical variables that are almost constant which

can be used to solve for the motion. In particular, such approximate constants are the familiar action-angle

integrals. The adiabatic invariance of the action variables played an important role in the development of

quantum mechanics at the 1911 Solvay Conference. This was a time when physicists were grappling with

the concepts of quantum mechanics. Einstein used the following classical mechanics example of adiabatic

invariance, applied to the simple pendulum, in order to illustrate the concept of adiabatic invariance of the

action. This example demonstrates the power of using action-angle variables.

14.17 Example: Adiabatic invariance for the simple pendulum

Consider that the pendulum is made up of a point mass  suspended from a pivot by a light string of

length  that is swinging freely in a vertical plane. Derive the dependence of the amplitude of the oscillations

, assuming  is small, if the string is very slowly shortened by a factor of 2, that is, assume that the change

in length during one period of the oscillation is very small.

The tension in the string  is given by

 = hcos i+
*
2̇

2



+

Let the pendulum angle be oscillatory

 = 0 cos(+ 0)
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Then the average mean square amplitude and velocity over one period are


2
®
=


[0 cos(+ 0)]

2
®
=

20
2D

̇
2
E

=

[−0 sin(+ 0)]

2
®
=

220
2

Since, for the simple pendulum, 2 = 

, then the tension in the string

 =(1−

2
®
2
) +

D
̇
2
E
=(1 +

20
4
)

Assuming that 0 is a small angle, and that the change in length −∆ is very small during one period
  then the work done is

∆ = ∆ = −∆−
20
4
∆ (a)

while the change in internal oscillator energy is

∆(− cos 0) = ∆

∙
−(1− 20

2
)

¸
= −∆+

1

2
∆(20) = −∆+

1

2
20∆+0∆0

(b)

The work done must balance the increment in internal energy therefore

0∆0 +
320∆

4
= 0

or

20∆ ln(0
3
4 ) = 0

Therefore it follows that

(0
3
4 ) = constant (c)

or

0 ∝ −
3
4

Thus shortening the length of the pendulum string from  to 
2
adiabatically corresponds to the amplitude

increasing by a factor 168.

Consider the action-angle integral for one closed period  = 2

for this problem

 =

I


=

I
2̇ · ̇

= 2
D
̇
2
E 2



= 220

= 
1
2 20

3
2 = constant

where that last step is due to equation ().

The above example shows that the action integral  = , that is, it is invariant to an adiabatic

change. In retrospect this result is as expected in that the action integral should be minimized.
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14.6 Canonical perturbation theory

Most examples in classical mechanics discussed so far have been capable of exact solutions. In real life, the

majority of problems cannot be solved exactly. For example, in celestial mechanics the two-body Kepler

problem can be solved exactly, but solution of the three-body problem is intractable. Typical systems in

celestial mechanics are never as simple as the two-body Kepler system because of the influence of additional

bodies. Fortunately in most cases the influence of additional bodies is sufficiently small to allow use of

perturbation theory. That is, the restricted three-body approximation can be employed for which the system

is reduced to considering it as an exactly solvable two-body problem, subject to a small perturbation to this

solvable two-body system. Note that even though the change in the Hamiltonian due to the perturbing term

may be small, the impact on the motion can be especially large near a resonance.

Consider the Hamiltonian, subject to a time-dependent perturbation, is written as

(  ) = 0(  ) +∆(  )

where 0(  ) designates the unperturbed Hamiltonian and ∆(  ) designates the perturbing term.

For the unperturbed system the Hamilton-Jacobi equation is given by

H(  ) = 0(1 ;


1





; ) +




= 0 (1490)

where (  ) is the generating function for the canonical transformation ( )→ ( ). The perturbed

(  ) remains a canonical transformation, but the transformed Hamiltonian H(  ) 6= 0. That is,

H(  ) = 0 +∆(  ) +



= ∆(  ) (14.148)

The equations of motion satisfied by the transformed variables now are

̇ =
∆


(14.149)

̇ =
∆



These equations remain as difficult to solve as the full Hamiltonian. However, the perturbation technique

assumes that ∆ is small, and that one can neglect the change of ( ) over the perturbing interval.

Therefore, to a first approximation, the unperturbed values of ∆


and ∆


can be used in equations 14149.

A detailed explanation of canonical perturbation theory is presented in chapter 12 of Goldstein[Go50].

14.18 Example: Harmonic oscillator perturbation

(a) Consider first the Hamilton-Jacobi equation for the generating function (  ) for the case of a

single free particle subject to the Hamiltonian  = 1
2
2. Find the canonical transformation  = ( ) and

 = ( ) where  and  are the transformed coordinate and momentum respectively.

The Hamilton-Jacobi equation



+(  ) = 0

Using  = 

in the Hamiltonian  = 1

2
2 gives




+
1

2

µ




¶2
= 0

Since  does not depend on   explicitly, then the two terms on the left hand side of the equation can be

set equal to −  respectively, where  is at most a function of . Then the generating function is

 =
p
2 − 

Set  =
√
2 then the generating function can be written as

 =  − 1
2
2
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The constant  can be identified with the new momentum  Then the transformation equations become

 =



=   =




=




=  −  = 

That is

 =  + 

which corresponds to motion with a uniform velocity  in the   system.

(b) Consider that the Hamiltonian is perturbed by addition of potential  = 2

2
which corresponds to the

harmonic oscillator. Then

 =
1

2
2 +

2

2

Consider the transformed Hamiltonian

H =  +



=
1

2
2 +

2

2
− 2

2
=

2

2
=
1

2
( + )

2

Hamilton’s equations of motion

̇ =
H


̇ = −H


give that

̇ = ( + ) 

̇ = − ( + )

These two equations can be solved to give

̈+  = 0

which is the equation of a harmonic oscillator showing that  is harmonic of the form  = 0 sin (+ )

where 0  are constants of motion. Thus

 = −̇−  = −0[cos(+ ) +  sin(+ )]

The transformation equations then give

 =  = 0 sin (+ )

 =  +  = −̇ = −0 cos(+ )

Hence the solution for the perturbed system is harmonic, which is to be expected since the potential has a

quadratic dependence of position.

14.19 Example: Lindblad resonance in planetary and galactic motion

Use of canonical perturbation theory in celestial mechanics has been exploited by Professor Alice Quillen

and her group. They combine use of action-angle variables and Hamilton-Jacobi theory to investigate the role

of Lindblad resonance to planetary motion, and also for stellar motion in galaxies. A Lindblad resonance

is an orbital resonance in which the orbital period of a celestial body is a simple multiple of some forcing

frequency. Even for very weak perturbing forces, such resonance behavior can lead to orbit capture and chaotic

motion.

For planetary motion the planet masses are about 11000 that of the central star, so the perturbations

to Kepler orbits are small. However, Lindblad resonance for planetary motion led to Saturn’s rings which

result from perturbations produced by the moons of Saturn that skulpt and clear dust rings. Stellar orbits in

disk galaxies are perturbed a few percent by non axially-symmetric galactic features such as spiral arms or

bars. Lindblad resonances perturb stellar motion and drive spiral density waves at distances from the center

of a galactic disk where the natural frequency of the radial component of a star’s orbital velocity is close to

the frequency of the fluctuations in the gravitational field due to passage through spiral arms or bars. If a

stars orbital speed around a galactic center is greater than that of the part of a spiral arm through which it is

traversing, then an inner Lindblad resonance occurs which speeds up the star’s orbital speed moving the orbit

outwards. If the orbital speed is less than that of a spiral arm, an inner Lindblad resonance occurs causing

inward movement of the orbit.
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14.7 Symplectic representation

The Hamilton’s first-order equations of motion are symmetric if the generalized and constraint force terms,

in equation 149 are excluded.

q̇ =


p
− ṗ = 

q
(144)

This stimulated attempts to treat the canonical variables (qp) in a symmetric form using group theory.

Some graduate textbooks in classical mechanics have adopted use of symplectic symmetry in order to unify

the presentation of Hamiltonian mechanics. For a system of  degrees of freedom, a column matrix η is

constructed that has 2 elements where

 =  + =   ≤  (14.150)

Therefore the column matrixµ


η

¶


=




µ


η

¶
+

=



 ≤  (14.151)

The symplectic matrix J is defined as being a 2 by 2 skew-symmetric, orthogonal matrix that is broken

into four ×  null or unit matrices according to the scheme

J =

µ
[0] + [1]

− [1] [0]

¶
(14.152)

where [0] is the -dimension null matrix, for which all elements are zero. Also [1] is the -dimensional unit

matrix, for which the diagonal matrix elements are unity and all off-diagonal matrix elements are zero. The

J matrix accounts for the opposite signs used in the equations for q̇ and ṗ. The symplectic representation

allows the Hamilton’s equations of motion to be written in the compact form

η̇ = J


η
(14.153)

This textbook does not use the elegant symplectic representation since it excludes the important gener-

alized forces and Lagrange multiplier forces.

14.8 Comparison of the Lagrangian and Hamiltonian formulations

Common features

The discussion of Lagrangian and Hamiltonian dynamics has illustrated the power of such algebraic formu-

lations. Both approaches are based on application of variational principles to scalar energy which gives the

freedom to concentrate solely on active forces and to ignore internal forces. Both methods can handle many-

body systems and exploit canonical transformations, which are impractical or impossible using the vectorial

Newtonian mechanics. These algebraic approaches simplify the calculation of the motion for constrained

systems by representing the vector force fields, as well as the corresponding equations of motion, in terms of

either the Lagrangian function (q q̇) or the action functional (qp) which are related by the definite

integral

(qp) =

Z 2

1

(q q̇) (141)

The Lagrangian function (q q̇) and the action functional (qp) are scalar functions under rotation,

but they determine the vector force fields and the corresponding equations of motion. Thus the use of

rotationally-invariant functions (q q̇) and (qp) provide a simple representation of the vector force

fields. This is analogous to the use of scalar potential fields  (q ) to represent the electrostatic and gravita-

tional vector force fields. Like scalar potential fields, Lagrangian and Hamiltonian mechanics represents the

observables as derivatives of (q q̇) and (qp) and the absolute values of (q q̇) and (qp) are

undefined; only differences in (q q̇) and (qp) are observable. For example, the generalized momenta

are given by the derivatives  ≡ 
̇

and  =


. The physical significance of the least action (qα) is
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illustrated when the canonically transformed momenta P = α is a constant. Then the generalized momenta

and the Hamilton-Jacobi equation, imply that the total time derivative of the action equals




=




̇ +




=  − =  (14.154)

The indefinite integral of this equation reproduces the definite integral (141) to within an arbitrary constant,

i.e.

(qp) =

Z
(q q̇)+ constant (14.155)

Lagrangian formulation:

Consider a system with  independent generalized coordinates, plus  constraint forces that are not required

to be known. The Lagrangian approach can reduce the system to a minimal system of  =  −  inde-

pendent generalized coordinates leading to  =  − second-order differential equations. By comparison,

the Newtonian approach uses  +  unknowns. Alternatively, the Lagrange multipliers approach allows

determination of the holonomic constraint forces resulting in  = + second order equations to determine

 =  + unknowns. The Lagrangian potential function is limited to conservative forces, but generalized

forces can be used to handle non-conservative and non-holonomic forces. The advantage of the Lagrange

equations of motion is that they can deal with any type of force, conservative or non-conservative, and

they directly determine , ̇ rather than   which then requires relating  to ̇. The Lagrange approach is

superior to the Hamiltonian approach if a numerical solution is required for typical undergraduate problems

in classical mechanics. However, Hamiltonian mechanics has a clear advantage for addressing more profound

and philosophical questions in physics.

Hamiltonian formulation:

For a system with  independent generalized coordinates, and constraint forces, the Hamiltonian approach

determines 2 first-order differential equations. In contrast to Lagrangian mechanics, where the Lagrangian

is a function of the coordinates and their velocities, the Hamiltonian uses the variables q and p, rather

than velocity. The Hamiltonian has twice as many independent variables as the Lagrangian which is a great

advantage, not a disadvantage, since it broadens the realm of possible transformations that can be used to

simplify the solutions. Hamiltonian mechanics uses the conjugate coordinates qp corresponding to phase

space. This is an advantage in most branches of physics and engineering. Compared to Lagrangian mechanics,

Hamiltonian mechanics has a significantly broader arsenal of powerful techniques that can be exploited to

obtain an analytical solution of the integrals of the motion for complicated systems. These techniques

include, the Poisson bracket formulation, canonical transformations, the Hamilton-Jacobi approach, the

action-angle variables, and canonical perturbation theory. In addition, Hamiltonian dynamics also provides

a means of determining the unknown variables for which the solution assumes a soluble form, and it is

ideal for study of the fundamental underlying physics in applications to other fields such as quantum or

statistical physics. However, the Hamiltonian approach endemically assumes that the system is conservative

putting it at a disadvantage with respect to the Lagrangian approach. The appealing symmetry of the

Hamiltonian equations, plus their ability to utilize canonical transformations, makes it the formalism of

choice for examination of system dynamics. For example, Hamilton-Jacobi theory, action-angle variables

and canonical perturbation theory are used extensively to solve complicated multibody orbit perturbations

in celestial mechanics by finding a canonical transformation that transforms the perturbed Hamiltonian to

a solved unperturbed Hamiltonian.

The Hamiltonian formalism features prominently in quantum mechanics since there are well established

rules for transforming the classical coordinates and momenta into linear operators used in quantum me-

chanics. The variables q q̇ used in Lagrangian mechanics do not have simple analogs in quantum physics.

As a consequence, the Poisson bracket formulation, and action-angle variables of Hamiltonian mechanics

played a key role in development of matrix mechanics by Heisenberg, Born, and Dirac, while the Hamilton-

Jacobi formulation played a key role in development of Schrödinger’s wave mechanics. Similarly, Hamiltonian

mechanics is the preeminent variational approached used in statistical mechanics.



432 CHAPTER 14. ADVANCED HAMILTONIAN MECHANICS

14.9 Summary

This chapter has gone beyond what is normally covered in an undergraduate course in classical mechanics,

in order to illustrate the power of the remarkable arsenal of methods available for solution of the equations of

motion using Hamiltonian mechanics. This has included the Poisson bracket representation of Hamiltonian

formulation of mechanics, canonical transformations, Hamilton-Jacobi theory, action-angle variables, and

canonical perturbation theory. The purpose was to illustrate the power of variational principles in Hamil-

tonian mechanics and how they relate to fields such as quantum mechanics. The following are the key points

made in this chapter.

Poisson brackets: The elegant and powerful Poisson bracket formalism of Hamiltonian mechanics was

introduced. The Poisson bracket of any two continuous functions of generalized coordinates  ( ) and

( ) is defined to be

[] ≡
X


µ







− 







¶
(1413)

The fundamental Poisson brackets equal

[ ] = 0 (1421)

[ ] = 0 (1422)

[ ] = − [ ] =  (1423)

The Poisson bracket is invariant to a canonical transformation from ( ) to ( ). That is

[] =
X


µ







− 







¶
= [] (1432)

There is a one-to-one correspondence between the commutator and Poisson Bracket of two independent

functions,

(11 −11) =  [11] (1438)

where  is an independent constant. In particular 11 commute of the Poisson Bracket [11] = 0.

Poisson Bracket representation of Hamiltonian mechanics: It has been shown that the Poisson

bracket formalism contains the Hamiltonian equations of motion and is invariant to canonical transforma-

tions. Also this formalism extends Hamilton’s canonical equations to non-commuting canonical variables.

Hamilton’s equations of motion can be expressed directly in terms of the Poisson brackets

̇ = [] =



(1457)

̇ = [] = −


(1458)

An important result is that the total time derivative of any operator is given by




=




+ [] (1445)

Poisson brackets provide a powerful means of determining which observables are time independent and

whether different observables can be measured simultaneously with unlimited precision. It was shown that

the Poisson bracket is invariant to canonical transformations, which is a valuable feature for Hamiltonian

mechanics. Poisson brackets were used to prove Liouville’s theorem which plays an important role in the use

of Hamiltonian phase space in statistical mechanics. The Poisson bracket is equally applicable to continuous

solutions in classical mechanics as well as discrete solutions in quantized systems.



14.9. SUMMARY 433

Canonical transformations: A transformation between a canonical set of variables ( ) with Hamil-

tonian (  ) to another set of canonical variable ( ) with Hamiltonian H( ) can be achieved
using a generating functions  such that

H( ) = (  ) +



(1489)

Possible generating functions are summarized in the following table.

Generating function Generating function derivatives Trivial special case

 = 1(qQ )  =
1


 = − 1


1 =   =   = −
 = 2(qP )−Q ·P  =

2


 =
2


2 =   =   = 

 = 3(pQ ) + q · p  = −3


 = − 3


3 =   = −  = −
 = 4(pP ) + q · p−Q ·P  = −4


 =

4


1 =   =   = −

If the canonical transformation makes H( ) = 0 then the conjugate variables ( ) are constants
of motion. Similarly if H( ) is a cyclic function then the corresponding  are constants of motion.

Hamilton-Jacobi theory: Hamilton-Jacobi theory determines the generating function required to per-

form canonical transformations that leads to a powerful method for obtaining the equations of motion for

a system. The Hamilton-Jacobi theory uses the action function  ≡ 2 as a generating function, and the

canonical momentum is given by

 =



(144)

This can be used to replace  in the Hamiltonian  leading to the Hamilton-Jacobi equation

(;



; ) +




= 0 (1494)

Solutions of the Hamilton-Jacobi equation were obtained by separation of variables. The close optical-

mechanical analogy of the Hamilton-Jacobi theory is an important advantage of this formalism that led to

it playing a pivotal role in the development of wave mechanics by Schrödinger.

Action-angle variables: The action-angle variables exploits a canonical transformation from ( ) →
( ) where

 ≡ 1

2
 =

1

2

I
 (14117)

For periodic motion the phase-space trajectory is closed with area given by  and this area is conserved for

the above canonical transformation. For a conserved Hamiltonian the action variable  is independent of

the angle variable . The time dependence of the angle variable  directly determines the frequency of the

periodic motion without recourse to calculation of the detailed trajectory of the periodic motion.

Canonical perturbation theory: Canonical perturbation theory is a valuable method of handling multi-

body interactions. The adiabatic invariance of the action-angle variables provides a powerful approach for

exploiting canonical perturbation theory.

Comparison of Lagrangian and Hamiltonian formulations: The remarkable power, and intellectual

beauty, provided by use of variational principles to exploit the underlying principles of natural economy in

nature, has had a long and rich history. It has led to profound developments in many branches of theoretical

physics. However, it is noted that although the above algebraic formulations of classical mechanics have been

used for over two centuries, the important limitations of these algebraic formulations to non-linear systems

remain a challenge that still is being addressed.

It has been shown that the Lagrangian and Hamiltonian formulations represent the vector force fields,

and the corresponding equations of motion, in terms of the Lagrangian function (q q̇) or the action
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functional (qp) which are scalars under rotation. The Lagrangian function (q q̇) is related to the

action functional (qp) by

(qp) =

Z 2

1

(q q̇) (141)

These functions are analogous to electric potential, in that the observables are derived by taking derivatives

of the Lagrangian function (q q̇) or the action functional (qp). The Lagrangian formulation is more

convenient for deriving the equations of motion for simple mechanical systems. The Hamiltonian formulation

has a greater arsenal of techniques for solving complicated problems plus it uses the canonical variables ( )

which are the variables of choice for applications to quantum mechanics and statistical mechanics.
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Workshop exercises

1. Poisson brackets are a powerful means of elucidating when observables are constant of motion and whether

two observables can be simultaneously measured with unlimited precision. Consider a spherically symmetric

Hamiltonian

 =
1

2

Ã
2 +

2
2
+

2

2 sin2 

!
+ ()

for a mass  where ( is a central potential. Use the Poisson bracket plus the time dependence to determine

the following:

(a) Does  commute with  and is it a constant of motion?

(b) Does 2 +
2
sin2 

commute with  and is it a constant of motion?

(c) Does  commute with  and is it a constant of motion?

(d) Does  commute with  and what does the result imply?

2. Consider the Poisson brackets for angular momentum L

(a) Show { } =  , where the Levi-Cevita tensor is,

 =

⎧⎨⎩ +1 if  are cyclically permuted

−1 if  are anti-cyclically permuted

0 if  =  or  =  or  = 

(b) Show { } =  .

(c) Show { } =  . The following identity may be useful:  =  −  .

(d) Show { 2} = 0 .

3. Consider the Hamiltonian of a two-dimensional harmonic oscillator,

 =
p2

2
+
1

2

¡
21

2
1 + 22

2
2

¢
What condition is satisfied if 2 a conserved quantity?
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Problems

1. Consider the motion of a particle of mass  in an isotropic harmonic oscillator potential  = 1
2
2and take

the orbital plane to be the −  plane. The Hamiltonian is then

 ≡ 0 =
1

2
(2 + 2) +

1

2
(2 + 2)

Introduce the three quantities

1 =
1

2
(2 − 2) +

1

2
(2 − 2)

2 =
1


 + 

3 = ( − )

with  =

q


. Use Poisson brackets to solve the following:

a) Show that [0 ] = 0 for  = 1 2 3 proving that (1 2 3) are constants of motion.

b) Show that

[1 2] = 23

[2 3] = 21

[3 1] = 22

so that (2)
−1
(1 2 3) have the same Poisson bracket relations as the components of a 3-dimensional angular

momentum.

c) Show that

20 = 21 + 22 + 23

2. Assume that the transformation equations between the two sets of coordinates ( ) and ( ) are

 = ln(
sin 


)

 =  cot 

a) Assuming that   are canonical variables, i.e. [ ] = 1, show directly from the above transformation

equations that  are canonical variables.

(b) Show that

 −  = ( +  cot )

c) Find the explicit generating function 1() that generates this transformation between these two sets of

canonical variables. Note the integral
R
sin−1  =

√
1− 2 +  sin−1 

3. Consider the uniform motion of a free particle of mass . The Hamiltonian is a constant of motion and so is

the function

 (  ) ≡ − 



(a) Compare the Poisson bracket [ ] with 


and prove that  is a constant of motion.

(b) Prove that the Poisson bracket of two constants of motion is itself a constant of motion even if the constants

 (  ) and (  ) depend explicitly on time.

(c) Show in general that if the Hamiltonian and the quantity  are constants of motion, then 

also is a constant

of motion.

4 (a) Solve the Hamilton-Jacobi equation for the generating (  ) for a single particle moving under the

Hamiltonian  = 1
2
2. Find the canonical transformation  = ( )and  = ( ) where  and  are

the transformed coordinate and momentum respectively. Interpret your result.

(b) If there is a perturbing Hamiltonian∆ = 1
2
2, then  no longer will be constant. Express the transformed

Hamiltonian  (using the same transformation found in part (a)) in terms of   and  Solve for () and

() and show that the perturbed solution [() ()] [() ()] is simple harmonic.



Chapter 15

Analytical formulations for continuous

systems

15.1 Introduction

Lagrangian and Hamiltonian mechanics have been used to determine the equations of motion for discrete

systems having a finite, albeit sometimes large, number of discrete variables  where 1 ≤  ≤ . There

are important classes of systems where it is more convenient to treat the system as being continuous. For

example, the interatomic spacing in solids is a few 10−10 which is negligible compared with the size of

typical macroscopic, three-dimensional solid objects. As a consequence, for wavelengths much greater than

the atomic spacing in solids, it is useful to treat macroscopic crystalline lattice systems as continuous three-

dimensional uniform solids, rather than as three-dimensional discrete lattice chains. Fluid and gas dynamics

are other examples of continuous mechanical systems. Another important class of continuous systems involves

the theory of fields, such as electromagnetic fields. Lagrangian and Hamiltonian mechanics of the continua

extend classical mechanics into the advanced topic of field theory. This chapter goes beyond the scope of a

typical undergraduate classical mechanics course in order to provide a brief glimpse of how Lagrangian and

Hamiltonian mechanics underlie advanced and important aspects of the mechanics of the continua, including

field theory.

15.2 The continuous uniform linear chain

The Lagrangian for the discrete lattice chain, for longitudinal modes, is given by equation 1276 to be

 =
1

2

+1X
=1

³
̇2 −  (−1 − )

2
´

(15.1)

where the  masses are attached in series to +1 identical springs of length  and spring constant . Assume

that the spring has a uniform cross-section area  and length  Then each spring volume element ∆ = 

has a mass , that is, the volume mass density  = 
∆

or  = ∆ . Chapter 1553 will show that the

spring constant  = 

where  is Young’s modulus,  is the cross sectional area of the chain element, and

 is the length of the element. Then the spring constant can be written as  = ∆
2
. Therefore equation

151 can be expressed as a sum over volume elements ∆ = 

 =
1

2

+1X
=1

Ã
̇2 − 

µ
−1 − 



¶2!
∆ (15.2)

In the limit that →∞ and the spacing  = → 0 then the summation in equation 152 can be written

as a volume integral where  =  is the distance along the linear chain and the volume element ∆τ → 0.

Then the Lagrangian can be written as the integral over the volume element  rather than a summation

437
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over ∆ . That is,

 =
1

2

Z Ã
̇2 −

µ
( )



¶2!
 (15.3)

The coordinate () for the discrete chain has become a continuous function ( ) for the uniform chain.

Thus the integral form of the Lagrangian can be expressed as

 =
1

2

Z Ã
̇2 −

µ
( )



¶2!
 =

Z
L (15.4)

where the function L is called the Lagrangian density defined by

L ≡ 1
2

Ã
̇2 −

µ
( )



¶2!
(15.5)

The variable  in the Lagrangian density is not a generalized coordinate; it only serves the role of a continuous

index played previously by the index . For the discrete case, each value of  defined a different generalized

coordinate . Now for each value of  there is a continuous function ( ) which is a function of both

position and time.

Lagrange’s equations of motion applied to the continuous Lagrangian in equation 154 gives


2

2
−

2

2
= 0 (15.6)

This is the familiar wave equation in one dimension for a longitudinal wave on the continuous chain with a

phase velocity

 =

s



(15.7)

The continuous linear chain also can exhibit transverse modes which have a Lagrangian density were the

Young’s modulus  is replaced by the tension  in the chain, and  is replaced by the linear mass density 

of the chain, leading to a phase velocity for a transverse wave  =
q



.

15.3 The Lagrangian density formulation for continuous systems

15.3.1 One spatial dimension

In general the Lagrangian density can be a function of ∇ 

    and . It is of interest that Hamilton’s

principle leads to a set of partial differential equations of motion, based on the Lagrangian density, that are

analogous to the Lagrange equations of motion for discrete systems. When deriving the Lagrangian equations

of motion in terms of the Lagrangian density using Hamilton’s principle, the notation is simplified if the

system is limited to one spatial coordinate  In addition, it is convenient to use the compact notation

where the spatial derivative is 0 ≡ 

and the time derivative is ̇ ≡ 


, that is, where the one-dimensional

Lagrangian density is assumed to be a function L( 0 ̇  ) The appearance of the derivative 0 ≡ 

as

an argument of the Lagrange density is a consequence of the continuous dependence of  on . In principle,

higher-order derivatives could occur but they do not arise in most problems of physical interest.

Assuming that the one spatial dimension is , then Hamilton’s principle of least action can be expressed

in terms of the Lagrangian density as

 = 

Z 2

1

( ̇ ) = 

Z 2

1

Z 2

1

L( 0 ̇  ) (15.8)

Following the same approach used in chapter 52, it is assumed that the stationary path for the action

integral is described by the function ( ). Define a neighboring function using a parametric representation

( ; ) such that for  = 0, where  = ( ) is the function that yields the stationary action integral .
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Assume that an infinitessimal fraction  of a neighboring function ( ) is added to the extremum path

( ). That is, assume

( ; ) = ( ) + ( ) (15.9)

0( ; ) ≡ ( ; )


=

( )


+ 

( )


= 0( ) + 0( ) (15.10)

̇( ; ) ≡ ( ; )


=

( )


+ 

( )


= ̇( ) + ̇( ) (15.11)

where it is assumed that both the extremum function ( ) and the auxiliary function ( ) are well

behaved functions of  and  with continuous first derivatives, and that ( ) = 0 at (1 1) and (2 2)

because, for all possible paths, the function ( ; ) must be identical with ( ) at the end points of the

path, i.e. (1 1) = (2 2) = 0.

A parametric family of curves () as a function of the admixture coefficient , is described by the

function

() =

Z 2

1

Z 2

1

L(( ; ) 0( ; ) ̇( ; )  ) (15.12)

Then Hamilton’s principle requires that the action integral be a stationary function value for  = 0, that is,

() is independent of  which is satisfied if

()


=

Z 2

1

Z 2

1

µ
L






+

L

̇

̇


+

L

0
0



¶
 = 0 (15.13)

Equations 159 1510and 1511 give the partial differentials




= ( ) (15.14)

0


= 0( ) (15.15)

̇


= ̇( ) (15.16)

Integration by parts in both the  and  terms in equation 1513 plus using the fact that (1 1) =

(2 2) = 0 at both end points, yieldsZ 2

1

L

̇

̇


 = −

Z 2

1





µ
L

̇

¶



 (15.17)Z 2

1

L

0
0


 = −

Z 2

1





µ
L

0

¶



 (15.18)

Therefore Hamilton’s principle, equation 1513 becomes

()


=

Z 2

1

Z 2

1

∙
L


− 



µ
L

̇

¶
− 



µ
L

0

¶¸
( ) = 0 (15.19)

Since the auxiliary function ( ) is arbitrary, then the integrand term in the square brackets of equation

1519 must equal zero. That is,




µ
L

̇

¶
+





µ
L

0

¶
− L


= 0 (15.20)

Equation 1520 gives the equations of motion in terms of the Lagrangian density that has been derived

based on Hamilton’s principle.

15.3.2 Three spatial dimensions

Equation 154 expresses the Lagrangian as an integral of the Lagrangian density over a single continuous

index ( ) where the Lagrangian density is a function L( 

 

  ). The derivation of the Lagrangian
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equations of motion in terms of the Lagrangian density for three spatial dimensions involves the straightfor-

ward addition of the  and  coordinates. That is, in three dimensions the vector displacement is expressed

by the vector q (   ) and the Lagrangian density is related to the Lagrangian by integration over three

dimensions. That is, they are related by the equation

 =

Z
L(q

q


∇ · q    ) (15.21)

where, in cartesian coordinates, the volume element  = . The Lagrangian density is a function

L(q q

∇ · q    ) where the one field quantity ( ) has been extended to a spatial vector q (   )

and the spatial derivatives 0 have been transformed into ∇ · q. Applying the method used for the one-

dimensional spatial system, to the three-dimensional system, leads to the following set of equations of motion





Ã
L
q


!
+





Ã
L
q


!
+





Ã
L
q


!
+





Ã
L
q


!
− L

q
= 0 (15.22)

where the    spatial derivatives have been written explicitly for clarity.

Note that the equations of motion, equation 1522, treat the spatial and time coordinates symmetrically.

This symmetry between space and time is unchanged by multiplying the spatial and time coordinate by

arbitrary numerical factors. This suggests the possibility of introducing a four-dimensional coordinate system

 ≡ {   }
where the parameter  is freely chosen. Using this 4-dimensional formalism allows equation 1522 to be

written more compactly as
4X






⎛⎝ L
q


⎞⎠− L

q
= 0 (15.23)

As discussed in chapter 16 relativistic mechanics treats time and space symmetrically, that is, a four-

dimensional vector q (   ) can be used that treats time and the three spatial dimensions symmetrically

and equally. This four-dimensional space-time formulation allows the first four terms in equation 1522 to be

condensed into a single term which illustrates the symmetry underlying equation 1523. If the Lagrangian

density is Lorentz invariant, and if  =  then equation 1523 is covariant. Thus the Lagrangian density

formulation is ideally suited to the development of relativistically covariant descriptions of fields.

15.4 The Hamiltonian density formulation for continuous systems

Chapter 153 illustrates, in general terms, how field theory can be expressed in a Lagrangian formulation

via use of the Lagrange density. It is equally possible to obtain a Hamiltonian formulation for continuous

systems analogous to that obtained for discrete systems. As summarized in chapter 14, the Hamiltonian

and Hamilton’s canonical equations of motion are related directly to the Lagrangian by use of a Legendre

transformation. The Hamiltonian is defined as being

 ≡
X


µ
̇


̇

¶
−  (15.24)

The generalized momentum is defined to be

 ≡ 

̇
(15.25)

Equation (1525) allows the Hamiltonian (1524) to be written in terms of the conjugate momenta as

 (  ) =
X


̇ − ( ̇ ) =
X


(̇ − ( ̇ )) (15.26)

where the Lagrangian has been partitioned into the terms for each of the individual coordinates, that is,

( ̇ ) =
P

 ( ̇ ).
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In the limit that the coordinates   are continuous, then the summation in equation 1526 can be

transformed into a volume integral over the Lagrangian density L. In addition, a momentum density can be

represented by the vector field π where

π ≡ L

q̇
(15.27)

Then the obvious definition of the Hamiltonian density H is

 =

Z
H =

Z
(π · q̇−L)  (15.28)

where the Hamiltonian density is defined to be

H =π · q̇−L (15.29)

Unfortunately the Hamiltonian density formulation does not treat space and time symmetrically making

it more difficult to develop relativistically covariant descriptions of fields. Hamilton’s principle can be used

to derive the Hamilton equations of motion in terms of the Hamiltonian density analogous to the approach

used to derive the Lagrangian density equations of motion. As described in Classical Mechanics 2 edition

by Goldstein, the resultant Hamilton equations of motion for one dimension are

H


= ̇ (15.30)

H


− 



H

0
= −̇ (15.31)

H


= −L


(15.32)

Note that equation 1531 differs from that for discontinuous systems.

15.5 Linear elastic solids

Elasticity is a property of matter where the atomic forces in matter act to restore the shape of a solid when

distorted due to the application of external forces. A perfectly elastic material returns to its original shape

if the external force producing the deformation is removed. Materials are elastic when the external forces

do not exceed the elastic limit. Above the elastic limit, solids can exhibit plastic flow and concomitant heat

dissipation. Such non-elastic behavior in solids occurs when they are subject to strong external forces.

The discussion of linear systems, in chapters 3 and 12, focussed on one dimensional systems, such as the

linear chain, where the transverse rigidity of the chain was ignored. An extension of the one-dimensional

linear chain to two-dimensional membranes, such as a drum skin, is straightforward if the membrane is thin

enough so that the rigidity of the membrane can be ignored. Elasticity for three-dimensional solids requires

accounting for the strong elastic forces exerted against any change in shape in addition to elastic forces

opposing change in volume. The stiffness of solids to changes in shape, or volume, is best represented using

the concepts of stress and strain. Forces in matter can be divided into two classes; (1) body forces, such as

gravity, which act on each volume element, and (2) surface forces which are the forces that act on both sides

of any infinitessimal surface element inside the solid. Surface forces can have components along the normal

to the infinitessimal surface, as well as shear components in the plane of the surface element. Typically solids

are elastic to both normal and shear components of the surface forces whereas shear forces in liquids and

gases lead to fluid flow plus viscous forces due to energy dissipation.

As described below, the forces acting on an infinitessimal surface element are best expressed in terms of

the stress tensor, while the relative distortion of the shape, or volume, of the body are best expressed in

terms of the strain tensor. The moduli of elasticity relate the ratio of the corresponding stress and strain

tensors. The moduli of elasticity are constant in linear elastic solids and thus the stress is proportional to

the strain providing that the strains do not exceed the elastic limit.
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15.5.1 Stress tensor

Consider an infinitessimal surface area A of an arbitrary closed volume element  inside the medium.

The surface area element is defined as a vector A = n̂ where n̂ is the outward normal to the closed

surface that encloses the volume element. Assume that F is the force element exerted by the outside on

the material inside the volume element. The stress tensor T is defined as the ratio of F and A where the

force vector F is given by the inner product of the stress tensor T and the surface element vector A. That

is,

F = T·A (15.33)

Since both F and A are vectors, then equation 1533 implies that the stress tensor must be a second-rank

tensor as described in appendix , that is, the stress tensor is analogous to the rotation matrix or inertia

tensor. Note that if F and n̂A are colinear, then the stress tensor T reduces to the conventional pressure

 The general stress tensor equals the momentum flux density and has the dimensions of pressure.

15.5.2 Strain tensor

Forces applied to a solid body can lead to translational, or rotational acceleration, in addition to changing

the shape or volume of the body. Elastic forces do not act when an overall displacement ξ of an infinitessimal

volume occurs, such as is involved in translational or rotational motion. Elastic forces act to oppose position-

dependent differences in the displacement vector ξ, that is, the strain depends on the tensor product ∇⊗ ξ.
For an elastic medium the strain depends only on the applied stress and not on the prior loading history.

Consider that the matter at the location r is subject to an elastic displacement ξ, and similarly at a

displaced location r0 = r+
P





 where  are cartesian coordinates. The net relative displacement

between r and r0 is given by

2=
X


( + )
2 −

X


()
2
=
X


∙
2

µ



+



¶
+







¸
 (15.34)

Ignoring the second order term






gives that the  component of the relative displacement to be

 =
X


1

2

µ



+



¶
 (15.35)

Define the elements of the strain tensor to be given by

 =
1

2

µ



+



¶
(15.36)

then

 =
X


 (15.37)

Thus the strain tensor σ is a rank-2 tensor defined as the ratio of the strain vector ξ and the infinitessimal

area vector A

ξ = σ·A (15.38)

where the component form of the rank -2 strain tensor is

σ =
1

2

¯̄̄̄
¯̄̄

1
1

1
2

1
3

2
1

2
2

2
3

3
1

3
2

3
3

¯̄̄̄
¯̄̄ (15.39)

The potential-energy density for linear elastic forces is quadratic in the strain components. That is, it is

of the form

 =
X


1

2
 (15.40)

where  is a rank-4 tensor. No preferential directions remain for a homogeneous isotropic elastic body

which allows for two contractions, thereby reducing the potential energy density to the inner product

 =
X


1

2
 ()

2
(15.41)
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15.5.3 Moduli of elasticity

The modulus of elasticity of a body is defined to be the slope of the stress-strain curve and thus, in

principle, it is a complicated rank-4 tensor that characterizes the elastic properties of a material. Thus the

general theory of elasticity is complicated because the elastic properties depend on the orientation of the

microscopic composition of the elastic matter. The theory simplifies considerably for homogeneous, isotropic

linear materials below the elastic limit, where the strain is proportional to the applied stress. That is, the

modulus of elasticity then reduces by contractions to a constant scalar value that depends on the properties

of the matter involved.

The potential energy density for homogeneous, isotropic, linear material, equation 1541 can be separated

into diagonal and off-diagonal components of the strain tensor. That is,

 =
1

2

"

X


()
2
+ 2

X


()
2

#
(15.42)

The diagonal first term is the dilation term which corresponds to changes in the volume with no changes

in shape. The off-diagonal second term involves the shear terms that correspond to changes of the shape of

the body that also changes the volume. The constants  and  are Lamé’s moduli of elasticity which are

positive. Various moduli of elasticity, corresponding to different distortions in the shape and volume of any

solid body, can be derived from Lamé’s moduli for the material.

The components of the elastic forces can be derived from the gradient of the elastic potential energy,

equation 1542 by use of Gauss’ law plus vector differential calculus. The components of the elastic force,

derived from the strain tensor σ, can be associated with the corresponding components of the stress tensor

T. Thus, for homogeneous isotropic linear materials, the components of the stress tensor are related to the

strain tensor by the relation

 = 
X





+ 

µ



+




¶
= 

X


 + 2 (15.43)

where it has been assumed that  = . The two moduli of elasticity  and  are material-dependent

constants. Equation 1543 can be written in tensor notation as

T = (σ)I+ 2σ (15.44)

where () is the trace of the strain tensor and  is the identity matrix.

Equation 1544 can be inverted to give the strain tensor components in terms of the stress tensor com-

ponents.

 =
1

2

"
 − 

(3+ 2)

X




#
(15.45)

The various moduli of elasticity relate combinations of different stress and strain tensor components. The

following five elastic moduli are used frequently to describe elasticity in homogeneous isotropic media, and

all are related to Lamé’s two moduli of elasticity.

1) Young’s modulus  describes tensile elasticity which is axial stiffness of the length of a body to

deformation along the axis of the applied tensile force.

 ≡ 11

11
=

 (3+ 2)

(+ )
(15.46)

2) Bulk modulus  = ∆

defines the relative dilation or compression of a bodies volume to pressure

applied uniformly in all directions.

 = +
2

3
 (15.47)

The bulk modulus is an extension of Young’s modulus to three dimensions and typically is larger than .

The inverse of the bulk modulus is called the compressibility of the material.
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3) Shear modulus  describes the shear stiffness of a body to volume-preserving shear deformations.

The shear strain  becomes a deformation angle given by the ratio of the displacement along the axis of the

shear force and the perpendicular moment arm. The shear modulus  equals Lamé’s constant . That is,

 =  (15.48)

4) Poisson’s ratio  is the negative ratio of the transverse to axial strain. It is a measure of the volume

conserving tendency of a body to contract in the directions perpendicular to the axis along which it is

stretched. In terms of Lamé’s constants, Poisson’s ratio equals

 =


2 (+ )
(15.49)

Note that for a stable, isotropic elastic material, Poisson’s ratio is bounded between −10 ≤  ≤ 05 to ensure
that the  and  moduli have positive values. At the incompressible limit,  = 05, and the bulk modulus

and Lame parameter  are infinite, that is, the compressibility is zero. Typical solids have Poisson’s ratios

of  ≈ 005 if hard and  = 025 if soft.

The stiffness of elastic solids in terms of the elastic moduli of solids can be complicated due to the

geometry and composition of solid bodies. Often it is more convenient to express the stiffness in terms of

the spring constant  where

 =



(15.50)

The spring constant is inversely proportional to the length of the spring because the strain of the material

is defined to be the fractional deformation, not the absolute deformation.

15.5.4 Equations of motion in a uniform elastic media

The divergence theorem (8) relates the volume integral of the divergence of T to the vector force density

F acting on the closed surface.

F =

I
T·A =

Z
∇ ·T =

Z
f (15.51)

That is, the inner product of the del operator, ∇, and the rank-2 stress tensor T, give the vector force
density f . This force acting on the enclosed mass

I
  for the closed volume, leads to an acceleration 2

2
.

Thus

F =

I
T·A =

Z
∇ ·T =

I

2ξ

2
 (15.52)

Use equation 1544 to relate the stress tensor T to the moduli of elasticity gives


2ξ
2

=
X


"
(+ )

2ξ


+ 

2ξ
2

#
(15.53)

where  = 1 2 3. In general this equation is difficult to solve. However, for the simple case of a plane wave

in the  = 1 direction, the problem reduces to the following three equations


2ξ1
2

= (+ 2)
2ξ1
21

(15.54)


2ξ2
2

= 
2ξ2
21

(15.55)


2ξ3
2

= 
2ξ3
21

(15.56)

Equation 1554 corresponds to a longitudinal wave travelling with velocity  =

q
(+2)


. Equations

1555 1556 correspond to two perpendicular transverse waves travelling with velocity  =
q



. This il-

lustrates the important fact that longitudinal waves travel faster than transverse waves in an elastic solid.

Seismic waves in the Earth, generated by earthquakes, exhibit this property. Note that shearing stresses do

not exist in ideal liquids and gases since they cannot maintain shear forces and thus  = 0
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15.6 Electromagnetic field theory

15.6.1 Maxwell stress tensor

Analytical formulations for continuous systems, developed for describing elasticity, are generally applicable

when applied to other fields, such as the electromagnetic field. The use of the Maxwell’s stress tensor T to

describe momentum in the electromagnetic field, is an important example of the application of continuum

mechanics in field theory.

The Lorentz force can be written as

F =

Z
 (E+ v×B)  =

Z
(E+ J×B)  =

Z
f (15.57)

where the force density f is defined to be

f =(E+ J×B) (15.58)

Maxwell’s equations

 = 0∇ ·E J =
1

0
∇×B− ²0 E


(15.59)

can be used to eliminate the charge and current densities in equation 1557

f =0 (∇ ·E)E+
µ
1

0
∇×B− ²0 E



¶
×B (15.60)

Vector calculus gives that



(E×B) = E


×B+E×B


(15.61)

while Faraday’s law gives
B


= −∇×E (15.62)

Equation 1562 allows equation 1561 to be rewritten as

E


×B = + 


(E×B)−E×B


= +




(E×B) +E× (∇×E) (15.63)

Equation 1563 can be inserted in equation 1560. In addition, a term 1
0
(∇ ·B)B can be added since

∇ ·B =0 which allows equation 1560 to be written in the symmetric form

f = 0 (∇ ·E)E+ 1

0
(∇ ·B)B+ 1

0
(∇×B)×B− ²0 E


×B (15.64)

= 0 (∇ ·E)E+ 1

0
(∇ ·B)B+ 1

0
(∇×B)×B−0 


(E×B)− 0E× (∇×E) (15.65)

Using the vector identity

∇ (A ·B) = A× (∇×B) +B× (∇×A) + (A ·∇)B+(B ·∇)A (15.66)

Let A = B = E then

∇ ¡2¢ = 2E× (∇×E) + 2 (E ·∇)E (15.67)

That is

E× (∇×E) = 1

2
∇ ¡2¢− (E ·∇)E (15.68)

Similarly

B× (∇×B) = 1

2
∇ ¡2

¢− (B ·∇)B (15.69)

Inserting equations 1568 and 1569 into equation 1565 gives

f=0

∙
(∇ ·E)E+(E ·∇)E−1

2
∇2

¸
+
1

0

∙
(∇ ·B)B+(B ·∇)B−1

2
∇2

¸
− 0




(E×B) (15.70)
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This complicated formula can be simplified by defining the rank-2Maxwell stress tensor T which has

components

 ≡ 0

µ
 − 1

2


2

¶
+
1

0

µ
 − 1

2


2

¶
(15.71)

The inner product of the del operator and the Maxwell stress tensor is a vector with  components of

(∇ ·T) = 0

∙
(∇ ·E)+(E ·∇) − 1

2
∇2


2

¸
+
1

0

∙
(∇ ·B)+(B ·∇) − 1

2
∇2


2

¸
(15.72)

The above definition of the Maxwell stress tensor, plus the Poynting vector S = 1
0
(E×B)  allows the force

density equation 1558 to be written in the form

f =∇ ·T−00
S


(15.73)

The divergence theorem allows the total force, acting of the volume   to be written in the form

F =

Z µ
∇ ·T−00

S



¶
 (15.74)

=

I
T·a−00





Z
Sdτ (15.75)

Note that, if the Poynting vector is time independent, then the second term in equation 1575 is zero and the

Maxwell stress tensor T is the force per unit area, (stress) acting on the surface. The fact that T is a rank-2

tensor is apparent since the stress represents the ratio of the force-density vector f and the infinitessimal

area vector a, which do not necessarily point in the same directions.

15.6.2 Momentum in the electromagnetic field

Chapter 72 showed that the electromagnetic field carries a linear momentum A where  is the charge on a

body and A is the electromagnetic vector potential. It is useful to use the Maxwell stress tensor to express

the momentum density directly in terms of the electric and magnetic fields.

Newton’s law of motion can be used to write equation equation 1575 as

F=
p


=

I
T·a−00





Z
Sdτ (15.76)

where p is the total mechanical linear momentum of the volume  . Equation 1576 implies that the electro-

magnetic field carries a linear momentum

p = 00

Z
Sdτ (15.77)

The

I
T·a term in equation 1576 is the momentum per unit time flowing into the closed surface.

In field theory it can be useful to describe the behavior in terms of the momentum flux density π. Thus

the momentum flux density π in the electromagnetic field is

π=00S (15.78)

Then equation 1576 implies that the total momentum flux density π = π+π is related to Maxwell’s

stress tensor by



(π + π) =∇ ·T (15.79)

That is, like the elasticity stress tensor, the divergence of Maxwell’s stress tensor T equals the rate of change

of the total momentum density, that is, −T is the momentum flux density.

This discussion of the Maxwell stress tensor and its relation to momentum in the electromagnetic field

illustrates the role that analytical formulations of classical mechanics can play in field theory.
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15.7 Ideal fluid dynamics

The distinction between a solid and a fluid is that a fluid flows under shear stress whereas the elasticity

of solids oppose distortion and flow. Shear stress in a fluid is opposed by dissipative viscous forces, which

depend on velocity, as opposed to elastic solids where the shear stress is opposed by the elastic forces which

depend on the displacement. An ideal fluid is one where the viscous forces are negligible, and thus the shear

stress Lamé parameter  = 0.

15.7.1 Continuity equation

Fluid dynamics requires a different philosophical approach than that used to describe the motion of an

ensemble of known solid bodies.The prior discussions of classical mechanics used, as variables, the coordinates

of each member of an ensemble of particles with known masses. This approach is not viable for fluids

which involve an enormous number of individual atoms as the fundamental bodies of the fluid. The best

philosophical approach for describing fluid dynamics is to employ continuum mechanics using definite fixed

volume elements  and describe the fluid in terms of macroscopic variables of the fluid such as mass density

, pressure  , and fluid velocity v.

Conservation of fluid mass requires that the rate of change of mass in a fixed volume must equal the net

inflow of mass.




Z


 +

I
v·a = 0 (15.80)

Using the divergence theorem (2) allows this to be written asZ


µ



+∇· (v)

¶
 = 0 (15.81)

Mass conservation must hold for any arbitrary volume, therefore the continuity equation can be written in

the differential form



+∇· (v) = 0 (15.82)

15.7.2 Euler’s hydrodynamic equation

The fluid surrounding a volume  exerts a net force F that equals the surface integral of the pressure P.

This force can be transformed to a volume integral of ∇ .The net force then will lead to an acceleration of
the volume element. That is

F = −
I
a = −

Z
∇ =

Z

v


 (15.83)

Thus the force density f is given by

f = −∇P =v


(15.84)

Note that the acceleration v

in equation 1583 refers to the rate of change of velocity for individual

atoms in the fluid, not the rate of change of fluid velocity at a fixed point in space. These two accelerations

are related by noting that, during the time , the change in velocity v of a given fluid particle is composed

of two parts, namely (1) the change during  in the velocity at a fixed point in space, and (2) the difference

between the velocities at that same instant in time at two points displaced a distance r apart, where r is

the distance moved by a given fluid particle during the time . The first part is given by v

 at a given

point (  ) in space. The second part equals


v


+ 

v


+ 

v


= (r ·∇)v (15.85)

Thus

v =
v


+ (r ·∇)v (15.86)

Divide both sides by  gives that the acceleration of the atoms in the fluid equals

v


=

v


+ (v ·∇)v (15.87)
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Substitute equation 1587 into 1584 gives

v


+ (v ·∇)v = −1


∇ (15.88)

This is Euler’s equation for hydrodynamics. The two terms on the left represent the acceleration in the

individual fluid components while the right-hand side lists the force density producing the acceleration.

Additional forces can be added to the right-hand side. For example, the gravitational force density g

can be expressed in terms of the gravitational scalar potential  to be

g = −ρ∇ (15.89)

Inclusion of the gravitational field force density in Euler’s equation gives

v


+ (v ·∇)v = −1


∇ ( +  ) (15.90)

15.7.3 Irrotational flow and Bernoulli’s equation

Streamlined flow corresponds to irrotational flow, that is, ∇× v = 0. Since irrotational flow is curl free, the
velocity streamlines can be represented by a scalar potential field . That is

v = −∇ (15.91)

This scalar potential field  can be used to derive the vector velocity field for irrotational flow.

Note that the (v ·∇)v term in Euler’s equation (1590) can be rewritten using the vector identity

(v ·∇)v =1
2
∇ ¡2¢− v×∇× v (15.92)

Inserting equation 1592 into Euler’s equation 1590 then gives

v


= v×∇× v−1


∇
µ
1

2
2 +  + 

¶
(15.93)

Potential flow corresponds to time independent irrotational flow, that is, both v

= 0 and ∇× v = 0 For

potential flow equation 1593 reduces to

∇
µ
1

2
2 +  + 

¶
= 0

which implies that µ
1

2
2 +  + 

¶
= constant (15.94)

This is the famous Bernoulli’s equation that relates the interplay of the fluid velocity, pressure and gravita-

tional energy. Bernoulli’s equation plays important roles in both hydrodynamics and aerodynamics.

15.7.4 Gas flow

Fluid dynamics applied to gases is a straightforward extension of fluid dynamics that employs standard ther-

modynamical concepts. The following example illustrates the application of fluid mechanics for calculating

the velocity of sound in a gas.



15.7. IDEAL FLUID DYNAMICS 449

15.1 Example: Acoustic waves in a gas

Propagation of acoustic waves in a gas provides an example of using the three-dimensional Lagrange

density. Only longitudinal waves occur in a gas and the velocity is given by thermodynamics of the gas. Let

the displacement of each gas molecule be designated by the general coordinate q with corresponding velocity

q̇. Let the gas density be  then the kinetic energy density () of an infinitessimal volume of gas ∆ is

given by

∆ () =
1

2
0q̇

2

The rapid contractions and expansions of the gas in an acoustic wave occur adiabatically such that the product

  is a constant, where  = specific heat at constant pressure
specific heat at constant volume

. Therefore the change in potential energy density

∆() is given to second order by

∆ () =
1

0

Z 0+∆

0

 =
0

0
∆ +

1

20

µ




¶
0

(∆)
2
=

0

0
∆ − 1

20

µ

0

0

¶
(∆)

2

Since the volume and density are related by

 =


0

then the fractional change in the density  is related to the density by

 = 0(1 + )

This implies that the potential energy density () is given by

∆ () =

∙
0 + 

0

2
2
¸

The mass flowing out of the volume 0 must equal the fractional change in density of the volume, that is

0

Z
q · dS = −ρ0

Z


The divergence theorem gives that Z
q · dS =

Z
∇ · q = −

Z


Thus the density  is given by minus the divergence of q

 = −∇ · q
This allows the potential energy density to be written as

∆() = −0∇ · q+0

2
(∇ · q)2

Combining the kinetic energy density and the potential energy density gives the complete Lagrangian density

for an acoustic wave in a gas to be

L =
1

2
0q̇

2 + 0∇ · q−0
2
(∇ · q)2

Inserting this Lagrangian density in the corresponding equations of motion, equation 1523, gives that

∇2q− 0
0

2q

2
= 0

where 0 and 0 are the ambient pressure and density of the gas. This is the wave equation where the phase

velocity of sound is given by

 =

s
0

0
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15.8 Viscous fluid dynamics

Viscous fluid dynamics is a branch of classical mechanics that plays a pivotal role in a wide range of aspects

of life, such as blood flow in human anatomy, weather, hydraulic engineering, and transportation by land,

sea, and air. Viscous fluid flow provides natures most common manifestation of nonlinearity and turbulence

in classical mechanics, and provides an excellent illustration of possible solutions of non-linear equations of

motion introduced in chapter 4. A detailed description of turbulence remains a challenging problem and

this subject has the reputation of being the last great unsolved problem in classical mechanics. There is

an apocryphal story that Werner Heisenberg was asked, if given the opportunity, what would he like to ask

God. His reply was "When I meet God, I am going to ask him two questions: Why relativity? and why

turbulence?, I really believe he will only have an answer to the first".

In contrast to solids, fluids do not have elastic restoring forces to support shear stress because the fluid

flows. Shear stresses in fluids are balance by viscous forces which are velocity dependent. There are two

mechanisms that lead to shear stress acting between adjacent fluid layers in relative motion. The first

mechanism involves laminar flow where the viscous forces produce shear stress between adjacent layers of

the fluid which are moving parallel along adjacent streamlines at differing velocities. Viscous forces typically

dominate laminar flow. High viscosity fluids like honey exhibit laminar flow and are more difficult to stir

or pour compared with low-viscosity fluids like water. The second mechanism involves turbulent flow where

shear stress is due to momentum transfer between adjacent layers when the flow breaks up into large-scale

coherent vortex structures which carry most of the kinetic energy. These eddies lead to transverse motion

that transfers momentum plus heat between adjacent layers and leads to higher drag. The wing-tip vortex

produced by the wing tip of an aircraft is an example of a dynamically-distinct, large-scale, coherent vortex

structure which has considerable angular momentum and decays by fragmentation into a cascade of smaller

scale structures.

15.8.1 Navier-Stokes equation

Viscous forces acting on the small-scale coherent structures eventually dissipate the energy in turbulent

motion. The viscous drag can be handled in terms of a stress tensor T analogous to its use when accounting

for the elastic restoring forces in elasticity as discussed in chapter 1553. That is, the viscous force density

is related to the deceleration of the volume element by




(v) = −∇ ·T (15.95)

where the components of the stress tensor are

 =  =  +  (15.96)

Note that the stress tensor gives the momentum flux density tensor, which involves a diagonal term propor-

tional to pressure  plus a viscous drag term that is is proportional to the product of two velocities.

The Navier-Stokes equations are the fundamental equations characterizing fluid flow. They are based on

application of Newton’s second law of motion to fluids together with the assumption that the fluid stress

is the sum of a diffusing viscous term plus a pressure term. Combining Euler’s equation, 1590, with 1595

gives the Navier-Stokes equation



∙
v


+ v ·∇v

¸
= −∇ +∇ ·T+f (15.97)

where  is the fluid density, v is the flow velocity vector,  the pressure, T is the shear stress tensor viscous

drag term, and f represents external body forces per unit volume such as gravity acting on the fluid.

For incompressible flow the stress tensor term simplifies to ∇ ·T =∇2v. Then the Navier-Stokes

equation simplifies to



∙
v


+ v ·∇v

¸
= −∇ + ∇2v+f (15.98)

where ∇2v is the viscosity drag term. The left-hand side of equation 1598 represents the rate of change

of momentum per unit volume while the right-hand side represents the summation of the forces per unit

volume that are acting.
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The Navier-Stokes equations are nonlinear due to the (v ·∇)v term as well as being a function of

velocity. This non-linearity leads to a wide spectrum of dynamic behavior ranging from ordered laminar

flow to chaotic turbulence. Numerical solution of the Navier-Stokes equations is extremely difficult because

of the wide dynamic range of the dimensions of the coherent structures involved in turbulent motion. For

example, simulation calculations require use of a high resolution mesh which is a challenge to the capabilities

of current generation computers.

The microscopic boundary condition at the interface of the solid and fluid is that the fluid molecules

have zero average tangential velocity relative to the normal to the solid-fluid interface. This implies that

there is a boundary layer for which there is a gradient in the tangential velocity of the fluid between the

solid-fluid interface and the free-steam velocity. This velocity gradient produces vorticity in the fluid. When

the viscous forces are negligible then the angular momentum in any coherent vortex structure is conserved

leading to the vortex motion being preserved as it propagates.

15.8.2 Reynolds number
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Figure 15.1: Upper: The dependence of the coeffi-

cient of drag  on Reynolds number Re for fluid

flow perpendicular to a smooth circular cylinder

of diameter  and length . Lower: Typical flow

patterns for flow past a circular cylinder at vari-

ous Reynolds numbers as indicated in the upper

figure.

Fluid flow can be characterized by the Reynolds number

Re which is a dimensionless number that is a measure

of the ratio of the inertial forces 2 to viscous forces

2. That is,

Re ≡ Inertial forces

Viscous forces
=




=




(15.99)

where  is the relative velocity between the free fluid

flow and the solid surface,  is a characteristic linear

dimension,  is the dynamic viscosity of the fluid,  is

the kinematic viscosity ( = 

), and  is the density

of the fluid. The Law of Similarity implies that at a

given Reynolds number, for a specific shaped solid body,

the fluid flow behaves identically independent of the size

of the body. Thus one can use small models in wind

tunnels, or water-flow tanks, to accurately model fluid

flow that can be scaled up to a full-sized aircraft or boats

by scaling  and  to give the same Reynolds number.

15.8.3 Laminar and turbulent fluid flow

Fluid flow over a cylinder illustrates the general features

of fluid flow. The drag force  acting on a cylinder

of diameter  and length  with the cylindrical axis

perpendicular to the fluid flow, is given by

 =
1

2
2 (15.100)

where  is the coefficient of drag. Figure 151

shows the dependence of the drag coefficient  as a

function of the Reynolds number, for fluid flow that

is transverse to a smooth circular cylinder. The lower

part of figure 151 shows the streamlines for flow around

the cylinder at various Reynolds numbers for the points

identified by the letters , and  on the plot

of the drag coefficient versus Reynolds number for a

smooth cylinder.

A) At low velocities, where Re ≤ 1 the flow is lam-
inar around the cylinder in that the low vorticity is

damped by the viscous forces and the v

term in equa-

tion 1598 can be ignored. The coefficient of drag 
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varies inversely with Re leading to the drag forces that are roughly linear with velocity as described in chapter

2105 The size and velocities of raindrops in a light rain shower correspond to such Reynolds numbers.

B) For 10  Re  30 the flow has two turbulent vortices immediately behind the body in the wake of

the cylinder, but the flow still is primarily laminar as illustrated.

C) For 40  Re  250 the pair of vortices peel off alternately producing a regular periodic sequence of

vortices although the flow still is laminar. This vortex sheet is called a von Kármán vortex sheet for which

the velocity at a given position, relative to the cylinder, is time dependent in contrast to the situation at

lower Reynolds numbers.

D) For 103  Re  105 viscous forces are negligible relative to the inertial effects of the vortices and

boundary-layer vortices have less time to diffuse into the larger region of the fluid, thus the boundary layer is

thinner. The boundary-layer flow exhibits a small scale chaotic turbulence in three dimensions superimposed

on regular alternating vortex structures. In this range  is roughly constant and thus the drag forces are

proportional to the square of the velocity. This regime of Reynold numbers corresponds to typical velocities

of moving automobiles.

E) For Re ≈ 106, which is typical of a flying aircraft, the inertial effects dominate except in the narrow
boundary layer close to the solid-fluid interface. The chaotic region works its way further forward on the

cylinder reducing the volume of the chaotic turbulent boundary layer which results in a significant decreases

in . For a sailplane wing flying at about 50, the boundary layer at the leading edge of the cylinder

reduces to the order of a millimeter in thickness at the leading edge and a centimeter at the trailing edge. At

these Reynold’s numbers the airflow comprises a thin boundary layer, where viscous effects are important,

plus fluid flow in the bulk of the fluid where the vortex inertial terms dominate and viscous forces can be

ignored. That is, the viscous stress tensor term ∇ ·T on the right-hand side of equation 1597 can be
ignored, and the Navier-Stokes equation reduces to the simpler Euler equation for such inviscid fluid flow.

The importance of the inertia of the vortices is illustrated by the persistence of the vortex structure

and turbulence over a wide range of length scales characteristic of turbulent flow. The dynamic range of

the dimension of coherent vortex structures is enormous. For example, in the atmosphere the vortex size

ranges from 105 in diameter for hurricanes down to 10−3 in thin boundary layers adjacent to an aircraft

wing. The transition from laminar to turbulent flow is illustrated by water flow over the hull of a ship which

involves laminar flow at the bow followed by turbulent flow behind the bow wave and at the stern of the

ship. The broad extent of the white foam of seawater along the side and the stern of a ship illustrates the

considerable energy dissipation produced by the turbulence. The boundary layer of a stalled aircraft wing

is another example. At a high angle of attack, the airflow on the lower surface of the wing remains laminar,

that is, the stream velocity profile, relative to the wing, increases smoothly from zero at the wing surface

outwards until it meets the ambient air velocity on the outer surface of the boundary layer which is the order

of a millimeter thick. The flow on the top surface of the wing initially is laminar before becoming turbulent

at which point the boundary layer rapidly increases in thickness. Further back the airflow detaches from

the wing surface and large-scale vortex structures lead to a wide boundary layer comparable in thickness to

the chord of the wing with vortex motion that leads to the airflow reversing its direction adjacent to the

upper surface of the wing which greatly increases drag. When the vortices begin to shed off the bounded

surface they do so at a certain frequency which can cause vibrations that can lead to structural failure if the

frequency of the shedding vortices is close to the resonance frequency of the structure.

Considerable time and effort are expended by aerodynamicists and hydrodynamicists designing aircraft

wings and ship hulls to maximize the length of laminar region of the boundary layer to minimize drag.

When the Reynolds number is large the slightest imperfections in the shape of wing, such as a speck of

dust, can trigger the transition from laminar to turbulent flow. The boundaries between adjacent large-scale

coherent structures are sensitively identified in computer simulations by large divergence of the streamlines

at any separatrix. A large positive, finite-time, Lyapunov exponent identifies divergence of the streamlines

which occurs at a separatrix between adjacent large-scale coherent vortex structures, whereas the Lyapunov

exponents are negative for converging streamlines within any coherent structure. Computations of turbulent

flow often combine the use of finite-time Lyapunov exponents to identify coherent structures, plus Lagrangian

mechanics for the equations of motion since the Lagrangian is a scalar function, it is frame independent, and

it gives far better results for fluid motion than using Newtonian mechanics. Thus the Lagrangian approach in

the continua is used extensively for calculations in aerodynamics, hydrodynamics, and studies of atmospheric

phenomena such as convection, hurricanes, tornadoes, etc.
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15.9 Summary and implications

The goal of this chapter is to provide a glimpse into the classical mechanics of the continua which introduces

the Lagrangian density and Hamiltonian density formulations of classical mechanics.

Lagrangian density formulation: In three dimensional Lagrangian density L(q q

∇ · q    ) is

related to the Lagrangian  by taking the volume integral of the Lagrangian density.

 =

Z
L(q

q


∇ · q    ) (1521)

Applying Hamilton’s Principle to the three-dimensional Lagrangian density leads to the following set of

differential equations of motion
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Hamiltonian density formulation: In the limit that the coordinates   are continuous, then the Hamil-

tonian density can be expressed in terms of a volume integral over the momentum density  and the La-

grangian density L where

π ≡ L

q̇
(1527)

Then the obvious definition of the Hamiltonian density H is

 =

Z
H =

Z
(π · q̇−L)  (1528)

where the Hamiltonian density is given by

H =π · q̇−L (1529)

These Lagrangian and Hamiltonian density formulations are of considerable importance to field theory

and fluid mechanics.

Linear elastic solids: The theory of continuous systems was applied to the case of linear elastic solids.

The stress tensor T is a rank 2 tensor defined as the ratio of the force vector F and the surface element

vector A. That is, the force vector is given by the inner product of the stress tensor T and the surface

element vector A.

F = T·A (1533)

The strain tensor σ also is a rank 2 tensor defined as the ratio of the strain vector ξ and infinitessimal

area A

ξ = σ·A (1538)

where the component form of the rank 2 strain tensor is

σ =
1

2
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¯̄̄̄
¯̄̄ (1539)

The modulus of elasticity is defined as the slope of the stress-strain curve. For linear, homogeneous,

elastic matter, the potential energy density  separates into diagonal and off-diagonal components of the

strain tensor

 =
1

2

"

X


()
2
+ 2
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(1542)

where the constants  and  are Lamé’s moduli of elasticity which are positive. The stress tensor is related

to the strain tensor by

 = 
X
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Electromagnetic field theory: The rank 2 Maxwell stress tensor T has components

 ≡ 0

µ
 − 1

2
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¶
+
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2

¶
(1571)

The divergence theorem allows the total electromagnetic force, acting of the volume   to be written as

F=

Z µ
∇ ·T−00

S



¶
 =

I
T·a−00





Z
Sdτ (1574)

The total momentum flux density is given by




(π + π) =∇ ·T (1579)

where the electromagnetic field momentum density is given by the Poynting vector S as π=00S.

Ideal fluid dynamics: Mass conservation leads to the continuity equation




+∇· (v) = 0 (1582)

Euler’s hydrodynamic equation gives

v


+ (v ·∇)v = −1


∇ ( +  ) (1590)

where  is the scalar gravitational potential. If the flow is irrotational and time independent thenµ
1

2
2 +  + 

¶
= constant (1594)

Viscous fluid dynamics: For incompressible flow the stress tensor term simplifies to∇ ·T =∇2v. Then

the Navier-Stokes equation becomes



∙
v


+ v ·∇v

¸
= −∇ + ∇2v+f (1598)

where ∇2v is the viscosity drag term. The left-hand side of equation 1598 represents the rate of change

of momentum per unit volume while the right-hand side represents the summation of the forces per unit

volume that are acting.

The Reynolds number is a dimensionless number that characterizes the ratio of inertial forces to viscous

forces in a viscous medium. The evolution of flow from laminar flow to turbulent flow, with increase of

Reynolds number, was discussed.

The classical mechanics of continuous fields encompasses a remarkably broad range of phenomena with

important applications to laminar and turbulent fluid flow, gravitation, electromagnetism, relativity, and

quantum fields.



Chapter 16

Relativistic mechanics

16.1 Introduction

Newtonian mechanics incorporates the Newtonian concept of the complete separation of space and time.

This theory reigned supreme from inception, in 1687, until November 1905 when Einstein pioneered the

Special Theory of Relativity. Relativistic mechanics undermines the Newtonian concepts of absoluteness of

time that is inherent to Newton’s formulation, as well as when recast in the Lagrangian and Hamiltonian

formulations of classical mechanics. Relativistic mechanics has had a profound impact on twentieth-century

physics and the philosophy of science. Classical mechanics is an approximation of relativistic mechanics

that is valid for velocities much less than the velocity of light in vacuum. The term "relativity" refers to

the fact that physical measurements are always made relative to some chosen reference frame. Naively one

may think that the transformation between different reference frames is trivial and contains little underlying

physics. However, Einstein showed that the results of measurements depend on the choice of coordinate

system, which revolutionized our concept of space and time.

Einstein’s work on relativistic mechanics comprised two major advances. The first advance is the 1905

Special Theory of Relativity which refers to nonaccelerating frames of reference. The second major advance

was the 1916 General Theory of Relativity which considers accelerating frames of reference and their relation

to gravity. Thus the Special Theory is a limiting case of the General Theory of Relativity. The mathematically

complex General Theory of Relativity is required for describing accelerating frames, gravity, plus related

topics like Black Holes, or extremely accurate time measurements inherent to the Global Positioning System.

The present discussion will focus primarily on the mathematically simple Special Theory of Relativity since it

encompasses most of the physics encountered in atomic, nuclear and high energy physics. This chapter uses

the basic concepts of the Special Theory of Relativity to investigate the implications of extending Newtonian,

Lagrangian and Hamiltonian formulations of classical mechanics into the relativistic domain. The Lorentz-

invariant extended Hamiltonian and Lagrangian formalisms are introduced since they are applicable to the

Special Theory of Relativity. The General Theory of Relativity incorporates the gravitational force as a

geodesic phenomena in a four-dimensional Reimannian structure based on space, time, and matter. A

superficial introduction will be given to the fundamental concepts and evidence that underlie the General

Theory of Relativity.

16.2 Galilean Invariance

As discussed in chapter 23, an inertial frame is one in which Newton’s Laws of motion apply. Inertial frames

are non-accelerating frames so that pseudo forces are not induced. All reference frames moving at constant

velocity relative to an inertial reference, are inertial frames. Newton’s Laws of nature are the same in all

inertial frames of reference and therefore there is no way of determining absolute motion because no inertial

frame is preferred over any other. This is called Galilean-Newtonian invariance. Galilean invariance assumes

that the concepts of space and time are completely separable. Time is assumed to be an absolute quantity

that is invariant to transformations between coordinate systems in relative motion. Also the element of

length is the same in different Galilean frames of reference.
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Consider two coordinate systems shown in figure 161, where the primed frame is moving along the 

axis of the fixed unprimed frame. A Galilean transformation implies that the following relations apply;

01 = 1 −  (16.1)

02 = 2

03 = 3

0 = 

v

x

x

x

x’

x’

x’1 1

2 2

3 3

Figure 16.1: Motion of the primed frame

along the 1 axis with velocity  relative to

the parallel unprimed frame.

Note that at any instant  the infinitessimal units of length

in the two systems are identical since

2 =

3X
=1

2 =

3X
=1

02 = 02 (16.2)

These are the mathematical expression of the Newtonian idea

of space and time. An immediate consequence of the Galilean

transformation is that the velocity of light must differ in dif-

ferent inertial reference frames.

At the end of the 19 century physicists thought they had

discovered a way of identifying an absolute inertial frame of

reference, that is, it must be the frame of the medium that

transmits light in vacuum. Maxwell’s laws of electromagnetism

predict that electromagnetic radiation in vacuum travels at  =
1√


= 2998 × 108. Maxwell did not address in what

frame of reference that this speed applied. In the nineteenth

century all wave phenomena were transmitted by some medium, such as waves on a string, water waves,

sound waves in air. Physicists thus envisioned that light was transmitted by some unobserved medium which

they called the ether. This ether had mystical properties, it existed everywhere, even in outer space, and yet

had no other observed consequences. The ether obviously should be the absolute frame of reference.

L

L

Mirror

Mirror

BA

C

Light
source Semi-transparent

mirror

Figure 16.2: The Michelson interferometer

used for the Michelson-Morley experiment.

Interference of the two beams of coherent

light leads to fringes that depends on the

differences in phase along the two paths.

In the 18800, Michelson and Morley performed an experi-
ment in Cleveland to try to detect this ether. They transmitted

light back and forth along two perpendicular paths in an inter-

ferometer, shown in figure 162, and assumed that the earth’s

motion about the sun led to movement through the ether.

The time taken to travel a return trip takes longer in a

moving medium, if the medium moves in the direction of the

motion, compared to travel in a stationary medium. For ex-

ample, you lose more time moving against a headwind than

you gain travelling back with the wind. The time difference

∆ for a round trip to a distance , between travelling in the

direction of motion in the ether, versus travelling the same dis-

tance perpendicular to the movement in the ether, is given by

∆ ≈ 


¡



¢2
where  is the relative velocity of the ether and 

is the velocity of light.

Interference fringes between perpendicular light beams in

an optical interferometer provides an extremely sensitive mea-

sure of this time difference. Michelson and Morley observed no

measurable time difference at any time during the year, that

is, the relative motion of the earth within the ether is less than

16 the velocity of the earth around the sun. Their conclusion was either, that the ether was dragged along

with the earth, or the velocity of light was dependent on the velocity of the source, but these did not jibe

with other observations. Their disappointment at the failure of this experiment to detect evidence for an ab-

solute inertial frame is important and confounded physicists for two decades until Einstein’s Special Theory

of Relativity explained the result.
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16.3 Special Theory of Relativity

16.3.1 Einstein Postulates

In November 1905, at the age of 26, Einstein published a seminal paper entitled ”On the electrodynamics of

moving bodies”. He considered the relation between space and time in inertial frames of reference that are

in relative motion. In this paper he made the following postulates.

1) The laws of nature are the same in all inertial frames of reference.

2) The velocity of light in vacuum is the same in all inertial frames of reference.

Note that Einstein’s first postulate, coupled with Maxwell’s equations, leads to the statement that the

velocity of light in vacuum is a universal constant. Thus the second postulate is unnecessary since it is an

obvious consequence of the first postulate plus Maxwell’s equations which are basic laws of physics. This

second postulate explained the null result of the Michelson-Morley experiment. However, it was not this

experimental result that led Einstein to the theory of special relativity; he deduced the Special Theory of

Relativity from consideration of Maxwell’s equations of electromagnetism. Although Einstein’s postulates

appear reasonable, they lead to the following surprising implications.

16.3.2 Lorentz transformation

Galilean invariance leads to violation of the Einstein postulate that the velocity of light is a universal con-

stant in all frames of reference. It is necessary to assume a new transformation law that renders physical

laws relativistically invariant. Maxwell’s equations are relativistically invariant, which led to some electro-

magnetic phenomena that could not be explained using Galilean invariance. In 1904 Lorentz proposed a new

transformation to replace the Galilean transformation in order to explain such electromagnetic phenomena.

Einstein’s genius was that he derived the transformation, that had been proposed by Lorentz, directly from

the postulates of the Special Theory of Relativity. The Lorentz transformation satisfies Einstein’s theory of

relativity, and has been confirmed to be correct by many experiments.

For the geometry shown in figure 161, the Lorentz transformations are:

0 =  (− ) (16.3)

0 = 

0 = 

0 = 
³
− 

2

´
where the Lorentz  factor

 ≡ 1q
1− ¡



¢2 (16.4)
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Figure 16.3: The dependence of the Lorentz

 factor on 



The inverse transformations are

 =  (0 + 0) (16.5)

 = 0

 = 0

 = 

µ
0 +

0

2

¶
The Lorentz  factor, defined above, is the key feature

differentiating the Lorentz transformations from the Galilean

transformation. Note that  ≥ 1; also  → 10 as  → 0 and

increases to infinity as 

→ 1 as illustrated in figure 163. A

useful fact that will be used later is that for 

 1;

 → 1 +
1

2

³


´2
Limit for   

Note that for    then  = 1 and the Lorentz trans-

formation is identical to the Galilean transformation.
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a. b.

d d

Tick! Tick!

Tock! Tock! Tock!

Figure 16.4: The observer and mirror are at rest in the left-hand frame (a). The light beam takes a time

∆ = 

to travel to the mirror. In the right-hand frame (b) the source and mirror are travelling at a velocity

 relative to the observer. The light travels further in the right-hand frame of reference (b) than is the

stationary frame (a). Since Einstein states that the velocity of light is the same in both frames of reference

then the time interval must by larger in frame (b) since the light travels further than in (a).

16.3.3 Time Dilation:

Consider that a clock is fixed at 0 in a moving frame and measures the time interval between two events
in the moving frame, i.e. ∆0 = 01 − 02. According to the Lorentz transformation, the times in the fixed
frame are given by:

1 = 

µ
01 +

00
2

¶
(16.6)

2 = 

µ
02 +

00
2

¶
Thus the time interval is given by:

2 − 1 =  (02 − 01) (16.7)

The time between events in the rest frame of the clock, ∆ ≡ ∆0 is called the proper time which always
is the shortest time measured for a given event and is represented by the symbol  . That is

∆ = ∆0 = ∆ (16.8)

Note that the time interval for any other frame of reference, moving with respect to the clock frame, will

show larger time intervals because  ≥ 10 which implies that the fixed frame perceives that the moving

clock is slow by the factor .

The plausibility of this time dilation can be understood by looking at the simple geometry of the space

ship example shown in Figure 164. Pretend that the clock in the proper frame of the space ship is based on

the time for the light to travel to and from the mirror in the space ship. In this proper frame the light has

the shortest distance to travel, and the proper transit time is

∆ =
2


(16.9)

In the fixed frame  the component of velocity in the direction of the mirror is
√
2 − 2 using the Pythagorus

theorem, assuming that the light cannot travel faster the . Thus the transit time towards and back from

the mirror must be

∆ =
2



q
1− ¡



¢2 = ∆ (16.10)

which is the predicted time dilation.



16.3. SPECIAL THEORY OF RELATIVITY 459

There are many experimental verifications of time dilation in physics. For example, a stationary muon

has a mean lifetime of  = 2 sec, whereas the lifetime of a fast moving muon, produced in the upper

atmosphere by high-energy cosmic rays, was observed in 1941 to be longer and given by  as described in

example 161. In 1972 Hafely and Keating used four accurate cesium atomic clocks to confirm time dilation.

Two clocks were flown on regularly scheduled airlines travelling around the World, one westward and the

other eastward. The other two clocks were used for reference. The westward moving clock was slow by

(273 ± 7) compared to the predicted value of (275 ± 10) sec. The Global Positioning System of 24

geosynchronous satellites is used for locating positions to within a few meters. It has an accuracy of a few

nanoseconds which requires allowance for time dilation and is a daily tribute to the correctness of Einstein’s

Theory of Relativity.

16.3.4 Length Contraction

The Lorentz transformation leads to a contraction of the apparent length of an object in a moving frame

as seen from a fixed frame. The length of a ruler in its own frame of reference is called the proper length.

Consider that we place an accurately known rod of proper length  = 02−01 that is, at rest in the moving
primed frame. The locations of both ends of this rod are measured at a given time in the stationary frame,

1 = 2 by taking a photograph of the moving rod. The corresponding locations in the moving frame are:

02 =  (2 − 2) (16.11)

01 =  (1 − 1)

Since 2 = 1, the measured lengths in the two frames are related by:

02 − 01 =  (2 − 1) (16.12)

That is, the lengths are related by:

 =
1


 (16.13)

Note that the moving rod appears shorter in the direction of motion. As  →  the apparent length

shrinks to zero in the direction of motion while the dimensions perpendicular to the direction of motion are

unchanged. This is called the Lorentz contraction. If you could ride your bicycle at close to the speed of

light, you would observe that stationary cars, buildings, people, all would appear to be squeezed thin along

the direction that you are travelling. Also objects that are further away down any side street would be

distorted in the direction of travel. A photograph taken by a stationary observer would show the moving

bicycle to be Lorentz contracted along the direction of travel and the stationary objects would be normal.

16.3.5 Simultaneity

The Lorentz transformations imply a new philosophy of space and time. A surprising consequence is that

the concept of simultaneity is frame dependent in contrast to the prediction of Newtonian mechanics.

Consider that two events occur in frame  at (1 1) and (2 2)  In frame 
0 these two events occur at

(01 
0
1) and (

0
2 

0
2)  From the Lorentz transformation the time difference is

02 − 01 = 

∙
(2 − 1)−  (2 − 1)

2

¸
(16.14)

If an event is simultaneous in frame  that is (2 − 1) = 0 then

02 − 01 = 

∙
 (1 − 2)

2

¸
(16.15)

Thus the event is not simultaneous in frame 0 if (2 − 1) =  6= 0 That is, an event that is simultaneous
in one frame is not simultaneous in the other frame if the events are spatially separated. The equivalent

statement is that for two clocks, spatially separated by a distance , which are synchronized in their rest

frame, then in a moving frame they are not simultaneous.
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Figure 16.5: If lightning strikes the front and rear of the carriage simultaneously, according to the man in

the fixed frame, then the woman in the moving frame sees the flash from the front first since she is moving

towards that approaching wavefront during the transit time of the light. Thus if the length of the carriage

in the stationary frame is (2 − 1) =  then the time difference is ∆
0 = 


2
.

Einstein discussed the example shown in figure 165, where lightning strikes both ends of a train simul-

taneously in the stationary earth frame of reference. A woman on the train will see that the strikes are

not simultaneous since the wavefront from the front of the carriage will be seen first because she is moving

forward during the time the light from the two lightning flashes is travelling towards her. As a consequence

she observes that the two lightning flashes are not simultaneous. This explains why measurement of the

length of a moving rod, performed by simultaneously locating both ends in the fixed frame, implies that the

measurement occurs at different times for both ends in the moving frame resulting in a shorter apparent

length. The lack of simultaneity explains why one can get the apparent inconsistency that the moving bicy-

clist sees that the stationary street block to be length contracted, while in contrast, a pedestrian sees that

the bicycle is length contracted.

The concept of causality breaks down since (02 − 01) can be either positive or negative, therefore the
corresponding ∆ can be positive of negative. A consequence of the lack of simultaneity is that the image

shown by a photograph of a rapidly moving object is not a true representation of the moving object. Not

only is the body contracted in the direction of travel, but also it appears distorted because light arriving

from the far side of the body had to be emitted earlier, that is, when the body was at an earlier location,

in order to reach the observer simultaneously with light from the near side. The relativistic snake paradox,

addressed in workshop exercise 1 is an excellent example of the role of simultaneity in relativistic mechanics.

16.1 Example: Muon lifetime

Many people had trouble comprehending the ideas of time dilation and Lorentz contraction in the Special

Theory of Relativity. The predictions appear to be crazy, but there are many examples where time dilation

and Lorentz contraction are observed experimentally such as the decay in flight of the muon. At rest, the

muon decays with a mean lifetime of 2  sec  Muons are created high in the atmosphere due to cosmic ray

bombardment. A typical muon travels at  = 0998 which corresponds to  = 15 Time dilation implies

that the lifetime of the moving muon in the earth’s frame of reference is 30 . The speed of the muon is

essentially  in both frames of reference, and it would travel 600 in 2  and 9000 in 30 . In fact,

it is observed that the muon does travel, on average, 9000 in the earth frame of reference before decaying.

Is this inconsistent with the view of someone travelling with the muon? In the muon’s moving frame, the

lifetime is only 2 , but the Lorentz contraction of distance means that 9000 in the earth frame appears

to be only 600 in the moving frame; a distance it travels is 2  sec. Thus in both frames of reference we

have consistent explanations, that is, the muon travels the height of the mountain in one lifetime.
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16.2 Example: Relativistic Doppler Effect

The relativistic Doppler effect is encountered frequently in physics and astronomy. Consider monochro-

matic electromagnetic radiation from a source, such as a star, that is moving towards the detector at a

velocity . During the time ∆ in the frame of the receiver, the source emits  cycles of the sinusoidal

waveform. Thus the length of this waveform, as seen by the receiver, is  which equals

 = (− )∆

The frequency as measured by the receiver is

 =



=



(− )∆

According to the source, it emits  waves of frequency 0 during the proper time interval ∆
0, that is

 = 0∆
0

This proper time interval ∆0, in the source frame, corresponds to a time interval ∆ in the receiver frame
where

∆ = ∆0

Thus the frequency measured by the receiver is

 =
1

(1− 

)

0


=

p
1− (


)2

(1− 

)

0 =

s
1 + 

1− 
0

where  ≡ 

. This formula for source and receiver approaching each other also gives the correct answer for

source and receiver receding if the sign of  is changed.

This relativistic Doppler Effect accounts for the red shift observed for light emitted by receding stars and

galaxies, as well as many examples in atomic and nuclear physics involving moving sources of electromagnetic

radiation.

16.3 Example: Twin paradox

A problem that troubled physicists for many years is called the twin paradox. Consider two identical

twins, Jack and Jill. Assume that Jill travels in a space ship at a speed of  = 4 for 20 years, as measured

by Jack’s clock, and then returns taking another 20 years, according to Jack. Thus, Jack has aged 40 years

by the time his twin sister returns home. However, Jill’s clock measures 204 = 5 years for each half of the

trip so that she thinks she travelled for 10 years total time according to her clock. Thus she has aged only 10

years on the trip, that is, now she is 30 years younger that her twin brother. Note that, according to Jill, the

distance she travelled out and back was 14 the distance according to Jack, so she perceives no inconsistency

in her clock, and the speed of the space ship. This was called a paradox because some people claimed that

Jill will perceive that the earth and Jack moved away at the same relative speed in the opposite direction and

thus according to Jill, Jack should be 30 years younger, not her. Moreover, some claimed that this problem

is symmetric and therefore both twins must still be the same age since there is no way of telling who was

moving away from whom. This argument is incorrect because Jill was able to sense that she accelerated to

 = 4 which destroys the symmetry argument. The effect is observed with accelerated beams of unstable

nuclei such as the muon and was confirmed by the results of the experiment where cesium atomic clocks were

flown around the Earth. Thus the Twin paradox is not a paradox; the fact is that Jill will be younger than

her twin brother.
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16.4 Relativistic kinematics

16.4.1 Velocity transformations

Consider the two parallel coordinate frames with the primed frame moving at a velocity  along the 01 axis
as shown in figure 161. Velocities of an object measured in both frames are defined to be

 =



(16.16)

0 =
0
0

Using the Lorentz transformations 163 165 between the two frames moving with relative velocity  along

the 1 axis, gives that the velocity along the 
0
1 axis is

01 =
01
0

=
1 − 

− 
2
1

=
1 − 

1− 1
2

(16.17)

Similarly we get the velocities along the perpendicular 02 and 03 axes to be

02 =
02
0

=
2

1− 1
2

(16.18)

03 =
03
0

=
3

1− 1
2

When 1
2
→ 0 these velocity transformations become the usual Galilean relations for velocity addition.

Do not confuse u and u0 with v; that is, u and u0 are the velocities of some object measured in the unprimed
and primed frames of reference respectively, whereas v is the relative velocity of the origin of one frame with

respect to the origin of the other frame.

16.4.2 Momentum

Using the classical definition of momentum, that is p =u, the linear momentum is not conserved using the

above relativistic velocity transformations if the mass  is a scalar quantity. This problem originates from

the fact that both x and  have non-trivial transformations and thus u =x

is frame dependent.

Linear momentum conservation can be retained by redefining momentum in a form that is identical in

all frames of reference, that is by referring to the proper time  as measured in the rest frame of the moving

object. Therefore we define relativistic linear momentum as

p ≡x


= 

x






(16.19)

But we know the time dilation relation

 =
q

(1− 2

2
)

=  (16.20)

Note that the  in this relation refers to the velocity  between the moving object and the frame; this is

quite different from the  = 1
(1− 2

2
)
which refers to the transformation between the two frames of reference.

Thus the new relativistic definition of momentum is

p ≡x


= 

x


= u (16.21)

The relativistic definition of linear momentum is the same as the classical definition with the rest mass

 replaced by the relativistic mass .1

1Note that, until recently, the rest mass was denoted by 0 and the relativistic mass was referred to as . Modern texts

denote the rest mass by  and the relativistic mass by . This book follows the modern nomenclature for rest mass to avoid

confusion.
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16.4.3 Center of momentum coordinate system

The classical relations for handling the kinematics of colliding objects, carry over to special relativity when the

relativistic definition of linear momentum, equation 1621, is assumed. That is, one can continue to apply

conservation of linear momentum. However, there is one important conceptual difference for relativistic

dynamics in that the center of mass no longer is a meaningful concept due to the interrelation of mass

and energy. However, this problem is eliminated by considering the center of momentum coordinate system

which, as in the non-relativistic case, is the frame where the total linear momentum of the system is zero.

Using the concept of center of momentum allows use of the formalism of classical non-relativistic kinematics.

16.4.4 Force

Newton’s second law F =p

is covariant under a Galilean transformation. In special relativity this definition

also applies using the relativistic definition of momentum p. The fact that the relativistic momentum p

is conserved in the force-free situation, leads naturally to using the definition of force to be

F =
p


(16.22)

Then the relativistic momentum is conserved if F =0

16.4.5 Energy

The classical definition of work done is defined by

12 =

Z 2

1

F·r =2 − 1 (16.23)

Assume 1 = 0 let r = u and insert the relativistic force relation in equation 1623, gives

 =  =

Z 

0




(u) ·u = 

Z 

0

 () (16.24)

Integrate by parts, followed by algebraic manipulation, gives

 = 2 −

Z 

0

q
1− 2

2

= 2 +2

r
1− 2

2
−2

=
2q
1− 2

2

+
2q
1− 2

2

µ
1− 2

2

¶
−2 = 2 ( − 1) (16.25)

Define the rest energy 0
0 ≡ 2 (16.26)

and total relativistic energy 

 ≡ 2 (16.27)

then equation 1625 can be written as

 =  +0 = 2 (16.28)

This is the famous Einstein relativistic energy that relates the equivalence of mass and energy. The total

relativistic energy  is a conserved quantity in nature. It is an extension of the conservation of energy and

manifestations of the equivalence of energy and mass occur extensively in the real world.

In nuclear physics we often convert mass to energy and back again to mass. For example, gamma

rays with energies greater than 1022 , which are pure electromagnetic energy, can be converted to an

electron plus positron both of which have rest mass. The positron can then annihilate a different electron in

another atom resulting in emission of two 511 gamma rays in back to back directions to conserve linear

momentum. A dramatic example of Einstein’s equation is a nuclear reactor. One gram of material, the mass
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of a paper clip, provides  = 9× 1013joules. This is the daily output of a 1 nuclear power station or

the explosive power of the Nagasaki or Hiroshima bombs.

As the velocity of a particle  approaches  then  and the relativistic mass  both approach infinity.

This means that the force needed to accelerate the mass also approaches infinity, and thus no particle can

exceed the velocity of light. The energy continues to increase not by increasing the velocity but by increase

of the relativistic mass. Although the relativistic relation for kinetic energy is quite different from the

Newtonian relation, the Newtonian form is obtained for the case of    in that

 = 2(1− 2

2
)−

1
2 −2 = 2(1 +

1

2

2

2
+ · · ·)−2 =

1

2
2 (16.29)

An especially useful relativistic relation that can be derived from the above is

2 = 22 +20 (16.30)

This is useful because it provides a simple relation between total energy of a particle and its relativistic

linear momentum plus rest energy.

16.4 Example: Rocket propulsion

Consider a rocket, having initial mass  is accelerated in a straight line in free space by exhausting

propellant at a constant speed  relative to the rocket. Let  be the speed of the rocket relative to it’s initial

rest frame  when its rest mass has decreased to . At this instant the rocket is at rest in the inertial frame

0. At a proper time  +  the rest mass is −  and it has acquired a velocity increment  relative to

0 and propellant of rest mass  has been expelled with velocity  relative to 0. At proper time  in 0

the rest mass is 2. At the time  +  energy conservation requires that

0 (− ) 2 + 
2 = 2

At the same instant, conservation of linear momentum requires

0 (− ) 0 −  = 0

To first order these two equations simplify to

 =

r
1−

³


´2


0 = 

Therefore

0 =  ()

The velocity increment 0 in frame 0 can be transformed back to frame  using equation 165, that is

+  =
+ 0

1 + 0
2

≈ +

µ
1−

³


´2¶
0 ()

Equations  and  yield a differential equation for () of



1− ¡


¢2 = 




Integrate the left-hand side between 0 and  and the right-hand side between  and  gives

1

2
 ln

µ
1 + 



1− 


¶
= − ln

³


´
This reduces to




=
1− ¡



¢2
1 +

¡



¢2
When 


→ 0 this equation reduces to the non-relativistic answer given in equation 2123.
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16.5 Geometry of space-time

16.5.1 Four-dimensional space-time

In 1906 Poincaré showed that the Lorentz transformation can be regarded as a rotation in a 4-dimensional

Euclidean space-time produced by adding an imaginary fourth space-time coordinate  to the three real

spatial coordinates. In 1908 Minkowski reformulated Einstein’s Special Theory of Relativity in this 4-

dimensional Euclidean space-time vector space and concluded that the spatial variables  where ( = 1 2 3) 

plus the time 0 =  are equivalent variables and should be treated equally using a covariant representation

of both space and time. The idea of using an imaginary time axis  to make space-time Euclidean was

elegant, but it obscured the non-Euclidean nature of space-time as well as causing difficulties when generalized

to non-inertial accelerating frames in the General Theory of Relativity. As a consequence, the use of the

imaginary  has been abandoned in modern work. Minkowski developed an alternative non-Euclidean

metric that treats all four coordinates (   ) as a four-dimensional Minkowski metric with all coordinates

being real, and introduces the required minus sign explicitly.

Analogous to the usual 3-dimensional cartesian coordinates, the displacement four vector s is defined

using the four components along the four unit vectors in either the unprimed or primed coordinate frames.

s = 0ê0 + 1ê1 + 2ê2 + 3ê3 = 00ê00 + 01ê01 + 02ê02 + 03ê03 (16.31)

The convention used is that greek subscripts (covariant) or superscripts (contravariant) designate a four

vector with 0 ≤  ≤ 3 The covariant unit vectors ê are written with the subscript  which has 4 values
0 ≤  ≤ 3. As described in appendix 3, using the Einstein convention the components are written with

the contravariant superscript  where the time axis 0 = , while the spatial coordinates, expressed in

cartesian coordinates, are 1 = , 2 = , and 3 = . With respect to a different (primed) unit vector basis

ê0 the displacement must be unchanged as given by equation 1631. In addition, equation 1643 shows that
the magnitude ||2 of the displacement four vector is invariant to a Lorentz transformation.
The most general Lorentz transformation between inertial coordinate systems  and 0, in relative motion

with velocity v, assuming that the two sets of axes are aligned, and that their origins overlap when  = 0 = 0,
is given by the symmetric matrix  where

0 =
X



 (16.32)

This Lorentz transformation of the four vector X components can be written in matrix form as

X0 = λX (16.33)

Assuming that the two sets of axes are aligned, then the elements of the Lorentz transformation  are

given by

X0 =

⎛⎜⎜⎝
0

01

02

03

⎞⎟⎟⎠=
⎛⎜⎜⎜⎜⎝

 −1 −2 −3
−1 1 + ( − 1)21

2
( − 1)12

2
( − 1)13

2

−2 ( − 1)12
2

1 + ( − 1)22
2

( − 1)23
2

−3 ( − 1)13
2

( − 1)23
2

1 + ( − 1)23
2

⎞⎟⎟⎟⎟⎠ ·
⎛⎜⎜⎝



1

2

3

⎞⎟⎟⎠ (16.34)

where  = 

and  = 1√

1−2
and assuming that the origin of  transforms to the origin of 0 at (0 0 0 0).

For the case illustrated in figure 161 where the corresponding axes of the two frames are parallel and in

relative motion with velocity  in the 1 direction, then the Lorentz transformation matrix 1634 reduces to⎛⎜⎜⎝
0

01

02

03

⎞⎟⎟⎠=
⎛⎜⎜⎝

 − 0 0

−  0 0

0 0 1 0

0 0 0 1

⎞⎟⎟⎠ ·
⎛⎜⎜⎝



1

2

3

⎞⎟⎟⎠ (16.35)

This Lorentz transformation matrix is called a standard boost since it only boosts from one frame to another

parallel frame. In general a rotation matrix also is incorporated into the transformation matrix  for the

spatial variables.
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16.5.2 Four-vector scalar products

Scalar products of vectors and tensors usually are invariant to rotations in three-dimensional space providing

an easy way to solve problems. The scalar, or inner, product of two four vectors is defined by

X · Y = 
  =

¡
0 1 2 3

¢ ·
⎛⎜⎜⎝
1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

⎞⎟⎟⎠ ·
⎛⎜⎜⎝

 0

 1

 2

 3

⎞⎟⎟⎠ (16.36)

= 0 0 −1 1 −2 2 −3 3

The correct sign of the inner product is obtained by inclusion of the Minkowski metric  defined by

 ≡ ê · ê (16.37)

that is, it can be represented by the matrix

 ≡

⎛⎜⎜⎝
1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

⎞⎟⎟⎠ (16.38)

The sign convention used in the Minkowski metric, equation 1638 has been chosen with the time coordinate

()
2
positive which makes ()

2
 0 for objects moving at less than the speed of light and corresponds to

 being real.2

The presence of the Minkowski metric matrix, in the inner product of four vectors, complicates General

Relativity and thus the Einstein convention has been adopted where the components of the contravariant

four-vector X are written with superscripts  See also appendix . The corresponding covariant four-

vector components are written with the subscript  which is related to the contravariant four-vector

components  using the  component of the covariant Minkowski metric matrix g That is

 =

3X
=0


 (16.39)

The contravariant metric component  is defined as the  component of the inverse metric matrix g−1

where

gg−1 = I = g−1g (16.40)

where I is the four-vector identity matrix. The contravariant components of the four vector can be expressed

in terms of the covariant components as

 =

3X
=0

 (16.41)

Thus equations 1639 and 1641 can be used to transform between covariant and contravariant four vectors,

that is, to raise or lower the index .

The scalar inner product of two four vectors can be written compactly as the scalar product of a covariant

four vector and a contravariant four vector. The Minkowski metric matrix can be absorbed into either X or
Y thus

X · Y =
3X

=0

3X
=0


  =

3X
=0


 =

3X
=0

 (16.42)

If this covariant expression is Lorentz invariant in one coordinate system, then it is Lorentz invariant in all

coordinate systems obtained by proper Lorentz transformations.

2Older textbooks, such as all editions of Marion, and the first two editions of Goldstein, use the Euclidean Poincaré 4-

dimensional space-time with the imaginary time axis . About half the scientific community, and modern physics textbooks

including this textbook and the 3 edition of Goldstein, use the Bjorken - Drell +−−−, sign convention given in equation
1638 where 0 ≡  and 1 2 3 are the spatial coordinates. The other half of the community, including mathematicians

and gravitation physicists, use the opposite −+++ sign convention. Further confusion is caused by a few books that assign
the time axis  to be 4 rather than 0
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The scalar inner product of the invariant space-time interval is an especially important example.

()
2 ≡ X·X=2 () 2 − (r)2 = ()2 −

3X
=1

2 = ()
2

(16.43)

This is invariant to a Lorentz transformation as can be shown by applying the Lorentz standard boost

transformation given above. In particular, if 0 is the rest frame of the clock, then the invariant space-time
interval  is simply given by the proper time interval  .

16.5.3 Minkowski space-time

Figure 166 illustrates a three-dimensional
¡
 1 2

¢
representation of the 4−dimensional space-time dia-

gram where it is assumed that 3 = 0. The fact that the velocity of light has a fixed velocity leads to the

concept of the light cone defined by the locus of || = .

Inside the light cone

Figure 16.6: The light cone in the

 1 2 space is defined by the condition

X · X =22 − 2 = 0 and divides space-time

into the forward and backward light cones,

with   0 and   0 respectively; the interi-

ors of the forward and backward light cones

are called absolute future and absolute past.

The vertex of the cones represent the present. Locations in-

side the upper cone represent the future while the past is

represented by locations inside the lower cone. Note that

()
2
=2 () 2 − (r)2  0 inside both the future and past

light cones. Thus the space-time interval ∆ is real and pos-

itive for the future, whereas it is real and negative for the

past relative to the vertex of the light cone. A world line

is the trajectory a particle follows is a function of time in

Minkowski space. In the interior of the future light cone

∆  0 and, since it is real, it can be asserted unambiguously

that any point inside this forward cone must occur later than

at the vertex of the cone, that is, it is the absolute future.

A Lorentz transformation can rotate Minkowski space such

that the axis 0 goes through any point within this light cone

and then the "world line" is pure time like. Similarly, any

point inside the backward light cone unambiguously occurred

before the vertex, i.e. it is absolute past.

Outside the light cone

Outside of the light cone, has ()
2
=2 () 2 − (r)2  0

and thus ∆ is imaginary and is called space like. A space-

like plane hypersurface in spatial coordinates is shown for the

present time in the unprimed frame. A rotation in Minkowski

space can be made to 0 such that the space-like hypersurface
now is tilted relative to the hypersurface shown and thus any

point  outside the light cone can be made to occur later,

simultaneous, or earlier than at the vertex depending on the

orientation of the space-like hypersurface. This startling situation implies that the time ordering of two

points, each outside the others light cone, can be reversed which has profound implications related to the

concept of simultaneity and the notion of causality.

For the special case of two events lying on the light cone
P4

 
2
 = 22 − ¡21 + 22 + 23

¢
= 0 and thus

these events are separated by a light ray travelling at velocity  Only events separated by time-like intervals

can be connected causally. The world line of a particle must lie within its light cone. The division of intervals

into space-like and time-like, because of their invariance, is an absolute concept. That is, it is independent

of the frame of reference.

The concept of proper time can be expanded by considering a clock at rest in frame 0 which is moving
with uniform velocity  with respect to a rest frame . The clock at rest in the 0 frame measures the proper
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time  , then the time observed in the fixed frame can be obtained by looking at the interval  Because of

the invariance of the interval, 2 then

2 = 22 = 22 − £21 + 22 + 23
¤

(16.44)

That is,

 = 

"
1−

¡
21 + 22 + 23

¢
22

# 1
2

= 

∙
1− 2

2

¸ 1
2

=



(16.45)

that is  =  which satisfies the normal expression for time dilation, 168.

16.5.4 Momentum-energy four vector

The previous four-vector discussion can be elegantly exploited using the covariant Minkowski space-time

representation. Separating the spatial and time of the differential four vector gives

X =( x) (16.46)

Remember that the square of the four-dimensional space-time element of length ()
2
is invariant (1643),

and is simply related to the proper time element  . Thus the scalar product

X·X = 2 = 22 = 22 − £21 + 22 + 23
¤

(16.47)

Thus the proper time is an invariant.

The ratio of the four-vector element X and the invariant proper time interval  is a four-vector called
the four-vector velocity U where

U =
X


=

µ





x



¶
= 

µ

x



¶
=  (u) (16.48)

where u is the particle velocity, and  =
1

(1−2

2
)
.

The four-vector momentum P can be obtained from the four-vector velocity by multiplying it by the

scalar rest mass 

P = U = ( u) (16.49)

However,

 =



(16.50)

thus the momentum four vector can be written as

P =
µ



p

¶
(16.51)

where the vector p represents the three spatial components of the relativistic momentum. It is interesting to

realize that the Theory of Relativity couples not only the spatial and time coordinates, but also, it couples

their conjugate variables linear momentum p and total energy, 

.

An additional feature of this momentum-energy four vector P, is that the scalar inner product P · P is
invariant to Lorentz transformations and equals ()2 in the rest frame

P · P =
3X

=0

3X
=0


  =

3X
=0

3X
=0


 = (




)2 − |p|2 = 22 (16.52)

which leads to the well-known equation

2 = 22 +20 (16.53)

The Lorentz transformation matrix  can be applied to P

P0 = λP (16.54)

The Lorentz invariant four-vector representation is illustrated by applying the Lorentz transformation

shown in figure 161, which gives, 01 = 
³
1 −

¡



¢2

´
, 02 = 2, 

0
3 = 3, and 0 =  ( − 1).
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16.6 Lorentz-invariant formulation of Lagrangian mechanics

16.6.1 Parametric formulation

The Lagrangian and Hamiltonian formalisms in classical mechanics are based on the Newtonian concept

of absolute time  which serves as the system evolution parameter in Hamilton’s Principle. This approach

violates the Special Theory of Relativity. The extended Lagrangian and Hamiltonian formalism is a para-

metric approach, pioneered by Lanczos[La49], that introduces a system evolution parameter  that serves

as the independent variable in the action integral, and all the space-time variables () () are dependent

on the evolution parameter . This extended Lagrangian and Hamiltonian formalism renders it to a form

that is compatible with the Special Theory of Relativity. The importance of the Lorentz-invariant extended

formulation of Lagrangian and Hamiltonian mechanics has been recognized for decades.[La49, Go50, Sy60]

Recently there has been a resurgence of interest in the extended Lagrangian and Hamiltonian formalism

stimulated by the papers of Struckmeier[Str05, Str08] and this formalism has featured prominently in recent

textbooks by Johns[Jo05] and Greiner[Gr10]. This parametric approach develops manifestly-covariant La-

grangian and Hamiltonian formalisms that treat equally all 2+1 space-time canonical variables. It provides

a plausible manifestly-covariant Lagrangian for the one-body system, but serious problems exist extending

this to the  -body system when   1. Generalizing the Lagrangian and Hamiltonian formalisms into the

domain of the Special Theory of Relativity is of fundamental importance to physics, while the parametric

approach gives insight into the philosophy underlying use of variational methods in classical mechanics.3

In conventional Lagrangian mechanics, the equations of motion for the  generalized coordinates are

derived by minimizing the action integral, that is, Hamilton’s Principle.

(q q̇) = 

Z 



(q() q̇()) = 0 (16.55)

where (q() q̇()) denotes the conventional Lagrangian. This approach implicitly assumes the Newtonian

concept of absolute time  which is chosen to be the independent variable that characterizes the evolution

parameter of the system. The actual path [q() q̇()] the system follows is defined by the extremum of the

action integral (q q̇) which leads to the corresponding Euler-Lagrange equations. This assumption is

contrary to the Theory of Relativity which requires that the space and time variables be treated equally,

that is, the Lagrangian formalism must be covariant.

16.6.2 Extended Lagrangian

Lanczos[La49] proposed making the Lagrangian covariant by introducing a general evolution parameter 

and treating the time as a dependent variable () on an equal footing with the configuration space variables

() That is, the time becomes a dependent variable 0() = () similar to the spatial variables ()

where 1 ≤  ≤ . The dynamical system then is described as motion confined to a hypersurface within an

extended space where the value of the extended Hamiltonian and the evolution parameter  constitute an

additional pair of canonically conjugate variables in the extended space. That is, the canonical momentum

0 corresponding to 0 =  is 0 =


similar to the momentum-energy four vector, equation 1651.

An extended Lagrangian L(q()q()


()
()


) can be defined which can be written compactly as

L(()
()


) where the index 0 ≤  ≤  denotes the entire range of space-time variables.

This extended Lagrangian can be used in an extended action functional S(qq

 


) to give an extended

version of Hamilton’s Principle4

S(q
q







) = 

Z 



L(()
()


) = 0 (16.56)

3Chapters 166 and 167 reproduce the Struckmeier presentation.[Str08]
4These formula involve total and partial derivatives with respect to both time,  and parameter . For clarity, the derivatives

are written out in full because Lanczos[La49] and Johns[Jo05] use the opposite convention for the dot and prime superscripts

as abbreviations for the differentials with respect to  and . The blackboard bold format is used to designate the extended

versions of the action S, Lagrangian L and Hamiltonian H.
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The conventional action  and extended action S, address alternate characterizations of the same underlying
physical system, and thus the action principle implies that  = S = 0 must hold simultaneously. That is,



Z 



(q
q


)




 = 

Z 



L(q
q







) (16.57)

As discussed in chapter 133 there is a continuous spectrum of equivalent gauge-invariant Lagrangians for

which the Euler-Lagrange equations lead to identical equations of motion. Equation 1657 is satisfied if the

conventional and extended Lagrangians are related by

L(q
q







) = (q

q


)




+

Λ(q)


(16.58)

where Λ(q) is a continuous function of q and  that has continuous second derivatives. It is acceptable to

assume that
Λ(q)


= 0, then the extended and conventional Lagrangians have a unique relation requiring

no simultaneous transformation of the dynamical variables. That is, assume

L(q
q







) = (q

q


)




(16.59)

Note that the time derivative of q can be expressed in terms of the  derivatives by

q


=

q


(16.60)

Thus, for a conventional Lagrangian with  variables, the corresponding extended Lagrangian is a function

of  + 1 variables while the conventional and extended Lagrangians are related using equations 1659 and

1660.

The derivatives of the relation between the extended and conventional Lagrangians lead to

L


=






(16.61)

L


=







(16.62)

L


³




´ =



³




´ (16.63)

L


¡



¢ = −
X

=1




³




´ 


(16.64)

where 1 ≤  ≤  since the  = 0 time derivatives are written explicitly in equations 1662 1664.

Equations 1663 — 1664, summed over the extended range 0 ≤  ≤  of time and spatial dynamical

variables, imply

X
=0

L


³




´ µ


¶
= 




−

X
=1




³




´ 





+

X
=1




³




´ 


= L (16.65)

Equation 1665 can be written in the form

L−
X

=0

L


³




´ 


=

½ 6≡
=0 if L is not homogeneous in





≡ 0 if L is homogeneous in 



(16.66)

If the extended Lagrangian L(qq

 


) is homogeneous to first order in the +1 variables 


, then Euler’s

theorem on homogeneous function trivially implies the relation given in equation 1666. Struckmeier[Str08]

identified a subtle but important point that if L is not homogeneous in 


 then equation 1666 is not an

identity but is an implicit equation that is always satisfied as the system evolves according to the solution

of the extended Euler-Lagrange equations. Then equation 1659 is satisfied without it being a homogeneous

form in the +1 velocities 



. This introduces a new class of non-homogeneous Lagrangians. The relativistic

free particle, discussed in example 165 is a case of a non-homogeneous extended Lagrangian.
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16.6.3 Extended generalized momenta

The generalized momentum is defined by

 =



³




´ (16.67)

Assume that the definitions of the extended Lagrangian L, and the extended Hamiltonian H, are related
by a Legendre transformation, and are based on variational principles, analogous to the relation that exists

between the conventional Lagrangian  and Hamiltonian . The Legendre transformation requires defining

the extended generalized (canonical) momentum-energy four vector P()= (E()

p()). The momentum

components of the momentum-energy four vector P()= (E()

p()) are given by the 1 ≤  ≤  components

using equation 1663

() =
L


³




´ = 


³




´ (16.68)

The  = 0 component of the momentum-energy four vector can be derived by recognizing that the right-hand

side of equation 1664 is equal to −(  ). That is, the corresponding generalized momentum 0 that

is conjugate to 0 =  is given by

0 =
L


³
0



´ = 1



Ã
L


¡



¢! = 1



⎛⎝−
X

=1




³




´ 


⎞⎠ = −( 
 )


(16.69)

16.6.4 Extended Lagrange equations of motion

By direct analogy with the non-relativistic action integral 1655 the extremum for the relativistic action

integral S(qq

 


) is obtained using the Euler-Lagrange equations derived from equation 1656 where the

independent variable is . This implies that for 0 ≤  ≤ 





⎛⎝ L


³




´
⎞⎠− L


= Q

 =

X
=1









+






(16.70)

where the extended generalized force Q
 shown on the right-hand side of equation 1670 accounts for all

forces not included in the potential energy term in the Lagrangian. The extended generalized force Q
 can

be factored into two terms as discussed in chapter 6, equation 647. The Lagrange multiplier term includes

1 ≤  ≤  holonomic constraint forces where the  holonomic constraints, which do no work, are expressed

in terms of the  algebraic equations of holonomic constraint . The 

 term includes the remaining

constraint forces and generalized forces that are not included in the Lagrange multiplier term or the potential

energy term of the Lagrangian.

For the case where  = 0, since 0 = , then equation 1670 reduces to
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(16.71)

These Euler-Lagrange equations of motion 1670 1671 determine the 1 ≤  ≤  generalized coordinates

() plus 0 = () in terms of the independent variable .

If the holonomic equations of constraint are time independent, that is 

= 0 and if Q

0 = 0, then

the  = 0 term of the Euler-Lagrange equations simplifies to





Ã
L


¡



¢!− L

= 0 (16.72)

One interpretation is to select  to be primary. Then L is derived from  using equation 1659 and L
must satisfy the identity given by equation 1666 while the Euler-Lagrange equations containing 


yield an

identity which implies that  does not provide an equation of motion in terms of (). Conversely, if L is



472 CHAPTER 16. RELATIVISTIC MECHANICS

chosen to be primary, then L is no longer a homogeneous function and equation 1666 serves as a constraint
on the motion that can be used to deduce , while 


yields a non-trivial equation of motion in terms of

(). In both cases the occurrence of a constraint surface results from the fact that the extended space has

2+2 variables to describe 2+1 degrees of freedom, that is, one more degree of freedom than required for

the actual system.

16.5 Example: Lagrangian for a relativistic free particle

The standard Lagrangian  =  −  is not Lorentz invariant. The extended Lagrangian ( q

  


)

introduces the independent variable  which treats both the space variables () and time variable 0 = ()

equally. This can be achieved by defining the non-standard Lagrangian

L(q
q







) =

1

2
2

"
1

2

µ
q



¶2
− ( 


)2 − 1

#
()

The constant third term in the bracket is included to ensure that the extended Lagrangian converges to the

standard Lagrangian in the limit 

→ 1.

Note that the extended Lagrangian () is not homogeneous to first order in the velocities q

as is required.

Equation 1666 must be used to ensure that equation () is homogeneous. That is, it must satisfy the

constraint relation µ




¶2
− 1

2

µ
q



¶2
− 1 = 0 ()

Inserting () into the extended Lagrangian () yields that the square bracket in equation  must equal 2.

Thus

|L| = 1

2
2 [−2] = −2 ()

The constraint equation () implies that




=

s
1− 1

2

µ
q



¶2
=
1


()

Using equation () gives that the relativistic Lagrangian is

 =
L

= −2


= −2

q
1− 2 ()

Equation () is the conventional relativistic Lagrangian derived by assuming that the system evolution para-

meter  is transformed to be along the world line  where the invariant length  replaces the proper time

interval

 =  =



()

The definition of the generalized (canonical) momentum

 =


̇
= ̇ ()

leads to the relativistic expression for momentum given in equation 1621.

The relativistic Lagrangian is an important example of a non-standard Lagrangian. Equation () does not

equal the difference between the kinetic and potential energies, that is, the relativistic expression for kinetic

energy is given by 1628 to be

 = ( − 1)2 ()

The non-standard relativistic Lagrangian () can be used with the Euler-Lagrange equations to derive the

second-order equations of motion for both relativistic and non-relativistic problems within the Special Theory

of Relativity.
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16.6 Example: Relativistic particle in an external electromagnetic field

A charged particle moving at relativistic speed in an external electromagnetic field provides an example

of the use of the relativistic Lagrangian.

In the discussion of classical mechanics it was shown that the velocity-dependent Lorentz force can be

absorbed into the scalar electric potential Φ plus the vector magnetic potential A. That is, the potential

energy is given by equation 76 to be  = (Φ−A · v) Including this in the Lagrangian, 1671 gives

 = −2


−  = −2

q
1− 2 − Φ+ A · v

The three spatial partial derivatives can be written in vector notation as



r
= −∇Φ+ 


∇(v ·A) ()

and the generalized momentum is given by

p =


v
= v+ A

which is identical to the non-relativistic answer given by equation 76. That is, it includes the momentum of

the electromagnetic field plus the classical linear momentum of the moving particle.

The total time derivative of the generalized momentum is

p


=





µ


v

¶
=




(v) + 

A


()

where the last term is given by the chain rule

A


=

A


+ (v ·∇)A ()

Using equations    in the Euler-Lagrange equation gives





µ


v

¶
=



r




(v) + 

A


= −∇Φ+ ∇(v ·A)

Collecting terms and using the well-known vector-product identity, plus the definition B =∇×A gives



(v) = −

∙
∇Φ− 

A



¸
+  [∇(v ·A)− (v ·∇)A]

= −
∙
∇Φ− A



¸
+  [v ×∇×A]

F =  [E+ v×B]

If we adopt the definition that the relativistic canonical momentum is  =  then the left hand side is

the relativistic force while the right-hand side is the well-known Lorentz force of electromagnetism. Thus

the extended Lagrangian formulation correctly reproduces the well-known Lorentz force for a charged particle

moving in an electromagnetic field.
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16.7 Lorentz-invariant formulations of Hamiltonian mechanics

16.7.1 Extended canonical formalism

A Lorentz-invariant formulation of Hamiltonian mechanics can be developed that is built upon the extended

Lagrangian formalism assuming that the Hamiltonian and Lagrangian are related by a Legendre transfor-

mation. That is,

(qp ) =

X
=1





− (q

q


 ) (16.73)

where the generalized momentum is defined by

 =



³




´ (16.74)

Struckmeier[Str08] assumes that the definitions of the extended Lagrangian L, and the extended Hamil-
tonian H, are related by a Legendre transformation, and are based on variational principles, analogous to the
relation that exists between the conventional Lagrangian  and Hamiltonian . The Legendre transforma-

tion requires defining the extended generalized (canonical) momentum-energy four vector P()= (E()

p()).

The momentum components of the momentum-energy four vector P()= (E()

p()) are given by the 1 ≤

 ≤  components using either the conventional or the extended Lagrangians as given in equation 1668

() =
L


³




´ = 


³




´ (1668)

The  = 0 component of the momentum-energy four vector is given by equation 1669

0 =
1
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¡



¢! = −(  )


= −E()


(16.75)

where E() represents the instantaneous generalized energy of the conventional Hamiltonian at the point 
but not the functional form of (q()p() ()). That is

E() 6≡=(q()p() ()) (16.76)

Note that E() does not give the function (qp ). Equations 1668 and 1669 give that

0() = −E()


(16.77)

The extended Hamiltonian H(qp  E()), in an extended phase space, can be defined by the Legendre
transformation and the four-vector P to be

H(qp  E()) = (P·q)− L(qq






) (16.78)
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) (16.79)

where the 0 term has been written explicitly as −E 

in equation 1679. The extended Hamiltonian

H((qp  E()) can carry all the information on the dynamical system that is carried by the extended

Lagrangian L(qq

 


) if the Hesse matrix is non-singular. That is, if

det

⎛⎝ 2L


³




´
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´
⎞⎠ 6= 0 (16.80)
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If the extended Lagrangian L(qq

 


) is not homogeneous in the +1 velocities 


, then the extended

set of Euler-Lagrange equations 1672 is not redundant. Thus equation 1666 is not an identity but it can be

regarded as an implicit equation that is always satisfied by the extended set of Euler-Lagrange equations. As

a result, the Legendre transformation to an extended Hamiltonian exists. That is, equation 1666 is identical

to the Legendre transform for H((qp  E()) which was shown to equal zero. Therefore
H(q()p() () E()) = 0 (16.81)

which means that the extended Hamiltonian H((qp  E()) directly defines the restricted hypersurface on
which the particle motion is confined.

The extended canonical equations of motion, derived using the extended HamiltonianH(q()p() () E())
with the usual Hamiltonian mechanics relations, are:

H


=



(16.82)

H


= −


(16.83)

H


=
E


(16.84)

H
E = − 


(16.85)

These canonical equations give that the total derivative of H((q()p() () E()) with respect to  is
H
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H
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E
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E

= 0 (16.86)

That is, in contrast to the total time derivative of (qp ), the total  derivative of the extended Hamil-

tonian H((q()p() () E()) always vanishes, that is, H(q()p() () E()) is autonomous which is ideal
for use with Hamilton’s equations of motion. The constraints give thatH(q()p() () E()) = 0, (equation
1681) and H


= 0, (equation 1686) implying that the correlation between the extended and conventional

Hamiltonians is given by
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(16.89)

= ((qp )− E) 

= 0 (16.90)

since only the term with  = 0 does not cancel in equation 1679. Equations 1681 and 1690 give that both the

left and right-hand sides of equation 1690 are zero while equation 1686 implies that H((q()p() () E())
is a constant of motion, that is,  is a cyclic variable for H((q()p() () E()). Formally one can consider
the extended Hamiltonian is a constant which equals zero

H(qp  E()) = E() = 0 (16.91)

Equations 1684 1685 imply that (E  ) form a pair of canonically conjugate variables in addition to the

newly-introduced canonically-conjugate variables (E() ). Equation 1690 shows that the motion in the
2 + 2 extended phase space is constrained to the surface reflecting the fact that the observed system has

one less degree of freedom than used by the extended Hamiltonian.

In summary, the Lorentz-invariant extended canonical formalism leads to Hamilton’s first-order equations

of motion in terms of derivatives with respect to  where  is related to the proper time  for a relativistic

system.
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16.7.2 Extended Poisson Bracket representation

Struckmeier[Str08] investigated the usefulness of the extended formalism when applied to the Poisson bracket

representation of Hamiltonian mechanics. The extended Poisson bracket for two differentiable functions 

and  is defined as

[[]] =

X
=1

µ






− 







¶
− 






+








(16.92)

As for the conventional Poisson bracket discussed in chapter 14, the extended Poisson also leads to the

fundamental Poisson bracket relations££
 

¤¤
= 0 [[  ]] = 0

££
 

¤¤
=  (16.93)

where   = 0 1  . These are identical to the non-extended fundamental Poisson brackets.

The discussion of observables in Hamiltonian mechanics in chapter 1434 can be trivially expanded to

the extended Poisson bracket representation. In particular, the total  derivative of the function  is given

by



=




+ [[H]] (16.94)

If  commutes with the extended Hamiltonian, that is, the Poisson bracket equals zero, and if 

= 0, then



= 0. That is, the observable  is a constant of motion.

Substitute the fundamental variables for  gives




= [[H]] = − H





= [[H]] =

H


(16.95)

where   = 0 1  . These are Hamilton’s extended canonical equations of motion expressed in terms of

the system evolution parameter . The extended Poisson bracket representation is a trivial extension of the

conventional canonical equations presented in chapter 143.

16.7.3 Extended canonical transformation and Hamilton-Jacobi theory

Struckmeier[Str08] presented plausible extended versions of canonical transformation and Hamilton-Jacobi

theories that can be used to provide a Lorentz-invariant formulation of Hamiltonian mechanics for relativistic

one-body systems. A detailed description can be found in Struckmeier[Str08].5

16.7.4 Validity of the extended Hamilton-Lagrange formalism

It has been shown that the extended Lagrangian and Hamiltonian formalism, based on the parametric model

of Lanczos[La49], leads to a plausible manifestly-covariant approach for the one-body system. The general

features developed for handling Lagrangian and Hamiltonian mechanics carry over to the Special Theory

of Relativity assuming the use of a non-standard, extended Lagrangian or Hamiltonian. This expansion of

the range of validity of the well-known Hamiltonian and Lagrangian mechanics into the relativistic domain

is important, and reduces any Lorentz transformation to a canonical transformation. The validity of this

extended Hamilton-Lagrange formalism has been criticized, and problems exist extending this approach to

the  -body system for   1. For example, as discussed by Goldstein[Go50] and Johns[Jo05], each of

the  moving bodies have their own world lines and momenta. Defining the total momentum P requires

knowing simultaneously the momenta of the individual bodies, but simultaneity is body dependent and

thus even the total momentum is not a simple four vector. A general method is required that will allow

using a manifestly-covariant Lagrangian or Hamiltonian for the  -body system. For the one-body system,

the extended Hamilton-Lagrange formalism provides a powerful and logical approach to exploit analytical

mechanics in the relativistic domain that retains the form of the conventional Lagrangian/Hamiltonian

formalisms. Note that Noether’s theorem relating energy and time is readily apparent using the extended

formalism.

5Note that Greiner[Gr10] includes a reproduction of the Struckmeier paper[Str08].
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16.7 Example: The Bohr-Sommerfeld hydrogen atom

The classical relativistic hydrogen atom was first solved by Sommerfeld in 1916. Sommerfeld used Bohr’s

"old quantum theory" plus Hamiltonian mechanics to make an important step in the development of quantum

mechanics by obtaining the first-order expressions for the fine structure of the hydrogen atom. As in the

non-relativistic case, the motion is confined to a plane allowing use of planar polar coordinates. Thus the

relativistic Lagrangian is given by

 = −2


−  = −2

s
1− ̇2 + 2̇

2

2
+

2



The advance of the perihelion of

bound orbits due to the dependence

of the relativistic mass on velocity.

The canonical momenta are given by
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As for the non-relativistic case,  is a cyclic variable and thus the

angular momentum  = 2̇ is conserved.

The relativistic Hamiltonian for the Coulomb potential between an

electron and the proton, assuming that the motion is confined to a

plane, which allows use of planar polar coordinates, leads to
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r
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The same equations of motion are obtained using Hamiltonian mechanics, that is:
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The radial dependence can be solved using either Lagrangian or Hamiltonian mechanics, but the solution

is non-trivial. Using the same techniques applied to solve Kepler’s problem, leads to the radial solution

 =


1 +  cos[Γ( − 0]
Γ =

s
1− 4

22
 =

2Γ22
2

 =

s
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Γ2(1− 24

2 )

1− Γ2

The apses are min =


(1+)
for Γ( − 0) = 0 2 4 and max =


(1−) for Γ( − 0) =  3. The

perihelion advances between cycles due to the change in relativistic mass during the trajectory as shown in

the adjacent figure. This precession leads to the fine structure observed in the optical spectra of the hydrogen

atom. The same precession of the perihelion occurs for planetary motion, however, there is a comparable

size effect due to gravity that requires use of general relativity to compute the trajectories.
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16.8 The General Theory of Relativity

The Special Theory of Relativity is restricted to inertial frames that are in uniform non-accelerated motion,

and are assumed to exist over all of space-time. In 1916 Einstein published the General Theory of Relativity

which expands the scope of relativistic mechanics to include non-inertial accelerating frames plus a unified

theory of gravitation. The General Theory of Relativity incorporates both the Special Theory of Relativity

as well as Newton’s Law of Universal Gravitation. It provides a unified theory of gravitation that is a

geometric property of space and time. In particular, the curvature of space-time is directly related to

the four-momentum of matter and radiation. Unfortunately, Einstein’s equations of general relativity are

nonlinear partial differential equations that are difficult to solve exactly, and the theory requires knowledge

of Riemannian geometry that goes beyond the scope of this book. However, it is useful to summarize the

fundamental concepts upon which the theory is based, and some of the observable implications since the

General Theory of Relativity is an important branch of classical mechanics.

16.8.1 Fundamental concepts

The development of general relativity by Einstein was strongly influenced by the following five principles.

Mach’s principle:

The 1883 work "The Science of Mechanics" by the philosopher/physicist, Ernst Mach, criticized Newton’s

concept of an absolute frame of reference, and suggested that local physical laws are determined by the

large-scale structure of the universe. The concept is that local motion of a rotating frame is determined by

the large-scale distribution of matter, that is, relative to the fixed stars. Einstein’s interpretation of Mach’s

statement was that the inertial properties of a body is determined by the presence of other bodies in the

universe, and he named this concept Mach’s Principle. Mach’s Principle has never been developed into a

quantitative physical theory that would explain a mechanism by which the large-scale distribution of matter

can produce such an effect.

Equivalence principle:

The equivalence principle comprises closely-related concepts dealing with the equivalence of gravitational and

inertial mass. The weak equivalence principle states that the inertial mass and gravitational mass of a

body are identical, leading to an acceleration that is independent of the nature of the body. This experimental

fact usually is attributed to Galileo. Recent measurements have shown that this weak equivalence principle

is obeyed to a sensitivity of 5 × 10−13. Einstein’s equivalence principle states that the outcome of

any local non-gravitational experiment, in a freely falling laboratory, is independent of the velocity of the

laboratory and its location in space-time. This principle implies that the result of local experiments must be

independent of the velocity of the apparatus. Einstein’s equivalence principle has been tested by searching

for variations of dimensionless fundamental constants such as the fine structure constant. The strong

equivalence principle combines the weak equivalence and Einstein equivalence principles, and implies

that the gravitational constant is constant everywhere in the universe. The strong equivalence principle

suggests that gravity is geometrical in nature and does not involve any fifth force in nature. Einstein’s

General Theory of Relativity satisfies the strong equivalence principle. Tests of the strong equivalence

principle have involved searches for variations in the gravitational constant  and masses of fundamental

particles throughout the life of the universe.

Principle of covariance

A physical law expressed in a covariant formulation has the same mathematical form in all coordinate systems,

and is usually expressed in terms of tensor fields. Maxwell’s equations of electromagnetism are an example of

such a covariant formulation. In the Special Theory of Relativity, the Lorentz, rotational, translational and

reflection transformations between inertial coordinate frames all are covariant. The covariant quantities are

the 4-scalars, and 4-vectors in Minkowski space-time. Einstein recognized that the principle of covariance,

that is built into the Special Theory of Relativity, should apply equally to accelerated relative motion in

the General Theory of Relativity. He exploited tensor calculus to extend the Lorentz covariance to the
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more general local covariance in the General Theory of Relativity. The reduction locally of the general

metric tensor to the Minkowski metric corresponds to free-falling motion, that is geodesic motion, and thus

encompasses gravitation. Unified field theory involves attempts to extend the General Theory of Relativity

to incorporate other physical phenomena within a covariant framework in a purely geometric representation

in space-time.

Correspondence principle

The Correspondence Principle states that the predictions of any new scientific theory must reduce to the pre-

dictions of well established earlier theories under circumstances for which the preceding theory was known

to be valid. This also is referred to as the "correspondence limit". The Correspondence Principle is an

important concept used both in quantum mechanics and relativistic mechanics. Einstein’s Special Theory

of Relativity satisfies the Correspondence Principle because it reduces to classical mechanics in the limit

of velocities small compared to the speed of light. The Correspondence Principle requires that the Gen-

eral Theory of Relativity must reduce to the Special Theory of Relativity for inertial frames, and should

approximate Newton’s Theory of Gravitation in weak fields and at low velocities.

Principle of minimal gravitational coupling

The principle of minimal gravitational coupling requires that the total Lagrangian for the field equations of

general relativity consist of two additive parts, one part corresponding to the free gravitational Lagrangian,

and the other part to external source fields in curved space-time. That is, no terms explicitly containing the

curvature of space-time should be added in the extension from the special to general theories of relativity.

16.8.2 Einstein’s postulates of the General Theory of Relativity

Einstein realized that the Equivalence Principle relating the gravitational and inertial masses implies that

the constancy of the velocity of light in vacuum cannot hold in the presence of a gravitational field. That

is, the Minkowskian line element must be replaced by a more general line element that takes gravity into

account. Einstein proposed that the Minkowskian line element in four-dimensional space-time, be replaced

by introducing a four-dimensional Riemannian geometrical structure where space, time, and matter are com-

bined. As described by Lancos[La49], [Har03], [Mu08] this astonishingly bold proposal implies that planetary

motion is described as purely a geodesic phenomenon in a certain four-space of Riemannian structure, where

the geodesic is the equation of a curve on a manifold for any possible set of coordinates. This implies that

the concept of "gravitational force" is discarded, and planetary motion is a manifestation of a pure geodesic

phenomenon for forceless motion in a four-dimensional Riemannian structure. Chapter 510 showed that the

Lagrangian and Hamiltonian representations of variational mechanics are powerful approaches for determin-

ing the equation governing geodesic constrained motion. In addition, these representations are independent

of the chosen frame of reference as required by the General Theory of Relativity. Thus variational mechanics

is the preeminent theoretical representation of the General Theory of Relativity and the predictions are

consistent with the fundamental concepts described in chapter 1681.

To summarize, the Special Theory of Relativity implies that the Newtonian concepts of absolute frame

of reference and separation of space and time are invalid. The General Theory of Relativity goes beyond

the Special Theory by implying that the gravitational force, and the resultant planetary motion, can be

described as pure geodesic phenomena for forceless motion in a four-dimensional Riemannian structure.

16.8.3 Experimental evidence

The evidence in support of Einstein’s Theory of General Relativity is compelling. The following are typical

experimental manifestations of the General Theory of Relativity.

Kepler problem In 1915 Einstein showed that relativistic mechanics explained the anomalous advance

of the perihelion of the planet mercury, that is, the axes of the elliptical Kepler orbit precess. Example 161

discusses the analogue of this effect for the Bohr-Sommerfeld hydrogen atom.
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Deflection of light Eddington travelled to the island of Príncipe, near Africa, to watch the solar eclipse

of 29 May 1919. During the eclipse, he took pictures of the stars in the region around the Sun. According

to the theory of general relativity, stars with light rays that passed near the Sun would appear to have been

slightly shifted because their light had been curved by the sun’s gravitational field. This effect is noticeable

only during eclipses, since otherwise the Sun’s brightness obscures the affected stars. The results confirmed

Einstein’s prediction of the deflection of light in a gravitational field which made Einstein famous.

Figure 16.7: Einstein’s Cross

comprises four images of a dis-

tant quasar imaged by a closer

galaxy acting as a gravitational

lens. (Recorded by the ESA Faint

Object Camera using the NASA

Hubble telescope.)

Gravitational lensing The deflection of light by the gravitational at-

traction of a massive object situated between a distant star and the ob-

server results in the observation of multiple images of the distant quasar

shown in figure 167.

Gravitational time dilation and frequency shift Processes occur-

ring in a high gravitation field are slower than in a weak gravitational

field; this is called gravitational time dilation. In addition, light climbing

out of a gravitational well is red shifted. The gravitational time dilation

has been measured many times and the continued operation of the Global

Position System provides an ongoing validation. The gravitational red

shift has been confirmed in the laboratory using the precise Mössbauer

effect in nuclear physics. Tests in stronger gravitational fields are pro-

vided by studies of binary pulsars. All of these measurements confirm

the general theory of relativity.

Gravitational waves Current attempts to detect gravitational waves

have been unsuccessful. However, in 1976 Hulse and Taylor detected a

decrease in the orbital period due to significant energy loss associated

with emission of gravity waves by the very compact neutron star in the

binary pulsar 1913 + 16. This is the first implied detection of grav-

itational waves.

Black holes When the mass to radius ratio of the massive object becomes sufficiently large, general

relativity predicts formation of a black hole, which is a region of space from which neither light nor matter

can escape. At the center of a galaxy there usually exists a supermassive black hole with a mass that is

106 − 109 solar masses which is thought to have played an important role in formation of the galaxy.

16.9 Implications of relativistic theory to classical mechanics

Einstein’s theories of relativity have had an enormous impact on twentieth century physics and the philosophy

of science. Relativistic mechanics is crucial to an understanding of the physics of the atom, nucleus and the

substructure of the nucleons, but the impacts are minimal in everyday experience. As a consequence the

enormous philosophical implications of Einstein’s theories of relativity may not be as readily apparent as

other major developments during the 20 century. In spite of this, it is important to be cognizant of

the consequences of these theories of nature. The Special Theory of Relativity replaces Newton’s Laws

of motion; i.e. Newton’s law is only an approximation applicable for low velocities. The General Theory

of Relativity replaces Newton’s Law of Gravitation and provides a natural explanation of the equivalence

principle. Einstein’s theories of relativity imply a profound and fundamental change in the view of the

separation of space, time, and mass, that contradicts the basic tenets that are the foundation of Newtonian

mechanics. The Newtonian concepts of absolute frame of reference, plus the separation of space, time,

and mass, are invalid at high velocities. Lagrangian and Hamiltonian variational approaches to classical

mechanics provide the formalism necessary for handling relativistic mechanics. The present chapter has

shown that logical extensions of Lagrangian and Hamiltonian mechanics lead to the relativistically-invariant

extended Lagrangian and Hamiltonian formulations of mechanics which is adequate for handling one-body

systems within the Special Theory of Relativity. However, major unsolved problems remain applying these

formulations to systems having more than one body.
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16.10 Summary

Special theory of relativity: The Special Theory of Relativity is based on Einstein’s postulates;

1) The laws of nature are the same in all inertial frames of reference.

2) The velocity of light in vacuum is the same in all inertial frames of reference.

For a primed frame moving along the 1 axis with velocity  Einstein’s postulates imply the following

Lorentz transformations between the moving (primed) and stationary (unprimed) frames

0 =  (− )  =  (0 + 0)
0 =   = 0

0 =   = 0

0 = 
¡
− 

2

¢
 = 

³
0 + 0

2

´
where the Lorentz  factor  ≡ 1

1−(  )
2

Lorentz transformations were used to illustrate Lorentz contraction, time dilation, and simultaneity. An

elementary review was given of relativistic kinematics including discussion of velocity transformation, linear

momentum, center-of-momentum frame, forces and energy.

Geometry of space-time: The concepts of four-dimensional space-time were introduced. A discussion of

four-vector scalar products introduced the use of contravariant and covariant tensors plus the Minkowski met-

ric  where the scalar product was defined. The Minkowski representation of space time and the momentum-

energy four vector also were introduced.

Lorentz-invariant formulation of Lagrangian mechanics: The Lorentz-invariant extended La-

grangian formalism, developed by Struckmeier[Str08], based on the parametric approach pioneered by

Lanczos[La49], provides a viable Lorentz-invariant extension of conventional Lagrangian mechanics that

is applicable for one-body motion in the realm of the Special Theory of Relativity.

Lorentz-invariant formulation of Hamiltonian mechanics: The Lorentz-invariant extended Hamil-

tonian formalism, developed by Struckmeier based on the parametric approach pioneered by Lanczos, was

introduced. It was shown to provide a viable Lorentz-invariant extension of conventional Hamiltonian me-

chanics that is applicable for one-body motion in the realm of the Special Theory of Relativity. In particu-

lar, it was shown that the Lorentz-invariant extended Hamiltonian is conserved making it ideally suited for

solving complicated systems using Hamiltonian mechanics via use of the Poisson-bracket representation of

Hamiltonian mechanics, canonical transformations, and the Hamilton-Jacobi techniques.

The General Theory of Relativity: An elementary summary was given of the fundamental concepts

of the General Theory of Relativity and the resultant unified description of the gravitational force plus

planetary motion as geodesic motion in a four-dimensional Riemannian structure. Variational mechanics

was shown to be ideally suited to applications of the General Theory of Relativity.

Philosophical implications: Newton’s equations of motion, and his Law of Gravitation, that reigned

supreme from 1687 to 1905, have been toppled from the throne by Einstein’s theories of relativistic me-

chanics. By contrast, the complete independence to coordinate frames in Lagrangian, and Hamiltonian

formulations of classical mechanics, and the underlying Principle of Least Action, are equally valid in both

the relativistic and non-relativistic regimes. As a consequence, relativistic Lagrangian and Hamiltonian

formulations underlie much of modern physics, especially quantum physics, which explains why relativistic

mechanics is so important to classical dynamics.6

6Recommended reading:

”Mr. Tompkins in Paperback” by George Gamow. An excellent elementary description of the implications of the Theory of

Relativity

"Gravity: An Introduction to Einstein’s General Relativity" by James B. Hartle, Addison Wesley (2003).

"Classical Mechanics and Relativity" by H.J.W. Müller-Kirsten, World Scientific, Singapore (2008).
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Workshop exercises

1. A relativistic snake of proper length 100 is travelling to the right across a butcher’s table at  = 06. You

hold two meat cleavers, one in each hand which are 100 apart. You strike the table simultaneously with

both cleavers at the moment when the left cleaver lands just behind the tail of the snake. You rationalize that

since the snake is moving with  = 06 then the length of the snake is Lorentz contracted by the factor  = 5
4

and thus the Lorentz-contracted length of the snake is 80 and thus will not be harmed. However, the snake

reasons that relative to it the cleavers are moving at  = 06 and thus are only 80 apart when they strike

the 100 long snake and thus it will be severed. Use the Lorentz transformation to resolve this paradox.

2. Explain what is meant by the following statement: “Lorentz transformations are orthogonal transformations

in Minkowski space.”

3. Which of the following are invariant quantities in space-time?

(a) Energy

(b) Momentum

(c) Mass

(d) Force

(e) Charge

(f) The length of a vector

(g) The length of a four-vector

4. What does it mean for two events to have a spacelike interval? What does it mean for them to have a timelike

interval? Draw a picture to support your answer. In which case can events be causally connected?

Problems

1. A supply rocket flies past two markers on the Space Station that are 50 apart in a time of 02 as measured

by an observer on the Space station.

(a) What is the separation of the two markers as seen by the pilot riding in the supply rocket?

(b) What is the elapsed time as measured by the pilot in the supply rocket?

(c) What are the speeds calculated by the observer in the Space Station and the pilot of the supply rocket?

2. The Compton effect involves a photon of incident energy  being scattered by an electron of mass  which

initially is stationary. The photon scattered at an angle  with respect to the incident photon has a final energy

 . Using the special theory of relativity derive a formula that related  and  to .

3. Pair creation involves production of an electron-positron pair by a photon. Show that such a process is

impossible unless some other body, such as a nucleus, is involved. Suppose that the nucleus has a mass 

and the electron mass . What is the minimum energy that the photon must have in order to produce an

electron-positron pair?

4. A  meson of rest energy 494 decays into a  meson of rest energy 106 and a neutrino of zero

rest energy. Find the kinetic energies of the  meson and the neutrino into which the  meson decays while

at rest.



Chapter 17

The transition to quantum physics

17.1 Introduction

Classical mechanics, including extensions to relativistic velocities, embrace an unusually broad range of topics

ranging from astrophysics to nuclear and particle physics, from one-body to many-body statistical mechanics.

It is interesting to discuss the role of classical mechanics in the development of quantum mechanics which

plays a crucial role in physics. A valid question is "why discuss quantum mechanics in a classical mechanics

course?". The answer is that quantum mechanics supersedes classical mechanics as the fundamental the-

ory of mechanics. Classical mechanics is an approximation applicable for situations where quantization is

unimportant. Thus there must be a correspondence principle that relates quantum mechanics to classical

mechanics, analogous to the relation between relativistic and non-relativistic mechanics. It is illuminating to

study the role played by the Hamiltonian formulation of classical mechanics in the development of quantal

theory and statistical mechanics. The Hamiltonian formulation is expressed in terms of the phase-space

variables qp for which there are well-established rules for transforming to quantal linear operators.

17.2 Brief summary of the origins of quantum theory

The last decade of the 19 century saw the culmination of classical physics. By 1900 scientists thought

that the basic laws of mechanics, electromagnetism, and statistical mechanics were understood and worried

that future physics would be reduced to confirming theories to the fifth decimal place, with few major new

discoveries to be made. However, technical developments such as photography, vacuum pumps, induction

coil, etc., led to important discoveries that revolutionized physics and toppled classical mechanics from its

throne at the beginning of the 20 century. Table 171 summarizes some of the major milestones leading

up to the development of quantum mechanics.

Max Planck searched for an explanation of the spectral shape of the black-body electromagnetic radia-

tion. He found an interpolation between two conflicting theories, one that reproduced the short wavelength

behavior, and the other the long wavelength behavior. Planck’s interpolation required assuming that electro-

magnetic radiation was not emitted with a continuous range of energies, but that electromagnetic radiation

is emitted in discrete bundles of energy called quanta. In December 1900 he presented his theory which

reproduced precisely the measured black body spectral distribution by assuming that the energy carried by

a single quantum must be an integer multiple of :

 =  =



(17.1)

where  is the frequency of the electromagnetic radiation and Planck’s constant,  = 662610−34 ·  was
the best fit parameter of the interpolation. That is, Planck assumed that energy comes in discrete bundles

of energy equal to  which are called quanta. By making this extreme assumption, in an act of desperation,

Planck was able to reproduce the experimental black body radiation spectrum. The assumption that energy

was exchanged in bundles hinted that the classical laws of physics were inadequate in the microscopic

domain. The older generation physicists initially refused to believe Planck’s hypothesis which underlies

483
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quantum theory. It was the new generation physicists, like Einstein, Bohr, Heisenberg, Born, Schrödinger,

and Dirac, who developed Planck’s hypothesis leading to the revolutionary quantum theory.

In 1905, Einstein predicted the existence of the photon, derived the theory of specific heat, as well

as deriving the Theory of Special Relativity. It is remarkable to realize that he developed these three

revolutionary theories in one year, when he was only 26 years old. Einstein uncovered an inconsistency in

Planck’s derivation of the black body spectral distribution in that it assumed the statistical part of the energy

is quantized, whereas the electromagnetic radiation assumed Maxwell’s equations with oscillator energies

being continuous. Planck demanded that light of frequency  be packaged in quanta whose energies were

multiples of , but Planck never thought that light would have particle-like behavior. Newton believed that

light involved corpuscles, and Hamilton developed the Hamilton-Jacobi theory seeking to describe light in

terms of the corpuscle theory. However, Maxwell had convinced physicists that light was a wave phenomena;

interference plus diffraction effects were convincing manifestations of the wave-like properties of light. In

order to reproduce Planck’s prediction, Einstein had to treat black-body radiation as if it consisted of a gas

of photons, each photon having energy  = . This was a revolutionary concept that returned to Newton’s

corpuscle theory of light. Einstein realized that there were direct tests of his photon hypothesis, one of which

is the photo-electric effect. According to Einstein, each photon has an energy  = , in contrast to the

classical case where the energy of the photoelectron depends on the intensity of the light. Einstein predicted

that the ejected electron will have a kinetic energy

 =  − (17.2)

where  is the work function which is the energy needed to remove an electron from a solid.

Many older scientists, including Planck, accepted Einstein’s theory of relativity but were skeptical of

the photon concept, even after Einstein’s theory was vindicated in 1915 by Millikan who showed that, as

predicted, the energy of the ejected photoelectron depended on the frequency, and not intensity, of the light.

In 1923 Compton’s demonstrated that electromagnetic radiation scattered by free electrons obeyed simple

two-body scattering laws which finally convinced the many skeptics of the existence of the photon.

Table 171: Chronology of the development of quantum mechanics

Date Author Development

1887 Hertz Discovered the photo-electric effect

1895 Röntgen Discovered x-rays

1896 Becquerel Discovered radioactivity

1897 J.J. Thomson Discovered the first fundamental particle, the electron

1898 Pierre & Marie Curie Showed that thorium is radioactive which founded nuclear physics

1900 Planck Quantization  =  explained the black-body spectrum

1905 Einstein Theory of special relativity

1905 Einstein Predicted the existence of the photon

1906 Einstein Used Planck’s constant to explain specific heats of solids

1909 Millikan The oil drop experiment measured the charge on the electron

1911 Rutherford Discovered the atomic nucleus with radius 10−15
1912 Bohr Bohr model of the atom explained the quantized states of hydrogen

1914 Moseley X-ray spectra determined the atomic number of the elements.

1915 Millikan Used the photo-electric effect to confirm the photon hypothesis.

1915 Wilson-Sommerfeld Proposed quantization of the action-angle integral

1921 Stern-Gerlach Observed space quantization in non-uniform magnetic field

1923 Compton Compton scattering of x-rays confirmed the photon hypothesis

1924 de Broglie Postulated wave-particle duality for matter and EM waves

1924 Bohr Explicit statement of the correspondence principle

1925 Pauli Postulated the exclusion principle

1925 Goudsmit-Uhlenbeck Postulated the spin of the electron of  = 1
2
h

1925 Heisenberg Matrix mechanics representation of quantum theory

1925 Dirac Related Poisson brackets and commutation relations

1926 Schrödinger Wave mechanics

1927 G.P. Thomson/Davisson Electron diffraction proved wave nature of electron

1928 Dirac Developed the Dirac relativistic wave equation
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17.2.1 Bohr model of the atom

The Rutherford scattering experiment, performed at Manchester in 1911, discovered that the Au atom

comprised a positively charge nucleus of radius ≈ 10−14 which is much smaller than the 135 × 10−10
radius of the Au atom. Stimulated by this discovery, Niels Bohr joined Rutherford at Manchester in 1912

where he developed the Bohr model of the atom. This theory was remarkably successful in spite of having

serious inconsistencies and deficiencies. Bohr’s model assumptions were:

1) Electromagnetic radiation is quantized with  = 

2) Electromagnetic radiation exhibits behavior characteristic of the emission of photons with energy

 =  and momentum  = 

. That is, it exhibits both wave-like and particle-like behavior.

3) Electrons are in stationary orbits that do not radiate, which contradicts the predictions of classical

electromagnetism.

4) The orbits are quantized such that the electron angular momentum is an integer multiple of 
2
= ~

5) Atomic electromagnetic radiation is emitted with photon energy equal to the difference in binding

energy between the two atomic levels involved.  = 1 −2
The first two assumptions are due to Planck and Einstein, while the last three were made by Niels Bohr.

The deficiencies of the Bohr model were the philosophical problems of violating the tenets of classical

physics in explaining hydrogen-like atoms, that is, the theory was prescriptive, not deductive. The Bohr

model was based implicitly on the assumption that quantum theory contains classical mechanics as a limiting

case. Bohr explicitly stated this assumption which he called the correspondence principle, and which

played a pivotal role in the development of the older quantum theory. In 1924 Bohr justified the inconsis-

tencies of the old quantum theory by writing "As frequently emphasized, these principles, although they

are formulated by the help of classical conceptions, are to be regarded purely as laws of quantum theory,

which give us, not withstanding the formal nature of quantum theory, a hope in the future of a consistent

theory, which at the same time reproduces the characteristic features of quantum theory, important for its

applicability, and, nevertheless, can be regarded as a rational generalization of classical electrodynamics."

The old quantum theory was remarkably successful in reproducing the black-body spectrum, specific heats

of solids, the hydrogen atom, and the periodic table of the elements. Unfortunately, from a methodological

point of view, the theory was a hodgepodge of hypotheses, principles, theorems, and computational recipes,

rather than a logical consistent theory. Every problem was first solved in terms of classical mechanics,

and then would pass through a mysterious quantization procedure involving the correspondence principle.

Although built on the foundation of classical mechanics, it required Bohr’s hypotheses which violated the

laws of classical mechanics and predictions of Maxwell’s equations.

17.2.2 Quantization

By 1912 Planck, and others, had abandoned the concept that quantum theory was a branch of classical

mechanics, and were searching to see if classical mechanics was a special case of a more general quantum

physics, or quantum physics was a science altogether outside of classical mechanics. Also they were trying

to find a consistent and rational reason for quantization to replace the ad hoc assumption of Bohr.

In 1912 Sommerfeld proposed that, in every elementary process, the atom gains or loses a definite amount

of action between times 0 and  of

 =

Z 

0

(0)0 (17.3)

where  is the quantal analogue of the classical action function It has been shown that the classical principle

of least action states that the action function is stationary for small variations of the trajectory. In 1915

Wilson and Sommerfeld recognized that the quantization of angular momentum could be expressed in terms

of the action-angle integral, that is equation 14116. They postulated that, for every coordinate, the action-

angle variable is quantized I
 =  (17.4)

where the action-angle variable integral is over one complete period of the motion. That is, they postulated

that Hamilton’s phase space is quantized, but the microscopic granularity is such that the quantization is

only manifest for atomic-sized domains. That is,  is a small integer for atomic systems in contrast to

 ≈ 1064 for the Earth-Sun two-body system.
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Sommerfeld recognized that quantization of more than one degree of freedom is needed to obtain more

accurate description of the hydrogen atom. Sommerfeld reproduced the experimental data by assuming

quantization of the three degrees of freedom,I
 = 1

I
 = 2

I
 = 3 (17.5)

and solving Hamilton-Jacobi theory by separation of variables. In 1916 the Bohr-Sommerfeld model solved

the classical orbits for the hydrogen atom, including relativistic corrections as described in example 167.

This reproduced fine structure observed in the optical spectra of hydrogen. The use of the canonical trans-

formation to action-angle variables proved to be the ideal approach for solving many such problems in

quantum mechanics. In 1921 Stern and Gerlach demonstrated space quantization by observing the splitting

of atomic beams deflected by non-uniform magnetic fields. This result was a major triumph for quantum

theory. Sommerfeld declared that "With their bold experimental method, Stern and Gerlach demonstrated

not only the existence of space quantization, they also proved the atomic nature of the magnetic moment,

its quantum-theoretic origin, and its relation to the atomic structure of electricity."

In 1925 Pauli’s Exclusion Principle proposed that no more than one electron can have identical quantum

numbers and that the atomic electronic state is specified by four quantum numbers. Two students, Goudsmit

and Uhlenbeck suggested that a fourth two-valued quantum number was the electron spin of ± ~
2
. This

provided an explanation for the structure of multi-electron atoms.

17.2.3 Wave-particle duality

In his 1924 doctoral thesis, Prince Louis de Broglie proposed the hypothesis of wave-particle duality which

was a pivotal development in quantum theory. de Broglie used the classical concept of a matter wavepacket,

analogous to classical wave packets discussed in chapter 311. He assumed that both the group and signal

velocities of a matter wave packet must equal the velocity of the corresponding particle. By analogy with

Einstein’s relation for the photon, and using the Theory of Special Relativity, de Broglie assumed that

~ =  =
2q¡
1− 2

2

¢ (17.6)

The group velocity is required to equal the velocity of the mass 
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(17.8)

Integration of this equation assuming that  = 0 when  = 0, then gives

~k =
vq¡
1− v·v

2

¢ = p (17.9)

This relation, derived by de Broglie, is required to ensure that the particle travels at the group velocity

of the wave packet characterizing the particle. Note that although the relations used to characterize the

matter waves are purely classical, the physical content of such waves is beyond classical physics. In 1927 C.

Davisson and G.P. Thomson independently observed electron diffraction confirming wave/particle duality

for the electron. Ironically, J.J. Thomson discovered that the electron was a particle, while his son attributed

it to an electron wave.

Heisenberg developed the modern matrix formulation of quantum theory in 1925; he was 24 years old

at the time. A few months later Schrödinger’s developed wave mechanics based on de Broglie’s concept of

wave-particle duality. The matrix mechanics, and wave mechanics, quantum theories are radically different.

Heisenberg’s algebraic approach employs non-commuting quantities and unfamiliar mathematical techniques

that emphasized the discreteness characteristic of the corpuscle aspect. In contrast, Schrödinger used the

familiar analytical approach that is an extension of classical laws of motion and waves which stressed the

element of continuity.
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17.3 Hamiltonian in quantum theory

17.3.1 Heisenberg’s matrix-mechanics representation

The algebraic Heisenberg representation of quantum theory is analogous to the algebraic Hamiltonian rep-

resentation of classical mechanics, and shows best how quantum theory evolved from, and is related to,

classical mechanics. Heisenberg decided to ignore the prevailing conceptual theories, such as classical me-

chanics, and based his quantum theory on observables. This approach was influenced by the success of

Bohr’s older quantum theory and Einstein’s theory of relativity. He abandoned the classical notions that

the canonical variables   can be measured directly and simultaneously. Secondly he wished to absorb the

correspondence principle directly into the theory instead of it being an ad hoc procedure tailored to each ap-

plication. Heisenberg considered the Fourier decomposition of transition amplitudes between discrete states

and found that the product of the conjugate variables do not commute. Heisenberg derived, for the first

time, the correct energy levels of the one-dimensional harmonic oscillator as  = ~( + 1
2
) which was a

significant achievement. Born recognized that Heisenberg’s strange multiplication and commutation rules for

two variables, corresponded to matrix algebra. Prior to 1925 matrix algebra was an obscure branch of pure

mathematics not known or used by the physics community. Heisenberg, Born, and the young mathemati-

cian Jordan, developed the commutation rules of matrix mechanics. Heisenberg’s approach represents the

classical position and momentum coordinates   by matrices q and p, with corresponding matrix elements


 and 

. Born showed that the trace of the matrix

(pq) = pq̇− (17.10)

gives the Hamiltonian function(pq) of the matrices q and p which leads to Hamilton’s canonical equations

q̇=


p
ṗ=−

q
(17.11)

Heisenberg and Born also showed that the commutator of qp equals

 −  = ~ (17.12)

 −  = 0

 −  = 0

Born realized that equation (1712) is the only fundamental equation for introducing ~ into the theory in a
logical and consistent way.

Chapter 1424 discussed the formal correspondence between the Poisson bracket, defined in chapter 143,

and the commutator in classical mechanics. It was shown that the commutator of two functions equals a

constant multiplicative factor  times the corresponding Poisson Bracket. That is

( −) =  [  ] (17.13)

where the multiplicative factor  is a number independent of  , and the commutator.

In 1925, Paul Dirac, a 23-year old graduate student at Bristol, recognized the crucial importance of

the above correspondence between the commutator and the Poisson Bracket of two functions, to relating

classical mechanics and quantum mechanics. Dirac noted that if the constant  is assigned the value  = ~,
then equation 1713 directly relates Heisenberg’s commutation relations between the fundamental canonical

variables (  ) to the corresponding classical Poisson Bracket [  ]. That is,

 −  = ~ [ ] = ~ (17.14)

 −  = ~ [ ] = 0 (17.15)

 −  = ~ [ ] = 0 (17.16)

Dirac recognized that the correspondence between the classical Poisson bracket, and quantum commu-

tator, in equation (1713) provides a logical and consistent way that builds quantization directly into the

theory, rather than using an ad-hoc, case-dependent, hypothesis as used by the older quantum theory of
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Bohr. The basis of Dirac’s quantization principle, involves replacing the classical Poisson Bracket, [  ]

by the commutator, 1
~ (  −). That is,

[  ] =⇒ 1

~
( −) (17.17)

Hamilton’s canonical equations, as introduced in chapter 14, are only applicable to classical mechanics

since they assume that the exact position and conjugate momentum can be specified both exactly and

simultaneously which contradicts the Heisenberg’s Uncertainty Principle. In contrast, the Poisson bracket

generalization of Hamilton’s equations allows for non-commuting variables plus the corresponding uncertainty

principle. That is, the transformation from classical mechanics to quantum mechanics can be accomplished

simply by replacing the classical Poisson Bracket by the quantum commutator, as proposed by Dirac. The

formal analogy between classical Hamiltonian mechanics, and the Heisenberg representation of quantum

mechanics is strikingly apparent using the correspondence between the Poisson Bracket representation of

Hamiltonian mechanics and Heisenberg’s matrix mechanics.

The direct relation between the quantum commutator, and the corresponding classical Poisson Bracket,

can applied to many observables. For example, the quantum analogs of Hamilton’s equations of motion

are given by use of Hamilton’s equations of motion, 1453 1456 and replacing each Poisson Bracket by the

corresponding commutator. That is




=




= [] =

1

~
( −) (17.18)




= −


= [] =

1

~
( −) (17.19)

Chapter 1425 discussed the time dependence of observables in Hamiltonian mechanics. Equation 1445

gave the total time derivative of any observable  to be




=




+ [] (17.20)

Equation 1717 can be used to replace the Poisson Bracket by the quantum commutator, which gives the

corresponding time dependence of observables in quantum physics.




=




+
1

~
( −) (17.21)

In quantum mechanics, equation 1721 is called the Heisenberg equation. Note that if the observable  is

chosen to be a fundamental canonical variable, then 

= 0 = 


and equation 1420 reduces to Hamilton’s

equations 1718 and 1719.

The analogies between classical mechanics and quantum mechanics extend further. For example, if  is

a constant of motion, that is 

= 0 then Heisenberg’s equation of motion gives




+
1

~
( −) = 0 (17.22)

Moreover, if  is not an explicit function of time, then

0 =
1

~
( −) (17.23)

That is, the transition to quantum physics shows that, if  is a constant of motion, and is not explicitly

time dependent, then  commutes with the Hamiltonian .

The above discussion has illustrated the close and beautiful correspondence between the Poisson Bracket

representation of classical Hamiltonian mechanics, and the Heisenberg representation of quantum mechanics.

Dirac provided the elegant and simple correspondence principle connecting the Poisson bracket representation

of classical Hamiltonian mechanics, to the Heisenberg representation of quantum mechanics.
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17.3.2 Schrödinger’s wave-mechanics representation

The wave mechanics formulation of quantum mechanics, by the Austrian theorist Schrödinger, was built on

the wave-particle duality concept that was proposed in 1924 by Louis de Broglie. Schrödinger developed

his wave mechanics representation of quantum physics a year after the development of matrix mechanics

by Heisenberg and Born. The Schrödinger wave equation is based on the non-relativistic Hamilton-Jacobi

representation of a wave equation, melded with the operator formalism of Born and Wiener. The 39-year old

Schrödinger was an expert in classical mechanics and wave theory, which was invaluable when he developed

the important Schrödinger equation. As mentioned in chapter 1444, the Hamilton-Jacobi theory is a

formalism of classical mechanics that allows the motion of a particle to be represented by a wave. That is,

the wavefronts are surfaces of constant action  and the particle momenta are normal to these constant-

action surfaces, that is, p = ∇. The wave-particle duality of Hamilton-Jacobi theory is a natural way to
handle the wave-particle duality proposed by de Broglie.

Consider the classical Hamilton-Jacobi equation for one body, given by 1320




+(q∇) = 0 (17.24)

If the Hamiltonian is time independent, then equation 1491 gives that




= −(qp ) = − (α) (17.25)

The integration of the time dependence is trivial, and thus the action integral for a time-independent Hamil-

tonian is

(qα) = (qα)− (α)  (17.26)

A formal transformation gives

 = −


p =∇ (17.27)

Consider that the classical time-independent Hamiltonian, for motion of a single particle, is represented

by the Hamilton-Jacobi equation.

 =
p2

2
+ () = −


(17.28)

Substitute for p leads to the classical Hamilton-Jacobi relation in terms of the action 

1

2
(∇ ·∇) + () = −


(17.29)

By analogy with the Hamilton-Jacobi equation, Schrödinger proposed the quantum operator equation

~



= ̂ (17.30)

where ̂ is an operator given by

̂ = − ~
2

2
∇2 + () (17.31)

In 1926Max Born and Norbert Wiener introduced the operator formalism into matrix mechanics for predic-

tion of observables and this has become an integral part of quantum theory. In the operator formalism, the

observables are represented by operators that project the corresponding observable from the wavefunction.

That is, the quantum operator formalism for the assumed momentum and energy operators, that operate

on the wavefunction , are

 =
~





 = −~






(17.32)

Formal transformations of p and  in the Hamiltonian (1726) leads to the time-independent Schrödinger

equation

− ~
2

2

2

2
+ () =  (17.33)
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Assume that the wavefunction is of the form

 = 

~ (17.34)

where the action  gives the phase of the wavefront, and  the amplitude of the wave, as described in

chapter 1444. The time dependence, that characterizes the motion of the wavefront, is contained in the

time dependence of  This form for the wavefunction has the advantage that the wavefunction frequently

factors into a product of terms, e.g.  = ()Θ()Φ() which corresponds to a summation of the exponents

 = + + −. This summation form is exploited by separation of the variables, as discussed in

chapter 1443.

Insert  (1733) into equation (1728)  plus using the fact that

2
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(17.35)

leads to

−

=
1

2
(∇ ·∇) + ()− ~

2
∇2 =  (17.36)

Note that if Planck’s constant ~ = 0 then the imaginary term in equation (1735) is zero, leading to 1735

being real, and identical to the Hamilton-Jacobi result, equation 1723. The fact that equation 1735

equals the Hamilton-Jacobi equation in the limit ~ → 0, illustrates the close analogy between the wave-

particle duality of the classical Hamilton-Jacobi theory, and de Broglie’s wave-particle duality in Schrödinger’s

quantum wave-mechanics representation.

The Schrödinger approach was rapidly adopted in 1925 and exploited extensively with tremendous success,

since it is much easier to grasp conceptually, than is the algebraic approach of Heisenberg. Initially there

was much conflict between the proponents of these two contradictory approaches, but this was resolved by

Schrödinger who showed in 1926 that there is a formal mathematical identity between wave mechanics and

matrix mechanics. That is, these quantal two representations of Hamiltonian mechanics are equivalent, even

though they are built on either the Poisson bracket representation, or the Hamilton-Jacobi representation.

Wave mechanics is based intimately on the quantization rule of the action variable. Heisenberg’s Uncertainty

Principle is automatically satisfied by Schrödinger’s wave mechanics since the uncertainty principle is a

feature of all wave motion, as described in chapter 3.

In 1928 Dirac developed a relativistic wave equation which includes spin as an integral part. This Dirac

equation remains the fundamental wave equation of quantum mechanics. Unfortunately it is difficult to

apply.

Today the powerful and efficient Heisenberg representation is the dominant approach used in the field of

physics, whereas chemists tend to prefer the more intuitive Schrödinger wave mechanics approach. In either

case, the important role of Hamiltonian mechanics in quantum theory is undeniable.

17.4 Lagrangian representation in quantum theory

The classical notion of canonical coordinates and momenta, has a simple quantum analog which has al-

lowed the Hamiltonian theory of classical mechanics, that is based on canonical coordinates, to serve as the

foundation for the development of quantum mechanics. The alternative Lagrangian formulation for classical

dynamics is described in terms of coordinates and velocities, instead of coordinates and momenta. The La-

grangian and Hamiltonian formulations are closely related, and it may appear that the Lagrangian approach

is more fundamental. The Lagrangian method allows collecting together all the equations of motion and

expressing them as stationary properties of the action integral, and thus it may appear desirable to base

quantum mechanics on the Lagrangian theory of classical mechanics. Unfortunately, the Lagrangian equa-

tions of motion involve partial derivatives with respect to coordinates, and their velocities, and the meaning

ascribed to such derivatives is difficult in quantum mechanics. The close correspondence between Poisson

brackets and the commutation rules leads naturally to Hamiltonian mechanics. However, Dirac showed that

Lagrangian mechanics can be carried over to quantum mechanics using canonical transformations such that

the classical Lagrangian is considered to be a function of coordinates at time  and  +  rather than of

coordinates and velocities.
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The motivation for Feynman’s 1942 Ph.D thesis, entitled "The Principle of Least Action in Quantum

Mechanics", was to quantize the classical action at a distance in electrodynamics. This theory adopted an

overall space-time viewpoint for which the classical Hamiltonian approach, as used in conventional formu-

lations of quantum mechanics, is inapplicable. Feynman used the Lagrangian, plus the principle of least

action, to underlie his development of quantum field theory. To paraphrase Feynman’s Nobel Lecture, he

used a physical approach that is quite different from the customary Hamiltonian point of view for which the

system is discussed in great detail as a function of time. That is, you have the field at this moment, then a

differential equation gives you the field at a later moment and so on; that is, the Hamiltonian approach is a

time differential method. In Feynman’s least-action approach the action describes the character of the path

throughout all of space and time. The behavior of nature is determined by saying that the whole space-time

path has a certain character. The use of action involves both advanced and retarded terms that make it

difficult to transform back to the Hamiltonian form. The Feynman space-time approach is far beyond the

scope of this course. This topic will be developed in advanced graduate courses on quantum field theory.

17.5 Correspondence Principle

The Correspondence Principle implies that any new theory in physics must reduce to preceding theories

that have been proven to be valid. For example, Einstein’s Special Theory of Relativity satisfies the Corre-

spondence Principle since it reduces to classical mechanics for velocities small compared with the velocity

of light. Similarly, the General Theory of Relativity reduces to Newton’s Law of Gravitation in the limit

of weak gravitational fields. Bohr’s Correspondence Principle requires that the predictions of quantum me-

chanics must reproduce the predictions of classical physics in the limit of large quantum numbers. Bohr’s

Correspondence Principle played a pivotal role in the development of the old quantum theory, from it’s

inception in 1912 until 1925 when the old quantum theory was superseded by the current matrix and wave

mechanics representations of quantum mechanics.

Quantum theory now is a well-established field of physics that is equally as fundamental as is classical

mechanics. The Correspondence Principle now is used to project out the analogous classical-mechanics

phenomena that underlie the observed properties of quantal systems. For example, this book has studied

the classical-mechanics analogs of the observed behavior for typical quantal systems, such as the vibrational

and rotational modes of the molecule, and the vibrational modes of the crystalline lattice. The nucleus is the

epitome of a many-body, strongly-interacting, quantal system. Example 1212 showed that there is a close

correspondence between classical-mechanics predictions, and quantal predictions, for both the rotational and

vibrational collective modes of the nucleus, as well as for the single-particle motion of the nucleons in the

nuclear mean field, such as the onset of Coriolis-induced alignment. This use of the Correspondence Principle

can provide considerable insight into the underlying classical physics embedded in quantal systems.
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17.6 Summary

The important point of this discussion is that variational formulations of classical mechanics provide a

rational, and direct basis, for the development of quantum mechanics. It has been shown that the final form

of quantum mechanics is closely related to the Hamiltonian formulation of classical mechanics. Quantum

mechanics supersedes classical mechanics as the fundamental theory of mechanics in that classical mechanics

only applies for situations where quantization is unimportant, and is the limiting case of quantum mechanics

when ~→ 0 which is in agreement with the Bohr’s Correspondence Principle. The Dirac relativistic theory

of quantum mechanics is the ultimate quantal theory for the relativistic regime.

This discussion has barely scratched the surface of the correspondence between classical and quantal

mechanics, which goes far beyond the scope of this course. The goal of this chapter is to illustrate that

classical mechanics, in particular, Hamiltonian mechanics, underlies much of what you will learn in your

quantum physics courses. An interesting similarity between quantum mechanics and classical mechanics is

that physicists usually use the more visual Schrödinger wave representation in order to describe quantum

physics to the non-expert, which is analogous to the similar use of Newtonian physics in classical mechan-

ics. However, practicing physicists invariably use the more abstract Heisenberg matrix mechanics to solve

problems in quantum mechanics, analogous to widespread use of the variational approach in classical me-

chanics, because the analytical approaches are more powerful and have fundamental advantages. Quantal

problems in molecular, atomic, nuclear, and subnuclear systems, usually involve finding the normal modes

of a quantal system, that is, finding the eigen-energies, eigen-functions, spin, parity, and other observables

for the discrete quantized levels. Solving the equations of motion for the modes of quantal systems is sim-

ilar to solving the many-body coupled-oscillator problem in classical mechanics, where it was shown that

use of matrix mechanics is the most powerful representation. It is ironic that the introduction of matrix

methods to classical mechanics is a by-product of the development of matrix mechanics by Heisenberg, Born

and Jordan. This illustrates that classical mechanics not only played a pivotal role in the development of

quantum mechanics, but it also has benefitted considerably from the development of quantum mechanics;

that is, the synergistic relation between these two complementary branches of physics has been beneficial to

both classical and quantum mechanics.

Recommended reading

"Quantum Mechanics" by P.A.M. Dirac, Oxford Press, 1947,

"Conceptual Development of Quantum Mechanics" by Max Jammer, Mc Graw Hill 1966.



Chapter 18

Epilogue

This book has introduced powerful analytical methods based on variational principles that play a pivotal

role in classical dynamics, as well as in many modern branches of science and engineering. The prologue

showed a road map of the pathways in advanced classical mechanics that have been explored in order to

introduce the reader to sophisticated and powerful new approaches to problem solving in science. In spite of

the considerable amount of material covered, there are major topics that had to be omitted, or mentioned

superficially.

This long and arduous study of classical mechanics has elucidated the remarkable developments, plus

their philosophical implications, implied by use of variational formulations in classical mechanics. This

approach was pioneered by Leibniz, Lagrange, Euler, Hamilton and Jacobi during the remarkable Age of

Enlightenment, and finally reached full fruition at the start of the 20 century. Philosophically, Newtonian

mechanics is straightforward in that it uses differential equations of motion that relate the instantaneous

forces with the instantaneous accelerations, while the concepts of momentum and force are intuitive to

visualize and both cause and effect are embedded in Newtonian mechanics. However, Newtonian mechanics is

incompatible with the relativistic concept of space-time, it is unable to correctly predict relativistic mechanics,

and it fails to provide the unified description of the gravitational force plus planetary motion as geodesic

motion in a four-dimensional Riemannian structure.

The philosophical implications embedded in applying variational principles to mechanics are remarkable.

The applicability of variational principles is based on the astonishing fact that motion of a constrained

system in nature follows a path that minimizes the action integral. As a consequence, solving the equations

of motion is reduced to finding the optimum path that minimizes the action integral. The fact that nature

follows optimization principles is nonintuitive, and was considered to be metaphysical by many scientists

and philosophers which delayed full acceptance of analytical mechanics until the development of the Theory

of Relativity. Variational formulations now are the preeminent approach to classical mechanics and modern

physics; they have toppled Newtonian mechanics from the throne of classical mechanics that it occupied for

two centuries. The importance of the variational approach to science and engineering justifies the trials and

tribulations endured learning this powerful approach.

This book has gone beyond the normal syllabus to glimpse how Lagrangian and Hamiltonian dynamics

provide the foundation upon which modern physics is built. It has illustrated that a solid foundation in

analytical mechanics is essential for the study of modern physics. The techniques and physics discussed in

this book reappear in new guises in many other courses, but the basic physics is unchanged. The fundamen-

tal developments and applications of variational principles in classical mechanics illustrate the intellectual

beauty, the tremendous philosophical implications, and the unity of the field of physics. The enormous

breadth of physics addressed by classical mechanics, and the underlying unity of the field, is epitomized

by the wide range of dimensions and complexity involved. The dimensions range from as large as 1027

which is the current lower bound for the size of the universe derived from the Planck spacecraft, to quantal

analogues of classical mechanics of systems spanning in size down to the Planck length of 162 × 10−35.
In complexity, classical mechanics spans from one body to the statistical mechanics of many-body systems.

Analytical variational methods have become the premier approach to describe systems from the very largest

to the smallest, and from one-body to many-body dynamical systems.

This book has illustrated the astonishingly power of analytical variational methods for understanding the
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physics underlying classical mechanics and many branches of modern physics. However, the present narrative

remains unfinished in that fundamental philosophical and technical questions remain to be solved in classical

mechanics. For example, analytical mechanics is based on the validity of the assumed principle of economy.

This book has not addressed the philosophical question, "is the principle of economy a fundamental law of

nature, or is it a fortuitous consequence of the fundamental laws of nature?"



Appendix A

Matrix algebra

A.1 Mathematical methods for mechanics

Development of classical mechanics has involved a close and synergistic interweaving of physics and mathe-

matics, that continues to play a key role in these fields. The concepts of scalar and vector fields play a pivotal

role in describing the force fields and particle motion in both the Newtonian formulation of classical mechan-

ics and electromagnetism. Thus it is imperative that you be familiar with the sophisticated mathematical

formalism used to treat multivariate scalar and vector fields in classical mechanics. Ordinary and partial

differential equations up to second order, as well as integration of algebraic and trigonometric functions play

a major role in classical mechanics. It is assumed that you already have a working knowledge of differential

and integral calculus in sufficient depth to handle this material. Computer codes, such as Mathematica,

MatLab, and Maple, or symbolic calculators, can be used to obtain mathematical solutions for complicated

cases.

The following 9 appendices provide brief summaries of matrix algebra, vector algebra, orthogonal co-

ordinate systems, coordinate transformations, tensor algebra, multivariate calculus, vector differential plus

integral calculus, Fourier analysis and time-sampled waveform analysis. The manipulation of scalar and

vector fields is greatly facilitated by transforming to orthogonal curvilinear coordinate systems that match

the symmetries of the problem. These appendices discuss the necessity to account for the time dependence

of the orthogonal unit vectors for curvilinear coordinate systems. It is assumed that, except for coordinate

transformations and tensor algebra, you have been introduced to these topics in linear algebra and other

physics courses, and thus the purpose of these appendices is to serve as a reference and brief review.

A.2 Matrices

Matrix algebra provides an elegant and powerful representation of multivariate operators, and coordinate

transformations that feature prominently in classical mechanics. For example they play a pivotal role in

finding the eigenvalues and eigenfunctions for coupled equations that occur in rigid-body rotation, and

coupled oscillator systems. An understanding of the role of matrix mechanics in classical mechanics facilitates

understanding of the equally important role played by matrix mechanics in quantal physics.

It is interesting that although determinants were used by physicists in the late 19 century, the concept

of matrix algebra was developed by Arthur Cayley in England in 1855 but many of these ideas were the work

of Hamilton, and the discussion of matrix algebra was buried in a more general discussion of determinants.

Matrix algebra was an esoteric branch of mathematics, little known by the physics community, until 1925

when Heisenberg proposed his innovative new quantum theory. The striking feature of this new theory

was its representation of physical quantities by sets of time-dependent complex numbers and a peculiar

multiplication rule. Max Born recognized that Heisenberg’s multiplication rule is just the standard "row

times column" multiplication rule of matrix algebra; a topic that he had encountered as a young student in a

mathematics course. In 1924 Richard Courant had just completed the first volume of the new text Methods

of Mathematical Physics during which Pascual Jordan had served as his young assistant working on matrix

manipulation. Fortuitously, Jordan and Born happened to share a carriage on a train to Hanover during
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which Jordan overheard Born talk about his problems trying to work with matrices. Jordan introduced

himself to Born and offered to help. This led to publication, in September 1925, of the famous Born-Jordan

paper[Bor25a] that gave the first rigorous formulation of matrix mechanics in physics. This was followed in

November by the Born-Heisenberg-Jordan sequel[Bor25b] that established a logical consistent general method

for solving matrix mechanics problems plus a connection between the mathematics of matrix mechanics and

linear algebra. Matrix algebra developed into an important tool in mathematics and physics during World

War 2 and now it is an integral part of undergraduate linear algebra courses.

Most applications of matrix algebra in this book are restricted to real, symmetric, square matrices. The

size of a matrix is defined by the rank, which equals the row rank and column rank, i.e. the number of

independent row vectors or column vectors in the square matrix. It is presumed that you have studied

matrices in a linear algebra course. Thus the goal of this review is to list simple manipulation of symmetric

matrices and matrix diagonalization that will be used in this course. You are referred to a linear algebra

textbook if you need further details.

Matrix definition

A matrix is a rectangular array of numbers with  rows and  columns. The notation used for an element

of a matrix is  where  designates the row and  designates the column of this matrix element in the

matrix A. Convention denotes a matrix A as

A ≡

⎛⎜⎜⎜⎜⎝
11 12  1(−1) 1
21 22  2(−1) 2
: :  : :

(−1)1 (−1)2  (−1)(−1) (−1)
1 2  (−1) 

⎞⎟⎟⎟⎟⎠ (A.1)

Matrices can be square,  =  , or rectangular  6=  . Matrices having only one row or column are

called row or column vectors respectively, and need only a single subscript label. For example,

A =

⎛⎜⎜⎜⎜⎝
1
2
:

−1


⎞⎟⎟⎟⎟⎠ (A.2)

Matrix manipulation

Matrices are defined to obey certain rules for matrix manipulation as given below.

1) Multiplication of a matrix by a scalar  simply multiplies each matrix element by 

 =  (A.3)

2) Addition of two matrices A and B having the same rank, i.e. the number of columns, is given by

 =  + (A.4)

3) Multiplication of a matrix A by a matrix B is defined only if the number of columns in A equals the

number of rows in B. The product matrix C is given by the matrix product

C= A ·B (A.5)

 = [] =
X


 (A.6)

For example, if both A and B are rank three symmetric matrices then

C = A ·B =
⎛⎝ 11 12 13

21 22 23
31 32 33

⎞⎠ ·
⎛⎝ 11 12 13

21 22 23
31 32 33

⎞⎠
=

⎛⎝ 1111 +1221 +1331 1112 +1222 +1332 1113 +1223 +1333
2111 +2221 +2331 2112 +2222 +2332 2113 +2223 +2333
3111 +3221 +3331 3112 +3222 +3332 3113 +3223 +3333

⎞⎠
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In general, multiplication of matrices A and B is noncommutative, i.e.

A ·B 6= B ·A (A.7)

In the special case when A ·B = B ·A then the matrices are said to commute.

Transposed matrix A

The transpose of a matrix A will be denoted by A and is given by interchanging rows and columns, that is¡

¢

=  (A.8)

The transpose of a column vector is a row vector. Note that older texts use the symbol Ã for the transpose.

Identity (unity) matrix I

The identity (unity) matrix I is diagonal with diagonal elements equal to 1, that is

I =  (A.9)

where the Kronecker delta symbol is defined by

 = 0 if  6=  (A.10)

= 1 if  = 

Inverse matrix A−1

If a matrix is non-singular, that is, its determinant is non-zero, then it is possible to define an inverse matrix

A−1. A square matrix has an inverse matrix for which the product

A ·A−1 = I (A.11)

Orthogonal matrix

A matrix with real elements is orthogonal if

A = A−1 (A.12)

That is X


¡

¢

 =

X


 =  (A.13)

Adjoint matrix A†

For a matrix with complex elements, the adjoint matrix, denoted by A† is defined as the transpose of the
complex conjugate ¡

A†¢

= A∗ (A.14)

Hermitian matrix

The Hermitian conjugate of a complex matrix H is denoted as H† and is defined as

H† =
¡
H

¢∗
= (H∗) (A.15)

Therefore


†
 = ∗ (A.16)

A matrix is Hermitian if it is equal to its adjoint

H† =H (A.17)

that is


†
 = ∗ =  (A.18)

A matrix that is both Hermitian and has real elements is a symmetric matrix since complex conjugation has

no effect.
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Unitary matrix

A matrix with complex elements is unitary if its inverse is equal to the adjoint matrix

U† = U−1 (A.19)

which is equivalent to

U†U = I (A.20)

A unitary matrix with real elements is an orthogonal matrix as given in equation 12

Trace of a square matrix A

The trace of a square matrix, denoted by A, is defined as the sum of the diagonal matrix elements.

A =

X
=1

 (A.21)

Inner product of column vectors

Real vectors The generalization of the scalar (dot) product in Euclidean space is called the inner prod-

uct. Exploiting the rules of matrix multiplication requires taking the transpose of the first column vector

to form a row vector which then is multiplied by the second column vector using the conventional rules for

matrix multiplication. That is, for rank  vectors

[X] · [Y] =

⎛⎜⎜⎝
1

2

:



⎞⎟⎟⎠ ·
⎛⎜⎜⎝

1
2
:



⎞⎟⎟⎠ = [X]

[Y] =

¡
1 2  

¢⎛⎜⎜⎝
1
2
:



⎞⎟⎟⎠ =

X
=1

 (A.22)

For rank  = 3 this inner product agrees with the conventional definition of the scalar product and gives a

result that is a scalar. For the special case when [A] · [B] = 0 then the two matrices are called orthogonal.
The magnitude squared of a column vector is given by the inner product

[X] · [X] =
X
=1

()
2 ≥ 0 (A.23)

Note that this is only positive.

Complex vectors For vectors having complex matrix elements the inner product is generalized to a form

that is consistent with equation 22 when the column vector matrix elements are real.

[X]
∗ · [Y] = [X]† [Y] = ¡ ∗1 ∗2  ∗−1 ∗

¢
⎛⎜⎜⎜⎜⎝

1
2
:

−1


⎞⎟⎟⎟⎟⎠ =

X
=1

∗  (A.24)

For the special case

[X]
∗ · [X] = [X]† [X] =

X
=1

∗  ≥ 0 (A.25)
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A.3 Determinants

Definition

The determinant of a square matrix with  rows equals a single number derived using the matrix elements

of the matrix. The determinant is denoted as detA or |A| where

|A| =
X
=1

(1 2  )1122  (A.26)

where (1 2  ) is the permutation index which is either even or odd depending on the number of

permutations required to go from the normal order (1 2 3 ) to the sequence (123 ).

For example for  = 3 the determinant is

|A| = 112233 +122331 +132132 −132231 −112332 −122133 (A.27)

Properties

1. The value of a determinant || = 0, if

(a) all elements of a row (column) are zero.

(b) all elements of a row (column) are identical with, or multiples of, the corresponding elements of

another row (column).

2. The value of a determinant is unchanged if

(a) rows and columns are interchanged.

(b) a linear combination of any number of rows is added to any one row.

3. The value of a determinant changes sign if two rows, or any two columns, are interchanged.

4. Transposing a square matrix does not change its determinant.
¯̄
A
¯̄
= |A|

5. If any row (column) is multiplied by a constant factor then the value of the determinant is multiplied

by the same factor.

6. The determinant of a diagonal matrix equals the product of the diagonal matrix elements. That is,

when  =  then |A| = 123

7. The determinant of the identity (unity) matrix |I| = 1.

8. The determinant of the null matrix, for which all matrix elements are zero, |0| = 0

9. A singular matrix has a determinant equal to zero.

10. If each element of any row (column) appears as the sum (difference) of two or more quantities, then

the determinant can be written as a sum (difference) of two or more determinants of the same order.

For example for order  = 2

¯̄̄̄
11 ±11 12 ±12

21 22

¯̄̄̄
=

¯̄̄̄
11 12
21 22

¯̄̄̄
±
¯̄̄̄
11 12
21 22

¯̄̄̄
11 A determinant of a matrix product equals the product of the determinants. That is, if C = AB then

|C|= |A| |B|
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Cofactor of a square matrix

For a square matrix having  rows the cofactor is obtained by removing the  row and the  column

and then collapsing the remaining matrix elements into a square matrix with  − 1 rows while preserving
the order of the matrix elements. This is called the complementary minor which is denoted as (). The

matrix elements of the cofactor square matrix a are obtained by multiplying the determinant of the ()

complementary minor by the phase factor (−1)+ . That is

 = (−1)+
¯̄̄
()

¯̄̄
(A.28)

The cofactor matrix has the property that

X
=1

 =  |A| =
X
=1

 (A.29)

Cofactors are used to expand the determinant of a square matrix in order to evaluate the determinant.

Inverse of a non-singular matrix

The ( ) matrix elements of the inverse matrix A−1 of a non-singular matrix A are given by the ratio of

the cofactor  and the determinant |A|, that is

−1 =
1

|A| (A.30)

Equations 28 and 29 can be used to evaluate the   element of the matrix product
¡
A−1A

¢
¡
A−1A

¢

=

X
=1

−1  =
1

|A|
X
=1

 =
1

|A| |A| =  = I (A.31)

This agrees with equation 11 that A ·A−1 = I.
The inverse of rank 2 or 3 matrices is required frequently when determining the eigen-solutions for rigid-

body rotation, or coupled oscillator, problems in classical mechanics as described in chapters 11 and 12.

Therefore it is convenient to list explicitly the inverse matrices for both rank 2 and rank 3 matrices.

Inverse for rank 2 matrices:

A−1 =
∙
 

 

¸−1
=

1

|A|
∙

 −
− 

¸
=

1

(− )

∙
 −
− 

¸
(A.32)

where the determinant of A is written explicitly in equation 32.

Inverse for rank 3 matrices:

A−1 =

⎡⎣   

  

  

⎤⎦−1 = 1

|A|

⎡⎣   

  

  

⎤⎦ = 1

|A|

⎡⎣   

  

  

⎤⎦
=

1

+  + 

⎡⎣  = (− )  = − (− )  = ( − )

 = − (− )  = (− )  = − ( − )

 = (− )  = − (− )  = (− )

⎤⎦ (A.33)

where the functions    are equal to rank 2 determinants listed in equation 33.
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A.4 Reduction of a matrix to diagonal form

Solving coupled linear equations can be reduced to diagonalization of a matrix. Consider the matrix A

operating on the vector X to produce a vector Y, that are expressed as components with respect to the

unprimed coordinate frame, i.e.

A ·X = Y (A.34)

Consider that the unitary real matrix R with rank , rotates the -dimensional un-primed coordinate

frame into the primed coordinate frame such that A , X and Y are transformed to A0 , X0 and Y0 in the
rotated primed coordinate frame. Then

X0 = R ·X
Y0 = R ·Y (A.35)

With respect to the primed coordinate frame equation (34) becomes

R· (A ·X) = R ·Y (A.36)

R ·A ·R−1 ·R ·X = R ·Y (A.37)

R ·A ·R−1 ·X0 = A0 ·X0 = Y0 (A.38)

using the fact that the identity matrix I = R ·R−1 = R ·R since the rotation matrix in  dimensions is

orthogonal.

Thus we have that the rotated matrix

A0 = R ·A ·R (A.39)

Let us assume that this transformed matrix is diagonal, then it can be written as the product of the unit

matrix I and a vector of scalar numbers called the characteristic roots  as

A0= R ·A ·R = I (A.40)

using the fact that R= R−1 then gives

R · (I) = A0·R (A.41)

Let both sides of equation 41 act on X0 which gives

I·X0= A0·X0 (A.42)

or £
I−A0¤X0= 0 (A.43)

This represents a set of  homogeneous linear algebraic equations in  unknowns X0 where  is a set of

characteristic roots, (eigenvalues) with corresponding eigenfunctions X0 Ignoring the trivial case of X0 being
zero, then (43) requires that the secular determinant of the bracket be zero, that is¯̄

I−A0 ¯̄= 0 (A.44)

The determinant can be expanded and factored into the form

(− 1) (− 2) (− 3)  (− ) = 0 (A.45)

where the  eigenvalues are  = 1 2  of the matrix A
0

The eigenvectors X0 corresponding to each eigenvalue are determined by substituting a given eigenvalue
 into the relation

X0 ·A0·X0= [ ] (A.46)

If all the eigenvalues are distinct, i.e. different, then this set of  equations completely determines the ratio

of the components of each eigenvector along the axes of the coordinate frame. However, when two or more
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eigenvalues are identical, then the reduction to a true diagonal form is not possible and one has the freedom

to select an appropriate eigenvector that is orthogonal to the remaining axes.

In summary, the matrix can only be fully diagonalized if (a) all the eigenvalues are distinct, (b) the real

matrix is symmetric, (c) it is unitary.

A frequent application of matrices in classical mechanics is for solving a system of homogeneous linear

equations of the form
111 +122  +1 = 0

111 +122  +1 = 0

    = 

11 +22  + = 0

(A.47)

Making the following definitions

A =

⎛⎜⎜⎝
11 12  1
21 22  2
   

1 2  

⎞⎟⎟⎠ (A.48)

X =

⎛⎜⎜⎝
1
2




⎞⎟⎟⎠ (A.49)

Then the set of linear equations can be written in a compact form using the matrices

A ·X =0 (A.50)

which can be solved using equation (43). Ensure that you are able to diagonalize a matrices with rank

2 and 3. You can use Mathematica, Maple, MatLab, or other such mathematical computer programs to

diagonalize larger matrices.

A.1 Example: Eigenvalues and eigenvectors of a real symmetric matrix

Consider the matrix

A =

⎛⎝ 0 1 0

1 0 0

0 0 0

⎞⎠
The secular determinant is given by (42)¯̄̄̄

¯̄ − 1 0

1 − 0

0 0 −

¯̄̄̄
¯̄ = 0

This expands to

−(+ 1)(− 1) = 0
Thus the three eigen values are  = −1 0 1
To find each eigenvectors we substitute the corresponding eigenvalue into equation (48) ⎛⎝ − 1 0

1 − 0

0 0 −

⎞⎠⎛⎝ 





⎞⎠ =

⎛⎝ 0

0

0

⎞⎠
The eigenvalue  = −1 yields  +  = 0 and  = 0 Thus the eigen vector is 1 = ( 1√

2
 −1√

2
 0). The

eigenvalue  = 0 yields  = 0 and  = 0 Thus the eigen vector is 2 = (0 0 1). The eigenvalue  = 1

yields − +  = 0 and  = 0 Thus the eigen vector is 3 = ( 1√
2
 1√

2
 0). The orthogonality of these three

eigen vectors, which correspond to three distinct eigenvalues, can be verified.
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A.2 Example: Degenerate eigenvalues of real symmetric matrix

This example illustrates how to generate eigenvectors corresponding to degenerate eigenvalues. Consider

the matrix

A =

⎛⎝ 1 0 0

0 0 1

0 1 0

⎞⎠
The secular determinant is given by (42)¯̄̄̄

¯̄ 1−  0 0

0 − 1

0 1 −

¯̄̄̄
¯̄ = 0

This expands to

(1− ) (+ 1)(− 1) = 0
Thus the three eigen values are  = −1 1 1
The eigenvectors are determined by substituting the corresponding eigenvalue into equation (42)⎛⎝ 1−  0 0

0 − 1

0 0 −

⎞⎠ ·
⎛⎝ 





⎞⎠ =

⎛⎝ 0

0

0

⎞⎠
The eigenvalue  = −1 yields 2 = 0 and  +  = 0 Thus the eigen vector is 1 = (0 1√

2
 −1√

2
). The

eigenvalue  = 1 yields − + = 0 The eigenvector 2 must be perpendicular to 1 and there are an infinite

number of choices. Let us assume that 2 = (0
1√
2
 1√

2
) which satisfies equation (50) then the eigenvector

3 must be perpendicular to both 1 and 2 For rank three this is found using

r3 = r1 × r2 = (1 0 0)
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Appendix B

Vector algebra

B.1 Linear operations

The important force fields in classical mechanics, namely, gravitation, electric, and magnetic, are vector

fields that have a position-dependent magnitude and direction. Thus, it is useful to summarize the algebra

of vector fields.

A vector a has both a magnitude || and a direction defined by the unit vector ê, that is, the vector
can be written as a bold character a where

a = · ê (B.1)

where by convention the implied modulus sign is omitted. The hat symbol on the vector ê designates that

this is a unit vector with modulus |ê| = 1.
Vector force fields are assumed to be linear, and consequently they obey the principle of superposition,

are commutative, associative, and distributive as illustrated below for three vectors ab c plus a scalar

multiplier 

a± b = ±b+ a (B.2)

a+(b+ c) = (a+ b)+c

 (a+ b) = a+b

The manipulation of vectors is greatly facilitated by use of components along an orthogonal coordinate

system defined by three orthogonal unit vectors (ê1 ê2 ê3) . For example the cartesian coordinate system

is defined by three unit vectors which, by convention, are called (̂i ĵ k̂).

B.2 Scalar product

Multiplication of two vectors can produce a 9−component tensor that can be represented by a 3× 3 matrix
as discussed in appendix . There are two special cases for vector multiplication that are important for

vector algebra; the first is the scalar product, and the second is the vector product.

The scalar product of two vectors is defined to be

a · b = || || cos  (B.3)

where  is the angle between the two vectors. It is a scalar and thus is independent of the orientation of

the coordinate axis system. Note that the scalar product commutes, is distributive, and associative with a

scalar multiplier, that is

a · b = b · a (B.4)

a· (b+ c) = a · b+ a · c
(a) ·b =  (b · a)

Note that a · a = ||2 and if a and b are perpendicular then cos  = 0 and thus a · b =0
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If the three unit vectors (ê1 ê2 ê3) form an orthonormal basis, that is, they are orthogonal unit vectors,

then from equations 3 and 4

ê · ê =  (B.5)

If â is the unit vector for the vector a then the scalar product of a vector a with one of these unit vectors

ê gives the cosine of the angle between the vector a and ê, that is

a · ê1 = || (â · ê1) = || cos (B.6)

a · ê2 = || (â · ê2) = || cos
a · ê3 = || (â · ê3) = || cos 

where the cosines are called the direction cosines since they define the direction of the vector a with respect

to each orthogonal basis unit vector. Moreover, a · ê1 = || â · ê1 = || cos is the component of a along the
ê1 axis. Thus the three components of the vector a is fully defined by the magnitude || and the direction
cosines, corresponding to the angles   . That is,

1 = || (â · ê1) = || cos (B.7)

2 = || (â · ê2) = || cos
3 = || (â · ê3) = || cos 

If the three unit vectors (ê1 ê2 ê3) form an orthonormal basis then the vector is fully defined by

a = 1ê1 + 2ê2 + 3ê3 (B.8)

Consider two vectors

a = 1ê1 + 2ê2 + 3ê3

b = 1ê1 + 2ê2 + 3ê3

Then using 5

a · b =11 + 22 + 33 = || || cos  (B.9)

where  is the angle between the two vectors. In particular, since the direction cosine cos =
1
|| , then

equation 9 gives

cos  = cos cos + cos cos + cos  cos  (B.10)

Note that when  = 0 then 10 gives

cos2 + cos2  + cos2  = 1 (B.11)

B.3 Vector product

The vector product of two vectors is defined to be

c = a× b = || || sin n̂ (B.12)

where  is the angle between the vectors and n̂ is a unit vector perpendicular to the plane defined by a

and b such that the unit vectors
³
â b̂ n̂

´
obey a right-handed screw rule. The vector product acts like a

pseudovector which comprises a normal vector multiplied by a sign factor that depends on the handedness

of the system as described in appendix 3.

The components of c are defined by the relation

 ≡
X


 (B.13)

where the (Levi-Civita) permutation symbol  has the following properties

 = 0 if an index is equal to any another index

 = +1 if    form an even permutation of 1 2 3

 = −1 if    form an odd permutation of 1 2 3

(B.14)
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For example, if the three unit vectors (ê1 ê2 ê3) form an orthonormal basis, then ê ≡
P

 ê ê, i.e.

ê1 × ê2 = ê3 ê2 × ê3 = ê1 ê3 × ê1 = ê2 (B.15)

ê2 × ê1 = −ê3 ê3 × ê2 = −ê1 ê1 × ê3 = −ê2 (B.16)

ê1 × ê1 = 0 ê2 × ê2 = 0 ê3 × ê0 = 0 (B.17)

The vector product anticommutes in that

a× b = −b× a (B.18)

However, it is distributive and associative with a scalar multiplier

a× (b+ c) = a× b+ a× c (B.19)

(a)×b =  (a× b) (B.20)

Note that when sin  = 0 then a× b = 0 and in particular, a× a = 0
Consider two vectors

a = 1ê1 + 2ê2 + 3ê3

b = 1ê1 + 2ê2 + 3ê3

Then using equations 12 and 15−17

a× b= || || sin  =
¯̄̄̄
¯̄ ê1 ê2 ê3
1 2 3
1 2 3

¯̄̄̄
¯̄ = ê1 (23 − 32) + ê2 (31 − 13) + ê3 (12 − 21)

where  is the angle between the two vectors and the determinant is evaluated for the top row. Examples of

vector products are torque N = r×F, angular momentum L = r× p, and the magnetic force F = v×B.

B.4 Triple products

The following scalar and vector triple products can be formed from the product of three vectors and are

used frequently.

Scalar triple products

There are several permutations of scalar triple products of three vectors [ab c] that are identical.

a· (b× c) = c· (a× b) = b· (c× a) = (a× b) · c = −a· (c× b) (B.21)

That is, the scalar product is invariant to cyclic permutations of the three vectors but changes sign for

interchange of two vectors. The scalar product is unchanged by swapping the scalar ()and vector ().

Because of the symmetry the scalar triple product can be denoted as [ab c] and

[ab c]  0 if [ab c] is right-handed

[ab c] = 0 if [ab c] is coplanar (B.22)

[ab c]  0 if [ab c] is left-handed

The scalar triple product can be written in terms of the components using a determinant

[ab c] =

¯̄̄̄
¯̄ 1 2 3
1 2 3
1 2 3

¯̄̄̄
¯̄ (B.23)
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Vector triple product

The vector triple product a× (b× c) is a vector. Since (b× c) is perpendicular to the plane of b c, then
a× (b× c) must lie in the plane containing b c. Therefore the triple product can be expanded in terms of
b c, as given by the following identity

a× (b× c) = (a · c)b− (a · b) c (B.24)

Workshop exercises

1. Partition the following exercises among the group. Once you have completed your problem, check with a

classmate before writing it on the board. After you have verified that you have found the correct solution,

write your answer in the space provided on the board, taking care to include the steps that you used to arrive

at your solution. The following information is needed.

a = 3i+ 2j− 9k b = −2i+ 3k c = −2i+ j− 6k d = i+ 9j+ 4k

E =

⎛⎝ 2 7 −4
3 1 −2
−2 0 5

⎞⎠ F =

µ
3 4

5 6

¶
G =

⎛⎝ 2 −4
7 1

−1 1

⎞⎠ H =

⎛⎝ −8 −1 −3
−4 2 −2
−1 0 0

⎞⎠
Calculate each of the following

1 |a− (b+ 3c)| 7 (EH)


2 Component of c along a 8 |HE|
3 Angle between c and d 9 EHG

4 (b× d) · a 10 EG−HG
5 (b× d)× a 11 EH−HE

6 b× (d× a) 12 F−1

Problems

[1] For what values of  are the vectors A = 2̂− 2̂+ ̂ and B = ̂+ 2̂+ 2̂ perpendicular?

[2] Show that the triple scalar product (×) ·  can be written as

(A×B) ·C =
¯̄̄̄
¯̄ 1 2 3
1 2 3
1 2 3

¯̄̄̄
¯̄

Show also that the product is unaffected by interchange of the scalar and vector product operations or by change in

the order of  as long as they are in cyclic order, that is

(A×B) ·C = A · (B×C) = B · (C×A) =(C×A) ·B

Therefore we may use the notation  to denote the triple scalar product. Finally give a geometric interpre-

tation of  by computing the volume of the parallelepiped defined by the three vectors ABC



Appendix C

Orthogonal coordinate systems

The methods of vector analysis provide a convenient representation of physical laws. However, the manip-

ulation of scalar and vector fields is greatly facilitated by use of components with respect to an orthogonal

coordinate system.

C.1 Cartesian coordinates (  )

Cartesian coordinates (rectangular) provide the simplest orthogonal rectangular coordinate system. The

unit vectors specifying the direction along the three orthogonal axes are taken to be (̂i ĵ k̂). In cartesian

coordinates scalar and vector functions are written as

 = (  ) (C.1)

r = ̂i+̂j+k̂ (C.2)

Calculation of the time derivatives of the position vector is especially simple using cartesian coordinates

because the unit vectors (̂i ĵ k̂) are constant and independent in time. That is;

̂i


=

̂j


=

k̂


= 0

Since the time derivatives of the unit vectors are all zero then the velocity ṙ =r

reduces to the partial time

derivatives of   and . That is,

ṙ =̇̂i+̇̂j+̇k̂ (C.3)

Similarly the acceleration is given by

r̈ =̈̂i+̈̂j+̈k̂ (C.4)

C.2 Curvilinear coordinate systems

There are many examples in physics where the symmetry of the problem makes it more convenient to solve

motion at a point  (  ) using non-cartesian curvilinear coordinate systems. For example, problems

having spherical symmetry are most conveniently handled using a spherical coordinate system (  )

with the origin at the center of spherical symmetry. Such problems occur frequently in electrostatics and

gravitation; e.g. solutions of the atom, or planetary systems. Note that a cartesian coordinate system still

is required to define the origin plus the polar and azimuthal angles   Using spherical coordinates for

a spherically symmetry system allows the problem to be factored into a cyclic angular part, the solution

which involves spherical harmonics that are common to all such spherically-symmetric problems, plus a

one-dimensional radial part that contains the specifics of the particular spherically-symmetric potential.

Similarly, for problems involving cylindrical symmetry, it is much more convenient to use a cylindrical

coordinate system (  ). Again it is necessary to use a cartesian coordinate system to define the origin

and angle . Motion in a plane can be handled using two dimensional polar coordinates.
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Curvilinear coordinate systems introduce a complication in that the unit vectors are time dependent in

contrast to cartesian coordinate system where the unit vectors (̂i ĵ k̂) are independent and constant in time.

The introduction of this time dependence warrants further discussion.

Each of the three axes  in curvilinear coordinate systems can be expressed in cartesian coordinates

(  ) as surfaces of constant  given by the function

 = (  ) (C.5)

where  = 1 2 or 3. An element of length  perpendicular to the surface  is the distance between the

surfaces  and  +  which can be expressed as

 =  (C.6)

where  is a function of (1 2 3). In cartesian coordinates 1,2 and 3 are all unity. The unit-length

vectors ̂1, ̂2, ̂3, are perpendicular to the respective 1 2 3 surfaces, and are oriented to have increasing

indices such that q̂1×q̂2= q̂3. The correspondence of the curvilinear coordinates, unit vectors, and transform
coefficients to cartesian, polar, cylindrical and spherical coordinates is given in table 1

Curvilinear 1 2 3 q̂1 q̂2 q̂3 1 2 3

Cartesian    ̂ ̂ k̂ 1 1 1

Polar   r̂ θ̂ 1 

Cylindrical    ρ̂ ϕ̂ ẑ 1  1

Spherical    r̂ θ̂ ϕ̂ 1  

Table 1: Curvilinear coordinates

The differential distance and volume elements are given by

s = 1q̂1 + 2q̂2 + 3q̂3 = 11q̂1 + 22q̂2 + 33q̂3 (C.7)

 = 123 = 123(123) (C.8)

These are evaluated below for polar, cylindrical, and spherical coordinates.

C.2.1 Two-dimensional polar coordinates ( )

The complication and implications of time-dependent unit vectors are best illustrated by considering two-

dimensional polar coordinates which is the simplest curvilinear coordinate system. Polar coordinates are a

special case of cylindrical coordinates, when  is held fixed, or a special case of spherical coordinate system,

when  is held fixed.

Consider the motion of a point  as it moves along a curve s() such that in the time interval  it moves

from  (1) to  (2) as shown in figure 2. The two-dimensional polar coordinates have unit vectors r̂, θ̂,

which are orthogonal and change from r̂1, θ̂1, to r̂2, θ̂2, in the time  Note that for these polar coordinates

the angle unit vector θ̂ is taken to be tangential to the rotation since this is the direction of motion of a

point on the circumference at radius .

The net changes shown in figure of table 2 are

r̂ = r̂2 − r̂1 = r̂ = |̂r| θ̂ =θ̂ (C.9)

since the unit vector r̂ is a constant with |̂r| = 1. Note that the infinitessimal r̂ is perpendicular to the unit
vector r̂, that is, r̂ points in the tangential direction θ̂

Similarly, the infinitessimal

θ̂ = θ̂2 − θ̂1 = θ̂ = −r̂ (C.10)

which is perpendicular to the tangential θ̂ unit vector and therefore points in the direction −r̂ . The minus
sign causes −r̂ to be directed in the opposite direction to r̂.
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The net distance element s is given by

s =r̂+ dr̂ =r̂+ θ̂ (C.11)

This agrees with the prediction obtained using table 1

The time derivatives of the unit vectors are given by equations (9) and (10) to be,

r̂


=




θ̂ (C.12)

θ̂


= −


r̂ (C.13)

Note that the time derivatives of unit vectors are perpendicular to the corresponding unit vector, and the

unit vectors are coupled.

Consider that the velocity v is expressed as

v=
r


=




(r̂) =




r̂+ 

r̂


= ̇r̂+ ̇θ̂ (C.14)

The velocity is resolved into a radial component ̇ and an angular, transverse, component ̇.

Similarly the acceleration is given by

a =
v


=

̇


r̂+̇

r̂


+




̇θ̂+

̇


θ̂+̇

θ̂



=
³
̈ − ̇

2
´
r̂+

³
̈ + 2̇̇

´
θ̂ (C.15)

where the ̇
2
r̂ term is the effective centripetal acceleration while the 2̇̇θ̂ term is called the Coriolis term.

For the case when ̇ = ̈ = 0, then the first bracket in 15 is the centripetal acceleration while the second

bracket is the tangential acceleration.

This discussion has shown that in contrast to the time independence of the cartesian unit basis vectors,

the unit basis vectors for curvilinear coordinates are time dependent which leads to components of the velocity

and acceleration involving coupled coordinates.

Coordinates  

Distance element s = r̂+ θ̂

Area element  = 

Unit vectors r̂ = ̂ cos  + ̂ sin 

θ̂ = −̂ sin  + ̂ cos 

Time derivatives r̂

= ̇θ̂

of unit vectors ̂

= −̇r̂

Velocity v = ̇r̂+ ̇θ̂

Kinetic energy 
2

³
̇2+2̇

2
´

Acceleration a =
³
̈ − ̇

2
´
r̂

+
³
̈ + 2̇̇

´
θ̂

Table 2: Differential relations plus a diagram of the unit vectors for 2-dimensional polar coordinates.
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C.2.2 Cylindrical Coordinates (  )

The three-dimensional cylindrical coordinates (  ) are obtained by adding the motion along the symmetry

axis ẑ to the case for polar coordinates. The unit basis vectors are shown in Table 3 where the angular

unit vector φ̂ is taken to be tangential corresponding to the direction a point on the circumference would

move. The distance and volume elements, the cartesian coordinate components of the cylindrical unit

basis vectors, and the unit vector time derivatives are shown in Table 3. The time dependence of the

unit vectors is used to derive the acceleration. As for the two-dimensional polar coordinates, the ρ̂ and θ̂

direction components of the acceleration for cylindrical coordinates are coupled functions of  ̇ ̈ ̇ and ̈.

Coordinates   

Distance element s = ρ̂+ φ̂+ ẑ

Volume element  = 

Unit vectors ρ̂ = ̂ cos+ ̂ sin

φ̂ = −̂ sin+ ̂ cos

ẑ = k̂

Time derivatives ̂

= ̇φ̂

of unit vectors ̂

= −̇ρ̂

ẑ

= 0

Velocity v = ̇ρ̂+ ̇φ̂+ ̇ẑ

Kinetic energy 
2

³
̇2+2̇

2
+ ̇2

´
Acceleration a =

³
̈− ̇

2
´
ρ̂

+
³
̈+ 2̇̇

´
φ̂+ ̈ẑ

Table 3: Differential relations plus a diagram of the unit vectors for cylindrical coordinates.

C.2.3 Spherical Coordinates (  )

The three dimensional spherical coordinates, can be treated the same way as for cylindrical coordinates. The

unit basis vectors are shown in Table 4 where the angular unit vectors θ̂ and φ̂ are taken to be tangential

corresponding to the direction a point on the circumference moves for a positive rotation angle.

Coordinates   

Distance element  = r̂+ θ̂ +  sin φ̂

Volume element  = 2 sin 

Unit vectors r̂ = ̂ sin  cos+ ̂ sin  sin+ k̂ cos 

θ̂ = ̂ cos  cos+ ̂ cos  sin− k̂ sin 
φ̂ = −̂ sin+ ̂ cos

Time derivatives r̂

= θ̂̇ + φ̂̇ sin 

of unit vectors ̂

= −r̂̇ + φ̂̇ cos 

̂

= −r̂̇ sin  − θ̂̇ cos 

Velocity v = ̇r̂+ ̇θ̂ + ̇ sin φ̂

Kinetic energy 
2

³
̇2+2̇

2
+2 sin2 ̇

2
´

Acceleration a =
³
̈ − ̇

2 − ̇
2
sin2 

´
r̂

+
³
̈ + 2̇̇ − ̇

2
sin  cos 

´
θ̂

+
³
̈ sin  + 2̇̇ sin  + 2̇̇ cos 

´
φ̂

Table 4 Differential relations plus a diagram of the unit vectors for spherical coordinates.
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The distance and volume elements, the cartesian coordinate components of the spherical unit basis

vectors, and the unit vector time derivatives are shown in the table given in figure 4. The time dependence

of the unit vectors is used to derive the acceleration. As for the case of cylindrical coordinates, the r̂ θ̂ and

φ̂ components of the acceleration involve coupling of the coordinates and their time derivatives.

It is important to note that the angular unit vectors θ̂ and φ̂ are taken to be tangential to the circles of

rotation. However, for discussion of angular velocity of angular momentum it is more convenient to use the

axes of rotation defined by r̂× θ̂ and r̂× φ̂ for specifying the vector properties which is perpendicular to

the unit vectors θ̂ and φ̂. Be careful not to confuse the unit vectors θ̂ and φ̂ with those used for the angular

velocities ̇ and ̇.

C.3 Frenet-Serret coordinates

The cartesian, polar, cylindrical, or spherical curvilinear coordinate systems, all are orthogonal coordinate

systems that are fixed in space. There are situations where it is more convenient to use the Frenet-Serret

coordinates which comprise an orthogonal coordinate system that is fixed to the particle that is moving

along a continuous, differentiable, trajectory in three-dimensional Euclidean space. Let () represent a

monotonically increasing arc-length along the trajectory of the particle motion as a function of time . The

Frenet-Serret coordinates, shown in figure 5 are the three instantaneous orthogonal unit vectors t̂ n̂ and

b̂ where the tangent unit vector t̂ is the instantaneous tangent to the curve, the normal unit vector n̂ is in

the plane of curvature of the trajectory pointing towards the center of the instantaneous radius of curvature

and is perpendicular to the tangent unit vector t̂ while the binormal unit vector is b̂ = t̂× n̂ which is the
perpendicular to the plane of curvature and is mutually perpendicular to the other two Frenet-Serrat unit

vectors. The Frenet-Serret unit vectors are defined by the relations

t̂


= n̂ (C.16)

b̂


= − n̂ (C.17)

n̂


= −t̂+ b̂ (C.18)

The curvature  = 1

where  is the radius of curvature and  is the torsion that can be either positive

or negative. For increasing  a non-zero curvature  implies that the triad of unit vectors rotate in a

right-handed sense about b̂. If the torsion  is positive (negative) the triad of unit vectors rotates in right

(left) handed sense about t̂.

t

n

b

^

^
^

Distance element s() = t̂
¯̄̄
r()



¯̄̄
 = t̂()

Unit vectors t̂() =
v()

|()|
n̂() =

t̂

|t̂|
b̂()= t̂× n̂

Time derivatives

of unit vectors 


⎛⎝ t̂

n̂

b̂

⎞⎠ = ||
⎛⎝ 0  0

− 0 

0 − 0

⎞⎠⎛⎝ t̂

n̂

b̂

⎞⎠
Velocity v() =

r()



Acceleration a() = 

t̂+2n̂

Table 5. The differential relations plus a diagram of the corresponding unit vectors for the Frenet-Serret

coordinate system.
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The above equations also can be rewritten in the form using a new unit rotation vector ω where

ω= t̂+b̂ (C.19)

Then equations 16− 18 are transformed to

t̂


= ω × t̂ (C.20)

n̂


= ω × n̂ (C.21)

b̂


= ω × b̂ (C.22)

In general the Frenet-Serret unit vectors are time dependent. If the curvature  = 0 then the curve is a

straight line and n̂ and b̂ are not well defined. If the torsion is zero then the trajectory lies in a plane. Note

that a helix has constant curvature and constant torsion.

The rate of change of a general vector field E along the trajectory can be written as

E


=

µ



t̂+




n̂+




b̂

¶
+ ω ×E (C.23)

The Frenet-Serret coordinates are used in the life sciences to describe the motion of a moving organism

in a viscous medium. The Frenet-Serret coordinates also have applications to General Relativity.

Workshop exercises

1. The goal of this problem is to help you understand the origin of the equations that relate two different coordinate

systems. Refer to diagrams for cylindrical and spherical coordinates as your teaching assistant explains how to

arrive at expressions for 1 2 and 3 in terms of   and  and how to derive expressions for the velocity and

acceleration vectors in cylindrical coordinates. Now try to relate spherical and rectangular coordinate systems.

Your group should derive expressions relating the coordinates of the two systems, expressions relating the unit

vectors and their time derivatives of the two systems, and finally, expressions for the velocity and acceleration

in spherical coordinates.



Appendix D

Coordinate transformations

Coordinate systems can be translated, or rotated with respect to each other as well as being subject to spatial

inversion or time reversal. Scalars, vectors, and tensors are defined by their transformation properties under

rotation, spatial inversion and time reversal, and thus such transformations play a pivotal role in physics.

D.1 Translational transformations

Translational transformations are involved frequently for transforming between the center of mass and lab-

oratory frames for reaction kinematics as well as when performing vector addition of central forces for the

cases where the centers are displaced. Both the classical Galilean transformation or the relativistic Lorentz

transformation are handled the same way. Consider two parallel orthonormal coordinate frames where the

origin of  0 (0 0 0) is displaced by a time dependent vector a() from the origin of frame  (  ). Then

the Galilean transformation for a vector r in frame  to r0 in frame  0 is given by

r (0 0 0) = r (  )+a() (D.1)

The velocities for a moving frame are given by the vector difference of the velocity in a stationary frame,

and the velocity of the origin of the moving frame. Linear accelerations can be handled similarly.

D.2 Rotational transformations

D.2.1 Rotation matrix

Rotational transformations of the coordinate system are used extensively in physics. The transformation

properties of fields under rotation define the scalar and vector properties of fields, as well as rotational

symmetry and conservation of angular momentum.

Rotation of the coordinate frame does not change the value of any scalar observable such as mass,

temperature etc. That is, transformation of a scalar quantity is invariant under coordinate rotation from

   → 0 0 0.
(000) = () (D.2)

By contrast, the components of a vector along the coordinate axes change under rotation of the coordinate

axes. This difference in transformation properties under rotation between a scalar and a vector is important

and defines both scalars and a vectors.

Matrix mechanics, described in appendix , provides the most convenient way to handle coordinate

rotations. The transformation matrix, between coordinate systems having differing orientations is called the

rotation matrix. This transforms the components of any vector with respect to one coordinate frame to

the components with respect to a second coordinate frame rotated with respect to the first frame.

Assume a point  has coordinates (1 2 3) with respect to a certain coordinate system. Consider

rotation to another coordinate frame for which the point  has coordinates (01 
0
2 

0
3) and assume that the

515
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origins of both frames coincide. Rotation of a frame does not change the vector, only the vector components

of the unit basis states. Therefore

x = ê01
0
1 + ê

0
2
0
2 + ê

0
3
0
3 = ê11 + ê22 + ê33 (D.3)

Note that if one designates that the unit vectors for the unprimed coordinate frame are (ê1 ê2 ê3) and for

the primed coordinate frame (ê01 ê
0
2 ê

0
3) then taking the scalar product of equation 3 sequentially with

each of the unit base vectors (ê01 ê
0
2 ê

0
3) leads to the following three relations

01 = (ê01·ê1)1 + (ê01·ê2)2 + (ê01·ê3)3 (D.4)

02 = (ê02·ê1)1 + (ê02·ê2)2 + (ê02·ê3)3
03 = (ê03·ê1)1 + (ê03·ê2)2 + (ê03·ê3)3

Note that the (ê0·ê) are the direction cosines as defined by the scalar product of two unit vectors for axes
 , that is, they are the cosine of the angle between the two unit vectors.

Equation 4 can be written in matrix form as

x0 = λ · x (D.5)

where the ” · ” means the inner matrix product of the rotation matrix λ and the vector x where

x0 ≡
⎛⎝ 01

02
03

⎞⎠ x ≡
⎛⎝ 1

2
3

⎞⎠ λ ≡
⎛⎝ ê01·ê1 ê01·ê2 ê01·ê3
ê02·ê1 ê02·ê2 ê02·ê3
ê03·ê1 ê03·ê2 ê03·ê3

⎞⎠ (D.6)

The inverse procedure is obtained by multiplying equation 3 successively by one of the unit basis

vectors (ê1 ê2 ê3) leading to three equations

1 = (ê1·ê01)01 + (ê1·ê02)02 + (ê1·ê03)03 (D.7)

2 = (ê2·ê01)01 + (ê2·ê02)02 + (ê2·ê03)03
3 = (ê3·ê01)01 + (ê3·ê02)02 + (ê3·ê03)03

Equation 7 can be written in matrix form as

x = λ ·x0 (D.8)

where λ is the transpose of λ.

Note that substituting equation 5 into equation 8 gives

x = λ · (λ · x) =
³
λ ·λ

´
·x (D.9)

Thus ³
λ ·λ

´
= I

where I is the identity matrix. This implies that the rotation matrix λ is orthogonal with λ = λ−1.
It is convenient to rename the elements of the rotation matrix to be

 ≡ (ê0·ê) (D.10)

so that the rotation matrix is written more compactly as

λ ≡
⎛⎝ 11 12 13

21 22 23
31 32 33

⎞⎠
and equation 4 becomes

01 = 111 + 122 + 133 (D.11)

02 = 211 + 222 + 233

03 = 311 + 322 + 333
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Consider an arbitrary rotation through an angle . Equations (10) and (11) can be used to relate

six of the nine quantities  in the rotation matrix, so only three of the quantities are independent. That

is, because of equation (11) we have three equations which ensure that the transformation is unitary.

21 + 22 + 23 = 1 (D.12)

Also requiring that the axes be orthogonal gives three equationsX


 = 0  6=  (D.13)

These six relations can be expressed as X


 =  (D.14)

The fact that the rotation matrix should have three independent quantities is due to the fact that all rotations

can be expressed in terms of rotations about three orthogonal axes.

D.1 Example: Rotation matrix:

Consider a point  (1 2 3) =  (3 4 5) in the unprimed coordinate system. Consider the same point

 (01 
0
2 

0
3) in the primed coordinate system which has been rotated by an angle 60◦ about the 1 axis as

shown. The direction cosines 0=cos( 0) can be determined from the figure to be the following


0

 0 0=cos(0)

1 1 0 1

1 2 90 0

1 3 90 0

2 1 90 0

2 2 60 0500

2 3 90− 60 0866

3 1 90 0

3 2 90 + 60 −0866
3 3 60 0500

Thus the rotation matrix is

 =

⎛⎝ 1 0 0

0 0500 0866

0 −0866 0500

⎞⎠
The transform point P 0(x 01 x

0
2 x

0
3) therefore is given by⎛⎝ 01

02
03

⎞⎠ =

⎛⎝ 1 0 0

0 0500 0866

0 −0866 0500

⎞⎠ ·
⎛⎝ 3

4

5

⎞⎠ =

⎛⎝ 3

6330

−0964

⎞⎠
Note that the radial coordinate r= r

0
=
√
50. That is, the rotational transformation is unitary and thus

the magnitude of the vector is unchanged.
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D.2 Example: Proof that a rotation matrix is orthogonal

Consider the rotation matrix

λ =
1

9

⎛⎝ 4 7 −4
1 4 8

8 −4 1

⎞⎠
The product

λ ·λ = 1

81

⎛⎝ 4 1 8

7 4 −4
−4 8 1

⎞⎠ ·
⎛⎝ 4 7 −4
1 4 8

8 −4 1

⎞⎠ =
1

81

⎛⎝ 81 0 0

0 81 0

0 0 81

⎞⎠ = 1

which implies that  is orthogonal.

D.2.2 Finite rotations

x 1
x 2

x 3

A B

B A

3 = 90° 2 = 90°

2 = 90° 3 = 90°

Figure D.1: Order of two finite rotations for a parallelepiped.

Consider two finite 90 rotations  and

 illustrated in figure 1 The  ro-

tation is 90 around the 3 axis in a

right-handed direction as shown. In such

a rotation the axes transform to 01 = 2,

02 = −1, 03 = 3 and the rotation matrix

is

λ =

⎛⎝ 0 1 0

−1 0 0

0 0 1

⎞⎠ (D.15)

The second rotation λ is a right-handed

rotation about the 01 axis which formerly
was the 2 axis. Then 

”
1 = 02, ”2 = −01,

”3 = 03 and the rotation matrix is

λ =

⎛⎝ 1 0 0

0 0 1

0 −1 0

⎞⎠ (D.16)

Consider the product of these two finite ro-

tations which corresponds to a single rota-

tion matrix λ
λ = λλ (D.17)

That is:

λ =

⎛⎝ 1 0 0

0 0 1

0 −1 0

⎞⎠⎛⎝ 0 1 0

−1 0 0

0 0 1

⎞⎠ =

⎛⎝ 0 1 0

0 0 1

1 0 0

⎞⎠ (D.18)

Now consider that the order of these two rotations is reversed.

λ = λλ (D.19)

That is:

λ =

⎛⎝ 0 1 0

−1 0 0

0 0 1

⎞⎠⎛⎝ 1 0 0

0 0 1

0 −1 0

⎞⎠ =

⎛⎝ 0 0 1

−1 0 0

0 −1 0

⎞⎠ 6= λ (D.20)

An entirely different orientation results as illustrated in figure 1.

This behavior of finite rotations is a consequence of the fact that finite rotations do not commute, that

is, reversing the order does not give the same answer. Thus, if we associate the vectors A and B with

these rotations, then it implies that the vector product AB 6= BA. That is, for finite rotation matrices, the
product does not behave like for true vectors since they do not commute.
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D.2.3 Infinitessimal rotations

Figure D.2: Infinitessimal rotation

Infinitessimal rotations do not suffer from the noncommutation defect

of finite rotations. If the position vector of a point changes from r to

r+ r then the geometrical situation is represented correctly by

r = θ × r (D.21)

where θ is a quantity whose magnitude is equal to the infinitessimal

rotation angle and which has a direction along the instantaneous axis

of rotation as illustrated in figure 2.

The infinitessimal angle θ is a vector which is shown by proving

that two infinitessimal rotations θ1 and θ2 commute. The change

in position vectors of the point are

r1 = θ1 × r (D.22)

and

r2 = θ2 × (r+ r1) (D.23)

Thus the final position vector for θ1 followed by θ2 is

r+ r1 + r2 = r+ θ1 × r+ θ2 × (r+ r1) (D.24)

Assuming that the second-order infinitessimals can be ignored gives

r+ r1 + r2 = r+ θ1 × r+ θ2 × r (D.25)

Consider now the inverse order of rotations.

r+ r2 + r1 = r+ θ2 × r+ θ1 × (r+ r2) (D.26)

Again, neglecting the second-order infinitessimals gives

r+ r2 + r1 = r+ θ2 × r+ θ1 × r (D.27)

Note that the products of these two infinitessimal rotations, 25 and 27 are identical. That is, assuming

that second-order infinitessimals can be neglected, then the infinitessimal rotations commute, and thus θ1
and θ2 are correctly represented by vectors.

The fact that θ is a vector allows angular velocity to be represented by a vector. That is, angular

velocity is the ratio of an infinitessimal rotation to an infinitessimal time.

ω =
θ


(D.28)

Note that this implies that the velocity of the point can be expressed as

v =
r


=

θ


× r = ω × r (D.29)

D.2.4 Proper and improper rotations

The requirement that the coordinate axes be orthogonal, and that the transformation be unitary, leads to

the relation between the components of the rotation matrix.X


 =  (D.30)

It was shown in equation 12 that, for such an orthogonal matrix, the inverse matrix −1 equals the
transposed matrix 

λ−1 = λ
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Inserting the orthogonality relation for the rotation matrix leads to the fact that the square of the determinant

of the rotation matrix equals one,

||2 = 1 (D.31)

that is

|| = ±1 (D.32)

A proper rotation is the rotation of a normal vector and has

|| = +1 (D.33)

An improper rotation corresponds to

|| = −1 (D.34)

An improper rotation implies a rotation plus a spatial reflection which cannot be achieved by any combination

of only rotations.

Consider the cross product of two vectors c = a× b It can be shown that the cross product behaves
under rotation as:

0 = ||
X


 (D.35)

For all proper rotations the determinant of  = +1 and thus the cross product also acts like a proper vector

under rotation. This is not true for improper rotations where || = −1

D.3 Spatial inversion transformation

Spatial inversion, that is, mirror reflection, corresponds to reflection of all coordinate vectors, bi = − bi bj = −bj and bk = − bk Such a transformation corresponds to the transformation matrix
λ =

⎛⎝ −1 0 0

0 −1 0

0 0 −1

⎞⎠ = −
⎛⎝ 1 0 0

0 1 0

0 0 1

⎞⎠ (D.36)

x 1

x 2

x 3

x 2

x 3

x 1‘

‘

‘

Figure D.3: Inversion of an object corresponds to

reflection about the origin of all axes.

Thus || = −1 that is, it corresponds to an improper
rotation. A spatial inversion for two vectors A() and

B() correspond to

A() = −A(−) (D.37)

B() = −B(−)

That is, normal polar vectors change sign under spa-

tial reflection. However, the cross product C = A×B
does not change sign under spatial inversion since the

product of the two minus signs is positive. That is,

C() = +C(−) (D.38)

Thus the cross product behaves differently from a polar

vector. This improper behavior is characteristic of an

axial vector, which also is called a pseudovector.

Examples of pseudovectors are angular momentum, spin, magnetic field etc. These pseudovectors are

defined using the right-hand rule and thus have handedness. For a right-handed system

C= A×B (D.39)

Changing to a left-handed system leads to

C= B×A = −A×B (D.40)
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That is, handedness corresponds to a definite ordering of the cross product. Proper orthogonal transforma-

tions are said to preserve chirality (Greek for handedness) of a coordinate system.

An example of the use of the right-handed system is the usual definition of cartesian unit vectors,

bi×bj = bk (D.41)

An obvious question to be asked, is the handedness of a coordinate system merely a mathematical curiosity

or does it have some deep underlying significance? Consider the Lorentz force

F =  (E+ v×B) (D.42)

Since force and velocity are proper vectors then the magnetic B field must be a pseudo vector. Note that

calculation of the B field occurs only in cross products such as,

∇×B = j (D.43)

where the current density j is a proper vector. Another example is the Biot-Savart Law which expresses B

as

B =


4

l× r
2

(D.44)

Thus even though B is a pseudo vector, the force F remains a proper vector. Thus if a left-handed coordinate

definition of B =


4
r×l
2

is used in 44, and F =  (E+B×v) in 42 then the same final physical

result would be obtained.

It was long thought that the laws of physics were symmetric with respect to spatial inversion ( i.e. mirror

reflection), meaning that the choice between a left-handed and right-handed representations (chirality) was

arbitrary. This is true for gravitational, electromagnetic and the strong force, and is called the conservation

of parity. The fourth fundamental force in nature, the weak force, violates parity and favours handedness.

It turns out that right-handed ordinary matter is symmetrical with left-handed antimatter.

In addition to the two flavours of vectors, one has scalars and pseudoscalars defined by:

 () = + (−) (D.45)

 () = − (−) (D.46)

An example of a pseudoscalar is the scalar product A · (B×C)

D.4 Time reversal transformation

The basic laws of classical mechanics are invariant to the sense of the direction of time. Under time reversal

the vector r is unchanged while both momentum p and time  change sign under time reversal, thus the time

derivative F =p

is invariant to time reversal; that is, the force is unchanged and Newton’s Laws F = p



are invariant under time reversal. Since the force can be expressed as the gradient of a scalar potential for

a conservative field, then the potential also remains unchanged. That is

p


= −∇() = F (D.47)

It is necessary to introduce tensor algebra, given in appendix , prior to discussion of the transformation

properties of observables which is the topic of appendix 5.

Workshop exercises

1. Suppose the 2-axis of a rectangular coordinate system is rotated by 30◦ away from the 3-axis around the

1-axis.

(a) Find the corresponding transformation matrix. Try to do this by drawing a diagram instead of going to

the book or the notes for a formula.
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(b) Is this an orthogonal matrix? If so, show that it satisfies the main properties of an orthogonal matrix. If

not, explain why it fails to be orthogonal.

(c) Does this matrix represent a proper or an improper rotation? How do you know?

2. When you were first introduced to vectors, you most likely were told that a scalar is a quantity that is defined

by a magnitude, while a vector has both a magnitude and a direction. While this is certainly true, there is

another, more sophisticated way to define a scalar quantity and a vector quantity: through their transformation

properties. A scalar quantity transforms as 0 =  while a vector quantity transforms as 0 =
P

   To

show that the scalar product does indeed transform as a scalar, note that:

A0·B0 =
X


0
0
 =

X


⎛⎝X




⎞⎠ÃX




!
=
X


ÃX




!


=
X


ÃX




!
=
X


 = A ·B

Now you will show that the vector product transforms as a vector. Begin by writing out what you are trying

to show explicitly and show it to the teaching assistant. Once the teaching assistant has confirmed that you

have the correct expression, try to prove it. The vector product is a bit more difficult to work with than the

scalar product, so your teaching assistant is prepared to give you a hint if you get stuck.

3. Suppose you have two rectangular coordinate systems that share a common origin, but one system is rotated

by an angle  with respect to the other. To describe this rotation, you have made use of the rotation matrix

(). (I’m changing the notation slightly to put the emphasis on the angle of rotation.)

(a) Verify that the product of two rotation matrices (1)(2) is in itself a rotation matrix.

(b) In abstract algebra, a group  is defined as a set of elements  together with a binary operation ∗ acting
on that set such that four properties are satisfied:

i. (Closure) For any two elements  and  in the group , the product of the elements,  ∗  is also
in the group .

ii. (Associativity) For any three elements     of the group , ( ∗ ) ∗  =  ∗ ( ∗ ).
iii. (Existence of Identity) The group  contains an identity element  such that  ∗  =  ∗  =  for

all  ∈ .

iv. (Existence of Inverses) For each element  ∈ , there exists an inverse element −1 ∈  such that

 ∗ −1 = −1 ∗  = .

Show that if the product ∗ denotes the product of two matrices, then the set of rotation matrices together
with ∗ forms a group. This group is known as the special orthogonal group in two dimensions, also known
as (2).

(c) Is this group commutative? In abstract algebra, a commutative group is called an abelian group.

4. When you look in a mirror the image of you appears left-to-right reversed, that is, the image of your left ear

appears to be the right ear of the image and vise versa. Explain why the image is left-right reversed rather

than up-down reversed or reversed about some other axis; i.e. explain what breaks the symmetry that leads to

these properties of the mirror image.

Problems

[1] Find the transformation matrix that rotates the axis 3 of a rectangular coordinate system 45
 toward 1 around

the 2 axis.

[2] For simplicity, take  to be a two-dimensional transformation matrix. Show by direct expansion that |λ|2 = 1.



Appendix E

Tensor algebra

E.1 Tensors

Mathematically scalars and vectors are the first two members of a hierarchy of entities, called tensors,

that behave under coordinate transformations as described in appendix . The use of the tensor notation

provides a compact and elegant way to handle transformations in physics.

A scalar is a rank 0 tensor with one component, that is invariant under change of the coordinate system.

(000) = () (E.1)

A vector is a rank 1 tensor which has three components, that transform under rotation according to

matrix relation

x0 = λ · x (E.2)

where λ is the rotation matrix. Equation 2 can be written in the suffix form as


0
 =

3X
=1

 (E.3)

The above definitions of scalars and vectors can be subsumed into a class of entities called tensors of rank 

that have 3 components. A scalar is a tensor of rank  = 0, with only 30 = 1 component, whereas a vector

has rank  = 1 that is, the vector x has one suffix  and 31 = 3 components.

A second-order tensor  has rank  = 2 with two suffixes, that is, it has 32 = 9 components that

transform under rotation as

 0 =
3X

=1

3X
=1

 (E.4)

For second-order tensors, the transformation formula given by equation 4 can be written more compactly

using matrices. Thus the second-order tensor can be written as a 3× 3 matrix

T ≡
⎛⎝ 11 12 13

21 22 23
31 32 33

⎞⎠ (E.5)

The rotational transformation given in equation 4 can be written in the form

 0 =
3X
=1

Ã
3X

=1



!
 =

3X
=1

Ã
3X

=1



!
 (E.6)

where  are the matrix elements of the transposed matrix λ
 . The summations in 6 can be expressed

in both the tensor and conventional matrix form as the matrix product

T0 = λ ·T · λ (E.7)

Equation 7 defines the rotational properties of a spherical tensor.

523
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E.2 Tensor products

E.2.1 Tensor outer product

Tensor products feature prominently when using tensors to represent transformations. A second-order tensor

T can be formed by using the tensor product, also called outer product, of two vectors a and b which,

written in suffix form, is

T ≡ a⊗ b =
⎛⎝ 11 12 13

21 22 23
31 32 33

⎞⎠ (E.8)

In component form the matrix elements of this matrix are given by

 =  (E.9)

This second-order tensor product has a rank  = 2 that is, it equals the sum of the ranks of the two

vectors. Equation 8 is called a dyad since it was derived by taking the dyadic product of two vectors. In

general, multiplication, or division, of two vectors leads to second-order tensors. Note that this second-order

tensor product completes the triad of tensors possible taking the product of two vectors. That is, the scalar

product a · b, has rank  = 0, the vector product a× b, rank  = 1 and the tensor product a⊗ b has rank1
 = 2.

Higher-order tensors can be created by taking more complicated tensor products. For example, a rank-3

tensor can be created by taking the tensor outer product of the rank-2 tensor  and a vector  which, for

a dyadic tensor, can be written as the tensor product of three vectors. That is,

 =  =  (E.10)

In summary, the rank of the tensor product equals the sum of the ranks of the tensors included in the tensor

product.

E.2.2 Tensor inner product

The lowest rank tensor product, which is called the inner product, is obtained by taking the tensor product

of two tensors for the special case where one index is repeated, and taking the sum over this repeated index.

Summing over this repeated index, which is called contraction, removes the two indices for which the index

is repeated, resulting in a tensor that has rank  equal to the sum of the ranks minus 2 for one contraction.

That is, the product tensor has rank  = 1 + 2 − 2.
The simplest example is the inner product of two vectors which has rank  = 1+ 1− 2 = 0, that is, it is

the scalar product that equals the trace of the inner product matrix, and this inner product is commutative.

An especially important case is the inner product of a rank-2 dyad a⊗ b given by equation 8 with a

vector c, that is, the inner product T = a⊗ b · c. Written in component form, the inner product is
3X


 =

Ã
3X




!
 = (a · b)  (E.11)

The scalar product a · b is a scalar number, and thus the inner-product tensor is the vector c renormalized
by the magnitude of the scalar product a · b. That is, it has a rank  = 2+1−2 = 1. Thus the inner product
of this rank-2 tensor with a vector gives a vector. The inner product of a rank-2 tensor with a rank-1 tensor

is used in this book for handling the rotation matrix, the inertia tensor for rigid-body rotation, and for the

stress and the strain tensors used to describe elasticity in solids.

E.1 Example: Displacement gradient tensor

The displacement gradient tensor provides an example of the use of the matrix representation to manipu-

late tensors. Let φ(1 2 3) be a vector field expressed in a cartesian basis. The definition of the gradient

G =∇φ gives that
φ =G·x

1The common convention is to denote the scalar product as a · b the vector product as a× b, and tensor product as a⊗ b.
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Calculating the components of φ in terms of x gives

1 =
1
1

1 +
1
2

2 +
1
3

3

2 =
2
1

1 +
2
2

2 +
2
3

3

3 =
3
1

1 +
3
2

2 +
3
3

3

Using index notation this can be written as

 =





The second-rank gradient tensor G can be represented in the matrix form as

G =

¯̄̄̄
¯̄̄

1
1

1
2

1
3

2
1

2
2

2
3

3
1

3
2

3
3

¯̄̄̄
¯̄̄

Then the vector φ can be expressed compactly as the inner product of G and xthat is

φ =G·x

E.3 Tensor properties

In principle one must distinguish between a 3×3 square matrix, and the tensor component representations of
a rank-2 tensor. However, as illustrated by the previous discussion, for orthogonal transformations, the tensor

components of the second rank tensor transform identically with the matrix components. Thus functionally,

the matrix formulation and tensor representations are identical. As a consequence, all the terminology and

operations used in matrix mechanics are equally applicable to the tensor representation.

The tensor representation of the rotation matrix provides the simplest example of the equivalence of

the matrix and tensor representations of transformations. Appendix 2 showed that the unitary rotation

matrix λ acting on a vector x transforms it to the vector x0 that is rotated with respect to x. That is, the
transformation is

x0 = λ · x (5)

where

x0 ≡
⎛⎝ 01

02
03

⎞⎠ x ≡
⎛⎝ 1

2
3

⎞⎠ λ ≡
⎛⎝ ê01·ê1 ê01·ê2 ê01·ê3
ê02·ê1 ê02·ê2 ê02·ê3
ê03·ê1 ê03·ê2 ê03·ê3

⎞⎠ (6)

Appendix 2 showed that the rotation matrix λ requires 9 components to fully specify the transformation

from the initial 3-component vector x to the rotated vector x0. The rotation tensor is a dyad as well as being
unitary and dimensionless. Note that equation 5 is an example of the inner product of a rank−2 rotation
tensor acting on a vector leading to a another vector that is rotated with respect to the first vector.

In general, rank-2 tensors have dimensions and are not unitary. For example, the angular velocity vector

ω and the angular momentum vector L are related by the inner product of the inertia tensor {I} and ω.
That is

L ={I} · ω (116)

The inertia tensor has dimensions of × 2 and relates two very different vector observables. The

stress tensor and the strain tensor, discussed in chapter 15 provide another example of second-order tensors

that are used to transform one vector observable to another vector observable analogous to the case of the

rotation matrix or the inertia tensor.

Note that pseudo-tensors can be used to make a rotational transformation plus a change in the sign.

That is, they lead to a parity inversion.

The tensor notation is used extensively in physics since it provides a powerful, elegant, and compact

representation for describing transformations.
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E.4 Contravariant and covariant tensors

In general the configuration space used to specify a dynamical system is not a Euclidean space in that

there may not be a system of coordinates for which the distance between any two neighboring points can

be represented by the sum of the squares of the coordinate differentials. For example, a set of cartesian

coordinate does not exist for the two-dimension motion of a single particle constrained to the curved surface

of a fixed sphere. Such curved spaces need to be represented in terms of Riemannian geometry rather

than Euclidean geometry. Curved configuration spaces occur in some branches of physics such as Einstein’s

General Theory of Relativity.

Tensors have transformation properties that can be either contravariant or covariant. Consider a set of

generalized coordinates 0 that are a function of the coordinates . Then infinitessimal changes  will lead
to infinitessimal changes 0 where

0 =
X


0


 (E.12)

Contravariant components of a tensor transform according to the relation

0 =
X


0


 (E.13)

Equation 13 relates the contravariant components in the unprimed and primed frames.

Derivatives of a scalar function , such as

0 =



=
X








=
X





 (E.14)

That is, covariant components of the tensor transform according to the relation

0 =
X





 (E.15)

It is important to differentiate between contravariant and covariant vectors. The Einstein superscript/subscript

convention for distinguishing between these two flavours of tensors is given in table 1

Table 1. Einstein notation for tensors.

 denotes a contravariant vector

 denotes a covariant vector

In linear algebra one can map from one coordinate system to another as illustrated in appendix . That

is, the tensor x can be expressed as components with respect to either the unprimed or primed coordinate

frames

x = ê01
0
1 + ê

0
2
0
2 + ê

0
3
0
3 = ê11 + ê22 + ê33 (E.16)

For a −dimensional manifold the unit basis column vectors ê transform according to the transformation

matrix λ

ê0 = λ · ê (E.17)

Since the tensor x is independent of the coordinate basis, the components of x must have the opposite

transform

x0 =
¡
λ−1

¢ ·x (E.18)

This normal vector x is called a ’contravariant vector" because it transforms contrary to the basis column

vector transformation.

The inverse of equation 18 gives that the column vector element

 =
X


λ
0
 (E.19)
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Consider the case of a gradient with respect to the coordinate x in both the unprimed and primed bases.

Using the chain rule for the partial derivative then the component of the gradient in the primed frame can

be expanded as

(∇)0 =


0
=
X








0
=
X





λ = 




(E.20)

That is, the gradient transforms as

∇0 = λ ·∇ (E.21)

That is, a gradient transforms as a covariant vector, like the unit vectors, whereas a vector  is contravariant

under transformation.

Normally the basis is orthonormal,
¡
λ−1

¢
= λ and thus there is no difference between contravariant and

covariant vectors. However, for curved coordinate systems, such as non-Euclidean geometry in the General

Theory of Relativity, the covariant and contravariant vectors behave differently.

The Einstein convention is extended to apply to matrices by writing the elements of the matrix A as


 while the elements of the transposed matrix A

−1 are written as  
 . The matrix product for A with a

contravariant vector X is written as

 0 =
X





 (E.22)

where the summation over  effectively cancels the identical superscript and subscript .

Similarly a covariant vector, such as a gradient, is written as,¡∇0
¢

=
X


¡
−1

¢ 


(∇) =

X


¡
−1

¢

(∇) (E.23)

Again the summation cancels the  superscript and subscript. The Kronecker delta symbol is written asX



 =  (E.24)

E.5 Generalized inner product

The generalized definition of an inner product is

 =
X



  (E.25)

where  is a unitary matrix called a covariant metric. The covariant metric transforms a contravariant to

a covariant tensor. For example the matrix element of a covariant tensor  can be written as

 =
X



 (E.26)

By association of the covariant metric with either of the vectors in the inner product gives

 =
X



  =

X



 =

X


 (E.27)

Similarly it can be defined in terms of an orthogonal contravariant metric  where

 =
X


 (E.28)

Then

 =
X


 (E.29)

Association of the contravariant metric with one of the vectors in the inner product gives the inner

product

 =
X


 =
X


 =
X



 (E.30)

For most situations in this book the metric  is diagonal and unitary.



528 APPENDIX E. TENSOR ALGEBRA

E.6 Transformation properties of observables

In physics, observables can be represented by spherical tensors which specify the angular momentum and

parity characteristics of the observable, and the tensor rank is independent of the time dependence. The

transformation properties of these tensors, coupled with their time-reversal invariance, specify the funda-

mental characteristics of the observables.

Table 2 summarizes the transformation properties under rotation, spatial inversion and time reversal

for observables encountered in classical mechanics and electrodynamics. Note that observables can be scalar,

vector, pseudovector, or second-order tensors, under rotation, and even or odd under either space inversion

or time inversion. For example, in classical mechanics the inertia tensor I relates the angular velocity vector

ω to the angular momentum vector L by taking the inner product L = I · ω. In general I is not diagonal and
thus the angular momentum is not parallel to the angular velocity ω. A similar example in electrodynamics

is the dielectric tensor K which relates the displacement field D to the electric field E by D = K ·E. For
anisotropic crystal media K is not diagonal leading to the electric field vectors E and D not being parallel.

As discussed in chapter 7, Noether’s Theorem states that symmetries of the transformation properties lead

to important conservation laws. The behavior of classical systems under rotation relates to the conservation

of angular momentum, the behavior under spatial inversion relates to parity conservation, and time-reversal

invariance relates to conservation of energy. That is, conservative forces conserve energy and are time-reversal

invariant.

Table 2 : Transformation properties of scalar, vector, pseudovector, and tensor observables

under rotation, spatial inversion, and time reversal2

Physical Observable Rotation Space Time Name

(Tensor rank) inversion reversal

1) Classical Mechanics

Mass density  0 Even Even Scalar

Kinetic energy 22 0 Even Even Scalar

Potential energy () 0 Even Even Scalar

Lagrangian  0 Even Even Scalar

Hamiltonian  0 Even Even Scalar

Gravitational potential  0 Even Even Scalar

Coordinate r 1 Odd Even Vector

Velocity v 1 Odd Odd Vector

Momentum p 1 Odd Odd Vector

Angular momentum L = r× p 1 Even Odd Pseudovector

Force F 1 Odd Even Vector

Torque N = r×F 1 Even Even Pseudovector

Gravitational field g 1 Odd Even Vector

Inertia tensor I 2 Even Even Tensor

Elasticity stress tensor T 2 Even Even Tensor

2) Electromagnetism

Charge density  0 Even Even Scalar

Current density j 1 Odd Odd Vector

Electric field E 1 Odd Even Vector

Polarization P 1 Odd Even Vector

Displacement D 1 Odd Even Vector

Magnetic  field B 1 Even Odd Pseudovector

Magnetization M 1 Even Odd Pseudovector

Magnetic  field H 1 Even Odd Pseudovector

Poynting vector S = E×H 1 Odd Odd Vector

Dielectric tensor K 2 Even Even Tensor

Maxwell stress tensor T 2 Even Even Tensor

2Based on table 6.1 in "Classical Electrodynamics" 2 edition, by J.D. Jackson [?]



Appendix F

Aspects of multivariate calculus

Multivariate calculus provides the framework for handling systems having many variables associated with

each of several bodies. It is assumed that the reader has studied linear differential equations plus multivariate

calculus and thus has been exposed to the calculus used in classical mechanics. Chapter 5 of this book

introduced variational calculus which covers several important aspects of multivariate calculus such as Euler’s

variational calculus and Lagrange multipliers. This appendix provides a brief review of a selection of other

aspects of multivariate calculus that feature prominently in classical mechanics.

F.1 Partial differentiation

The extension of the derivative to multivariate calculus involves use of partial derivatives. The partial

derivative with respect to the variable  of a multivariate function (1 2  ) involves taking the

normal one-variable derivative with respect to  assuming that the other  − 1 variables are held constant.
That is,

(1 2  )


= lim

→0

∙
(1 2 −1 ( + )   )− (1 2   )



¸
(F.1)

where it will be assumed that the function () is a continuously-differentiable function to  order, then

all partial derivatives of that order or less are independent of the order in which they are performed. That

is,
2()


=

2()


(F.2)

The chain rule for partial differentiation gives that

(1 2   )


=

X
=1

()



()


(F.3)

The total differential of a multivariate function () is

 =

X
=1

()


 (F.4)

This can be extended to higher-order derivatives using the operator formalism

() =

µ
1



1
+ + 





¶
() =

X
1 

()

1 
(F.5)

F.2 Linear operators

The linear operator notation provides a powerful, elegant, and compact way to express, and apply, the

equations of multivariate calculus; it is used extensively in mathematics and physics. The linear operators
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typically comprise partial derivatives that act on scalar, vector, or tensor fields. Table 1 lists a few

elementary examples of the use of linear operators in this textbook. The first four linear operators involve

the widely used del operator ∇ to generate the gradient, divergence and curl as described in appendices 

and . The fifth and sixth linear operators act on the Lagrangian in Lagrangian mechanics applications.

The final two linear operators act on the wavefunction for wave mechanics.

Name Partial derivative Field Action

Gradient ∇ ≡ ̂ 

+ ̂ 


+ k̂ 


Scalar potential  E =∇

Divergence ∇· ≡
³̂
 

+ ̂ 


+ k̂ 



´
· Vector field E ∇·E

Curl ∇× ≡
³̂
 

+ ̂ 


+ k̂ 



´
× Vector field E ∇×E

Laplacian ∇2 =∇·∇ ≡ 2

2
+ 2

2
+ 2

2
Scalar potential  ∇2

Euler-Lagrange Λ ≡ 



̇
− 


Scalar Lagrangian  Λ = 0

Canonical momentum  ≡ 
̇

Scalar Lagrangian   ≡ 
̇

Canonical momentum  ≡ ~



̇

Wavefunction Ψ Ψ ≡ ~

Ψ
̇

Hamiltonian  = ~ 


Wavefunction Ψ Ψ = ~Ψ

= Ψ

Table 1 examples of linear operators used in this textbook.

There are three ways of expressing operations such as addition, multiplication, transposition or inversion

of operations that are completely equivalent because they all are based on the same principles of linear

algebra. For example, a transformation O acting on a vector A can produced the vector B. The simplest

way to express this transformation is in terms of components

 =

3X
=1

 (F.6)

Another way is to use matrix mechanics where the 3 × 3 matrix (O) transforms the column vector (A) to
the column vector (B), that is,

(B)= (O) (A) (F.7)

The third approach is to assume an operator O acts on the vector A

B = OA (F.8)

In classical mechanics, and quantum mechanics, these three equivalent approaches are used and exploited

extensively and interchangeably. In particular the rules of matrix manipulation, that are given in appendix

 are synonymous, and equivalent to, those that apply for operator manipulation. If the operator is complex

then the operator properties are summarized as follows.

The generalization of the transpose for complex operators is the Hermitian conjugate †


†
 = ∗ (F.9)

Note also that

O† = (∗) = ( )∗ (F.10)

The generalization of a symmetric matrix is Hermitian, that is,  is equal to its Hermitian conjugate


†
 = ∗ =  (F.11)

For a real matrix the complex conjugation has no effect so the matrix is real and symmetric.

The generalization of orthogonal is unitary for which the operator is unitary if it is non-singular and

−1 = † (F.12)

which implies

† =  = † (F.13)
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F.3 Transformation Jacobian

The Jacobian determinant, which is usually called the Jacobian, is used extensively in mechanics for both

rotational and translational coordinate transformations. The Jacobian determinant is defined as being the

ratio of the -dimensional volume element 12 in one coordinate system, to the volume element

12 in the second coordinate system. That is

(12) ≡ 12

12
=

¯̄̄̄
¯̄̄̄
¯̄

1
1

1
2

 1


2
1

2
2

 2


...
...

...
...


1


2

 


¯̄̄̄
¯̄̄̄
¯̄ (F.14)

F.3.1 Transformation of integrals:

Consider a coordinate transformation for the integral of the function (1 2 ) to the integral of a

function (1 2 ) where  =  (1 2 )  The coordinate transformation of the integral equation

can be expressed in terms of the Jacobian (12)Z
(1 2 )12 =

Z
(1 2 )12 = (F.15)Z

(1 2 )
12

12
12 =

Z
(1 2 )(1 2 )12

F.3.2 Transformation of differential equations:

The differential cross sections for scattering can be defined either by the number of a definite kind of

particle/per event, going into the volume element in momentum space 123 or by the number going

into the solid angle element having momentum between  and  + . That is, the first definition can be

written as a differential equation

3(1 2 3)

123
123 =

3(1() 2() 3())

123

(1 2 3)

(  )
 (F.16)

As shown in table 4, 123 = 2 sin  that is, the Jacobian equals 2 sin  Thus equation 16

can be written as

3(1 2 3)

123
123 =

∙
3

123
2
¸
(sin ) =

2(  )

Ω
Ω (F.17)

The differential cross section is defined by

2(  )

Ω
≡ 3

123
2 (F.18)

where the 2 factor is absorbed into the cross section and the solid angle term is factored out

F.3.3 Properties of the Jacobian:

In classical mechanics the Jacobian often is extended from 3 dimensions to -dimensional transformations.

The Jacobian is unity for unitary transformations such as rotations and linear translations which implies that

the volume element is preserved. It will be shown that this also is true for a certain class of transformations

in classical mechanics that are called canonical transformations. The Jacobian transforms the local density

to be correct for any scale transformations such as transforming linear dimensions from centimeters to inches.

F.1 Example: Jacobian for transform from cartesian to spherical coordinates

Consider the transform in the three-dimensional integral
R
(1 2 3)123 under transformation

from cartesian coordinates (1 2 3) to spherical coordinates (  ) The transformation is governed by
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the geometric relations 1 =  sin  cos, 2 =  sin  sin, 3 =  cos . For this transformation the Jacobian

determinant equals

(  ) =

¯̄̄̄
¯̄ sin  cos  cos  cos − sin  sin
sin  sin  cos  sin  sin  cos

cos  − sin  0

¯̄̄̄
¯̄ = 2 sin 

Thus the three-dimensional volume integral transforms toZ
(1 2 3)123 =

Z
(  )(  ) =

Z
(  )2 sin 

which is the well-known volume integral in spherical coordinates.

F.4 Legendre transformation

Hamiltonian mechanics can be derived directly from Lagrange mechanics by considering the Legendre trans-

formation between the conjugate variables (q q̇ ) and (qp )  Such a derivation is of considerable im-

portance in that it shows that Hamiltonian mechanics is based on the same variational principles as those

used to derive Lagrangian mechanics; that is d’Alembert’s Principle or Hamilton’s Principle. The general

problem of converting Lagrange’s equations into the Hamiltonian form hinges on the inversion of equation

(83) that defines the generalized momentum p This inversion is simplified by the fact that (83) is the first

partial derivative of the Lagrangian (q q̇ t) which is a scalar function.

Consider transformations between two functions  (uw) and (vw) where u and v are the active

variables related by the functional form

v =∇u (uw) (F.19)

and where w designates passive variables and ∇u (uw) is the first-order derivative of  (uw) , i.e. the

gradient, with respect to the components of the vector u. The Legendre transform states that the inverse

formula can always be written in the form

u =∇v(vw) (F.20)

where the function (vw) is related to  (uw) by the symmetric relation

(vw) +F(uw) = u · v (F.21)

and where the scalar product u · v =P
=1 .

Furthermore the derivatives with respect to all the passive variables {} are related by
∇w (uw) = −∇w(vw) (F.22)

The relationship between the functions  (uw) and (vw) is symmetrical and each is said to be the

Legendre transform of the other.

Workshop exercises

1. Below you will find a set of integrals. Your teaching assistant will divide you into groups and each group will

be assigned one integral to work on. Once your group has solved the integral, write the solution on the board

in the space provided by the teaching assistant.

(a)
R 2
0

R 4
0

R cos 
0

2 sin 

(b)
R ¡

ṙ

− ṙ

2

¢


(c)
R

A · a where A = ̂+ ̂+ k̂ and  is the sphere 2 + 2 + 2 = 9.

(d)
R

(∇×A) ·a where A = ̂+̂+k̂ and  is the surface defined by the paraboloid  = 1−2−2,

where  ≥ 0.



Appendix G

Vector differential calculus

This appendix reviews vector differential calculus which is used extensively in both classical mechanics and

electromagnetism.

G.1 Scalar differential operators

G.1.1 Scalar field

Differential operators like time
¡



¢
do not change the rotational properties of scalars or proper vectors. A

scalar operator 

acting on a scalar field (), in a rotated coordinated frame 0(000) is unchanged.

0


=




(G.1)

G.1.2 Vector field

Similarly for a proper vector field
0


=
X






(G.2)

That is, differentiation of scalar or vector fields with respect to a scalar operator does not change the

rotational behavior. In particular, the scalar differentials of vectors continue to obey the rules of ordinary

proper vectors. The scalar operator 

is used for calculation of velocity or acceleration.

G.2 Vector differential operators in cartesian coordinates

Vector differential operators, such as the gradient operator, are important in physics. The action of vector

operators differ along different orthogonal axes.

G.2.1 Scalar field

Consider a continuous, single-valued scalar function (   ) Since

0 =  (G.3)

then the partial differential with respect to one component  of the vector x
0 gives

0

0
=
X








0
(G.4)

The inverse rotation gives that

 =
X



0
 (G.5)
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Therefore


0
=
X



0
0

=
X


 =  (G.6)

Thus
0

0
=
X






(G.7)

That is the vector derivative acting of a scalar field transforms like a proper vector.

Define the gradient, or ∇ operator, as

∇ ≡
X


be 


(G.8)

where be is the unit vector along the  axis. In cartesian coordinates, the del vector operator is,
∇ ≡bi 


+bj 


+ bk 


(G.9)

The gradient was applied to the gravitational and electrostatic potential to derive the corresponding field.

For example, for electrostatics it was shown that the gradient of the scalar electrostatic potential field  can

be written in cartesian coordinates as

E = −∇ (G.10)

Note that the gradient of a scalar field produces a vector field. You are familiar with this if you are a skier

in that the gravitational force pulls you down the line of steepest descent for the ski slope.

G.2.2 Vector field

Another possible operation for the del operator is the scalar product with a vector. Using the definition of

a scalar product in cartesian coordinates gives

∇ ·A =bi ·bi


+bj ·bj


+ bk · bk


=




+




+




(G.11)

This scalar derivative of a vector field is called the divergence. Note that the scalar product produces a

scalar field which is invariant to rotation of the coordinate axes.

The vector product of the del operator with another vector, is called the curl which is used extensively

in physics. It can be written in the determinant form

∇×A =

¯̄̄̄
¯̄ bi bj bk










  

¯̄̄̄
¯̄ (G.12)

By contrast to the scalar product, both the gradient of a scalar field, and the vector product, are vector

fields for which the components along the coordinate axes transform in a specific manner, such as to keep the

length of the vector constant, as the coordinate frame is rotated. The gradient, scalar and vector products

with the ∇ operator are the first order derivatives of fields that occur most frequently in physics.

Second derivatives of fields also are used. Let us consider some possible combinations of the product of

two del operators.

1) ∇· (∇ ) = ∇2
The scalar product of two del operators is a scalar under rotation. Evaluating the scalar product in

cartesian coordinates givesµbi 

+bj 


+ bk 



¶
·
µbi


+bj


+ bk



¶
=

2

2
+

2

2
+

2

2
(G.13)

This also can be obtained without confusion by writing this product as;

∇· (∇ ) =∇ ·∇ = (∇ ·∇) (G.14)



G.3. VECTOR DIFFERENTIAL OPERATORS IN CURVILINEAR COORDINATES 535

where the scalar product of the del operator is a scalar, called the Laplacian ∇2 given by

∇ ·∇ = ∇2 ≡ 2

2
+

2

2
+

2

2
(G.15)

The Laplacian operator is encountered frequently in physics.

2) ∇× (∇ ) = 0
Note that the vector product of two identical vectors

A×A = 0 (G.16)

Therefore

∇× (∇ ) = 0 (G.17)

This can be confirmed by evaluating the separate components along each axis.

3) ∇· (∇×A) = 0
This is zero because the cross-product is perpendicular to ∇×A and thus the dot product is zero.

4) ∇× (∇×A) =∇· (∇ ·A)−∇2A
The identity

A× (B×C) = B (A ·C)− (A ·B)C (G.18)

can be used to give

∇× (∇×A) =∇· (∇ ·A)−∇2A (G.19)

since ∇ ·∇ = ∇2
There are pitfalls in the discussion of second derivatives in that it is assumed that both del operators

operate on the same variable, otherwise the results are different.

G.3 Vector differential operators in curvilinear coordinates

As discussed in Appendix  there are many situations where the symmetries make it more convenient to use

orthogonal curvilinear coordinate systems rather than cartesian coordinates. Thus it is necessary to extend

vector derivatives from cartesian to curvilinear coordinates. Table 1 can be used for expressing vector

derivatives in curvilinear coordinate systems.

G.3.1 Gradient:

The gradient in curvilinear coordinates is

∇ = 1

1



1
q̂1 +

1

2



2
q̂2 +

1

3



3
q̂3 (G.20)

where the coefficients  are listed in table 1.

For cylindrical coordinates this becomes

∇ = 


ρ̂+

1






ϕ̂+




ẑ (G.21)

In spherical coordinates

∇ = 


r̂+

1






θ̂ +

1

 sin 




ϕ̂ (G.22)
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G.3.2 Divergence:

The divergence can be expressed as

∇ ·A =
1

123

∙


1
(123) +



2
(231) +



3
(312)

¸
(G.23)

In cylindrical coordinates the divergence is

∇ ·A =
1






() +

1






+




=




+




+
1






+




(G.24)

In spherical coordinates the divergence is

∇ ·A =
1

2 sin 

∙




¡


2 sin 
¢
+




( sin ) +




()

¸
(G.25)

G.3.3 Curl:

∇×A =
1

123

¯̄̄̄
¯̄ 1q̂1 2q̂2 3q̂3


1


2


3

11 22 33

¯̄̄̄
¯̄ (G.26)

In cylindrical coordinates the curl is

∇×A =
1



¯̄̄̄
¯̄ ρ̂ ϕ̂ ẑ










  

¯̄̄̄
¯̄ (G.27)

In spherical coordinates the curl is

∇×A =
1

2 sin 

¯̄̄̄
¯̄ r̂ θ̂  sin ϕ̂










   sin 

¯̄̄̄
¯̄ (G.28)

G.3.4 Laplacian:

Taking the divergence of the gradient of a scalar gives

∇2 =∇ ·∇ = 1

123

∙


1

µ
23

1



1

¶
+



2

µ
31

2



2

¶
+



3

µ
12

3



3

¶¸
(G.29)

The Laplacian of a scalar function  in cylindrical coordinates is

∇2 = 1







µ





¶
+
1

2
2

2
+

2

2
(G.30)

The Laplacian of a scalar function  in spherical coordinates is

∇2 = 1

2




µ
2




¶
+

1

2 sin 





µ
sin 





¶
+

1

2 sin 

2

2
(G.31)

The gradient, divergence, curl and Laplacian are used extensively in curvilinear coordinate systems when

dealing with vector fields in Newtonian mechanics, electromagnetism, and fluid flow.



Appendix H

Vector integral calculus

Field equations, such as for electromagnetic and gravitational fields, require both line integrals, and surface

integrals, of vector fields to evaluate potential, flux and circulation. These require use of the gradient, the

Divergence Theorem and Stokes Theorem which are discussed in the following sections.

H.1 Line integral of the gradient of a scalar field

The change ∆ in a scalar field for an infinitessimal step l along a path can be written as

∆ = (∇ ) · l (H.1)

since the gradient of  that is, ∇ is the rate of change of  with l Discussions of gravitational and

electrostatic potential show that the line integral between points  and  is given in terms of the del operator

by

 −  =

Z 



(∇ ) · l (H.2)

This relates the difference in values of a scalar field at two points to the line integral of the dot product of

the gradient with the element of the line integral.

H.2 Divergence theorem

H.2.1 Flux of a vector field for Gaussian surface

cut

Sab

Sa Sb

S2 S1

V1 V2
F

F

Figure H.1: A volume V enclosed

by a closed surface S is cut into two

pieces at the surface S This gives

V1 enclosed by S1 and V1 enclosed

by S2

Consider the flux Φ of a vector field F for a closed surface, usually

called a Gaussian surface,  shown in figure 1.

Φ =

I


F · S (H.3)

If the enclosed volume is cut in to two pieces enclosed by surfaces

1 =  +  and 2 =  + . The flux through the surface 
common to both 1 and 2 are equal and in the same direction. Then

the net flux through the sum of 1 and 2 is given byI
1

F · S+
I
2

F · S =
I


F · S (H.4)

since the contributions of the common surface  cancel in that the

flux out of 1 is equal and opposite to the flux into 2 over the surface

 That is, independent of how many times the volume enclosed by

 is subdivided, the net flux for the sum of all the Gaussian surfaces

enclosing these subdivisions of the volume, still equals
H

F · S
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Consider that the volume enclosed by  is subdivided into  subdivisions where  → ∞ then even

though
H

F · S→ 0 as  →∞, the sum over surfaces of all the infinitessimal volumes remains unchanged

Φ =

I


F · S =
→∞X



I


F · S (H.5)

Thus we can take the limit of a sum of an infinite number of infinitessimal volumes as is needed to obtain a

differential form. The surface integral for each infinitessimal volume will equal zero which is not useful, that

is
H

F · S→ 0 as  →∞ However, the flux per unit volume has a finite value as  →∞ This ratio is

called the divergence of the vector field;

F = ∆→0

H

F · S
∆ 

(H.6)

where ∆  is the infinitessimal volume enclosed by surface  The divergence of the vector field is a scalar

quantity.

Thus the sum of flux over all infinitessimal subdivisions of the volume enclosed by a closed surface 

equals

Φ =

I


F · S =
→∞X



H

F · S
∆ 

∆  =

→∞X


F∆  (H.7)

In the limit  →∞ ∆  → 0 this becomes the integral;

Φ =

I


F · S =
Z



F (H.8)

This is called the Divergence Theorem or Gauss’s Theorem. To avoid confusion with Gauss’s law in electro-

statics, it will be referred to as the Divergence theorem.

H.2.2 Divergence in cartesian coordinates.

Fz

x,y,z

z

y

x 

Figure H.2: Computation of flux

out of an infinitessimal rectangular

box, ∆ ∆ ∆

Consider the special case of an infinitessimal rectangular box, size

∆∆∆ shown in figure 2 Consider the net flux for the  com-

ponent  entering the surface ∆∆ at location xyz.

∆Φ =

µ
 +

∆

2




+
∆

2





¶
∆∆ (H.9)

The net flux of the z component out of the surface at  +∆ is

∆Φ =

µ
 +∆




+
∆

2




+
∆

2





¶
∆∆ (H.10)

Thus the net flux out of the box due to the z component of F is

∆Φ = ∆Φ

 −∆Φ =




∆∆∆ (H.11)

Adding the similar  and  components for ∆Φ gives

∆Φ =

µ



+




+





¶
∆∆∆ (H.12)

This gives that the divergence of the vector field F is

F = ∆→0

H

F · S
∆ 

=

µ



+




+





¶
(H.13)
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since ∆ = ∆∆∆ But the right hand side of the equation equals the scalar product ∇ · F that is,
F =∇ · F (H.14)

The divergence is a scalar quantity. The physical meaning of the divergence is that it gives the net flux per

unit volume flowing out of an infinitessimal volume. A positive divergence corresponds to a net outflow of

flux from the infinitessimal volume at any location while a negative divergence implies a net inflow of flux

to this infinitessimal volume.

It was shown that for an infinitessimal rectangular box

∆Φ =

µ



+




+





¶
∆∆∆ =∇ · F∆ (H.15)

Integrating over the finite volume enclosed by the surface  gives

Φ =

I


F · S =
Z



∇ · F (H.16)

This is another way of expressing the Divergence theorem

Φ =

I


F · S =
Z



F (H.17)

The divergence theorem, developed by Gauss, is of considerable importance, it relates the surface integral of

a vector field, that is, the outgoing flux, to a volume integral of ∇ · F over the enclosed volume.

H.1 Example: Maxwell’s Flux Equations

As an example of the usefulness of this relation, consider the Gauss’s law for the flux in Maxwell’s

equations.

Gauss’ Law for the electric field

Φ=

I



E · dS = 1
0

Z



d

But the divergence relation gives that

Φ =

I


E · S =
Z



∇ ·E

Combining these gives I



E · S =
Z



∇ ·E = 1

0

Z





This is true independent of the shape of the surface or enclosed volume, leading to the differential form

of Maxwell’s first law, that is Gauss’s law for the electric field.

∇ · E = 

0

The differential form of Gauss’s law relates ∇ · E to the charge density  at that same location. This is

much easier to evaluate than a surface and volume integral required using the integral form of Gauss’s law.

Gauss’s law for magnetism

Φ =

I



B · S = 0

Using the divergence theorem gives that

Φ =

I



B · S =
Z



∇ ·B = 0
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This is true independent of the shape of the Gaussian surface leading to the differential form of Gauss’s law

for B

∇ ·B = 0
That is, the local value of the divergence of B is zero everywhere.

H.2 Example: Buoyancy forces in fluids

Buoyancy in fluids provides an example of the use of flux in physics. Consider a fluid of density ()

in a gravitational field ̄() = −()̂ where the  axis points in the opposite direction to the gravitational

force. Pressure equals force per unit area and is a scalar quantity. For a conservative fluid system, in static

equilibrium, the net work done per unit area for an infinitessimal displacement  is zero. The net pressure

force per unit area is the difference  (+)− () = ∇ · while the net change in gravitational potential
energy is ()̄() · . Thus energy conservation gives

[∇ + ()ḡ(z)] · r =0
which can be expanded as




= −()() ()




=




= 0

Integrating the net forces normal to the surface over any closed surface enclosing an empty volume, inside

the fluid, gives a net buoyancy force on this volume that simplifies using the Divergence theoremI
F · S=

I
Ŝ · S =

I
 =

Z




µ



+




+





¶


Using equations  leads to the net buoyancy forceI
F · S=

Z







 = −

Z




()()

The right hand side of this equation equals minus the weight of the displaced fluid. That is, the buoyancy force

equals the weight of the fluid displaced by the empty volume. Note that this proof applies both to compressible

fluids, where the density depends on pressure, as well as to incompressible fluids where the density is constant.

It also applies to situations where local gravity  is position dependent. If an object of mass  is completely

submerged then the net force on the object is  − R


()() If the object floats on the surface

of a fluid then the buoyancy force must be calculated separately for the volume under the fluid surface and

the upper volume above the fluid surface. The buoyancy due to displaced air usually is negligible since the

density of air is about 10−3 times that of fluids such as water.

H.3 Stokes Theorem

H.3.1 The curl

Maxwell’s laws relate the circulation of the field around a closed loop to the rate of change of flux through

the surface bounded by the closed loop. It is possible to write these integral equations in a differential form

as follows.

Consider the line integral around a closed loop  shown in figure 3.

If this area is subdivided into two areas enclosed by loops 1 and 2, then the sum of the line integrals

is the same I


F · l =
I
1

F · l+
I
2

F · l (H.18)

because the contributions along the common boundary cancel since they are taken in opposite directions if

1 and 2 both are taken in the same direction. Note that the line integral, and corresponding enclosed area,
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are vector quantities related by the right-hand rule and this must be taken into account when subdividing

the area. Thus the area can be subdivided into an infinite number of pieces for whichI


F · l =
→∞X



I


F · l =
→∞X



H

F · l

∆S · bn ∆S · bn (H.19)

where ∆S is the infinitessimal area bounded by the closed sub-loop  and ∆S · bn is the normal component
of this area pointing along the bn direction which is the direction along which the line integral points.

C

Figure H.3: The circulation around a

path is equal to the sum of the circu-

lations around subareas made by sub-

dividing the area.

The component of the curl of the vector function along the di-

rection bn is defined to be
(F) · bn ≡ ∆→0

→∞X


H

F · l

∆S · bn (H.20)

Thus the line integral can be written asI


F · l =

→∞X


H

F · l

∆S · bn ∆S · bn (H.21)

=

Z
[(F) · bn] S · bn

The product bn · bn = 1, that is, this is true independent of the

direction of the infinitessimal loop. Thus the above relation leads

to Stokes TheoremI


F · l =
Z







(F) · S (H.22)

This relates the line integral to a surface integral over a surface

bounded by the loop.

H.3.2 Curl in cartesian coordinates

Consider the infinitessimal rectangle ∆∆ pointing in the bk direction shown in figure 4

The line integral, taken in a right-handed way around bk givesI


F · l = ∆+

µ
 +




∆

¶
−
µ
 +




∆

¶
− ∆ =

µ



− 



¶
∆∆ (H.23)

z

y

x 

Fz

Figure H.4: Circulation around an

infinitessimal rectangle ∆∆ in the

z direction

Thus since ∆∆ = ∆S the  component of the curl is given by

(F) · bk = H

F · l

∆S · bn =

µ



− 



¶
(H.24)

The same argument for the component of the curl in the  direction

is given by

(F) ·bj = µ

− 



¶
(H.25)

Similarly the same argument for the component of the curl in the 

direction is given by

(F) ·bi = µ

− 



¶
(H.26)
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Thus combining the three components of the curl gives

F =

µ



− 



¶bi+µ

− 



¶bj+µ

− 



¶bk (H.27)

Note that cross-product of the del operator with the vector F is

∇×F =
¯̄̄̄
¯̄ bi bj bk










  

¯̄̄̄
¯̄ (H.28)

which is identical to the right hand side of the relation for the curl in cartesian coordinates. That is;

∇×F = 
−→
F (H.29)

Therefore Stokes Theorem can be rewritten asI


F · l =
Z







(F) · S =
Z







(∇×F) · S (H.30)

The physics meaning of the curl is that it is the circulation, or rotation, for an infinitessimal loop at any

location. The word curl is German for rotation.

H.3 Example: Maxwell’s circulation equations

As an example of the use of the curl, consider Faraday’s LawI




E · l = −
Z






B


· S

Using Stokes Theorem gives I


E · l =
Z






(∇×E) · S

These two relations are independent of the shape of the closed loop, thus we obtain Faraday’s Law in the

differential form

(∇×E) = −B


A differential form of the Ampère-Maxwell law also can be obtained fromI




B · l = 0

Z





(j+ 0
E


) · S

Using Stokes Theorem I


B · l =
Z






(∇×B) · S

Again this is independent of the shape of the loop and thus we obtain

Ampère-Maxwell law in differential form

∇×B = 0j+ 00
E



The differential forms of Maxwell’s circulation relations are easier to apply than the integral equations

because the differential form relates the curl to the time derivatives at the same specific location.
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H.4 Potential formulations of curl-free and divergence-free fields

Interesting consequences result from the Divergence theorem and Stokes Theorem for vector fields that are

either curl-free or divergence-free. In particular two theorems result from the second derivatives of a vector

field.

Theorem 1; Curl-free (irrotational) fields:

For curl-free fields

∇×F = 0 (H.31)

everywhere. This is automatically obeyed if the vector field is expressed as the gradient of a scalar field

F =∇ (H.32)

since

∇× (∇) = 0 (H.33)

That is, any curl-free vector field can be expressed in terms of the gradient of a scalar field.

The scalar field  is not unique, that is, any constant  can be added to  since ∇ = 0 that is, the

addition of the constant  does not change the gradient. This independence to addition of a number to the

scalar potential is called a gauge invariance discussed in chapter 132 for which

F =∇0 =∇ (+ ) =∇ (H.34)

That is, this gauge-invariant transformation does not change the observable F. The electrostatic field E

and the gravitation field g are examples of irrotational fields that can be expressed as the gradient of scalar

potentials.

Theorem 2; Divergence-free (solenoidal) fields:

For divergence-free fields

∇ · F = 0 (H.35)

everywhere. This is automatically obeyed if the field F is expressed in terms of the curl of a vector field G

such that

F =∇×G (H.36)

since ∇ ·∇×G = 0. That is, any divergence-free vector field can be written as the curl of a related vector

field.

As discussed in chapter 132, the vector potential G is not unique in that a gauge transformation can be

made by adding the gradient of any scalar field, that is, the gauge transformation G0 = G+∇ϕ gives

F =∇×G0 =∇× (G+∇ϕ) =∇×G (H.37)

This gauge invariance for transformation to the vector potential G0 does not change the observable vector
field F The magnetic field B is an example of a solenoidal field that can be expressed in terms of the curl

of a vector potential A.

H.4 Example: Electromagnetic fields:

Electromagnetic interactions are encountered frequently in classical mechanics so it is useful to discuss

the use of potential formulations of electrodynamics.

For electrostatics, Maxwell’s equations give that

∇×E = 0
Therefore theorem 1 states that it is possible to express this static electric field as the gradient of the scalar

electric potential  , where

E = −∇
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For electrodynamics, Maxwell’s equations give that

(∇×E) + B


= 0

Assume that the magnetic field can be expressed in the terms of the vector potential B = ∇×A, then
the above equation becomes

∇× (E+ A


) = 0

Theorem 1 gives that this curl-less field can be expressed as the gradient of a scalar field, here taken to

be the electric potential  .

(E+
A


) == −∇

that is

E = −(∇ + A


)

Gauss’ law states that

∇·E = 

0

which can be rewritten as

∇·E = −∇2 − (∇ ·A)


=


0
()

Similarly insertion of the vector potential A in Ampère’s Law gives

∇×B =∇× (∇×A)=0j+ 00
E


= 0j−00∇

µ




¶
− 00

µ
2A

2

¶
Using the vector identity ∇× (∇×A) =∇ (∇ ·A)−∇2 allows the above equation to be rewritten asµ

∇2A−00
µ
2A

2

¶¶
−∇

µ
∇ ·A+00

µ




¶¶
= −0j ( )

The use of the scalar potential  and vector potential A leads to two coupled equations  and  . These

coupled equations can be transformed into two uncoupled equations by exploiting the freedom to make a gauge

transformation for the vector potential such that the middle brackets in both equations  and  are zero.

That is, choosing the Lorentz gauge

∇ ·A = −00
µ




¶
simplifies equations  and  to be

∇2−00
2

2
= − 

0

∇2A−00
µ
2A

2

¶
= −0j

The virtue of using the Lorentz gauge, rather than the Coulomb gauge ∇ ·A = 0 is that it separates the

equations for the scalar and vector potentials. Moreover, these two equations are the wave equations for these

two potential fields corresponding to a velocity  = 1√
00

. This example illustrates the power of using the

concept of potentials in describing vector fields.



Appendix I

Waveform analysis

I.1 Harmonic waveform decomposition

Any linear system that is subject to a time-dependent forcing function  () can be expressed as a linear

superposition of frequency-dependent solutions of the individual harmonic decomposition () of the forcing

function. Similarly, any linear system subject to a spatially-dependent forcing function  () can be expressed

as a linear superposition of the wavenumber-dependent solutions of the individual harmonic decomposition

() of the forcing function. Fourier analysis provides the mathematical procedure for the transformation

between the periodic waveforms and the harmonic content, that is,  ()⇔ (), or  ()⇔ (). Fourier’s

theorem states that any arbitrary forcing function  () can be decomposed into a sum of harmonic terms.

For example for a time-dependent periodic forcing function the decomposition can be a cosine series of the

form

 () =

∞X
=1

 cos(0+ ) (I.1)

where 0 is the lowest (fundamental) frequency solution. For an aperiodic function a cosine decomposition

can be of the form

 () =

Z ∞
0

 () cos(+  ()) (I.2)

Either of the complementary functions  () ⇔ (), or  () ⇔ () are equivalent representations of

the harmonic content that can be used to describe signals and waves. The following two sections give an

introduction to Fourier analysis.

I.1.1 Periodic systems and the Fourier series

Discrete solutions occur for systems when periodic boundary conditions exist. The response of periodic

systems can be described in either the time versus angular frequency domains, or equivalently, the spatial

coordinate  versus the corresponding wave number . For periodic systems this decomposition leads to

the Fourier series where a generalized phase coordinate  can be used to represent either the time or spatial

coordinates, that is, with  = 0 or  =  respectively. The Fourier series relates the two representations

of the discrete wave solutions for such periodic systems.

Fourier’s theorem states that for a general periodic system any arbitrary forcing function  () can be

decomposed into a sum of sinusoidal or cosinusoidal terms. The summation can be represented by three

equivalent series expansions given below, where  = 0 or  = k0·r and where 0k0 are the fundamental
angular frequency and fundamental wave number respectively.

 () =
0

2
+

∞X
=1

[ cos () +  sin ()] (I.3)

 () =
0

2
+

∞X
=0

 cos (+ ) (I.4)

545
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 () =
0

2
+

∞X
=0

 sin (+ ) (I.5)

where  is an integer, and   are phase shifts fit to the initial conditions.

The normal modes of a discrete system form a complete set of solutions that satisfy the following orthog-

onality relation Z 2

0

 ()  ()  =  (I.6)

where  is the Kronecker delta symbol defined in equation (10). Orthogonality can be used to determine

the coefficients for equations (3) to be

0 =
1



Z +

−
 ()  (I.7)

 =
1



Z +

−
 () cos ()  (I.8)

 =
1



Z +

−
 () sin ()  (I.9)

Similarly the coefficients for (4) and (5) are related to the above coefficients by

2 = 2 = 2 + 2

Instead of the simple trigonometric form used in equations (3− 5) the cosine and sine functions can

be expanded into the exponential form where

cos =
1

2

¡
 + −

¢
(I.10)

sin =
−
2

¡
 − −

¢
then equation (3) becomes

 () =

∞X
=−∞


 (I.11)

where  is any integer and, from the orthogonality, the Fourier coefficients are given by

 =
1

2

Z +

−
 ()  (I.12)

These coefficients are related to the cosine plus sine series amplitudes by

 =
1

2
( − ) ( when  is positive)

 =
1

2
( + ) (when  is negative)

These results show that the coefficients of the exponential series are in general complex, and that they

occur in conjugate pairs (that is, the imaginary part of a coefficient  is equal but opposite in sign to that

for the coefficient −). Although the introduction of complex coefficients may appear unusual, it should
be remembered that the real part of a pair of coefficients denotes the magnitude of the cosine wave of the

relevant frequency, and that the imaginary part denotes the magnitude of the sine wave. If a particular

pair of coefficients  and − are real, then the component at the frequency 0 is simply a cosine; if 
and − are purely imaginary, the component is just a sine; and if, as is the general case,  and − are
complex, both cosine and a sine terms are present.

The use of the exponential form of the Fourier series gives rise to the notion of ‘negative frequency’. Of

course,  () =  cos is a wave of a single frequency  = 0 radians/second, and may be represented
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by a single line of height  in a normal spectral diagram. However, using the exponential form of the Fourier

series results in both positive and negative  components.

The coexistence of both negative and positive angular frequencies ± can be understood by consideration
of the Argand diagram where the real component is plotted along the -axis and the imaginary component

along the -axis. The function 
+ represents a vector of length  that rotates with an angular velocity 

in a positive direction, that is counterclockwise, whereas, 
− represents the vector rotating in a negative

direction, that is clockwise. Thus the sum of the two rotating vectors, according to equations (3), leads

to cancellation of the opposite components on the imaginary  axis and addition of the two  cos real

components on the  axis. Subtraction leads to cancellation of the real  components and addition of the

imaginary  axis components.

I.1.2 Aperiodic systems and the Fourier Transform

The Fourier transform (also called the Fourier integral) does for the non-repetitive signal waveform what

the Fourier series does for the repetitive signal. It was shown that the line spectrum of a recurrent periodic

pulse waveform is modified as the pulse duration decreases, assuming the period of the waveform (and hence

its fundamental component) remains unchanged. Suppose now that the duration of the pulses remain fixed

but the separation between them increases, giving rise to an increasing period. In the limit, only a single

rectangular pulse remains, its neighbors having moved away on either side towards ±∞. In this case, the
fundamental frequency 0 tends towards zero and the harmonics become extremely closely spaced and of

vanishingly small amplitudes, that is, the system approximates a continuous spectrum.

Mathematically, this situation may be expressed by modifications to the exponential form of the Fourier

series already derived. Let the phase factor  = 0 in equation (11) then

 =
0

2

Z +

−
 () 0 =

1



Z + 
2

− 
2

 () 0 (I.13)

where  is the period of the periodic force. Let  () = ,  = 0 and take the limit for  →∞ then

equation (12) can be written as

 () =

Z +∞

−∞
 ()  (I.14)

Similarly making the same limit for  →∞ then 0 =
2

→  and equation (11) becomes

 () =

∞X
=−∞

 ()


0 =

∞X
=−∞

 ()
0

2
 =

1

2

Z +∞

−∞
 ()  (I.15)

Equation (15) shows how a non-repetitive time-domain wave form is related to its continuous spectrum.

These are known as Fourier integrals or Fourier transforms. They are of central importance for signal

processing. For convenience the transforms often are written in the operator formalism using the F symbol

in the form

 () =
1

2

Z +∞

−∞
 ()  ≡ F−1

∙
1

2
()

¸
(I.16)

 () =

Z +∞

−∞
 () − ≡ F() (I.17)

It is very important to grasp the significance of these two equations. The first tells us that the Fourier

transform of the waveform () is continuously distributed in the frequency range between  = ±∞, whereas
the second shows how, in effect, the waveform may be synthesized from an infinite set of exponential functions

of the form ±, each weighted by the relevant value of (). It is crucial to realize that this transformation
can go either way equally, that is, from () to  () or vice versa.1

1The only asymmetry in the Fourier transform relations comes from the 2 factor originating from the fact that by convention

physicists use the angular frequency  = 2 rather than the frequency . In order to restore symmetry many papers use the

factor 1√
2

in both relations rather than using the 1
2

factor in equation 16 and unity in equation 17.
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I.1 Example: Fourier transform of a single isolated square pulse:

Consider a single isolated square pulse of width  that is described by the rectangular function Π defined

as

Π() =

½
1

0

||  
2

||  
2

That is, assume that the amplitude of the pulse is unity between − 
2
≤  ≤ 

2
. Then the Fourier transform

 () =

Z +

−
1− = 

µ
sin 

2

2

¶
which is an unnormalized () function. Note that the width of the pulse ∆ = ± 

2
leads to a frequency

envelope that has the first zeros at ∆ = ±

. Thus the product of these widths ∆ · ∆ = ± which is

independent of the width of the pulse, that is ∆ = 
∆

which is an example of the uncertainty principle

which is applicable to all forms of wave motion.

I.2 Example: Fourier transform of the Dirac delta function:

The Dirac delta function, (− 0), is a pulse of extremely short duration and unit area at  = 0 and is
zero at all other times. That is,

1 =

Z +∞

−∞
 (− 0) 

The Dirac function, which is sometimes referred to as the impulse function, has many important appli-

cations to physics and signal processing. For example, a shell shot from a gun is given a mechanical impulse

imparting a certain momentum to the shell in a very short time. Other things being equal, one is interested

only in the impulse imparted to the shell, that is, the time integral of the force accelerating the shell in the

gun, rather than the details of the time dependence of the force. Since the force acts for a very short time

the Dirac delta function can be employed in such problems.

As described in section 311 and appendix  , the Dirac delta function is employed in signal processing

when signals are sampled for short time intervals. The Fourier transform of the delta function is needed for

discussion of sampling of signals

 () =

Z +∞

−∞
 (− 0) − = −

0

Since − essentially is constant over the infinitesimal time duration of the  (− 0) function, and the
time integral of the  function is unity, thus the term − has unit magnitude for any value of  and has

a phase shift of − ( − 0)radians. For 0 = 0 the phase shift is zero and thus the Fourier transform of a

Dirac () function is () = 1. That is, this is a uniform white spectrum for all values of .

I.2 Time-sampled waveform analysis

An alternative approach for unloosing periodic signals, that is complementary to the Fourier analysis har-

monic decomposition, is time-sampled (discrete-sample) waveform analysis where the signal amplitude is

measured repetitively at regular time intervals in a time-ordered sequence, that is, a sequence of samples of

the instantaneous delta-function amplitudes is recorded. Typically an amplitude-to-digital converter is used

to digitize the amplitude for each measured sample and the digital numbers are recorded; this process is

called digital signal processing.

The general principles are best explained by first considering the response of a linear system to a step

function impulse, followed by a square impulse, and leading to the response of a -function impulsive driving

force.
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Figure I.1: Response of a underdamped linear oscillator with  = 10, and Γ = 2 to the following impulsive

force. (a) Step function force  = 0 for   0 and  =  for   0 (b) Square-wave force where  =  for

0     for  = 3 and  = 0 at other times. (c) Delta-function impulse  = 1.

I.2.1 Delta-function impulse response

Consider the damped oscillator equation

̈+ Γ̇+ 20 =
 ()


(I.18)

and assume that a step function is applied at time  = 0. That is;

 ()


= 0   0

 ()


=    0 (I.19)

where  is a constant. The initial conditions are that (0) = ̇(0) = 0.

The transient or complementary solution is the solution of the linearly-damped harmonic oscillator

̈+ Γ̇+ 20 = 0 (I.20)

This is independent of the driving force and the solution is given in the chapter 35 discussion of the linearly-

damped harmonic oscillator.

The particular, steady-state, solution is easy to obtain just by inspection since the force is a constant,

that is, the particular solution is

 =


20
  0  = 0   0

Taking the sum of the transient and particular solutions, using the initial conditions, gives the final solution

to be

() =


20

"
1− −

Γ
2
 cos1− Γ

−Γ
2


21
sin1

#
(I.21)

where 1 ≡
q
20 −

¡
Γ
2

¢2
 This functional form is shown in figure 1. Note that the amplitude of the

transient response equals − at  = 0 to cancel the particular solution when it jumps to +. The oscillatory
behavior then is just that of the transient response.

A square impulse can be generated by the superposition of two opposite-sign stepfunctions separated by

a time  as shown in figure 1.

The square impulse can be taken to the limit where the width  is negligibly small relative to the response

times of the system. It can be shown that letting  → 0 but keeping the magnitude of the total impulse

 =  finite for the impulse at time 0, leads to the solution for the -function impulse occurring at 0

() =


1
−

Γ
2
(−0) sin1 (− 0)   0 (I.22)

This response to a delta function impulse is shown in figure 1 for the case where 0 = 0. An example is

the response when the hammer strikes a piano string at  = 0.
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Figure I.2: Decomposition of the function () = 2 sin ()+sin (5)+ 1
3
sin (15)+ 1

5
sin(25) into a time-ordered

sequence of -function samples.

I.2.2 Green’s function waveform decomposition

The response of the linearly-damped linear oscillator to an delta function impulse, that has been expressed

above, can be used to exploit the powerful Green’s technique for decomposition of any general forcing

function. That is, if the driven system is linear, then the principle of superposition is applicable and allowing

expression of the inhomogeneous part of the differential equation as the sum of individual delta functions.

That is;

̈+ Γ̇+ 20 =

∞X
=−∞

 ()


=

∞X
=−∞

 () (I.23)

As illustrated in figure 2 discrete-time waveform analysis involves repeatedly sampling the instantaneous

amplitude in a regular and repetitive sequence of -function impulses. Since the superposition principle

applies for this linear system then the waveform can be described by a sum of an ordered series of delta-

function impulses where 0 is the time of an impulse. Integrating over all the -function responses that have
occurred at time 0, that is prior to the time of interest  leads to

 () =

Z 

−∞

 (0)
1

−
Γ
2 (−0) sin1 (− 0) 0  ≥ 0 (I.24)

The Green’s function  (− 0) is defined by

(− 0) =
1

1
−

Γ
2 (−0) sin1 (− 0)  ≥ 0 (I.25)

= 0   0

Superposition allows the summed response of the system to be written in an integral form

() =

Z 

−∞
 (0)(− 0)0 (I.26)

which gives the final time dependence of the forced system. This repetitive time-sampling approach avoids

the need of using Fourier analysis. Note that the Green’s function  (− 0) includes implicitly the frequency

of the free undamped linear oscillator 0 the free damped linear oscillator 1 ≡
q
20 −

¡
Γ
2

¢2
 as well as the

damping coefficient Γ. Access to the combination of fast microcomputers coupled to fast digital sampling

techniques has made digital signal sampling the pre-eminent technique for signal recording of audio, video,

and detector signal processing.
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published by Goldstein, Poole, and Safko (2002), uses the symplectic notation that makes the

book less friendly to undergraduates. The Cline book adopts the nomenclature used by Goldstein

to provide a consistent presentation of the material.

[Gr06] R. D. Gregory, "Classical Mechanics", Cambridge University Press

This outstanding, and original, introduction to analytical mechanics was written by a mathemati-

cian. It is ideal for the undergraduate, but the breadth of the material covered is limited.

[Gr10] W. Greiner, "Classical Mechanics, Systems of particles and Hamiltonian Dynamics" , 2 edition,

Springer (2010). This excellent modern graduate textbook is similar in scope and approach to

the present text. Greiner includes many interesting worked examples, as well as a reproduction

of the Struckmeier[Str08] presentation of the extended Lagrangian and Hamiltonian mechanics

formalism of Lanczos[La49].

[Jo98] J. V. José and E. J. Saletan, "Classical Dynamics, A Contemporary Approach", Cambridge

University Press (1998)

This modern advanced graduate-level textbook emphasizes configuration manifolds and tangent

bundles which makes it unsuitable for use by most undergraduate students.

[Jo05] O. D. Johns, "Analytical Mechanics for Relativity and Quantum Mechanics", 2 edition, Ox-

ford University Press (2005). Excellent modern graduate text that emphasizes the Lanczos[La49]

parametric approach to Special Relativity. The Johns and Cline textbooks were developed inde-

pendently but are similar in scope and approach. For consistency, the name "generalized energy",

which was introduced by Johns, has been adopted in the Cline textbook.
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This excellent undergraduate text played a major role in introducing analytical mechanics to

the undergraduate curriculum. It has an outstanding collection of challenging problems. The 5

edition has been published by S. T. Thornton and J. B. Marion, Thomson, Belmont, (2004).
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Abbreviated action, 384

Action

abbreviated action, 384

Hamilton’s principle, 382

Action-angle variables

Hamilton-Jacobi theory, 423

Sommerfeld atom, 485

Adiabatic invariance

action variables, 426

plane pendulum, 426

Analytical mechanics, xviii

Androyer-Deprit variables

rigid-body rotation, 315

Archimedes

history, 2

Aristotle

history, 1

Asymmetric rotor

stability of torque-free rotation, 322

Asymmetric top

5 somersaults plus 3 rotations of high diver, 334

separatrix, 322

tennis racket motion, 323

torque-free rotation, 321

Attractor

van der Pol oscillator, 94

Autonomous system, 93, 169

Barycenter, 229

Bernoulli

history, 4

principle of virtual work, 138

virtual work, 111

Bertrand’s Theorem

orbit stability, 241

Bertrand’s theorem

orbit solution, 234

Bicycle stability

rolling wheel, 331

Bifurcation

non-linear system, 103

Billiard ball, 15

Bohr

history, 7

model of the atom, 485

Bohr-Sommerfeld atom

special relativity, 477

Brahe

history, 2

Bulk modulus of elasticity, 443

Buoyancy forces, 540

Calculus of variations

brachistochrone, 111

Euler, 111

history, 111

Leibniz, xviii

Canonical equation of motion

Hamilton’s equations of motion, 202

Canonical perturbation theory

Hamilton-Jacobi theory, 428

harmonic oscillator perturbation, 428

Canonical transformations

generating function, 408

Hamilton method, 410

Hamilton’s equations of motion, 407

Hamilton-Jacobi theory, 412

identity transformation, 410

Jacobi method, 410, 412

one-dimensional harmonic oscillator, 411

Cartesian coordinates, 509

Cayley

history, 495

Center of momentum

bolas, 17

Center of percussion, 35

Central forces

two-body forces, 227

Centre of mass

finite sized objects, 12

Centre of momentum

relativistic kinematics, 463

Centrifugal force

parabolic mirror, 275

Chaos

Lyapunov exponent, 103

onset of chaos for non-linear system, 101

Characteristic function

Hamilton-Jacobi theory, 414

Chasles’ theorem
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rigid-body rotation, 292

Collective synchronization

coupled oscillators, 373

Commutation relation

Poisson bracket, 397, 487

Conjugate momentum, 180, 195

Conservation laws

angular momentum, 11

linear momentum, 12

Conservation laws in mechanics, 21

Conservation of linear momentum

exploding cannon shell, 15

many-body systems, 14

Conservation of momentum

billiard ball collisions, 15

Conservative forces

central force, 20

central two-body forces, 227

path independence, 18

potential energy, 18

time independence, 18

Constrained motion

Euler’s equations, 122

geodesic motion, 130, 479

Constraint forces

scleronomic, 185, 186

Constraints

kinematic equations of constraint, 122

non-holonomic, 123

partial holonomic, 124

rheonomic, 124

rolling wheel, 123

scleronomic, 124, 143

Continuity equation

fluid mechanics, 447

Continuous linear chain, 437

Contravariant tensor, 526

four vector, 466

Coordinate systems

cartesian coordinates, 509

curvilinear, 509

cylindrical basis vectors, 512

cylindrical coordinates, 512

polar coordinates, 510

spherical basis vectors, 512

spherical coordinates, 512

Coordinate transformation

rotational, 515

translational, 515

Copernicus

history, 2

Correspondence principle, 479

Bohr, 398, 488, 491

Dirac, 398, 488

Coulomb excitation, 255

Coupled linear oscillators

benzene ring, 365

collective motion in nuclei, 375

continuous lattice chain, 437

discrete lattice chain, 366

equations of motion, 349

general analytic theory, 347

grand piano, 346

kinetic energy tensor, 347

linear triatomic molecule, 363

normal coordinates, 351

potential energy tensor, 348

superposition, 350

three bodies coupled by six springs, 362

three fully-coupled plane pendula, 358

three nearest-neighbour coupled plane pendula,

360

two linearly-damped coupled oscillators, 372

two parallel-coupled plane pendula, 355

two series-coupled oscillators, three springs, 352

two series-coupled oscillators, two springs, 354

two-series coupled plane pendula, 357

viscously-damped coupled osciilators, 372

Coupled oscillators

collective synchronization, 373

Kuramoto model, 373

Covariant tensor, 526

four vector, 466

Cut-off frequency, 371

Cyclic coordinates

conservation of momentum, 184

Cylindrical coordinates

Hamiltonian, 203

d’Alembert

history, 5

virtual work, 111

d’Alembert’s principle

Lagrange equations, 139, 200, 532

virtual work, 138

da Vinci, Leonardo

history, 2

Damped linear oscillator

response to arbitrary periodic force, 72

Damped oscillator

attractor, 97

critically damped, 60

energy dissipation, 61

Fourier transform, 70

free linearly damped, 58

overdamped, 60

Q factor, 61

underdamped, 59

de Broglie

history, 7
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de Broglie waves

group velocity, 486

Heisenberg’s uncertainty principle, 80

matter waves, 486

Delta-function analysis, 550

Green’s method, 550

Descartes

history, 3

Differential orbit equation, 232

Dirac

history, 7

Lagrangian approach to quantummechanics, 490

Poisson brackets in quantum physics, 398, 487

relativistic quantum theory, 490

Discrete lattice chain

cut-off frequency, 371

dispersion, 371

longitudinal modes, 366

normal modes, 367

transverse modes, 367

Discrete-function analysis

linear systems, 548

Dissipative Lagrangians, 388

Driven damped oscillator

absorptive amplitude, 66, 84

arbitrary periodic harmonic force, 71

elastic amplitude, 66, 84

energy absorption, 65

Green’s method, 550

harmonically driven, 62

Lorentzian (Breit-Wigner) line shape, 67

phase shift, 63

resonance, 65

Steady state response to harmonic drive, 63

transient response, 62

uncertainty principle, 67

Eccentricity vector

hidden symmetry, 241

Poisson Brackets, 404

two-body motion, 239

Einstein

General theory of relativity, 455, 478

history, 7

photoelectric effect, 484

postulates of special relativity, 457

Special theory of relativity, 455

theory of relativity, 10

Einstein’s equivalence principle

general theory of relativity, 478

Elasticity

modulus of elasticity, 53

spring constant, 444

strain tensor, 442

stress tensor, 442

Electromagnetic fields

field equations, 543

Equations of motion

analytic solution, 37

successive approximation, 37

Equivalence principle

weak equivalence principle, 478

Equivalent Lagrangians

gauge invariance, 386

Euler

calculus of variations, 111, see Euler’s equation

history, 4

Euler angles

definition, 307

line of nodes, 308

Euler’s equation of motion

rigid-body rotation, 312

Euler’s equations

brachistrochrone, 114

calculus of variations, 112

catenary, 129

classical mechanics, 131

constrained motion, 122

Dido problem, 129

Fermat’s principle, 119

generalized coordinates, 125

geodesic, 130

Lagrange multipliers, 125

minimum Laplacian, 121

second form, 121

selection of independent variable, 117

several independent variables, 119

shortest distance between two points, 114

Euler’s equations

minimal travel cost, 116

Euler’s equations of rigid-body rotation

Lagrangian derivation, 313

Newtonian derivation, 313

Euler’s first equation, 113

Euler’s hydrodynamic equation

fluid dynamics, 447

Faraday’s law, 542

Fast light

wave packets, 106

Fermat

history, 3

Fermat’s Principle, xvii

Feynman

history, 7

Least action in quantum mechanics, 491

Finite size bodies

centre of mass, 13

First order integrals

kinetic energy, 12
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momentum, 11

Newton’s laws, 11

Fluid dynamics

Bernoulli’s equation, 448

continuity equation, 447

Euler’s hydrodynamic equation, 447

gas flow, 448

ideal fluid, 447

irrotational flow, 448

Navier-Stokes equation, 450

viscous flow, 450

Fluid flow

drag force, 451

Navier-Stokes equation, 450

Reynolds number, 451

Force

constraint forces, 145

generalized force, 145

partition forces, 145

Four vector

special theory of relativity, 465

Four vectors

contravariant, 466

covariant, 466

momentum energy, 468

scalar product, 466

Four-dimensional space-time

Riemannian geometry, 479

special theory of relativity, 465

Fourier

history, 5

Fourier analysis, 70, 545

Fourier series, 545

Fourier transform, 547

Fourier series

cosine and sine series, 546

exponential series, 546

periodic systems, 545

Fourier transform

Dirac delta function, 548

gaussian wavepacket, 79

linearly-damped linear oscillator, 70

rectangular wavepacket, 79

single square pulse, 548

wavepackets, 79

Galilean invariance, 10

Galileo

history, 2

Gauge invariance, 386

Gauss

history, 5

General theory of relativity

black holes, 480

deflection of light, 480

gravitational lensing, 480

gravitational time dilation and frequency shift,

480

gravitational waves, 480

Mach’s principle, 478

principle of covariance, 478

rotation of the perihelion of mercury, 479

Generalized coordinates, 125, 135, 139, 142, 172

minimal set, 142

Generalized energy, 186, 195, 394

Generalized energy theorem

Hamiltonian mechanics, 187

Generalized force, 139, 144

Generalized momentum, 180

Geodesic motion, 130, 479

Gilbert

history, 2

Gravitation, 38

conservative, 39

curl, 41

determination of field from potential, 41

Gauss’s law, 43

Newton’s laws, 44

Poisson’s equation, 45

potential, 40

potential energy, 39

potential theory, 41

reference potential, 42

superposition, 40

uniform sphere of mass, 45

Green’s function method, 550

Group velocity

discrete lattice chain, 371

surface waves on deep water, 76

wave packets, 73, 74, 105

Hamilton

history, 5, 495

variational principle, 111

Hamilton’s equations of motion

canonical transformations, 407

Hamilton’s Principle

Hamilton-Jacobi equation, 384

Hamilton’s principle

Lagrange equations, 141, 200, 381, 532

least action, 382

Hamilton’s principle function

Hamilton-Jacobi theory, 413

Hamilton-Jacobi equation

Hamilton’s Principle, 384

Hamilton-Jacobi theory, 412

action variable, 425

action-angle variables, 423

central-force problem, 417

free particle, 415
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Hamilton’s characteristic function, 414

Hamilton’s principle function, 413

Hamilton-Jacobi formulations, 414

Jacobi’s complete integral, 412

Lindblad resonance, 429

one-dimensional oscillator, 417

Schrodinger equation, 490

separation of variables, 415

uniform gravitational field, 416

visual representation of characteristic function,

422

wave-particle duality, 422

Hamiltonian

central field, 204

classical mechanics, 193

conservation, 188

cyclic coordinates, 193

cylindrical coordinates, 203

definition, 440

isotropic central force, 190

linear oscillator on moving cart, 189

spherical coordinates, 204

total energy, 188

total energy conservation, 187

two body motion, 233

Hamiltonian mechanics

characteristic function, 414

comparison with Lagrangian mechanics, 431

electron motion in electric and magentic fields,

208

equations of motion, 202

extended formalism, 471, 474

generalized energy, 186, 195, 394

generalized energy theorem, 187

Hooke’s law for constrained motion, 207

Legendre transform, 200, 532

non-conservative forces, 218

observable independence, 399

observable time dependence, 399

observables, 398

one-dimensional harmonic oscillator, 205

plane pendulum, 57, 206

Poisson brackets, 401

spherical pendulum, 213

Harmonic oscillator

symmetry tensor, 244

Heisenberg

history, 7, 495

uncertainty principle, 80

Heisenberg matrix representation

quantum mechanics, 487

Hidden symmetry

Laplace-Runge-Lenz vector, 241

Hodograph

inverse-square law, 240

linear central force, 243

two-body scattering, 257

Holonomic constraints

generalized forces, 144

geometric constraints, 122

isoperimetric constraints, 123

Lagrange multipliers, 126

Hurricane

Katrina, 285

Impact parameter

two-body scattering, 238

Impulsive force

angular impulsive force, 35, 170

translational impulse, 34, 170

Inertia tensor

about center of mass of uniform cube, 298

about corner of uniform solid cube, 299

characteristic (secular) equation, 296

components, 294

diagonalization, 296

general properties, 301

hula hoop, 301

moments of inertia, 294

parallel-axis theorem, 297

perpendicular-axis theorem, 300

plane laminae, 300

principal axes, 295

principal moments of inertia, 295

products of inertia, 294

thin book, 301

Inertial frame, 10

Galilean invariance, 455

Inner product

tensor algebra, 527

tensors, 295

Inverse variational calculus, 387

Irrotational flow, 448

Jacobi

energy integral, 186

history, 6

Jacobi’s complete integral

Hamilton-Jacobi theory, 412

Jacobian

example, 532

general properties, 531

transformation of differentials, 531

transformation of integrals, 531

Jacobian determinant, 531

Kepler

history, 2

laws of plantary motion, 237, 262

Kinetic energy

generalized coordinates, 185
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scleronomic systems, 185, 186

Kirchhoff’s rules, 67, 220

Kuramoto model

coupled oscillators, 373

Lagrange

calculus of variations, 111

history, 5

Lagrange equations

d’Alembert’s principle, 139

Hamilton’s principle, 141, 381

Lagrange multipliers, 142

Lagrange equations

generalized coordinates, 142

Lagrange multipliers

algebraic equations of constraint, 126

Euler equations, 125

integral equations of constraint, 128

Lagrangian

definition, 111

dissipative, 388

equivalent lagrangians, 385

extended formalism, 469

linear dissipation, 389

non standard, 387, 392

relativistic free particle, 472

rotating frame, 271

special relativity, 472

standard, 385

state space, 202

time dependent, 169

Lagrangian density, 438

Lagrangian mechanics

Atwoods machine, 151

block sliding on moveable inclined plane, 153

body on periphery of rolling wheel, 166

central forces, 147

comparison with Hamiltonian mechanics, 431

comparison with Newtonian mechanics, 172

cyclic coordinates, 184

disk rolling on inclined plane, 148

generalized coordinates, 125, 172

holonomic constraints, 122, 144

mass sliding on paraboloid, 158

mass sliding on rotating rod, 154

motion in gravitational field, 146

motion of a free particle, 146

non-conservative forces, 216

partial holonomic systems, 161

plane pendulum, 191

solid sphere sliding on hemispherical surface, 165

sphere rolling down inclined plane on fritionless

floor, 154

spherical pendulum, 155

spring pendulum, 156

swinging mass connected to a rotating mass, 159

two connected blocks sliding without friction, 152

two connected masses sliding on rigid rail, 160

two masses sliding on inclined planes, 151

unconstrained motion, 146

velocity-dependent Lorentz force, 168

yo-yo, 157

Lame’s modulus of elasticity, 443

Legendre transform

Hamiltonian and Lagrangian mechanics, 200, 532

Leibniz

history, 4

vis viva, xviii

Linear oscillator

critically damped, 60

driven, 62

energy dissipation, 61

linear damping, 58

Lissajous figures, 55

overdamped, 60

Q factor, 61

resonance, 65

Steady state response of driven oscillator, 63

superposition, 54

transient response of driven oscillator, 62

underdamped, 59

Linear systems

Fourier harmonic analysis, 70

Linear velocity-dependent dissipation, 389

Linearly-damped linear oscillator

characteristic frequency, 58

damping parameter, 58

Liouville’s theorem

phase space, 405

Lissajous figure, 55

Lorentz

relativistic transformation, 457

Lorentz force in electromagnetism

Poisson brackets, 402

Lorentz transformation

Minkowski metric, 466

Lyapunov exponent

onset of chaos, 103

Mach’s principle

general theory of relativity, 478

Many-body systems

angular momentum, 16

energy conservation, 18

linear momentum, 14

Mass

gravitational, 39

inertial, 38

Matrix algebra, 495

addition, 496



INDEX 561

adjoint matrix, 497

degenerate eigenvalues, 503

diagonalization, 501

example of eigenvectors, 502

Hermitian matrix, 497

history, 495

identity matrix, 497

inverse matrix, 497

matrix multiplication, 496

orthogonal matrix, 497

scalar multiplication, 496

secular determinant, 501

transpose matrix, 497

unitary matrix, 498

Maupertuis

action principle, 384

history, 4

Max Born, 7

history, 495

quantum mechanics, 489

Maxwell stress tensor, 445

Maxwell’s equations

Gauss’s law and flux, 539

Michelson and Morley experiment

ether velocity, 456

Minkowski metric, 466

Minkowski space time

special relativity, 467

Modulus of elasticity

bulk modulus, 443

Lame’s modulus, 443

Poisson’s ratio, 444

shear modulus, 444

Young’s modulus, 443

Moment of inertia

thin door, 33

Momentum

angular momentum, 11

linear momentum, 9, 15

Multivariate calculus

linear operators, 530

partial differentiation, 529

Navier-Stokes equation

fluid flow, 450

Newton

equations of motion, 24

history, 3

laws of gravitation, 38

laws of motion, 9

Principia, xviii, 3

Newton’s laws of gravitation, 44

Newtonian mechanics

conservative forces, 25

constant force problems, 24

constrained motion, 27

diatomic molecule, 26

linear restoring force, 25

perturbation methods, 37

position-dependent forces, 26

projectile motion, 29

rocket problem, 30

roller coaster, 27

time-dependent forces, 34

variable mass, 29

velocity-dependent forces, 28

vertical fall in graviatational field, 28

Noether’s theorem

Atwoods machine, 182

conservation of angular momentum, 183

conservation of linear momentum, 182

diatomic molecule, 184

history, 7

invariant transformations, 181

rotational invariance, 183

symmetries and invariance, 179, 193

symmetry in deformed nuclei, 184

translational invariance, 182

Non-conservative forces

projectile motion, 216

Rayleigh dissipation force, 217

Non-holonomic systems

non-conservative forces, 216

velocity-dependent Lorentz force, 216

Non-inertial frames

centrifugal force, 272

Coriolis force, 272, 273

effective forces acting, 272

effective gravitation , 281

Foucault pendulum, 286

free fall on earth, 283

horizontal motion on the earth, 283

Lagrangian and Hamiltonian, 271

low-pressure systems, 284

Newtonian mechanics, 270

nucleon orbits in spheroidal potential well, 279

pirouette, 276

projectile fired vertically upwards, 283

projectile motion near surface of earth, 280

Rossby number, 284

rotating frame, 268

rotation plus translation, 270

time derivatives for a rotating frame, 269

trajectories for free motion on earth, 282

translation, 267

transverse, azimuthal, force, 272

weather systems, 284

Non-linear systems

bifurcation, 92, 103

driven damped plane pendulum, 97
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limit cycle, 93

onset of chaos, 101

period doubling, 100

point attractor, 92

sensitivity to initial conditions, 101

soliton, 107

turbulence in fluid flow, 450

van der Pol oscillator, 94

weak non-linearity, 90

Norbert Wiener

quantum mechanics, 489

Normal modes, 343

Orbit equation

differential orbit equation, 232

free body motion, 232, 234

Orbit stability

Bertrand’s theorem, 241

constant restoring force, 249

Hooke’s law restoring force, 246

inverse square law, 247

two-body motion, 245

Parallel-axis theorem

inertia tensor, 297

Pascal

history, 3

Pauli exclusion principle

quantum physics, 486

Pendulum

Foucault, 286

plane, 57, 206

plane pendulum, 191

spherical, 155, 213

spring pendulum, 156

Permutation symbol, 506

Perpendicular axis theorem

inertia tensor, 300

Phase space

harmonic oscillator, 56

Liouville’s theorem, 405

Phase velocity

wave packets, 105

wavepackets, 73, 74

Philosophical developments, xviii

Photoelectric effect

Einstein, 484

Millikan, 484

Planck

constant, 483

history, 483

Plane pendulum

state space, 57

Plato

history, 1

Poincare

chaos, 89

history, 6

three-body problem, 89

Poincare sections

state-space plots, 104

Poincare-Bendixson theorem

non-linear systems, 93

Poisson

history, 5

Poisson brackets

angular momentum conservation, 399

canonical transformation, 396

commutation relation, 397, 487

definition, 395

fundamental, 395

Hamilton equations of motion, 401

invariance to canonical transformations, 396

Lorentz force in electromagnetism, 402

time dependence, 398

two-dimensional oscillator, 403

wave motion and uncertainty principle, 402

Poisson’s ratio, 444

Potential theory

gravitation, 41

Precession rate

inertially-symmetric rigid rotor, 318

Principle of covariance

general theory of relativity, 478

Principle of equivalence

weak principle, 39

Principle of minimal gravitational coupling, 479

Q-factor

damped linear oscillator, 61

Quantum mechanics

Heisenberg, 486

Heisenberg’s matrix representation, 487

Max Born, 489

Norbert Wiener, 489

Paul Dirac, 398, 487

Pauli exclusion principle, 486

Schrodinger, 486

Schrodinger wave mechanics, 489

Queen Dido’s problem, 129

Radius of gyration, 36

Rayleigh dissipation function, 217

Rayleigh’s dissipation function

Hamiltonian mechanics, 218

Ohm’s law, 220

Reduced mass

two-body motion, 229

Refractive index, 106

Relativistic Doppler effect

special theory of relativity, 461

Relativistic four vector
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scalar product, 466

Restricted holonomic systems

mass sliding on hemispherical shell, 161

sphere rolling on a hemispherical shell, 163

Reynolds number

fluid flow, 451

laminar flow, 452

turbulent flow, 452

Rheonomic constraint, 124

Riemannian geometry, 479

Rigid-body rotation

about a body-fixed non-symmetry axis, 32

about a body-fixed point, 292

about a point, 291

about body-fixed symmetry axis, 31

about fixed axis, 291

Androyer-Deprit variables, 315

angular momentum, 303

angular momentum about corner of a uniform

cube, 304

angular momentum of cube about centre of mass,

303

angular velocities in terms of the Euler angle ve-

locities, 311

billiards, 33

body-fixed axis, 31

Chasles’ theorem, 292

Euler equations for torque-free motion, 314

Euler’s equations of motion, 312

Hamiltonian approach, 315

inertia tensor, 294

kinetic energy, 305

kinetic energy in terms of Euler angular veloci-

ties, 310

matrix formulation, 295

nutation, 309

parallel-axis theorem, 297

pivoting versus rolling, 332

precession, 309

rolling, 332

rotating dumbbell, 314

spin, 309

stability for torque-free motion, 322

stability of a rolling wheel, 331

static and dynamic balancing, 333

symmetric top about a fixed point, 325

torque-free rotation of symmetric top, 315

Rigid-body rotation about a point

tippe top, 328

Rolling wheel

symmetric rigid-body rotation , 329

Rotation matrix, 515

example, 517

finite rotations, 518

infinitessimal rotations, 519

proper and improper rotations, 519

Rotational invariants

scalar products, 311

Rotational transformation

rotation matrix, 515

Routh

Routhian reduction, 210

Routhian reduction, 210

cyclic and non-cyclic Routhians, 277

inverse-square central potential, 216

non-cyclic Routhian, 212

rotating frames, 277

rotation of a symmetric top about a fixed point,

326

Routhian, 210

spherical pendulum, cyclic Routhian, 214

spherical pendulum, non-cyclic Routhian, 215

Routhian reduction

cyclic Routhian, 211

Rutherford scattering, 252

cross section, 254

distance of closest approach, 254

impact parameter, 253

Scattering

energy transfer, 36

Schrodinger

history, 7

Schrodinger equation

Hamilton-Jacobi equation, 490

Schrodinger wave mechanics

quantum mechanics, 489

Scleronomic constraint, 124, 143, 185, 186, 347

Shear modulus of elasticity, 444

Signal processing

coaxial cable, 72

discrete-function analysis, 548

Signal velocity

wave packets, 73, 105

Simultaneity

Special theory of relativity, 459

Slow light

wave packets, 106

Snell’s law, xvii

Soliton

non-linear systems, 107

Soliton wave, 107

Sommerfeld

history, 7

Sommerfeld atom

quantum of action, 485

Spatial inversion transformation, 520

Special theory of relativity

Bohr-Sommerfeld atom, 477

energy, 463
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extended Hamiltonian formalism, 471, 474

Extended Lagrangian formulation, 469

force, 463

four-dimensional space-time, 465

Lagrangian, 472

Lorentz spatial contraction, 459

Minkowski space, 467

momentum transformations, 462

momentum-energy four vector, 468

relativistic Doppler effect, 461

simultaneity, 459

time dilation, 458

twin paradox, 461

velocity transformations, 462

Spherical coordinates

Hamiltonian, 204

Spherical harmonic oscillator

two-body force, 241

Spherical pendulum

Hamiltonian mechanics, 213

Lagrangian mechanics, 155

Spring constant, 444

Standard Lagrangian, 385

State space

Lagrangian mechanics, 202

plane pendulum, 57

State-space orbits

Poincare sections, 104

Stern Gerlach

space quantization, 486

Strain tensor

elasticity, 442

Stress tensor

elasticity, 442

Strong equivalence principle

general theory of relativity, 478

Superposition

Fourier series, 545

harmonic wave analysis, 70

linear equation of motion, 54

Symmetric top

Feynman’s wobbling plate, 320

nutation , 327

oblate spheroid, 317

precession, 327

precession rate for torque-free symmetric top,

320

prolate spheroid, 317

rotation about a fixed point, 325

spin, 328

spinning jack, 327

torque-free rotation, 315

Symmetries

invariance, 193

Noether’s theorem, 181

Symmetry tensor

anisotropic harmonic oscillator, 404

isotropic harmonic oscillator, 244

Poisson Brackets, 404

Teleology, 4, 384

Tennis racket rotation

asymmetric-rotor rotation, 323

Tensor algebra

contravariant tensor, 526

covariant tensor, 526

inner product, 295, 523, 527

outer product, 524

transformation properties, 528

Three-body problem

Lagrange points, 250

planar approximation, 250

restricted 3-body problem, 250

Time dependent force

nonautonomous systems, 169

Time invariance

conservation of energy, 186

Time reversal transformation, 521

Tippe top

symmetric rigid-body rotation about a point, 328

Tornadoes

weather systems, 285

Torque free rotation of asymmetric body, 324

Total mechanical energy, 19

Transformation properties of common observables, 528

Translational invariance

Noether’s theorem, 182

Tumbling of an asymmetric rotor

rigid-body rotation, 334

Turbulence in fluid flow

non-linear system, 450

Twin paradox

special theory of relativity, 461

Two-body central forces

conservative forces, 227

Two-body kinematics, 256

angle transformation, 258

recoil energies, 260

velocity transformation, 257

Two-body motion

angular momentum, 229

apocenter, 237

barycenter, 229

bound orbits, 236

equations of motion, 231

equivalent one-body representation, 228

Hamiltonian, 233

inverse cubic central force, 248

inverse square law, 235

isotropic harmonic oscillator, 241
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Kepler’s laws, 237, 262

Laplace-Runge-Lenz vector, 239

orbit solutions , 234

orbit stability, 245

pericenter, 236

properties of objects in solar system, 238

reduced mass, 229

unbound orbits, 238

Two-body scattering

differential cross section, 252

impact parameter, 238

Rutherford scattering, 252

total cross section, 251

Two-coupled harmonic oscillators

centre-of-mass oscillations, 344

eigenfrequencies, 342

grand piano, 346

normal modes, 341, 343

symmetric and antisymmetric normal modes, 344

weak coupling, 345

Uncertainty principle

Heisenberg, 80

quantum baseball, 82

Uncertainty principle for wave motion, 80

Unity of classical and quantum mechanics, 493

van der Pol oscillator

attractor, 94

strong non-linearity, 96

weak non-linearity, 96

Variational principles

calculus of variations, 111

philosophy, 111, 494

principle of economy, 111, 494

Vector algebra

linear operations, 505

Vector differential calculus

scalar differential operator, 533

scalar differential operators, 533

Vector differential operators

curl, 536

curvilinear coordinates, 535

divergence, 536

gradient, 534, 535

Laplacian, 535, 536

scalar product, 534

vector product, 534

Vector integral calculus

curl, 541

curl in cartesian coordinates, 541

curl-free field, 543

divergence in cartesian coordinates, 538

divergence theorem, 538

divergence-free field, 543

Gauss’s theorem, 537

line integral, 537

Stokes theorem, 540

Vector multiplication

scalar product, 505

scalar triple product, 507

vector product, 506

vector triple product, 508

Vibration isolation

linearly-damped oscillator, 71

Virial theorem, 22

Hooke’s law, 22

ideal gas law, 23

inverse square law, 23

mass of galaxies, 23

Virtual work

d’Alembert’s principle, 138

principle, 138

Wave equation, 68

stationary wave solutions, 69

trabelling wave solutions, 69

Wave motion

discrete-function analysis, 548

dispersion on discrete lattice chain, 371

electromagnetic waves in ionosphere, 77

group velocity for discrete lattice chain, 371

group velocity for water waves, 76

group velocity of de Broglie waves, 486

plasma oscillation frequency, 78

uncertainty principle, 80

water waves breaking on a beach, 75

Wave packets

fast light, 106

Fourier transform, 79

group velocity, 73, 74, 105

phase velocity, 73, 74, 105

signal velocity, 73, 105

slow light, 106

uncertainty principle, 80

Wave-particle duality

de Broglie, 486, 489

Hamilton-Jacobi theory, 422

Schrodinger, 489

Weak equivalence principle

general theory of relativity, 478

Weather systems

high-pressure systems, 286

low-pressure systems, 284

tornadoes, 285

Work

definition, 12, 20

Young’s modulus of elasticity, 443

Zeeman effect

weakly-coupled normal modes, 345
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