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AUTHOR’S PREFACE

I taught many times the college undergraduate, junior-level, one-semester course
entitled “AOE 3034, Vehicle Vibration and Control” in the Department of Aerospace and
Ocean Engineering (AOE) at Virginia Polytechnic Institute and State University (VPI &
SU). | was dissatisfied using commercially available textbooks for AOE 3034, so | began
writing my own course notes, and those notes grew into this book. Although this project
began with preparation of informal handout notes, the completed book is a formal college
engineering textbook, complete with homework problems at the end of each chapter, a
detailed Table of Contents, a list of References, and a detailed Index. 1 hope that this
book will be understandable and enlightening for students of engineering system dynam-
ics, a valuable teaching resource for course instructors, and a useful reference for self-
study and review.

The content of this book is based primarily on topics that the faculty of AOE and
VPI & SU elected to include in AOE 3034 during the 1990s and early 2000s. The con-
cise course description is: “Free and forced motions of first-order systems. Free and
forced motions of second-order systems, both undamped and damped. Frequency and
time responses. Introduction to control, transfer functions, block diagrams, and closed-
loop system characteristics. Higher-order systems.” A more detailed course description
is provided by the following list of primary learning objectives, which were developed to
satisfy requirements of the agency that accredits engineering college degrees in the
United States:

At the completion of AOE 3034, the student should be able to:

1. Solve first-, second-, and higher-order, linear, time-invariant (LTI) or-
dinary differential equations (ODEs) with forcing, using both time-domain
and Laplace-transform methods.

2. Solve for the frequency response of an LTI system to periodic sinusoi-
dal excitation and plot this response in standard form (log magnitude and
phase versus frequency).

3. Explain the role of the “time constant” in the response of a first-order

LTI system, and the roles of “natural frequency”, “damping ratio”, and
“resonance” in the response of a second-order LTI system.
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4. Derive and analyze mathematical models (ODEs) for low-order me-
chanical systems, both translational and rotational systems, that are com-
posed of inertial elements, spring elements, and damping devices.

5. Derive and analyze mathematical models (ODEs) for low-order electri-
cal systems (circuits) composed of resistors, capacitors, inductors, and op-
erational amplifiers.

6. Derive (from ODEs) and manipulate Laplace transfer functions and
block diagrams representing output-to-input relationships of discrete ele-
ments and of systems.

7. Define and evaluate “stability” for an LTI system.

8. Explain “proportional”, “integral”, and “derivative” types of feedback
control for single-input, single-output (SISO), LTI systems.

9. Sketch the locus of characteristic values, as a control parameter varies,
for a feedback-controlled SISO, LTI system.

10. Use MATLAB! as a tool to study the time and frequency responses of
LTI systems.

Rather that summarizing the contents of this book chapter by chapter, I invite the
reader of this preface to peruse the detailed Table of Contents. However, the book’s gen-
eral organization is the following: Chapters 1-10 deal primarily with the ODEs and be-
haviors of first-order and second-order dynamic systems; Chapters 11 and 12 touch on
the ODEs and behaviors of mechanical systems having two degrees of freedom, i.e.,
fourth-order systems; Chapters 13 and 14 introduce classical feedback control, motivat-
ing the concept with what I believe is a unique approach based on the standard ODE of a
second-order dynamic system; Chapter 15 presents the basic features of proportional, in-
tegral, and derivative types of classical control; and Chapters 16 and 17 discuss methods
for analyzing the stability of classical control systems. The principal parts of Chapters 1-
16 are focused on the ten primary learning objectives listed above. | added Chapter 17 on
frequency-response stability analysis because | feel that an introduction to classical con-
trol theory and design is incomplete without that subject, even though it was not included
in AOE 3034.

The general minimum prerequisite for studying this book is the intellectual matur-
ity of a junior-level (third-year) college student in an accredited four-year engineering
curriculum. More specifically, a reader of this book should already have passed standard
first courses in engineering dynamics and ODEs. It will be helpful if, but probably is not

! MATLAB ® is a registered trademark of The MathWorks, Inc. MATLAB is widely available to engi-
neers in practice and to engineering colleges. Furthermore, MATLAB-like software that uses command-
line language similar to MATLAB'’s, and functions similarly to MATLAB in many respects, is available
for download from the Internet, for example, GNU Octave (http://www.gnu.org/software/octave/).
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mandatory that, the reader has studied basic electrical circuits, perhaps in an introductory
college physics course. It is necessary that the reader has studied basic computer pro-
gramming. MATLAB computer programs and commands appear throughout this book,
so the reader should be able to understand MATLAB commands. However, MATLAB
commands are generally clearly expressed in standard English and standard arithmetic
notation, so a person who has done any computer programming, even if that was not with
MATLAB, probably can follow the computer commands and command sequences in this
book. Familiarity with matrix notation and matrix arithmetic operations also will be
helpful, especially for Chapters 11 and 12. My students who took at the same time AOE
3034 and a mathematics course on operational methods (primarily Laplace transforms)
often found that the combination of those courses was unusually complementary and
beneficial to their comprehension of the material.

A mathematical second-order system is represented in this book primarily by a
single second-order ODE, not in the state-space form by a pair of coupled first-order
ODEs. Similarly, a two-degrees-of-freedom (fourth-order) system is represented in
Chapters 11 and 12 by a pair of coupled second-order ODEs, not in the state-space form
by four coupled first-order ODEs. A reader who can understand the mathematics and
dynamics of relatively simple systems expressed here in classical second-order form
probably will have little trouble making the transition in more advanced literature to the
general state-space representation of higher order systems.

This book deals mostly with specific idealized models of basic physical systems,
such as mass-damper-spring mechanisms and single-loop electrical circuits. The empha-
ses are on fundamental ODEs and fundamental system response characteristics. | have
chosen, therefore, not to burden the reader with bond graph modeling, the general and
powerful, but complicated, modern tool for analysis of dynamic systems. However, the
material in this book is an appropriate preparation for the bond graph approach presented
in, for example, System Dynamics: Modeling, Simulation, and Control of Mechatronic
Systems, 5™ edition, by Dean C. Karnopp, Donald L. Margolis, and Ronald C. Rosenberg,
published by John Wiley & Sons, 2012.

| intended originally that Chapters 1-16 of the course notes (before they grew into
a book) could be covered in a normally-paced course of three fifty-minute lessons per
week in a standard college semester of fourteen weeks duration. Even so, instructors of
AOE 3034, including myself, had difficulty squeezing all of that content into forty-two
lessons. Furthermore, in the process of converting the course notes into a complete text-
book, | added material that is relevant and interesting (to me, at least) in many complete
“new” sections to the ends of Chapters 12, 7, 8, 10, 14, and 16. And, as mentioned
above, | also added a complete “new” Chapter 17. Consequently, | doubt that even the

2 | added Section 1-10, which deals with mass-spring systems, after working with several graduate students
whose research subjects were design, analysis, and testing of aerodynamic sensors that include mechanical
components. These graduate students had not recently reviewed elementary system dynamics, and so were
unfamiliar with fundamental concepts such as natural frequency and resonance. | decided, therefore, to
make Chapter 1 a succinct summary of basic mechanical-system dynamics (excluding feedback contraol),
suitable for quick review by graduate students or any engineers who specialize in other areas but need to
understand at least the most basic of this book’s lessons.
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most demanding course instructor can, while still treating the students fairly, cover this
entire book in a three-credit, one-semester course. Therefore, instructors who wish to use
this as a one-semester course textbook should decide in advance which parts of the book
are essential to the course and which parts they cannot cover in the time allotted for the
course. If, for example, it is essential to cover all of Chapters 13-17 on classical control,
an instructor might elect to skip some or all of the “new” sections in Chapters 1, 7, 8, and
10, and to skip Chapters 11 and 12 on systems with two degrees of freedom, but to cover
most everything else in the book. Sections 6-4, 6-5, and 8-11 deal primarily with compu-
tational methods for calculating approximate time-response solutions of first- and second-
order ODEs; the contents of these sections are nicely compatible with the chapters in
which they reside; but they are not essential to the reader’s understanding of system dy-
namics, so they can be omitted from course coverage without great loss. On the other
hand, | discourage the omission of Chapter 5 on basic electrical systems, not only be-
cause | believe the material is important to most engineers, but also because such systems
provide many examples and homework problems later in the book.

The homework problems at the ends of chapters are very important to the learning
objectives of this book. | wrote each problem statement while at the same time preparing
the solution, in order to help make the statements as clear, correct, and unambiguous as
possible. In many cases, | stated a result, such as a Laplace transform, in a chapter’s text
but left as a homework problem the proof or other development of that result. When
teaching a lesson from the course notes that grew into this book, I would often not lecture
on the material of the reading that | had assigned for the lesson. Instead, | would assume
that the students had, in fact, completed and understood the assigned reading, summarize
the main results of that reading and ask if there were questions about it, then, after re-
sponding to any questions, spend most remaining lesson time discussing some of the re-
lated homework problems.

A major focus of this book is computer calculation of system characteristics and
responses and display of the results graphically, with use of MATLAB commands and
programs. However, the book employs, for the most part, basic MATLAB commands
and operations (aside from array operations), such as those on hand calculators; there is
very little use of advanced MATLAB operations and functions, because these can pro-
duce results without the user having to understand the processes of production. For this
introductory material, | think it is important that the computer and software function as a
“super calculator”, which relieves the user of the drudgery of calculations, especially
complex and/or repetitive calculations, but still requires the user to understand the pro-
cess well enough to be able to design and program the calculations and graphical dis-

plays.

Since 1967 with the publication of Dynamics of Physical Systems by Robert H.
Cannon, Jr., most textbooks on introductory system dynamics have included very few, if
any, applications specifically relevant to aerospace engineering. Therefore, | have tried
to include in this book at least some relevant examples and homework problems. These
include rolling dynamics of flight vehicles in Chapter 3, spacecraft actuators in Chapters
3, 10, and 12, aerospace motion sensors in Chapters 9 and 10, aeroelasticity in Chapters
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11 and 12, attitude control of spacecraft and aircraft in Chapters 14-16, and an analysis of
aeroelastic flutter in the final homework problem of Chapter 16.

| favor illustrating and validating theory, whenever possible, with measured data.
| also favor using measured data to identify system dynamic characteristics based on
mathematical models (e.g., time constants and natural frequencies), and system basic
properties (e.g., mass, stiffness, and damping). Accordingly, I included quite a lot of ma-
terial in this book about identification of first- and second-order systems, especially in
Chapters 9 and 10. Photographs of instructional laboratory structures and motion data
measured from those structures are included, for examples, in Section 7-6 on distributed-
parameter structures, and in homework Problems 7.10 and 12.5. Other applications of
real and simulated experimental data appear in several homework problems.

| welcome feedback about this book from anyone who reads it. Please send your
comments to my VPI & SU email address, whallaue@vt.edu. | will be grateful to learn
of any errors that readers detect and report to me. | retain all of the source word-
processor files, so | am able to correct errors and replace any defective file with the cor-
rected version. | regard the basic organization of the book as fixed, so that, except to cor-
rect major, serious errors, | will not revise the chapters and appendices so extensively as
to disrupt the original page numbering, equation numbering, Table of Contents, and In-
dex. | am ready and willing, however, to add files that supplement chapter and appendix
contents, when such additions will improve the book. In particular, I would welcome
new examples and homework problems that are clearly relevant to aerospace engineering,
while still being compatible with the introductory level of the book. If you send to me
any such educational and motivational gem and if | decide that it satisfies my criteria,
then I will be most pleased to add it as a supplementary file and to acknowledge your
contribution.
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written and beautifully illustrated textbook of basic and more advanced theory of system
dynamics and of interesting applications to many fields, classical aerospace engineering
in particular. DPS is surely one of the two or three finest textbooks | have encountered in
my entire career as student, practicing engineer, and instructor.’

I thank The MathWorks, Inc. for developing MATLAB, and for distributing it
broadly to the engineering and educational communities, and, in particular, for making
MATLAB available to me as an essential instructional resource in AOE 3034 and other
courses, and as a tool in research as well. One of the principal differences between this
book and Dynamics of Physical Systems is the emphasis | have been enabled by modern
personal computers and MATLAB to place on computer calculation of numerical system
characteristics and response solutions, in both the instructional content and the homework
problems. Professor Cannon had no such luxuries: when Dynamics of Physical Systems
was published, the primary calculator used by engineering students was still the slide
rule, the concept of a small personal computer was just the hopeful dream of a few vi-
sionaries, and undergraduates generally had little or no access to mainframe computers
and peripheral equipment for printing and plotting. In order to calculate and graph the
system characteristics and responses that can be produced now so easily with MATLAB,
students then who did have access to mainframe computers would need to write a pro-
gram in an inflexible language such as FORTRAN or BASIC, then enter the program
onto cards with keypunch machines at a computer center, one line of program per card,
then submit the card deck of the complete program to a computer operator, then wait,
sometimes several days, for the card deck to reach the front of the queue and be run on
the mainframe computer to produce printed and/or plotted output, then find and debug
errors in the programming that prevented correct execution, then repeat the whole process
as many times as was required until the program would finally succeed and deliver the
desired results.

William L. Hallauer, Jr.
June 2, 2016
whallaue@vt.edu

® There is considerable irony in my admiration now for Dynamics of Physical Systems. As a college junior
at Stanford University during the Winter Quarter of 1964, |1 was enrolled in the course Engineering 104,
Dynamic Response. The required course reference was part of a preliminary, pre-publication version of
Dynamics of Physical Systems, which had apparently been chosen by someone other than the instructor
who was assigned to teach the course. That version was an extremely rough draft full of typographical
errors and other mistakes, with figures that seemed to have been sketched in great haste, and it was badly
reproduced. My memory is that we students and the instructor tolerated it, but only barely. The quality of
Dynamics of Physical Systems improved tremendously between that time and the formal publication in
1967.
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Chapter 1 Introduction; examples of 1 and 2™ order systems, time-
response analysis and graphing with MATLAB?*
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1-1 Introduction

The subject of this book is the dynamic behavior of physical systems, with some
emphasis on simple mechanical and electrical systems representative of or analogous to
those often encountered in aerospace and mechanical engineering. A system, as defined
in this book, is a combination of two or more simple physical elements or components,
these being connected together in such a way that they all influence the dynamic behavior
of the entire system. An element or component, as defined in this book, is usually a
discrete object, such as a mechanical spring or an electrical resistor. This object usually
produces a discrete effect, such as a motion-induced force or a voltage drop. Dynamic
behavior is the variation in time of some physical response quantity of the system, for
example, the position of a mass, or the voltage at some location in an electrical circuit.

The general subject of this book is relevant to courses that are offered in most
engineering colleges for students who major in aerospace engineering, mechanical
engineering, engineering mechanics, ocean engineering or naval architecture, electrical
engineering, and chemical engineering. Many of the specific topics addressed within
chapters and in homework problems following chapters are relevant especially to the
study and practice of aerospace engineering.

1-2 Linear, time-invariant (LTI) systems and ordinary differential equations

(ODEs)

We consider physical systems that can be modeled with reasonable engineering
fidelity as linear, time-invariant (LTI) systems. Such a system is represented mathe-
matically by an ordinary differential equation (ODE), or by a set of coupled ODEs, for
which the single independent variable is time, denoted as t. These ODEs are linear, and
they have constant coefficients, so we describe them as linear, time-invariant (LTI), the
same as the systems they represent.? For example, suppose we denote a dependent vari-
able as x(t), here a general symbol representing some physical dynamic response quantity
for which we want to solve. Then an LTI ODE that models an LTI physical system
might have the form

dx
E—ax:bu(t) (1-1)

! MATLAB ® is a registered trademark of The MathWorks, Inc.
2 LTI ODEs are also sometimes described as linear, constant-coefficient, or LCC.
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in which a and b are constant multiplying coefficients, and known function u(t) is the ex-
citation and is independent of the response.® In the study of systems, an independent
excitation u(t) is often called an input, and a dependent response x(t) is often called an
output.

Hereafter, we will usually employ the common shorthand dot notation for denot-
d?x

e = X, etc., so that Eq. (1-1) can be writ-

. - . . X
ing derivatives with respect to time: % = X

ten more simply as x—ax =bu(t).

The linearity of Eq. (1-1) is manifested by the linear appearance of x(t) and all of
its derivatives in the ODE. The following are some similar ODEs that are not linear (they

are nonlinear) for obvious reasons: X —ax* =bu(t); sin(X) —ax =bu(t) ; Jx - atan(x)
= bu(t). Linear ODEs are almost always easier to solve (at least in closed form, i.e., as
equations involving standard functions) than nonlinear ODEs. Moreover, the important
principle of superposition applies to linear ODEs, but not to nonlinear ODEs. An exam-
ple of the application of this principle is: let the response to input u, (t) be x,(t), and let
the response to another input u,(t) be x,(t); if a third input is the sum of multiplied
terms u,(t) =c,u,(t)+c,u,(t), in which ¢, and c, are constants, then the response to
Uz (t) is X, (t) =c % (t)+c,X,(t). This result is easy to derive just by multiplying two
ODEs such as (1-1) by the constants, then adding the multiplied ODEs. The principle of
superposition allows us to solve accurately for the responses of linear systems to any

physically realistic inputs. (See Section 8-10 for a derivation of system response to an
arbitrary physically realistic input by direct application of superposition.)

The time invariance of Eq. (1-1) is manifested by the constant coefficients of x(t)
and all of its derivatives in the ODE. ODEs with time-invariant coefficients model the
behavior of systems assumed to have physical properties that either remain constant in
time or vary so slowly and/or slightly that the variation is negligible for engineering pur-
poses. But many practically important systems have time-varying physical properties.
For example, a vehicle such as a space shuttle between liftoff and achievement of orbital
position has rapidly varying (decreasing) mass as propellant is burned and external fuel
tanks and boosters are released. The following is a linear equation somewhat similar to
Eq.(1-1), but with an obviously time-varying coefficient: x—3(1—e > )x=bu(t). The
study of systems with time-varying physical properties is generally more complicated,
not fundamental, so only time-invariant systems and ODEs are considered in this book.

The form of Eq. (1-1), x—ax=bu(t), is widely regarded as the standard form
for a 1% order LTI ODE, and we will use it as such in this book. Beginning in the next
section, we will study idealized physical systems whose dynamic behaviors are described
by equations that are directly analogous to Eq. (1-1). We will express the mathematical

# Some synonyms for excitation in this book are stimulus, stimulation, and forcing function for systems in
general, and command and disturbance specifically for controlled systems.
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constants a and b in terms of specific physical constants. Also, the roles of input u(t) and
output x(t) in Eqg. (1-1) will be assumed by some specific physical quantities, such as
force, velocity, voltage, etc., and we will denote them with relevant symbols [often dif-
ferent than u(t) and x(t)] when appropriate.

Although only 1% order ODEs are discussed in this section, we certainly will en-
counter and study systems and ODEs of 2" and higher orders.

1-3 The mass-damper system: example of 1% order LTI system and ODE

Consider a rigid body of mass m that is constrained to sliding translation x(t) in
only one direction, Fig. 1-1. The mass is subjected to an externally applied, arbitrary

Idealized physical model Free-body diagram (FBD)

> x(t) = x(t)

Liquid layer with viscous fu(t)
l/ damping constant ¢ >

fu()

cv(t)
Figure 1-1 1% order mass-damper mechanical system

force f4(t), and it can slide on a thin, viscous liquid layer such as water or oil. The vis-
cous force acting on the mass due to sliding on the liquid layer is opposite to the direction
of velocity, v(t) = x(t), and we assume that the magnitude of viscous force is propor-
tional to velocity with constant of proportionality c, called the viscous damping constant.
Mass m and viscous damping constant c are positive physical quantities. All of the forces
acting on the mass are as shown on the free-body diagram (FBD) of Fig. 1-1.

Next, we use (from your engineering dynamics course) the FBD of Fig. 1-1 and
Newton’s 2" law of motion (after English physicist and mathematician Isaac Newton,

1642-1727) for translation in a single direction, to write the equation of motion for the
mass:

. : v
¥ (Forces)x = mass x (acceleration),, where (acceleration)y = % =V;

f (t)—cv=mv.
As is customary in writing ODEs, we collect all terms involving the dependent variable
and its derivatives on the left-hand side, and put all independent input functions on the
right-hand side:

mv+cv=f (t) (1-2)



Chapter 1 Introduction; examples of 1% and 2" order systems; MATLAB calculations and graphics

ODE (1-2) is clearly linear in the single dependent variable, velocity v(t), and
time-invariant, assuming that m and c are constants. The highest derivative of v(t) in the
ODE is the first derivative, so this is called a 1* order ODE, and the mass-damper system
is called a 1% order system. If f,(t) is defined explicitly, and if we also know some initial
condition (IC) of the velocity, v, = v(t,) attime t = t,, then we can, at least in principle,

solve ODE (1-2) for velocity v(t) at all times t > t,. (In this book, we will usually define
the initial time as t, = 0 second.)

Equation (1-2) expressed in the form of the standard 1% order LTI ODE (1-1) be-
comes V—av="bf (t), where a=-c/m and b=1/m. Since m and c are positive physi-
cal constants, a is clearly negative. This negative polarity is characteristic of most physi-
cal systems that we will study; we shall see that it has an important influence on the gen-
eral nature of the transient response of systems.

Note that after solving for velocity v(t), we can solve by direct integration another
ODE for position x(t), provided that we know the initial position x, = x(t,) at time t =

t,. One systematic method for finding x(t) is based upon the derivative definition:
dx(t)

ODE: x(t) = e v(t)

The following shows careful definite integration of both sides of the ODE, using 7 as the
“dummy” variable of integration to distinguish it from the upper limit, time t:

rjt d’;(:) dr = Tv(r) dr = x(t)-x(t,) = Tv(r) dr

=ty =ty =ty

=  X({t)=x,+ Tv(r) dr (1-3)

=ty

Another popular method of solution is to find the antiderivative (indefinite integral) of
the ODE and add a constant of integration C, which then must be determined in terms of
the initial condition:

)= [vt) dt+C = x(t,)=[[v)dt]., +C = C=x—-[[v®)dt]_,

= X(t) =X, + j v(t) dt | j V() dt] ., (1-4)
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1-4 A short discussion of engineering models

The mass-damper of Fig. 1-1 can be used to represent approximately (i.e., to
model) some actual physical systems. One such system is a surface ship moving over the
water under its own propulsion or being pushed/pulled by a tugboat. Another is an auto-
mobile hydroplaning on a wet road. You can probably think of other similar real sys-
tems. However, it is important for us, as engineers, to recognize that the mass-damper
system is not the actual system, but only an approximate idealized physical model of the
actual system. We are able to derive from this idealized physical model the solvable
mathematical model, which consists of ODE (1-2) and known values for fy(t) and v, .

The actual physical system, on the other hand, might be so complicated that it cannot be
characterized mathematically with absolute precision. For example, the ideal viscous
damping model used in the derivation of ODE (1-2) is almost certainly not an exact rep-
resentation of the liquid drag forces acting on either a surface ship or a hydroplaning car.

The same general observation applies for almost any idealized physical model and
associated mathematical model developed for engineering purposes: the physical model
IS, at best, a reasonably accurate approximation of the actual physical system. The fidel-
ity of a model usually depends on a number of factors, including system complexity, un-
certainties, the costs of modeling and mathematical/computational solutions, time con-
straints, modeling skills of the engineer, etc.

But a reasonably accurate approximate model often suffices for engineering pur-
poses. Engineering systems are usually designed conservatively, with redundancies and
factors of safety to compensate for severe overloads, unexpected material flaws, operator
error, and the many other unpredictable influences that can arise in the functioning of a
system. As engineers, we almost never require 100% accuracy; we are usually satisfied if
our mathematical/computational predictions of system behavior are qualitatively correct
and are quantitatively within around £10% (in a general sense) of the actual behavior.

The main point of this discussion is to emphasize that any idealized physical
model used for engineering analysis and design is only an approximation of an actual
physical system. Moreover, the primary subjects of this book are the fundamental dyna-
mic characteristics of idealized physical models, because a great deal of practical experi-
ence has shown that these are also the characteristics of many real engineering systems.
Therefore, this book does not consider in depth the development of idealized physical
models to represent actual systems; rather, we shall focus on deriving mathematical
models (mostly ODESs) that describe idealized physical models, and on solving the
mathematical equations and exploring the characteristics of the solutions.

The process of developing idealized physical models to represent real systems in-
volves both science (theory and experimental data) and “art” (experience and intuition);
you probably will encounter this process in laboratory and design courses, and later in
your professional practice of engineering.
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1-5 The mass-damper system (continued): example of solving the 1% order LTI
ODE for time response, given a pulse excitation and an IC

An input of limited duration, typically called a pulse, is a very common type of
excitation imposed onto systems. For example, when a hammer strikes a nail, the force
imposed on the nail by the hammer is a pulse. A real pulse such as hammer impact force
is often modeled as a half-sine pulse. Let the force acting on the mass in Fig. 1-1 be the
half-sine pulse described by the following figure and Eq. (1-5):

fx t
(|:) ..... Fsin(ﬂtl], 0<t<t,

fL(0) = d (1-5)
0,t, < t

0

0 tq t

In Eq. (1-5) for fy(t), t, denotes the pulse duration. The notation will be more manage-

able in this problem if we express the time-varying sinusoid in the form sin wt , where @
denotes the circular frequency of oscillation, in radians per second. In this case, clearly
the circular frequency is expressed in terms of the pulse duration as @ = z/t, . Let’s

specify that the initial velocity of the mass at time t = 0 is some known value v,. The
mathematical statement of the problem for finding the velocity time-history is:

ODE: mv+cv = f,(t) (1-2, repeated)
IC: v(0) = v,
Eind: v(t) for all t > 0.

To solve this problem in closed form, we will use a method with which you

should be familiar from your previous study of ODEs. First, we find the homogeneous
(also called complementary) solution v, (t), which is the solution of the homogeneous

ODE, the version of Eq. (1-2) with zero right-hand side:
mv, +cv, =0 (1-6)

A homogeneous LTI ODE always has solutions in time-linear powers of e = 2.71828...
(the base of natural logarithms), with some initially unknown constant coefficients:

v, (t) =Ce*, in which constants C and A are unknown at this stage.

To find A, we substitute the solution into the homogeneous ODE (1-6):
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mCAie* +cCe* =(mi+c)Ce* =0

If Ce*' =0, we get the useless trivial solution v, (t) =0, so a useful solution requires that

mA + ¢ = 0, which is known as the characteristic equation of the ODE. Solution of this
equation gives the so-called characteristic value, 4 =—c/m, leading to:

v, (t)=Ce /Mt (1-7)

Note that we still have not solved for constant C. We can find C only after we
have determined a particular solution, also known as the non-homogeneous solution be-
cause it is a solution that satisfies the complete ODE (1-2) for the given right-hand side
fx(t). For this problem, we will need two particular solutions, because f4(t) is defined dif-
ferently over two different intervals of time, Eq. (1-5). First, we find a particular solution
v, (t) valid over the pulse duration, 0 <t < t,, for which the ODE is:

mv, +cv, = Fsinawt , where o = z/t, (1-8)

To find a particular v, (t) that satisfies ODE (1-8), we apply the method of undetermined

coefficients, which entails making an educated guess of the functional character of the
solution, using multiplicative coefficients that will be determined by substituting the can-
didate solution back into ODE (1-8). The right-hand-side sine function of ODE (1-8) has
a finite set of derivatives: the derivative of a sine is a cosine, the derivative of a cosine is
a sine, etc. Therefore, we assume a form of solution consisting of a linear sum of the
function and all of its derivatives:

v, (t) = P sinwt + P, coswt, with coefficients P, and P, undetermined at this stage.
Substitute this candidate solution back into ODE (1-8):
ma(P, cos wt — P, sin wt) + ¢(P, sin ot + P, cos wt ) = F sin wt
Collect terms that multiply sin wt and coswt on both sides of the equation:
(-m@P, +cP,)sinwt + (mw P, + ¢ P, )cos wt = (F)sin ot + (0) cos wt

Functions sinwt and coswt are linearly independent of each other, which requires that
the left-hand-side and right-hand-side terms multiplying sin @t must equal each other,
and the same for the terms multiplying cos wt, leading to two algebraic equations for the
coefficients P, and P, :

cP,-mwP,=F and meoP +cP,=0

1-7
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The second equation gives P, = —(me/c)P,, and substituting this into the first equation to
eliminate P, leads to:

cF -Mow
=———— and P,=
(mw)° +c c

1

P, (1-9)

Rather than write out messy algebraic formulas for all the coefficients in this problem, it
is convenient to express all others in terms of P, asis P, in Eq. (1-9).

To obtain the complete solution for the pulse duration, 0 <t < t,, we now com-
bine the homogeneous and particular solutions:

v(t) =v, () +v,(t)=Ce ¥ + P sinwt + P, cosawt, for 0<t<t, (1-10)

Coefficient C in Eq. (1-10) is still not known; but now, finally, we can apply the initial
condition (IC) to determine C:

v0)=v,=CQ+P(0)+P,01) = C=v,-P,=v,+(mw/c)P, (1-11)

Equations (1-9) through (1-11) describe the velocity response during the pulse
duration, 0 <t < t,, so we still need to find the post-pulse response, for t, <t. To do so,

we should recognize two facts: (1) fx(t) = 0 for t, <t; and (2) velocity v(t) cannot sud-
denly change at t = t, (because acceleration cannot be infinite), rather, velocity must
equal Eq. (1-10) evaluated att = t,. Fact 1 means that the ODE for t; <t is homogene-

ous; hence, the particular solution is zero, and we have only a homogeneous solution, but
now with a different coefficient, D, than before:

v(t)=De “™ fort, <t (1-12)
To find D, we use Fact 2, which essentially is the IC for t, <t, and Eq. (1-10):
De @™ =y(t,) =Ce “™% + P sinwt, + P, cos wt, (1-13)

= D=v(t,)e“m"

c

— v =vit)e ™ fort, <t (1-14)

Equation (1-14), with Eq. (1-13) for v(t,), combined with Eqg. (1-9) and Eq. (1-11) for
coefficients P,, P, and C, represents the response for t, <t. Because mass m and vis-
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cous damping constant ¢ are positive physical quantities, Eq. (1-14) is a pure exponential
decay, which approaches zero as t — oo.

1-6 The mass-damper system (continued): numerical/graphical evaluation of time
response using MATLAB

For the mass-damper response solution developed in the previous section, con-
sider the following numerical case, with all quantities expressed in Sl units: m =5 kg, ¢
=2 N-sec/m, F=18 N, t, = 7.5 sec, v, = 3.3 m/sec. A MATLAB script M-file, named

MATLABdemol1l.m, to calculate and graph the response from 0 to 25 seconds is given
below. The MATLAB commands are supplemented with explanatory comments, so you
should be able to follow and understand the M-file without much difficulty. Writing
comments in this manner is good practice for your own programs; comments added while
you are writing a computer program are especially helpful if you need to revise or refer
back to the program long after you have forgotten the details.

MATLAB script:

%MATLABdemoll.m

%Mass-damper system response to IC + half-sine pulse forcing

m=5;c=2; %system mass & viscous damping coefficient, Sl units

F=18;td=7.5; %half-sine pulse, amplitude (N), pulse duration (sec)

vo=3.3; %initial velocity (m/sec)

w=pi/td; %circular frequency of half-sine pulse (rad/sec)

t1=0:0.05:td; %time instants for forced response

fl=F*sin(w*tl); %force pulse

Pl=c*F/((w*m)"2+c”"2);P2=P1*(-w*m/c) ;C=vo-P2; %constants
vl=C*exp(-c/m*tl)+Pl*sin(w*tl)+P2*cos(w*tl) ;%time series of forced velocity
ntlend=length(tl);v2o=vi(ntlend);%initial velocity for post-pulse response
t2=td:0.1:25; %time instants for post-pulse unforced response
v2=v2o*exp(-c/m*(t2-td)) ;%time series of post-pulse unforced velocity
f2=zeros(1, length(t2)); %null force after pulse

plot(tl,f1/10, k" ,t1,v1, k" ,t2,f2, k" ,t2,v2,"k"),grid,xlabel("Time t (sec)")
ylabel ("Force f_x(t) (daN), and Velocity v(t) (n/sec)")

title("Response of mass-damper system to IC + half-sine pulse forcing”)

To execute in MATLAB an M-file that is stored on a folder (directory) of your com-
puter’s hard disk, you must have added that folder to the so-called MATLABpath. In
Versions 6 and higher of MATLAB, you can add the folder to the MATLABpath by
specifying the folder as the “Current Directory” in the formatting toolbar above the
MATLAB command window. The command line below executes the script M-file.

MATLAB command:
>> MATLABdemoll
The resulting MATLAB (Versions 6 and higher) graph, Fig. 1-2, is on the next page. The

graph was edited in the MATLAB figure window, mainly to reduce the size and to add
curve labels and arrows.

1-9
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Note that the unit of force “daN” on Fig. 1-2 is a deka-newton, which means 10
newtons. All of the mechanical units used in this book are described in Chapter 3.

Fesponse of mass-damper system to 1T + halfsine pulse forcing

S

Force £ 1) (daM), and Yelocity v(t) (m/sec)

0 2 4 G g 10 12 14 16 18 20
Tirme t (sec)

Figure 1-2 Excitation and response of a mass-damper system

1-7 Some notes regarding good engineering graphical practice, with reference to
Figure 1-2

* Always label both axes, and always include the units of physical quantities.

* Always write an explanatory one-line title. Such a short title cannot explain everything
about the graph, but any title you use will almost certainly help the reader to understand
the graph.

* It is usually good practice to add grids to a graph. Grids help the reader to perceive
values correctly. For example, the grids on Fig. 1-2 show clearly that the peak velocity
response is just above 7 m/sec at a little after 5 sec.

* The commands in the script file that specify the densities of computed points are, first,
t1=0:0.05:td while the pulse acts and, second, t2=td:0.1:25 following the pulse. For
example, the first line directs MATLAB to compute the response at 0.05-sec intervals;
then plot(..,t1,v1,"k",..) directs MATLAB to plot small points for those instants, and
to connect each two adjacent points with a straight line. If you use high point densities,
then the overall plotted line will capture all important features of the response (extreme
values, for example), and will appear to be a smooth curve. Indeed, the overall line
should look like a smooth curve, because it represents a continuous physical response;
neither the response itself nor its low-order derivatives should be discontinuous. On the
other hand, if you use low point densities, then you might miss important features of the
response, and the overall line will be unnaturally piecewise linear, with kinks (slope dis-

1-10



Chapter 1 Introduction; examples of 1% and 2" order systems; MATLAB calculations and graphics

continuities). To visualize an extreme example of low point density, suppose that for the
mass-damper system you were to compute and plot the velocity response at 4-sec inter-
vals; the velocity graph in Fig. 1-2 would consist only of straight lines connecting the
computed points at 0, 4, 8, 12, 16, and 20 seconds, which would badly represent the ac-
tual response. So always specify high point density on graphs of continuous physical re-
sponse. You might not know initially what point density you should use, especially if
you are analyzing an unfamiliar system. But try some plausible point density. If your
plotted response curve appears unnaturally kinky, then increase the point density appro-
priately and run the M-file again. It will cost you nothing more than the little time re-
quired to edit and re-run the M-file (or any other graphing computer program).

1-8 Plausibility checks of system response equations and calculations

We all make mistakes in the process of analyzing engineering problems. Most
common are mistakes in arithmetic, algebra, calculus, theory, and calculation algorithms
(usually computer programming). Also, sometimes we simply use incorrect data. It
seems that there are countless ways to make mistakes. Therefore, it is important always
to check your mathematical, numerical, and computational operations and results in every
way possible. An important type of check for any problem with physical results is the
plausibility check, known more colloquially as reality check and sanity test. Essentially
you examine the results to determine if they are physically plausible (believable, credible,
reasonable). Do the results make sense physically? A classic example of implausible
result that often appears on exam papers in structures courses is the structural deforma-
tion on the order of 10° or 10° inches, when it ought to be on the order of 10~ inches.

To illustrate a plausibility check, let’s examine Fig. 1-2 for the velocity response
of the mass-damper system to an initial condition and half-sine pulse excitation. First,
the specified initial velocity is v, = 3.3 m/sec, and the response curve at time t = 0 cor-

rectly reflects that initial condition. Next, for about the first half-second of response, the
velocity decreases due to viscous drag force cv. But then, as the applied force fy(t) in-
creases, the velocity dips to a local minimum and subsequently increases. Applied force
fx(t) peaks at t = t, = 3.75 sec, and the graph shows that the slope of the velocity curve,

acceleration v, is maximum at about the same time. The velocity itself peaks at a bit past
5 sec. Because velocity is the integral of acceleration (area under the acceleration curve),
this lag of the velocity peak behind the force pulse peak is quite plausible. After the ve-
locity peaks, it decreases monotonically toward zero as the applied force decreases to
zero at t = t; = 7.50 sec and remains at zero thereafter. So the entire response, as de-

picted graphically, is physically plausible.

Plausibility of a calculated response does not guarantee that it is correct, although
it is reassuring. On the other hand, implausibility of a calculated response almost cer-
tainly guarantees that it is wrong. The primary justification for conducting a plausibility
check is to catch incorrect engineering predictions before they cause trouble (which can
vary from point loss on homework or exams, to a major disaster, the unpredicted failure
of an engineering system).

1-11
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1-9 The mass-damper-spring system: example of 2" order LTI system and ODE

Consider a rigid body of mass m that is constrained to sliding translation x(t) in
only one direction, Fig. 1-3. The mass is subjected to an externally applied, arbitrary

Idealized physical model Free-body diagram (FBD)
Linear spring,
constant k  x(t) = x(t)

\l’ fiu(t kx(t) fu(t
\NA\A ™ «— M

Liquid layer, viscous
damping constant ¢

C—
cv(t)
Figure 1-3 2" order mass-damper-spring mechanical system

force fx(t), and it slides on a thin, viscous, liquid layer that has linear viscous damping
constant c. Additionally, the mass is restrained by a linear spring. The force exerted by
the spring on the mass is proportional to translation x(t) relative to the undeformed state
of the spring, the constant of proportionality being k. Parameters m, ¢, and k are positive
physical quantities. All of the horizontal forces acting on the mass are shown on the FBD
of Fig. 1-3.

From the FBD of Fig. 1-3 and Newton’s 2" law for translation in a single direc-
tion, we write the equation of motion for the mass:

Z (Forces), = mass x (acceleration)y, where (acceleration)y = v = X;
f (t)—cv—kx=mv.

Re-arrange this equation, and add the relationship between x(t) and v(t), X =v:
mv+cv+kx=f (t) (1-15a)
X—v=0 (1-15b)
Equations (1-15a) and (1-15b) are a pair of 1% order ODEs in the dependent variables v(t)
and x(t). The two ODEs are said to be coupled, because each equation contains both de-
pendent variables and neither equation can be solved independently of the other. Such a

pair of coupled 1% order ODEs is called a 2" order set of ODEs.

Solving 1% order ODE (1-2) in the single dependent variable v(t) for all times t >
t, requires knowledge of a single I1C, which we previously expressed as v, = v(t,). Simi-

larly, solving the coupled pair of 1* order ODEs, Egs. (1-15a) and (1-15b), in dependent
variables v(t) and x(t) for all times t > t,, requires a known IC for each of the dependent

variables:

1-12
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Vv, =V(t,) = X(t,) and x, = x(t,) (1-16)

In this book, the mathematical problem is expressed in a form different from Eqgs.
(1-15a) and (1-15b): we eliminate v from (1-15a) by substituting for it from (1-15b) with
v = x and the associated derivative v = X, which gives*

mX+cx+kx=f (t) (1-17)

ODE (1-17) is clearly linear in the single dependent variable, position x(t), and
time-invariant, assuming that m, ¢, and k are constants. The highest derivative of x(t) in
the ODE is the second derivative, so this is a 2" order ODE, and the mass-damper-spring
mechanical system is called a 2" order system. If f,(t) is defined explicitly, and if we also
know ICs (1-16) for both the velocity x(t,) and the position X(t,), then we can, at least

in principle, solve ODE (1-17) for position x(t) at all timest> t,. We shall study the re-

sponse of 2" order systems in considerable detail, beginning in Chapter 7, for which the
following section is a preview.

1-10 The mass-spring system: example of solving a 2" order LTI ODE for time
response

Suppose that we have a system of the type depicted on Fig. 1-3 for which the
damping force, cx in Eq. (1-17), is negligibly small in comparison with inertial force
mX and structural force kx. Figure 1-4

is a photograph of a real system® with so
little damping that, under some circum-
stances, we may neglect the damping
force. The mass carriage of this system
rides back and forth on low-friction lin-
ear ball bearings, which are enclosed
underneath the carriage and not visible
in the photograph. The entire length of )
this system, from the left (fixed) end of Figure 1-4 Laboratory mass-spring system
the spring, to the rightmost edge of the

mass carriage is 8% inches (21.6 cm), and each of the three light-colored metal slabs at-
tached to the carriage has mass of % kilogram.

If we may neglect the damping force in a system such as that of Fig. 1-4, then the
term cx drops out of Eq. (1-17), and we are left with the simpler 2" order ODE,

* An alternative derivation of ODE (1-17) is presented in Appendix B, Section B-2. The rate of change of
system energy is equated with the power supplied to the system.

® This is part of a Model 210a Rectilinear Plant designed and fabricated by Educational Control Products of
Bell Canyon, California, USA.
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mX+kx = f,(t) (1-18)

If we know ICs (1-16) and excitation force f,(t), then we can solve Eq. (1-18) for x(t).

For future reference, note that mass quantity m and spring stiffness constant k are intrin-
sically positive values. Also, observe that f, (t) may be applied to the system of Fig. 1-4

through the link visible at the right-hand side of the mass carriage.

It will be instructive to determine a time response for this 2" order mass-spring
(m-Kk) system, by applying the standard ODE solution procedure described in Section 1-5.
We shall find the complete algebraic solution as the sum of homogeneous and particular
solutions, x(t) = x, (t) +x,(t). Suppose that at time t = 0 the spring is undeformed and

the mass is at rest, so that ICs (1-16) are
x(0)=0 and x(0)=0 (1-19)

Suppose also that the excitation is a force pulse described by the equation f (t) =
F. (t/tm)e(l‘t/tm); by applying calculus to this function, you can easily prove that it rises
from zero at t = 0 to the maximum value F_ at timet = t_, and, thereafter, it gradually
drops back to zero (see Fig. 1-5). In dynamics, a linear function of time such as t/t, is

often called a “ramp” function; since our excitation consists of a declining exponential
function multiplied by a ramp function, we call this excitation a “ramped exponential”
force pulse.

The homogeneous ODE associated with Eq. (1-18) is mX, +kx, =0. We cast
this equation into a familiar form by dividing through by mass m and defining the posi-
tive quantity ,° =k/m, giving the ODE

%, +,° X, =0 (1-20)

The positive root @, = 1/k/m is called the natural frequency of this m-k system, and @,
has physical significance that will be discussed below with the final solution. You might

remember from your previous study of ODEs, or you can easily verify by substitution in-
to Eq. (1-20), that the solution can be expressed as
X, () =C,sino,t+C, cosa,t (1-21)

Constants C, and C, are unknown at this point in the solution process.

With excitation by the ramped exponential pulse defined above, any particular so-
lution x,(t) must satisfy the non-homogeneous ODE
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mx, +kx, =F, (t/t,)e*" (1-22)

To find a particular x(t) that satisfies ODE (1-22), we apply the method of undeter-

mined coefficients, just as in Section 1-5. It is easy to show by successive differentia-
tions that all derivatives with respect to time of the function (t/tm)e(l‘t/tm) produce only

constant multiples of (t/t,)e® "™ itself, and of e™ "), Therefore, we seek a particular
solution that consists of a linear sum of these two functions:

X, (t) = P,(t/t,)e"V") + pet (1-23)

We determine constants P, and P, by substituting Eq. (1-23) into Eqg. (1-22), equating
the coefficients of (t/t,)e" " and e™" on the two sides of the resulting algebraic

equation, and then solving for P, and P, [homework Problem 1.10(a)]. This process
produces the results

F _2mi,’
24k m/t, 2 +k

m

P, (1-24)

The complete (but not yet final) solution is
X(t) = X, (t) + X, (1) = C;sina,t+C,cosm,t + P,(t/t,)e"" +Pe®™ (1-25)

We now can determine the remaining unknown constants by substituting Eq. (1-25) into
ICs (1-19), x(0)=0 and x(0) =0, and solving algebraically for constants C, and C,
[homework Problem 1.10(b)]. The results are

C,= ! e!, with @, = K and C, =-Pe' (1-26)
o,t m

n-m

The complete and final solution is Eq. (1-25), with constants C,, C,, P, and P,
defined in terms of the basic parameters m, k, F_, and t, by Egs. (1-24) and (1-26).
Let’s calculate and plot a time response for the system of Fig. 1-4. The total mass of the
carriage plus the three Y2-kilogram attached metal slabs is m = 2.20 kg, and the stiffness
of the spring is k = 770 N/m. Suppose that the ramped exponential force pulse has maxi-
mum value F, =6 N at the instant t,, = 1/12 sec. The MATLAB command lines on the

next page calculate and print out the frequency quantity f, =, /27, and they calculate

and plot the time response over the interval 0 <t < 2 sec. Note that it was not necessary
to assemble these command lines into a formal M-file; rather, the lines were composed in
a text-editing program, then the entire group of lines was copied together and pasted onto
the prompt “>> * on the MATLAB command window. Also, since solution Eq. (1-25)
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includes the product of two functions of time in the term (t/tm)e‘“/‘m), it is necessary to

implement this product using MATLAB array multiplication (.*) in the operation
prod=tt._*efun.

>> Y%Mass-spring response: rest ICs; ramped exponential pulse input

m=2.20;k=770; %system mass and stiffness, Sl units

wn=sqgrt(k/m);fn=wn/2/pi;

disp("Natural frequency (cycles/sec) fn ="),disp(fn)

Fm=6.0;tm=1/12; %excitation parameters

t=0:.005:2; %time sequence for excitation/response

tt=t/tm; efun=exp(1-tt);prod=tt.*efun;Ff=Fm*prod; %excitation

al=m/tm"2;a2=al+k;P1l=Fm/a2;P2=2*al*P1/a2; %P constants

Cl=(P2-PL)*exp(1)/wn/tm;C2=-P2*exp(1l); %C constants

wt=wn*t;x=Cl*sin(wt)+C2*cos(wt)+P1*prod+P2*efun; %response

plot(t,100*f/k, "k.",t,100*x, k") ,grid,xlabel ("Time t [sec]~),---
ylabel ("Translations reference f_x(t)/k and actual x(t) [cm]"),.-.
title("Response of mass-spring system to ramped exponential pulse®)

Natural frequency (cycles/sec) fn =
2.9775

Figure 1-5 is the MATLAB graph produced by the sequence of commands above. The
graph was edited in the MATLAB figure window, mainly to reduce the size and to add
the legend.

Response of mass-spring system to ramped exponential pulse

1.5

Translations reference L[t]lfk and actual x(t) [cm]

Time t [sec]

Figure 1-5 Excitation and response of a mass-spring system

The reference quantity f, (t)/k plotted on Fig. 1-5 represents the excitation force,

but divided by k, so that it has the units of translation. You can see from the basic ODE
(1-18), mx+kx = f (t), that the plotted quantity physically represents the spring defor-

mation that dynamic excitation f, (t) would produce if mass m were zero or negligible.
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Because this reference quantity is calculated by neglect of the entire dynamic inertial
force, mX, it is often called the pseudo-static response.

Observe on Fig. 1-5 that the actual dynamic translation x(t) of the mass greatly
overshoots the pseudo-static translation initially (with peak response of about +1.4 cm at
about 0.18 sec), and that the actual response persists as significant vibration after the
pulse excitation has died away. These are important dynamic characteristics of many
systems that we encounter in engineering practice. In reality, all mechanical systems that
consist of purely passive masses and passive structural members have some degree of
positive damping; but, if the damping forces are low in comparison with inertial and
structural forces, then these real systems will respond to excitation similarly, at least in a
qualitative sense, to the “actual” response of Fig. 1-5. For example, the real system of
Fig. 1-4 is positively but lightly damped; in response to the given force pulse, this system
would experience just about the same initial response and overshoot as shown on Fig. 1-
5, but the vibration would die away gradually, and motion would cease completely after
three or four seconds.

The terms in Eq. (1-25) that primarily represent vibration are the sinusoidal func-
tions sinw,t and cosw,t, with the angle (in radians) argument of these periodic func-

tions being A(t) = w,t. The period of such a function is the time required for the func-

tion to complete a full cycle and begin repeating itself. In this case, let’s denote that pe-
riod as T, and observe that its natural physical units are seconds/cycle. The associated

frequency f., in the units cycles/second,® is obviously just the inverse of the period,
f, =1/T,. Thus, the angle (in radians) argument of the periodic sinusoidal functions can
be written in the following equivalent forms: 0(t) = w,t = 2z(t/T,) = 2z f,t. The im-
portant relationship between circular natural frequency o, , in radians/second, and cyclic
natural frequency f,, in cycles/second, is f, =w,/2z. For the values of mass m and
stiffness k used in the MATLAB calculations above, the printed-out value of f is 2.98

cycles per second, and this is the frequency that is most obvious in Fig. 1-5; for example,
as closely as we can detect by eye, almost exactly three complete cycles of vibration oc-
cur betweent=0.7 secand t = 1.7 sec.

¢ More commonly in modern terminology, a cycle/second is designated as a hertz, with the abbreviation
Hz.
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1-11 Homework problems for Chapter 1

1.1(a) Super hero Dynaman is cruising along at 126 km/hr when the Dynamobile sud-
denly encounters wet pavement and begins hydroplaning. Naturally, Dynamobile is
headed straight for a thick, solid steel barrier and will crash if it can’t stop. Also natu-
rally, Dynamobile is equipped not only with conventional brakes (useless against hydro-
planing) but also with jet reverse thrusters that can provide emergency braking in the
form of a half-sine pulse. Dynaman hits the panic button, which activates all sensors and
the onboard computer. The sensors instantly detect initial velocity v, = 35.0 m/sec, Dy-
namobile total mass m = 1,500 kg, and hydroplaning viscous damping constant ¢ = 7.70
N-sec/m. The computer calculates that a possible disaster-avoidance action is to deploy
the maximum available braking thrust amplitude of F = —7,200 N (-7.2 kN) in a half-sine
pulse extending over 10.0 sec [ fx(t) = Fsin(0.100zt) for 0 <t < 10.0 sec]. Your task is
to demonstrate the effectiveness of this braking thrust by making a MATLAB graph that
shows the velocity of Dynamobile over 15 seconds (the 10-sec braking period plus an-
other 5 seconds of coasting). Be sure to use good engineering graphical practice: pro-
vide grids, a title, appropriate labels, and high point density. Submit your MATLAB
script as well as your graph.

(b) Consider the same scenario as in part (a), but with the following different data: v, =
40.0 m/sec, m = 1,700 kg, ¢c = 130 N-sec/m, with braking force amplitude F = —30,000 N
(—30.0 kN) in the pulse fy(t) = Fsin(0.250zt) for 0 <t < 4.00 sec. Make a MATLAB

graph that shows the velocity of Dynamobile over 8 seconds (the 4-sec braking period
plus another 4 seconds of coasting).

(c) Consider the same scenario as in part (a), but with the following different data: v, =

60.0 m/sec, m = 1,700 kg, ¢ = 1,100 N-sec/m, with braking force amplitude F = 120,000
N (=120 kN) in the pulse fx(t) = Fsin(zt) for 0 <t < 1.00 sec. Make a MATLAB graph

that shows the velocity of Dynamobile over 3 seconds (the 1-sec braking period plus an-
other 2 seconds of coasting).

1.2 Consider again the hydroplaning Dynamobile of Problem 1.1 with total mass m, hy-
droplaning viscous damping constant c, and initial velocity v(0) = v,.

(a) Integrate x =v(t) given in Eq. (1-10) to derive an algebraic equation for position x(t)
while the braking pulse is active. In order to keep the equation algebraically simple
(relatively, anyway), leave it in terms of constants C, P,, and P, (don’t write those con-

stants in terms of m, ¢, v,, F, and t,). Make sure that your x(t) equation gives the initial

position as zero, x(0) = 0, by either (i) carefully evaluating the definite integral of v(t)
between the limits 0 and t [see Eq. (1-3)], or (ii) taking the antiderivative of the v(t)
equation and adding an appropriate constant of integration [see Eq. (1-4)]. Using the
numerical data of Problem 1.1 [part (a) or (b) or (c), whichever you solved before], calcu-
late the distance traveled by Dynamobile at the end of the braking (pulse) period. (Com-
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ment: in reality, to prevent collision with the barrier, wouldn’t you need to know Dyna-
mobile’s initial distance from the barrier as well as its initial velocity?)

(b) Differentiate v(t) given in Eg. (1-10) to derive an algebraic equation for acceleration
a(t) =v while the braking pulse is active. In order to keep the equation algebraically
simple, leave it in terms of constants C, P,, and P,. Using the numerical data of Problem
1.1 [part (a) or (b) or (c), whichever you solved before], make a MATLAB graph that
shows the acceleration in G’s of Dynamobile over the braking (pulse) period. To calcu-
late acceleration in G’s, divide acceleration in m/sec? by the nominal Sl acceleration of
gravity, g = 9.807 m/sec’>. [Comment: we presume that Dynaman would not survive the
collision if there were no braking, but, in fact, would he survive the deceleration (perhaps
many G’s) required to prevent the collision?]

1.3 Consider again the hydroplaning Dynamobile of Problems 1.1 and 1.2. Suppose that
all parameters are known except F, the pulse magnitude. Now we want to find the opti-

mum pulse magnitude, F = F,, , defined here as the value that will bring Dynamobile to a

dead stop at the end of the pulse duration, v(t,) = 0.

(a) Use Egs. (1-9)-(1-11) for v(t) to derive an algebraic equation for F_, in terms of the

opt
parameters m, c, v,, and t,. Next, evaluate your equation numerically for m = 1,700 kg,
¢ =130 N/m/sec, v, = 40.0 m/sec, and t; = 4.00 sec. (answer: F, , =-22.87 kN)

op

(b) Use the algebraic equation for position x(t) from Problem 1.2(a), and the value
F =F_, from Problem 1.3(a) to calculate how far Dynamobile would travel after activa-

tion of thrust braking before coming to a dead stop. (answer: x(t,) = 75.18 m)

opt

1.4 Consider a mass-damper system with a cosine forcing function, as described by the
1% order, LTI ODE mv+cv = F coswt, in which velocity v(t) is the dependent variable,
and the known constant parameters are mass m, viscous damping constant c, force am-
plitude F, and circular frequency of forcing @. Use the method of undetermined coeffi-
cients to derive an algebraic equation (in terms of the given constants) for the particular
solution v,(t) of this ODE and forcing function.

1.5 The “standard” 1% order ODE is x—ax =bu(t) .

(a) Suppose that u(t) =Usinwt, t > 0, where U is a constant amplitude, and that x(0) =
0. Derive the following solution of the standard 1% order ODE:

—abU :
X(t) =—; 2(—Qeat+S|na)t+2cosa)tj,t20
o’ +a’\ a a
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(b) Suppose that u(t) =U coswt, t > 0, where U is a constant amplitude, and that x(0) =
0. Derive the following solution of the standard 1% order ODE:

@’ +a’® a

X(t) = — aby (—eat ~ Zsinwt +cosa)t] 120
1.6 Symbolic software such as Mathematica’ and MATLAB (the Symbolic Math Tool-
box) can solve some ODEs, including those discussed in Chapter 1. For an introduction
to this type of solution, solve Problem 1.5(a) in MATLAB. Begin with the following
MATLAB commands:

>> syms abUwt
>> x=dsolve("Dx-a*x=b*U*sin(w*t) ", "x(0)=0")

The MATLAB response will probably be a long, algebraically undisciplined equation for
X(t). In order to express the equation in a more economical form, type the command

>> x=simple(x)

The simplified equation will still be in rather awkward computer notation, so, to express
the equation in a more conventional form, type the command:

>> pretty(xX)

A few words of warning about symbolic software are appropriate. For more complex
ODEs, symbolic software might give algebraic solutions that are correct, but are ex-
pressed in an unfamiliar form, or in an algebraic form that must be simplified by hand in
order to be useful. For this reason and others, engineers often regard symbolic software
as useful mainly for providing checks on mathematical results that have been derived the
old-fashioned way, by hand.

1.7 Imagine a spherical cannon ball having the diameter d and mass m of a regulation

baseball, but with a very smooth surface (not somewhat

rough, like a baseball’s stitched cowhide cover). Suppose TV(I)
that we launch this ball vertically upward from sea level yt)—# O \Lg
against Earth’s gravity, with known launch (muzzle) vertical

velocity v, being sufficiently low that the acceleration of

) : : : NI/
gravity g remains essentially constant over the entire ascent y(0) =0 v(0) = vo
and descent of the ball. Denote the varying altitude (vertical
position) of the ball as y(t), positive upwards, so the ball’s .

velocity is v(t) = y(t).

(a) First, let’s idealize the aerodynamic drag force as being linearly viscous with
damping constant ¢, D, =cv (subscript 1 denotes this mathematical model of drag as

" Mathematica ® is a registered trademark of Wolfram Research, Inc.
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proportional to the 1% power of velocity, v). Draw and label an appropriate free-body
diagram (FBD), showing the direction of drag force, by convention in analysis of
aerodynamics, as being opposite to the direction of velocity v(t). Using your FBD, apply

Newton’s 2" law to derive the ODE of motion, mv + cv = —mg .2

(b) Solve the ODE of part (a) to determine an equation for velocity v(t), t > 0, given the
known IC, v(0) = v,. First, observe that the homogeneous ODE is the same as Eq. (1-6),
so that Eq. (1-7) is the homogeneous solution. Next, find the simplest possible particular
solution, v, a constant. Next, enforce the initial condition to determine the unknown
constant of the homogeneous solution. From your v(t) equation, show that v, = v,,, the
constant terminal velocity of the ball’s descent for drag D,. Also, derive an equation for
the instant of time t,, when velocity is zero, which, of course, corresponds to the peak
altitude, y, . , of the ball. (Partial answers: v, =-mg/c; t,, =(m/c)In(l-v,/v,), in
which In denotes the natural logarithm, i.e., the logarithm to base e.)

1.7(c) Integrate v(t) of part (b) to derive an equation for the ball’s altitude, y(t), t > 0;
define the launch point to be the reference position, i.e., set the IC as y(0) = 0. (Answer:

y(t) = (m/c)(vo - th)(l_ e_(C/m)t) +Vy t )

(d) Next, let’s consider the mathematical model for the aerodynamic drag force that is
generally considered most appropriate for a smooth ball: D, =+ gSC,, with the plus
sign for ascent (v >0), and the minus sign for descent (v<0). The terms in this equa-
tion are: G:%pvz, the dynamic pressure, with sea-level air density p = 0.002377
slug/ft® = 0.002377 Ib-sec’/ft*; S =7zd?/4, the ball’s projected area, with baseball
diameter about d = 2.90 inches; and C,, the dimensionless drag coefficient, which is
about C, = 0.50 for the smooth ball, provided its airspeed is less than about 140 mph
(miles/hour). Write two 1% order ODEs for v(t) with drag model D, , one ODE applying

to ascent, the other to descent. Explain what it is about these ODEs that makes them
nonlinear. Do not attempt to solve these ODEs in general, but use the appropriately sim-
plified form of the descent ODE to find an algebraic equation for v,,, the constant termi-

nal velocity of the ball’s descent for drag D, ; and then calculate the value of v, in mph.
Use the average weight of baseballs, mg = 5% ounces, with g = 32.17 ft/sec’. Note: 60
mph = 88 ft/sec, 1 foot = 12 inches, and 1 Ib = 16 ounces. (Partial answer: v,, = -74.91

mph. It might seem counterintuitive that the terminal velocity of a stitched baseball is
—95 mph, a much greater speed than that of an otherwise equivalent smooth ball; see
Adair, 1994, pages 5-12.%)

® In Appendix B, Section B-2, this ODE is derived by an alternative method using energy and power.
® Literature references such as this are described in detail in the References section following Chapter 17.
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(e) Let’s attempt to establish some sort of “equivalent” linear mathematical model rela-
tive to the nonlinear model of part (d). The only comparable results that we have deter-
mined for this purpose are the equations for terminal velocity. Therefore, calculate an
“equivalent” linear viscous damping constant ¢ by equating v,, = v,,. Suppose that v, =

110 mph, the average speed at which a baseball rebounds from a bat on the ball’s way to
a 400-foot major league home run. Calculate the total ascent time t,; (in seconds) and

the peak altitude y(t,) = Y., , (in feet), quantities that are defined in parts (b) and (c).

It happens that both nonlinear ODEs of part (d) can be solved in terms of standard mathe-
matical functions.'® In particular, solution of the nonlinear ODE for ascent leads to the

equation for total ascent time, t,, = [(—Vv,,)/g]tan*[v,/(~Vv,,)], and the equation for peak

altitude, Y(t,,) = Yoo = (Vo' /9) N1+ (v, /v,,)? . Calculate t,, and y,, ,, and

compare them, respectively, with t,, and vy, ,; note, however, that we cannot infer

from this limited comparison the general quality of the “equivalent” linear model relative
to the nonlinear model. (Partial answers: ¢ = 2.955 x 10~ lb-sec/ft; Yimax 1= 210.7 ft;

t,, = 3.299 sec)

1.8 The ODE solution procedure illustrated in Section 1-5 for a 1* order ODE can be
used to solve any LTI ODE or system of LTI ODEs. Consider, for example, the 2" order
ODE (1-17) for a mass-damper-spring system, mX+cXx+kx= f, (t). The physical pa-
rameters m, ¢, and k are known constants.

(a) Seek a homogeneous solution in the form x, (t) = Ce”* as follows. First, show that

the characteristic equation is a quadratic polynomial in the unknown 4. Next, solve the
polynomial equation and show in detail that there are two characteristic values (roots),

2 2
A, = e —k. Assume that | >£. Therefore, the general homoge-
' 2m 2m m 2m m

neous solution must have the form x (t)=C,e*" +C,e™", with two initially unknown
constants.

(b) Suppose that the excitation force has the sinusoidal form f, (t) = Fsinwt, in which

force amplitude F and circular frequency @ (in radians/second) are considered to be
known. Seek a particular solution by using the method of undetermined coefficients.
First, express the solution as X, (t) = P sinwt + P, cosewt. Now, substitute this x  (t)

into the non-homogeneous ODE to find algebraic equations for P, and P, in terms of the

. -C
constants that m, c, k, F, and w. (Partial answer: P, = 5 260 >
(k—-mw°)° +(cw)

19 For examples of these solutions, see: an ascent solution in Greenwood, 1965, Problem 3-4 on pages 128
and 503; and a descent solution in Sommerfeld, 1964, pages 21-22.
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(c) Express the complete solution as x(t) = x, (t) + X, (t). Suppose that the mass m is
initially at rest with ICs: initial position x(0)=0 and initial velocity x(0)=0. Use
these ICs to write two linear equations with unknowns C, and C,. Solve for C, and C,;
P,A, -Po and C, = Po—-P,A4 .

show that they can be written as C, =
/2'1 - /12 ﬂ’l - ﬂz

Note that a reasonably efficient algebraic equation for the final result x(t) is derived by
defining constants C, and C, in terms of the previously defined 4 and P; , rather than
writing them in terms of all the basic parameters, m, ¢, k, F, and w.

1.9 Solve Problem 1.8 in MATLAB. Begin with the following MATLAB commands:

> syms x tmc k Fw
>> x=dsolve("D2x+c/m*Dx+k/m*x=F/m*sin(w*t) ", "x(0)=0", "Dx(0)=0%)

The MATLAB response will probably be an equation for x(t)of truly breathtaking

length. You can try simplification operations such as x=simple(x) and pretty(x) and
the subexpr command, but they will not necessarily lead to a more useful equation for
x(t). At some point, you might decide that, rather than continuing to flail away at the

symbolic software, your time is used more efficiently if you just solve by hand and define
intermediate symbols in terms of the basic parameters, as is done in Problem 1.8.

1.10 This problem relates to the details of the mass-spring-system ODE solution pre-
sented in Section 1-10.

(a) Substitute the assumed particular solution Eq. (1-23) into non-homogeneous ODE (1-
22), then carry out the process in all algebraic detail to verify Eqgs. (1-24) for P, and P, .

(b) Substitute ICs (1-19), x(0) =0 and x(0) =0 into complete solution Eg. (1-25), then
carry out the process in all algebraic detail to verify Egs. (1-26) for C, and C, .

1.11 Consider a mass-spring system with an “exponential step” forcing function, as de-
scribed by the 2" order LTI ODE m%+kx = f, (t) = F(L—e "), in which position x(t)
is the dependent variable, and the known constant parameters are mass m, spring stiffness
constant k, force amplitude F, and time constant t.. The time constant is the time required
for the “exponential unit-step” function, 1—e ™", to rise from 0 at t = 0 to the value
1-e™' =0.6321, on its way to the asymptotic value 1 as t — oo.

() Use the method of undetermined coefficients to derive an algebraic equation (in

terms of the given constants) for the particular solution xy(t) of this ODE and forcing
function.

1-23



Chapter 1 Introduction; examples of 1% and 2" order systems; MATLAB calculations and graphics

(b) Let the ICs for this m-k system be x(0) =0 and x(0) =0. Use the result of part (a)
and whatever else is required to derive in all detail the following complete algebraic so-
lution for x(t), t > 0, in which @, = \/k/m:

X(t) = E{l— H(l/ﬁ[e_% + 1 aw,t,)sinm,t + (]/a)ntc )? cos a)nt]}

1.11 (c) Consider the specific numerical case of mass m = 8.03 kg, spring stiffness con-
stant k = 317 N/m, and force amplitude F = 4.50 N. Calculate the circular natural fre-
guency , and the cyclic natural frequency f,. Let excitation time constant t, =1/w, , a
much shorter interval than the m-k system’s natural period T, = 27/®, . Compose and
run a MATLAB program that does the following: calculate the actual dynamic response
x(t) and the pseudo-static response f,(t)/k over the time interval 0 <t < 2.5 sec; plot
both x(t) and f,(t)/k on the same graph in units of either centimeters or millimeters.

Explain in a sentence or two what feature of your plot of x(t) demonstrates and conforms
with your calculation of f.

1.12 Consider a mass-spring system with a sinusoidal forcing function, as described by
the 2" order LTI ODE mx +k x = f (t) = Fsinwt, in which position x(t) is the depend-

ent variable, and the known constant parameters are mass m, spring stiffness constant Kk,
force amplitude F, and excitation frequency .

() Use the method of undetermined coefficients to derive an algebraic equation (in
terms of the given constants) for the particular solution xy(t) of this ODE and forcing

function, a solution that is valid provided w® = k/m.

(b) Let the ICs for this m-k system be x(0) =0 and x(0) =0. Use the result of part (a)
and whatever else is required to derive in all detail the following complete algebraic so-
lution for x(t), t > 0, in which @, =/k/m:

[sin ot — (o) w, ) sin w,t], valid for o # o,

x(t) :E

-
1—(60/(0n)2

(c) Consider the specific numerical case of mass m = 0.230 Ib-sec?inch (which weighs
about 88.8 Ib), spring stiffness constant k = 227 Ib/inch, and force amplitude F = 45.0 Ib.
Calculate the circular natural frequency o, and the cyclic natural frequency f . For
excitation frequency w=1.2w®,, compose and run a MATLAB program that does the

following: calculate the actual dynamic response x(t) and the pseudo-static response
f,(t)/k over the time interval 0 < t < 2 sec; plot both x(t) and f,(t)/k on the same

graph. Your x(t) plot should exhibit the phenomenon of beating, which is analyzed more
completely in Section 10-6.
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(d) The x(t) equation derived in part (b) is not valid if excitation frequency o equals
natural frequency @, , but note that in this case the x(t) equation has the indeterminate

form 0/0, so that we can apply I’Hospital’s rule (which is described in any calculus text-
book) to find the limit-case response solution. Define S =w/w,, so that wt = fw,t.

Now, hold @, constant and take the limit as # — 1 of the x(t) equation in order to deter-
mine the correct response X(t) equation for the case @ = w, .
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2-1 Review of complex numbers and arithmetic

We will find many uses in system dynamics for analysis with complex numbers
and variables. It is instructive first to imagine how complex numbers might have been
developed historically. It seems likely that they appeared first in solutions for roots of
polynomial equations. To see how, let’s examine the 2™ degree polynomial, the standard
quadratic equation, and its solutions. The quadratic equation is

az’+bz+c=0 (2-1)

where z is the unknown and a, b, and ¢ are known constants. The standard solution for
roots z is

z=—iii\/b2 —4ac (2-2)

Provided that 4° — 4ac > 0, solution (2-2) can be calculated easily. But suppose the con-
stants have values such that 5% — 4ac < 0, so that Eq. (2-2) indicates the square root of a
negative number. That must have seemed strange to early mathematicians. Nevertheless,
(2-2) is the correct solution regardless of the sign of 4% — 4ac, which you can verify sim-
ply by substituting (2-2) back into (2-1). So it was necessary to recognize the existence
of the square root of a negative number and to invent notation and terminology for de-
scribing such a number.

For b° — 4ac < 0, we can write

Vb? —dac = \/(-1)(4ac - b?) = =1 x~4ac - b? = j\/dac—b?

in which we define the unit imaginary number as j = </—1. Perhaps early mathemati-
cians used the adjective “imaginary” because such a number seemed unreal to them.
With this definition, we can write (2-2) in the form

z=—iij2i\/4ac—b2
a

2a

This is called a complex number, which is the sum of a normal, or real number and an
imaginary number (j times a real number being a general imaginary number).
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If x and y are reals, then any complex number can be written in the rectangular
form:
z=x+ jy, withreal part x=Re(z), and imaginary part y = Im(z) (2-3)

This form is called “rectangular” because it expresses the complex number in terms of its
rectangular, or Cartesian components, x and y. Equation (2-3) is similar mathematically
to a two-dimensional vector v expressed in terms of Cartesian components and unit vec-
tors 1, and 1,: v=v 1 +v 1 . Therefore, we can represent a complex number

z=x+ jy graphically in the Cartesian form similar to that used for two-dimensional

vectors, as shown in Fig. 2-1.
Im(z) length

From Fig. 2-1, we can infer another useful way to T """""" 2
represent a complex number. By defining the magnitude :
(length, absolute value, modulus) of z as the positive num- Y ’39 E
ber V :

< x ,! Re(z)
"= “xz +y (2-4) Figure 2-1
we can write
z=Xx4+jy :r(£+j1):r(cose+jsin9) (2-5)
r r

In Eqg. (2-5), we employ the standard trigonometric functions of angle & originating on
the positive real axis and defined positive in the counterclockwise (CCW) sense, Fig. 2-1.
Angle 4 is often called the argument of z. The general definition is

0 =tan™ (Zj (2-6)

X

It is necessary to recognize Eq. (2-6) as the four-quadrant inverse tangent (Or arctan-
gent). For example, if y is positive and x is negative, then (2-6) should give angle & in
the second quadrant, 90° < & < 180°; or, if both y and x are negative, then (2-6) should
give angle @in the 3" quadrant, —180° < & < —90° (which also can be written as 180° < &
< 270°). Unfortunately, the fan™ or arctan function on hand calculators does not calcu-
late the four-quadrant inverse tangent, but only considers the sign of the quotient y/x, and
produces a & value in the 1% or 4™ quadrants, —90° < 8 < +90°. So, if you are evaluating
(2-6) on your hand calculator, you need to account for the signs of both y and x, and you
need to modify appropriately the answer given by your calculator. If you are evaluating
(2-6) in MATLAB, then you should use MATLADB’s four-quadrant inverse tangent func-
tion, atan2(y,x).
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Equation (2-5) is just an intermediate result. To achieve the desired final form,
we rewrite (2-5) using the well-known Taylor power series expansions for sine, cosine
and exponential functions:

2 4 3 5
z=r(cosd + jsin@)= rKl—e—+9——...j+j(¢9_9_+9____
214 3 8

| I

- n\2 . 1\3 . 1\4 . 1\5
z:r(cose+jsin9):{l+(j9)+(‘]26:) +(‘]§:) +(jj:) +(jg) +..|=re

z=re’’ (2-7)
The important result
cosé + jsing =e’’ (2-8)

is known as Euler’s equation (after Leonhard Euler, 1707-1783, Swiss mathematician
and physicist). See homework Problem 2.1 for other equations closely related to Eq. (2-
8).

A complex number in the form z =re’? is called the polar form because it em-

ploys polar coordinates » and 6. We can visualize the complex exponential term e it-
self as a clock hand in the complex plane, Fig. 2-1; the clock hand has unit length, and it
is rotated CCW by angle @ from the 3 o’clock position. Similarly, the full complex num-
ber z =re’’ represents a clock hand of length 7 that is rotated CCW by angle @ from the
3 o’clock position, so the notation z = »£6 is often used, where the symbol £ stands for
“angle.”

We will occasionally need to convert a complex number from rectangular form
into polar form using Egs. (2-4) and (2-6). The MATLAB functions abs and angle are
especially useful for this task, as is illustrated in Complex-arithmetic Example 2 below.

We also will need to use complex arithmetic, so let’s review (from your mathe-

matics courses) some of the basics, supposing that we have two complex numbers z and
w expressed in both rectangular and polar forms:

z=x+jy:rej9 and w=u+jv=qej¢, where x, y, r, 6, u, v, g, and ¢ all are real.

Addition or subtraction, rectanqular: z+w=(x*tu)+ j(y*v).

Addition or subtraction, polar: re’’ £ge’’ =Z = Re’ .

Z =rcosf+qcosg+ j(rsind+qgsing)
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R= \/[Re(Z)]2 +[Im@2)[ = \/rz +q° +2rqcos(0 — @)
© = tan*[Im(Z)/Re(Z)] = tan*[+ (rsin @ + gsin ¢) /(r cos O + g cos @) ]

Multiplication, rectangular: zxw = xu + j(xv+ yu) + j>(yv) = (xu — ) + j(xv + yu).

Multiplication, polar: zxw =rg e’/"*?.

The complex conjugate of z=x+ jy=re’’is defined as z=x— jy =re’?, so that the
product of a complex number and its conjugate is real, and equal to the square of the
magnitude: zz =x* + j(—xy+ yx)— j?y* = x* + y* =r?, or more easily in polar form,
zz=re’’ xre? =r?e/? =2, Suppose that we have the quotient of two complex

numbers z by w, both in rectangular form, and we wish to cast the result into standard
rectangular form; it is common practice first to multiply both denominator and numerator
by the conjugate of the denominator, thus forming a real denominator:

. +j + ) u-j + —xv+
Division, rectangular: = =" — (x J_y)(u J_v) = x’;’ y: ‘ );v );u
w o u+jv (u+ ) u—-jv) u+v u+v

.. VA Vo
Division, polar, = = — ¢’/
w g

Complex-arithmetic Example 1 Cast the following complex fraction into standard rec-
tangular form, then convert it into polar form:

__3-/4_(3-j4A-/2) _3-8+/(-6-4) _

- - - =—1-j2
1+j2 (A+,2)1-,2) 5
2 2 -1 _2 72- rad
r=(1)%+(-2)? =2.236, O=tan| —= |=-116.6°x = -2.034 rad
-1 180°
3-j4

z= = —1— j2=2.236e/1%) =2.236,/(-2.034 rad)
1+ 2

Note that when you take tan™'(2) on your hand calculator, it gives 63.43°. Because you
are really trying to find tan™'(—2/~1), you must recognize that the correct angle is in the
3" quadrant and, therefore, add +180° or —180° to the calculator’s solution in order to
obtain the correct result, +243.4° or -116.6°.

Complex-arithmetic Example 2 Cast the following complex fraction into standard rec-
tangular form, then convert it into polar form:

2-4
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LB o, (49D o, 43432
2- /3 (2-j3)2+3)

z= (4—3 - 7) + ](% + 4} =-3.692 + j6.462

7+ j4

6'46922j =—60.255°+180° =119.7°

r=/(-3.692)% + (6.462)> =7.442, 0= tan‘l[

o= B=72@+)) é 2)(? 74 j4=-3.692+ j6.462 = 7.442 /%7
-

A solution of Complex-arithmetic Example 2 in terms of MATLAB operations follows:

>> z=(3-2))*(4+1)/(2-3))-7+4])

-3.6923 + 6.4615i

>> r=abs(z),theta=angle(z)

7.4421

theta =

2.0899

>> thetadeg=theta*180/pi

thetadeg =

119.7449

Note that MATLAB prefers, and gives results in terms of the unit imaginary number de-
noted as 7, but it recognizes our notation of j. Note also that the radian is MATLAB’s
default unit for angles: if you want a MATLAB angle result in degrees, you must convert

from radians; also, if you wish to calculate a trigonometric function of an angle, you must

express that angle in radians.

2-2 Introduction to application of Laplace transforms

The Laplace transform (after French mathematician and celestial mechanician

Pierre Simon Laplace, 1749-1827) is a mathematical tool primarily for solving ODEs, but
with other important applications in system dynamics that we will study later. In Laplace

2-5
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transformation, we deal with a complex variable denoted as s, which is usually expressed
in terms of its real and imaginary parts as

s=otjw (2-9)

in which o and o both are real. We define a complex function of s, F(s). The type of
function that we will encounter often takes the form of a ratio of two polynomials:

Num(s) bs" +bys" . +b, _ b(s-z)(s-2,)(s~2,)

F(S)E n n-1 -
Den(s) a;s"+a,s" +..+a,, a(s—p)s—p,)--(s—p,)

(2-10)

In the first polynomial form of Eq. (2-10), a,, ..., a,, and b,, ... , b, , are real con-
stants (with the symbols and numbering system keyed to MATLAB notation); numerator
Num(s) is an m™ degree polynomial in s, and denominator Den(s) is an n™ degree poly-
nomial in s, with m < n in general. In the second polynomial form, with factored Num(s)
and Den(s), complex constants z,, z,, ... , z, are called zeros of F(s) because F(s) is
zero if s equals any one of them, and complex constants p,, p,, ..., p, are called poles
of F(s) because F(s) is infinite if s equals any one of them. If m < n, F(s) in Eq. (2-10)
also goes to zero as s — .

Solving a simple ODE problem with Laplace transforms is a gentle introduction
to the subject. Consider the 1* order LTI ODE written in standard form: x—ax =bu(¢),

Eqg. (1-1). Let’s solve this ODE with a known IC, x(0) = x,, and with a specific expo-
nential input function, u() =U e™", U being a dimensional magnitude; in any physically

realistic problem, constant w would be a real number, but for generality here we allow it
to be a complex number. So the complete problem statement is:

x—ax=bUe™, x(0) = x,, solve for x(¢), > 0 (2-11)

To begin the solution, we multiply the ODE by a complex exponential, ¢, then take
the definite integral over time from ¢z = 0 to 7 = oo of the entire multiplied ODE:

t:we_'” x—ax=bUe™|dt = t:we_”)'c dt — at:we_”x dt = bUt:we_” e™dt (2-12)
= t=0

t=0 =0 t=0

In (2-12), s is a complex variable that must have values for which the integrals exist.
Based upon (2-12), we define the forward Laplace transform of dependent variable x(7)*:

! In Section 8-4 we develop a more general definition, Eq. (8-12), in order to accommodate the ideal unit-
impulse function, which is important in linear-system theory and applications.

2-6



Chapter 2 Complex numbers and arithmetic; Laplace transforms; partial-fraction expansion

=0

Lx()] = X (s) = j e x(t) dt (2-13)

t=0

In (2-13), the function x of time ¢ is transformed by the definite integration into a function
X of Laplace variable 5. Also, the ODE of (2-11) is transformed into (2-12), which, as we
will find, becomes an easily solvable algebraic equation in the unknown X (s). After we
solve that algebraic equation for X(s), then we will reverse the process to find the original
unknown x(¢) by applying the inverse Laplace transform, denoted as L™ [X(s)] = x(z). For
any Laplace-transformable function f(¢), and its transform F(s), the companion equa-

tions L[ £(t)] = F(s) and L™ [F(s)] = f(¢)are called a Laplace transform pair.

In order to transform Eq. (2-12) into an algebraic equation, let’s carefully consider
each integration in (2-12), beginning with that on the right-hand side:

fale-

t=00 t=0
Ie—ste—wtdt — Ie—(.5'+vv’)tdt
t=0 t=0

_—(s+w)[ . 1]_S+W

[ (s+w)t:|
=0

(s+w) (s+w)

An important step in this derivation involves the complex exponential, with use of Egs.
(2-3) and (2-8): e =e"*/¥) =e*(cosy + jsiny). Since siny and cosy vary periodi-
cally as y varies, the only way for ¢* to — 0 + ;O for all values of y is for x - —.
Thus, in the last step of the integration, we assume that Re(s+w) > 0, or Re(s) >

—Re(w), so that e “"* =0 + 0. The integration above establishes the following La-
place transform pair, which is one of the most important of all pairs for applications:

1
s+w

Lle™]=

and Ll{ } =e™ (2-14)

Ss+w

For your convenience, transform pair (2-14) and all other fundamental Laplace
transform pairs used in this book are tabulated in Appendix A at the end of the book.
Appendix A also includes some of the longer but less instructive transform derivations,
should you wish to study them.

Next, let’s evaluate the first term on the left-hand side of (2-12) by the standard

=00 t=0
method of integration by parts in the form Iu dv = [u v]jz;’ — J.vdu :
t=0 t=0
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u
=00 _A dv =0

[ ekdi=[ex] 5 - [x@)x (=s)edr = [ x(e0) — & x(0) ]+ 5 X (s)

(2-15a)
=—x(0)+5 X (s)

To obtain this result, we assume that e “*x(c0) = 0, which generally means Re(s ) > 0.

This result is the important general Laplace transform of the first derivative of any trans-
formable function f(¢):

1|/ )= s F(s)- 1(0) (2-15b)

Equation (2-15b) is the basis for derivation of the Laplace transform of a derivative of
any order », which we will use later (Ogata?, 1998, pp. 25-26):

n—1

L[j; f(t)} = S"F(s) = 5" (0) 5" 2 F(0) —-— 1 (0) (2-16)

For example, the Laplace transform of the 2" derivative is (homework Problem 2.7):

L[f@)=s2F(s) -5 £(0) - 7 (0) (2-17)

Proceeding with the solution of ODE + IC (2-11), we now substitute Egs. (2-13),
(2-14), and (2-15a) back into (2-12) to obtain an algebraic equation for transform X(s),

which is easily solved:

s X ()= x(0) — a X(s) = S”+—Uw ~ (s—a) X(s) = x0+sb+UW

1 bU

=  X(s)= X, +
(s—a) (s—a)(s+w)

(2-18)

To solve for the ultimate unknown x(¢), we now need to find the inverse transform
of X(s) in (2-18). Using (2-14) easily gives us the inverse of the first term on the right-

hand side:
~ 1 4 1 at
s e e @19

Z Literature sources such as this are described in detail in the References section following Chapter 17.

2-8
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Inverting the second term on the right-hand side of (2-18) is a greater challenge,
which requires us to use partial-fraction expansion in order to expand that term into two
simpler terms, each of which has the easily invertible form of a constant divided by a sin-
gle factor of the form (s — p). We first write the troublesome term as two simpler frac-
tions with unknown constant numerators, C, and C,, which are called residues of the
partial-fraction expansion. (A more detailed justification for this form is derived in the
next section.):

1 G, G GG 1

(s—a)(s+w)_s—a S+w s—a s+w_(s—a)(s+w)

(2-20)

There are two common methods for finding C, and C,, which we shall call the “labor-
saving” method and the “brute-force” method.

Consider first the labor-saving method. Let’s go in great detail through the steps
required to find C,, for example. First, multiply both sides of Eq. (2-20) by s —a, the

denominator of the C, term:

(s—a)(i+ij:Cl+(s—a)[ < j:(s—a)(;j
s—a S+w S+w (s—a)(s+w)

Isolate C, on the left-hand side:

< Y B
Cl__(s_a)(s+wJ+(S a)((s—a)(erw)j

Now, in order to eliminate the C, term on the right-hand side, set s =a. Note that this
does not eliminate the second right-hand-side term because (s —a) is in both the denomi-
nator and the numerator.

& S R S | R PORN G S
Cl:[_ (S_a)(s+wj+(s a)[(s—a)(s+w)ﬂw [(S a)((s—a)(s+w)ﬂw

Thus, we obtain the required equation for C;:

Aol 7
(s—a)s+w))| _ a+w

Now that we see the logic of the labor-saving method, we can dispense with most of the
intermediate steps and quickly write the corresponding equation for C, directly from Eq.
(2-20):

2-9
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sz{(s+w)(;ﬂ __r 1
(s—a)(s+w))| = —-w-a a+w

Next, the brute-force method begins with use of the traditional algebraic method
for combining the two fractions of Eq. (2-20) into a single fraction:

1 e N C, Cs+w)+C,(s—a) s(C,+C,)+(Cw—C,a)
(s—a)(s+w)_s—a s+w (s—a)(s+w) - (s—a)(s+w)

Equate coefficients of like powers of s in the numerators:

st:0=C,+C, = C(C,=-C
s 1=Cw-C,a=C,(w+a) = C,= L =-C,
a+w

In this simple problem, the brute-force method is not much more demanding al-
gebraically than the labor-saving method. However, for a slightly more complex original
fraction, say, one with three denominator polynomial factors instead of just two, the
brute-force method can require orders of magnitude more algebra than the labor-saving
method. The point of this discussion: exert the mental energy to understand the labor-
saving method, and always use it rather than the brute-force method [see homework
Problem 2.9(b)].

Using the partial-fraction expansion developed above, we now express the com-
plete second term on the right-hand side of Eq. (2-18) in the easily invertible form

F(s)= =
(s—a)(s+w) a+w

bU bU( 1 1 j
s—a s+w

Using the fundamental inverse transform from Eq. (2-14) gives

f@)= by (e”’—e‘”) (2-21)

a+w

Finally, combining Egs. (2-19) and (2-21) gives the inverse of (2-18) and the final
desired solution of ODE + IC (2-11):

bU

at+w

x(t) = xe*" + (e”’ = e_Wt), fort>0 (2-22)

The introduction to Laplace transformation in this section is not mathematically
rigorous. The focus in introductory system dynamics is more with applying Laplace
transforms than with the detailed theory. It is relevant, however, to comment on the exis-
tence of Laplace transforms: a transform generally exists (i.e., the defining integral Eq.

2-10
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(2-13) can be evaluated, in principle) for any function f(¢) for which the product
e f(t)| — 0 as t - oo, where a is some finite, positive, real constant (Hildebrand,

1962, Section 2.2). Practically speaking, this means that any physically realizable func-
tion, the type of function that we encounter in engineering, has a Laplace transform.

2-3 More about partial-fraction expansion

Let’s examine in more detail the justification for the form of the partial-fraction
expansion presented in Eq. (2-20). As an example, consider the following sum of three
fractional terms:

Gy C1+C2+C3

3
Fa(S): =
=S—Py S—Pp S—Py ST P3

(2-23)
_ Ci(s = py)(s = p3) + Co(s — p1)(s — p3) + C3(s — p1)(s — p,)
(s = p)(s = py)(s = ps3)

In the combination of the three fractional terms into a single fraction, the denominator is
a cubic polynomial (n = 3), and the degree of the numerator polynomial is, at most, m =
2. Depending upon the values of constants C, , the degree of the numerator polynomial

can be from0to 2,sothat0 <m < n.

Next, let’s generalize the observation of the previous paragraph by considering a
general sum of fractional terms in the form

n Ck

F(s)=2,

k=18~ Py

(2-24)

If we combine all » of these terms into a single ratio using the traditional algebraic
method illustrated in Eq. (2-23), then the result will have the following general form:

m m-1
Cls +C2S +"'+cm+l

(s=p)s—ps)-(s=p,)

F,(s) =

The denominator is a polynomial of degree », and the numerator is a polynomial of, at
most, degree m = (n — 1). We therefore can conclude the following: a ratio of polyno-
mials, in which the numerator has a lower degree than that of the denominator, can usu-
ally be expanded into the simple partial-fraction form (2-24). In other words, provided
that 0 < m < n, we can usually find finite residues C, in the partial-fraction expansion:

bls"’+bzs”’_l+...+bm+1 3 b(s—z)s—z,)(s—z,) _Z”: C,

F,(s)=— —
a, s +a,s 1+"'+an+l a(s—p)s—p,)-(s—p,) =S—Dp;

(2-25a)

2-11
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with the residues given by the labor-saving method as®

Co=ls-p)F,)]_, k=12 ..n (2-25b)

Consider, for example, part of the partial-fraction expansion of a quadratic di-
vided by a cubic:

Fiy(s) = bs* +b,s + b, e N C, N C,
U (s=p)s—p)s—ps) s—p, S—p, S—p

Using Eq. (2-25Db), to determine, for example, residue C, gives:

b1P12 +b,p, +b,

Cl:[(s_pl)FS(S)]s:Pl - (p, = p,) (P = ps)

This equation for C, reveals an exception to the rule: this equation clearly would not be
valid if the denominator polynomial were to have repeated roots, p, = p, or p, = p,; in

that case, a form different than Eqgs. (2-25) would be appropriate (Ogata, 1998, pp. 33-
34). That is a special case which we shall address in this book only as the need arises.

Finally, observe that it is easy to check the validity/correctness of a partial-frac-
tion expansion after we have solved for residues C,. Simply combine the individual

fractions into a single ratio, as is illustrated in Eq. (2-23); the resulting ratio should equal
the original ratio of polynomials that we expanded into partial fractions.

2-4 Additional useful functions and Laplace transforms: step, sine, cosine, definite
integral

We shall describe and transform several different useful mathematical functions.
A common feature of most of these functions is that they are defined to have non-zero
values only for positive time, i.e., they are zero before t = 0. The fundamental function of
this type is the basic Heaviside unit-step function (after English electrical engineer,
physicist, and applied mathematician Oliver Heaviside,

H(r) 1850-1925) shown in Fig. 2-2:
1
0 fort<O
H(t) = 2-26
) {1 forz>0 (2-20)
0 0
! H (¢) is dimensionless, and it is undefined mathemati-
Figure 2-2 cally at the discontinuity at # = 0. If we wish to write

® An interesting alternative form of Eq. (2-25b) is developed in Appendix A, Section A-2.

2-12
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an equation for a physical input quantity that is applied quickly and remains constant
thereafter, we can use H(z) to represent it approximately; for example, a “step” force

f.(¢) can be described with the equation f ()= FxH(¢t) = F H(t), where F is the di-

mensional force magnitude. For many physical input quantities, a step function is an ide-
alized approximation; such a quantity increases quickly but continuously, not as a discon-
tinuous pure step, from zero to a constant value. [The notation H(z) used here for the

unit-step function is common but not standard; in fact, there is no standard symbol in en-
gineering literature.]

A more general unit-step function describes a step that occurs at some time ¢, dif-
ferent than the instant defined to be # = 0. This func-

H(e- 1) tion (Fig. 2-3) is:
1 - —_—
0 forz<t,
! H(t-1t)= ’ 2-27
| -1 {1 for¢>¢, (2-27)
0 ! :
0 £, t
) If the time of discontinuity is 7, = 0, then this more
Figure 2-3

general function becomes the basic function of (2-26).
The Laplace transform of H(z - ¢,) is

LH(t-1)]= t_foe‘”H (t—2,)dt = Te‘”dz = _isl_jwd(e'”)= —%(e-w —e)
=0 1=t t—t,

=St

L[H(t-1)]="

(2-28)
Note, in particular, the version of Eq. (2-28) for the basic unit-step function with ¢, = 0:

L[H(1)]=

“u |-

(2-29)

We will frequently use sine and cosine functions of time with circular frequency
o, the functions being non-zero only for positive time, # > 0. Using precise notation, such
a sine function, for example, should be denoted H(z) x sinwt ; however, with few excep-
tions, we will consider mostly ¢ > 0, so we can almost always omit the “H(¢) x” part of
the equation, with the implicit understanding that the analysis applies only for z > 0.

Next we derive the Laplace transform of the sine function by expressing the sine

in terms of complex exponential functions (homework Problem 2.1) and using the basic
forward transform of Eq. (2-14):

2-13
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jot _ _—jot . .
Lsinwt]=1| <% — it 1 ) Lstjo-(s—jo)
2j 2j\s—jo s+jo) 2j\ (s—jo)(s+ jo)
. 1( 2jw w
Lisinwt|=— = 2-30
[ ] 2j(32+a)2] s+ ot ( )

Using a similar process, you can derive (homework Problem 2.10) the following Laplace
transform of the cosine function:

L[coswt]= (2-31)

s+ w?

Another useful Laplace transform is that of a definite integral. Suppose that a

physically realistic function £(¢) has Laplace transform F(s) = L[ £(¢)], and that we need
7=t>0

the transform of the definite integral If(r) dr . Note the lower limit of 7= —o0; we will

T=—00

usually consider £(¢) only for ¢ > 0, but occasionally the integral of f(¢) over previous

time, ¢ < 0, is also needed. The general transform, which is derived in Appendix A, Sec-
tion A-3, is:

Lﬁjﬂ(r) dr} g+t Tf(r) dr (2-32)
S S

T=—0 T=—00

For most applications, we will have f(¢) = 0 for ¢ < 0, for which the simpler transform is:

L{TT}(T) dz} = EF(s) (2-33)
=0 S

If we regard the integral of f(¢) as being the first “negative” derivative (antiderivative),

then we see that transform (2-32) is logically consistent with transform (2-15b) for a
“positive” derivative, with respect to both power of s and the initial value term.

2-14
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2-5 Homework problems for Chapter 2

2.1 Refer to Euler’s equation, Eq. (2-8), which is e/’ = cos@ + jsin€. The cosine is an
even (symmetric) function, cos(—¢) = cos@ , and the sine is an odd (antisymmetric) func-
tion, sin(-8) = —sin @, so the conjugate to Euler’s equation is

e’ = e/ = cos(—0) + jsin(-8) = cosd — jsind
. . e’ +el?
(a) Add the conjugate to Euler’s equation to prove cosé = — Subtract the con-
_ _ _ j0 _ pmit
jugate from Euler’s equation to prove sind = T
J
(b) Use the results of part (a) to prove the trigonometric identities cos® 8 = 51+ cos26)
and sin® @ = % (1—cos26). Use these results to prove cos” & —sin’ & = cos26.

(c) Use the results of part (a) to prove the identity sin@xcosé =1sin26.
2

2.2 Given the following complex numbers:

1 . . 0.7— j2.4 10+ j5
g — b) 5 x (2 - ¢ 2f—jed d) —20F/
@ 0203 (b) 57 (2=)) © o5+ 12 @ G608

First, express the complex number in rectangular form, z = Re(z) + j Im(z), where Re(z)
and Im(z) are real numbers. Next, express the complex number in polar form re’?, that
is, calculate by hand and calculator the radius » and the phase angle 8, where @ is in de-
grees, —180° < # < +180°. You may check your hand calculations by using the abs and
angle commands appropriately in MATLAB.

2.3 Given: two complex numbers expressed in polar form z, =7 e/* and z, =r,e’*,
with r, r,, 6,, and 6, all real numbers.

(a) Use complex arithmetic with complex numbers in polar form to show that the conju-
gate of a product equals the product of conjugates, which is expressed in equation form as

izlxzzi:zlxzz.

(b) Use complex arithmetic with complex numbers in polar form to show that the conju-
gate of a quotient equals the quotient of conjugates, which is expressed in equation form

as izl/z2 izZl/Ez :

2-15



Chapter 2 Complex numbers and arithmetic; Laplace transforms; partial-fraction expansion

2.4 Express a complex number in rectangular form, z = x + jy, and prove the following
identity: z+z =2Re(z) =2x.

2.5 Given: complex numbers 4 = A4, + j4; and B = B, + jB; (4,, A;, B,, B; all real) and
complex variable z = x + jy (with real, non-zero values of x and y, which are independent
of each other), in the equation C = 4z + Bz .

Prove: use complex arithmetic with complex values in rectangular form to show that C
can be real, C = C, + /0, only if B= A . (Note that you can also prove this by applying
the results of homework Problems 2.3(a) and 2.4.)

2.6 The following complex function will arise when we study the frequency response of

1
a 2" order system: Z(f) = :
- 5°)+ j2¢p
forcing frequency (not dimensional frequency ), and ¢ is a positive, real, dimen-
sionless ratio that represents viscous damping.

, in which £is a positive, real, dimensionless

(a) Convert the Z(/) equation above into polar form Z(f) = »(8)e’*” . In particular,
carry out the detailed algebraic steps to show that the magnitude and phase angle are

1 4 —28P
r(f) = and 6(p)=tan ( 2).
J- 2 + (207 -4

(b) Calculate values of the magnitude and phase angle for several values of forcing fre-
quency g and for two values of damping ratio ¢ (specifics below). Make these calcula-
tions with a hand calculator, not with MATLAB or some other computer software (al-
though you may check your hand calculations with computer software). These calcula-
tions will give you a small preview of frequency response, and (especially) they should
help you to understand the care required when you evaluate the four-quadrant arctangent.
Specifically, for each of the damping ratios ¢ =0 and ¢ = 0.1 (or another value assigned
by your instructor), calculate the quantities in the empty cells of the table below (to at
least three significant figures, preferably four, but no more); also, calculate phase angles
using the standard engineering convention, —180° < #< +180°, not 0° < §< +360°.

Hints for the £ = 0 case: (1) for the »(f) calculations, recognize that the equation re-
quires (B > 0, even if g > 1; (2) for the &) calculations, imagine that £ has an ex-
tremely small, positive value, say ¢ = +1 x 10°™.

B "(B) ap) «P)

degrees radians

0
0.5
1
2
5
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2.7 Prove Eq. (2-17), L[f(t)]=st(s)—sf(O)—f(O): first define g(f) = f(¢); now use
the fundamental equation (2-15b) twice, first as G(s) = L[f]= s F(s)— f(0), and then as
L[g]=sG(s)- 2(0).

2.8 Consider the Laplace transform shown below, both in the first form, which is derived
directly from an ODE, and in a partial-fraction expansion,

C
F(S):( 1 ]( 1' . 1' j: G Cz. G
s—a)\s—jo s+jo) s—a Ss—jo S+ jo

in which ¢ and @ are real constants. Find residues C,, C,, and C, interms of ¢ and o,

and show that C, is real. Use the labor-saving method directly, without first completing
the products in the form derived from an ODE.

2.9 Find the inverse Laplace transform f(¢), ¢t > 0, for the given function F(s) below.
First use partial-fraction expansion to express F(s) as a sum of simple quotients, and then
apply the appropriate inverse transformation equations. Also, find the values of any ze-
ros and poles of F(s).

s+3 . _l — -5¢
(a) F(S):m [AI’ISWQ]". f(t)—z(e +e ),tZO]
24D O U S g
(b) F(S)_s(s+3)(s+4) [Answer: f(t)—6+3e 2e , 1 >0]

2.10 Derive the Laplace transform L[coswi?] =

5 5. Follow the same procedure,
)

with appropriate changes in details, as the derivation of L[sinw¢], Eq. (2-30). Show all
steps, just as in the derivation of L[sin w¢].

2.11 Solution (2-22) of ODE problem (2-11) was derived by Laplace transformation, a
technique that is probably new to you, so you might be a little skeptical. To convince
yourself that (2-22) is indeed the correct solution of (2-11), substitute (2-22) back into the
ODE and IC of (2-11), and show that the original equations are satisfied. This method
can always be used to check the correctness of an ODE solution.

2.12 Consider the standard 1% order ODE % —ax =bu(f) with IC x(0)=x,. Use
Laplace transformation to solve for x(¢) with the u(7) functions given below. It will ease
your algebraic burden greatly if you will make liberal use of the identities involving
complex numbers proved in homework Problems 2.3 and 2.4. Also, use where appropri-
ate the transforms of sinw¢ from Eq. (2-30) and cosw¢ from Eq. (2-31) or homework
Problem 2.10.
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(@) Let u(t)=Usinat, t> 0, where U is a constant amplitude.

2 2 )

bUw a .
[Answer: x(t) = x e + (e“’ ——sinwt —cos a)tj , 1>0]
w +a

(b) Let u(t) =Ucosawt, t >0, where U is a constant amplitude.

[Answer: x(t) = x,e” + (ae”t —acoswt + wsin a)t), t>0]

o’ +a?
2.13 Suppose that 7 is a real number representing time, and that o is imaginary, @ = ju,
where g is real. Use the results of homework Problem 2.1 and, from calculus, the defini-
tions of the hyperbolic cosine, cosh x¢, and the hyperbolic sine, sinh u¢, to prove the

following: coswt =cosh ut, and sinwt/w =sinh ut/pu.

2.14 For a mass-spring system with negligible damping, the appropriate ODE is Eq. (1-
18), mi+kx = f_(¢). Consider the case of this mass-spring system having imposed ini-
tial conditions at time # = 0, x(0) = x, and x(0) = v,, and then after # = 0 being subjected
to constant force £, which we can express mathematically as f (¢) = F H(¢), or equiva-
lently, f(¢)=F for ¢t>0. In this application, unit-step function H(¢) is used to remind
you that the Laplace transform is L[/, (¢)]= F/s. (In fact, force F could have been ap-

plied even before ¢ = 0, but that would be irrelevant because the initial conditions estab-
lish the state of the system at 7 = 0, regardless of whatever force acts before = 0.) Your
task is to solve the problem by using Laplace transformation.

(a) First take the Laplace transform of the ODE, accounting for the 1Cs, and solve for the
transform of the output to find

s v , F 1
L[x()] = X (s) = x, 2 2 +— 2 S ) 2
S+l 0,0 msls?+o,?)

In this equation, we define the natural frequency of vibration, @, = \/k/m , from Eq. (1-
20). (See Section 1-10 for an explanation of the physical significance of @,.) Show all
of your work leading to your result, as if the correct answer above were not given.

(b) In order to derive the inverse transform, L[ X (s)] = x(¢), you could, of course, find
partial-fraction expansions for each of the three terms in X (s), then use the inverse

transform of the fundamental transform pair (2-15b), and, after much algebra, finally de-
rive an acceptable final algebraic equation for x(¢). But this would be equivalent to re-
inventing the wheel, because people have been evaluating exactly the same inverse trans-
forms for the two centuries since Laplace developed the method. To preclude the neces-
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sity for starting from scratch every time the same Laplace transform appears, the techni-
cal community has assembled tables of Laplace transform pairs in many handbooks and
textbooks, in symbolic software, and even on the Internet. Your assignment is to invert
X (s) and derive the complete algebraic equation for x(z), £ > 0. You can find explicitly
in Section 2-4 two of the three transform pairs in X(s), but you are required to look up
the third pair in some source other than Chapter 2.

2.15 Apply MATLAB’s residue operation to determine the partial-fraction expansion
3s° —2s% +
—2s* +35° +45° +55+6

write out the partial-fraction expansion in equation form (as in the example below). The
following example illustrates the residue operation for the polynomial ratio of Problem

2.9(b), F(s)= 2(s +1) =— Z(S_:l) . On the MATLAB command window,
s(s+3)(s+4) s°+7s°+12s

enter as arrays the coefficients of the numerator and denominator polynomials in de-
scending powers of 5. Then enter the residue command to calculate the residues, poles,
and direct term (a constant or a term proportional to s raised to some positive power,
which appears only if m > n) of the expansion:

of F(s)= . Submit a copy of your MATLAB session, and also

>> num=2*[1 1];den=[1 7 12 0]; [resids poles dterm]=residue(num,den)

resids = poles = dterm =
-1.5000 -4 N
1.3333 -3
0.1667 0

: -15  1.3333 0.1667 3( 1 40 1 1(1
In equation form, F(s) = + + == += +=l =
s—(-4) s-(-3) s-0 2\s+4) 3\s+3) 6\s
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Chapter 3 Mechanical units; low-order mechanical systems; simple
transient responses of 1 order systems

© 2016 by William L. Hallauer, Jr.

3-1 Common mechanical units

We shall evaluate mechanical systems numerically using three different systems
of units that are common in the United States: International System, Sl (based on kilo-
gram mass, meter, and second; kg-m-sec), traditional aeronautical (based on pound
force, foot, and second; Ib-ft-sec), and traditional structural (based on pound force, inch,
and second; Ib-inch-sec). Table 3-1 summarizes the units of mechanical quantities that
arise most often in this book.

Table 3-1 Common units of mechanical quantities

Unit System | International System | Traditional aero- Traditional struc-
Quantity S| (kg-m-sec) nautical (Ib-ft-sec) | tural (Ib-inch-sec)
Mass (translational | kilogram mass (kg) | slug Ib-sec?/inch
inertia), m = |b-sec?/ft
Length, translational | meter (m) foot (ft) inch (in.)

motion

Time, t second (sec) second (sec) second (sec)
Force, translational | newton (N) pound force (Ib) pound force (Ib)
action = kg-m/sec?

Translational stiff- N/m Ib/ft Ib/inch

ness constant, k

Translational damp- | N/(m/sec) Ib/(ft/sec) Ib/(inch/sec)
ing constant, ¢ = N-sec/m = Ib-sec/ft = Ib-sec/inch

Angle, rotational
motion

radian (rad), which
is dimensionless

radian (rad), which
is dimensionless

radian (rad), which
is dimensionless

Rotational inertia, J | kg-m? slug-ft® Ib-sec*-inch

= Ib-sec?-ft
Moment or torque, | N-m Ib-ft Ib-inch
rotational action
Rotational stiffness | (N-m)/rad (Ib-ft)/rad (Ib-inch)/rad
constant, kg = N-m = Ib-ft = Ib-inch
Rotational damping | (N-m)/(rad/sec) (Ib-ft)/(rad/sec) (Ib-inch)/(rad/sec)
constant, cg = N-m-sec = |b-ft-sec = Ib-inch-sec

Sl is called an absolute system of units, and the other two are called gravitational

systems. Absolute and gravitational systems differ fundamentally in their primary and
derived units as defined in the context of Newton’s 2" law. In any absolute system, mass
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IS a primary unit, along with length, and time, but force is a unit derived from those of
mass, length, and time. Thus, the Sl force unit, the newton (N), is precisely defined from
F = ma, as a kilogram-meter/second? (kg-m/s®). In any gravitational unit system, force is
considered to be a primary unit, and mass is a derived unit. Thus, from m = F/a, the mass
unit in the traditional aeronautical system, commonly called a slug, is precisely defined as
a pound-second?/foot (Ib-sec’/ft). In all of these systems, the weight of an object on Earth
(in the force units) is defined as the mass times the standard sea-level gravitational accel-
eration, which is denoted as g, so W = mg. Table 3-2 includes the relevant values of g.

Table 3-2 Standard sea-level gravitational acceleration

Unit System
Quantity

International System
Sl (kg-m-sec)

Traditional aero-
nautical (Ib-ft-sec)

Traditional struc-
tural (Ib-inch-sec)

Standard accelera-

9.807 m/sec?

32.17 ft/sec®

386.1 inch/sec”

tion of gravity, g

Table 3-3 Prefixes for units

It is often convenient in technical notation to

Multlgple P_ref|x Letter prefix | g prefixes that indicate powers of ten. For example,
106 giga G a force of 456,700 N can also be written as 456.7 x
103 mega M 10° N, or in more economical form as 456.7 kN,
10| kilo K where kN denotes a kilo-newton = 10° N. Table 3-3
10 hecto h includes a standard set of prefixes used in dynamics
10 dekg da of mechanical systems. We also use the “e” notation
107 | deci d that is becoming standard for input to and output from
107 | centi c computer programs. Thus, for examples, the 456.7
1072 | milli m kKN force can be expressed as 456.7e3 (or e03, e+03,
10°° | micro I e+003, etc.) N, and a length of 4.321 mm can be
10° | nano n expressed as 4.321e-3 (or e-03, e-003, etc.) m.

3-2 Calculation of mass from measured weight

This practically important process is straightforward for the traditional aeronauti-
cal and structural unit systems, but we can be confused when working in the SI system if
the particular sensor used measures weight in the kilogram force (kgs) unit. Let’s con-
sider an example: suppose we have a laboratory scale with two different modes of
weight measurement, pound force (Ib) and kilogram force (kgs). We place an object on
the scale with the display set to the Ib mode, and the reading is W = 15.50 Ib. We next
change the display to the kgs mode, and the reading changes to W = 7.031 kgr. Let’s cal-
culate the mass in the three different unit systems usingm =W /g .

_ 2 _ 2
15_.50 Ib = 0.04015 Ib_ sec _ 4.0156-2 Ib_ sec
386.1inch/sec inch inch

Ib-inch-sec system: m =
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15.50 Ib

Ib-ft-sec system: m=————
32.17 ft/sec

= 0.4818 slug = 4.818e-1 slug = 4.818 deci-slug

For the Sl calculation, we need to recognize that the kgs is not a consistent Sl force unit,
even though many Wei%ht scales sold and used in the United States have been calibrated
in this unit since the 19" century. The only consistent SI force unit is the newton (N). So
let’s ignore the W = 7.031 kgs reading for now and use, instead, the W = 15.50 Ib reading
in association with the well-known conversion, 1 Ib = 4.448 N:

N
15.50 IbX4'4486 68.95 N

9.807 m/sec’ _ 9.807 m/sec’

Sl system: m = =7.031 kg

So, in the SI system, the mass in kg has the same numerical value as the weight in kg,
which, in the future, will relieve us from having to calculate a conversion. This equality
is precisely true only at elevations on Earth where g is exactly 9.807 m/sec?, but it is
close enough for most engineering calculations using weights measured anywhere on
Earth’s surface.

3-3 Reaction wheel: a rotational 1* order system

Reaction wheels are used for attitude control of spacecraft. The principal compo-
nent of a reaction wheel is a rotor, the “wheel,” which is normally either not spinning or
spinning at a constant nonzero rotational velocity. When a motor increases or decreases
the rotational velocity from the normal value, a control moment is imposed upon the ve-
hicle to which the reaction wheel is attached.

Wheel
Electricynotor Shaft

\‘ /, Rotation
ﬁa Y _Elmangle o(t)
// = F\Bearings

Bearings

Figure 3-1 Laboratory reaction-wheel assembly: photograph at left, schematic
drawing at right

The reaction-wheel assembly drawn in Fig. 3-1 is a small laboratory device used
in experimental research. Its basic functioning is the same as that of a flight-qualified
reaction-wheel assembly. The rotating members are the wheel, the shaft, and the rotor of
the motor. We denote their combined rotational inertia about the shaft axis as J, also
called moment of inertia. The shaft is held in bearings, which are lubricated, but
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nevertheless impose a drag moment. The rotation angle of the rotating members is
denoted A(t), and it is represented graphically in Fig. 3-1 by a double-headed arrow and

the right-hand rule giving the polarity of rotation. The rotational velocity (angular
velocity, spin rate) is denoted &(t) = p(t), a symbol commonly used for angular velocity
in aeronautical applications.

We will idealize the drag moment as having the linear viscous form c, x p(t),
where c, is the rotational viscous damping constant, which can be measured on real

hardware. Also, we will denote as My(t) the torque imposed on the rotating members by
the electric motor, this torque being an independent input quantity.

The drawing below is the free-body diagram (FBD) of all moments (torques in
this case) acting on the rotating members, with the bearing drag shown as a single torque,
even though it is actually distributed over all bearing surfaces:

Rotational inertia J

Motor torque Mp(t)
A, p(t)
—)')D ) ) = —>»p

Bearing drag
torque co x p(t)

In order to derive the equation of motion, we write Newton’s 2" law for rotation about
the shaft axis, based upon the FBD:

X (Moments)apout shatt axis = (rotational inertia) x (rotational acceleration)apout shaft axis;
M,t)-c,p=Jp = Jp+c,p=M,(t) (3-1)
Converting (3-1) into the standard 1* order form gives

p—(—(f]—gjp :%Mm(t) = p-ap=bM (1) Wherea:—(i]—gand b=% (3-2)
3-4 Simple transient responses of 1% order systems, 1% order time constant and
settling time

The adjective transient applies to system response that is dynamic for a finite time
interval (often called the settling time), but is essentially static thereafter.

Consider the 1% order problem presented in Chapter 2,
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x—ax=bUe™, x(0)= x,, solve for x(t), t >0 (2-11, repeated)

with solution,

bU

(eat —e™ ) fort>0 (2-22, repeated)
a+w

X(t) = x,e*" +

If we let w = 0, then the input term becomes the step function, U[e‘W‘] w=0 =
UH()=U fort >0, H(t) being the Heaviside unit-step function defined in Section 2-
4. So the problem and solution become:

X—ax=bU, x(0) = x,, solve for x(t), t>0
X(t) = (b—U)(l— g ! )+ x,e ¥ fort>0 (3-3)
-a

In Eq. (3-3), we write a = —(—a) because usually a < 0 for engineering systems, as in Eq.
(3-2). We want to consider two special cases of solution (3-3): (1) pure initial condition
response for U = 0; and (2) pure step response for x, = 0.

Stable initial condition (I1C) response

x(t) = x,e ", fort>0 (3-4)

Define the 1% order-system time constant,

L= (3-5)

For example, the time constant for the reaction wheel from (3-2) is 7, = i You should
C0

satisfy yourself, using Table 3-1 if necessary, that the quantity J/c, has the dimension of
time (unit of second). With this definition of time constant z,, solution (3-4) becomes:

X(t) = %6V = x, exp(~t/z,), fort >0 (3-6)

3-5
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Figure 3-2 is a graph of exponential decay indicated in Eg. (3-6).

Xo =

X(t)

o

1 22’1 32’1 42’1 t

Figure 3-2 1% order initial-condition response

At the time constant, t = z,, the response has decayed to et = 37% of the initial value.
The other time “milestone” to which we shall often refer is t = 4z, , which we call the set-
tling time, at which time the response has decayed to e™* = 2% of the initial value. For
most practical engineering purposes, this settling time is considered to be the time re-
quired for the response essentially to reach its final steady-state value, which is x = 0 in
this case of IC response. Mathematically, x — 0 only as t — oo.

If the constant a is positive, then we write IC solution (3-4) as x(t) = x,e*'. The

mathematical response represented by this solution is unbounded: X — w0 ast — . In
reality, no engineering variable will ever become infinite: as the variable becomes large,
something in the system will fail or overload, or the system will become nonlinear, or the
response will be limited by a governor, etc. Even though the actual response will not be-
come infinite, an exponentially increasing linear mathematical response such as this is
usually undesirable for practical purposes; an engineering system that exhibits this kind
of response is considered to be unstable. On the other hand, an engineering system with
negative constant a is stable.

The time constant z, is such an important quantity for stable 1% order systems that
we shall re-cast the standard 1% order system ODE in terms of z,, rather than constant a,
using Eqg. (3-5). Thus, rather than analyzing Eq. (1-1), x—ax =bu(t), hereafter we shall
usually consider the following standard stable form for 1% order systems:

%+ x=bu(t) 3-7)

21

Stable step response

In Eq. (3-3), we set x, = 0 and use time constant definition (3-5) to obtain

X(t) =bUz,(1—e ¥ )=bUr,[1-exp(~t/7,)], for t > 0 (3-8)
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Figure 3-3 is a graph of the exponential rise to a positive final value that is indi-
cated in Eq. (3-8).

bU T]_ ————————— -Ir ——————————— === b
X(t) E : : §I§950bu n iO.982bU o
— ! 10.865bU 7y | !
— 0.632bU 7y | i i
0 | | | |
0 7 20 3n 4n t

Figure 3-3 1* order step response

The final value of unit-step response is bU 7, , and it is approached asymptotically as
t — 0. At the time constant, t = 7, the response has risen from the IC of zeroto 1 —¢e™*

= 63% of the final value. Att=4r,, the settling time, the response has risento 1 —e™ =
98% of the final value.

Step response solutions such as (3-8) are usually an approximation to the actual
response since, in reality, a pure, discontinuous step change in a physical input quantity is
rarely achievable. Nevertheless, step input is a sufficiently close approximation to many
real physical inputs that step response solutions such as (3-8) are close approximations to
actual physical responses.

Consider again the reaction wheel of the previous section. Let’s denote a step in-
put from the motor as Mp(t) = M x H(t). Then ODE (3-2) becomes

p—ap=bM_(t)=bMH(t)=bM fort >0, wherea:—CJ—@:—iand b:% (3-9)
(5]
So the time constant is 7, =—-1/a = J/c, , and solution (3-8) becomes
p(t) =bM rl(l—e‘t/fl ): % M Ci(l—e“/fl ): CM(l—e“/’l)rad/sec, fort>0 (3-10)
[ 0

Note that in this case we adapt the “standard” mathematical solution (3-8) to a particular
physical problem. This approach is common in system dynamics. In other words, it is
not always necessary to solve an ODE for every new physical problem; if a standard
ODE solution has already been derived, you may just adapt that standard solution to the
physical problem at hand, rather than re-deriving the ODE solution.
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3-5 Aileron-induced rolling of an airplane or missile

The principal source for the aerodynamic theory of this section is Nelson, 1989,
pages 19-20, 153-156 and 250-260. The aerodynamic rolling moment on an airplane or
missile is written in standard aeronautical notation as

oL p(t)=Lso(t)+L,p(t) (3-11)

L(t) = %5@) "

(There is a notational ambiguity between moment L(t) and the Laplace transform operator
L[ f(t)] introduced in Chapter 2; such ambiguities are unavoidable in technical work, so

you should become accustomed to them.) The roll (bank) angle (in radians) is 6(t), de-

fined here as being positive clockwise as seen by an observer behind the vehicle, in other
words, rightward rolling (Fig. 3-4). In Eq. (3-11), o(t) is the input aileron deflection

angle (in radians) to produce rolling, the right aileron being deflected upward and the left
aileron being deflected downward to produce a positive roll rate, p(t) =6 (rad/sec).

/\/L(t), roll moment

At), roll angle
p(t), roll rate -. A1), aileron angle

A<

View A-A

A<

View from aft

Figure 3-4 Aileron-induced rolling of an airplane

The dimensional aerodynamic derivatives in (3-11) are related to dimensionless
coefficients by:

Ib-ft N-m
L.=0SbC. >0 or 3-12
s = 490%s ( rad rad j (3-12)
—_— 2 _ _
L =gsb2c,=B¢ g ( b-ft , N m) (3-13)
2V 2V rad/sec  rad/sec

The constants in Egs. (3-12) and (3-13) are defined as:

q =1pV? is the free-stream dynamic pressure (Ib/ft* or N/m?)

3-8
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p is air density (slug/ft® or kg/m®)

V is the free-stream airspeed (ft/sec or m/sec)
S is the wing planform area (ft* or m?)

b is the full wing span (ft or m)

C, > 0 is the dimensionless aerodynamic stability moment coefficient (rad™), rolling
moment due to aileron deflection (a function of Mach number)

C, <0is the dimensionless aerodynamic stability moment coefficient (rad™), roll damp-
ing due to roll rate (a function of Mach number).

The term b/2V in Eq. (3-13), the damping moment due to roll rate, merits some
explanation. The clockwise rolling velocity of the right wingtip is pxb/2, so the addi-

V, airstream velocity

Right-hand wing - Total velocity vector

tip, viewed looking
toward the root

pb/2, rolling velocity----------------------------%

Figure 3-5 Angle of attack induced by rolling velocity

o
2V

small angle (the magnitude of the angle is exaggerated in Fig. 3-5, just to improve clar-

tional angle of attack induced at the wingtip by the roll rate is tan{—p?//z}

ity). Thus, % p(t) in Egs. (3-13) and (3-11) plays the same role as that of &(t) in Egs.

(3-12) and (3-11).

Newton’s 2" law equation of motion for rolling is Jé =J p = L(t), in which J

(slug-ft® or kg-m?) is the rotational inertia of the vehicle about its rolling axis. This
equation is based upon the assumption that the vehicle can only roll (i.e., no coupling
with other degrees of freedom such as sideslip and yaw). Substituting Egs. (3-11)-(3-13)
into Newton’s law gives:

Jp=Lso+L,p = Jp-L,p=LsS

3-9
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W i PO Bl B _[Zhe V] G -
= p+[ 5 ]p—( ] ][_Lde(t)_( ] jb {_CpJa(t) (3-14)

Writing (3-14) in 1% order standard form (3-7) gives [with b in (3-7) temporarily replaced
by B to reduce notational ambiguity]:

b+L p=Bs(t) (3-15)
T

1

in which we have, respectively, time constant z, and constant B:

n=Y - 4 (3-16)
~L, Gsb’(-C,) pvsb’(C,)
-L \ ) _gsbe,
p=| |2V G |12V Gy |_ASBC, (3-17)
3 Jbl=c,) mbl-c,) 3

Example 3-1: Use the results of this section and the general 1% order step response Eq.
(3-8) to calculate rolling response to a o(t) = 2.5°H(t) step aileron input for a hypotheti-
cal medium-sized civilian transport airplane. The following are representative data: ro-
tational inertia about the rolling axis is J = 4.0e5 slug-ft?, wing planform area is S = 1,100
ft2, and wing span is b = 90 ft; for flight at 10,000 ft altitude and free-stream airspeed V =
350 ft/sec, aerodynamic dimensionless rolling-moment coefficients are C;= 0.061 per

radian and C = -0.34 per radian. At 10,000 ft altitude, standard air density is p =
0.001755 slug/ft® (Nelson, 1989, p. 248).

_ lug ft \° Ib
=1lpy2=1 1.755e—SS 350— | =107.5—
4=zr 2% e sec ft?

_asb® . 1075 Ib/ft* 1100 ft* x (90 ft)*
S AVAR 2% 350 ft/sec

Ib-ft
rad/sec

L

(-0.34 rad™ )= —4.65¢5

J  4.0e5Ib-sec’-ft
—L, 4.65e5Ib-sec-ft/rad

p

=0.86 sec

7T, =

(Comments regarding units: Angle is a dimensionless quantity, so the radian, which is
the fundamental metric of angle, is unitless. In the calculation above for L, all of the

units shown, including radian, balance in the final result to give the correct resulting unit,

Ib-ft ; 1t is important to recognize this unit as opposed, for example, to Ib-1t ,
rad/sec deglsec

3-10
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which would be the case if C, were given per degree. However, in calculations that pro-

duce results which are not angular quantities, such as z, above, the radian must be recog-

nized as unitless, and it should not appear in the units of the final numerical result. This
is a general characteristic that can confuse us when we check to make certain that units of
numerical answers are correct.)

=1.62 sec™>

g_l2v(C|_ 1 . 2x350ft/sec 0.061rad™
7, b |-C, ) 0.86sec 90 ft 0.34 rad™

From Eqg. (3-8), the roll-rate response to the 2.5° step input is
p(t) = BUr, [L—exp(~t/7, )] = 1.62 sec ?x 2.5 deg x 0.86 sec x (1 —e~ V0% )

degrees

p(t) = 3.5 [L—exp(-1.16t)] -

The time constant is 7, = 0.86 sec, and the steady-state roll rate of 3.5 deg/sec is essen-
tially achieved in the settling time of 47, = 3.44 sec.

3-6 Translational spring and viscous damper (dashpot)

The linear translation spring was introduced in Section 1-9 as the mechanical ele-
ment connecting a mass to a rigid wall; for that simple case, the end of the spring at-

tached to the wall was stationary. Now,
‘_'Xa(t) l_’xb(t) let’s consider the more general case in

which both ends of the spring can move,
4——\/\/\———> as indicated in Fig. 3.7. The force f (t)
() f () =k(x —x,) required to deform the spring by the

Figure 3-7 Ideal linear spring with amount x, (t) —x, (t), relative to the unde-

stiffness constant k formed length of the spring, is propor-
tional to the deformation. With the con-
stant of proportionality denoted as k, the more general spring law is

f, (©) =K[x, ®) = x, ®)] (3-18)

The standard sign convention defines stretching of the spring as positive, x, —x, >0,
corresponding to tensile force, f,(t)>0; accordingly, compression is negative in the

standard convention. Equation (3-18) clearly accommodates both tension and compres-
sion of the spring. Occasionally, however, it is convenient to define compression as
positive, as is illustrated in Example 3-4 in the next section.

3-11
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With the spring end forces equal and opposite as shown in Fig. 3-7, we have ne-
glected the inertial force of the spring. Inertial forces are terms such as mxa, mass
times acceleration, in Newton’s 2" law. In this case, the inertial force of the spring is
m, x X, in which m is the mass of the spring, and X, is acceleration of the spring’s cen-

ter of mass. So neglecting inertial forces means we assume they are negligibly small in
comparison with the force of Eq. (3-18). Notice that this does not strictly mean we are
neglecting the mass, because even a tiny mass, when multiplied by a large acceleration,
can produce a non-negligible inertial force. It is common to neglect the inertial forces of
springs, but we should remember when doing so that we are really assuming both the in-
ertias are small and the accelerations are sufficiently slow.

A dashpot (mechanical viscous damper) is a discrete component that resists trans-
lational velocity. An idealized linear, viscous damper is represented graphically by a
piston-cylinder assembly, Fig. 3-8. This device opposes relative velocity between piston
and cylinder. With the forces on the dashpot defined to be positive in tension, as shown

’_' X, (), %, (1) > X, (), %, (t) on Fig. 3-8, the linear damping law is
- I N f=ck®-x0] @19
f(0) LO=ck-%) |

A in which c is the damping constant. The
piston  cylinder damping constant plays the same role for a

. . . dashpot here that it plays in Chapter 1
Fl'gure 3-8 _Ideal linear, viscous dashpot [Fig. 1-1 and Eq. (1-2)] for a block sliding
with damping constant ¢ on a viscous liquid film. If we were to
define the forces to be positive in compression, then we would have to reverse the signs
in the damping law, Eq. (3-19); it is sometimes appropriate to do so, as in Example 3-4 in
the next section.

With the cylinder and piston forces equal and opposite as shown in Fig. 3-8, we
have neglected the inertial forces of the cylinder and piston. It is common to neglect the
inertial forces of dashpots, but we should remember when doing so that we are really as-
suming that both the inertias are small and the accelerations are sufficiently slow. On the
other hand, in Example 3-4 of the next section, inertial forces of a piston-cylinder
assembly are not neglected.

The idealized dashpot model of Fig. 3-8 and Eq. (3-19) is convenient for linear
mathematical analysis because of its simplicity. It is assumed to resist motion between
piston and cylinder by means of the drag force produced by a viscous fluid boundary
layer between the two solid objects. We can use the simple dashpot to model approxi-
mately real devices such as door dampers and shock absorbers. However, it is not a pre-
cise model for most real damping devices. In most real translational dampers, a piston
forces fluid through an orifice within a cylinder, and this generates a major portion of the
resisting force. Unfortunately for the purposes of linear mathematical analysis, the re-
sisting force is a complex and highly nonlinear function of the relative motion between
piston and cylinder.

3-12
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3-7 More examples of damped mechanical systems

Let’s consider next some combinations of dashpots with springs and masses. In
each case, we will draw the physical device, draw appropriate free-body diagrams, and
then derive the equations of motion. Force f,(t) is considered to be an independent in-

put quantity in all of these examples.

Example 3-2: Mass-damper-spring system, Fig. 3-9

Newton’s 2" law for translation of the mass: mx = f (t)—cx—kx

— ODE: mX+cx+kx=f(t) (3-20)
|_>x(t) FBD of mass
K kx
/N fi(t) — fu(t)
m — m —
- —
¢
c @) @)

Figure 3-9 Mass-damper-spring system

Example 3-3: Ideal shock strut, parallel damper-spring system, Fig. 3-10

This combination is very similar to the mass-damper-spring system, except the
inertial force of the mass (now considered just a rigid link) is assumed to be negligible.

) X(t) FBD of link
k
CX
c

Figure 3-10 Parallel damper-spring system
Newton’s 2" law for translation of the link: mx = 0= f (t)—-cx—kx
= ODE: cx+kx=f(t) (3-21)

Note that Eq. (3-21) is a typical 1* order LTI ODE, but now the unknown quantity is
translation (position) x(t) of the rigid link.
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Example 3-4: Series combination of mass, dashpot, and spring, Fig. 3-11

For the examples above, it is not necessary to draw separate FBDs of the spring
and of the dashpot’s piston and cylinder. However, it is necessary to draw separate FBDs
for systems such as that of Fig. 3-11, where dashpot and spring are arranged in series, not
in parallel, and, for variety and generality, the inertial forces of the dashpot’s piston and
cylinder are considered to be significant, not negligible. Take notice of the component
interaction forces f. and fi; note especially that piston-cylinder interaction force f; is
shown as an equal and opposite pair, as required by Newton’s 3 law.

Mechanical system Component FBDs

—Xp(t) e Xel(®) —>Xc(t) ’—>Xc(t)

— Mmp > €
1) :_\/V\—Hmk £.0) mt ’\ZW\_T

me
fc fk

Figure 3-11 Example series mass-dashpot-spring

Newton’s 2™ law for translation of the dashpot piston: m X, = f,(t)-f,

Newton’s 2" law for translation of the dashpot cylinder: m_x_ = f, — f,
Damper law: f_ = c(>‘<p - XC)

Spring law: f, =kx

Combining equations of motion and damper/spring laws gives:
m, X, +cXx, —cX, = f,(t) (3-22a)
m.X, —CX, +CX +kx, =0 (3-22b)
Equations (3-22) are a pair of coupled 2" order ODEs in the two dependent variables
Xp(t) and xc(t). Thus, the system of Fig. 3-11is a 4" order system. The dynamic response
of a particular class of 4™ order systems is discussed Chapter 12. However, this book
does not address the dynamic response of general 4™ order and higher-order systems; that

is a subject of more advanced textbooks such as Ogata, 1998, Chapter 10.

Example 3-5: Series damper-spring systems—idealized mechanical filters, Fig. 3-12

For both of the series damper-spring combinations in Fig. 3-12, we specify the
known input quantity to be translation x;(t), which is produced by an idealized motor that
is capable of dictating a commanded displacement regardless of the force required. The
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output quantity in each case is translation x,(t). The damper and spring masses are as-
sumed here to be negligible, which cannot be valid for all practical circumstances; there-
fore, these are idealized, not real, mechanical systems. But these idealized systems are
worth studying because they have significant dynamic characteristics that will be the
subjects of subsequent parts of this book.

Low-pass filter High-pass filter

’_.xi(t) ‘_.xo(t) ’_.xi(t) |_>x0(t)
— A =l
L1 &é L]

c

Figure 3-12 Series damper-spring idealized mechanical filters

with spring and damper masses idealized to be negli-

gible, is derived easily from the FBD at right of the

series combination consisting of the spring and the Kk(x, — Xi) c(0-x,)
damper piston: k(x, —X;) =c(0—x%,). Therefore the

ODE for the low-pass filter is

The governing ODE for the low-pass filter, ’_.xi(t) |_.x0(t)

%+ tx, =i, 5= (3-23)
7 7 k
The mathematical derivation and description of low-pass-filter characteristics will follow
in later chapters, but it is appropriate here to describe the practical nature of the low-pass
filter with use of the low-pass filter drawing in Fig. 3-12 and physical intuition. Imagine
that the input translation x;(t) is a steady oscillation at a fixed frequency. If that fre-
quency is very low, so that translational velocity is low, then the damper resisting force
cx, will be very small and, consequently, both the spring and the damper piston will

move slowly back and forth in unison by about the same distance as the input translation,
Xo(t) = Xi(t). On the other hand, if the frequency of oscillation is very high, then the
damper resisting force cx, will be great, so the input oscillatory translation x;(t) will com-

press and stretch the spring but the damper piston will act almost like a rigid wall, i.e.,
Xo(t) = 0. For frequencies of oscillation between very low and very high, our intuition
suggests that the output motion amplitude [the maximum of oscillatory x.(t)] will be
between the two extremes of the input motion amplitude and zero motion. The low-pass
filter is so named because it “passes” through, without much alteration, low-frequency in-
puts, but it “blocks” high-frequency inputs.

Derivation of the governing ODE for the damper-spring high-pass filter is left for
homework Problem 3.7. The result is:
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%+ Sx =% (1), =S (3-24)
T k

As is done above for the damper-spring low-pass-filter, it is appropriate to describe the

practical nature of the high-pass filter with use of the high-pass filter drawing in Fig. 3-12

and physical intuition. Imagine that the input translation xi(t) is a steady oscillation at a

fixed frequency. If that frequency is very low, so that translational velocity is low, then

the damper resisting force c(x;, —%,) will be very small; consequently, the damper piston

will move slowly back and forth within the cylinder by about the same distance as the
input translation; but very little force will be imposed upon the cylinder and spring, so the
spring will be deformed hardly at all, xo(t) ~ 0. On the other hand, if the frequency of os-
cillation is very high, then the damper resisting force c(x;, —X,) will be great, so the pis-

ton and cylinder will appear to become a single rigid body, and most of the input transla-
tion will be transmitted through the damper, Xo(t) ~ xi(t), to compress and stretch the
spring. For frequencies of oscillation between very low and very high, our intuition sug-
gests that the output motion amplitude will be between the two extremes of zero motion
and the input motion amplitude. The high-pass filter is so named because it “blocks”
low-frequency inputs, but it “passes” through, without much alteration, high-frequency
inputs.

The damper-spring high-pass filter system is said to have right-hand-side (RHS)
dynamics due to the explicit derivative of the input translation, X;, on the RHS of ODE

(3-24). Therefore, Eq. (3-24) does not have the standard stable 1% order form of Eq. (3-
7), X+ (@/z;)x =bu(t), with the input u(t) on the RHS, but none of its derivatives. For
standard forms such as Eq. (3-7), many readily available mathematical response solutions
exist, e.g., step response Eq. (3-8). But that is not the case for non-standard forms, so the
non-standard character might be considered inconvenient. However, there is a process
that converts non-standard ODE (3-24) into standard form.® We define the difference
variable xq4(t):

Xs (£) = %, () = %, (1 (3-25)

Differentiating Eq. (3-25) and substituting the result into Eq. (3-24) leads to the following
standard-form ODE for x4(t) plus the auxiliary equation required to retrieve the desired
output x,(t) from solution x4(t) of the ODE:

Ko+ 1%y ==X 0, %0 =% O +x, (3-26)
T 7,

1

! The process shown here for a 1% order ODE is the simplest form of a more general process that can be
applied to system ODEs of any order having RHS dynamics; see the textbook by Brogan, 1974, pages 174-
177.
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3-8 Homework problems for Chapter 3

3.1 Consider the reaction-wheel assembly described in Section 3-3. The rotor has been
carefully machined to have rotational inertia J = 2.56e—3 Ib-sec’-inch. We wish to de-
termine the viscous damping constant c, of the bearings by indirect experimental
measurement. We feed electric current into the motor and spin up the rotor to a high
speed. Then we shut off the motor, allowing the wheel to spin down freely. With an op-
tical tachometer, we measure the spin-down rotational speed at one instant to be 4,000
revolutions per minute (rpm). Exactly 20.0 seconds later, we measure the speed to be
1,010 rpm. From these data, calculate c, in consistent Ib-sec-inch units.

3.2 Given: an LTI reaction-wheel assembly, with unknown rotational inertia J and un-
known rotational viscous damping constant c, associated with drag of the bearings.

Your task is to calculate J and c, from experimental measurement. Starting with the
wheel at rest (motionless), a motor torque in the form of a step is imposed upon the
wheel, M, (t) =M x H(t), where M = 1.5 N-m. The resulting spin rate p(t) of the wheel

IS measured, in radians/second, and its time history for the first 10 seconds of spin-up is
recorded on the following graph.

Tirme histary of step response spin-up of a reaction wheel
—. 1000
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BO0f----4---
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o 1 1
[} 1 1
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o 1 1 I | 1 | 1
] 1 1 1 1 1 1 1 1
= 1 1 1 1 1 1 1 1
io 1 1 1 1 1 1 1 1
= 1 1 1 1 1 1 1
o - === + === |- = === L I e I 1= = = = =
= A
] e R ety SR EEEEN EOEt
i 1 1 1 1 1 1 1 1 1
= . | | | | | | . |
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= ! | | | | | | ! |
S g : : : : : : : : :
a 1 2 3 4 5 ) 7 g 4 10
Time t (sec)

Use the data from the graph to calculate (with as much precision as possible, given the
graphical nature of the data) the values of J and c, in consistent SI units.

3.3 The weight of an ocean surface ship is denoted as W, and the acceleration of gravity
in consistent units is g. The resistance to low-velocity motion of the ship is modeled as
being proportional to velocity, with viscous damping constant c. The ship is initially at
rest when, at time t = 0, a tugboat begins pushing it with constant force F. Write alge-
braic equations (in terms of the given parameters, all assumed to be in consistent units)
for velocity v(t) and distance traveled x(t).
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3.4 Nominal data (Nelson, 1989, p. 260) for the Boeing 747 civilian transport airplane
are: rotational inertia about the rolling axis J = 18.2e6 slug-ft?, wing planform area S =
5,500 ft?, and wing span b = 195.68 ft. For flight at Mach number 0.25 and at sea level
altitude, nominal aerodynamic dimensionless coefficients relevant to uncoupled rolling
are C,; = 0.0461 per radian and C = —0.450 per radian. At sea level, air density is p =

0.002377 slug/ft®, and Mach number 0.25 corresponds to free-stream airspeed V = 279.0
ft/sec.

(@) Calculate the dimensional aerodynamic derivatives L (in Ib-ft/rad) and L (in Ib-ft
per rad/sec), then calculate the 1% order system time constant 7.

(b) Suppose that the 747 is in level flight with zero initial roll rate, p(0) = 0, when the
pilot cycles the ailerons through one complete sinusoid with amplitude 10° over a period
of 5 seconds: o(t) :1O°sin(0.47rt), 0 <t < 5sec. Calculate the roll rate p (in degrees
per sec) at the end of the 5-second period. Don’t develop any new theoretical solutions
for this problem; just adapt to this problem the result of Problem 1.5(a). Your intuition
might suggest that roll rate is zero at the end of the aileron cycling, since the total aileron
“impulse” is zero, but you should find that roll rate is not zero.

3.5 The A-4 Skyhawk was a durable and versatile small (17.5-24.5 klb) fighter-bomber-
trainer that first flew in 1954

Wing planform2 /|\ and was still used in military
area, S = 260 ft Wingspan operations, with updated tech-
b=2751t nology, in the 1990s (Light-

body et al., 1990, pp. 104-111).
The relevant mass and geome-
try data for one model are:

"A\ rolling rotational inertia J =

8,090 slug-ft’; wing planform
area S = 260 ft*; wing span b =
27.5 ft. A flight test of this air-
plane is conducted at sea level
and Mach number 0.4, for
which the air density is p =
0.002377 slug/ft® and the free-stream velocity is VV = 446.6 ft/sec. Starting from straight
and level flight, the pilot at time t = 0 sec abruptly actuates the ailerons to +5° deflection,
producing a step input that rolls the airplane clockwise. The resulting roll rate is sensed
by a rate gyroscope, digitized, and recorded. The data are analyzed, and it is found that

the following equation fits the data very well: (t) = p(t) = 50.0(1— e‘l'““) degrees/sec.

Planform sketch of A4D fighter airplane

(2) Use the measured roll rate to perform parameter identification, specifically to deter-
mine values for the two roll aerodynamic stability coefficients C and C,, both dimen-

sionless. Begin by calculating time constant z, of the response, then use that to calculate
aerodynamic derivative L, then use that to calculate C . Having these values, you can
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now use the steady-state roll rate to calculate C;. Check the units of your calculations to
make certain that your final calculated coefficients are, in fact, dimensionless.

(b) Given that #(0) = 0 (level flight), derive an equation for &(t) in degrees, t > 0.
Evaluate that equation to calculate the bank angles at t = z; (one time constant) and at t
=47, (= steady-state roll rate).

3.6 Sketch (carefully) the appropriate free-body diagrams for the mechanical system

drawn below. The dashpot’s damping coefficient is c, its cylinder is fixed to the wall,

%(®) —oX() and its piston has mass m,. Next, use the

’_' P FBDs and appropriate linear laws for the

mp| A A A m s spring and dashpot to derive the ODEs that

‘ £(0) describe the motion of this system in terms of

c M —0 0O dependent variables xp(t) and x(t). Note that

the spring stretch is X — Xy, so the tensile force

Series mass-dashpot-spring system  developed in the spring is k(x — X,). Do not

neglect the inertial forces of the dashpot’s

piston and of the block with mass m, which rolls without friction. Force fy(t) is an inde-
pendent input quantity.

3.7 The LTI damper-spring high-pass filter of Fig. 3-12 is repeated below. In this
’_>xi(t) |_>xo(t) problem, neglect inertial forces of the damper and the

spring. Input x;(t) is translation of the damper piston,
>e ' I generated by some displacement-controlling motor.
fu(t) 'T K Output X,(t) is translation of the damper cylinder and

spring end. Sketch an appropriate free-body diagram
(or more than one), then write equilibrium equation(s) from which you derive the ODE
7,X, + X, = 7,%;, Which has right-hand-side (RHS) dynamics. Express time constant z,
in terms of damper constant ¢ and spring constant k. (Hint: recognize that piston force
fx(t) shown is a dependent variable, related to independent input x;(t) and output x,(t), but
fx(t) should not appear in the equation of motion.)
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Chapter 4 Frequency response of 1% order systems; transfer functions;
general method for derivation of frequency response

© 2016 by William L. Hallauer, Jr.

4-1 Definition of frequency response

We now consider system excitation that varies with time sinusoidally, as either
sin wt or coswt , and persists for an indefinitely long duration. The frequency of excita-
tion is w radians/sec, or w/27z Hz (for hertz, which means cycles/sec, named for German
physicist and engineer Heinrich Rudolf Hertz, 1857-1894). After any transients due to
initial conditions have decayed away, a stable linear system responds in the same
sinusoidal fashion. That is, the steady-state response of a stable linear system to sinusoi-
dal excitation also varies sinusoidally, as either sin(et +¢) or cos(wt + ¢), where the fre-

quency  is the same as the excitation frequency, and ¢ is a phase angle. This steady-
state sinusoidal response is generally called frequency response. Although the frequency
of response is the same as that of excitation, the magnitude of response can vary greatly
for different excitation frequencies; therefore, in order to prevent the overloading of a
system, it is important to know the frequencies of excitation to which the system is most
sensitive.

Both mathematical and experimental analyses of system frequency response are
common in engineering practice. We shall study the basic methods of mathematical
analysis. The two primary unknowns in the analysis are the magnitude and phase of re-
sponse as functions of excitation frequency. We can consider the excitation to vary as
either sin wt or cos wt ; the steady-state frequency response magnitude and phase are the

same in either case. For consistency, we will consider primarily coswt excitation.

4-2 Response of a 1*' order system to a suddenly applied cosine, cos et

First, we derive a complete solution in the conventional manner for the original
standard 1% order ODE x—ax =bu(t) [Eq. (1-1)], with IC x(0) = x,, and with the sud-

denly applied (at t = 0) cosine input u(t) =U coswt, t > 0, where U is a constant ampli-
tude [Problem 2.12(b)].

jot —jot
ODE +IC: %—ax =bU coset = bU % x(0) = x,, find x(t) fort >0 (4-1)

Laplace transformation of ODE + IC: sX(s)—xO—aX(s)zb—U( l_ + 1. J
2 (s—jo S+ jw
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Solve for X(s): X(s) = %o +bU L 1. + 1.
s—a 2 (s-a)\s—jo s+ jw

Completed partial-fraction expansion (Problem 2.8):

X (5) = %0 LU 1 (Za +—a—1a)+—a+ja)j

s—a 2 a’+w’\s-a s—jo s+ jow

Inverse transform: x(t) = x,e* + sz - [aeat +%((—a— jo)el™ +(—a+ jo)e )}
a“+o

) ) jot _ A-jot
= X(t) = x,e" + sz 2{aea%l{(—a)(e’”“+e“‘”‘)+wiﬂ
a‘+w 2 J

= X(t) =x,e™ + (ae* —acoswt + wsinat), t> 0

a’+w?

= X(t) = x,e™ +(L [—eat + cos wt +(£j5in wt} ,t>0 (4-2)

—a

Next, we adapt solution (4-2) of general 1% order problem (4-1) to the damper-
spring system (ideal shock strut) of Fig. 3-9 with suddenly applied cosine force input
f, (t) = F coswt , for which the comparable ODE + IC problem is

cX+kx=Fcosat, x(0) = x,, find position x(t) fort > 0 (4-3)

Comparing (4-3) with (4-1), we define U = F, then the other constants of the standard
equation become

a:—hz—i = timeconstantrlzi:— and b=l and L
C T, -a Kk C -a Kk

F
= X(t)=x,e " +—

K (;](— e Vn + coswt + o7, Sin a)t), t>0 (4-4)

1+ (w7,)?

It is instructive to study the physical nature of response (4-4) in the context of a
specific numerical example. Consider an ideal shock strut with the initial condition x, =

—2 m, and with the system parameters ¢ = 1/z N/(m/sec) = 0.3183 N-sec/m and k = 1
N/m, so that time constant 7, =1/ sec = 0.3183 sec. Let the magnitude of the cosine
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force be F = 1.5 N, and let the period of the cosine be T, = 1 sec/cycle. Therefore, the
cyclic frequency is f = 1 Hz (cycle/sec), and the circular frequency is @ = 2 radians/sec.
(Period, frequency, and phase of periodic signals are discussed more generally in Section
4-4.) The numerical solution of Eq. (4-4) with these parameters for time 0 <t < 3 sec is
calculated and graphed in the following MATLAB operations.

MATLAB M-file script:

%MATLABdemo41 .m
%Damper-spring ideal shock strut response to IC + cosine forcing
c=1/pi;k=1; %system viscous damping & stiffness constants, Sl units
F=1.5;Tp=1; %cosine forcing: amplitude (N), period (sec)
xo0=-2; %initial displacement (m)
w=2*pi/Tp; %circular frequency of cosine forcing (rad/sec)
tl=c/k;denom=1+(W*tl)"2;
t=0:0.01:3*Tp; %time instants for forced response
fx=F*cos(w*t);
x=(xo-(F/k)/denom)*exp(-t/tl)+(F/k)/denom*(cos(w*t)+w*tl*sin(w*t));
plot(t,fx, "k",t,x,"k."),grid,xlabel("Time t (sec)"),--.
ylabel ("Force input f x(t) (N) and displacement output x(t) (m)*"), ...
title("Time response of an ideal shock strut to IC + cosine input®)

MATLAB command/responses:

>> MATLABdemo41l

The graph of input f, (t) and response x(t) is below (after figure editing in MAT-
LAB,Version 6 or later, to flatten the aspect ratio and to distinguish the two curves).

= Time response of an ideal shock strut to 1T + cosine input

= 14 T T T
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Let’s observe from the graph some important features of the response:

* As calculated above, the time constant of the exponential decay terms in Eq. (4-4) [the
two terms involving exp(-t/z,) ] is 7, = 0.3183 sec, so the settling time for those terms
is 4z, = 1.273 sec. In other words, the exponential decay terms in x(t) have essentially

vanished after about 1.3 sec of response, and this is clear from the graph. Because the
exponential decay terms are relatively short-lived, we often refer to them as the “tran-
sient” part of the total solution.

* After the exponential decay terms have vanished, only the coswt and sin wt terms of

EQ. (4-4) remain. It appears from the graph that those two terms combine to make a sin-
gle sinusoid at frequency w, and that the remaining steady-state x(t) sinusoid is displaced
in time by a constant time lag from the f (t) sinusoid. This steady-state sinusoidal re-

sponse is what we call the frequency response, and we will derive equations that describe
it explicitly in the remainder of the chapter.

4-3 Freguency response of the 1% order damper-spring system

To extract the steady-state sinusoidal response x (t) from total response equation
(4-4), we drop the transient, exponential decay terms:

X (t) = E(mj(cos wt + o7, sin ot) (4-5)

We can write (4-5) in a form that is more physically expressive by using some al-
gebraic manipulation and the general trigonometric identity,

C0S@ x COS ¢ —sin @ xsin ¢ = cos(@ + @) (4-6)
The algebraic manipulation involves the sinusoidally varying terms of (4-5). For gener-

ality, let’s assume that each term is multiplied by a general coefficient, C or -S, so that
those terms can be written and manipulated as

—sin wt

CCOSa)t—SSina)t:\/CZ+SZ[COSa)tL ;J
JC?+82 JC?+82

Now we identify the coefficients of coswt and sinwt inside parentheses as themselves

C S

angle ¢ is given by a four-quadrant tangent function,

representing trigonometric functions: =cos¢ and =sin¢g, where
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C

Jciis? $ = tan (ij @-7)

$ These trigonometric relations are illustrated at left on the draw-
C ing of a right triangle.

So, with identity (4-6), the trigonometric sum becomes

Ccoswt — Ssin ot = /C? +S?(cos wt cos ¢ —sin wtsin g) = C? +S? cos(wt + @) (4-8)

Associating (4-5) with (4-8), we have C =1, S = —wr,. Therefore, (4-5) becomes

X, (1) = E[;}/H (w7,)? cos(wt + )

1+ (wt,)?

— T
X (t) = L

E;Z cos(wt + @) = X () cos(wt + (@), $(w) = tan ‘1( J (4-9)

1+ (w1,)

Let’s compare the steady-state response (output), X (t) of Eq. (4-9), with the excitation
(input), f, (t)=Fcoswt. The magnitude of response, which is a function of excitation
frequency o, is

X(@)= (4-10)

1
1+ (w1,)?

We will often deal with the magnitude ratio, defined as the magnitude of response di-
vided by the magnitude of excitation,

X(@) _
—

1
- (4-11)

1
1+ (w1,)?

The phase (or phase angle, since it is an angle in radians or degrees) of response relative
to the phase of the excitation is also a function of excitation frequency w:

$(w) = tan" (~wr,) (4-12)
In general, if phase angle ¢ is positive, 0° < ¢ < 180°, it is called a phase lead, because
the peaks and zeros of the response occur in time before those of the excitation. If phase

angle ¢ is negative, —180° < ¢ < 0°, it is called a phase lag, because the peaks and zeros
of the response occur in time after those of the excitation. The response is said to be in-
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phase if ¢ = 0° exactly, and out-of-phase if ¢ = —180° exactly. For the standard stable 1%
order system considered presently, ¢(w)=tan*(-wr,), which is a phase lag, always

negative in the 4™ quadrant, —90° < ¢ < 0°, with ¢ — 0° for very small w and ¢ — —90°
for very large w.

The frequency-response function (abbreviated FRF) is considered to consist of
both the magnitude ratio, Eq. (4-11) in this case, and the phase angle, Eq. (4-12) in this
case. We will see later that both of these functions can be expressed together in a
mathematical equation as a single complex function of frequency. It is common in engi-
neering practice to plot these two real functions of frequency o on a pair of over-and-un-
der graphs in the format of Fig. 4-1, which represents Eqgs. (4-11) and (4-12) specifically.
This format is a type of Bode diagram (after Hendrik Wade Bode, American mathemati-
cian, physicist, and control-system engineer, 1905-1982).

1 !
k !
I O S
X (w) \/E k E
F :
0 :
0 o, =1/7, )
0° :
¢(a)) -45° proTmmmmooosssssssssess — T
90° oo U

Figure 4-1 Frequency-response function of 1% order damper-spring system

The break frequency @, =1/z, is shown explicitly on Fig. 4-1. There is no obvious

“break” in the curves of Fig. 4-1; but a break does indeed exist, the form of which will be
revealed in the following discussion.

To represent frequency response over broad bands of frequency, the magnitude
ratio and phase are often plotted versus the logarithm of frequency. Moreover, to allow
the possibility of very large dynamic ranges of magnitude response, the magnitude ratio
itself is often plotted on a logarithmic scale, making the magnitude ratio a log-log graph,
where “log” denotes logarithm to the base 10. On such a graph, it is often possible to
construct straight-line asymptotes that are useful for describing the variation with fre-
quency of the magnitude. To illustrate this for the 1* order system, we re-write (4-11) as
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a dimensionless ratio and, for clarity of expression, use the definition w, =1/7, , and then
take the logarithm:

Xe)_ 2 1 1
Fik 1+ (o) 1+(@/0,)? 1+(f/f,)?

X@)_f 1 ] 1 o) |_1 AR
) e () e o

In the last versions on the right-hand sides of Egs. (4-13a and b), we have used w = 2rf
and ey, = 271, in order to express the equation in terms of cyclic frequency. The low-
frequency asymptote is the limit of (4-13b) as the frequency — 0 from above:

!jm{log(%ﬂ _ —%Iog(l) 0 (4-14)

(4-13a)

The high-frequency asymptote is the limit of (4-13b) as the frequency — oo from below:

ol SR el i) e

Figure 4-2 on the next page is a log-log graph of Egs. (4-13) that shows the asymptotes
(4-14) and (4-15). Notice that on the log-log scale, the low-frequency asymptote is a
good approximation for the actual function at frequencies f < fy,, and the high-frequency
asymptote is a good approximation for the actual function at frequencies f > f,. The
intersection of the two asymptotes is called the break (or corner) because it is a change in
slope of the asymptotic approximations to the actual function. The break (or corner)
frequency is denoted f,. For this 1% order system at f, = w,/27x =1 (2xt,), the

magnitude of response is reduced to 1/ V2 of its static (f = 0) value, and the phase is —45°
(see also Fig. 4-1).

The high-frequency asymptote on Fig. 4-2 merits some additional comment. Note
that its slope on the log-log scale equals -1, i.e., the magnitude shrinks one decade (order
of magnitude) for each decade increase in the frequency. Frequency response magnitude
ratios are often given in decibels (dB), especially in acoustics for sound pressure level. A
magnitude ratio in decibels is defined to be 20 x log(magnitude ratio). If the magnitude
ratio on Fig. 4-2 had been plotted in decibels versus log(frequency), then the slope of the
high-frequency asymptote would be —20; this is often referred to as a 20 dB/decade roll-
off of the magnitude ratio.
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Another observation worth making, especially from Fig. 4-2, is that the standard
1% order system considered here behaves like a mild low-pass filter: the system responds
most sensitively to excitation at frequencies below the break frequency, the magnitude of
response being about equal to the static response. However, at excitation frequencies
above the break frequency, the system responds much less sensitively, and the magnitude
of response diminishes progressively as the excitation frequency increases.

X X Low-frequency asymptote .
A [ Break point
Iog(F/k) F/k . Ed.(4-14) P

O et ey i — High-frequency asymptote
: i Eq.(4-13)7 |

e e T Nl

D e T

3-1-0001 -rdeooeeooe- —— e e — fromoeetees
-3 -2 -1 0 1 2 Iog[ij

fb

Figure 4-2 Log-log magnitude ratio of 1% order damper-spring system

4-4 Period, frequency, and phase of periodic signals

Let’s consider more generally the temporal quantities of periodic signals, repre-
sented in our applications by sinusoids. Period T, is normally measured in seconds per
cycle, so the cyclic frequency f in cycles per second is the inverse of period, f =]7/Tp :

Also, the period is related to the circular frequency @ by T, =27z radians, so that

circularfrequency w = 27 =2rf @,and cyclicfrequency f = 2y (cycles} (4-16)
T, sec 2z sec

These relationships between period and frequency are worth understanding completely
and even memorizing, as we use them a great deal in system dynamics.

It is important also to understand how FRF phase is manifested in time history
plots of input and output. This discussion is general, applicable for any LTI system. Sup-
pose that there are plotted on the same graph steady-state sinusoidal time histories of both
the input u(t) and the output x(t), as in Fig. 4-3 on the next page. We want to calculate
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the FRF phase from measurements on the time-history plots. First, find the nearest posi-
tive x(t) crest to the left of a reference positive u(t) crest, as shown on Fig. 4-3. Measure
the positive time interval Tieaq in seconds that x(t) leads u(t). (Note that you can measure
Tiead also by comparing troughs or positive-going or negative-going zeros, as shown on
Fig. 4-3.)

Tp
Tlead
- u(t) = U coswt
| Tiead Tiead S
crest time t
/ Tlead \|
X(t) = X cos(wt + ¢) _/

Figure 4-3 Frequency response phase measurement from time-history graphs

Now, referring to the positive crests, let’s denote as teres: the instant corresponding
to a positive crest of input u(t). Then we see from the drawing that

CoOSwtcrest =+l = @lerest = 272N, Where n is some integer
COS(@ [terest — Tiead] + ) =+1 = @[ terest— Tiead] + ¢ =27n

Comparing these two equations shows that o[- Tiead] + ¢ = 0, which gives the basic
equation for phase angle (defined positive as a lead, negative as a lag):

b=l = _2|_—7TT _ g et gy 300089 56 T e (4-17a)

lead — lead
o T, 27 rad T,

where T, (= 2z/w =1/ f ) is the period of the input and the steady-state output, as shown
on Fig. 4-3.

If you choose to select the nearest positive x(t) crest to the right of a reference
u(t) crest, then you are finding time lag T,.., which is a negative lead. In this case, you
can find the phase angle, with the correct sign, from

lag !

T
¢ =-wT,, =-360x 1139 deg (4-170)

p

lag
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Equations (4-17) give ¢ in the range 0° < ¢ < 360°, which is correct but not com-
mon. It is not common because the four-quadrant arctangent is conventionally expressed
(in MATLAB, for example) in the range —180° < ¢ < +180°. Therefore, if you measure
and calculate by the procedure above a phase ¢ > +180°, then it is conventional to re-
place that ¢ with (¢ — 360°). For example, if you were to measure and calculate the
phase ¢ = 262°, then it would be conventional to express it as a phase lag, ¢ = (262° —
360°) = —98°, rather than a phase lead of 262°.

4-5 Easy derivation of the complex frequency-response function for standard stable
1% order systems

This section is an example of a much easier method (than that of Sections 4-2 and
4-3) for deriving the frequency-response function of a system. Let’s find the frequency
response of standard stable 1* order systems. From Eq. (3-7) the standard stable ODE
with sinusoidal excitation is

X+ @/z;) x =bu(t) = bU cos wt

We seek steady-state sinusoidal response X (t) = X (@) cos(wt + (@), in which X (o)
and ¢(w) are functions to be found. The first step in the method is to take the general
[for arbitrary u(t)] Laplace transform, setting the IC to zero:

(s+1/z)LIXO], _, =bLIU(]

Next, we form the system general transfer function, TF(s), defined as the ratio of the
output transform to the input transform, with zero IC:

WOl
O =]~ s+ve

The Laplace independent variable s is complex in general. However, in order to
analyze frequency response, we let s in TF(s) be purely imaginary, s = jo (@ being the
real circular frequency), producing the complex frequency-response function FRF(w):

TF(s)|_. =TF(jo)=FRF(0)= b — =br, 1 (4-18a)
s=lo T, + jo 1+ jor,

Next, with use of Egs. (2-4)-(2-7), we convert TF(jw) = FRF(w) algebraically into polar
form:
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1+ | i & g
+ jor, 1- jor, 1+ (w1))

_ i il 2 _
FRF(w) =bz, ! xl 0T, _y, +(on) exp[jtan‘l( i)rlﬂ

(4-18b)

- |FRF(w)|ej4FRF(w) _ bz, pid()
1+ (wr,)?

in which phase angle ¢(w) = tan*(- w7z, /1) = tan* (~w71,) .
Equations (4-18) define the complex frequency-response function, FRF(w), of

standard stable 1* order systems. It is proved in Sections 4-6 and 4-7 for LTI systems in
general that the real magnitude |FRF(a))| of function FRF(w) is the magnitude ratio of

system frequency response, and the phase angle ¢(w) of function FRF(w) is the phase
angle of system frequency response. For example, let’s adapt standard solution (4-18b)
to the damper-spring system, for which [from Eq. (4-3)] b=1/cand 7, =c/k. Thus, the
magnitude of FRF(w) from (4-18b) is

X(w) bz, 1 1

FRF (0)| = _ _=
| (a))| \/l+ (w7,)° K \/1+ (w7,)°

(4-19)

which is identical to damper-spring system FRF magnitude ratio X (w)/F of Eq. (4-11).
Also, the phase angle of FRF(w) from (4-18b) is

/FRF(0) = ¢(o) = tan ' (~wr,) (4-20)
which is identical to damper-spring system FRF phase ¢(w) of Eq. (4-12). Thus, with
FRF(w) of Eq. (4-18b), we have obtained here the same final results as before for the

damper-spring system, but much more easily.

4-6 Transfer function, general definition

For any LTI, single-input-single-output (SISO) physical system, we denote the
input as u(t) and the output as x(t). For an n" order system, in general, the input and out-
put are related by an ODE of the form

+...+a,,X=Db +b, " +...+b U (4-21)

a,,...,a,, and b,,...,b,_., are constants (with the numbering system keyed to MATLAB

1 m+l
notation), and m < n. Also, we assume that the system is stable, which is defined more
precisely in Section 4-7. Taking the Laplace transform of the ODE, with all ICs equal to
zero, gives
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(als” +a,s" Tt <51n+1)L[x(t)]ICS=0 = (blsm +b,s™ + .+ bm+1)L[u(t)] (4-22)

Then, from (4-22), the system transfer function, defined to be the ratio of the output
transform to the input transform, with zero ICs, is the ratio of two polynomials,

LIx()] ooy _bs™+b,s" . +b

TF(s) = =
®) Lu®)] as"+a,s"t+...+a,,

(4-23)

It is appropriate to state here (without proof) that the transfer function of any
physically realizable system has m < n, i.e., the degree of the numerator polynomial is
less than or equal to the degree of the denominator polynomial. The condition m < n
makes the transfer function causal, which means that the current (in time) output of the
system is dependent only upon past and present (not future) values of the input. In gen-
eral, the future values of an input cannot be predicted, so it is logical that a real system
and its transfer function must be causal. See Belanger, 1995, page 440.

Note also from Eq. (4-23) that, if given TF(s) and input u(t), we can express the
transform of the output with zero initial conditions as

L[x(1)] .., = TF(s)x L[u(t)] (4-24)

4-7 Frequency-response function from transfer function, general derivation

For frequency response of a general LTI SISO stable system, we define the input
to be a time-varying cosine, with amplitude U and circular frequency ,

u(t) =U cosawt = UE(e Jot 4 giet ) (4-25)

in which we apply the complex exponential form for the cosine that is derived from
Euler’s equation (Problem 2.1). The Laplace transform of input (4-25) is

L[u(t)]:g( t ! ] (4-26)

2\s—-jo s+ jo

Substituting (4-23) and (4-26) into (4-24) gives

L[x(t)]ICS:0 _ (blsm + bzsm:l +...+ bm+1j£[ 1 n 1 ] (4_27)

as"+a,s" +...+a,, )2 s-jo s+ jo

By expanding into partial fractions, we will usually be able to cast (4-27) into the form

4-12



Chapter 4 Frequency response of 1 order systems; transfer functions; derivation of freq. response

A B <+ C
Ut _ K 4-28
[()]|Cs=0 S_ja)+s+ja)+§5—pk ( )

in which A, B, C,, and p, [the poles of TF(s)] all are constants. Taking the inverse
transform of (4-28) gives

X(t) = Ae’ +Be " + ) C,e™! (4-29)
k=1

The first two right-hand-side terms of (4-29) are associated with steady-state
forced sinusoidal response, and the third term is associated with response bounded by real
exponential functions. The nature of system stability is determined by the poles p,, in

particular, by their real parts. If Re[p,]<0 forall k=1, 2, ..., n, then each of the e"
terms is bounded by a decaying exponential, that is, e™'— 0 as t — . A system for
which Re[p,]<0 for all k is said to be stable. Therefore, for steady-state sinusoidal

response (after all exponentially bounded transients have decayed) of a stable system,
only the first two right-hand-side terms of (4-29) remain,

X, (t) = Ae'”" + Be 1! (4-30)

Our objective now is to find the complex constants A and B in (4-30). The first
step is to recognize that x (t) must be a real function mathematically; that is, in order to
represent actual physical behavior, (4-30) cannot have any imaginary component. From
Problem 2.5, we conclude that B must be the complex conjugate of A, i.e.,, B = A.

Therefore, (4-30) becomes
X, (1) = Ael”" + Ag™ 1 (4-31)
The Laplace transform of (4-31) is
A

Lxa (0] = _Ajw * v e (4-32)

Recognizing that we seek only constant A for the steady-state sinusoidal response (not
any of the C, constants associated with transient response), we now combine (4-32) and

(4-26) into (4-24),
e, )= 2 s A =TF<s>B[ iy j (-3
S—jJo S+ Jo 2{s—jo S+ jw

4-13
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To find complex constant A and its conjugate, we use the labor-saving method for partial-
fraction expansion from Chapter 2,

: U 1 1 U :
A=|(s— F(s)— + =—TF 4-34
[( Jwrr()z[s_jw st i } 5 TR (i) (4-34)
— . ul 1 1 )] U .
[(ﬂw)r ()Z[S—ja)+s+ja)J_s__jw , TF(-jo) (4-35)
Comparing (4-34) and (4-35) shows that
TF(-jo)=TF(jw) (4-36)

So now we can denote the transfer function terms in general polar form:

TF (jo) =[TF (jw)je’’, where the phase is ¢(w) = Z[TF (jo)] (4-37)
TF(-jo) =[TF(jo)le " (4-38)

Substituting (4-37), (4-38), (4-34), and (4-35) back into (4-31) gives
X, (t) = Aelet 4 Ag it = %|TF ( ja))|{e lotsg(@) | e-“w”f”(w”} (4-39)

Applying again the formula from Euler’s equation that relates the cosine to complex ex-
ponentials gives the desired final result,

X (t) =U [TF (jo)| cos(wt + ¢(w) )

= X () cos(et + ¢()) (4-40)

in which X (w)and @ w) are, respectively, the amplitude (magnitude) and phase of the
steady-state sinusoidal response. Note that |TF(jco)| = X (w)/U , the magnitude ratio.

Therefore, we define the complex frequency-response function FRF(w) to be
TF(jw), (4-37). Expressing FRF(w) in polar form gives us the FRF magnitude ratio and
phase directly, and relatively easily (without all the work of finding the particular solu-
tion of the ODE by the method of undetermined coefficients, or of finding the complete
time response by forward and inverse Laplace transformation, etc.):

FRF(0) =TF (jo) = —Xl(f)) e (4-41)

This result is general for LTI SISO systems, it is valid for all of the systems con-
sidered in this book, and it is widely used in engineering practice.

4-14
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4-8 Homework problems for Chapter 4

4.1 This problem involves the data and results for the 1% order damper-spring system that
is analyzed in Section 4-2 with use of MATLAB program MATLABdemo41.

() Substitute the damper-spring data and the given values of F and  into Egs. (4-10)
and (4-12) in order to calculate the magnitude X and phase angle ¢ (in degrees, in the
range —180° < ¢ < +180°) of the frequency response.

(b) Examine the time history graph generated by MATLAB program MATLABdemo41.
The purpose of this problem is for you to evaluate that graph as if it were recorded from
an experiment. Consider, in particular, the time after about t = 1.3 sec, when the output
has settled into steady-state sinusoidal response. Measure from the graph the steady-state
output magnitude X. Measure whatever information is required from the graph, then cal-
culate phase angle ¢ (in degrees, in the range —180° < ¢ < +180°) of the steady-state state
response. These simulated experimental results for X and ¢ should be equal to (or at least
close to, since it is not possible to make precise measurements from a graph) the compa-
rable results calculated in part (a) from theoretical formulas.

4.2 An experimental frequency response test is conducted on an LTI system (not neces-
sarily a 1% order system), with input u(t) =U coswt and output x(t) = X cos(wt +¢). A
simulated graph [(a) or (b) or (c), whichever is assigned] of the steady-state input and
output quantities at one particular frequency is shown below or on the next page. Cal-
culate from the graph, with as much accuracy as the data permits, the following values:
(i) the sinusoidal period Ty, and then the frequency (in both Hz and rad/sec), (ii) the FRF
magnitude ratio X/U (assume consistent physical units), and (iii) the FRF phase ¢ (in

degrees, in the range —180° < ¢ < +180°).

(@) Time histary of a frequency response

[nput ult) & output =(t)

-1
o8 081 082 083 084 085 086 087 083 083 09
Time t (sec)
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(b) Time histary of a frequency response

Input u & output x
o Y S N |
o Y T = 7]

O O O
oy B

]
oo

| |
10.1 10.2 10.3 10.4 10.5 10.6 107
Time t (sec)

(©) Time history of a frequency respanse

(3]
1
1
1
1
1
1
1
1
]
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
[ e ——

U [ -

Input u & output x
=

i )| IEPIRENE. NP g E _______________________

4
1.1 111 1.112 1.113 1.114 1.115
Tirne t (sec)

4.3 The governing ODE of the series damper-spring low-pass filter in Fig. 3-12 is Eq. (3-
23), 7,%, + X, =X (t). Show that the associated 1* order complex frequency-response

function is FRF(w) =TF(jw) =1/(1+ jwr,) . The following MATLAB script graphs
from this equation the FRF magnitude ratio and phase in one conventional format (log-
log for magnitude ratio, semilog for phase in degrees, magnitude ratio graph directly over
phase graph), for the case of time constant 7, = 0.0145 sec, with excitation frequencies
ranging from 1 Hz to 1,000 Hz. Note that MATLAB does most of the work for you if
you start with the complex FRF, and then use MATLAB’s capability for performing
complex arithmetic. In particular, the MATLAB function abs calculates the absolute
value (magnitude) of a complex number, and the MATLAB function angle calculates the
angle in radians of a complex number.
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t1=0.0145; % First-order system time constant (sec)

f=logspace(0,3,200) ;w=2*pi*f; % 200 pts. 1 Hz-1 kHz evenly spaced on log scale
FRF=1_./(1+j*w*tl); % complex FRF; note necessity of array operation ./
magrat=abs(FRF) ; fazdeg=angle(FRF)*180/pi; % magnitude ratio and phase in deg
subplot(2,1,1),loglog(f,magrat, "k"),grid,ylabel (*"FRF magnitude ratio®), ...
title("FRF of 1°' order system with time constant = 0.0145 sec")
subplot(2,1,2),semilogx(f,fazdeg, "k"),grid, ...

ylabel ("FRF phase (deg)"),xlabel("Frequency (Hz)*")

Run this script on your computer, and submit the graphs that it produces. Additionally,
(a) calculate the break frequency f, =1/(27z,) and show that it matches the break fre-

quency inferred from the MATLAB graphs; (b) use complex arithmetic to evaluate by

hand (and hand calculator) the complex FRF, FRF(w) = 1 l , at frequency f = 30
+ jor,

Hz, and show that your hand-calculated magnitude ratio and phase match those of MAT-

LAB. You might have occasion to do more graphing of FRFs, so, for your future refer-

ence, make sure that you understand the operations of all the MATLAB commands in the

above script.

4.4 The governing ODE of the series damper-spring high-pass filter in Fig. 3-12 is Eq.
(3-24), %, +@/z;)x, = X (t) [see also homework Problem 3.7].

(a) Show that the associated 1% order high-pass filter complex frequency-response func-
tionis FRF (@) = jor,/(l+ jor,) .

(b) For frequency response, we are evaluating the input in the form X, (t) = X, cos wt
and the output in the form x (t) = X, cos(at +¢) . Use the FRF of part (a) to show that
the equations for FRF magnitude ratio and phase are

X, (@) B o1,

X; 1+ (an'l)2

, ¢(w):%—tan‘1(a)rl):tan‘l( 1 j
T,

Use this magnitude ratio equation to derive equations for the low-frequency and high-fre-
guency asymptotes, and sketch those asymptotes on a log-log graph such as Fig. 4-2.
You may use the definition of break frequency, @, =1/7,, so that wr, = w/w, = f/f, .

This system has the character of a mild high-pass filter, so your sketch of the asymptotes
should have the appearance appropriate to that name.

(c) Let the time constant 7, = 1 sec, and consider the excitation frequency range 0.01 <

@ < 100 rad/sec (10% < @ < 10" rad/sec). Adapt the MATLAB program, and use the
graphical format provided in homework Problem 4.3 to graph with MATLAB the FRF
magnitude ratio and phase (in degrees). As is done in Problem 4.3, program directly the
complex FRF, in this case FRF (w) = jor,/(1+ jer,) , not the equations of part (c).
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4.5 A standard LTI mass-damper-spring system has the ordinary differential equation of
motion mX+cx+kx = f, (t), inwhich f (t) isthe inputand x(t) is the output.

(a) Use the ODE to derive the transfer function TF(s) = L[x(t)] .., /L[f, ()] for the m-

c-k system. This transfer function is an algebraic equation in terms of independent
variable s and constants m, ¢, and k.

(b) Use transfer function TF(s) to derive the complex frequency-response function
FRF(w) for the m-c-k system in terms of independent variable frequency @ and constants
m, ¢, and k.

(c) From FRF(w) for the m-c-k system, write equations in terms of independent variable
frequency w and constants m, ¢, and k for the real magnitude ratio |FRF(a))| and the real

phase angle ZFRF(w) = ¢(®).
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© 2016 by William L. Hallauer, Jr.

5-1 Introduction

Electrical circuits are systems that have many dynamic response characteristics in
common with mechanical systems. But electrical variables (voltage, current, charge) and
circuits are quite different physically than mechanical variables and systems, and the
physical laws and methods for deriving ordinary differential equations that describe be-
haviors of electrical circuits also are entirely different. This chapter is an introduction to
the theory of electrical circuits and basic analog electronics, and to some common but
simple practical applications of the theory. The material presented here provides the ba-
sis for many examples of system dynamic behavior in later chapters.

Many engineering students in fields other than electrical engineering are exposed
to electrical theory only in a required introductory physics course. This presentation is
designed for such engineers who, nevertheless, have applications for simple circuits and
electronics. For example, almost every engineer who works with electromechanical sys-
tems will at some time require at least the background in circuits and electronics that is
presented in this chapter. The same is true for almost every engineer who uses sensors of
any kind, or is involved with testing of prototypes or products in the laboratory or in the
field. Even the process of logically evaluating for possible purchase the capabilities and
specifications of modern electronic instrumentation requires more sophistication with cir-
cuits and electronics than a student can acquire from an introductory physics course.

5-2 Passive components: resistor, capacitor, and inductor

We denote the electrical potential, the voltage in volts (V) Sl units, at a point in a
circuit as e(t), and the flow of positively charged particles, the electrical current in amps
(A) Sl units, as i(t). These two electrical quantities are the principal variables that will
appear in derivations of the ODEs describing the dynamic behavior of circuits.

The circuit drawn in Fig. 5-1 depicts an ideal linear resistor, with resistance R
ohms (usually denoted by the upper-case omega, Q) in Sl units. The voltage difference

R e, —e, between the positive and negative terminals of a battery
& & causes current i to flow through the resistor. The material of the
.L vV resistor is an electrical conductor, but a poor conductor that

provides much more resistance to current flow than a good con-
ductor such as copper wire. This resistance converts part of the
electrical energy into heat energy, causing the resistor’s tem-
perature to rise slightly.  For a standard, commercially pro-
duced resistor, the relationship between e, —e, and i is linear,
with resistance R defined as the constant of proportionality
(Halliday and Resnick, 1960, Sections 31-2 and 31-3). This relationship is known as

—|I|+

Figure 5-1 Resistor
in a simple circuit

5-1
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Ohm’s law (after German physicist Georg Simon Ohm, 1787-1854), and it is usually
expressed in one of the following two forms:

e,—e, =R = i=

(5-1)

Equation (5-1) applies at each instant, even if the voltages and the current are varying
with time.

Note from Ohm’s law the unit equivalence Q = V/A, this relation giving the ohm
in terms of the volt and the amp is useful for establishing correct units in calculations.
Suppose, for example, that a 10-volt difference is imposed across a 5 kQ resistor, typical
numbers for instrumentation circuits. Then, from (5-1), the current through the resistor is

|:#=Ze—3A52mA.
5x10° V/A

The following two examples serve to introduce a fundamental physical principle
for electrical circuits, Kirchhoff’s current law (abbreviated “KCL”, after German
physicist Gustav Robert Kirchhoff, 1824-1887), and to illustrate applications of KCL.

Electricity Example 5-1: Given resistors R; and R, arranged in series, as in the figure
below, find the equivalent single resistance Req.
From the figure and Eq. (5-1),

R R R
€1 ' €2 ? €3 €1 N
_J\/\/—_J\[_ = w . _ & -6 . 88 . &8
H H H Il = ' IZ = y 1=
11 I> | Rl Rz Req

The form of KCL relevant to this situation is: the quantity of current is continuous in a
series arrangement, so that i, =i, =1i. [This continuity condition for electrical current is
directly analogous to the continuity condition for an incompressible fluid: the volume
flow rate (average velocity x cross-sectional area) remains constant at all points along a
flow tube or channel.] The total voltage change is the sum of the individual changes,

€ —€& :(el _ez)+(ez _ea): ilRl +i2R2 = i(Rl + Rz)

. e —e
= j==2 = Ry =R +R,
R, +R,

The resistance of a series combination of resistors is the sum of the individual resistances.
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Electricity Example 5-2: Given resistors R; and R, arranged in parallel, as in the figure
below, find the equivalent single resistance Req.

R, In this case, there are circuit junctions

A A R on both sides of the paralle_l resistors.

e SR ;. St The more gene_ral KCL appllcable_ here
i: —> i, I: = ﬁ is: '_[he quantity of current leaving a
_J\f— i junction equals the quantity of current

R, entering the junction, so that i, +i, =1i.

The voltage difference is the same
across each of the parallel resistors, so KCL in terms of voltage differences is

& -8 &6 _8&-¢ 1,1 _1 _R+R
R, R, R R, R,

eq

= R, = RiRs
RR, “ R +R,

The equivalent (effective) resistance is less than the smaller of the two parallel resis-
tances.

The circuit drawn in Fig. 5-2 depicts a linear capacitor, with capacitance C farad
(F) in SI units. A voltage generator produces the possibly time-varying voltage differ-
ence e, —e, across the capacitor. The graphical symbol

ex(t) G eot) . ) :
H H representing the capacitor depicts two plates separated by a
es(t) dielectric (insulating) material. If there is a voltage difference
@ between the plates of such a component, a positive electrical
ex(® i(t) charge +qg coulombs (SI unit) appears on one plate, and a
negative electrical charge —q coulombs appears on the other
Figure 5-2 Capacitor  Plate (Halliday and Resnick, 1960, Section 30-2). The quan-

in a simple circuit tity of_ charge q is_ proportional to the voltage difference, with
capacitance C defined as the constant of proportionality:

q= C(el - ez) (5'2)

If the voltage difference is constant, then the charge on the plates remains con-
stant, so that there is no flow of charged particles, i.e., no current, which is the variation

with time of the charge: i(t) = Z—? However, if the voltage varies with time, then cur-

rent flows through the circuit in proportion with the derivative of the voltage difference:

d(e1 _ez)

o -Ccl-e) (5-3)

. dg
1(t)=—=C
(t) ot

Conversely, the voltage difference across the capacitor can be expressed in terms of the
current by integrating (5-3) from initial time t, (when ICs are assumed to be known) to

arbitrary time t > t,:
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r=t

J.I(Z') dr=C J- d(e—TdT:C[(el_ez)L _(el_e2)|t0]

=ty =ty

=t

1.
= e)-e0)=et) - )+ [i()dr (5-4)
=t,
Note from Eg. (5-3) the unit equivalence A:Fx% = F= A—sec; this

relation for the farad in terms of the amp, the volt, and the second is useful for clarifying
units in calculations. Suppose, for example, that an instrumentation circuit contains a ca-
pacitor with C = 0.25 uF = 0.25e—6 F, a typical value. If, at a particular instant, the volt-
age across the capacitor is changing at the rate 6,000 V/sec, then the current through the

capacitor is, from (5-3), i = (0.25 <107 A :/Sec] x (6 x10° l) = 15x10°A=15mA.
SecC

Electricity Example 5-3: 1% order, RC low-pass filter circuit

This is a circuit containing both a resistor and a capacitor. The input voltage sig-
nal produced by some source is denoted ej(t), and the output, filtered signal is denoted
eo(t). Figure 5-3 depicts this filter graphically in both the simple closed-circuit form on

Ry el®) R
N\ _L —\V\ o

ei(t) )
&Y% C = «e) —C eot)
: T
ov i(t) - it) -
—4— Ground
=0 volts

Figure 5-3 RC low-pass filter circuit

the left, and the more modern form on the right, in which the common ground (reference)
potential is denoted by a special symbol and is assigned the value zero volts, to which all
other circuit voltages are referenced. The input and output terminals are denoted by
small circles. Note, in particular, that the output terminals are isolated away from the
current-carrying portion of the circuit; this represents the realistic situation in which the
filter output voltage is the input to some other circuit that has a very high input resistance,
thereby essentially preventing any input current. This downstream circuit could be some
measuring instrument (oscilloscope, voltmeter, etc.), or another stage of a larger circuit of
which the RC circuit is just one part. Note also that this RC circuit, and any upstream cir-
cuit at its input, and any downstream circuit at its output, all must be referenced to the
same ground voltage, which is constant and is the “zero” voltage relative to the other
voltages in the circuit; this is an important requirement for practical circuits.
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In order to derive the ODE describing the dynamics of this RC low-pass filter, we
use Eq. (5-1) for current i, through the resistor, and Eq. (5-3) for current i. through the

. . e -6 . . g : . . : .
capacitor: iy =— ; S :C(e0 —O)z Cé,. The resistor and capacitor are in series, SO

Kirchhoff’s current law relevant to this situation is i, =i :

o = é0+ie0:—ei
R RC RC 7 7

in which 7, = RC is the 1% order time constant.

Given ICs on output voltage e,(t) and given input voltage ej(t), we can in principle
solve Eq. (5-5) for eq(t) using the mathematical methods discussed previously. In par-
ticular, frequency response is the dynamic behavior that is of greatest practical interest
for any circuit designed to be a filter. For frequency response, the input voltage is
e (t) =E,coswt and the steady-state sinusoidal output voltage is e, (t) = E (@) x
cos(a)t+¢(a))). Let’s find the frequency response simply by adapting a previously
derived standard solution. First, we compare Eq. (5-5) with Eq. (3-7), x+ (/7)) x=
bu(t), which is the standard ODE for stable 1% order systems. If we define u(t) =
Ucoswt=e, (t) = U =E,, then the other constant of the standard equation becomes

b =1/z,. Therefore, the standard FRF magnitude ratio (4-19) is adapted as

X () _ bz, _ E, () _ 1 _ 1
U 1+ (w7,)? E, \/1+(a)r1)2 \/1+(a)/a)b)2

and the standard FRF phase (4-20) is adapted as ¢(w) = tan " (~wz,) = tan ' (~0/ w,),
in which the break frequency is @, =1/7, =1/RC =2z f,. Figure 5-4 (adapted from

Fig. 4-2) is the log-log graph of magnitude ratio versus frequency, which clearly shows
the low-pass character of the frequency response.

(5-5.5)

[ E, ) E, Low-frequency asymptote
log| => E

Break point
i | \4\/
-0.151 0711 0.707 i i Ne— High-frequency asymptote
! | Eq. (555 | i
I A St N
PO PO S NSRS NSRS S S S
3-1-0,001 “rirececece- S e e ememeneen
-3 -2 -1 0 1 2 log ffj

Figure 5-4 Log-log magnitude rat5i050f 1% order RC low-pass filter
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The governing ODE of the mechanical series damper-spring low-pass filter in Fig.
3-12 is Eq. (3-23), 7, %, + X, = X; (t) (see also homework Problem 4.3), which has exactly
the same form as Eq. (5-5). Accordingly, the electrical low-pass filter is an exact electri-
cal analog of the mechanical low-pass filter, input voltage e;(t) being directly analogous
to input translation x;(t), output voltage e,(t) to output translation x.(t), and electrical time
constant 7; = RC to mechanical time constant z; = c/k.

The passive electrical component drawn in Fig. 5-5 represents an ideal linear
inductor, with inductance L henry (H) in Sl units. A time-varying current i(t) is shown
flowing through the inductor. The graphical symbol de-

e(t) L e(t) noting the inductor depicts a coil of conducting wire. If
. /XX\ Z the current is changing with time in such a coil, then a
: > voltage difference appears across the coil, a voltage dif-

it), di feren_ce that 0pposes the current change (Hal.liday and

dt Resnick, 1960, Sections 36-1 and 36-3). This voltage

difference is called a self-induced emf (electromotive
force); it is a manifestation of the interaction between
electricity and magnetism that is described by Maxwell’s equations of electromagnetism
(after Scottish physicist James Clerk Maxwell, 1831-1879). The self-induced emf is pro-
portional to the rate of change of current, with inductance L defined as the constant of
proportionality:

Figure 5-5 Ideal inductor

di
e, —e,= LE (5-6)

You might find it difficult to perceive how Eq. (5-6) represents physically a volt-
age difference that opposes current change di/dt. If so, then the following example
should illustrate this characteristic more understandably.

Electricity Example 5-4: 1% order LR circuit

Real inductors are not used in instrumentation circuits nearly as often as resistors
and capacitors. Moreover, there is no such thing as the ideal inductor instrumentation
component of Fig. 5-5. Because an inductor component consists primarily of coiled wire,
and because a considerable length of very fine
wire accumulates resistance, a real inductor usu-

)

ei(t) —oey(t) ally has non-negligible resistance as well as in-

: ductance. A common, simple, approximate cir-

T R cuit model for such a real inductor is a series

Ei = combination of an ideal inductor and a resistor, L
|

and R_ in the circuit of Fig. 5-6. In this circuit,

_ R ei(t) is the input voltage (after switch S is closed

Figure 5-6 LR circuit - to position c), and e(t) is the output voltage. R

is a resistor placed between the inductor and

ground to permit sensing (by an oscilloscope, for example) of eq(t), which is directly re-
lated to the current by eq(t) = Ri(t).
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Next, we derive an ODE governing the dynamic behavior of the LR circuit in Fig.
5-6. Observe that the derivative of current, di/dt, appears in Eqg. (5-6), unlike Eq. (5-1)
for a resistor and Eq. (5-3) for capacitor, in which equations current i(t) appears directly.
Because of this, it is usually not convenient to apply Kirchhoff’s current law for a circuit
containing an inductor. It is usually better for such a circuit to apply Kirchhoff’s voltage
law (abbreviated “KVL”): the sum of all voltage rises around a circuit loop is zero. If
we proceed around the circuit loop in the direction of defined positive current flow, then
the “voltage rise” across any component (including the input voltage generator and every
passive component) is defined to be the upstream voltage minus the downstream voltage.
To write KVL for this LR circuit, we start at the input voltage generator and proceed
clockwise:

(& -0)+ (e, —&)+(e —e,)+(0-e)=0 (5-7)

Kirchhoff’s voltage law is a fundamental law of circuits, but note that it also is just an
algebraic identity. Next, we substitute Eq. (5-6) and Ohm’s law into Eq. (5-7):

(ei—0)+(—L%] (-R_ i)+ (-Ri)=0 = L%+(RL+R)i:ei(t) (5-8)

Equation (5-8) is a stable 1* order LTI ODE solvable for arbitrary input voltage
e, (t). For example, suppose that all ICs = 0 and that the input voltage is a step, e, (t) =
E; H(t), which is accomplished with use of a battery and a switch, as shown in Fig. 5-6.
Comparing (5-8) with standard stable 1% order ODE (3-7), we adapt the standard step-
response solution (3-8), with ej(t) = u(t) so that E; = U, to write the electrical response
quantities as

i(t)=— " (L-e¥5),0<t inwhich 7,=— - (5-9a)
R, +R R.+R
. R
= e (t)=Ri(t) = E{l-eV)=E(l-e "), E = E. (59
(O =RiO == pBl-e™)=Ef-e™"), B =p 2B (5)

Step response Eqgs. (5-9) clearly show the effect of the inductance in opposing and de-
laying the rise of current flow. If the inductor were not present (i.e., if L = 0) in the cir-
cuit of Fig. 5-6, then the circuit would be a simple voltage divider (Problem 5.1), and the
full step-response output voltage would be achieved instantly, e (t) = E, H(t), instead of

rising gradually as in (5-9b).

The response of this circuit illustrates the physical effect of the inductor’s self-in-
duced emf, Eq. (5-6). In this circuit, the inductor’s upstream voltage is constrained to be
the input, e, (t), so the self-induced emf must act in e (t), the voltage at the inductor’s

downstream terminal. It is helpful to derive from Egs. (5-7)-(5-9) the equation for that
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voltage, e, (t)=e,(t)+R_ i(t)=E, (1—e‘t/’1), and the equation for the rate of change of
current, di/dt= (Ei/L)e“/Tl. At time t = 0+ (just after switch S is closed to position c),
we have di/dt(0+)=E;/L>0 but e, (0+) =0 and i(0+) = 0. Thus, at this instant, the

inductor holds its downstream voltage at zero and prevents the current from rising in-
stantaneously as a step function, which it would do if the inductor were not present. Af-
ter time t = 0+, the current gradually rises, but at a declining rate, and the current increase
is still opposed by the inductor downstream voltage, which also rises at the same declin-
ing rate.

From Eqg. (5-6), we have the unit equivalence V = Hx% = H= v Asec ;
this relation for the henry is useful for clarifying units in calculations, as shown in the
following example. A particular “voice coil” is to be used in an electromagnetic force
actuator; this is the type of wire coil found in the speakers of consumer sound systems.
We wish to identify experimentally for this coil the parameters L and R, (based upon the
series model of Electricity Example 4) by measuring the step response of the circuit of
Fig. 5-6. For this particular circuit, the sensing resistor has R = 17.5 Q, and the battery
voltage is 9.00 V. We close switch S, then record the subsequent time-history graphical
response onto the screen of a digital oscilloscope, which stores the data for analysis. The
response graph (below) has the appearance of Fig. 3-3, and we measure from it the time

Ec=726V{--------- FoomTmoees ittt i Ti'
- : : 0050 E, 10-982 Eq
&0 : 0.865 E, | i
- 0.632E, | i i
0 | | | |
0 71 =0.0530 msec 27y 3n 47 t

constant 7, =0.0530 msec and the final value of output voltage E, =7.26 V. From the
equations for 7, in (5-9a) and E, in (5-9b), we derive the following equations for the re-
quired parameters L and R, and then the subsequent calculated values:

L=(R, +R)r, = [Eﬁ Ei]rl

0

= EiRe, =[ 290V V175V 10,0530 107 sec)=1.15x10° Y =3 _1 15 mH
726V A A

R, :ﬂE. ~R= R[%—l} = (17.59)(3'221//4} =4.19Q

0
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5-3 Operational amplifier (op-amp) and op-amp circuits

Figure 5-7 is the standard graphical symbol for an operational amplifier (op-amp).
An op-amp has a “positive” input port that accepts input voltage ejp, and a “negative” in-

put port that accepts input voltage ej,. The symbols ej, and

o—- ein are merely labels; they are not meant to restrict the po-

€in larities of these input voltages, each of which can be either
o—1+ - . . .

€ip e,  Positive or negative relative to the ground potential. An op-

amp has a single output voltage, labeled e, on Fig. 5-7. The

0—0 T O fundamental ideal output-to-input relationship of an op-amp

Figure 5-7 Z)perational is (Horowitz and Hill, 1980, Chapter 3)

amplifier (op-amp) e —K(e _e ) (5-10)
o ip in

In Eq. (5-10), gain K is a very large positive number, on the order of 10° to 10° for com-
mon, commercially available op-amps. The exact value of K varies gradually with the
frequency of signals ej, and ei,, but this variation is not important provided that frequency
is below a known upper value; as we shall see, a very important characteristic is that K is
large, K > O(10°). (This equation is a common mathematical expression meaning “K is
on the order of or greater than 10°.”) Another important characteristic of an op-amp is
the extremely high resistance of the input ports, on the order of 10° Q to 10" Q. The
practical consequence of this high resistance is that essentially zero current can flow
through the input ports.

An op-amp is an active device, requiring external power to produce high gain,
unlike the simple passive elements (resistor, capacitor, and inductor) of Section 5-2. An
energy source (e.g., a £15-volt power supply, or a pair of 9-volt batteries) is usually
connected to an op-amp, but this connection is normally not indicated on graphical
representations such as Fig. 5-7. An op-amp itself is a complex integrated circuit, full of
miniaturized transistors and other electrical components. The physical form of op-amp
seen most commonly on circuit boards is approximately the size and similar in
appearance to a basement centipede with a black body (actually, more like a 8-legged or
16-legged insect, because it has on each side four or eight metal connectors that look like

legs).

Op-amps are not often used in the open-loop configuration of Fig. 5-7. Most op-
amps can operate linearly according to Eq. (5-10) only over a limited range of +Eji, on
output voltage e,. The range depends upon the energy source, but typically Ejiy is on the
order of 10 V. If the input voltages ej, and ej, are such that (5-10) leads numerically to e,
greater than +Ei, or less than —E;in, then a real op-amp will limit and stick nonlinearly on
either +Ejim or —E;m, respectively. When this happens, the op-amp is said to be
overloaded or saturated. Since gain K in (5-10) is so high, the input voltage difference
eip — €in Clearly must be very small in order for the op-amp to operate in the linear range
for which it is primarily designed.
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To operate an op-amp in its linear range, we almost always use feedback. When
there is an electrical connection between the output port and the negative input port, the
op-amp is said to be wired in a closed-loop manner, with feedback from output to input,
specifically in this case, negative feedback. This negative feedback acts to make the in-
put voltage difference ej, — ejn so small that for practical purposes there is no difference,
€ip = €in.

We can illustrate the practical functioning of an op-amp by analyzing in detail
what is probably the most common basic circuit consisting of an op-amp and resistors,
the inverting amplifier depicted in Fig. 5-8.
Note that there is an input resistor R,, and that
there is negative feedback through feedback
resistor R, . These resistances are chosen to

be on the order of 10'-10* Q, at least two
orders of magnitude less than the input
resistances of the op-amp ports. Note also that
O O the positive input port is grounded, ej, = 0 V.

Ry

. = . Hence, from Eq. (5-10),
Figure 5-8 Inverting amplifier

in

e, =K(0-¢,) = ¢ :—% (5-11)

Due to the extremely high resistance of the negative input port relative to R, and R, , the

current through that port is essentially zero, so Kirchhoff’s current law in this case re-
quires the feedback current to equal the input current, i; = if . Using Ohm’s law to write
this condition of current continuity in terms of voltages gives

ei—ein :ein_eo — ei_(_eo/K):(_GO/K)_eo (5-12)
R R R, Ry

With a little algebra (which you should verify on your own), the solution of Eq. (5-12) for
circuit output voltage in terms of input voltage is found to be

R
e, =——\¢ L (5-13a)

° R R
BT EPA
K7 R

Let’s evaluate the denominator of the large fraction in Eqg. (5-13a). In typical applica-
tions of this circuit, the resistance ratio R, /R; is on the order of 10% at most. Therefore,

with gain K = O(10°), the denominator is very, very close to 1: 1 + O(107%) ~ 1. (This
validates the earlier statement that only the large magnitude of K matters, the exact value
being unimportant.) So, the entire large fraction is essentially equal to one, and (5-13a)
simplifies considerably to

5-10
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(5-13b)

The output voltage equals the input voltage amplified by the ratio R /Ri , and the sign is
inverted; hence the name inverting amplifier.

Note also, from (5-11), that the voltage at the negative input port is negligibly
small relative to the output (and input) voltages:

n

e = —%’ ~0=eg, (the voltage of the grounded port) (5-14)

In other words, the op-amp’s high gain drives the voltage ej, at the negative input port to
be essentially equal to the voltage ej, at the positive input port. Equation (5-14) is just a
special case of the simplifying assumption that we can use in general, from Eq. (5-10),

€, — & :%zo = &, =8 (5-15)

In circuit analysis, Eq. (5-15) is considered a useful “rule” or “axiom” rather than just an
assumption. In the future (unless directed otherwise, as for a homework or exam prob-
lem), you should always apply rule (5-15) right from the very beginning of the derivation
for an op-amp circuit with negative feedback, because it simplifies the derivation so
much. For example, if we use (5-15) from the beginning for the inverting amplifier, then
the derivation becomes two easy steps [using €;, =¢;, =0 in (5-12)]:

Figure 5-9 depicts an extremely simple, closed-loop op-amp circuit that is useful

in practice. The input voltage signal is directed into the positive input port, and this
port’s high resistance prevents the flow of any current

from the input source. Rule (5-15) in combination with

the feedback connection states that the output voltage

N € exactly equals the input voltage, e, =e,. This op-amp

o —— o) circuit functions as a current isolator and voltage

= transmitter, and it is usually called a voltage follower.

Figure 5-9 Voltage follower Its main value is in providing a buffer between two dif-
ferent stages of a more complex circuit: the buffer al-

lows the output voltage of the upstream stage to be the input voltage of the downstream
stage, without permitting any current flow between the two stages. Any such interstage
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current flow would usually cause malfunctioning of both stages. The application of a
voltage follower as a buffer between circuit stages is illustrated in the next section.

5-4 RC band-pass filter

The circuit shown in Fig. 5-10 consists of a low-pass filter stage to the left of the
voltage follower, and a high-pass filter stage to the right. [The functioning of a high-pass
filter is illustrated in homework

RL (l:,|4 Problem 5.4(b)]. As indicated on

o + = O  Fig. 5-10, the currents in the two
AAY en(" Enl stages are independent of each

_ . Ry eo(t) oOther, by virtue of the buffering
& _ ’__CL _ < " due to the voltage follower.
i(t) in(t) o  Therefore, the simple ODEs for

- each type of 1% order filter are still

Figure 5-10 RC band-pass filter valid for the two-stage circuit of

Fig. 5-10, with mid-circuit voltage
em(t) being the quantity shared by the two stages, as the output from the low-pass stage
and the input to the high-pass stage. These ODEs are Eq. (5-5) for the low-pass filter,

7 é,+e,=¢, 7. =RC, (5-16)
and the ODE derived in homework Problem 5.4(a) for the high-pass filter,

r,é,+e, =7,6,, 7, =R,C, (5-17)

An equation such as (5-17) is described as having “right-hand-side (RHS) dyna-
mics” because the right-hand-side includes a derivative of the input (€, in this case),

rather than just the undifferentiated input itself.

The combination of these two 1% order circuits turns out to be a 2™ order system,
and we shall re-visit this subject in Sections 9-10 and 10-4. We consider the RC band-
pass filter circuit now because it illustrates (1) application of a voltage follower, and (2)
the important physical characteristic of op-amps that is described next.

Note in Fig. 5-10 that the feedback wire across the op-amp connects directly to
the negative input port; this port has essentially infinite resistance, so there cannot be any
current in the feedback wire. But Fig. 5-10 also shows the non-zero, second-stage current
in(t) downstream of the op-amp; this appears to contradict the claim of zero feedback cur-
rent in the op-amp, since the graphical representation of the op-amp suggests that the
feedback wire is continuous electrically with the downstream circuit. In fact, the stan-
dard graphical representation of an op-amp with negative feedback, such as that in
Fig. 5-10, is oversimplified to the point of being misleading. For an actual op-amp
(as opposed to the standard graphical representation), the downstream current is
not continuous with the feedback current, but instead, is completely independent. In
fact, the current downstream of an op-amp is determined only by the output voltage of the
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op-amp and the downstream electrical components, for example, the second-stage ca-
pacitor and resistor in Fig. 5-10. The technical characteristic of an op-amp that permits
this independence of currents is very low output impedance (Horowitz and Hill, 1980,
pages 25, 92-95, and 105). For another example of the independence of feedback and
downstream currents, see homework Problem 5.10.
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5-5 Homework problems for Chapter 5

5.1 The simple series circuit represented graphically below is a voltage divider, which is
widely used in practical applications. Show that the

o R voltage output-to-input ratio is
e R
e R, e —==——12
I . ? ° ei Rl + RZ
i
O —— O

5.2 Two capacitors are arranged in series, as shown below.

C : .
n e, C. (a) Use the current-voltage equation for capacitor C;
_ g to show that ¢ =¢€ —L, where the e’s are the volt-
€ i ©o m i C1
. . agesindicated on the drawing and i is the current.

_L_

(b) Use the result of part (a) and the capacitor current-voltage equation for capacitor C,
in order to derive an algebraic formula for the equivalent series capacitance Ceq (in terms
of C; and C,) in the equation i =C_, (¢, —¢€,).

5.3 Given capacitors C; and C, arranged in parallel, as shown below, find the equivalent
single capacitance Ceq.
Cy
| —>j,| € €1 Ceq 2
= _J.'/— =k
i 2 i —
— i

C.

5.4 The simple circuit represented graphically below is a 1* order RC high-pass filter.

(a) Use current continuity and the formulas relating current
o | | &(t) to voltage-difference for resistors and capacitors to derive in
N Y all detail the following ODE with right-hand-side (RHS)
dynamics, which governs the output voltage e.(t) in terms of

&i(t) R input voltage ei(t):

., 1 .
e, +—e, =¢€,7,=RC
= Tl

Explain why this circuit is considered to be an exact electrical analog of the mechanical
series damper-spring high-pass filter described in Fig. 3-12 and Eq. (3-24).
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(b) For frequency response, the input voltage is e, (t) = E, coswt and the steady-state
output voltage is e, (t) = E, cos(wt + ¢) . Use the governing equation from part (a) to de-

rive the algebraic equations for FRF of the 1% order high-pass filter: the magnitude ratio
E,(w)/E; and the phase ¢(w) (in radians) as functions of excitation frequency @ . (par-

tial answer: E,(w)/E, = a)rl/1/1+(a)rl)2 ) Suppose that R = 40 kQ and C = 0.25 pF

(recall that u = 10°°). Calculate the break frequency f, = 1/(277,) in Hz. To get some
feeling for the functioning of a high-pass filter, calculate the FRF magnitude ratio
E,(w)/E; for driving frequency ratios f/f, = 0.01, 0.1, 1, 10, and 100. (See also

homework Problem 4.4.)

(c) Suppose that the input voltage is a ramp, e, (t) =e, (t/t,)H(t), where e, is a reference

voltage and t; is a reference time such that ei(t;) = e,. For IC e,(0) = 0 volt, solve the gov-
erning ODE from part (a) for the algebraic equation for ey(t) in terms of the given
algebraic parameters. Note that the derivative of the input voltage in this case is a step
function, €, (t) = (e, /t,)H(t).

5.5 The circuit drawn below is a series combination of a voltage source e, (t), a coil
L R, (having both inductance L and resistance R,), and a capaci-

€m eo(t) tor C; this is known as an LRC circuit. The input voltage is
55 — > applied at time t = 0, at which time there is a non-zero volt-
age on the capacitor, e, (0) . Apply Kirchhoff’s voltage law,

ei(t)
it I ¢ as in Electricity Example 4, and show that the equation for

=t

current i(t) is L%+ R I +% J.i(r)dr =¢,(t)—e,(0).

7=0

5.6 For the op-amp circuit represented |C|
graphically at right, an integrator, derive ]
the algebraic equation for the transfer

function between input and output R

Lle, ()] vV - 0
voltages, TF(s) = . Assume that +

Lle, (0] e .
there is no initial charge on the capacitor
at time t = 0. To simplify the derivation, © —1— O

apply rule (5-15). —

! This integrator seems simple on paper, but design of a real integrator that functions properly is difficult,
requiring expensive, precision components and many subtle refinements of the basic circuit. Integrators
based upon this circuit are essential components of the electronic analog computer (EAC), an elegant
instrument dating from the 1940s for solving coupled ODEs, but one that has now almost completely been
replaced by digital computers. Fifer’s 1961 four-volume set is probably the most complete description of
all types of analog computers; Peterson’s 1967 textbook includes standard instructional material on EACs;
and Lang’s 2000 article is an interesting, more modern discussion of EACs.
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5.7 For the op-amp circuit represented graphically below, a summing inverting amplifier,
derive the algebraic equation for output voltage e.(t) in terms of resistances Ry, R,, and
R, and input voltages e;(t) and ey(t). To simplify the derivation, apply rule (5-15).

R:

W
o—/\/\ -

€o

€1 O_\/\/\_
eg{ R,
O

5.8 (a) For the op-amp circuit represented graphically below, a non-inverting amplifier,

I

€
o - O e (inV).

derive the algebraic equation for output volt-
age eq(t) in terms of resistances R; and Ry, and
input voltage ej(t). To simplify the derivation,
apply rule (5-15).

(b) Suppose that e;= 1.6 V, R; =5 kQ, and R;
= 15 kQ. Determine the values of ej, (in V), i
(in milliamps, mA), i; (in mA), i, (in mA), and

5.9 The circuit drawing below shows an inverting amplifier, from Fig. 5-8, and, at the
input of the amplifier, a variable resistor with a sliding contact, often called a wiper. The

Ry

€im

R,
AV

lim

wiperl0< a <1

i

Inverting amplifier with coefficient-setting potentiometer

maximum useable resistance of
the variable resistor is Rp; how-

ever, by moving the wiper along
the surface of the resistor (ad-
justed by turning a dial or a
screw), we can connect between
e, and e, any portion aR,

where 0 < o < 1. The purpose of
this particular circuit configura-
tion is to allow the gain constant
of the amplifier to be adjusted

continuously to any value between zero and R, /Ri , rather than being constrained to the

value R, /Ri of Eq. (5-13b). Your assignment is to derive the following voltage output-

to-input equations:
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Ry
1-a)—
eﬂ_ (1-a) — e_o__ R
e

& 1+a(l a)& ! 1+a(l a)&
R, R

In your derivation, do not neglect the current to ground through the side of the variable
resistor with resistance (1-a)R,. For applications in electronic analog computers (see

the footnote to homework Problem 5.6), this arrangement of a variable resistor is called a
coefficient-setting potentiometer or just a pot for short.

5.10 The circuit represented graphically below consists of two stages, each stage being
built around an op-amp.

Cr
1
Rz R4
R, 4 AN
SATA - R
+ - /\/\/ a —0
€i €m + e,
O —O— O

(a) Derive from the left-hand stage the following ODE for interstage voltage e, (t):

. 1 1
&, + e, =———F§
R,C R,C

(b) Combine the result of part (a) with the effect of the right-hand stage to show that the

e, = a1

R,C ° R,RC

tially the electronic analog computer (see the footnote to homework Problem 5.6) for

solving the standard stable 1% order ODE (3-7), %+ (1/z,)x =bu(t). Input voltage e, (t)

is analogous to standard input u(t), output voltage e (t) is analogous to response x(t),
1

. R
time constant z, = R,C, and constant b = —*—-)
R, R,C

ODE for output voltage e, (t) is é, + e;. (Note: This circuit is essen-

5.11 The circuit represented graphically on the next page is the basic, ideal form of
electronic analog proportional-integral (P1) controller, one of the subjects of Chapter 15.
(In practice, a great deal of electronic refinement and conditioning is required to produce
a circuit that behaves even close to ideally.) The input voltage signal is ee(t), the
intermediate voltage between the two stages is en(t), and the output voltage from the Pl
controller is w(t).
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C,
R
Cll_ |  AA
- AR
+ " N 0
w0 R en(®) ; W)
O Q O

(@) By applying the methods of circuit analysis described in Chapter 5, show that the
ODE relating Pl-controller output w(t) to input ee(t), expressed in terms of the capacitor
and resistor parameters of the circuit diagram, is:

 RC, (. 1
W= é, + e,
R2C2 Rlcl

Lw(t)],, |
_—, expressed In terms
Le. )],

of the capacitor and resistor parameters of the circuit diagram.

Wp=

(b) Derive the Pl-controller transfer function TF(s) =
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Chapter 6 General time response of 1* order systems by application of
the convolution integral

© 2016 by William L. Hallauer, Jr.

Up to this point in the book, we have derived time response solutions of LTI sys-
tems only for relatively simple input functions u(t). The convolution integral will permit
us to derive time response solutions for any physically realistic input function u(t), and
even to compute time response solutions if u(t) is given in numerical form rather than
equation form. The general convolution transform and its inverse, the convolution inte-
gral, are defined and described in this chapter, and application of the convolution integral
is illustrated specifically for 1 order systems.

6-1 The convolution transform and its inverse, the convolution integral

Suppose that we have two physically realistic functions of time, f (t) and f,(t),
that are zero for all time t < 0 and non-zero only for t > 0. The convolution integral is
defined (Meirovitch, 1967, pp. 16-17, 534) to be another function of time in terms of a
definite integral involving f,(t) and f,(t):

CI(t) = Tfl(r) f,(t—7)dr

In this definite integral, zis the dummy variable of integration, and time t appears both in
the upper limit of the integral and in argument (t — 7) of the integrand. We can express
the integral differently by making the change of integration variable 4 =t — 7, so that

7 =t—Aand dz =—-dA, since tis regarded as a constant within the integration:

T f,(r) f,(t-7)dr = ijofl (t-2) f,(A)(=dA) = }]tfl (t-4) f,(1)d2

7=0

The final right-hand-side form results because exchanging the limits of a definite integral
changes its sign. In the final right-hand-side integral, A is just the dummy variable of in-
tegration, which might as well be 7, so we can write the convolution integral in either of
the following forms:

Cl(t) = TJ.tfl(r) f,(t—7)dr= Tfl(t —7) f,(z) dr (6-1)

The Laplace transform L[CI(t)] is called the convolution transform. Let’s suppose
that the Laplace transforms of functions f,(t) and f,(t) exist: F,(s)=L[ f,(t)]and
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F,(s)=L[f,(t)]. Then, as is derived in Appendix A, Section A-5, the product of these
two transforms equals the convolution transform:

7=t 7=t
F.(s)x F,(s) = L[CI(t)] = L{ [f.(2) f,(t-7) dr} = L{ [f.t-2) f,(2) df} (6-2)
7=0 =0
It follows that the inverse transform of the product is the convolution integral:
r=t 7=t
LR ()< Fy(9)]=Cl(®) = [£,(2) f,(t-7)dr= [f,(t-7) f,()dr  (6-3)
=0 =0

For LTI systems in general, the convolution integral (6-3) will permit us to derive time
response solutions for any physically realistic input function u(t).

It is of interest to note that in MATLAB, the most common definition of convolu-
tion is a type of multiplication of two vectors. If the vectors are the coefficients of two
polynomials, then MATLAB convolution amounts to the multiplication of the two poly-
nomials. Consider, for example, the following product of two polynomials in s:

F,(s)x F,(s) = (25 +35 +5)x (45 + 6) = 85° + 245 + 385 + 30

The following are MATLAB operations that execute this multiplication, using the conv
command, and the result':

>> F1=[2 3 5];F2=[4 6];F3=conv(F1,F2)
F3 =
8 24 38 30
Similarly, MATLAB defines deconvolution as a type of division of two vectors. If the

vectors are the coefficients of two polynomials, then deconvolution amounts to the divi-
sion of one polynomial by the other. The MATLAB command is deconv.

6-2 General solution of the standard stable 1% order ODE + IC by application of the
convolution integral

From Eq. (3-7), we have for stable 1% order systems:
ODE +IC: x+(l/z,)x=bu(t), x(0)=Xx,, find x(t)fort>0 (6-4)

Solve by first taking the Laplace transform,

! See also the description at the end of Section 8-11 of the relationship between the convolution sum and
multiplication of polynomials.
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L[ODE]: sX(s)— X, + @/z,)X(s) =bU(s)
Fi(s)

Fa(s)
= X(s5)=—20 +b[s+1l/TjU(s)

s+l/z

Take the inverse transform, using Eq. (2-14) and convolution integral (6-3):

=t r=t
X(t) = Xoe*t/n +b J.e*t/rlu(t —T) dr = Xoeft/n +b J'ef(t—r)/r1 U(Z’) dr (6-5)

=0 =0

Equations (6-5) are general solutions of problem (6-4) applicable for any input u(t).> For
both forms, the first term is obviously the initial-condition (IC) response and the second
term is the forced response. In applications with specific u(t) functions, the second form
of the forced-response integral on the right-hand side of (6-5) is used more commonly
than the first. The first form is also valid, but the functional nature of u(t — 7) can
sometimes be difficult to interpret correctly.

The forced-response integrals in (6-5) are called convolution integrals, as in (6-1).
They are also sometimes known as superposition integrals, because, as is shown in
Section 8-10, they can be derived as the linear superposition of responses to differentially
small inputs.

In Egs. (6-5), constants z, and b should be expressed in terms of the physical con-
stants of the actual system analyzed, such as mass m, damping constant c, etc.

6-3 Examples of 1% order system response

Example 6-1: response of a 1% order system to piecewise continuous input functions

It is often the case that the input to a system is described by different functions,
each function in effect over a different time period for t > 0. For example, the following
equation and drawing represent an input consisting of two different general functions:

0, t<0 O o, 4w
u(t) =4u,(t), 0< t<t, >
u, (), <t \

The general forced response to this 06 t N~ U

type of input can be expressed nicely

% Note, however, that solutions (6-5) are not valid for a non-standard 1 order ODE, e.g., one with right-
hand-side dynamics such as Eq. (5-17).
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in terms of convolution integrals, but we must recognize that it requires two different
equations, and we must consider carefully the limits of the definite integrals. First, for
the time interval 0 <t <t,, it is clear that the second form of Egs. (6-5) is directly appli-

cable, with u(t) = u,(t):

=t
X(t) = X, " +b J.e*(”’/“ u,(r)dr ,for 0<t<t, (6-6a)

=0

For the response during the second time interval, t > t,, the definite integral in the second
form of (6-5) still must be evaluated over the limits 7 =0 to z =t >t,, which means that
both u, and u, need to be integrated, but each only over the time interval for which it is
defined:

=t =t
X(t)=x,6 V" +b j e ©ny (r)dr+ je-“-f)/fl u,(r)dz| ,fort>t, (6-6b)

7=0 =t

Note especially in (6-6b) that 7 =t; is both the upper limit of the integral that involves u,
and the lower limit of the integral that involves u,. Equations (6-6) are especially useful
for response to a pulse of limited duration, as is illustrated in the next example.

Example 6-2: response of a mass-damper system to a half-sine pulse

We consider again the problem for velocity of a mass moving on a viscous film,
which is solved by basic ODE methods in Section 1-5:

ODE+IC: mv+cv=f (t), v(0)=v,, findv(t)fort>0 (6-7)

Fsin(zt/t,)=Fsinot where o = 7/t,,0<t<t,

f () =
0t, < t

Here we have u(t) = f,(t), z; =m/c, and b =1/m. Relative to the notation of Example
6-1 above, u, is the half-sine pulse, and u, is zero.

While the pulse is active, 0 <t <ty, Eq. (6-6a) becomes

F =t ]
v(t) =v,e '+ —e ¥ Je’/’l sinor dr (6-8)
m
7=0
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We can evaluate the definite integral by several different methods: find it in a table of
definite integrals (or indefinite integrals, but don’t forget the lower limit of integration);
or integrate by parts twice; or evaluate it with software that does symbolic manipulation,
such as Mathematica or recent versions of MATLAB. The result is

t

J:er/rl sinowrdr = Lz[et/’1 (sin wt — w7z, cos t )+ a)Tl] (6-9)
2 1+(a)z'1)

Combining (6-8) and (6-9) gives the velocity during the pulse duration:

v(t) = v0+EL2 e‘t/’1+5%(3in ot —or,coswt ), 0<t<ty (6-10)
c 1+(a)rl) c l+(a)rl)

At the instant t = ty when the pulse goes to zero, @ty = 7, so the velocity then is

V(ty) =1V, +E—ml R +E—m1 5 (6-11)
¢ 1+(wr,) ¢ 1+(wr,)
For the time after the pulse goes to zero, ty <t, Eq. (6-6b) becomes
F =ty r=t
v(t) =v,e " +—et/“[ .[ef/fl sinwr dr+ jef/fl x 0 dr} (6-12)
m =0 T=ty

With use again of Eqg. (6-9), and of some algebra, (6-12) becomes

T,

1+e" )=v(t,)e "W/ for t>t 6-13
1+(ml)z( )=v(t,) . (6-13)

F
vit)=v,e '+ —e ¥
c

The final form on the right-hand side of (6-13) uses Eqg. (6-11), and it shows that the post-
pulse response is a pure exponential decay, which we would expect physically.

Example 6-3: response of reaction wheel spin velocity to a ramp input moment

From Section 3-3, we have the equation of motion for spin velocity p(t) of a reac-
tion wheel (Fig. 3-1) with rotational inertia J, bearing viscous damping constant c,, and

applied motor torque M _ (t):

p+c_9p=l|\/|m(t) = p+ip:me(t) where Tl=i and b=l (3-2) repeated
J J 7, Cy J
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Let the initial velocity be zero, p(0) = p, = 0. Let the motor torque have the form of a
ramp:

Y
Mm(t) i Mm(t)zl\:lrt,tzo
0 0 ot

Then the second form of general solution (6-5) becomes

=t 7=t
1 M
— ~t/7 - (t-7)/7 _ - (t-7)/1, r
p(t) = poe +b;=[oe Mm(r)dr——J I e o rdr

=0 r

=t
= p(t)=%%e‘/ﬁ [e7" rdr
=0

r

We can evaluate the integral easily using integration by parts:

=t U dv

A —— " 7=t )
I re’n dr:[rxrle’/’l];()— jrleT/Tl dr=r,te'" -7 (et/’1 —1)
7=0 =0

Therefore, the total solution is

p(t) M v [rltet/’l —rlz(e v —1)]: M, [t—rl(l—e‘t/’l )] (6-14)
J t, Cyt,
By sketching a plot versus time of the dimensionless spin velocity Mpﬁ you can eas-
r 14

ily show that, as t — oo, this quantity is asymptotic to the ramp function (t —z,)/t, .

6-4 General solution of the standard 1* order problem: an alternate derivation

Consider again the general standard 1% order problem, Eq. (1-1), in which u(t) is
the known input (excitation), x(t) is the output (response) that we seek, and a and b are
constants, with a not necessarily negative:

X—ax=Dbu(t), with IC x(t;) assumed known, find x(t) for t, <t (6-15)

(We revert to the more general form now, rather than our stable standard 1% order ODE,
(3-7) or (6-4), in order to make this derivation more general, applicable for any physically

6-6
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realistic value or polarity of the constant a.) This problem is a bit more general than we
have considered previously, since we allow the initial time t, to be different from zero.
In order to expedite indexing of array quantities in computer algorithms, we use subscript
1, instead of 0, to denote the initial time and the initial value: x(t,) = x, .

To find a general solution of this 1% order problem (ODE plus IC), we use the ex-

ponential function e* and closely related functions, for which we have the following ba-
sic identities:

e xe M =" gnd e xe ™ =’ =1 (6-16)

—at

We begin the general solution by multiplying the ODE by the integrating factor e ™,
recognizing that this will make the left-hand side a perfect derivative:

e (x-ax=bu) = e x-e*ax=e"bu = %(ea‘x)z e 'bu
Now we integrate the multiplied equation from the initial time t, to an arbitrary time in-
stantt > t,, using z as the variable of integration:
=t t

[ di[e-afx(r)]drzTe-afbu(r)dr - e‘a‘x(t)—eatlx(tl):rjze‘a’bu(r)dr
T

7=t =t r=h

Finally, we multiply through by e*, apply identities (6-16), move the IC term to the
right-hand side, and arrive at the exact, general solution:

=t
x(®) = Vx() + [e*Vbu()dr, t, <t (6-17)

=t

The term e* need not be inside the integral, since it is not a function of the integration
variable z. Constant b also need not remain inside the integral. Solution (6-17) is com-
parable to, but more general than, the second form of convolution solution (6-5).

6-5 Numerical algorithm for the general solution of the standard 1% order problem

We seek solutions of (6-17) in time-series form, that is, at discrete, equally spaced
instants in time. Accordingly, we define the following notation that employs descriptive
subscripts:

t= [ th=ti+At [t3=t+At | ... | th=th 1+ AL | ther =t + At
X(t) = | xq X2 X3 Xn Xn+1
ut)= | up Uz Us Un Un+1
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Conceptually, we begin with the known values at t = t;, then integrate (6-17) from t; to t;
=t; + At, in which we define At as the constant time step; we now have known values at
t = t,, SO we can integrate again to go from t, to t3 = t, + At. We proceed in this manner
from one time to the next until we have determined values of x(t) at discrete instants in
time over the complete time interval of interest. From (6-17), the exact, general equation
for stepping from time instant t, _; to the next instant t, is

=t,
=ity 4 j e*“™pu(r)dr (6-18)

=t 4

X

n

By comparing Eq. (6-18) with Eq. (6-5), observe that the integral in (6-18) is clearly a
forced-response convolution integral.

Up to this point, the solution is exact. But now we introduce what, in general, is
an approximation. We assume that u(z) varies so little over the integration time step At
that it introduces only small error to approximate u(z) as being constant over At, with its
value remaining that at the beginning of the integration time:

u(g) = u(th-1)=un-q forty_; <7<ty (6-19)

Using approximation (6-19) and t, = t, _ 1 + At, we rewrite (6-18) with the convolution
integral expressed in a more easily integrable form:

r=t,_; +At
X = eaAtXn—l n J‘ea(t,HJrAth) dr bun—l

=ty

We change the variable of integration, & =t , + At —7, so that the integral becomes
£=0 E=At
.fea‘f(— dé)= jea§d§ = é(eaAt -1)
E=At £=0

Finally, with approximation (6-19), solution (6-18) can be written as

X =y 4 i(eam “1)bu,_, = ¢x,, + U, , (6-20)

Equation (6-20) is a recurrence formula that is easy to evaluate numerically from one
time instant to the next, especially since coefficients ¢=e** and y = (eaAt —1)b/a =
(¢—1) b/a are invariant once At has been selected. Note that if the input u(t) is a con-

stant, as for a step function, then u, = constant foralln=1, 2, ... , in which case (6-20) is
an exact solution because Eq. (6-19) is exact, not an approximation. Furthermore, if the
actual u(t) is piecewise-constant, then (6-20) can be applied to produce exact results,
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provided that At is chosen individually for each interval of constant u(t) such that the
interval is an integer multiple of its own At.

To illustrate the application of Eq. (6-20), we re-visit the numerical solution of
Section 1-6, the velocity response of a mass-damper system to a half-sine force pulse.
M-file MATLABdemo11.m of Section 1-6, which calculates the response exactly, provides
the benchmark for evaluating the approximate response calculation. The MATLAB
script M-file to calculate and graph the approximate response is:

%MATLABdemo61.m
%Mass-damper system approximate response to IC + half-sine pulse forcing
m=5;c=2; %system mass & viscous damping coefficient, Sl units
a=-c/m;b=1/m;
F=18;td=7.5; %half-sine pulse, amplitude (N), pulse duration (sec)
w=pi/td; %circular frequency of half-sine pulse (rad/sec)
Dt=1.5; %time step for recurrence calculations
t=0:Dt:24;Lt=length(t); %array of time instants for recurrence calculations
phi=exp(a*Dt) ;gam=(phi-1)/a*b; %constants in recurrence formula
for n=1:Lt %time series array of input force pulse

if t(n)<=7.5

x(n)=F*sin(pi*t(n)/td);
else
x(n)=0;

end
end
v=zeros(1,Lt);v(1)=3.3; %initialize velocity array, initial velocity (m/sec)
for n=2:Lt

v(n)=phi*v(n-1)+gam*fx(n-1);
end
plot(t,v, k") ,bar(t+Dt/2,¥x/10,1, k")

Note that the implementation of recurrence formula (6-20) in MATLABdemo61.m is a
simple three-line for-loop.

The figure on the next page was produced by combining the results of M-files
MATLABdemo1l1.m and MATLABdemo61.m, and then adding explanatory labels and editing
the bar graph. For this example, time step At was intentionally chosen to be unreasonably
large, At = 1.5 sec (compared with system time constant 7, =2.5 sec), in order to
produce clear distinctions between the exact and approximate dynamic variables.
Nevertheless, the approximate calculation of velocity shows the correct trends
qualitatively and is not highly inaccurate quantitatively. If the calculations were repeated
with a more reasonable time step, At < 0.17,, then the results would be much more
accurate (homework Problem 6.4).

Observe also in the figure on the next page the bar graph of approximate force
f. (t) used in Eq. (6-20), which is the graphical representation of approximation (6.19).
Because of its piecewise-constant character, this is sometimes called a stairstep
approximation. This approximation introduces a time delay or lag on the order of At into
the approximate input. This artificial time delay is obviously transmitted to the
calculated approximate response.

6-9
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Fesponse of mass-damper system to IC + half-sine pulse farcing
B I I I I I
Exact wit) ! ! !

Approximate v(t) calculated fram
recurrence formula (B-20)

Actual Piecewise-constant approximation of force
force pulse pulse used in recurrence farmula (B-20)
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It is interesting and possibly useful to observe that, due to approximating u(z) as
being constant over each time step At, Eq. (6-20) is essentially IC + step response over
each At. Suppose that we were to seek an even more accurate recurrence formula than
(6-20) by approximating u(z) as varying linearly with time over each time step. In that
case, the solution would be essentially 1C + step response + ramp response over each At.
(Example 6-3 in Section 6-3 illustrates ramp response.) So the more refined approximate
recurrence formula would be (6-20) supplemented with an additional term that represents
ramp response, and we would expect that additional term to include both u,4 and u, as a
consequence of the approximated linear variation of u(z); see homework Problem 6.5.

6-10
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6-6 Homework problems for Chapter 6

6.1 Consider a mass-damper system with a suddenly applied cosine forcing function be-
ginning at t = 0, and let the mass have a known initial velocity. The complete problem
for velocity v(t) is described by the 1* order, LTI ODE mv+cv = Fcoset, t > 0, and

the 1C v(0) = v,. Use the general solution Eq. (6-5) to write an algebraic equation for the

complete solution v(t) of this problem. It will be necessary to evaluate the convolution
integral. You may use integration by parts and/or published tables of integrals, which are
highly recommended. Symbolic software (Mathematica, MATLAB, etc.) is also a po-
tential source of assistance with difficult integrals.

Answer: v(t) = {VO —%m} e n +%m(cos ot + o7, sinwt ),t>0

6.2 Consider the standard 1% order LTI ODE (of a stable physical system) for dependent
variable x(t): X+ (1/z,) x =bu(t), with IC x(0) = 0. Let the input function be the follow-
ing flat pulse of duration tg:

0, t< O
u(t)=qU,0< t< t, ,inwhich amplitude U is constant
0, t; <t

(a) Use solutions (6-6) to write two algebraic equations for the complete response x(t) of
this problem. One equation should apply for the time during which the pulse is active
(including initial and final times), 0 <t < ty, and the other equation should apply for the
time after the pulse ceases, ty < t. It will be necessary to evaluate the convolution inte-
gral.

bUz,(1-e "), 0<t<t,
Answer: x(t) =
bUz, (e CW/m —e ™), t, <t

Note that the result for ty < t can be written also as
X(t) =bUr,(1—e "/ e W/n ¢ <t

(b) Suppose that t, =z,. Sketch by hand (not by computer) a reasonably accurate time-

X(t)

1

history plot of the nondimensionalized output versus time over the time interval

0<t<57,.

6-11
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6.3 Consider the equation of motion for spin velocity p(t) of a reaction wheel (from Ex-
ample 6-3 in Section 6-3): p+(c,/J)p=@1/I)M,,(t), with IC p(0) = 0. Let the
applied motor torque be the following sawtooth pulse:

O, t< 0 Mr ____________ : ________
M., (1) = '\tllft,03t<tr Mn(t) i
0 t <t i
0 L

0 tr t

Use solutions (6-6) to write two algebraic equations for the complete solution p(t) of this
problem. One equation should apply for the time during which the pulse is active (in-
cluding initial and final times), 0 <t <t,, and the other equation should apply for the time
after the pulse ceases, t; <t. You may and should use without re-derivation the appropri-
ate results from Example 6-3 in Section 6-3, in which the applied moment is a per-
manently increasing ramp.

6.4 Use MATLABdemo61.m in Section 6-5 as a template (which must be revised and sup-
plemented with labels, grids, etc.) to calculate approximately and graph the velocity re-
sponse of the same mass-damper system with the same IC, but now specifying smaller
(than in Section 6-5) calculation time steps: At = 0.5 sec and At = 0.25 sec. You should
find that the calculated dynamic response becomes progressively more accurate as you
reduce At .

6.5 (a) Derive a more accurate recurrence formula than Eq. (6-20) by approximating
u(7) as varying linearly with time over each time step. In other words, use in Eq. (6-18)
the linear approximation

n-1 —

Tt
u(r) =u, +T"‘1(un —un_l) fort, , <7<t

instead of the simpler approximation (6-19). By completing the integration, show (in all
detail, as if the answer were not given) that the refined version of Eq. (6-20) is

X, :¢Xn—1 +yu., +ﬂ(un _un—l)

in which ¢ and y are the constants defined in (6-20), and S = %—E
a a

(b) Revise M-file MATLABdemo61.m of Section 6-5 to implement the refined recurrence
formula of part (a). Using exactly the same numerical data as in the original program,
run the revised program and plot the approximate time history v(t). The approximate
time history calculated by the refined recurrence formula should be substantially more
accurate than that calculated by Eq. (6-20).

6-12



Chapter 6 General time response of 1** order systems by application of the convolution integral

6.6 Consider the standard 1* order LTI-ODE of a stable system, Eq. (3-7), for dependent
variable x(t): %+ (1/z;)x =bu(t). Let the initial condition be zero, x(0) = 0, and let the
input function be a declining ramp, u(t) = c(t, —t), in which c, a dimensional constant, is
the downward slope of the ramp, and t; is the time at which the input passes through zero.

(a) Evaluate in all detail the convolution integral in Eq. (6-5) to show that the exact
response solution is x(t) =bcz[(t, + 7,)(1-e V) —t]= bCTl[tZ 7, —t—(t, + rl)e“/’l] .

(b) Let the numerical parameters be » = 2.5 sec, t,=10sec,b=3.5andc=1(bandc
in consistent units). Write a MATLAB program, or adapt the code in Section 6-5 that
executes the recurrence formula, to calculate and plot an approximate numerical solution
for x(t) over the time interval 0 <t < 10 sec. Adjust the time-step size At and the number
of time steps over the 10-sec interval in your code until the graph of your approximate
solution appears very similar to that of the corresponding exact solution from part (a).
Submit your MATLAB code and your final graph of response.

6-13
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Chapter 7 Undamped 2™ order systems: general time response;
undamped vibration

© 2016 by William L. Hallauer, Jr.

The ideal 2™ order mass-damper-spring system was introduced in Section 1-9,
and a theoretical response solution for an undamped system by elementary ODE methods
was demonstrated in Section 1-10. In this chapter, we explore ideal undamped 2™ order
systems in greater detail, deriving theoretical response solutions by means of Laplace
transformation with application of the inverse convolution transform from Chapter 6.
The final section of this chapter is an introduction to vibration of real structures,
including actual laboratory data.

7-1 Standard form for undamped 2" order systems: natural frequency

For the mass-damper-spring (m-c-k) system of Fig. 7-1, the ODE of motion (3-20)
derived from Newton’s 2™ law, with use of

the FBD in Fig. 3-9, is . |—>x(t)
mi+cx+kx=f.(t) (7-1) —/\V /= . Sx(?)

If we neglect damping by setting ¢ x I
¢ @] ©]

= 0 in Eq. (7-1), then we have an ideal (not
real) undamped mass-spring (m-k) system. Figure 7-1 Mass-damper-spring system
This undamped passive system is not fully

realistic because every passive physical system is afflicted with some type and degree of
energy dissipation, albeit very small in some systems.! Nevertheless, it is useful to study
the undamped system because it reveals some important fundamental characteristics of
2" order systems. From Eq. (7-1), the ODE for the m-k system is:

k f.(0)
. (7-2)

mx+kx=f () = 5c'+£x:lfx(t):—
m m m

Let’s use Eq. (7-2) to develop the standard form that will apply for undamped ond
order systems more generally. First, we define algebraically the natural frequency of
undamped vibration as the positive square root of the quotient of the stiffness and mass
values (both of which are positive in most passive systems):

o = |~ (7-3)

"In an active system with an external source of energy and feedback control, it is possible that the damping
might be nullified; active systems are analyzed later, beginning in Chapter 14.

7-1
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The natural frequency is very important physically: it is shown in the next section that an
undamped 2" order system tends to vibrate (oscillate, pulsate, shake, quiver, ...)
periodically at circular frequency @, radians per second. Next, we define the standard

input quantity
1
u(t)E;fx(t) (7-4)

So now we define x(f) as representing any appropriate output quantity (not necessarily
just position as in Fig. 7-1), and we re-write (7-2) in standard form ( standard in this
book, at least, and mostly standard in engineering literature):

ivo x=0,u(t) (7-5)

From Eq. (7-5) we see that input u(¢) has exactly the same physical dimensions as
output x(#). In fact, we can identify u(#) as being the pseudo-static output, x,(?); that is, if

x(#) varies slowly enough that X is negligible in comparison with a)nzx , then ODE (7-5)
reduces to a simple algebraic equation, a)nzx ~ a)nzu(t), the solution of which is the

pseudo-static response, x(f) = u(f) = x,,(f). This response is called pseudo-static because
it is not necessarily static (constant over time), but it varies slowly enough that the second
derivative of response is negligible.

Example: the simple pendulum, a rotational 2™ order system

You have probably seen the pendulum of a grandfather clock. The ideal simple
pendulum is very similar: there is a bob of mass m attached to the lower end of a rod of
length 7, the upper end of the rod being supported at frictionless
hinge H. We assume the rod to be rigid and to have negligible
M) inertial moment. The pendulum hangs downward and swings
length ¢ side-to-side with angle &) in the plane of the paper, subject to
the acceleration of gravity, g. For completeness, we include an
agent that can impose onto the pendulum an arbitrary applied
moment M(¢) about H. Because we neglect the inertia of the

m  rod, the rotational inertia of the pendulum about H is J = m/” .

mg Newton’s 2™ law for rotation about H is
¥(all applied moments about H) =.J x rotational acceleration = m¢>@

= M(@)-mgx/lsin@=ml*0 = ml*0+mglsind=M()
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Due to the sin 8 term, the exact ODE is nonlinear. However, let’s consider only small
rotational angles, 6’| <=~ 10°, for which sin 8 = @ in radians. This restriction linearizes

the ODE:

mG+mgt=m@) = G+20=8MO _ G 020- 0 u
l ! mgl

In the standardized form of the linearized ODE, the natural frequency is @, = /g/¢ , and
the standard input quantity (also the pseudo-static response) is u(?) = 6, () = M (¢) /mgl .
For the pendulum at small rotational angles, the term mg/@ is the restoring moment that

opposes motion from the unforced static equilibrium position, & = 0; essentially, gravity
plays the role of a rotation spring. See homework Problem 7.4 for another interesting
pendulous rotational system, a balloon carrying a basket.

7-2 General solution for output x(t) of undamped 2" order systems

Let’s solve Eq. (7-5) for output x(¢), given any physically realistic input u(z), for
time ¢ > 0, and given appropriate initial conditions at # = 0. We use Laplace transforma-
tion with application of the inverse convolution transform from Chapter 6. To simplify
the notation, we denote X(s) = L[x(¢)]. Transforming (7-5) with use of Eq. (2-17) gives

$2X(s) = sx(0) = x(0) + @,” X (5) = @, L[u(1)] (7-6)

Equation (7-6) tells us that we need two initial conditions, one on the output and one on
the derivative of the output, for this 2" order ODE. Accordingly, we simplify the writing
with the definitions

ICs for 2™ order ODE: x, = x(0), initial “position”; x, = x(0), initial “velocity” (7-7)

Solving Eq. (7-6) for X(s) with the use of notation (7-7) gives

£ (s)
. Fy(s)
s X w @ —~
X(8)=x, 55+ ——"—5+0,———5L[u®)] (7-8)
ST+, @, s +o, s+,

We invert Eq. (7-8) using transforms (2-30) and (2-31), and the inverse convolution
transform (6-3), to find the two equivalent general solution equations for the standard
undamped 2™ order ODE, Eq. (7-5), with ICs x(0) = x, and x(0) = x,:

IC response forced response
X =t
x(¢) = x, cos,t + a)—osin o+ o, Isin o, txu(t—r1)dr (7-9a)
n 7=0
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IC response forced response
v T=t
Xy . .
x(t) =x,cosw,t+—sinw,t+ o, '[sm o, (t-1)xu(r)dr (7-9b)
a)” =0

7-3 Simple IC response and step response of undamped 2" order systems

We find in this section two important special case solutions of Egs. (7-9a,b): (1)
pure initial condition response for zero input, u(f) = 0; and (2) pure step response with
both initial conditions being zero.

For the case of pure initial condition response (also called free vibration), with
u(t) =0, Egs. (7-9a,b) become

x(t) = x, cosa)nt+ﬁsina)nt,OSt (7-10)
@

n

Let’s use a trigonometric identity [see Eqs. (4-6)-(4-8)] to combine the two sinusoids of
(7-10) into a single term. The following definition will reduce the writing required and
also will turn out to be physically meaningful:

‘xmax = \/'X’-O2 + (XO /a)n )2 (7_1 1)
= x(t)=x,, {cos 1% ( %o j —sinw, ¢ x [Mﬂ
xmax xmax
= x(t)=x,, cos(®+¢),0<t, ¢=tan (Mj (7-12)
Xo

Figure 7-2 is an annotated graph of response (7-11)-(7-12) for positive values of
the ICs, x, >0 and x, > 0. Clearly, the output is a pure sinusoid of amplitude xm.x and

1
1
l
n

0 oo wo 2nlo_ o o timet

Figure 7-2 1C response of an undamped 2" order system
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phase angle ¢. This form of response is called free vibration, because it occurs without
any forcing input, u(¢#) = 0. The circular frequency of vibration is @, rad/sec, the natural
frequency defined in Eq. (7-3). The cyclic natural frequency is f, = @./27x cycles/sec
(Hz), and the natural period annotated on Fig. 7-2 is T, = 1/ f,, = 24/ @, sec/cycle. Free
vibration at the natural frequency is one of the most important characteristics of un-
damped systems and, more realistically, of lightly damped systems. Damped 2™ order
systems are discussed in Chapter 9.

For the case of pure step response, we set the ICs to zero, and we define the input
to be a step function at time ¢ = 0, with step magnitude U:

u(t)=UH(t) (7-13)
The appropriate form of the general solution to use in this case is Eq. (7-9a),

=t =t =t
x(t)=o, Isina)nrxu(t -7)dr =0, .[sin w,txUH(t-71)dr=0,U J-sin w,tdr
7=0 7=0 7=0

Here we used the property of the unit-step function that H(¢ — 7) = 1 for t — 7 > 0 (from
Eq. (2-27) and Fig. 2-3); this inequality obviously is satisfied for 7 over the limits of the
definite integral. For most applications of the convolution integrals in Egs. (7-9a,b), the
form in (7-9b) is preferable because the integrand term u(¢ — 7) in (7-9a) is usually diffi-
cult to interpret and/or awkward to handle in the integration. This case, however, is an
exception since u(t — 7) is easy to interpret and is extremely simple. Completing the inte-
gration gives

x(t) = a)nUTJ:tsin ®,7dr = a)nUT(
=0 =0

T

_—ljd(cos w,7)=-Ulcosw,z], = ~U(cosm,t 1)
)

= x(t)=U(l-cosw,t),0<t (7-14)

Equation (7-14) is graphed for a few cycles of response in Fig. 7-3. The response
is sinusoidal and periodic with the system natural period 7}, as is the free-vibration IC

S N I —
O e
ol & iNISEF PN

0 = 2.7, 2L 4L timet

Figure 7-3 Step response of an undamped 2" order system

7-5



Chapter 7 Undamped 2" order systems: general time response; undamped vibration

response. However, (7-14) is forced response, and the input u(¢) is non-zero and constant
for ¢ > 0, so this step response vibrates around a non-zero mean value (the pseudo-static
output value x,, = U ), oscillating between 0 and 2U. In contrast, the free-vibration IC
response of Eq. (7-12) and Fig. 7-2 vibrates around the zero mean value, oscillating
between —Xmax and +Xmax.

7-4 Discussion of the physical applicability of step-response solutions

The concept of step response in physical applications can be bothersome if one
harbors the misconception that step response is valid only if the input is applied in an

u(f) abrupt, discontinuous manner, as on the drawing at left.
U This misconception is natural and honest because of
the mathematical definition of the step function, Eq.

0 (2-26) and Fig. 2-2. If we apply that strict definition to
0 t the step input analyzed in Section 7-3, without any

recognition of the nature of the initial conditions, then
the time history of the input would have to be a discontinuous step function.

However, it is instructive to consider also the role of initial conditions in step re-
sponse. Step response solution (7-14) is derived for zero ICs, x, =0 and x, = 0. Imag-

ine that some powerful external agent enforces these ICs for time # < 0, then at ¢ = 0, the
external agent abruptly releases its hold on the system. Under this circumstance, it does
not matter whether the input u(#) jumps discontinuously from 0 to U at ¢t = 0, as in the

drawing above, or the input has value U both after and

u(?) before ¢ = 0, as in the drawing at left. An input value
U of U before ¢ = 0 could not produce any effect on out-
put x(f), because it could not overpower the external

0 agent that enforces the initial conditions before and
0 t right up to the instant t = 0. A practical example to

which we can relate is an airplane sitting on a runway,
preparing to taxi for takeoff. With the brakes firmly engaged, the pilot increases engine
thrust, but the airplane is held motionless by the brakes. In this example, the brakes play
the role of “powerful external agent” that enforces the initial position and zero initial ve-
locity, and the engine thrust plays the role of input quantity. After engine thrust has
reached acceptable takeoff level, the pilot releases the brakes (at # = 0), and the airplane
accelerates into takeoff taxi. The engine thrust exists before # = 0, but it produces no
taxiing motion then because the brakes completely restrain the airplane.

The conclusion of this discussion is that step response is a valid physical solution
even if the input is constant before and after the initiation of motion (i.e., is not applied
strictly like a mathematical step function), provided that initial conditions enforce the
motion prior to the instant (usually # = 0) when the input becomes effective.
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7-5 Dynamic motion of a mechanical system relative to a non-trivial static equilib-
rium position; dynamic free-body diagram

Consider the mass-spring system depicted in Fig. 7-4 (on the next page), which is
representative in many respects of some real mechanical systems. The system is oriented
vertically in a gravity field with acceleration of gravity g. Moreover, let’s suppose that
the spring is close-wound: a helical extension spring which, in its unstretched state, is
wound with its coils forced into contact with each other, such that an initial tension force
F is required to break the coil contact and allow the spring to begin stretching (Shigley
and Mitchell, 1983, p. 449). Figure 7-4 illustrates three possible states of such a system.
The weight of mass m is W = mg, and it is a constant force vector acting downward
through the center of gravity of the mass. The spring has stiffness constant & and initial
tension £, so that the spring law is f, = F, +ky for f, > F;, where y is spring stretch
vertically downward. State 1 of Fig. 7-4 shows the mass supported statically by an exter-
nally applied force W acting upward, with the spring unstretched and therefore exerting
no force on the mass. We define y,(¢) as the total vertical motion of the mass (positive
downward in this example, but not necessarily always so) relative to the unstretched-
spring position. Now, if the externally applied upward force is slowly reduced, the
weight of the mass is gradually transferred to the spring, and the spring stretches (pro-
vided that W > F)), lowering the mass. State 2 of Fig. 7-4 is the static equilibrium state

that results after the externally applied upward force shrinks to zero, with the spring
stretched by the amount y_ from the State 1 position. From the FBD of State 2, the equa-

tion of vertical static force equilibrium is

W —F,
F+ky =W = y = P - ,for W> F, (7-15)

State 3 of Fig. 7-4 is a condition of dynamic response, with the dynamic force
S, () acting on the mass. We define the dynamic position y,(¢) as the motion relative

to the static equilibrium position, y, of Eq. (7-15). We see from Fig. 7-4 that the total
translation (from the unstretched-spring position) and the associated acceleration are

v =y +y,00 = 3 O=53,0) (7-16)

The acceleration equation reflects the constancy of y . Let’s use the FBD for State 3 to
write Newton’s 2™ law for vertical translation:

S(Forces), = mp, = f,()+W —(F, +ky,) = mj, +ky, =f,@)+W-F, (7-17)
Now use Eq. (7-16) to eliminate y,(¢) from Eq. (7-17):

my, +k(y, +v,)=f,(O)+W-F, (7-18)
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1. Spring 2. Static 3. Dynamic
unstretched equilibrium response
k k k

1, I |
R 2 f
|

FREE-BODY DIAGRAMS:
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v 1

T (@

Figure 7-4 Static and dynamic positions of a hanging, spring-supported

weight

Next, eliminate ky. =W —F,, Eq. (7-15), from Eq. (7-18) in order to express the ODE in
terms of the motion relative to the static equilibrium position, the single dependent vari-
able, y,(1):

my,+ky, =fy(t) (7-19)

It is obvious physically that Eq. (7-19) is valid provided the upward dynamic motion does
not exceed the static spring stretch: y, () =y, +y,()>0,ie, y,(t)>—-y,.

Equation (7-19) is identical in form to Eq. (7-2), which applies for a mass-spring
system oriented horizontally, with no involvement of a close-wound spring or gravity.
The only difference is that the unknown in (7-19) is not the total motion, but, instead, the
motion relative to the static equilibrium position established by gravity and the spring
initial tension. Consider the dynamic free-body diagram (DFBD) shown in Fig. 7-5 on
the next page, which is similar to that of State 3 in Fig. 7-4, but without weight W and
with only the spring force relative to the static equilibrium position. These changes from
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k
the FBD of State 3 in Fig. 7-4 are equivalent to eliminating T e
ky, =W —F, from Eq. (7-18) in order to obtain Eq. (7-19). Clearly,

applying Newton’s 2" law to the DFBD Fig. 7-5 leads again, and much
more easily, to Eq. (7-19). The important conclusion here: if we want
to solve only for the dynamic motion y,(f) relative to the static
equilibrium position, not the total motion relative to the spring- l 10
undeformed position, then we should use a DFBD from which all static

influences (weight and spring initial tension in this case) have been
eliminated. The DFBD should include only dynamic forces (and/or
moments) relative to the static equilibrium position.

m

Figure 7-5
Dynamic free-
body diagram

This conclusion is useful more generally because, in many situations, we are, in-
deed, interested primarily in the dynamic response relative to the static equilibrium posi-
tion. Homework Problem 7.3 is one example. Moreover, this conclusion based upon the
simple mass-spring system of Fig. 7-4 has broad applicability to other mechanical sys-
tems. The subjects of Chapters 11 and 12 are more complex rotational systems and
higher-order mechanical systems. It is usually convenient when analyzing those systems
to deal only with the simpler DFBDs and ODEs that we use when we solve only for the
dynamic motion relative to the static equilibrium position.

However, there are at least two classes of mechanical systems for which we must
include (in FBDs and ODEs of motion) the weights of massive components: (1) pendu-
lous systems for which gravity provides a spring effect, such as the simple pendulum ex-
ample in Section 7-1 and the balloon-basket vehicle of homework Problem 7.4; (2)
systems for which initial conditions and/or dynamic inputs (forces, moments) are defined
relative to the undeformed-spring state, for example, the airplane landing contact of
homework Problem 7.5.

Section 7-6 Introduction to vibrations of distributed-parameter systems

A system such as the mechanical mass-dashpot-spring system of Fig. 7-1 is often
called a lumped-parameter system. This descriptive term is used because the essential
physical features are idealized to be spatially concentrated: in Fig. 7-1, all of the mass is
idealized to reside in one physical element, all of the damping in another, and all of the
stiffness in yet another. Some engineering systems can be modeled accurately using
idealized lumped elements; but many real systems cannot, and these latter are called
distributed-parameter systems. A structural beam, such as that shown in Fig. 7-6 on the
next page, is a prototypical distributed-parameter mechanical system. It is obvious that
the mass of this beam is not concentrated at a single point in space, but instead is
distributed throughout the beam’s volume. Similarly, the flexibility of the beam does not
reside in a discrete spring, but also is distributed over the entire spring. Finally, although
there is very little damping in this particular system, it also is distributed throughout the
beam in the forms of molecular “friction” within the deforming beam and fluid dynamic
drag on the beam’s surface if the beam is immersed in air, another gas, or liquid.
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Figure 7-6 Clamped uniform aluminum beam with nominal cross section 2 inch x
1/8 inch. Test configuration: beam clamped at left between thick steel plates,
leaving 10.0 inches of overhang; non-contacting proximity (displacement) sensor
over right tip; bonded onto the beam’s right tip is a small, thin, steel plate, the
“target” in which the proximity sensor induces eddy currents.

Figure 7-7 is an actual record of motion of the beam in Fig. 7-6 in response to a
particular initial condition: the tip of the beam was bent upward statically, then
released.’

Response of clamped beam tip to initial tip translation
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Figure 7-7 Initial-translation dynamic response of the beam in Fig. 7-6, as detected
by the proximity sensor.

The subsequent time response was directly analogous to the theoretical IC response
shown in Fig. 7-2, with positive initial deflection, y, >0, but zero initial velocity,
v, =0, »(¢) being vertical translation, positive upward, of the beam tip relative to the

static equilibrium position under gravity loading. Note in Fig. 7-7 that the character of
the measured response appears very close to that predicted theoretically in Eq. (7-10) for
an undamped 2" order system, y(t) =y,cosw,t. However, we can detect by detailed

analysis of the data in Fig. 7-7 the following very small differences between actual and

? In practice, this procedure is often called rwang testing (also snapback, step-relaxation, and pluck test-
ing)—see homework Problem 9.4 for a more detailed discussion.
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theoretical responses: (i) slight reductions in amplitude from one cycle to the next, due to
the very light system damping and to an imperfect release of the beam from its static
initial deformation; (ii) a slight eccentricity of the vibration relative to the zero-translation
position, due to a small instrumentation error, which is almost unavoidable in
experimental measurements; and (iii) almost imperceptibly small distortion of the wave-
form shape relative to a perfect cosine. (More easily observed distortion appears in Fig.
7-9, which is discussed below.) This small waveform distortion occurs because the beam
is not a perfect 2" order, lumped-parameter system; in reality, the beam is, mathemati-
cally, a much more complicated distributed-parameter system. Nevertheless, it turns out
that in many circumstances, including this particular one, we can approximately model
distributed-parameter structures as 2" order systems, with acceptable accuracy for many
engineering purposes.

Careful study of the experimental data in Fig. 7-7 shows that the time between
any two successive peaks of the response signal, the “period” of damped vibration, is 7,
~ 0.0294 sec. The system of Fig. 7-6 is damped, so 7 is not a true undamped “natural”
period. However, theoretical solutions for mathematical models predict that a measured
period such as this for a very lightly damped system is almost equal, for all practical
purposes, to the true natural period. Therefore, in the example problems below, we shall
assume that the measured period is the system’s natural period, and so the undamped
natural frequency is f, ~1/T, = 34.0 Hz.

Figure 7-8 illustrates the spatial distribution of the beam vibrating after the same
type of initial condition as that of Fig. 7-7, but with a much greater magnitude of defor-
mation. For this edge-on photo, the shutter of the digital camera was open for % second,
during which time the beam vibrated through 8+ complete cycles. The upper and lower
limits of dynamic deformation appear as fairly distinct curved lines against the dark
background in the photo, whereas the intermediate states of deformation appear as a blur.
This occurs because the velocity of motion was zero at the extreme deformations;
therefore the digital camera’s photosites were exposed during disproportionately longer
times to the extreme deformations than to the intermediate deformations.

Figure 7-8 Edge-on, ¥z-second exposure photo of the beam of Fig. 7-6 vibrating af-
ter an initial static deformation and release of the beam tip.

Example Problem 7-1: a calculation of the “effective” tip mass of the vibrating beam.

Consider the system of Fig. 7-6. By loading the beam statically with small cali-
brated weights hanging from the beam tip, and by measuring the resulting beam-tip
downward vertical deflection with the proximity sensor, students determined a beam-tip
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average “effective” stiffness constant to be k, = 7.86 Ib/inch. With this stiffness and the
measured natural frequency f, = 34.0 Hz, we can infer a value for the “effective” tip
mass from Eq. (7-3) in the form

kg ky 7.86 Ib/inch

my, =—;= - = —— =1.72¢-4 Ib-sec’/inch
o,” Qrf,)" (Qrx34.0sec)

It is appropriate to conduct a plausibility check of this result, especially since
most of us find it difficult to relate intuitively to values of mass that are expressed in the
traditional structural system of units (see Section 3-1). Students measured the 10.00-inch
overhang of the uniform aluminum beam in Fig. 7-6 to weigh W, = 0.230 1b, and they
measured the weight of the small steel target at the beam tip as 0.13 oz = 0.0081 Ib.
Therefore, the total mass of the beam plus the steel target is

m, =W, /g =(0.238 1b) + (386.1 inch/sec?) = 6.16e—4 Ib-sec’/inch

The mass ratio is m, /m, = 0.28. In view of the photo of the vibrating beam, Fig. 7-8, it

seems physically plausible that roughly 28% of the total structural mass is effectively
involved in the vibration. This ends Example Problem 7-1.

Example Problem 7-2: calculations based upon ideal theory, nominal dimensions, and
standard material constants

Let’s calculate an estimate of the natural frequency of the beam system of Fig. 7-6
using Eq. (7-3) in the form f, =--./k, /m, . In this calculation, let’s assume that we do

not have measured data from actual hardware or instrumentation, i.e., that we have only
the type of information that would normally be available in the preliminary-design phase
of an engineering project, before even a prototype is fabricated.

First, let’s calculate the theoretical effective stiffness constant k.. From your

courses and textbooks on static structural behavior, you might be familiar with the
deformation under loading of structural members such as uniform (prismatic) beams and
shafts that are fabricated from homogeneous, isotropic, linearly elastic materials. The
theory relevant to the present situation is that for a cantilever (ideally clamped-free)
beam. From any textbook with the words “mechanics of materials” or “strength of
materials” in its title’, you can find that the effective stiffness at the tip of a uniform
cantilever beam is k, = 3EI / L’ , in which E is the material modulus of elasticity, / is the
2" area moment (also called area moment of inertia) of the beam cross section, and L is
the overhanging length of the beam. For the beam of Fig. 7-6, let’s use the standard (in
preliminary-design calculations) elastic modulus for aluminum: E = 10.0e+6 Ib/inch®.
The nominal rectangular cross-sectional dimensions of the beam are width b = 2.00

3 Examples of such textbooks, listed in the References section: Beer and Johnston, 1992; Hibbeler, 1997,
and Timoshenko and Young, 1962.
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inches and depth / = 1/8 inch, for which the theoretical 2™ area moment is = bh*/12 =

3.255¢—4 inch®. Using the overhang length of 10.00 inches, we calculate the effective
beam-tip stiffness to be

~ 3x(10.00x10° Ib/inch®)x (3.255x 107" inch*)

- 5 =9.766 Ib/inch
(10.00 inch)

kE

Next, let’s calculate an effective tip mass m,. Consider first the vibration of an
ideal uniform cantilever beam alone (i.e., without a concentrated tip mass such as the
steel target shown on Fig. 7-6). More advanced theory” shows that, for such a bare beam,
the effective tip mass vibrating at the fundamental natural frequency is 0.242672 of the
total beam mass, which we determine next. The weight of a uniform beam is W), = wAL,
in which w is the weight density (weight per unit volume), and the cross-sectional area of
a rectangular beam is 4 = bh. Let’s use the standard (in preliminary-design calculations)
weight density of aluminum, w = 0.1000 Ib/inch’, so that the weight of our ideal canti-
lever beam is W, = (0.1000 Ib/inch®)x(V4 inch?)x(10.00 inches) = 0.2500 Ib. Hence, the
effective tip mass of the bare beam alone is m,, = 0.242672xW, /g = 0.242672 x

(0.2500 1b) + (386.1 inch/sec’) = 1.571e—4 Ib-sec’/inch. To obtain an intuitively logical
estimate of the total effective tip mass, we add to m,, the mass of the steel target that is

bonded to the beam tip on Fig. 7-6: m, = m,, + (0.0081 1b) + (386.1 inch/sec?) =
1.78e—4 Ib-sec’/inch.

Finally, the natural frequency based upon ideal theory, nominal dimensions, and
standard material constants is

=37.3 Hz

1 [k, 1 \/ 9.77 Ib/inch

S =2\ me 22 \178x10 b secinch
See homework Problem 7.8 for an analysis of the discrepancy between this calculated
natural frequency and the measured value of 34.0 Hz. This ends Example Problem 7-2.

The clamped-beam system of Fig. 7-6 appears to behave very much like a 2™ or-
der system when it responds dynamically to a simple initial static deflection of the beam
tip. However, when it is subjected to most other possible types of excitation, its dynamic
response is more complicated. For example, when the beam tip was tapped lightly up-
ward with a small hammer, the tip moved vertically as shown on Fig. 7-9, next page.

4 Theory from, among many possible sources, the following textbooks on structural dynamics that are list-
ed in the References section: Bisplinghoff, ez al., 1955, Example 3-1; Craig, 1981, Example 10.3; Meiro-
vitch, 1967, Section 5-10; and Meirovitch, 2001, Example 8.4.

7-13



Chapter 7 Undamped 2" order systems: general time response; undamped vibration

Response of clamped beamn tip to a sharp force pulse imposed at the tip
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Figure 7-9 Dynamic response to a hammer tap at time t = 0 sec of the beam on Fig.
7-6, as detected by the proximity sensor.

The input force that stimulated the response of Fig. 7-9 was approximately a half-
sine pulse (as described in Sections 1-5 and 1-6) of very short duration relative to the
lightly damped period of this system, 7; =~ 0.0294 sec. In Chapter 8, theory is developed
showing that, if the system were a true undamped 2" order system, then the time re-
sponse to such a pulse would have almost a perfect sine waveform, starting at time ¢ = 0
sec. However, the waveform in Fig. 7-9 is quite different from a perfect sine waveform,;
in fact, it is closer to being the sum of many sinusoids, in the general spirit of a Fourier
series, but without the property of Fourier series that all higher series sinusoids have fre-
quencies that are integer multiples of the frequency of the first (fundamental) sinusoid.’
In the case of Fig. 7-9, the total motion consists primarily of a first sinusoid with fre-
quency 34.0 Hz, plus a second, lower-amplitude sinusoid with frequency approximately
215 Hz. The motion at 34.0 Hz represents the first (fundamental) mode of vibration, and
the motion at 215 Hz represents the second mode of vibration.

In fact, the beam system of Fig. 7-6 has many more than two modes of vibration,
each with a characteristic frequency higher than that of the previous mode. The third and
higher modes are not evident in Fig. 7-9 only because the particular pulse stimulus ap-
plied in this case did not noticeably excite those higher modes; however, they could be
excited by any number of other stimuli, such as sharp pulses applied at particular loca-
tions, high-frequency sound-pressure waves, efc. In reality, every distributed-parameter
system is a higher-than-2""-order system, and, if only lightly to moderately damped, has
many modes of vibration. For example, every acoustic musical instrument is a fluid or
structural distributed-parameter system whose distinctive sound quality is a direct conse-
quence of its particular modes of vibration.® However, except for this short descriptive
introduction, the subject of distributed-parameter systems is beyond the scope of this

> The subject of Fourier series is developed in most textbooks on advanced calculus (for example, Hilde-
brand, 1962, pages 216-226) and in most textbooks on elementary partial differential equations.

6 If you are interested in the physics of musical instruments, see Cannon, 1967, Sections 13.2-13.6, for an
excellent introduction written by an engineer for students of engineering.

7-14



Chapter 7 Undamped 2" order systems: general time response; undamped vibration

book. The subject of vibration modes appears again in Chapter 12, which deals with un-
damped, 4™ order, lumped-parameter systems that have two modes of vibration.

Observe from Fig. 7-9 that the translation response of the beam system of Fig. 7-6
was still dominated by the first vibration mode, even though the tip-pulse stimulus also
excited the second mode, but to a much lower amplitude than that of the first mode.
Hereafter in this book, the only response of any distributed-parameter system that we
shall consider is the contribution of the first mode, and we shall assume that it dominates
the total response. Indeed, this is often a good engineering approximation for distributed-
parameter structural systems that include relatively large, spatially concentrated masses.
Consider, for example, the system of Fig. 7-10, which is the same as that of Fig. 7-6 but
with the addition at the beam tip of a concentrated-mass assembly that consists of two
ceramic magnets and an aluminum spacer, and weighs 0.254 Ib.

Figure 7-10 Structural system of Fig. 7-6, with the addition at the beam tip of two
ceramic magnets and an aluminum spacer. Note the same steel-plate tip-target for
the proximity sensor as on Fig. 7-6.

When the beam tip of Fig. 7-10 was tapped lightly upward with a small hammer,
the tip moved vertically as shown on Fig. 7-11. The tip-translation response curve is a
very clean sine waveform with almost no discernible distortion. The absence of
significant distortion in the waveform means that, for our purposes, this beam-mass
system behaves like a 2" order system, even though it is a distributed-parameter system.

Response of clamped beam+magnet tip to a sharp force pulse imposed at the tip
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Figure 7-11 Dynamic response to a hammer tap at time t = 0 sec of the beam on Fig.
7-10, as detected by the proximity sensor.
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The addition of a relatively large quantity of mass at the beam tip reduces consid-
erably the frequency of the waveform on Fig. 7-11 relative to the 34.0-Hz frequency of
the fundamental waveform on Figs. 7-7 and 7-9; a careful analysis of the data in Fig. 7-11
shows that the frequency of vibration is f= 15.85 Hz.

Example Problem 7-3: a predictive calculation of the vibration frequency of the beam-
mass system of Fig. 7-10.

Suppose that we had wanted to predict the frequency of the beam-mass system of
Fig. 7-10 before actually assembling the system and measuring the frequency. The
following is an intuitively logical approach, though not necessarily theoretically rigorous.
Providing that the clamped beam deforms linearly under load, the addition of mass and
weight to the beam tip should not alter the beam’s stiffness constant, so we use the same
measured beam-tip effective stiffness as that of Example Problem 7-1, k, = 7.86 Ib/inch.
As stated previously, the concentrated-mass assembly that was added to the beam tip
weighs 0.254 Ib. To obtain the total effective vibrating tip mass, it seems reasonable to
add together this value and the effective tip mass of the bare beam plus the steel target, as
determined in Example Problem 7-1. Thus, we find the total effective mass m, =

0.254 lb/ (386.1 inch/sec?) + 1.72e—4 lb-sec’/inch = 8.30e—4 Ib-sec’/inch. Finally, we
calculate the predicted natural frequency to be

1 [k 1\/ 7.86 Ib/inch 1551,

S 27\ m, 27\8.30x107* Ib-sec’/inch

This predicted natural frequency is lower than the actual measured value of 15.85
Hz by a margin that is unexpectedly large, presuming that all assumptions underlying the
theory are valid. This suggests that the actual effective stiffness during the dynamic re-
sponse of Fig. 7-11 was greater than 7.86 Ib/inch. This is quite possible, because the
students measured the beam-tip average effective stiffness constant to be 7.86 Ib/inch
over a range of very small downward deformation of the beam, but they also observed
that the local stiffness (slope of the curve of load versus deflection) increased pro-
gressively as the downward deformation increased. Observe on Figs. 7-6 and 7-10 at the
clamped end of the beam that there appears to be a small gap between the edge of the
upper steel clamping plate and the beam top surface; although not clearly visible on these
photos, there is a similar gap between the lower clamping steel plate and the beam lower
surface. These gaps are widest when the beam is undeformed, but as the beam is de-
formed downward, the lower gap gradually closes, thus slightly reducing the beam’s ef-

fective length L and thereby more significantly increasing its tip stiffness, k, = 3EI / L,

from Example Problem 7-2. The static gravity load of the concentrated-mass assembly
shown on Fig. 7-10 closed the lower gap, relative to its width on Fig. 7-6 without the
concentrated-mass assembly. Thus, it is indeed likely that the average beam-tip stiffness
during the response recorded on Fig. 7-11 was greater than that during the responses re-
corded on Figs. 7-7 and 7-9. The actual clamping support and restraint of the aluminum
beam in this experiment is clearly not the ideal, perfectly sharp edge and completely rigid
wall that the elementary theory assumes for a cantilever beam.
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7-7 Homework problems for Chapter 7

7.1 A particular device is known to be an LTI mass-spring system having negligible
damping. It is required that stiffness constant £ and mass m be identified experimentally.

Stretched spring xo_  Taut string First, a static force of 100 N is ap-
before =0 ... — beforer=0 plied through a string tied to the
\/\/\ : - \/ mass, producing a static translation
k i_ N % of the mass. Next, the string is cut

7/ O NN O)

cleanly, allowing the system to vi-

Position of mass for A\ccelerometer brate freely from the initial static
translation (with zero initial veloc-

unstretched spring ity). The subsequent motion is
measured by an accelerometer, a sensor that is attached to the system mass and measures,
of course, translational acceleration of the mass. The measured acceleration is described
with good accuracy by the equation

a(t) = (1) = —4.93 cos(107r 1) ——, for 0 < ¢, with ¢ in seconds
S€C

(a) Differentiate twice Eq. (7-12) for displacement, x(¢)=x__ cos(a)nt + ¢): first, to de-
rive the associated equation for velocity, v(¢) = x(¢) ; and second, to derive the associated
equation for acceleration, a(¢) = v(¢) = X(¢) .

(b) From the experimental data given previously and your results in part (a), infer values
(with units) for stiffness constant k£ and mass m.

7.2 Consider again the reaction wheel assembly introduced in Section 3-3 (Fig. 3-1), but
now suppose that there is a rotational spring with stiffness constant ky connecting the
shaft to a rigid wall. Also, for this problem only, assume that the bearing viscous
damping torque is negligible.

Rotational

Mot ) .
otor mertia J

torque M,(¢)

(a) Sketch a rotational FBD (similar to that in Sec-
tion 3-3, but with appropriate differences), then ap-
ply Newton’s 2" law for rotation to derive the 2™
order ODE for wheel rotation &f). This ODE
should have the form of Eq. (7-2), but with the
notation appropriate for this system.

(b) Convert the ODE of part (a) into the standard form (7-5),  + ®,’6 = a)nzu(t) . Write

specific equations (in terms of this system’s parameters and notation) for natural fre-
quency @, and input quantity u(?).

(c) The electric torque motor that drives the rotor generates 4.00 oz-inch of torque per

amp of electrical current (1 Ib =16 0z). According to the motor manufacturer, the current
should be limited to 5.00 A or less in order to avoid toasting the motor, so the maximum
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motor torque is 20.0 oz-inch. Suppose that this maximum torque is applied to the rotor as
a step function. It is required that the subsequent rotation angle &¢) of the rotor not ex-
ceed 45°. Calculate the minimum stiffness constant ky (units of Ib-inch/rad) that will
limit the step response Af) to 45° or less. Also, calculate the natural frequency in Hz of
the system with this value of ks The rotor has rotational inertia J = 2.56e—3 Ib-sec’-inch.

7.3 In the test laboratory of a spacecraft manufacturer, a vibration-isolation platform is

supported on a flexible foundation so that the vibration induced by traffic on a busy

nearby freeway will not disturb functional testing of delicate space-qualified components.

T W(?) The platform weighs 907 kg, and the flexible foundation has
nominal stiffness constant £ = 3,440 kN/m.

Platform

(a) Calculate the predicted values of system natural frequency
,1\2 2 2 in rad/sec and Hz, and system natural period 7;,. Recall from
Section 3-2 that the kgr is not a consistent unit in the SI sys-
tem. (partial answer: @, = 61.6 rad/sec)

Flexible foundation

(b) 1In a test to determine precisely the dynamic characteristics of this mass-spring
system (having negligible damping), the platform is to be given initial downward
displacement »(0) = —0.104 mm (relative to the static equilibrium position) and initial
upward velocity y(0) = +7.20 mm/sec. The platform will then be allowed to vibrate

freely. Write the numerical algebraic equation for the predicted response y(f) in mm.

7.4 Consider the rolling motion of a balloon carrying a basket, with the vehicle neither
ascending nor descending.” Weight W of the vehicle acts downward through the
vehicle’s center of gravity G, and buoyancy force W acts
upward through center of buoyancy M, which is the
center of gravity of the volume of air displaced by the
vehicle. We denote as R the separation of G and M in
the vehicle’s plane of symmetry. Note that with M
above G, weight and buoyancy form a stabilizing couple
moment, the moment arm being Rsinéd. Suppose that
wind, gusts, and possibly other forms of disturbance and
control exert an externally applied rolling moment about
G, which is denoted as M,(f). Denote the vehicle’s
rotational inertia about G as J;. Assume that the vehicle
rolls about point G, as if there were a frictionless hinge
at G, and neglect all sources of damping.

(a) Apply Newton’s 2" Jaw for rotation to derive the linearized 2™ order ODE for roll
angle A1), assumed to be sufficiently small that siné = @ radians. This ODE should
have the form of Eq. (7-2), but with the notation appropriate for this system.

” The same basic principles of dynamics and fluid statics apply if the vehicle is a submerged submarine.
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(b) Convert the ODE of part (a) into the standard form (7-5),  + ®,’6 = a)nzu(t) . Write
specific equations (in terms of this system’s parameters and notation) for rolling natural
frequency @, and standard input variable u(?). (partial answer: o, = \|WR/J ;)

7.5 (adapted from Craig, 1981, Problem 5.1 on page 120) In
single-engine, high-wing, general-aviation airplanes, the structures
of the main landing gears are usually simple tilted cantilever
beams, as illustrated in the drawing at right. When this type of
airplane touches down in a landing, the beams, in combination
with the flexible tires, constitute a structural spring that cushions gear beams
the landing impact.

The drawings below show a simplified model used to study landing impact of a light
airplane, with mass m being that of the airplane body, and stiffness & being that of the
landing gear beams and tires. (The model
before contact =0 also represents a person bouncing passively
on a pogo stick.) The airplane’s sinking
m m speed just before touchdown is denoted as
v — V, and g is the acceleration of gravity. Let’s
14 \l, call the instant of tire contact # = 0 and
¥ measure the airplane’s downward vertical
g motion y(f) relative to its position at that in-
v stant, as indicated on the right-hand draw-
ing. Hence, the initial conditions are y(0) =
0and y(0)="V.

(a) Sketch a FBD of the forces acting upon m during the time of tire contact with the
ground, and use that FBD and Newton’s 2™ law to write the 2" order ODE of motion for
¥(?). Note in this case that we measure motion relative to the spring-undeformed position,
not relative to the static equilibrium position, so it is necessary to include the body weight
W = mg on the FBD.

(b) Put the ODE of motion into standard form. Now combine both the IC solution (since
1(0)= V> 0) and the step-response solution (since W is essentially a step input) that are
derived in Section 7-3 to write the algebraic equation for the response y(¢) during the time
of tire contact. Express this equation in the form y(¢) = C, + C; sin(w,t — C3), where the
C; and o, are positive constants that you should define in terms of the given algebraic
parameters. You should find useful the trigonometric identity sind cosB + cosA4 sinB =
sin(4 £ B). If necessary, review the procedure in Section 4-3, Egs. (4-6)-(4-8), for com-
bining sines and cosines.

(c) Use the correct result from part (b) above to sketch a time history of the response y(¢)
during the time of tire contact. To make it relatively easy to sketch, suppose that the

landing is hard, with ¥/w, =+3W/k, and show that y(r) = (W/k)[1+2sin(w,t —30°)].
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From your y(f) equation and sketch, infer general algebraic equations (not applicable only
for V/w, = NE) W /k) for the maximum value ypmax, the time at which y(£) = ymax, and the
time at which the tires loses contact with the ground upon rebound. For what range of

landing impact velocities ¥ does this theory predict that the tires will lose ground contact
upon rebound? Is this theory completely realistic?

7.6 The ideal LC circuit® drawn below is a series combination of a voltage source e,(?),
an ideal inductor (having only inductance L, no resistance), and a capacitor with
capacitance C. Recall that the current is the rate of change of charge ¢(#) on the
capacitor, i=dq/dt. Apply Kirchhoff’s voltage law, as in
Electricity Example 4 of Section 5-2, and show that the ODE for
q(t) isLg+(1/C)g=e,(t). Convert this ODE into the standard

2" order form (7-5), g+ a)nzq = a)nzu(t); write specific equations

— [in terms of L, C, and e, (¢)] for natural frequency @, and input

quantity u(?).

7.7 The circuit’ drawn at
right consists of three stages, Ci G R
each built around an op-amp, Ris _| R, _|

and there is feedback of vol- e
tage e(f) from the last (right- Ry en(t) eo(?) 0
hand) stage to the first (left-
hand) stage, where the input el?)

voltage e(t) is applied. The O — O
circuit output voltage, e,(?), is

the output of the middle stage. For the first stage, a summing, inverting integrator, use
the methods of Chapter 5 to derive the first ODE, e, /R, +e;/R, =—C,é,. Next, for

the middle stage, an inverting integrator, derive the second ODE, e, /R, = —C,é,

(homework Problem 5.6). Now differentiate the second ODE and use the result to
substitute for ¢, in the first ODE. The last stage is a simple sign inverter, for which e, =

— e, from Eq. (5-13b). Substitute for e, and show that the ODE relating output voltage
1 1 R,

e, = e.
RZCZRIfCI R2C2R1/‘C1 R,

Convert this ODE into the standard 2" order form Eq. (7-3), &, + @,’e, = @, u(t) ; write

specific equations (in terms of this circuit’s resistances, capacitances, and input voltage)
for natural frequency @, and input quantity u(z).

e,(f) to input voltage e,(¢) for the entire circuit is €, +

¥ The LC circuit is a simplified model for devices such as antennas and cavity resonators that transmit and
receive electromagnetic energy (Halliday and Resnick, 1960, Chapters 38 and 39). Also, cascades of LC
pairs are often used as passive filters in radiofrequency, 100 kHz and above, applications (Horowitz and
Hill, 1980, pages 654-656).

? This circuit with op-amps, capacitors, and resistors is essentially the electronic analog computer (see the
footnote to Problem 5.6) for solving ODE (7-5).
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7.8 If you compare the experimental results for a beam that are presented in Example
Problem 7-1 (page 7-11) with the ideal theoretical results presented in Example Problem
7-2 (page 7-12), you will observe that there are some significant differences between the
two sets of results. In this problem, you will investigate some reasons for those
differences.

() The beam of Fig. 7-6 is an extruded aluminum “flat”. Due to manufacturing imper-
fections, its cross section is not completely uniform (constant) along the length; however,
students made the following careful measurements of average cross-sectional dimen-
sions: width b = 2.00 inches, depth # = 0.120 inch. The students also measured the
average weight per unit length of 0.0230 Ib/inch. Using this information, calculate the
“actual” average weight density w in Ib/inch’, and compare your value with the standard
(in preliminary-design calculations) value for aluminum, 0.1000 Ib/inch’, which is used
in Example Problem 7-2. Also, calculate the total weight of the beam, W, in Ib, based

upon the lengthwise weight density 0.0230 1b/inch, and assuming L = 10.00 inches.

(b) In aseries of independent tests on aluminum flats from the same manufactured lot as
the beam of Fig. 7-6, students measured the average modulus of elasticity in bending £ =
9.43e+6 Ib/inch?, which is about 6% lower than the standard (in preliminary-design cal-
culations) value of 10.0e+6 Ib/inch®. Use this measured value, along with the measured
dimensions from part (a) to calculate the effective beam-tip stiffness constant k, =

3EI / L’ , assuming that the beam overhang length is precisely L = 10.00 inches. Also,
compare this calculated value of k&, with the measured value of 7.86 Ib/inch from

Example Problem 7-1 and with the ideal theoretical value of 9.766 1b/inch from Example
Problem 7-2."° [NOTE: It can be shown, by evaluation of propagation of error,'' that a
small error in the value of depth 4 produces three times that error in the calculated
stiffness constant &, (for example, a 2% error in 4 produces a 6% error in k, ); similarly,

a small error in the value of length L produces three times that error in % .]

(c) Use the weight W, that you calculated in part (a) to calculate the effective tip mass of
the bare beam alone from m,, = 0.242672xW, /g, in which 0.242762 is the theoretical
factor introduced in Example Problem 7-2. Next, calculate the total effective tip mass,
including the mass of the steel target that is bonded to the beam tip on Fig. 7-6, from m,
= m,; +(0.0081 Ib) + (386.1 inch/sec?). F inally, use this m, and the &, that you calcu-

lated in part (b) to determine a corrected estimate (relative to that of Example Problem 7-
2) for natural frequency f, in Hz.

1% Example Problem 7-3 (page 7-16) describes how tiny gaps between the thick steel clamping plates and
the aluminum beam surfaces might change the effective beam length L. It is worth observing also that an-
other possible source of stiffness error, which is difficult to assess quantitatively, is some significant flexi-
bility in the steel clamping plates. The theoretical equation for beam-tip stiffness is based on the assump-
tion that the clamping medium is completely rigid.

" Propagation of error is discussed in textbooks on experimental instrumentation and measurements, for
example, Dally, Riley, and McConnell, 1984, pages 544-545.
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7.9 For the undamped (or lightly damped) mass-spring system drawn below at left, Eq.
(7-3) gives the natural frequency as @, = \/k/m . If we attach an additional mass m, to
the original mass, as drawn below at right, then the natural frequency of the modified

system is @,, = +/k/(m+m,) .
—x(t) F—x(®)

k k

m m My

Q Q Q

Original system Added-mass system

(@) Suppose that the parameters m and k of the original system are unknown, but that we
know the value of the added mass m,, and that we are able to measure experimentally

the natural frequencies @, and @, . Derive algebraically the following equation for the

unknown mass m: m = The traditional method described here may be

o m.
(a)l’l /a)an)z _1 .
called the added-mass or added-inertia method. '

(b) Apply the added-mass method of part (a) to calculate both the 2™ order effective tip-
mass quantity m, and the 2" order effective tip-stiffness constant k, of the beam struc-

tural system shown on Fig. 7-6. The data that you will need is stated in Example Prob-
lems 1 and 3: the measured natural frequency of the original system is f, = 34.0 Hz; the

concentrated-mass assembly that was added to the beam tip (Fig. 7-10) weighs 0.254 1b;
and the measured natural frequency of the added-mass system is /,, = 15.85 Hz.

7.10 A distributed-parameter structural system'” is shown in the drawing; the “snapshot”
0 of a dynamic deformation state (with exaggerated

TTTTA magnitude) is drawn in dashed lines. This system
— : - £(0) consists of an essentially rigid block of mass m and
> b< |2|Ch ! ' two parallel cantilever beams. The two flexible (in
/ , bending) beams are nominally uniform and identi-

. . cal to each other, with rectangular cross section of

g s width b, depth 4, and cross-sectional area 4 = bh.
! 3 The beams are embedded into the mass, just as
they are embedded into the foundation below. In-
plane rotation of mass m is suppressed by the very

Side view Front view

"2 The added-mass method is an elegantly simple technique for finding experimentally the unknown para-
meters of a 2™ order, or approximately 2™ order, linear mechanical system. The method requires only that
we be able to measure accurately the free-vibration frequencies; otherwise, the motion sensors and other
instrumentation can be uncalibrated. Use of the added-mass method is a simple example of system identifi-
cation, which is discussed at greater length in Section 9-9.

" This structure is a rudimentary form of one-story shear building that is used for studying the structural
dynamics of buildings (Craig, 1981, pages 42, 265, 346, etc.; Clough and Penzien, 1974, pages 226-227).
The rigid mass represents a floor slab/girder, and the flexible beams represent structural columns.
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high axial stiffness of the beams and the separation of the two beams. The bending
slopes of the beams where they join mass m are essentially zero due to the rigidity of
mass m and of the beam-to-mass joints. Provided that forcing [such as f.(#) on the
drawing] and/or initial conditions are in the plane of the paper, motion of the mass is
restricted to one-dimensional translation, x(f). You should be able to verify from a
textbook on mechanics of materials that the total effective stiffness constant of the two
beams that restrain motion of mass m is k, = (f, /x) = 2x12EI / L’ . We can account

for the contribution of the beams’ mass to the approximately 2" order dynamics of this
system by using what is known in more advanced theory as the consistent mass of a
distributed-parameter structure. We denote the weight per unit volume of the beam
material as w and the mass density as p = w/g . Then the total consistent mass from the

Sstatic

two beams, which effectively moves with mass m through translation x(#), is 2m, =
2x(156/420)pAL (Craig, 1981, page 387); thus, the total effective mass of the struc-
tural systemis m, = m+2m,.

(@) Write an algebraic equation for the natural frequency @, in rad/sec of this structural
system in terms of the system parameters £, I, L, m, w, A, and g.

(b) Consider an actual fabricated version of this structural system, shown in the photo-
graph, which is used in an instructional laboratory
experiment.'* The beams are extruded aluminum
“flats”, from which students made the following
careful measurements of average dimensions and
properties: L = 12.00 inches, b = 2.010 inches, /& =
0.1259 inch; w = 0.0965 lb/inch’; E = 9.40e+6 1b/
inch®. The relatively rigid mass m was machined
from an aluminum block; the students measured its
weight as 1.61 Ib. Calculate the natural frequency
f,, in Hz of this laboratory apparatus.

!4 The principal plane of the actual laboratory apparatus is horizontal relative to gravity. The photograph is
rotated 90° to make the plane appear vertical, in order to match the drawing on the previous page.
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Chapter 8 Pulse inputs; Dirac delta function; impulse response;
initial-value theorem; convolution sum

© 2016 by William L. Hallauer, Jr.

We analyzed previously the response of systems to a half-sine pulse input (e.g., in
Sections 1-5 and 1-6). In this chapter, we will continue analysis of pulse excitation and
subsequent dynamic response. Most importantly, we will extend the analysis to the con-
cept of the impulse, which in its simplest form is U X tg, the product of excitation and the
duration of excitation. In particular, the Dirac delta or ideal unit-impulse function is es-
sential in the theory of linear systems and also useful in practical applications.

8-1 Flat pulse

This is probably the simplest form of limited-duration input. We define the flat
pulse initially in the form of a general (standard) input quantity u(t) that can be used with
standard forms of system ODEs such as X+ (1/z,)x =bu(t) for a stable 1* order system

and 5('+2§con)'(+a)n2X= a)nzu(t) for 2™ order systems.  y(t)
Figure 8-1 illustrates a flat pulse of duration ty. It can be Uy

described mathematically with use of two unit-step func-
tions, as defined in Section 2-4: -0

0 ty t
ut)=U[H® - H(t-t,)] (8-1)  Figure 8-1 Flat pulse

The Laplace transform of Eq. (8-1), from Egs. (2-28) and (2-29), is

L[u(t)]=U ( ! e:td j Vo) (8-2)

S S

Example: response to a flat pulse of an undamped 2™ order svsteml

The ODE for an undamped 2" order system is X+ a)n2X = a)nzu(t) . Let the initial
conditions be zero: X, =0, X, =0. The general solution then is either of the two convo-

lution integral forms, Egs. (7-9a) and (7-9b). Of those two, the easier one to interpret for
the discontinuous flat pulse is Eq. (7-9b), which with zero ICs becomes

X(t) = o, TJ: sinw, (t—7)xu(r)dr (8-3)

=0

! See also homework Problem 8.3 for a simple yet elegant direct Laplace-transform solution of this problem
and a physically meaningful response equation.
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Rather than use Eq. (8-1) explicitly, we can observe the form of Fig. 8-1 and write Eq. (8-
3) for two different time intervals:

7=t

o, Isina)n(t—r)xU dr, 0<t<t,
=y =5 —t (8-4)
o, jsinwn(t—r)xU dr+ o, Isinwn(t—r)xodr, ty <t
7=0 =ty

The second integral for ty <t is obviously zero. This leaves us with a single integral for
each time interval, each integral having the same integrand and lower limit. However,
the integrals have different upper limits, so let’s denote a general upper limit as T, and

evaluate that common integral with use of the change of integration variable A=t -7 =
di=—drz:

=T A=t-T | AT 1
Isin o,(t-7)dr = Isin o, A(—dA)=— jd(cosa)n/”t) =—[cosw, (t—T)—cosm,t]
o, ®

=0 A= n

Upper limit T=tfor 0<t<t;, of Eq. (8-4),and T = t; for t; <t, so substituting the in-
tegration result into (8-4) gives the final equations,

U(l-cosm,t), 0<t<t,
X(t) = (8-5)
Ulcosw, (t —t,)—cosm,t], t, <t

Equation (8-5) for 0 <t <t, is just the simple step response of Eq. (7-14), as it logically
should be. Inspection of Eq. (8-5) shows that the response X(t) is continuous at t = t; ; by
differentiating both response equations, we could show that the velocity term X(t) also is
continuous at t = t,. Indeed, these response quantities should be continuous, because Eq.

(8-5) describes a physical response (€.g., of a mass-spring system). In fact, we could
solve this problem differently from the beginning by using the requirement of continuity
along with step-response (7-14) and IC response (7-12). Step response (7-14) is valid
fromt=0tot=t,; then we could find X(t;) and X(t,) from the step response and use

those values as initial conditions for the IC solution to be valid fort >t .

X(t), v(t
8-2 Impulse-momentum theorem for a mass particle M
- - - - f t
translating in one direction x( 2 m
An unrestrained mass particle subjected to force Area = I (ty)

acting only in the X direction is shown in the drawing at  fy(t)
right. The equation of motion is
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m=f () = mv=f(t)

Integrating the equation of motion from time zero to any time t > 0 gives
7=t dV =t
mJ.—drzmv(t)—mv(O): J.fx(r)drzlp(t) (8-6)
7=0 d 2 7=0

in which | (t) is the area under the force time history and is called the impulse of the

force, with dimensions of force x time. Equation (8-6), the impulse-momentum theorem
for a mass particle, states that the change of momentum equals the impulse. For a pulse,
a force of limited duration as in the drawing on the previous page, we are generally inter-
ested in the total impulse |- (t,), which remains unchanged for t > tg.

8-3 Flat impulse

The flat impulse, Fig. 8-2, is defined almost identically with the flat pulse, the
only difference being that we specify the magnitude of the generalized impulse, Iy, which

is the area under the time history of the flat pulse, then we u(t)
define the magnitude of the input function in terms of the I Area ly
impulse and duration, U =1, /t, . Thus, for the flat im- U :i :
pulse, from Eq. (8-1), E
| 0% tr t
u(t) = ﬁ["' O -H(t-t,)] (8-7) " Figure 8-2 Flat impulse

8-4 Dirac delta function, ideal impulse

Consider a limit process with the flat impulse of Fig. 8-2, in which process we
progressively shorten the pulse duration while maintaining constant the impulse magni-
tude (the shaded area), thereby progressively increasing the input magnitude, 1, /t, . If

we carry the process to the limit as t; — 0 while maintaining |, constant, then magni-
tude I, /t; — . The limit process is illustrated on Fig. 8-3. The function that results is
called an ideal impulse with magnitude 1, and it

is denoted as u(t)=1, xS(t), in which &(t) is UM

o0
called the Dirac delta function (after English I_U._I_.Q/AIGMU\

mathematical physicist Paul Dirac, 1902-1984) or 1 ;
the unit-impulse function. The ideal impulse func- : -

u(t) = Iy 5(t)

) . . . )=

tion |, o(t) is usually depicted graphically by a :

thick picket at t = 0, as on Fig. 8-3. With I, =1 _ 0 I -0

in Eq. (8-7), a formal mathematical definition of 0 tg t 0 t
the unit-impulse function is Figure 8-3 ldeal impulse
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S(t) = t1imtl[H () —H(t-t,)] (8-8)
q—0 d

Observe from Eq. (8-8) that the dimension of &(t) is time™, since the unit-step is dimen-
sionless, so the typical unit of &(t) is sec™.

By definition, the area under u(t) =1, o(t) equals I;, so the area under o(t)
equals 1 (hence the name unit-impulse function). This unit area under an infinitely short
impulse suggests an important effect of the Dirac delta function in integrands. In order to
describe this effect, we define a more general unit-impulse function, &(t—t;), which

peaks infinitely at some arbitrary time t; that is not
necessarily zero; otherwise, the nature of o(t —t;) is ot _%‘ !
identical to that of J(t) [in fact, 5(t) = o(t—t;) for Area 1 :
t; = 0]. Now suppose that we have some realistic L) " --f(ty) i
physical function f(t) that is defined over the time i
interval t; —t,, and suppose that time t; is within i
this interval, as in the figure at right. Then the useful 0 \ :
integration effect of 5(t —ty) is: t (|) N b Lt
t=t,
[f®oa-t,)dt=f,) (8-9)

t=t,

Equation (8-9) states that, as a multiplier within the integrand, J(t —t;) essentially “se-
lects” the value of f (t) at t = t;. Result (8-9) is intuitively clear, and it can be proved
more rigorously with the theory of so-called generalized functions (Lighthill, 1958).

If the upper limit of integration in Eq. (8-9) is an arbitrary time t > t, then the re-
sult is a step function:

T_fiz(r) S(r—ty)dr=f(t,) Ht—t,) (8-10)

=t

Setting f(z)=1 in Eq. (8-10) leads to a fundamental integral relationship between the
unit-impulse function and the unit-step function:

Tfé{(r—td)dz’:H(t—t&) (8-11)

=t
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Next, we use Eq. (8-9) to derive the Laplace transform of delta function &(t) =
o(t—0). According to the definition of Eq. (2-13), this transform would

be written as L[o(t) ] = J'

t=

t=

:e_5t5 (t —0)dt ; however, there is a problem

with this particular definition: at t = 0, which is the lower limit of the
integrand (and the initial-value instant for most ODEs that we solve us-
ing Laplace transforms), the function 6(t—0) is nominally infinite, so

the meaning of the integral is uncertain. We choose to remove the un-
certainty by specifying that J(t —0) must lie within the limits of the inte-
gration. In order to indicate this clearly in notation, we now define three different refer-
ence instants, as depicted on the drawing at right: (1) t= 07, the instant just before activ-
ity of the ideal impulse function, at and before which &(t—0) = 0; (2) t = 0, the instant
when 6(t —0) acts and is nominally infinite; and (3) t = 0", the instant just after activity
of the ideal impulse function, at and after which o(t —0) = 0. Accordingly, we re-define
the Laplace transform, more generally than in Eq. (2-13), as

L[ f(t)]= Te-“ f(t)dt (8-12)

t=0"

The distinction between t =0 and t = 0" in the lower limits of Egs. (2-13) and (8-12), re-
spectively, is meaningless for all problems considered in this book except those in which
f (t) involves an ideal impulse function. Application of Egs. (8-9) and (8-12) now leads

to the Laplace transform of the basic ideal impulse function:

L[S(t)] = tfoe-~“*5(t —0)dt=e>° =1 (8-13)

t=0"

8-5 lIdeal impulse response of a standard stable 1% order system

From Eq. (3-7), the problem statement for a standard stable 1* order system is
ODE +IC: x+(l/7))x=bu(t), x(0)=Xx,, find x(t) fort>0 (6-4, repeated)
Let the input function be the ideal impulse, u(t) =1, d(t). Although there are several
methods for finding response to an ideal impulse, the conventional Laplace-transform

approach is relatively simple and probably the most instructive, so we will use this
method. With L[d(t)] =1 from Eq. (8-13), the steps of the solution are:

L[ODE]: sX(s)—X, +(1/7,)X(s) =bU(s) =b 1, x1

8-5
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= X(9) =% (8-14)
= X(t)=(x, +bl,)e " (8-15)

As a check, we evaluate the solution at t = 0:
x(0)=(x, +b1,)e " =x, +bl, =X, (8-16)

It appears that something is wrong with response solution Eq. (8-15), because Eq. (8-16)
for x(0) contradicts the original IC, x(0) =X,. In order to explain this discrepancy, we

must account more carefully for the nature of response to an ideal impulse, and for the
distinction between the three different reference instants that are defined in the previous

section: (1) t= 0, the instant just before activity of the ideal impulse function; (2) t =0,
the instant when S(t —0) acts; and (3) t = 07, the instant just after activity of the ideal
impulse function. The more detailed analysis follows.

We begin by integrating the basic ODE, X+ (1/7,)x=b1,5(t), across the ideal

impulse function, just fromt= 0" tot= 0":

=0" dX 1 =0" r=0"
[ =Zde +— [xdz =b [1,6(z-0)dz (8-17)
7=0" 4 Tl =0~ =0~

The first left-hand-side term of Eq. (8-17) is identically equal to X(0")—X(0"); this re-
sult introduces the new quantity x(0"), which apparently is the post-impulse initial value
att= 0"; the pre-impulse initial value, X(0™) = X,, is the original IC specified in Eq. (6-
4), but now understood to exist at t = 0~ . The right-hand-side integral of Eq. (8-17) gives
the finite area |, under the infinite ideal impulse function. In contrast, the second left-

hand-side term of Eq. (8-17) has a finite integrand; we can use the trapezoid rule to ap-
proximate the value of the integral and find that it is zero:

T:0+Xdr ~ limE[x(07) + x(07)]JAt; =0 (8-18)
J. At—>0{2 }

7=0"

In Eq. (8-18), At=0"-0" — 0, in the spirit of the idealization that the ideal impulse
function acts over an infinitesimal time interval. Therefore, Eq. (8-17) givesx(0") — X,
+1/7,x0 = bx1,,or

X(0")=x,+bl (8-19)

8-6
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Comparing Eqgs. (8-16) and (8-19) shows that the term X(0) in the former equation really
should be the post-impulse initial value, X(0").

Equation (8-19) can also be found directly from the Laplace transform X (S) by
application of the initial-value theorem:

lim f(t)=f(0")=lim [sF(s)] (8-20)

t—>0" from t>0

We present only the relevant application of the initial-value theorem here; derivation of
the theorem itself is postponed to Section 8-6. Applying Eq. (8-20) to Laplace transform
solution (8-14) gives

x(0") = lim[s X (s)] = nm[sxm] - 1im[§x(x0 +bl, )j =X, +bl,
s—® S—00 S+ 1/2-1 s\ §

This consequence of the initial-value theorem is identical to Eq. (8-19), which was de-
rived by a different method.

Finally, we present an application of Eq. (8-19) to a mechanical system, and we
show that the result conforms with a principle of mechanics. Consider a mass-damper
system with mass m and viscous damping constant C, as drawn X(t)

at right. The mass is initially moving with velocity v(07) = v, c
}_| —

m >
O_< fu(®)

when, at t = 07, the mass is disturbed by an ideal force impulse,
f (t) = 1-5(t). The equation of motion is mv+cv = f (t), or
in terms of a standard stable 1** order system, V+ (I/z,)v=bu(t), in which 7, =m/c,
b=1/m, and u(t)= f,(t)=1:-5(t), so that |, =1.. The initial (pre-impulse) momen-

tum of the mass is mv,. According to Eq. (8-19), the post-impulse velocity of the mass
is v(0") = v, + (I/m)xI. = v, + I./m, so that the post-impulse momentum of the
mass is mv(0") = mv, + |.. In words, the momentum of the mass is increased exactly

by the magnitude of the ideal impulse, in agreement with the impulse-momentum theo-
rem, Eq. (8-6). Force impulse I J(t) is a mathematically ideal impulse, not a physically
realizable excitation, so the mathematical change in momentum occurs instantly, and the
viscous dashpot has no influence on this instantaneous response. From Eq. (8-15), the
post-impulse response of the mass is V(t) = (v, + |- /m) e ¥ t>0.

8-6 Derivation of the initial-value theorem

Consider a physical function f (t), with derivative df /dt, and with Laplace trans-
form L[ f(t)]= F(S). The initial-value theorem is:

8-7
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lim f(t)=f(0")=lim [sF(s)] (8-20, repeated)

t—0" from t>0

In general, Eq. (8-20) gives the initial value f(0") of a time function f(t) based only on
the Laplace transform L[ f(t)] = F(s), without requiring that the equation for f(t) be
available. If f(t) is dynamic response to excitation that involves the ideal unit-impulse
function 8(t—0), then f(0") is the post-impulse initial value, as defined in Section 8-5;

otherwise, f(0") = f(0) = f(07), which is the standard initial value known to exist
before excitation occurs.

Our derivation of the initial-value theorem (from a more detailed proof in Can-
non, 1967, p. 569) is based upon the form of Laplace transform that can accommodate the
ideal impulse function o(t —0):

L[ f(t)]= j e % f (t)dt (8-12, repeated)

t=0"

First, we need the following Laplace transform of a derivative, the transform that is asso-
ciated with definition (8-12):

L{%f(t)} t_jo e‘St—dt—sF(s)— f(07) (8-21)

The derivation of Eq. (8-21) using integration by parts is almost identical to the deriva-
tion shown in Eq. (2-15a), the only difference being the lower limit of the integral at t =

0" instead of t = 0. We don’t need the corresponding formula for higher-order deriva-
tives right now, but it is appropriate here to state that the initial conditions at t = 0 in gen-

eral formula (2-16) may similarly be replaced by values att= 0":

L?nnf(t)}_s F(s) =™ £(0) 5" f(07) = T (0°) (8-22)

Next, taking the limit of all terms in Eq. (8-21) as S — oo gives

_[df = df . df . .
lim L[E} S_m[ .[ IXE dt + .[ e a —dt =1%[SF(S)]— f(07)  (8-23)

S—0
t=0"

In Eq. (8-23), we separate the definite integral into two parts: (1) a part over the interval
fromt= 0" tot= 0", during which we set *' = 1 (and during which an ideal impulse
including &(t —0) could be acting); and (2) a part over the interval fromt= 0" tot=o0

The integrand of the second part includes e*', and since S — oo, we set this integral to
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Zero: limIttj; e *'(df /dt) dt =0. Furthermore, the first integral, which now is inde-

pendent of s, is evaluated identically as J.:_zooj(df /dtydt = f(0")— f(07). Therefore,
Eq. (8-23) becomes

lim L[%} = f(0")-f(0) = yrg[sF(s)]— f(07) (8-24)

= {0 = gimw[sF(s)]

This is the version of initial-value theorem that was applied in Section 8-5 to re-derive
result (8-19).

If f(t) is dynamic response to excitation that does not involves an ideal unit-im-
pulse function &(t —0), then there is no discontinuous jump att =10, i.e., f(0") — f(0")

= (. For this case, therefore, Eq. (8-24) gives the more common (but less general) ver-
sion of initial-value theorem:

f(07) = lim[sF(s)]

8-7 Ideal impulse response of an undamped 2" order system

The ODE for a standard undamped 2™ order system is X + o, Xx=w,ult). Let
the input function be the ideal impulse, u(t) = I, 5(t), and let the pre-impulse initial
conditions be X(07) =X,, X(07) = X,. Just as for the 1* order system with ideal-impulse

excitation in Section 8-5, we will solve the present problem by the conventional Laplace-
transform approach. Note that we will use the second-derivative form of Eq. (8-22):

L[f] = s*F(s)—sf(0")—f(07). With L[S(t)] =1 from Eq. (8-13), the steps of the
solution are:

L[ODE]: s*X(s)—SX, — X, +®,”X(s) =bU(s) = @,’1, x1

2 . .
o |, +X, +5X X 1) S
— X(S): n l.12 02 0 — a)nlu +—0 ﬁ'FXOﬁ (8-25)
"+ w, ®, )s” + o, S +w,
X . N
= X(t)=(a)n|U +—°Jsma)nt+xocosa)nt,t20 (8-26)
a)n

At the risk of being excessively repetitive, we emphasize that the discussions in
Sections 8-5 and 8-6 show that response (8-26) is the post-impulse solution, certainly
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valid mathematically for t > 0", but not necessarily correct, in particular, for the pre-
impulse initial conditions att= 0".

Solution (8-26) holds for a general undamped 2™ order system; let’s adapt it spe-
cifically to a mass-spring system, with zero initial conditions, that is hit by an ideal im-
pulse of force having magnitude |, with units, for example, of N-sec or Ib-sec. From

Eq. (7-4), we find
ut)=f,t)/k = 1,60)=1:60/k = I,=1-/k (8-27)

So, for translational motion X(t) of the mass, Eq. (8-26) with zero initial conditions be-
comes (recall k = ma)n2 )

IF
Mo,

I
X(t) =, ?Fsin ot = sin @, t (8-28)

n

Figure 8-4 shows a few cycles of response Eq. (8-28).

27w, =T, 37/w, 4r/w, time t

Figure 8-4 Ideal impulse response of a mass-spring system

8-8 ldeal impulse response vs. real response of systems

Section 8-5 shows that, for a 1** order system subjected to excitation by an ideal
impulse function, the post-impulse initial value at t = 0" of output X(t) differs from the

pre-impulse initial value at t = 0~. Let’s now investigate the initial values in X(t) and
X(t) that are associated with the 2" order system of Section 8-7. The output itself is

given by Eq. (8-26): x(t) = (@, |, + %,/@,)sin®,t+ X, cosw,t, t> 0". Evaluating this
equation at t = 0" shows that the post-impulse value is x(0") = X,; this is exactly the

same value as the given initial value at t = 07, so there is no discontinuous change in the
initial value of x(t) itself for the 2™ order system. Differentiating Eq. (8-26) gives the
“velocity” function:
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X(t) = (@,° 1, +%,)cosmt —m X, sinw t,t> 0" (8-29)
Evaluating Eq. (8-29) att= 0" gives
X(07) =, 1, + X, # %, = X(07) (8-30)

Thus, for the 2™ order system, there is a discontinuous change in the initial value of the
“velocity” function.

The discontinuous changes that we observe in initial values for both 1% and 2™
order systems violate physical laws governing real systems, so ideal impulse response
solutions appear to be defective and perhaps not applicable to real systems. The reason
for this defectiveness is the ideal, not real, nature of the Dirac delta function o(t). In
physical reality, there is no such thing as a pulse of infinitely short duration and infinitely
great magnitude; so S(t) and |, o(t) are mathematical functions that do not represent

exactly any real physical quantities.

However, the ideal impulse responses that we find can still be useful in applica-
tions to real systems, because the ideal impulse function |, 6(t) can approximate the ef-

fect of a real, time-limited pulse that has the same impulse magnitude, | ; therefore, the

ideal impulse response can approximate the actual physical response. Why would we use
the approximate ideal impulse response rather than just determining the more precise re-
sponse solution based upon the actual pulse? We would do this because it is always
much easier to derive and compute the ideal impulse response than the actual pulse re-
sponse; moreover, the equation for the ideal impulse response is always simpler and more
amenable to practical purposes (such as system identification, a form of which is dis-
cussed in Section 9-9) than the equation(s) for the actual pulse response.

When is ideal impulse response a good approximation of real pulse response, and
when is it not? It depends on the duration ty of the actual input pulse relative to the short-
est characteristic time T; of the system that is being analyzed. The characteristic time is
defined loosely as the time interval required for system response to change substantially.
The system characteristic times that we know from previous chapters are time constant
7, for a 1*" order system and about one quarter of a natural period T, for a 2" order sys-

tem. If ty is brief relative to the system characteristic time, ty << T, then the ideal im-
pulse response [Eq. (8-15) for a standard stable 1*' order system, Eq. (8-26) for a standard
undamped 2™ order system, other equations for other types of systems] will be a good
approximation to the actual pulse response; on the other hand, if ty4 is on the order of or
greater than the system characteristic time, O(ty) > O(T¢), then the ideal impulse response
would be a poor approximation, and we should solve for the response using the actual
physical pulse. There is no hard and fast rule as to how small the ratio ty/T. should be to
justify use of the ideal impulse response solution.

8-11



Chapter 8 Pulse inputs; Dirac delta function; impulse response; initial-value thm.; convolution sum

In what manner would ideal impulse response differ from the actual pulse re-
sponse? Let’s consider, for example, an undamped 2" order system with zero ICs. Sup-
pose that the duration of the actual pulse satisfies tq << %Ty, so that, according to the dis-
cussion above, the ideal impulse response should be a good approximation to the actual
response. But we already know from Eq. (8-30) that the initial velocity of the ideal im-

pulse response will be wrong, with value a)nzlU when it ought to be zero. How will the

remainder of the ideal impulse response compare with the actual response? Figure 8-5
depicts conceptually the
nature of both ideal im-  U(t)

ly A1), ideal impul
pulse response and the u A1), ideal impulse

comparable real response Actual pulse
for a 2" order system dur-
ing the initial portion of Area ly

response.  The real re-
sponse shows the correct
initial zero slope, X, =0. 0 tq t

———— =
-
-

For a brief period after t = x(t)
0, the slope of real re- Ideal impulse .-
sponse increases rapidly response .7
until both the response X \1// Real pulse
and the slope X essentially ’

match the comparable val- %

) ,
ues of the ideal response, ’
. . ’ . )
but with a short time lag Y Short artificial time lead of ideal vs. real

relative to the ideal re- —

sponse. In other words, the 0 ) ) t
ideal response has a short, Figure 8-5 Conceptual ideal impulse response and real

artificial time lead relative Pulse response for an undamped 2™ order system

to the real response. After

the pulse ends, tg < t, the real response is essentially identical to the ideal response, but
the ideal response maintains the same artificial time lead for all of the remaining dynamic
response. If the pulse duration is very short relative to the system quarter-period, then the
artificial time lead will be very small, perhaps not even detectable on a graph of the re-
sponse. In this case, ideal impulse response will clearly be an excellent approximation to
the actual response, and the ideal impulse response will be much easier to derive and
compute than the actual response.

-

7/ response

Note that the previous paragraph applies specifically for a 2" order system, but
not necessarily for other system types. In particular, for a 1* order system, the differ-
ences between a real pulse response and the approximating ideal impulse response have a
different character (see, for example, homework Problem 8.5).

8-9 Unit-step-response function and unit-impulse-response function (IRF)

From Chapter 4, Eq. (4-24), the general equation that relates the output Laplace
transform to the input transform through the system transfer function is
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LIX(1)] ., = TF(8)x L[u(t)] (8-31)

Equation (8-31) is valid for any LTI SISO system. Suppose that the input to such a sys-
tem is the unit-step function, u(t) =U H(t) with step magnitude U = 1:

ut)=H@) = fromEq.(2-29), L[u(t)]=L[Ht)] :é (8-32)

We denote the unit-step-response function as X, (t); as usual for unit-step response and
unit-impulse response, we specify zero ICs. Substituting Eq. (8-32) into Eq. (8-31) gives

L[x, (O]=TF (S)xé (8-33)

Next, suppose that the input is the ideal unit-impulse function, u(t) = 1, 6(t) with
impulse magnitude I, = 1:

u(t)=o(t) = fromEq.(8-13), L[u(t)]=L[&t)] =1 (8-34)

We denote the unit-impulse-response function, with zero ICs, as h(t), and we abbreviate
this important function in text as IRF.? Substituting Eq. (8-34) into Eq. (8-31) gives

L[h(t)]=TF(s)x1=TF(s) (8-35)

Equation (8-35) is an important relationship in linear-system theory: The Laplace trans-
form of the unit-impulse-response function (IRF) equals the transfer function (TF).

Comparing Egs. (8-32) and (8-34) shows that

SL[H(®D] = L[o(1)] (8-36)

Next, applying Eq. (8-21), with H(0™) = 0, then Eq. (8-36), gives

SLIH ()] = L[dd—:l(t)} +H(0") = L[%—T(t)} =L[o(1)] (8-37)

Thus, we infer from Eq. (8-37) that

* It would be consistent with notation Xy (t) to denote the IRF as X (t), but the symbol h(t) is traditional and
very common. For examples, see Cannon, 1967, pp. 210, 293 and Meirovitch, 1967, p. 14.
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dH
pralie 5(1) (8-38)

We can also derive Eq. (8-38) formally by differentiating with respect to time t the fol-
lowing specific form of Eq. (8-11): H(t—-0) = J-T_::O o(r —0)dz. Expressed in words,

the time derivative of the unit-step function is the unit-impulse function. These deriva-
tions of Eq. (8-38) are not mathematically rigorous, and the result might seem implausi-
ble since both H(t) and J(t) are strongly discontinuous functions. However, Eq. (8-38)

can be proved with the theory of generalized functions (Lighthill, 1958), and it can also
be demonstrated plausibly with the use of limiting processes on functions other than the
flat impulse of Section 8-3 (e.g., homework Problem 8.6).

Comparing Egs. (8-33) and (8-35) shows that

TE(s) = sL{x, (D] = L[h(V)] (8-39)

Applying Eq. (8-21) again, with X,, (07) = 0 by definition, gives

dx, .. )
5 O =hO (8-40)

In words, the velocity of unit-step response equals the unit-impulse response. Equation
(8-40) for responses (outputs) is directly analogous to Eq. (8-38) for excitations (inputs).
The identical form of the two equations is a consequence of system linearity. Equation
(8-40) is another important relationship in linear-system theory, for which we shall have a
convenient application in Section 9-8.

8-10 The convolution integral as a superposition of ideal impulse responses

Suppose that an LTI system has zero ICs and that the input is an arbitrary physi-
cally realistic function, u(t) for t > 0. Let’s apply directly the principle of superposition
to derive an equation for response X(t) at some arbitrary instant of time t > 0. At any in-
stant 7 less than t, 0 < 7 < t, the input u(7) imposes onto the system a differentially
small impulse of magnitude dl, =u(zr)dz, as is indicated conceptually on the figure at

right. Then the differentially small response at time t > 7

due to this impulse at 7 is dx(t) = dl, xht-7) = Y
u(r)h(t—7)dz, in which h(t—7) is the IRF due to a unit

impulse acting at instant 7. Because this system is linear, "0
we can express the total response as the superposition of re-  dx
sponses due to all separate inputs, as is stated in Section 1-
2. In this case, there are an infinite number of separate in-
puts from the infinite number of instants 7 between time
zero and time t, so the superposition, or summation, be-
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comes a definite integral:
=t =t
X(V)| oo = [OX(®) = [u@ht-7)de (8-41)
=0 =0

Equations such as (8-41) and its versions for specific systems [with explicit functions for
h(t—7)] are often called Duhamel integrals (after Jean-Marie Duhamel, 1797-1872,

French mathematician and physicist), especially in the literature of structural dynamics
(e.g., Craig, 1981, p. 124).

Equation (8-41) is general, valid for any LTI system. To see a specific applica-
tion, let’s re-visit the standard undamped 2" order system. With I, =1, Eq. (8-26) gives

the IRF as h(t) = w, sinw,t, so Eq. (8-41) becomes

X()| oy = @, j u(r)sinaw, (t—7)dr (8-42)

7=

Equation (8-42) is the Duhamel integral response solution for the standard undamped 2™
order system, and it is identical to convolution integral response solution Eq. (7-9b) with
zero ICs. Recall that Eq. (7-9b) was derived mostly from the mathematics of convolution
integrals and transforms in Chapter 6. On the other hand, the derivation of Eq. (8-42)
above is primarily physical, based upon the IRF and the principle of superposition for
linear systems.

8-11 Approximate numerical solutions for 1 and 2" order LTI systems based on
the convolution sum

In Section 6-5, we developed a recurrence formula for the approximate numerical
solution of an LTI 1* order ODE with any IC and any physically plausible input function
u(t). It is possible to generalize the recurrence-formula approach to 2™ and higher order
LTI ODEs, but it would require development of theory and detail that are beyond the ob-
jectives of this book (see, for examples: Craig, 1982, Section 7.1; and Meirovitch, 2001,
Section 4.10). There is, however, an alternative, relatively simple approach based upon
the convolution integral, and this approach is readily ap(?licable to calculating approxi-
mate numerical solutions for forced response of 1* and 2" order LTI systems.

To describe this approach, we begin with the general convolution (Duhamel) inte-
gral for forced response, which is valid for any LTI system:

=t
X(t)| ICs=0 ju(f) h(t-7)dr (8-41, repeated)
7=0
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If initial conditions (ICs) are not zero, then appropriate IC-response solutions must be
added to the convolution integral, which represents only the forced response. Examples
of such IC-response solutions are given explicitly in Egs. (6-5), (7-9), and, later, (9-20).
Hereafter in this section, we will consider only the forced response, so it will be conven-
ient to omit the “ICs = 0 subscript from the output variable and denote it simply as X(t),
and later as X with subscripts, Xs for example.

We seek approximate evaluations of Eq. (8-41) in time-series form, that is, at
discrete, equally spaced instants in time. Accordingly, just as in Section 6-5, we define
the following notation that employs descriptive subscripts, with the initial instant defined
as time zero:

t= =0 | L=t +At| =1 + At th=1th_; + At
= At = 2At = (n— 1)At
X(t) = X X2 X3 Xn
uct) = U 1P} Us " Un
h(t) = h1 hz h3 ce hn
Let’s designate as a sequence of length N any series of N numbers such as t;, t,, ... , tn,
or Xi, X2, ... , XN, and let’s denote the entire sequence as {t}n, or {X}n. If time t is the

independent variable, and quantity f(t) is any time-dependent function, let’s denote the
values of f(t) at times t;, to, ... , ty as {f(t)}n.

Forced-response solution Eq. (8-41) is exact. But now we introduce what, in
general, is an approximation. We assume that the integrand product u(z) h(t — 7) varies
so little over the integration time step At that it introduces only small error to approximate
u(7) h(t — 7) as being constant over At, with its value remaining that at the beginning of
the time step:

u(?) h(t — 9 ~ u(te_ 1) h(t—te_y) for t_; < r<t (8-42)

In Eq. (8-42), k is an index that varies, just as 7 varies over the integration limits in Eq.
(8-41).

Suppose that we have matching sequences of time {t}n, input {u(t)}n, and IRF
{h(t)}n, and we wish to calculate the corresponding forced-response output sequence,
{X()}n. Then, using approximation (8-42), we express Eq. (8-41) as follows, with the
convolution integral approximated as a summation:

X(t,)=0

n-| 8-43
X(t,) =Y u(t) h(t, —t) At, for2<n<N (8-43)
k=1

Additional explanation of Eq. (8-43) might be helpful, because the extrapolation of Eq.
(8-41) from continuous time to discrete time is not completely obvious. Physically, the
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forced response must be zero at the instant t = t; = 0 when forcing is begun, even if the
initial input value u(0) is nonzero; also, the exact convolution integral Eq. (8-41) gives
the same result for the upper limit 7= 1t; = 0; hence, x(t;) = 0. Regarding summation over
only n — 1 values of product u(ty) h(t, — ty) At in order to obtain X(t,), consider again
approximation (8-42). Equation (8-42) means that the very last term in the summation of
Eq. (8-43) that approximates the integral for X(t,) is the product u(t,-1) h(ty — th— 1) At.

Equation (8-43) can be written in the following simpler form, using subscript
notation and the constancy of time step At:

X =0

n-1 8-44
Xn:AtZUKhn_k,for2SnSN (5-44)

k=1
The summation in Eq. (8-44) is called a convolution sum.

It is instructive to write out explicitly a few terms of Eq. (8-44), and then to study
a graphical interpretation of the process. Suppose that we have sequences of input values
{u(t)}n and IRF values {h(t)}n, with length N > 4, and we wish to find the corresponding
sequence of responses {X(t)}n. Then the first five terms in the response sequence, from
Eq. (8-44), are:

X, =0 (8-45a)
X, = At(u,h,) (8-45b)
X, = At(u,h, +u,h)) (8-45¢)
X, = At(uh; +u,h, +u;h)) (8-45d)
Xs; = At(u,h, +u,h; +u,h, +u,h) (8-45¢)

Figure 8-6 on the next page is a graphical representation of many aspects of the
previous discussion. The figure consists of three graphs of conceptual time-dependent
functions, with the three time axes aligned. The top graph is a typical input function,
u(t); and one plot on the middle graph is a unit-impulse-response function (IRF), h(t),
which was chosen to resemble the exponential IRF of a 1* order system, with, in particu-
lar, h(0) # 0. The second (dashed) plot on the middle graph is the function h(ty; —t), and it
was chosen to illustrate Eq. (8-45¢) for output quantity Xs.

Observe on the middle graph of Fig. 8-6 that h(ty — t) is derived from h(t) by
“folding” h(t) about a vertical line through time t4/2 and then setting to zero the folded
function for all times t < 0. One of the dictionary definitions for the word “convolution”
as a noun is “a fold”, and this is apparently the reason for the use of “convolution” as the
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Figure 8-6 Graphical representation of the convolution sum for a conceptual problem
with input function u(t) and impulse-response function h(t), with h(0) = 0
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name of a transform, integral, or sum (Evans, 1954, pp. 199-204). It seems that “convo-
lution sum”, for example, sounds more elegant in English than “folding sum”; however,
the German noun for mathematical convolution is Faltung, meaning “folding” or “bend-
ing”, and Faltung was often used interchangeably with “convolution” in older English-
language textbooks and other technical literature.

The plot on the bottom graph of Fig. 8-6 is the product u(t) h(ty — t). At the times
t;, to, t3, and t4, the discrete products Uy hs are marked, and approximation (8-42) of
piecewise constancy is illustrated by straight horizontal lines, each representing the time
step At. This is a stairstep approximation similar to that used in Section 6-5. The bottom
graph shows that Eq. (8-45¢) for Xs is the area under all the cross-hatched rectangles (the
entire “staircase”); that area is an approximation of the integral from Eq. (8-41),

r=ts

Iu(r) h(t; —7)dz. It is obvious from this graphical interpretation of the convolution
=0
sum that smaller values of time step At will produce more accurate numerical inte-
grations, at the expense of longer calculations.

For the conceptual example of Fig. 8-6, which resembles a 1* order system that
has initial IRF value h(0) = h; # 0, and also initial input value u(0) = u; # 0, Eq. (8-45b)
gives X, =At(u,h,)# 0. This is noted because it is easy to make the mistake of calcu-
lating approximate time response by applying directly the MATLAB function conv, as in
the command line X = conv(u,h), and then by taking the first N elements of the result-
ing sequence {X},n-; to be the desired forced response, {X(t)}n ; this process executes the

n n
incorrect equation X(t,) = ZU(tk) h(t,, —t)At = x, = AtZukhmkk ,for 1 <n<N.

k=1 k=1

This incorrect equation calculates a sequence with N — 1 elements the same as those of
the correct forced-response sequence, but the incorrect sequence is shifted backward in
time by a single time step, At. In particular, the incorrect process sets X, = At(u,h,),
which would be nonzero for the conceptual problem of Fig. 8-6, and might alert the
analyst that something is wrong. (Recall from the discussion above that the initial
forced-response value X, must be zero.) But for most systems other than standard 1%
order systems, the initial value of the IRF is zero, h; = 0, so the error in X, = At(u,h,)
would not be obvious in the calculated results. The lessons from this discussion are: (1)
use of the incorrect convolution sum might produce results that are not obviously incor-
rect; in fact, for very small At, the incorrect and correct plots of approximate response
versus time might be almost indistinguishable visually; and (2) if you apply directly
MATLAB?’s function conv, then, in order to obtain the correct approximate forced-
response sequence, be sure to shift the sequence calculated by conv forward in time by a
single time step, At, and to set X, =0.

The following are two numerical examples of the application of Eq. (8-44), first
for a 1* order ODE, next for an undamped 2" order ODE.
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Convolution-sum Example 1: 1* order system Consider the standard 1* order LTI-ODE
of a stable system, Eq. (3-7), for dependent variable x(t): X+ (1/7,)x =bu(t), with IC
X(0) = 0. From Section 8-5 and homework Problem 8.5(a), the unit-impulse-response
function (IRF) is h(t) =be "". Let’s set the input function to be a declining ramp, u(t) =
c(a—t), in which c, a dimensional constant, is the downward slope of the ramp, and a is

the time at which the input passes through zero. For reference, the exact solution for this
problem is derived from Egs. (6-5) or (8-41):°

7=t 7=t
X(t) = be™ " je’/" u(z) dz = be ¥" jef/fl ca-r)dr
=0 7=0

=ber,[(@a+7)1-e ") —t]

With parameters 7; = 2.5 sec, @ = 10 sec, b = 3.5, and ¢ = 1 (b and ¢ in consistent units),
the MATLAB commands to calculate and plot the exact solution X(t), and the approxi-
mate solution from Eq. (8-44), for the relatively large time step At =1 sec, are given next,
followed by the resulting graph, which was edited later to add labels, title, and legend.
Observe in the MATLAB code that the declining-ramp is entered into the input sequence
{u(t)}n, as is the IRF sequence {h(t)}n. Note that the simple code to calculate the con-
) . X n-1
volution sums over the entire forced-response sequence, — = ZUk h, for2<n<N,
k=1
consists of a for loop over index Kk nested within a for loop over index n.

>> a=10;b=3.5;c=1;tau=2.5;
dt=1;t=0:dt:10;
N=length(t); %sequence length
u=c*(a*ones(1,N)-t); %declining-ramp excitation
plot(t,tau*b*u, "k--"),grid %pseudo-static response
h=b*exp(-t/tau); %IRF, impulse-response function
xc(1)=0; %zero initial value
for n=2:N

sum=0;

for k=1:(n-1)

sum=sum+u(k)*h(n-k);

end
xc(n)=sum;
end
xc=dt*xc;

hold,plot(t,xc, "ko-")

te=0:0.05:10;

xe=c*b*tau*((attau)*(1l-exp(-te/tau))-te); %exact solution
plot(te,xe, "k")

3 Details of the integration process are not shown. Note, however, that you can easily verify the validity of
the given solution by substituting it into the ODE and IC and finding that they are satisfied.
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Response of 1%t order system to declining-ramp excitation
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The graph above shows that Eq. (8-44) with the relatively large time step At =1 sec pro-
duces a poor approximation to the exact solution of the 1* order ODE in this problem.
The following MATLAB command lines evaluate Eq. (8-44) and plot the results for three
progressively smaller values of At.

>> a=10;b=3.5;c=1;tau=2.5;
tend=10;
m=[2 8 16]; %inverses of time steps for convolution
maxIn=tend*max(m)+1;
t=zeros(3,maxIn);xc=zeros(3,maxIn); %initialize oversized arrays
for j=1:3
dt=1/m(§);tj=0:dt:tend;N(g)=length(t));:;t(,1:N(g))=tj;
u=c*(a*ones(1,N(J))- tj); %excitation
h=b*exp(-tj/tau); %IRF
xc(J,1)=0; %zero initial value
for n=2:N()
sum=0;
for k=1:(n-1)
sum=sum+u(k)*h(n-k);
end
xc(J ,n)=dt*sum;
end
end
plot(t(1,1:N(1)),xc(1,1:N(1)), "ko",t(2,1:N(2)),xc(2,1:N(2)), "ks")
hold, plot(t(3,1:N(3)),xc(3,1:N(3)),"k.-")
te=0:0.05:tend;
xe=c*b*tau*((a+tau)*(1l-exp(-te/tau))-te); %exact solution
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plot(te,xe, "k"),grid

Response of 1%t order system to declining-ramp excitation
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The results above demonstrate for this 1% order system that the approximate solution
calculated from the convolution sum approaches the exact solution as At — 0. This
concludes Convolution-sum Example 1.

Convolution-sum Example 2: undamped 2" order system Consider the LTI-ODE Eq.
(7-5) for a standard undamped 2" order system, X+ a)n2X = a)nzu(t) , with ICs x(0) = 0
and X(0) = 0. From Sections 8-7 and 8-10 [Egs. (8-26) and (8-42)], the unit-impulse-
response function (IRF) is h(t) = w, sinw,t. Let’s set the input function to be a declin-

ing-ramp pulse,

c(a-t),0<t<t
LR ;
0,t, <t

in which c, a dimensional constant, is the downward slope of the ramp, ca is the input at t
=0, and {4 is the pulse duration. For reference, the exact solution equations for this prob-
lem are derived next from Eqgs. (7-9), without details of the integration processes. For the
interval during which the pulse is active, 0 <t <tyg, we apply Eq. (7-9a), although Eq. (7-
9b) would serve just as well:
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7=t 7=t
X(t) = o, Isina)nz'xu(t—r) dr = o, jsinwnrxc[a—(t—r)] dr
=0 =0

=cla-t-acosw,t +(1/®,)sin w,t], valid for 0 <t<tq

For the time after the pulse ceases, ty < t, Eq. (7-9b) is preferable since the input u(t) is
zero for tg <t, so that the upper limit of integration is clearly ty:

=t =ty
X(t) = o, jsina)n(t-r)xu(r)dr =, jsinwn(t—r)xc(a—r)dr
=0 7=0
=ty =ty
= @,C|sinw,t J.COS(OnZ'X(a—T) dz —cosa,t J.sina)nrx(a—f) dr:l
=0 7=0

= C{sin a)nt[asin oty —1/o,)ot;sinot, +cosw,t, — 1)] lid for b < t
, valid for
—COS a)nt[a(l —cosoty)—(1/w,)(-o,t, cosw,ty +sinw,t, )]} ‘

Let the parameters be: undamped natural frequency an = 7/4.5 rad/sec (making the asso-
ciated period 9 sec), a = 10 sec, ¢ = 1 (in consistent units), and pulse period tg = 10 sec.*
The MATLAB commands to calculate and plot the exact solution X(t), and the approxi-
mate solution from Eq. (8-44), for the relatively large time step At =1 sec, are given next,
followed by the resulting graph of response, which was edited later to add labels, title,
and legend. Observe in the MATLAB code that the entire declining-ramp pulse, includ-
ing zeros, is entered into the input sequence {u(t)}n , as is the IRF sequence {h(t)}n.
Also, just as in Convolution-sum Example 1, the simple code to calculate the convolution
n-1
sums over the entire forced-response sequence, A_T[ = Zuk h, for2<n <N, consists of
k=1
a for loop over index K nested within a for loop over index n.

>> a=10;c=1;wn=pi/4.5;td=10;
tend=25; %time range (sec)
dt=1;t=0:dt:tend;
nd=td/dt+1; %warning: not necessarily an integer for arbitrary td
N=length(t); %sequence length
u=zeros(1,N);
u(l:nd)=c*(a*ones(1,nd)-t(1:nd)); %declining-ramp pulse
plot(t(l:nd),u(l:nd), "k--"),grid %pseudo-static response
hold, plot(t(nd:N),zeros(1, (N-nd+1)), "k--")
h=wn*sin(wn*t); %IRF, impulse-response function
xc(1)=0; %zero initial value
for n=2:N

sum=0;

for k=1:(n-1)

sum=sum+u(k)*h(n-k);

* With ty = a, the pulse is continuous at zero when it ends.
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end
xc(n)=sum;
end
xc=dt*xc;

plot(t,xc, "ko-")
t1=0:0.1:td;t2=(td+0.1):0.1:tend;te=[tl t2];
wtl=wn*tl;wt2=wn*t2;
xl=c*(a-tl-a*cos(wtl)+sin(wtl)/wn);
arg=wn*td;sn=sin(arg) ;cn=cos(arg);
S=a*sn-(arg*sn+cn-1)/wn;C=a*(1-cn)-(-arg*cn+sn)/wn;
x2=c*(S*sin(wt2)-C*cos(wt2));

xe=[x1 x2]; %exact solution

plot(te,xe, "k")

Response of undamped 2" order system to declining-ramp pulse

EU T T I I
; i | —  ult) = both excitation
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| — exact solution for response
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The graph above shows that Eq. (8-44) with the relatively large time step At = 1 sec
produces only a mediocre approximation to the exact solution of the 2™ order ODE in
this problem. But the plot of the convolution-sum solution also illustrates an important
point: not only is X; = 0, the requirement discussed previously, but also X, = ujh; = 0 be-
cause the initial IRF value h; = 0 for the 2" order ODE, regardless of the initial value u;
of the input. The appropriate approximation in this case for the initial time derivative of
X, — X,

mqmmeﬁ%%ﬂzoy: =0.ThﬂE%$mymMQCMMMmmﬂC@ﬁHaTMmﬁa

ODE are both x(0) and X(0). As is stated at the beginning of this section, any nonzero

ICs must be accounted for by separate IC-response solutions, as these ICs cannot be in-
cluded in the forced-response solution, which is the convolution sum. This means that
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we must have X; = X, = 0 for this, or, in fact, any correct convolution-sum approximate
solution of a standard 2™ order ODE. The plot above of the convolution-sum solution
also demonstrates a negative (relative to numerical accuracy) consequence of the neces-
sary condition X, = 0: a consistent time lag, of the approximate solution relative to the
exact solution, on the order of At. The following MATLAB command lines evaluate Eq.
(8-44) and plot the results (on the next page) for two progressively smaller values of At.

>> a=10;c=1;wn=pi/4.5;td=10;
tend=25; %time range (sec)
m=[2 8]; %inverses of time steps for convolution
maxIn=tend*max(m)+1;
t=zeros(2,maxIn);xc=zeros(2,maxIn); %initialize oversized arrays
for j=1:2
dt=1/m();tj=0:dt:tend;Ng)=length(t));t(,.1:N())=tj;
nd=td/dt+1; %warning: not an integer for arbitrary td
u=zeros(1,N(J));
u(l:nd)=c*(a*ones(1,nd)-tj(1:nd)); %declining-ramp pulse
h=wn*sin(wn*tj); %IRF, impulse-response function
xc(J,1)=0; %zero initial value
for n=2:N()
sum=0;
for k=1:(n-1)
sum=sum+u(k)*h(n-k);
end
xc(J ,n)=dt*sum;
end
end
plot(t(1,1:N(1)),xc(1,1:N(1)), "ks")
hold,plot(t(2,1:N(2)),xc(2,1:N(2)), "k-"),grid
t1=0:0.1:td;t2=(td+0.1):0.1:tend; te=[tl t2];
wtl=wn*tl;wt2=wn*t2;
xl=c*(a-tl-a*cos(wtl)+sin(wtl)/wn);
arg=wn*td;sn=sin(arg);cn=cos(arg);
S=a*sn-(arg*sn+cn-1)/wn;C=a*(1-cn)-(-arg*cn+sn)/wn;
x2=c*(S*sin(wt2)-C*cos(wt2));
xe=[x1 x2]; %exact solution
plot(te,xe, "k")
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Response of undamped 2" order system to declining-ramp pulse
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The numerical solution for time step At = 2 sec is a fair approximate solution, but still
with a noticeable time lag, relative to the exact solution, on the order of At. However, the
numerical solution for time step At = ' sec is almost indistinguishable from the exact so-
lution by eye on the graph. This concludes Convolution-sum Example 2.

Finally, we note a curious intersection of two seemingly unrelated mathematical
operations, convolution sum and multiplication of polynomials. Suppose that we have
two arbitrary sequences of numbers, {u}y and {h}ym. Consider the convolution sum in the
form applied by the MATLAB command line X = conv(u,h), which produces the

sequence X, :Zukhnﬂfk for1<n<(N+M-1) X, =uh, X,=uh, +uh, X, =
k=1
uh, +u,h, +u,h,, X, =u,h, +u,h; +u;h, +u,h,, etc. Evans (1954, pp. 201-203) ob-

served that the convolution-sum process can be executed with use of tables in a “process
similar to multiplication.” First, we define the table of sequences {h}y and {u}n:

{h}M - hl h2 h3 h4

{Uin= U Uy Us Uy

n

In order to execute the operation X = Z:ukhn#k using the sequences {h}m and {u}n,
k=1

we construct the table of products below. The first row of the table consists of the prod-
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ucts U; x {h}m, the second row consists of the products u, x {h}m and this sequence is
offset by one column toward the right, the third row consists of the products us x {h}m
and this sequence is offset by two columns toward the right, etc.

n=1 n=2 n=3 n=4
k=1 U1h1 U1h2 U1h3 U1h4
k=2 Uzhl U2h2 U2h3
k=3 U3h1 U3h2
k=4 U4h1

Then each element X, of the sequence {X}n:m.1 is the sum of the products in the corres-
ponding " column of the table of products above:

{XInemor = X1 =u;h; Xo=ujh, + Xs=ujh; + X4=Ujhy +
uh; uoh, + uszh; uohs + ush, +
U4h1

A numerical example applying MATLAB’s conv function to multiplication of
two polynomials was given in Section 6-1. Here is another example of the process using
the notation in the tables above, the product of a 1% degree polynomial, P, with a 2™
degree polynomial, P;:

P;xPy= (us+u,)x(hs’>+h,s+h,)=uhs’ +(u,h, +u,h)s* + (u,h, +u,h,)s+u,h,

With zero input polynomial coefficients u; = 0 for i > 2 and h; = 0 for j > 3, the coef-
ficients of the product cubic polynomial (in descending order of powers of S) are the
coefficients X;, Xy, X3, and X4 from the last table above.

If you wished to execute product P; x P, , you would probably use the basic alge-
bra below for multiplication of two polynomials, which, although less general, is essen-
tially the same as the tabular process described above.

Polynomial P, = h152 + h,s + h,

Polynomial P; = us + u,

us x Py = uhs®+  uhs’+ u,h,s

u, x P, (offset) = u,h,s* + u,h,s + u,h,

Pi x P, =column sums = uhs’ + (u,h, +u,h)s”> +  (uhy+uh)s +  u,hy
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8-12 Homework problems for Chapter 8

8.1 A “shaped”, 10-millisecond force pulse in
pounds is described by the equation

5 3
\
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o
—
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w
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—
L —

£ (t) =[50sin*(1007t)] Ib
x[H(t)—H(t—0.01sec)]

W
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which is graphed at right. In a calculation of sys-
tem response to this input force, we wish to ap-
proximate the force as an ideal impulse function, / \
f (1) = I-o(t). What is the value (with units) of
I-? (Hint: before embarking on a long integra-

tion, examine the graph carefully for symmetries
that will make the calculation almost trivial.)
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8.2 Consider an undamped mass-spring system. The mass weighs 20.0 Ib including an

air-jet thruster that is attached to it, and the spring is calibrated to stretch 0.279 inch when

subjected to 100 Ib of tension. The air-jet thruster has been designed and calibrated to

provide 0.767 1b of thrust in a nearly perfect flat pulse. Let’s study the dynamic position

response X(t) of the mass, starting from zero ICs, to this force input from the thruster.

(a) Calculate the natural frequency of the mass-spring system in rad/sec and Hz, and the
natural period of the system in seconds and milliseconds. Calculate the impulse magni-
tude |- delivered by the air-jet thruster in a blast of duration ty = 4.00 milliseconds.

(Partial answers: T, =75.53 msec, |. =3.068 x 10~ Ib-sec)

(b) Model the 4.00-msec air-jet blast as a perfect flat pulse of force. For this input, write
equations that describe the real pulse response X(t) (in inches); for help, see Eq. (8-5) and
Eq. (7-4); don’t re-derive anything that is already available. Use MATLAB to make an
accurate time history plot of this real pulse response X(t) (in inches) over the time interval
0 <t<40 msec.

(c) Approximate the air-jet force input as an ideal impulse with the same impulse mag-
nitude | as calculated in part (a). Use Eq. (8-28) to write the numerical equation for the
ideal impulse response X(t) in inches.

(d) Use MATLAB to make two accurate time history plots, on the same graph, of () (in
inches) over the time span 0 <t < 40 msec: the real pulse response of part (b) and the
ideal impulse response of part (c).
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8.3 Consider the mass-spring system drawn below with m = 8.03 kg and k = 317 N/m.
This system is initially at rest in the static equilibrium position when it is hit by a flat
force pulse f, (t) = F[H (tH—-Ht-t, )] of magnitude F = 4.50 N and short duration t, =

0.05 sec. In this problem, we analyze the dynamic displacement of the mass relative to
the initial static equilibrium position.

(a) The following succinct response equation can be derived easily with
use of transform Eq. (8-2) and the general Laplace transform of a func-

k tion that is translated in time: L[f(t—t,)H(t—t,)] = e “F(s).

m Y = {1~ cosw ) H® - (1-cos0, ¢ ~t,))HE -1, )]

'
1fy(t) y Show that this equation is fully equivalent to the response equations in
the two-part solution Eq. (8-5). Note from Eq. (7-4) that U = F/k .

Next, use MATLAB to plot the response curve of y(t) versus t from t =0 to t = 1 sec, the
period of the mass-spring system.

(b) In order to compare with the real response, plot [on the same graph as part (a)] the
ideal impulse response of the system, y(t) = (I /ma,)sin@,t, Eq. (8-28), using for |,
the value of the actual impulse from given data. Label clearly which curve is the real re-
sponse and which is the ideal impulse response; title and label your graph appropriately.

8.4 In this exercise, let’s apply the initial-value theorem to the problem of Section 8-7:
the standard undamped 2™ order system that has non-zero initial conditions and is dis-
turbed by an ideal impulse, u(t) =1, o(t).

(a) Determine the post-impulse initial value, X(0"), by using Eq. (8-25) for X (S) in the
initial-value theorem. Is your result the same as that found directly from Eq. (8-26)?

(b) Use Eq. (8-25) for L[x(t)] to find the Laplace transform L[X(t)] of the “velocity”
function; be sure to include both terms of Eq. (8-21) for the transform of a derivative.

(c) Determine the post-impulse initial “velocity”, X(0"), by using your L[X(t)] from
part (b) in the initial-value theorem. Is your result the same as that of Eq. (8-30)?

8.5 Consider the standard 1* order LTI-ODE (of a stable physical system) for dependent
variable x(t): X+ (1/z,)x =bu(t), with IC x(0) = 0, and with excitation by an ideal im-
pulse, u(t) =1, o(t).

(a) Infer from the results of Section 8-5 the unit-impulse-response function (IRF), h(t).
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(b) Use the result from part (a) to write the Duhamel integral response solution for the
standard stable 1% order system, which is comparable to Eq. (8-42) for the standard un-
damped 2™ order system.

(c) The object of this part is to compare numerically the ideal impulse response derived
in Section 8-5 with the response to a real, flat pulse that has the same impulse magnitude
as the ideal impulse and a pulse duration that is short relative to the system time constant.
Use MATLAB to make two accurate time history plots, on the same graph, of the dimen-
sionless output x(t)/bl,, versus dimensionless time t/z, over the time interval 0 < t/z,
< 1. One plot will be the response to the ideal impulse. The other plot will be the re-
sponse to a flat pulse having dimensionless duration t, /7, = 0.2; for this plot, use the

response equations derived in homework Problem 6.2. You should find that the ideal im-
pulse response is much easier to calculate than the real-pulse response. However, is the
ideal impulse response a sufficiently accurate approximation to the real response, and, if
s0, is it accurate over all time, or over just some portion of the response time?

8.6 If you compare Fig. 2-2 for the Heaviside unit-step function H(t) with Fig. 3-3 for
step response of a stable 1* order system, you can see that as time constant 7, becomes

progressively smaller, the 1% order step response looks progressively more like the unit-
step function. Using Eq. (2-26) for H(t) as a model, let’s define the “exponential-unit-

step” function H,(1):

0 fort<O 0 fort<O
H(t) = = H.Mb=1 .,
1 fort>0 1-e™" fort>0

It is clear that H(t) can be defined as a limit of H_ (t): H() = lin}) H.(t). Now, let’s

define the “exponential-unit-impulse” function o, (t):

0 fort<O
O (t) = i(l_e‘t/fl ):ie‘t/" fort >0
dt 7

Sketch by hand an over-and-under pair of graphs, the upper graph being H,(t) vs. t and
the lower graph being J,(t) vs. t. Sketch conceptually the two exponential functions for
a few values of time constant 7, ; show in particular how H,(t) and o,(t) evolve as 7,
becomes progressively smaller. Describe the character of J,(t) as 7, = 0. Is it plausi-
ble physically to define the Dirac delta function as o(t) = }ll_rg 0, (1), which, with the defi-
nition H(t) = 111_1}% H.(t), is equivalent to §(t)=dH/dt? [This is one of many possible

limit-process definitions of o(t) ; Eq. (8-8) is a more commonly used definition.]
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8.7 Consider the mass-spring system (with damping neglected) of Fig. 1-4, for which the
ODE of motion is mX+kx = f (t), and the system parameters are m = 2.20 kg and k =
770 N/m. Initial conditions are zero: X(0) =0 and X(O) = 0. The excitation is a ramped
exponential force pulse, fy(t) = Fn (t/tn) exp(1 — t/tm), with Fp, = 6.0 N and t, = 1/12 sec.
Write a MATLAB program, or adapt the code of Convolution-sum Example 2 in Section
8-11, to calculate and plot an approximate numerical solution for X(t) over the time inter-
val 0 <t <1 sec. Adjust the time-step size At and number of time steps over the 1-sec
interval in your code until the graph of your approximate solution appears very similar to
that on Fig. 1-5 of the corresponding exact solution. Submit your MATLAB code and
your final graph of response.
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9-1 Homogeneous solutions for damped 2" order systems: viscous damping ratio &

For the mass-dashpot-spring (m-c-k) system of Fig. 9-1, the equation of motion
(3-20) derived from Newton’s 2™ law, with

use of the FBD in Fig. 3-9, is ,-»x(t)
k
mi+ci+kx=f.(f) CRVIN VAVAVAS J20
m  ——

Although 2™ order systems appear in many —I
different mechanical and electrical forms, c @) @)
the m-c-k system of Fig. 9-1 is generally
considered to be the prototype.

Figure 9-1 Mass-dashpot-spring system

To provide direction for developing a standard form of damped 2™ order ODE,
let’s consider the homogeneous form of Eq. (9-1) and seek a homogeneous solution
x,(¢) using the conventional method that is described in Section 1-5 [Eq. (1-6) and the

subsequent discussion]:
mx, +cx, +kx, =0 (9-2)
We seek x,(t) = Ce*', in which C and A are unknown:
= (mA +ca+k)Ce* =0
Now x,(t)=Ce"" #0 for a non-trivial solution, leading to the characteristic equation:
mA +cA+k=0 (9-3)

We solve Eq. (9-3) for characteristic values A using the quadratic formula, recognizing
kim = @,” from Eq. (7-3):

2m 2m \\2m m 2m 2m

—c+~ct —dmk c ( c Jz k c ( c T 2
/1: =——+ _— ——:——i _— —a)n

The dimensionless viscous damping ratio ¢ and the critical viscous damping constant ¢,
are defined as follows:
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=< where ¢, =2mm, =2\mk (9-4)
cC

Recall that constants m, ¢, and k are normally positive for a passive, stable system, so that
¢ and c. also are normally positive. With definitions (9-4), the characteristic values take
the form

/1:—( < jwni( < Ja)nz—a)nzz—g“a)nia)m/{z—l (9-5)

2mao, 2mao,

Depending upon the value of £ relative to 1, there are three possible distinct solution
types for characteristic value A and the associated homogeneous solution x, (¢) :

Type 1: £ > 1. overdamped or supercritically damped system

Both roots are real and negative:
A =—¢0, 1o, ¢ -1 (9-6)

The corresponding homogeneous solution is an exponentially decaying response with two
distinct time constants:

X, ()=Cre" +Cye™ =Ce™ +Cpe’™  where 7,,=-1/2,,  (9-7)

If we were given initial conditions x,(0) and x,(0), we could now solve for constants C,

and C, in terms of the ICs, and thus obtain an IC solution for the overdamped m-c-k sys-
tem. We will obtain such a solution in Section 9-10, using different methods.

Type 2: £ =1, critically damped system

The two roots (9-5) are equal and negative:

Ay =—0, (9-8)
Due to the existence of repeated roots, the homogeneous solution involves both a pure
exponential decay term and a term multiplied by time ¢ that also decays, but more slowly
than exponential:

x,)=C,e " +C,te” ™ (9-9)
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The case of critical damping is more of academic than practical interest, since it is rare in

practice that physical parameters lead to the exact value { = 1. (see homework Problem
9.11)

Type 3: 0 < < 1. underdamped or subcritically damped system

In this case, the terms in Eq. (9-5) within the square root are negative, so we have
two complex characteristic values, each with a negative real part:

Ay =—Co, tjw,\J1-¢? =—C¢w, + jo, where o, =w,1-¢°  (9-10)

Frequency w, is called the damped natural frequency. The corresponding homogeneous
solution is

xh (t) = C] eﬂ[l + CH e]vut — C] e(_gwn-*-]'(l)d)f + C][ e(—{(d,,—jwd)t — e—{wnt(cl ejaldt + Cu e—ja)dt)

By applying Euler’s equation (2-8) and combining constants C, and C,, appropriately to
form two new constants D, and D, , we can re-write this homogeneous solution in the
form of an exponentially decaying sinusoid:

x,(t)=e (D, cosw,t + D, sin w,t) (9-11)

If we were given initial conditions x,(0) and x, (0), we could now solve for real constants

D, and D,, in terms of the ICs, and thus obtain an IC solution for the underdamped m-c-

k system. We will obtain this solution in Section 9-4, using the general solution for x(¢)
obtained from Laplace transformation. Underdamped systems are the most important and
common in practical applications and the most interesting, so we will devote more atten-
tion to them than to the other two types of damped 2" order systems.

9-2 Standard form of ODE for damped 2" order systems

Using the concepts and notation developed in the previous section, we now derive
the “standard” form of ODE governing response of damped 2" order systems, beginning
with ODE (9-1) for an m-c-k system:

c k. k__1 _k £
2k mx"‘mx—mfx(f) —

mitci+kx=f.() = ¥+2 (9-12)

Using the definitions from the previous section and the standard input quantity (7-4),
u(t) = f.(¢)/k , we re-write Eq. (9-12) in the standard form:

X420, 5+0, x =0, u(t) (9-13)
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In Eq. (9-13), x(¢) represents any appropriate output quantity (not necessarily just position
as in Fig. 9-1) for a damped 2" order system. Recall from Chapter 7 that we can identify
u(f) as being the pseudo-static output, x,,(?); if x(f) varies slowly enough that the terms X

and 2w, x are negligible in comparison with a)nzx, then ODE (9-13) reduces to a

simple algebraic equation, ®,’x ~ @, ‘u(t), the solution of which is the pseudo-static
response, x(¢) = u(f) = x,(1).

Example 9-1: the LRC circuit, a 2™ order electrical system

Let’s derive an ODE governing the dynamic behavior of the LRC circuit in the
figure below. To write Kirchhoff’s voltage law for this circuit, we start at the input volt-
. 2 age generator and proceed clockwise [see Eq. (5-7)]:
€m
eo(?) (e, —0)+(e, —e)+(e,—e,)+(0—e,) =0

e ) \

IC Next, we substitute in Eq. (5-6) for the inductor and Ohm’s
v

i) \

law (5-1) for the resistor:

- ei+(—Lﬁj (-Ri)—e, =0 = Lﬁ+Ri+e0 =e,(t)
dt dt

For the capacitor, we use (5-3), then differentiate the result and substitute into the ODE:

i=C@=CéO = %=C'e’0 = LCé,+RCé, +e, =e.(l)

Therefore, we can write the ODE in the standard 2™ order form (9-13) as’

. R, 1
eo +_eo + eo = ei (t)
L LC

From this standard form, we see that the undamped natural frequency is @, = 1/ NLC,
and the viscous damping ratio is ¢ = (1/2w, )(R/L) =1 R\/C/L .

Example 9-2: the rate gyroscope, a 2™ order mechanical system

The schematic three-view engineering sketch on the next page represents the ba-
sic functional form of a single-axis rate gyroscope (gyro), a sensor of rotational velocity.?
The supporting turntable in the sketch could be a fixture in a laboratory setup for cali-

"In Appendix B, Section B-3, this ODE is derived by an alternative method using energy and power. The
rate of change of system energy is equated with the power supplied to the system.

? Gyroscopes have been used in sensors and actuators for both aerospace vehicles and water-borne vehicles.
Some examples are described by Cannon, 1967, pages 159-163, 617-626, 696-697, and by Den Hartog,
1956, pages 108-112.
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Rotation rate p(#), the input

Turntable

0
Gimbal-shaft rotation,
the output

M) = J,2,p(0)

-, ~

k ~

brating the sensor; the
turntable rotates clockwise
(as viewed from above)
with  rotational velocity
(rate) p(¢). At the heart of
the rate gyro is a spinning
rotor with polar rotational
inertia J, about its spin axis;
it is driven by a motor to
spin counterclockwise (as
viewed from the front) at
the high constant spin rate
(rotational speed) 2,, which
is usually orders of magni-
tude greater than | 140) |
The motor and spinning
rotor are attached to a gim-
bal (rotating frame) and
shaft segments that fit into
bearings within brackets
projecting from the turn-
table. The gimbal-shaft as-
sembly (including the mo-
tor and spinning rotor) can
rotate through small angle
6(t) about the so-called
“gimbal axis”. This §(¢) ro-
tation is resisted by a rota-

tional spring with constant ks, and by a rotational viscous damper with constant cy. (Drag
is imposed by viscous liquid within a gap between the outer surface of the shaft segment
and the inner surface of the sleeve, which is attached to the bracket.) The polar rotational
inertia of the gimbal-shaft assembly about the gimbal axis is Jy. Due to the inertia J, and
high speed Q, of the spinning rotor, turntable rotation p(f) induces an inertial moment
about the gimbal axis, My(t) = J, Q, p(¢) cos 6(¢) [as derived from Newton’s laws of rigid-
body dynamics by, e.g., Cannon, 1967, pages 152-163]; we assume that 6(¢) is small
enough that cos 6(7) = 1, so that My(¢) = J, Q, p(), as labeled on the sketch.. From Eq. (3-
1), Newton’s 2" law for rotation of the gimbal-shaft assembly about the gimbal axis is

Z(Moments)apout gimbal axis = (rotational inertia) x (rotational acceleration)apout gimbal axis

M,(t)-c,0-k,0=J,0 = J,0+c,0+k,0=J2 p(t)

Therefore, we can write the ODE in the standard 2™ order form (9-13) as

ey k Q k
brlrgilog Lyt
‘]6’ JH JH "]H

9-5
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From this standard form, we see that the undamped natural frequency is @, =/k,/J, ,

and the viscous damping ratio is ¢ = (co/Jy)/ (2w,), and the standard input quantity, with
the same dimensions as rotation-angle output 0(¢), is u(t) = (J. 2./ ks) p(t) = O,4(¢), the
pseudo-static output.

In practical application of a rate gyro, a transducer detects the rotation of the gim-
bal-shaft assembly and generates an electrical signal proportional to 6(¢), which might be
displayed and/or recorded by a data-acquisition-and-processing system, and might also
serve as an input to a control system. Spinning-rotor rate gyros come in various sizes and
shapes; typical units are around the size of a one- or two-pound can of vegetables, and
their cases can be cylindrical or box-shaped.’

9-3 General solution for output x(t) of underdamped 2" order systems

We want to solve Eq. (9-13) for output x(¢) during positive time ¢ > 0, given any
input u(¢), and given appropriate initial conditions at t = 0. We will use Laplace trans-
formation with application of the inverse convolution transform. To simplify the nota-
tion, let’s denote X(s) = L[x(¢)]. Transforming Eq. (9-13) with use of Eq. (2-17) gives

s X (5) = 5x(0) — %(0) + 24w, [sX (5) — x(0) |+ @,” X (5) = @, L[u(?)]

We denote the two initial conditions, x, = x(0) initial “position” and x, = x(0) initial
“velocity”. Collecting terms algebraically and rearranging the equation gives

(s + 20w, + @, ) X (5) = (s + 28w, )x, + %, + @, L[u(®)] (9-14)

Note that up to this point in the derivation, no restriction has been placed on the value of
damping ratio ¢.

To cast Eq. (9-14) into an easily solvable form, we use two algebraic tricks that

are not obvious a priori. The first trick is to re-write the left-hand-side quadratic term
[which, essentially, is the same as the quadratic term in characteristic equation (9-3)]:

s? +2§a)ns+a)n2 =(s+§a)n )2 +a)n2 —(g“a)n )2 = (s+é’a)n )2 +a)d2 (9-15)

We shall regard a)d2 as a positive parameter in the following, so Eq. (9-15) is nominally

valid only for an underdamped system (0 < £ < 1). The second trick is to split into a
particular form the IC terms on the right-hand side of Eq. (9-14):

(s+2¢w, )x, + %, = (s + Co, ) x, + (%, + o, x,) (9-16)

3 This type of spinning-rotor gyro can be considered a “legacy” design, not necessarily the most modern or
the best for current applications. Rotation sensors using laser optics and microelectromechanics (MEMS)
have been developed more recently.
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Applying Egs. (9-15) and (9-16) to Eq. (9-14), then solving for X(s) gives:

s+Clw 1) x, +lw x
X(S): é; n - x0_+_ d2 - 0 él n’vo
(s+¢w,) +o, (s+¢w,) + o, w,
F(s) (9-17)
2 Fy(s)
w w
+— 4 ~L[u(1)]

0, (s+<iw,)’ +o,

The motivation for casting the solution into form (9-17) is a relevant general
Laplace transform pair that has not appeared previously in this book: given a function

f(t), its Laplace transform F(s), and the exponential function e°’, where o is a con-

stant, then the Laplace transform of the product e°’ f(¢) is

=

e r(0))= tJ.ooe_”e‘” f(0)dt = tje*“’)’ f(t)dt=F(s—0o) (9-18)

t=0
The associated inverse transform is
L'F(s—o)]=e"'f(0) (9-19)

Returning to Eq. (9-17), we identify o = —{w, and invert the two IC-response
terms using Eq. (9-19) in conjunction with sine and cosine transforms (2-30) and (2-31).
To invert the forced-response term, we apply both Eq. (9-19) and inverse convolution
transform (6-3). This leads to the two equivalent general equations for output x(#) of an
underdamped 2™ order system:

IC response forced response

. 2 1=t
) X, +Clw,x, ) . @ or s
x(t) =e " | x, cosa)dt+(—° co, OJsma)dt + je “ntsinw,rxu(t—1)dr
w, W, 2,

(9-20a)

. 2 7=t
- X, +Clw x, | . ® o ()
x(t)=e 4“’"’{% cos w,t +[Mj sin a)dt} + j-e D sine, (t—7)xu(r)dr

a)d a)d =0

(9-20b)

Note the emphasis that Egs. (9-20) are valid for underdamped systems. This solution is
nominally not valid for overdamped systems, although we will see in Section 9-10 that it
can be converted easily. The nominal restriction to underdamped systems stems from the
use of sinusoidal transforms (2-30) and (2-31), which are valid in this case only for posi-

tive a)d2 , which holds only if 0 < {'< 1, from Eq. (9-10). For example, we used the in-

9-7



Chapter 9 Damped 2" order systems: general time response

2 2

verse transform L™
P+

} =sinwt , valid for @* > 0, in order to find (9-20), but the

2 2

. . . . _ w
following transform holds for a negative term in the denominator: L { } =
sT—w

sinh @t , a hyperbolic sine.

9-4 Initial-condition transient response of underdamped 2" order systems

One form of transient, free vibration is response from non-zero initial conditions,
with input u(¢) = 0 for all time. With u(¢) = 0, response (9-20) becomes

XO + é/a)n xO

x(t) = e"g“’"’{x0 cosw,t +( jsin a)dt} ,for0<trand0< <1 (9-21a)

,

By following the procedure of Egs. (7-11)-(7-12) for combining the two sinusoids of Eq.
(9-21a), we can also express the IC, free-vibration response as

x(t) = x,,e " cos(w,t+ @), for 0<zand 0 < £< 1 (9-21b)

. 2 )
X, +Ccw, X X, +cw,x
where x_ = x02+ M and ¢=tan‘1 — M X,
@y ®,

Note that for {'= 0, response equations (9-21) reduce to the results (7-10) and (7-12) de-
rived for an undamped system in Chapter 7. In this regard, it is useful to keep in mind

the definition of the damped natural frequency, @, = @, 1-¢° .

The equation @, = @,~/1—¢” also shows that damping reduces the frequency of
free vibration, and increases the period, 7, =27/w, . However, the words “frequency”

and “period” are used loosely in this case, because the damped response is not truly
periodic. More correctly, 7, is defined as the time between successive local crests or

troughs of the response, and between successive positive-going or negative-going zeros.

Figure 9-2 on the next page is an annotated sketch of response (9-21) for positive
values of the ICs, x, > 0 and x,> 0, and for the small damping ratio { = 0.11. The

output is a sinusoid, cos(a)dt+¢), modulated by a decaying exponential envelope,

~t/7

tx, e =+x e In this equation for the exponential envelope, we define the

time constant t, appropriate for underdamped 2" order systems as
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r,=— (9-22)

Xmaxt

x(t) 0

- Xmaxt ! ! !
0 I Al 27 AT time t

Figure 9-2 IC response of a damped 2™ order system, =011

It is often necessary to measure experimentally the dynamic response of mechani-
cal systems, which requires sensors (transducers) that sense a response quantity and con-
vert it into an electrical voltage. The sensors most abundant and relatively inexpensive
for mechanical systems are translational accelerometers (see homework Problem 10.12).
Velocity sensors and translation (displacement) sensors are also used, but less commonly.
It is appropriate, therefore, that we find from “displacement” Eqs. (9-21) the corre-

sponding equations for free-vibration “velocity” and “acceleration.” One differentiation
of (9-21b) gives

x(t)= xmaxe_g“’"’ [— o, cos(a)dt + ¢)— , sin(a)dt + ¢)]

Next, we combine the two sinusoidal terms with use of the trigonometric identity
sin A cos B + cos A sin B = sin(4 + B) and the equation @, = @, /1-¢7 , leading to

(1) = —w,x, ¢ sin(w,t +¢+sin ), for 0< rand 0< £'< 1 (9-23)
One more differentiation of (9-23) followed by a similar combination procedure gives
i) =-wx, e cos(a)dt +@+2sin”' g“), for0<rand0<¢< 1 (9-24)

We see that displacement, velocity, and acceleration all have the same damped sinusoidal
form. Therefore, experimental measurements of any of the three can be used for identifi-
cation of system parameters such as  and w,, a subject addressed in subsequent sections.

9-5 Calculation of viscous damping ratio £ from free-vibration response

Consider an underdamped 2" order system in a state of free vibration, i.e., with
zero input, u(f) = 0. This free vibration can be an initial-condition response or the resid-
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ual response after input excitation has ceased, e.g., for ¢ > #; if the input is a pulse. Then
the free-decay response will have the form of Fig. 9-3. On the figure, a reference local
extreme value x(¢,) = x, 1s annotated (at a crest on Fig. 9-3, but it could just as well be at

a trough), and subsequent local extreme values (both crests and troughs) also are anno-
tated. We wish to calculate viscous damping ratio ¢ from the graph of response. Note
also that the exponential envelope is indicated on Fig. 9-3 with dashed lines.

x(t)

Figure 9-3 Free-vibration response of a damped 2" order system

We use Eq. (9-21b) for free-vibration response:
X(t) = X8 " cos(@, +¢) (9-21b) repeated

From this equation, we form the ratio x,/x, of the reference extreme absolute value
|)c(t0 )| divided by the 7" crest or trough absolute value, where 7 as shown on Fig. 9-3 can
have either integer or half-integer values. Note that |cos(a) S+ ¢] =1 at each of the local

extreme values, and that the time of the " extreme value is ¢, =¢, + 7T, , where T, =

27/w, is the damped natural period. So the required ratio is

—{w, b é’

X, e o, rT 2z
L= =" =exp| {0, r —F—= |=exp| 27r —=—| (9-25)
X, e ¢, (ty+rTy) ( o, 1_4,2} [ [1_4/2\]

Taking the natural logarithm of Eq. (9-25) gives the so-called logarithmic decrement:

ln[x—()]:me £ L ¢ Il xr)sgs (9-26)

X 1-¢72 1-¢7? 2xr

In the last term of Eq. (9-26), we define {, as being the accurate approximation for
“small” damping ratio ¢ . It is very common for a system to have positive, but small
damping. We define damping to be small if y/1—¢* ~1, which simplifies considerably

equations such as (9-26). For = 0.2, /1-¢? =0.980, so this is a reasonable upper
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limit for “smallness.” We can find the exact equation for ¢ by squaring (9-26) and then
proceeding algebraically to derive

§=L,for0S ¢<1 (9-27)

J1+¢.2

It might appear that the preceding derivation requires the values of x, and x, to
be at crests and troughs of the response plot, and that these should be zero-to-peak values;
but neither of these restrictions is necessary. The values of x, and x, can be at any con-
venient instants along the time history (zeros of the response, as well as extremes), pro-
vided that we interpret x, and x, as being the magnitudes of the exponential envelope at

the chosen instants. Normally, only the free-vibration response plot is available (from a
storage oscilloscope, strip-chart recorder, etc.), so we should sketch in the exponential
envelope to aid in measuring x,, x, and r. Moreover, rather than measuring zero-to-
peak values, it is more accurate and easier to measure x, and x, as peak-to-peak values,

from the lower exponential boundary to the upper exponential boundary.

Let’s summarize the procedure for measuring/calculating ¢ from a plot of free-
vibration response. First, sketch in the exponential envelope. Next, choose time instants
along the graph at which you can measure with reasonable accuracy the number of peri-
ods 7 (usually an integer, half-integer, or quarter-integer) and the magnitudes x, and x,

between the exponential boundaries. Next, substitute the measured values of », x,, and
x, into Eq. (9-26) and calculate ¢,. If this ¢ is < 0.2, then { ~ & with sufficient engi-
neering accuracy. However, if 0.2 < & < 1, then calculate £ more accurately from Eq.
(9-27).

There is a simplified version of Eq. (9-26) that is often used for quick calculation
of small £. If possible, we find the reference magnitude and the »™ magnitude such that
x,/x, =2, and we label the number of periods as r,,. Hence, In(x,/x,)/2z = 0.110,

which leads us from Eq. (9-26) to the half-amplitude formula for small ¢

go=—~"¢ (9-28)

"2

Finally, the preceding derivation was based upon Eq. (9-21b) for “displacement”
response x(#). However, the formulas derived for ¢ are equally valid if the measurements
are made from graphs of “velocity” x(¢) or “acceleration” X(¢). This is so because, from

Egs. (9-23) and (9-24), the derivatives of x(¢) have the same exponentially-bounded sinu-
soidal form as x(z) itself.
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9-6 Step response of underdamped 2" order systems

For step response, we set the ICs to zero, and we define the input to be a step
function at time ¢ = 0, with step magnitude U: u(¢) = U H(t). The appropriate form of the
general solution to use is Eq. (9-20a), which becomes [with H(t—7) =1 for 7 <{]

2 7= 2

1 T=t
(0] _ . 0) - .
x(t)=—"" J.e ‘Ot sinw,rxu(t—1)dr =—"— J.e “fsinw,rxUH(t—1)dr
d =0 a)d =0
2 7=t

o o
=U—"— J.e “fsinw,r dr
a)d =0

This integral can be evaluated by hand (e.g., using integration by parts), but the process is
tedious. The following evaluation was completed with use of a table of integrals:

7=t
=0

w’ 1
HN=U—-L —Sw,r(_ . _
x(1) w0, (o) + o, [e (- o, sinw,r-w, COSC()dz')]
- Ui[e—:w,,t(_ Cw, sinw,t —m, cos a)dt)—l(_a)d)]
a)d

x(t) = U{l - e‘“’"{cos w,t+ 6, sin a)dtﬂ ,forO0<rand0<d< 1 (9-29)
@y

Note that the coefficient of sinw,t in Eq. (9-29) is dependent only on the damping ratio:

(o, lo, _ ¢
®; 1= \1-¢7

=¢, [see Eq. (9-26)]

Step response (9-29) for small damping ratio & = 0.11 is plotted over a few
cycles of response on Fig. 9-4. Relative to the pseudo-static response, x, = U, the actual

oSy N U NSNS SN SN NS MO SO
) [ b
S 70 B R W e S %
-----
0 . : . : ; : ! : . .
0 %-,\ % éwl,\ % time t

Figure 9-4 Step response of a damped 2" order system, =011
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step response of a damped system initially overshoots, then undershoots, then overshoots

again, then undershoots again, efc., etc. But damping dissipates the energy of vibration,

causing the response eventually (not shown on Fig. 9-4) to settle statically at limx(¢) =
t—0

x,, = U. Several step-response characteristics (called specifications, or specs in engi-

neering jargon) of a system can be quantified and often are of great interest in practice.
For example, the rise time is the time required for the response first to reach U, which on

Fig. 9-4 is just a bit longer than 1 7/w, . However, before studying those characteristics

in more detail, it is appropriate that we first consider impulse response.

9-7 ldeal impulse response of underdamped 2" order systems

For impulse response, we set the ICs to zero, and we define the input to be an
ideal impulse at time ¢ = 0, with impulse magnitude 7, : u(¢) =1, 6(¢). The more
appropriate form of the general solution to use is Eq. (9-20b), which becomes

2 7=t 2 7=t

o, (=) - 1) to (1) -
J'e D sinw, (t — ) xu(r)dr = — _[e D sine, (t—1)x 1, 5(r)dr
2 =0 @, =0

a)l’l

x(t) =

Using the integration property of 6(zr), Eq. (8-11), we find the relatively simple result:

2
a)n

x(t)=1, e"'sinw,t, for0<tand 0< £< 1 (9-30)

a)d

Ideal impulse response (9-30) for small damping ratio { = 0.11 is plotted over a

few cycles of response on Fig. 9-5. Observe that this ideal response violates the specified
2

Wn

IU—(_D; 1 1

— '

1 Bl
]

2® 0 ' N T T e~

]
:v S T — — -
1 I‘_'_'_ e — 1= 1
- - '

1
- de | 1 1 1
a 21T 118 AT+, t
0 n o W, D Lrme

Figure 9-5 Ideal impulse response of a damped 2" order system, =011

initial condition x(0) = 0 ; thus, the solution is defective in this respect, as is discussed in
Section 8-7. Figure 9-5 shows the exponential envelope; note, in particular, the values at
t = 0 of the exponential envelope, + 7, @, / @, . This magnitude is easily measurable
from a graph, after we have sketched in the exponential envelope, if necessary, and it is
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essential in the process of estimating mechanical system parameters from an experimen-
tal response to a short force pulse (Section 9-9).

From Eq. (9-30), we find the unit-impulse-response function (IRF, as defined in
Section 8-7) for underdamped 2™ order systems:

2
h(t) = x(l‘)|1U:l = a;)” e 'sinwm,t,for0<tand0< < 1 (9-31)

d

Further, from Eq. (8-25), we find the Duhamel integral giving general response to input
u(f), with zero ICs, for underdamped 2™ order systems:

=t 2 7=t
X)), = j w(@)h(t —7)dr =L j u(r) e Osinw,(t-1)dr  (9-32)
=0

d =0

Duhamel integral (9-32) is identical to convolution-integral response solution (9-20b)
with zero ICs.

Finally, it is worthy of mention that convolution sum Eq. (8-44) for approximate
numerical forced response applies just as well to damped 2™ order systems as to 1 order
and undamped 2" order systems. Therefore, to calculate approximate forced response of
an underdamped 2™ order system, we would apply exactly the same procedure described
in Convolution-sum Example 2 of Section 8-11, but instead of calculating in Eq. (8-44)
the IRF /(¢) = w, sinw, ¢t for an undamped system, we would calculate Eq. (9-31).

9-8 Step-response specifications for underdamped systems

Engineering systems are often designed so that the time history of an output quan-
tity will mimic as closely as possible the time history of the input quantity. An example,
with reference to Section 3-5, is the aileron-induced rolling of an airplane, for which the
original input is the control wheel angle set manually (“commanded”) by the pilot, and
the ultimate output is the airplane roll rate. Another example is the modern automobile;
we usually describe a car as being “responsive” if the steering (or the acceleration, or the
braking) mimics quickly and precisely the driver’s commands set by hand or foot.

Step response of a system is often used for measuring and quantifying dynamic
“responsiveness.” Ideally, step response would mimic exactly the step input, but system
characteristics such as inertia and damping prevent such instantaneous response. The de-
gree to which step response fails to mimic step input is quantified in the following four
step-response specifications: rise time, ¢ ; peak time, ¢ s maximum overshoot ratio, x o

and settling time, ¢,. These step-response quantities are illustrated on Fig. 9-6 on the

next page. They are called “specifications” or “specs” because it is common in the be-
ginning of a project to specify them as design targets; later, these step-response quantities
are measured experimentally on prototype and/or production test articles.
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Figure 9-6 Step-response specifications of an underdamped system
For underdamped 2™ order systems, we can apply step-response solution (9-29)
and impulse-response solution (9-30) to derive specific equations for the step-response

specifications:

Rise time, ¢,

From Fig. 9-6, we evaluate Eq. (9-29) at ¢ = ¢, , the first time when x(¢) = U:

. , . o, .
x(t,)=U= U{l —e (cos w,t, + co, sinw,t, H = cosw,t, +gsm w,t, =0
@, @,

w 1-¢° 1
= tanw,t, =——%=— ¢ __1

o, ¢ g,

This last equation shows that as § — 0 from positive values, then tanw,f, — —co from
negative values; therefore, @,¢, — 47 xn from higher values, where n =1, 5,9, ...; and
the first time when x(f) = U corresponds to n = 1: @,t, — 47 from higher values. We
can see this in Fig. 9-4, where ¢, is just a bit after 1 7/®, (keep in mind that v, < @,).
This leads to the conclusion that the rise time is given by

J1=¢72 Y
t, =Ltanl[ ¢ J (9-33) x0T
, - !
l_é/Z H ya [
In Eq. (9-33), we take the value of the four-quadrant inverse i
tangent that is between 17 and 7, as shown on the drawing at - x

right.
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Peak time, ¢,

From Fig. 9-6, 7, is the time at which x(#) is maximum and the first time after 7 =
0 that x(#) = 0. So we need to differentiate Eq. (9-29), set it to zero, and solve for 7,

from the resulting equation. From the appearance of Eq. (9-29), though, that differentia-
tion will be long and tedious. But that drudgery will not be necessary, because a funda-
mental relationship derived in Section 8-7 will come to our rescue. We identify the unit-
step response as Eq. (9-29) with step magnitude U = 1:

x, (1) =1x {1 - e_g‘”"{cos w,t+ co, sin a)dtﬂ =1- e‘g“’"’[cos w,t+ co, sin a)dtj (9-34)
1)

@, g

Clearly, ¢, is independent of step magnitude U. Now, Eq. (8-24) gives the derivative of

Eq. (9-34) as dx,, /dt = h(t) , where the IRF h(¢) in this case is Eq. (9-31). Therefore, the
equation leading to 7, that we seek is

2
CbC_H:h(t):w—”e_gw“tsin w,t=0 att= ‘, (9-35)
dt W,

The required solution of Eq. (9-35) is the lowest positive value of ¢ that satisfies sin @, ¢
=0, which is

t = (9-36)

The graphical equivalent of this mathematical derivation of Eq. (9-36) is evident in an
examination of Figs. 9-4 and 9-5, where we can see that both the peak of the step re-
sponse and the first zero of the ideal impulse response occur at an instant ¢ just a bit after
7/w, (recall that 0, < ®,).

Maximum overshoot ratio, x »

From Fig. 9-6, Eq. (9-29), and Eq. (9-36), the maximum overshoot ratio is

__x(,)-U
‘xp :T:

B () ) T . .
—e (cosa)dtp +—§ ”sin a)dt,,J = —exp(— (o, _j(COWhL -, S ”J

L, L, L,

= X, = exp{ \/LzﬂJ <l,validfor0< <1 (9-37)
I-¢
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So the maximum overshoot ratio is a function only of viscous damping ratio ' . Con-
versely, ¢ can be determined from a measurement of x, by taking the natural logarithm

of Eq. (9-37):

i, = 7 = —r_ & _r validfor0O<x, <1 (9-38)

p 1_4/2 T /1_4/2

Note the similarity of Eq. (9-38) to Eq. (9-26) for the logarithmic decrement. Therefore,
we arrive again at Eq. (9-27), the exact equation giving £ for any overshoot in the range

0<%, <1: ¢=¢,/1+¢7  for0< ¢< 1, now with ¢, =—In%, /.

If damping is small such that \J1-¢? =1, ie., 0 < ¢ <0.2, then Egs. (9-37) and
(9-38) are approximated as:

and ¢~-——" validfor0<¢<02and0.534<Xx, <1 (9-39)

Settling time, ¢

This specification is defined as the time required for response x(f) to settle to
within +2% of the final steady-state (pseudo-static) value, U. For this underdamped 2nd
order system, the time constant of the exponential envelope is Eq. (9-22), 7, =1/¢w, .

From Chapter 3, we have 1 — ™ = 0.982 (see Fig. 3-3), so the settling time is defined as

{—dr, =2 (9-40)

’ é’a) n

It is appropriate here to evaluate the variation in step response of a standard 2™
order system as damping varies. Figure 9-7 on the next page displays 2" order step re-
sponses for a range of viscous damping ratios ¢. [The response curves of Fig. 9-7 are
calculated as follows: for underdamping, 0 < £ < 1, from Eq. (9-29); for critical damping,
¢ =1, from the result of homework Problem 9.11; for overdamping, { = 1.2, from the
result of homework Problem 9.16. The time reference is undamped natural period 7, =
27/ m,.] As engineers designing a system, we might wish to design into the system a
quantity of damping £ that makes the time history of an output quantity mimic as closely
as possible the time history of the input quantity. This means, in the context of step
response, we would want both to make rise time as fast as possible and to minimize
overshoot. However, Fig. 9-7 shows that we cannot simultaneously do both for a stan-
dard 2™ order system: rise time is fastest for small ¢, but overshoot is minimized or
eliminated with larger . Therefore, we would have to compromise and select a value of
¢ that produces practically acceptable values of both rise time and overshoot, even
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though neither response parameter would be the best possible. Observe from Fig. 9-7
that overshoot exists only for underdamping.

otep responses of standard damped 2™ order systems for £=0:021.2

Dimensionless autput x{t)/1)

15

Dimensionless time thn

Figure 9-7 Step responses of standard 2" order systems as viscous damping varies

The transient response of engineered control systems is very important in practice,
so there is more analysis and discussion of subjects such as rise time and overshoot later
in the book, beginning in Chapter 14.

9-9 Identification of a mass-damper-spring system from measured response to a
short force pulse

Suppose we have a mechanical system that is known to be an m-c-k system (or a
close enough approximation thereto, for engineering purposes), such as that of Fig. 9-1,
and suppose we need to estimate from experimental measurements the system
parameters: mass m, effective viscous damping constant ¢, and stiffness constant k. This
is a form of the process known generally as system identification (ID). There are many
methods of system ID using both transient response and frequency response. In this
section, we illustrate one common method based upon pulse response.

The theoretical basis for system ID by pulse testing of a mechanical m-c-k system
is the ideal impulse response given by Eq. (9-30), with use of Eq. (8-13), I, =1, /k , and

the equation for natural frequency, a)n2 =k/m:

I, k/m _ . I, .
—F/—e ‘il sin @t =—L—e " sinw,t (9-41)
k o, mao,

x(t)=

Similarly, the values at ¢t = 0 of the upper and lower boundaries of the exponential enve-
lope (for guidance, see Fig. 9-5) are
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2
1) 1
no__ F
1, ==
W, mao,

(9-42)

The practical implementation of these equations is based upon using them to approximate
the real response from a short force pulse, as is discussed extensively in Section 8-6.

The experimental procedure is as follows. An engineer or technician strikes the
mass lightly but sharply with a specially designed hammer. A force sensor mounted in
the head of the hammer measures the pulse. A displacement sensor measures motion of
the mass due to the force pulse. For accuracy of the system ID, it is essential that the
pulse duration #; of the hammer strike be very short relative to a quarter of the system
natural period: ¢; << ¥ T, ; achieving this might require some experimental iteration,
testing hammer contact tips of different degrees of hardness. The time history fi(f) of
force input to the mass is recorded; this force pulse might be somewhat irregular, such as
Fig. 8-5, or it might appear to have a more regular form, such as a half-sine. The time
history of displacement response, x(¢), also is recorded; with a properly short pulse dura-
tion, response x(¢) should look very much like the damped sinusoid of Fig. 9-5, ideal im-
pulse response. The steps of the subsequent calculation algorithm are:

1. Calculate from measurements on the x(¢) graph the damped natural frequency f; (Hz)
and the viscous damping ratio . In order to obtain reasonably accurate values of f; and

¢, be sure to average over as many cycles as possible of the damped sinusoid. To aid in
the calculation of ¢, first sketch in the exponential envelope. Next, use the values of f;
and ¢ to calculate the two circular natural frequencies in rad/sec: @, =27f; and o, =

w, / 1—-¢* . For small ¢, these two frequencies will be essentially identical.

2. From the fi() graph, use graphical or approximate theoretical integration to calculate
the actual force impulse /, . From the x(7) graph, find the value at # = 0 of the upper and
lower boundaries of the exponential envelope, which are approximately £/, /me, from
Eq. (9-42). It is important in this step to be very careful with the units of these quantities

measured from experimental data. Now, you have the data required to calculate the mass
from the identity

-1

1

m:{a)dxix F} (9-43)
I, ma,

3. Finally, calculate the stiffness constant using k = ma)n2 , and calculate the effective

viscous damping constant from Eq. (9-4), c =2{me, = 2\ mk .

It is always essential in engineering practice to check your calculations as much
as is practical. After you have calculated m, ¢, and k from the procedure described above,
you can check the validity of your values by using MATLAB (or some similar calcula-
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tion software) to graph the ideal impulse response of your calculated system, Eq. (9-41);
then compare the calculated graph with the recorded experimental response. If the two
graphs are very similar, then your system ID is probably correct, provided that you cal-
culated 7, correctly. However, suppose that you use an incorrect value of /,., then

calculate wrong values of m, ¢, and k based upon this wrong /.. ; if you then graph the

ideal impulse response, using these wrong values in Eq. (9-41), the result will look very
much like the recorded experimental response, giving you a false indication that your
system ID is correct. Therefore, be sure to calculate correctly the force impulse 7. .

9-10 Deriving response equations for overdamped 2" order systems

For £ > 1, we can consider the damped natural frequency to be an imaginary
number:

0, =0 1-C = jo, | —1=ju, where u,=wm, > —1 isreal (9-44)

The general method of deriving transient response equations for the overdamped case is
to substitute (9-44) into the Laplace transform (9-17), and then proceed to invert the re-
sulting equation, leading to general expressions that include IC response terms and con-
volution integrals, analogous to Egs. (9-20).

There is an easier method for finding overdamped-system response equations if
the comparable underdamped-system equations have already been derived. The method
is to use Eq. (9-44) in order to convert trigonometric terms of the { < 1 equations into
hyperbolic terms for the £ > 1 equations. From homework Problem 2.13, we have the
following conversions valid for £ > 1:

i t sinh gt
cos®,t =cosh u,t and Mo, _ ST (9-45)

L, Hy

An example of applying Eqs. (9-44) and (9-45) is conversion of IC response Eq.
(9-21a) from the underdamped (¢ < 1) form into the overdamped (£ > 1) form:

_ X, +lo x, | .
x(t)=e g“’”t{xo cos a)dt+[szm a)dt} for0<¢ <1
@,

XO + gm}l xO

= x(t)=e ™| x, cosh u,t +[
Hq

jsinh ,udt} for > 1 (9-46a)

in which u, = w,/¢* —1. This IC-response equation is valid for 0 < #and ¢ > 1. The
hyperbolic functions are defined in terms of exponential functions as
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e/ldf + e‘/‘d’ . eﬂdf _ e—#df
cosh y,t = B and sinh g, =

Therefore, IC-response equation (9-46a) can be written a bit more clearly as

x(t) = le—é”wnt e/ldt(xo R cO,%, ] n e_#dt[xo _M] (9-46b)
2 Hq My

All terms in Eq. (9-46b) are exponentially damped. Even the first term within the square
brackets decays away exponentially because —<(w, +u, =—Co, + @,/ —1 =

—(g— (2—1)a)n<0 for & > 1.

Example 9-3: RC band-pass filter, an overdamped 2™ order system

We re-visit Section 5-4, where the input voltage to the RC band-pass filter is de-
fined as e, (¢), the mid-circuit voltage between low-pass and high-pass stages is e, (¢),

and the output voltage is e, (¢); also, the 1* order time constants of the low-pass and

high-pass stages are 7, and 7, , respectively, defined in terms of resistance and

capacitance values in the circuit. The two coupled 1* order ODEs derived in Section 5-4
are

for the low-pass filter stage, 17,¢, +e, =e, (5-16) repeated

for the high-pass filter stage, 7,¢,+e, =7, ¢, (5-17) repeated

We combine these coupled 1% order ODEs into a single 2™ order ODE with the
following operations: differentiate Egs. (5-16) and (5-17); in the differentiated (5-16),
replace e, using the original (5-17), and replace €, using the differentiated (5-17); re-

arrange and collect terms to find the ODE relating output e, (¢) to input e,(¢):

T,Ty €, +(2'L +7, )éo +e, =1,€ (9-47)

i

Due to the right-hand-side dynamics (the presence of ¢, rather than just e,), we cannot

cast this entire equation into the standard form (9-13); see homework Problem 9.15 for a
modified standard form of ODE and for convolution-integral response solutions. How-
ever, the order of the circuit is determined only by the left-hand-side terms, and it is
clearly 2™ order, with natural frequency and damping ratio defined as

o = 1 and £ = 1 7,+7,

1
n 5
1/z’Lz'H Za)n T, Ty 2 T, Ty
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Suppose, for example, that a particular circuit has the high-pass and low-pass break
frequencies f,, = 10 Hz and f, = 500 Hz, respectively. Then the time constants are

t, =lw, =1/Q2x f,,)=1.592e-2 sec, and 7, =1/w, =1/(27 f,) =3.183e—4 sec, and the
undamped natural frequency is ®, =4.443¢2 rad/sec ( f, = ®, /27 =70.71 Hz). Finally,
the damping ratio is { =3.606, which means that this is a strongly overdamped system.
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9-11 Homework problems for Chapter 9

9.1 In the system drawn below, mass m is attached to a movable support by viscous
dashpot ¢; and spring k, and the mass also
|_>x(t) {—»Xi(t) slides on a lubricated surface, which causes
viscous damping with constant ¢, . There are
two independent input quantities: (1) support
displacement x;(f) shown (displacement con-
trol, e.g., by a cam), which is often called base
excitation,® and (2) force fy(f) shown. The out-
put quantity is displacement x(f) of the mass.
Sketch and label clearly appropriate free-body diagrams, then use your FBD to derive the
differential equation of motion for x(¢) in terms of constants m, c;, ¢; and k, and variable
inputs x4¢) and f,(f). Your ODE of motion should include some non-standard right-hand-
side dynamics.

9.2 Given, a standard m-c-k system, Fig. 9-1, with the following parameters: weight of

_ 2
the mass W = 0.386 b, so that m = K Lﬂb =0.001 lb_ihc; damper vis-

g 386 inch/sec’ inc
cous constant ¢ = 1.1 x 10~ Ib/inch/sec; spring stiffness constant & = 3.025 Ib/inch.

(a) Calculate the following quantities, all to at least 3 significant figures: @, in rad/sec,
fnin Hz, ¢, @, in rad/sec, f; in Hz, and T, = 1/f;. You may calculate these quantities in
MATLAB, if you wish, using the command format short e.

(b) Given initial conditions x(0) = 0.5 inch and x (0) = 35 inch/sec, calculate and graph
with MATLAB the free-vibration response due to the ICs over about 20 complete de-
caying cycles. Since you are multiplying sinusoidal time functions by an exponential
time function, it is necessary that you use array multiplication (.*) in MATLAB. Draw
grids on your graph and add an appropriate title and appropriate axis labels.

(c) Sketch by hand the exponential envelope on your graph, then use the grids and/or a
graduated straight edge to measure amplitudes of local peaks of the decaying sinusoid. In
particular, find (approximately) the quantity 7, = the number of decaying cycles to de-

cay to half amplitude (not necessarily an integer). Now calculate the dimensionless ratio
0.1 10/ 1), > the value that you calculate should match closely with your previously calcu-

lated value of ¢.

* Base excitation is displacement input imposed at the “ground” or “base” side of the spring instead of
directly upon the mass. It is very common to consider base excitation in analyses of earthquake-induced
response of buildings, automobile tires rolling over bumpy roads, and vibration isolation of sensitive
devices such as delicate payloads in rocket boosters.
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9.3 The free-vibration response to initial conditions of a standard damped 2" order Sys-
tem is given by x(¢) = 2.24e"**" cos(12.00¢ —1.11) mm, where ¢ is in seconds. Calcu-
late (1) the damped natural frequency f; in Hz, (i1) the damping time constant 7, in sec-

onds, and (iii) the viscous damping ratio £ (use the small-{ approximation). Show your
calculations.

9.4 A simple type of vibration testing often used for underdamped mechanical systems,
such as the m-c-k system of Fig. 9-1, is called twang testing (named after the sharp,
ringing sound made by plucking a string of a musical instrument; Section 7-6
demonstrates twang testing of a flexible beam): the mass is displaced from its static
equilibrium position by amount x, (with zero initial velocity, x, =0), then it is released.

From the record of subsequent transient response, we can calculate directly the damped
natural frequency f; and the viscous damping ratio . If we know initially either the mass
m or the stiffness constant &, then we can use the measured f; and ¢ to calculate the other
constant and the effective viscous damping constant ¢. Use Eq. (9-21b) to show that
twang test response is

x(t)= xmaxe{”"’ cos(a)dt + ¢), forO0<tand 0< < 1

where xmax:xo/\/l—é/z and ¢:tan‘l(—§/,/1—§2)

For a very lightly damped system, the preferred simple approximation of this twang re-
sponse is

x(t) = x,e " cos(w,t), with ¢ ~ 0

How small must £ be so that phase lag ¢ is so small (say, |@| < 5°) that it can’t be distin-
guished from zero phase lag, ¢ = 0? [NOTE: the measurement resolution on a typical
analog graphical record of transient-decay vibration response (for example, from a small
oscilloscope screen) is so limited that the resolution of calculated phase is probably only
around +5°.]

9.5 A laboratory mass-damper-spring system was set into motion and then allowed to
vibrate freely. The time-history acceleration on the next page was sensed by a light-
weight accelerometer attached to the mass. The graph was copied from the screen of a
digital oscilloscope. Calculate from measurements on a photocopy of the graph the
damped natural frequency f; (Hz) = @, /27 and the viscous damping ratio . In order to
obtain reasonably accurate values for f; and ¢, be sure to average over many cycles of the
damped sinusoid. To calculate £, first sketch in the exponential envelope. Also, note
that the zero level of the acceleration signal is offset from the center horizontal grid line;
therefore, peak-to-peak amplitude measurements are more appropriate than zero-to-peak
measurements, as well as more accurate. Annotate your measurements on the graph
(submit the annotated graph), and show your calculations clearly. From your values for f;
and ¢, calculate the undamped natural frequency f, (Hz). For a lightly damped system
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such as this one, is the difference between f; and f, numerically significant, given the
limited precision of the measured quantities?
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9.6 A standard m-c-k system is initially at rest. Then an engineer strikes the mass with a
soft-tipped hammer that produces a relatively slow half-sine force pulse of amplitude 25
Ib and duration 0.1 sec [ fi(f) = 25 Ib x sin(107¢) for 0 < ¢ < 0.1 sec]. Both the force pulse
f«(?t) and the displacement response x(¢) of the mass are recorded on the graph below. To
support the calculations assigned (next page), annotate your measurements on a

Half-sine force pulse and displacement response of m-c-k system
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photocopy of the graph (hand in the annotated graph), and show your calculations clearly.

(a) Calculate from the f(f) equation the impulse /,. produced by the force. However,
you should not use this 7, in Eq. (9-43) to determine m. Explain why not.

(b) Calculate from the graph, with as much accuracy as the data permits, the damped
natural frequency f; (Hz), and the viscous damping ratio ¢ of the system.

(c) The system’s mass m is known to be 0.0652 lb-sec’/inch. Calculate stiffness constant
k and damping constant c.

9.7 A large mass-damper-spring (m-c-k) system is initially at rest. Then a machine im-
poses upon the mass a slowly varying force in the form of a sawtooth pulse of amplitude

. N
800 N and pulse duration 1.5 sec, fi(f) = 800 xt for 0 <t < 1.5 sec. Both the force
c

pulse f(?) and the displacement response x(¢) of the mass are recorded on the graph
below. The unusual displacement scale “x(z) (mm * 100)” is employed in order to
accommodate the ranges of both fi(¢) and x(¢) on the same graph; this scale simply
means that the range of displacements on the graph is —6.00 mm < x(¢) <+8.00 mm. To

support the calculations assigned (next page), annotate your measurements on a photo-
copy of the graph (hand in the annotated graph), and show your calculations clearly.

sawtooth-pulse excitation and response of an m-c-k system
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(a) Calculate the total impulse /,. produced by the force. However, you should not use
this /,. in Eq. (9-43) to determine m. Explain why not.

(b) Calculate from the graph, with as much accuracy as the data permits, the damped
natural frequency f; (Hz), and the viscous damping ratio ¢ of the system.

(c) The system’s stiffness constant & is known from static testing to be 120.0 kN/m. Cal-
culate mass m and damping constant c.

(d) Find the algebraic/numerical equation for the pseudo-static response x,,(¢) while the
pulse is active (0 < ¢ < 1.5 sec), and compare your x,(f) with the actual response x(#) on
the graph.

9.8 Consider the mass-damper-spring system shown in the figure below, with:

(@) m, =10.0 kg, c =40.0 N-sec/m, k =400 N/m, and m, =2.00 kg;
(b) my,g =2251b, c =2.10 Ib-sec/inch, k = 30.5 Ib/inch, and m,g =105 Ib.
The system is initially at rest (the left-hand figure) in the static equilibrium position for

weight m,g . Attt =0, mass m, is gently placed upon m, and then released. This im-

poses an m,g step force (the weight, due to

gravity) onto the system. Note also that mass m
m, changes the system, since the total vibrat-

my mo

ing mass now will be m, + m,, not just m,.
Use Eq. (9-29) for underdamped 2™ order T

system step response to write the numerical " ¥ i
equation for response y(f) in inches of com- T ¢ T ¢

bined mass m, + m, (relative to the static

equilibrium position for the weight of m,

alone, as indicated on the figure). Then use MATLAB to plot the response curve of y(¢)
versus ¢ from ¢ = 0 until the mass has settled to within at least 2% of its final steady-state
position. This means plot to at least four time constants, ¢ = 47,, where 7, = (w,)”".
Since you are multiplying sinusoidal time functions by an exponential time function, it is
necessary that you use array multiplication (.*) in MATLAB. Provide appropriate grids,
titles, and labels on your graph. It is not required, but you can check from your graph
that the response has the values of frequency, steady-state (final static, pseudo-static) dis-
placement, and viscous damping ratio that you can calculate from the original data for
mass, damping, stiffness, and applied force.

9-27



Chapter 9 Damped 2" order systems: general time response

9.9 For the m-c-k system and step input/response of homework Problem 9.8 [part (a) or
(b), whichever is assigned], use the equations of Section 9-8 to calculate rise time ¢, ,

peak time 7,, maximum overshoot ratio y,, and settling time 7. These calculations

should agree with the comparable results that you can measure from your MATLAB
step-response graph for homework Problem 9.8, assuming that your graph is correct.

9.10 Weight W, =98.1 N (mass m;, = 10.0 kg) is suspended by a string from weight W, =
196.2 N (mass m; = 20.0 kg), which is attached to the ceiling by spring k& and viscous
dashpot ¢, as shown below. The system is in static equilibrium when, at time ¢ = 0, the
string is cut cleanly, dropping W,. (This simulates the release of a bomb from a flexible
airplane wing.) Consider the subsequent motion x(¢), > 0, of m;. With the y(f) datum
shown on the drawing, you can think of this as step-response, with the release of W, be-
ing equivalent to imposing upon m; an upward step force equal to W.

(@) Calculate the undamped natural frequency f,
(Hz), the damping ratio ¢, the damped natural

k= 20,000 —lc=140 frequency f; (Hz), and the damped period of os-
N/m N-sec/m cillation Ty (sec).

(b) Calculate the final (as ¢ — o) static value of y
my =20 kg and the settling time ¢, required for the motion to
_T_y(t) settle within 2% of that final static value.

string cut at—>

f=0 (c) Sketch a plot of the response y(f) versus ¢

my;=10kg [W>2=98.1 N from ¢ = 0 until about ¢ = t;. Don’t carry out ex-

tensive calculations; just use the results of parts

(a) and (b) to sketch an engineer’s back-of-the-envelope type of quick graph that clearly

shows the principal features of the response, but is not precise like a computer-generated
graph.

9.11 Derive the algebraic equation for step response x(¢) with zero ICs of critically
damped 2" order systems: X+2m, X+ a)nzx = a)n2 U, for t > 0, with x(0) = 0 and x(0) =
0. One easy method of solution, the conventional approach of Section 1-5, is to use
homogeneous solution (9-9), add to it an appropriate particular solution, then enforce the

ICs to determine the unknown constants. (Answer: x(1)=U[1-(1+w,t)e '], t>0)

9.12 Having solved by inverse convolution transform for step and impulse responses of
underdamped 2™ order systems, we can now use those results to obtain rather easily two
messy Laplace transform pairs. Use Eq. (9-17) first with Eq. (9-29) and next with Eq. (9-

2 2
() w

31) to obtain [}, (¢) = L"1|: - } and f;(t) = L"{ L }, both

sl(s+¢w,)’ +,’] (s+<w,)’ +,’

for0<z¢, £ | <1,and a)dz > 0. Write the algebraic equations for f,,(¢) and f;(¢).
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9.13 Consider the LRC circuit drawn below. The ODE describing output voltage e, ()
in terms of input voltage e, (¢) is derived in Ex-

ample 9-1 of Section 9-2. Because an inductor
consists primarily of coiled wire, and because
coiled wire accumulates resistance, a real in-
ductor has resistance as well as inductance. A
common, simple, approximate circuit model for
such a real inductor is a series combination of an
1deal inductor and a resistor, L and R; , as shown
in the drawing. Suppose that one small circuit
component has the values L = 1.4 H and R; = 210 Q, and that it is in series with a ca-
pacitance of C = 0.25 yF (micro-farad), as shown in the drawing. Calculate the natural
frequency f, (Hz) and damping ratio £ of this circuit. Suppose further that the input volt-
age is e, (t) = 1.50 H(¢) volts (a 1.5-volt battery is connected suddenly by switch S), and

that all ICs are zero (in particular, there is no initial charge on the capacitor). Use MAT-
LAB to plot output voltage e, (#) over a time interval from zero until e, (¢) settles to

+
T

within at least 2% of its final steady-state value.

9.14 A particular device is known to be a mass-damper-spring system. It is required that
the mass m, the viscous damping constant ¢, and the stiffness constant £ be identified ex-
perimentally from a transient-response test. In this test, an engineer strikes the mass
sharply with a specially designed hammer that is instrumented with a force sensor. The
force input to the mass is recorded, and examination of the actual force time history
shows that it is closely approximated by a particular half-sine force pulse that lasts only
20 milliseconds, f (¢)=158.9sin507x¢x [H (t)-H(t-0.02 sec)] Ib. The measured dis-

placement response of the mass is shown on the graph below. Use this information to
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calculate m, ¢, and k in consistent units and with as much accuracy as the data permits.
To support these calculations, annotate your measurements on the graph (hand in a photo-
copy of the annotated graph), and show your calculations clearly. The input force pulse
is very short relative to the oscillatory period of the system. Therefore, for the purpose of
approximate parameter identification, you should assume that the response is very close
to ideal impulse response of the system to an ideal impulse, 1 (¢) = IrXt), with /r having

the value of the impulse of the actual half-sine force pulse. [NOTE: after you calculate
m, ¢, and k, you can easily check the validity of your values by graphing (with
MATLAB) the ideal impulse response of your system and then comparing that graph
with the actual time history of response. However, this check is valid only if you use the
correct value of impulse /r, so first be 100% certain that your /r is correct.]

9.15 For systems with the particular type of right-hand-side dynamics of Eq. (9-47), we
can define a physical constant 7 having dimensions of time, then write a modified form

of standard ODE (9-13) as )'é+2§”a)n)'c+a)n2x = a)nzT u(t). [You can easily verify, for
example, that 7= 7, for the band-pass filter, Eq. (9-47).] The pure IC-response of this
equation is the same as Eq. (9-21), so let’s focus on the forced response and set all ICs =
0. Also, let’s assume initially that |§| <1, so that a)d2 = a)nz(l -£*)>0.

(a) For this modified ODE, follow the steps from Egs. (9-14) to (9-17), and assume also
2
o, T s,

that u(0)=0. to find L[x(?)] = 5 L[u(t)]. Next, use a Laplace

0, (s+lw,)’ +w,
transform pair developed, in effect, between Egs. (9-17) and (9-20) to solve for x(¢) if
the input is step function u(¢) =U H(t). Which of the zero ICs is or is not preserved in
this solution?

(b) Use the inverse transform for step response of part (a), and the general transform
L f (t)] = s F(s)— f(0) to derive the following inverse transform:

. S i .
L' . | = e (@, cosw,t — o, sinw,t)
(S + é/a)n) + a)d

(c) Use the result of part (b) and the inverse convolution transform to write x(t)| 1m0

equations, which involve convolution integrals, that apply for arbitrary input function

u(t).

(d) Use the result of part (b) and Eq. (8-24) to show that the algebraic equation for the
unit-impulse-response function (IRF) valid for the modified 2™ order ODE with right-

it [cos w,t — (Cw, [w, )sin w,t]. Now use this IRF to

hand side dynamics is A(f) = a)nzT e
write a Duhamel integral equation, Eq. (8-25), for x(t)| oo that applies for arbitrary

input function u(z).
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(e) The results of parts (a)-(d) apply for an underdamped 2" order system,

{|<1. But

Example 9-3 in Section 9-10 shows that an RC band-pass filter, for one, is an over-
damped 2™ order system, so we need to convert the previous results to obtain results

valid for |§ | >1. Use the methods of Section 9-10 to write an algebraic equation for IRF
1cso» DOth valid for the modified overdamped 2nd

order ODE with right-hand side dynamics and the latter valid for arbitrary input function
u(t).

h(t) and an integral equation for x(t)|

9.16 Figure 9-7 includes a curve that is step response of a standard overdamped 2" order
system. Use the methods of Section 9-10 to derive the algebraic equation from which
that particular curve was calculated. Answer:

x(t) = U{l—eg‘”"’(coshydt+ 6, sinh ,udtﬂ, forO<tand {>1, u, =w,¢* —1

Hq

9.17 The circuit drawn
at right’ consists of
three stages, each built
around an op-amp, and
there is feedback of

voltage e, (¢) from the

last (right-hand) stage
to the first (left-hand)
stage, where the input
voltage e (¢)1s applied. The circuit output voltage, e (¢), is the output of the middle

stage. The first stage is a summing, inverting integrator; use the methods of Chapter 5 to
derive the first ODE, e, /R, +e, /R, +e,/R, =—Cé,. Next, for the middle stage, an

inverting integrator, derive the second ODE, ¢, /R, = —Ce, (homework Problem 5.6);
now use the second ODE to substitute for e, in the first ODE, and differentiate the
second ODE and use the result to substitute for ¢, in the first ODE. The last stage of the
circuit is a simple sign inverter, for which e, = —e, from Eq. (5-13b); substitute for e,

and show that the ODE relating output voltage e, (¢) to input voltage e,(¢) for the entire

2 2
R
circuit is €, + 1 é,+ ! e, = L —2 .. Convert this ODE into the standard
R.C R,C R,C) R,

damped 2™ order form (9-13), é, +2¢w e, +w, e, = w, u(t); write specific equations

n-o

(in terms of this circuit’s resistances, capacitances, and input voltage) for undamped natu-
ral frequency w,, viscous damping ratio ¢, and input quantity u(z).

> This circuit is essentially the electronic analog computer (see the footnote to homework Problem 5.6) for
solving ODE (9-13).
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9.18 One rate gyroscope (Example 9-2 in Section 9-2) has the following rotor parame-
ters: polar rotational inertia J, = 2.9 x 10™* kg-m®, and spin rate 2. = 2,100 revolutions
per minute (rpm); also, it has the following gimbal-shaft parameters: polar rotational in-
ertia Jop= 2.2 x 10~ kg-m”, and damping constant ¢y = 0.0046 N-m/(rad/sec), and stiff-
ness constant ky= 0.096 N-m/rad. Consider output gimbal-shaft rotation &¢) in response
to an input turntable rotational rate that approximates step function p(¢) = P x H(t). (Only
a physically impossible ideal impulse moment acting on the turntable could produce an
exact step change in rotational rate; therefore, imagine for this problem that a very short
but very large moment pulse produces the approximate step function, but use the equa-
tions that apply for an exact step function.) For the step magnitude P = 15 degrees/sec,
calculate the following response quantities: pseudo-static gimbal-shaft rotation, 6, (in
degrees); and rise time, ¢, ; and peak time, #, ; and maximum overshoot ratio, x - (Partial
answer: t,=0.174 sec) The theory developed in Example 9-2 is accurate only if gimbal-
shaft rotation &) is sufficiently small that cos&¢) = 1, say, cos&?) > 0.95. For the para-
meters in this problem, is this criterion for accuracy satisfied?

9.19 Another type of single-axis gyroscopic sensor is similar to the rate gyro described in
Example 9-2 of Section 9-2 except that there is no spring to restrain the rotation of the
gimbal-shaft assembly, so ky= 0 in the equations derived in Example 9-2. Therefore, the
equation of motion becomes effectively a 1** order ODE in dependent variable (), the
rate of gimbal-shaft rotation:

J,0+c,0=J.Q p(r)

Observe from the ODE that the pseudo-static response is (6) =0, /c,)p(t). But the
electrical transducer of this device detects &), not 6(¢), which means that the sensed
quantity has the form 6(¢) = It O(z)dr =(J Q2 /e, )J; p(r)dr. Therefore, this type of sen-
sor is called a rate-integrating gyroscope; its output is proportional, not to the rotational

rate, but to the actual rotational angle of the turntable, y(¢) = .[t p(t)dr, where p=y .

Consider output gimbal-shaft