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INTRODUCTION TO 
LINEAR, TIME-INVARIANT DYNAMIC SYSTEMS 

FOR STUDENTS OF ENGINEERING 
 

William L. Hallauer, Jr. 
 

AUTHOR’S PREFACE 
 
 I taught many times the college undergraduate, junior-level, one-semester course 
entitled “AOE 3034, Vehicle Vibration and Control” in the Department of Aerospace and 
Ocean Engineering (AOE) at Virginia Polytechnic Institute and State University (VPI & 
SU).  I was dissatisfied using commercially available textbooks for AOE 3034, so I began 
writing my own course notes, and those notes grew into this book.  Although this project 
began with preparation of informal handout notes, the completed book is a formal college 
engineering textbook, complete with homework problems at the end of each chapter, a 
detailed Table of Contents, a list of References, and a detailed Index.  I hope that this 
book will be understandable and enlightening for students of engineering system dynam-
ics, a valuable teaching resource for course instructors, and a useful reference for self-
study and review. 
 
 The content of this book is based primarily on topics that the faculty of AOE and 
VPI & SU elected to include in AOE 3034 during the 1990s and early 2000s.  The con-
cise course description is:  “Free and forced motions of first-order systems.  Free and 
forced motions of second-order systems, both undamped and damped.  Frequency and 
time responses.  Introduction to control, transfer functions, block diagrams, and closed-
loop system characteristics.  Higher-order systems.”  A more detailed course description 
is provided by the following list of primary learning objectives, which were developed to 
satisfy requirements of the agency that accredits engineering college degrees in the 
United States: 
 

At the completion of AOE 3034, the student should be able to: 
 
1.  Solve first-, second-, and higher-order, linear, time-invariant (LTI) or-
dinary differential equations (ODEs) with forcing, using both time-domain 
and Laplace-transform methods. 

 
2.  Solve for the frequency response of an LTI system to periodic sinusoi-
dal excitation and plot this response in standard form (log magnitude and 
phase versus frequency). 
 
3.  Explain the role of the “time constant” in the response of a first-order 
LTI system, and the roles of “natural frequency”, “damping ratio”, and 
“resonance” in the response of a second-order LTI system. 
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4.  Derive and analyze mathematical models (ODEs) for low-order me-
chanical systems, both translational and rotational systems, that are com-
posed of inertial elements, spring elements, and damping devices. 
 
5.  Derive and analyze mathematical models (ODEs) for low-order electri-
cal systems (circuits) composed of resistors, capacitors, inductors, and op-
erational amplifiers. 
 
6.  Derive (from ODEs) and manipulate Laplace transfer functions and 
block diagrams representing output-to-input relationships of discrete ele-
ments and of systems. 
 
7.  Define and evaluate “stability” for an LTI system. 
 
8.  Explain “proportional”, “integral”, and “derivative” types of feedback 
control for single-input, single-output (SISO), LTI systems. 
 
9.  Sketch the locus of characteristic values, as a control parameter varies, 
for a feedback-controlled SISO, LTI system. 
 
10.  Use MATLAB1 as a tool to study the time and frequency responses of 
LTI systems. 

 
 Rather that summarizing the contents of this book chapter by chapter, I invite the 
reader of this preface to peruse the detailed Table of Contents.  However, the book’s gen-
eral organization is the following:  Chapters 1-10 deal primarily with the ODEs and be-
haviors of first-order and second-order dynamic systems; Chapters 11 and 12 touch on 
the ODEs and behaviors of mechanical systems having two degrees of freedom, i.e., 
fourth-order systems; Chapters 13 and 14 introduce classical feedback control, motivat-
ing the concept with what I believe is a unique approach based on the standard ODE of a 
second-order dynamic system; Chapter 15 presents the basic features of proportional, in-
tegral, and derivative types of classical control; and Chapters 16 and 17 discuss methods 
for analyzing the stability of classical control systems.  The principal parts of Chapters 1-
16 are focused on the ten primary learning objectives listed above.  I added Chapter 17 on 
frequency-response stability analysis because I feel that an introduction to classical con-
trol theory and design is incomplete without that subject, even though it was not included 
in AOE 3034. 
 
 The general minimum prerequisite for studying this book is the intellectual matur-
ity of a junior-level (third-year) college student in an accredited four-year engineering 
curriculum.  More specifically, a reader of this book should already have passed standard 
first courses in engineering dynamics and ODEs.  It will be helpful if, but probably is not 

                                                 
1 MATLAB ® is a registered trademark of The MathWorks, Inc.  MATLAB is widely available to engi-
neers in practice and to engineering colleges.  Furthermore, MATLAB-like software that uses command-
line language similar to MATLAB’s, and functions similarly to MATLAB in many respects, is available 
for download from the Internet, for example, GNU Octave (http://www.gnu.org/software/octave/). 
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mandatory that, the reader has studied basic electrical circuits, perhaps in an introductory 
college physics course.  It is necessary that the reader has studied basic computer pro-
gramming.  MATLAB computer programs and commands appear throughout this book, 
so the reader should be able to understand MATLAB commands.  However, MATLAB 
commands are generally clearly expressed in standard English and standard arithmetic 
notation, so a person who has done any computer programming, even if that was not with 
MATLAB, probably can follow the computer commands and command sequences in this 
book.  Familiarity with matrix notation and matrix arithmetic operations also will be 
helpful, especially for Chapters 11 and 12.  My students who took at the same time AOE 
3034 and a mathematics course on operational methods (primarily Laplace transforms) 
often found that the combination of those courses was unusually complementary and 
beneficial to their comprehension of the material. 
 
 A mathematical second-order system is represented in this book primarily by a 
single second-order ODE, not in the state-space form by a pair of coupled first-order 
ODEs.  Similarly, a two-degrees-of-freedom (fourth-order) system is represented in 
Chapters 11 and 12 by a pair of coupled second-order ODEs, not in the state-space form 
by four coupled first-order ODEs.  A reader who can understand the mathematics and 
dynamics of relatively simple systems expressed here in classical second-order form 
probably will have little trouble making the transition in more advanced literature to the 
general state-space representation of higher order systems. 
 
 This book deals mostly with specific idealized models of basic physical systems, 
such as mass-damper-spring mechanisms and single-loop electrical circuits.  The empha-
ses are on fundamental ODEs and fundamental system response characteristics.  I have 
chosen, therefore, not to burden the reader with bond graph modeling, the general and 
powerful, but complicated, modern tool for analysis of dynamic systems.  However, the 
material in this book is an appropriate preparation for the bond graph approach presented 
in, for example, System Dynamics:  Modeling, Simulation, and Control of Mechatronic 
Systems, 5th edition, by Dean C. Karnopp, Donald L. Margolis, and Ronald C. Rosenberg, 
published by John Wiley & Sons, 2012. 
 
 I intended originally that Chapters 1-16 of the course notes (before they grew into 
a book) could be covered in a normally-paced course of three fifty-minute lessons per 
week in a standard college semester of fourteen weeks duration.  Even so, instructors of 
AOE 3034, including myself, had difficulty squeezing all of that content into forty-two 
lessons.  Furthermore, in the process of converting the course notes into a complete text-
book, I added material that is relevant and interesting (to me, at least) in many complete 
“new” sections to the ends of Chapters 12, 7, 8, 10, 14, and 16.  And, as mentioned 
above, I also added a complete “new” Chapter 17.  Consequently, I doubt that even the 
                                                 
2 I added Section 1-10, which deals with mass-spring systems, after working with several graduate students 
whose research subjects were design, analysis, and testing of aerodynamic sensors that include mechanical 
components.  These graduate students had not recently reviewed elementary system dynamics, and so were 
unfamiliar with fundamental concepts such as natural frequency and resonance.  I decided, therefore, to 
make Chapter 1 a succinct summary of basic mechanical-system dynamics (excluding feedback control), 
suitable for quick review by graduate students or any engineers who specialize in other areas but need to 
understand at least the most basic of this book’s lessons. 
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most demanding course instructor can, while still treating the students fairly, cover this 
entire book in a three-credit, one-semester course.  Therefore, instructors who wish to use 
this as a one-semester course textbook should decide in advance which parts of the book 
are essential to the course and which parts they cannot cover in the time allotted for the 
course.  If, for example, it is essential to cover all of Chapters 13-17 on classical control, 
an instructor might elect to skip some or all of the “new” sections in Chapters 1, 7, 8, and 
10, and to skip Chapters 11 and 12 on systems with two degrees of freedom, but to cover 
most everything else in the book.  Sections 6-4, 6-5, and 8-11 deal primarily with compu-
tational methods for calculating approximate time-response solutions of first- and second-
order ODEs; the contents of these sections are nicely compatible with the chapters in 
which they reside; but they are not essential to the reader’s understanding of system dy-
namics, so they can be omitted from course coverage without great loss.  On the other 
hand, I discourage the omission of Chapter 5 on basic electrical systems, not only be-
cause I believe the material is important to most engineers, but also because such systems 
provide many examples and homework problems later in the book. 
 
 The homework problems at the ends of chapters are very important to the learning 
objectives of this book.  I wrote each problem statement while at the same time preparing 
the solution, in order to help make the statements as clear, correct, and unambiguous as 
possible.  In many cases, I stated a result, such as a Laplace transform, in a chapter’s text 
but left as a homework problem the proof or other development of that result.  When 
teaching a lesson from the course notes that grew into this book, I would often not lecture 
on the material of the reading that I had assigned for the lesson.  Instead, I would assume 
that the students had, in fact, completed and understood the assigned reading, summarize 
the main results of that reading and ask if there were questions about it, then, after re-
sponding to any questions, spend most remaining lesson time discussing some of the re-
lated homework problems. 
 
 A major focus of this book is computer calculation of system characteristics and 
responses and display of the results graphically, with use of MATLAB commands and 
programs.  However, the book employs, for the most part, basic MATLAB commands 
and operations (aside from array operations), such as those on hand calculators; there is 
very little use of advanced MATLAB operations and functions, because these can pro-
duce results without the user having to understand the processes of production.  For this 
introductory material, I think it is important that the computer and software function as a 
“super calculator”, which relieves the user of the drudgery of calculations, especially 
complex and/or repetitive calculations, but still requires the user to understand the pro-
cess well enough to be able to design and program the calculations and graphical dis-
plays. 
 
 Since 1967 with the publication of Dynamics of Physical Systems by Robert H. 
Cannon, Jr., most textbooks on introductory system dynamics have included very few, if 
any, applications specifically relevant to aerospace engineering.  Therefore, I have tried 
to include in this book at least some relevant examples and homework problems.  These 
include rolling dynamics of flight vehicles in Chapter 3, spacecraft actuators in Chapters 
3, 10, and 12, aerospace motion sensors in Chapters 9 and 10, aeroelasticity in Chapters 
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11 and 12, attitude control of spacecraft and aircraft in Chapters 14-16, and an analysis of 
aeroelastic flutter in the final homework problem of Chapter 16. 
 
 I favor illustrating and validating theory, whenever possible, with measured data.   
I also favor using measured data to identify system dynamic characteristics based on 
mathematical models (e.g., time constants and natural frequencies), and system basic 
properties (e.g., mass, stiffness, and damping).  Accordingly, I included quite a lot of ma-
terial in this book about identification of first- and second-order systems, especially in 
Chapters 9 and 10.  Photographs of instructional laboratory structures and motion data 
measured from those structures are included, for examples, in Section 7-6 on distributed-
parameter structures, and in homework Problems 7.10 and 12.5.  Other applications of 
real and simulated experimental data appear in several homework problems. 
 
 I welcome feedback about this book from anyone who reads it.  Please send your 
comments to my VPI & SU email address, whallaue@vt.edu.  I will be grateful to learn 
of any errors that readers detect and report to me.  I retain all of the source word-
processor files, so I am able to correct errors and replace any defective file with the cor-
rected version.  I regard the basic organization of the book as fixed, so that, except to cor-
rect major, serious errors, I will not revise the chapters and appendices so extensively as 
to disrupt the original page numbering, equation numbering, Table of Contents, and In-
dex.  I am ready and willing, however, to add files that supplement chapter and appendix 
contents, when such additions will improve the book.  In particular, I would welcome 
new examples and homework problems that are clearly relevant to aerospace engineering, 
while still being compatible with the introductory level of the book.  If you send to me 
any such educational and motivational gem and if I decide that it satisfies my criteria, 
then I will be most pleased to add it as a supplementary file and to acknowledge your 
contribution. 
 

Acknowledgments 
 
 I am grateful to my colleagues who developed the course content of AOE 3034, 
and/or who joined me in teaching sections of AOE 3034, and/or who used early versions 
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and encouraged me to finish and publish the book. 
 
 With this book, I have aspired to approach the high quality, if not the breadth and 
depth, of Dynamics of Physical Systems (DPS), which was written by Robert H. Cannon, 
Jr., published first in hardback by McGraw-Hill in 1967, and subsequently re-published 
in paperback by Dover.  I have been instructed, guided, and inspired by DPS, so the at-
tentive reader of this book will observe throughout more citations of DPS than of any 
other reference.  DPS was designed to serve many different university courses, from 
sophomore level to advanced graduate level, so its length is three to four times that of this 
book.  I highly recommend DPS as a complement to this book and as a source of addi-
tional material both at and beyond this book’s level.  Professor Cannon’s book is a clearly 
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written and beautifully illustrated textbook of basic and more advanced theory of system 
dynamics and of interesting applications to many fields, classical aerospace engineering 
in particular.  DPS is surely one of the two or three finest textbooks I have encountered in 
my entire career as student, practicing engineer, and instructor.3 
 
 I thank The MathWorks, Inc. for developing MATLAB, and for distributing it 
broadly to the engineering and educational communities, and, in particular, for making 
MATLAB available to me as an essential instructional resource in AOE 3034 and other 
courses, and as a tool in research as well.  One of the principal differences between this 
book and Dynamics of Physical Systems is the emphasis I have been enabled by modern 
personal computers and MATLAB to place on computer calculation of numerical system 
characteristics and response solutions, in both the instructional content and the homework 
problems.  Professor Cannon had no such luxuries:  when Dynamics of Physical Systems 
was published, the primary calculator used by engineering students was still the slide 
rule, the concept of a small personal computer was just the hopeful dream of a few vi-
sionaries, and undergraduates generally had little or no access to mainframe computers 
and peripheral equipment for printing and plotting.  In order to calculate and graph the 
system characteristics and responses that can be produced now so easily with MATLAB, 
students then who did have access to mainframe computers would need to write a pro-
gram in an inflexible language such as FORTRAN or BASIC, then enter the program 
onto cards with keypunch machines at a computer center, one line of program per card, 
then submit the card deck of the complete program to a computer operator, then wait, 
sometimes several days, for the card deck to reach the front of the queue and be run on 
the mainframe computer to produce printed and/or plotted output, then find and debug 
errors in the programming that prevented correct execution, then repeat the whole process 
as many times as was required until the program would finally succeed and deliver the 
desired results. 
 

William L. Hallauer, Jr. 
June 2, 2016 

whallaue@vt.edu 
 
 

                                                 
3 There is considerable irony in my admiration now for Dynamics of Physical Systems.  As a college junior 
at Stanford University during the Winter Quarter of 1964, I was enrolled in the course Engineering 104, 
Dynamic Response.  The required course reference was part of a preliminary, pre-publication version of 
Dynamics of Physical Systems, which had apparently been chosen by someone other than the instructor 
who was assigned to teach the course.  That version was an extremely rough draft full of typographical 
errors and other mistakes, with figures that seemed to have been sketched in great haste, and it was badly 
reproduced.  My memory is that we students and the instructor tolerated it, but only barely.  The quality of 
Dynamics of Physical Systems improved tremendously between that time and the formal publication in 
1967. 
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Chapter 1 Introduction; examples of 1st and 2nd order systems, time-
response analysis and graphing with MATLAB1  

 
© 2016 by William L. Hallauer, Jr. 

 
1-1  Introduction 
 

The subject of this book is the dynamic behavior of physical systems, with some 
emphasis on simple mechanical and electrical systems representative of or analogous to 
those often encountered in aerospace and mechanical engineering.  A system, as defined 
in this book, is a combination of two or more simple physical elements or components, 
these being connected together in such a way that they all influence the dynamic behavior 
of the entire system.  An element or component, as defined in this book, is usually a 
discrete object, such as a mechanical spring or an electrical resistor.  This object usually 
produces a discrete effect, such as a motion-induced force or a voltage drop.  Dynamic 
behavior is the variation in time of some physical response quantity of the system, for 
example, the position of a mass, or the voltage at some location in an electrical circuit. 

 
The general subject of this book is relevant to courses that are offered in most 

engineering colleges for students who major in aerospace engineering, mechanical 
engineering, engineering mechanics, ocean engineering or naval architecture, electrical 
engineering, and chemical engineering.  Many of the specific topics addressed within 
chapters and in homework problems following chapters are relevant especially to the 
study and practice of aerospace engineering. 
 
1-2  Linear, time-invariant (LTI) systems and ordinary differential equations 
(ODEs) 

 
We consider physical systems that can be modeled with reasonable engineering 

fidelity as linear, time-invariant (LTI) systems.  Such a system is represented mathe-
matically by an ordinary differential equation (ODE),  or by a set of coupled ODEs, for 
which the single independent variable is time, denoted as t.  These ODEs are linear, and 
they have constant coefficients, so we describe them as linear, time-invariant (LTI), the 
same as the systems they represent.2  For example, suppose we denote a dependent vari-
able as x(t), here a general symbol representing some physical dynamic response quantity 
for which we want to solve.  Then an LTI ODE that models an LTI physical system 
might have the form 
 

)(tubxa
dt
dx

=−                                                    (1-1) 

 

                                                 
1 MATLAB ® is a registered trademark of The MathWorks, Inc. 
2 LTI ODEs are also sometimes described as linear, constant-coefficient, or LCC. 
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in which a and b are constant multiplying coefficients, and known function u(t) is the ex-
citation and is independent of the response.3  In the study of systems, an independent 
excitation u(t) is often called an input, and a dependent response x(t) is often called an 
output. 
 

Hereafter, we will usually employ the common shorthand dot notation for denot-

ing derivatives with respect to time:  x
dt
dx

&≡ , x
dt

xd
&&≡2

2

, etc., so that Eq. (1-1) can be writ-

ten more simply as . )(tubxax =−&
 
The linearity of Eq. (1-1) is manifested by the linear appearance of x(t) and all of 

its derivatives in the ODE.  The following are some similar ODEs that are not linear (they 
are nonlinear) for obvious reasons:  ; )(2 tubxax =−& )()sin( tubxax − =& ; )tan(xax −&  
= .  Linear ODEs are almost always easier to solve (at least in closed form, i.e., as 
equations involving standard functions) than nonlinear ODEs.  Moreover, the important 
principle of superposition applies to linear ODEs, but not to nonlinear ODEs.  An exam-
ple of the application of this principle is:  let the response to input  be , and let 
the response to another input  be ; if a third input is the sum of multiplied 
terms , in which  and  are constants, then the response to 

 is .  This result is easy to derive just by multiplying two 
ODEs such as (1-1) by the constants, then adding the multiplied ODEs.  The principle of 
superposition allows us to solve accurately for the responses of linear systems to any 
physically realistic inputs.  (See Section 8-10 for a derivation of system response to an 
arbitrary physically realistic input by direct application of superposition.) 

)(tub

3u
)(3 t

)(1 tu )(1 tx
) )(2 tx

1c 2c
(2 tu

)(t
)()()( 2211 tuctuct +=

)()( 22113 xctxctx +=u

 
The time invariance of Eq. (1-1) is manifested by the constant coefficients of x(t) 

and all of its derivatives in the ODE.  ODEs with time-invariant coefficients model the 
behavior of systems assumed to have physical properties that either remain constant in 
time or vary so slowly and/or slightly that the variation is negligible for engineering pur-
poses.  But many practically important systems have time-varying physical properties.  
For example, a vehicle such as a space shuttle between liftoff and achievement of orbital 
position has rapidly varying (decreasing) mass as propellant is burned and external fuel 
tanks and boosters are released.  The following is a linear equation somewhat similar to 
Eq.(1-1), but with an obviously time-varying coefficient:  .  The 
study of systems with time-varying physical properties is generally more complicated, 
not fundamental, so only time-invariant systems and ODEs are considered in this book. 

)()1(3 2 tubxex t =−− −&

 
The form of Eq. (1-1), )(tubxax =−& , is widely regarded as the standard form 

for a 1st order LTI ODE, and we will use it as such in this book.  Beginning in the next 
section, we will study idealized physical systems whose dynamic behaviors are described 
by equations that are directly analogous to Eq. (1-1).  We will express the mathematical 

                                                 
3 Some synonyms for excitation in this book are stimulus, stimulation, and forcing function for systems in 
general, and command and disturbance specifically for controlled systems. 
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constants a and b in terms of specific physical constants.  Also, the roles of input u(t) and 
output x(t) in Eq. (1-1) will be assumed by some specific physical quantities, such as 
force, velocity, voltage, etc., and we will denote them with relevant symbols [often dif-
ferent than u(t) and x(t)] when appropriate. 
 

Although only 1st order ODEs are discussed in this section, we certainly will en-
counter and study systems and ODEs of 2nd and higher orders. 

 
1-3  The mass-damper system:  example of 1st order LTI system and ODE 
 
 Consider a rigid body of mass m that is constrained to sliding translation x(t) in 
only one direction, Fig. 1-1.  The mass is subjected to an externally applied, arbitrary 

force fx(t), and it can slide on a thin, viscous liquid layer such as water or oil.  The vis-
cous force acting on the mass due to sliding on the liquid layer is opposite to the direction 
of velocity, , and we assume that the magnitude of viscous force is propor-
tional to velocity with constant of proportionality c, called the viscous damping constant.  
Mass m and viscous damping constant c are positive physical quantities.  

)()( txtv &≡

All of the forces 
acting on the mass are as shown on the free-body diagram (FBD) of Fig. 1-1. 

 Idealized physical model 

m Liquid layer with viscous 
damping constant c 

x(t) 
 fx(t) 

Free-body diagram (FBD) 

 fx(t) 
x(t) 

cv(t) 
Figure 1-1  1st order mass-damper mechanical system 

m 

 
 Next, we use (from your engineering dynamics course) the FBD of Fig. 1-1 and 
Newton’s 2nd law of motion (after English physicist and mathematician Isaac Newton, 
1642-1727) for translation in a single direction, to write the equation of motion for the 
mass: 
 

Σ (Forces)x = mass × (acceleration)x, where (acceleration)x = v
dt
dv

&= ; 

 
vmvctf x &=−)( . 

 
As is customary in writing ODEs, we collect all terms involving the dependent variable 
and its derivatives on the left-hand side, and put all independent input functions on the 
right-hand side: 
 

)(tfvcvm x=+&                                                    (1-2) 
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ODE (1-2) is clearly linear in the single dependent variable, velocity v(t), and 
time-invariant, assuming that m and c are constants.  The highest derivative of v(t) in the 
ODE is the first derivative, so this is called a 1st order ODE, and the mass-damper system 
is called a 1st order system.  If fx(t) is defined explicitly, and if we also know some initial 
condition (IC) of the velocity, )( 00 tvv ≡  at time t = , then we can, at least in principle, 
solve ODE (1-2) for velocity v(t) at all times t > .  (In this book, we will usually define 
the initial time as  = 0 second.) 

0t

0t

0t
 
Equation (1-2) expressed in the form of the standard 1st order LTI ODE (1-1) be-

comes , where )(tfbvav x=−& mca −=  and mb 1= .  Since m and c are positive physi-
cal constants, a is clearly negative.  This negative polarity is characteristic of most physi-
cal systems that we will study; we shall see that it has an important influence on the gen-
eral nature of the transient response of systems. 

 
Note that after solving for velocity v(t), we can solve by direct integration another 

ODE for position x(t), provided that we know the initial position  at time t = 
.  One systematic method for finding x(t) is based upon the derivative definition: 

)( 00 txx ≡

0t
 

ODE:  )()()( tv
dt

tdxtx =≡&  

 
The following shows careful definite integration of both sides of the ODE, using τ  as the 
“dummy” variable of integration to distinguish it from the upper limit, time t: 
 

∫∫
=

=

=

=

=
t

t

t

t

dvd
d

dx τ

τ

τ

τ

τττ
τ
τ

00

)()(      ⇒      ∫
=

=

=−
t

t

dvtxtx
τ

τ

ττ
0

)()()( 0

 

⇒                                                    (1-3) ∫
=

=

+=
t

t

dvxtx
τ

τ

ττ
0

)()( 0

 
Another popular method of solution is to find the antiderivative (indefinite integral) of 
the ODE and add a constant of integration C, which then must be determined in terms of 
the initial condition: 
 

Cdttvtx += ∫ )()(      ⇒    [ ] Cdttvtx tt += ∫ = 0
)()( 0      ⇒      [ ]∫ =−=

0
)(0 ttdttvxC

 
⇒     [ ]∫∫ =−+=

0
)()()( 0 ttdttvdttvxtx                                   (1-4) 
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1-4  A short discussion of engineering models 
 
 The mass-damper of Fig. 1-1 can be used to represent approximately (i.e., to 
model) some actual physical systems.  One such system is a surface ship moving over the 
water under its own propulsion or being pushed/pulled by a tugboat.  Another is an auto-
mobile hydroplaning on a wet road.  You can probably think of other similar real sys-
tems.  However, it is important for us, as engineers, to recognize that the mass-damper 
system is not the actual system, but only an approximate idealized physical model of the 
actual system.  We are able to derive from this idealized physical model the solvable 
mathematical model, which consists of ODE (1-2) and known values for fx(t) and .  
The actual physical system, on the other hand, might be so complicated that it cannot be 
characterized mathematically with absolute precision.  For example, the ideal viscous 
damping model used in the derivation of ODE (1-2) is almost certainly not an exact rep-
resentation of the liquid drag forces acting on either a surface ship or a hydroplaning car. 

0v

 
The same general observation applies for almost any idealized physical model and 

associated mathematical model developed for engineering purposes:  the physical model 
is, at best, a reasonably accurate approximation of the actual physical system.  The fidel-
ity of a model usually depends on a number of factors, including system complexity, un-
certainties, the costs of modeling and mathematical/computational solutions, time con-
straints, modeling skills of the engineer, etc. 
 

But a reasonably accurate approximate model often suffices for engineering pur-
poses.  Engineering systems are usually designed conservatively, with redundancies and 
factors of safety to compensate for severe overloads, unexpected material flaws, operator 
error, and the many other unpredictable influences that can arise in the functioning of a 
system.  As engineers, we almost never require 100% accuracy; we are usually satisfied if 
our mathematical/computational predictions of system behavior are qualitatively correct 
and are quantitatively within around ±10% (in a general sense) of the actual behavior. 

 
The main point of this discussion is to emphasize that any idealized physical 

model used for engineering analysis and design is only an approximation of an actual 
physical system.  Moreover, the primary subjects of this book are the fundamental dyna-
mic characteristics of idealized physical models, because a great deal of practical experi-
ence has shown that these are also the characteristics of many real engineering systems.  
Therefore, this book does not consider in depth the development of idealized physical 
models to represent actual systems; rather, we shall focus on deriving mathematical 
models (mostly ODEs) that describe idealized physical models, and on solving the 
mathematical equations and exploring the characteristics of the solutions. 

 
The process of developing idealized physical models to represent real systems in-

volves both science (theory and experimental data) and “art” (experience and intuition); 
you probably will encounter this process in laboratory and design courses, and later in 
your professional practice of engineering. 
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1-5  The mass-damper system (continued):  example of  solving the 1st order LTI 
ODE for time response, given a pulse excitation and an IC 
 
 An input of limited duration, typically called a pulse, is a very common type of 
excitation imposed onto systems.  For example, when a hammer strikes a nail, the force 
imposed on the nail by the hammer is a pulse.  A real pulse such as hammer impact force 
is often modeled as a half-sine pulse.  Let the force acting on the mass in Fig. 1-1 be the 
half-sine pulse described by the following figure and Eq. (1-5): 

 
 

 F 
 fx(t) 

 t 0 0 td 

         

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

<

≤≤⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

=
tt

tt
t
tF

tf

d

d
d

x

,0

0,sin

)(

π

                    (1-5) 

 
In Eq. (1-5) for fx(t),  denotes the pulse duration.  The notation will be more manage-
able in this problem if we express the time-varying sinusoid in the form 

dt
tωsin , where ω 

denotes the circular frequency of oscillation, in radians per second.  In this case, clearly 
the circular frequency is expressed in terms of the pulse duration as dtπω =

v
.  Let’s 

specify that the initial velocity of the mass at time t = 0 is some known value .  The 
mathematical statement of the problem for finding the velocity time-history is: 

0

 
ODE:  )(tfvcvm x=+&                              (1-2, repeated) 

 
                                                      IC:  v(0) =  0v
 
                                                      Find:  v(t) for all t > 0. 
 
 To solve this problem in closed form, we will use a method with which you 
should be familiar from your previous study of ODEs.  First, we find the homogeneous 
(also called complementary) solution , which is the solution of the homogeneous 
ODE, the version of Eq. (1-2) with zero right-hand side: 

)(tvh

 
0=+ hh vcvm &                                                     (1-6) 

 
A homogeneous LTI ODE always has solutions in time-linear powers of e = 2.71828... 
(the base of natural logarithms), with some initially unknown constant coefficients: 
 

t
h eCtv λ=)( , in which constants C and λ are unknown at this stage. 

 
To find λ, we substitute the solution into the homogeneous ODE (1-6): 
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0)( =+=+ ttt eCcmeCceCm λλλ λλ  
 
If = 0, we get the useless trivial solution  = 0, so a useful solution requires that teC λ )(tvh

mλ + c = 0, which is known as the characteristic equation of the ODE.  Solution of this 
equation gives the so-called characteristic value, mc−=λ , leading to: 
 

tmc
h eCtv )()( −=                                                   (1-7) 

 
Note that we still have not solved for constant C.  We can find C only after we 

have determined a particular solution, also known as the non-homogeneous solution be-
cause it is a solution that satisfies the complete ODE (1-2) for the given right-hand side 
fx(t).  For this problem, we will need two particular solutions, because fx(t) is defined dif-
ferently over two different intervals of time, Eq. (1-5).  First, we find a particular solution 

valid over the pulse duration, 0 ≤ t ≤ , for which the ODE is: )(tv p dt
 

tFvcvm pp ωsin=+&  , where dtπω =                                 (1-8) 
 
To find a particular  that satisfies ODE (1-8), we apply the method of undetermined 
coefficients, which entails making an educated guess of the functional character of the 
solution, using multiplicative coefficients that will be determined by substituting the can-
didate solution back into ODE (1-8).  The right-hand-side sine function of ODE (1-8) has 
a finite set of derivatives:  the derivative of a sine is a cosine, the derivative of a cosine is 
a sine, etc.  Therefore, we assume a form of solution consisting of a linear sum of the 
function and all of its derivatives: 

)(tv p

 
tPtPtv p ωω cossin)( 21 += , with coefficients  undetermined at this stage. 21 and PP

 
Substitute this candidate solution back into ODE (1-8): 
 

( ) ( ) tFtPtPctPtPm ωωωωωω sincossinsincos 2121 =++−  
 
Collect terms that multiply tt ωω cosandsin  on both sides of the equation: 
 

( ) ( ) ttFtPcPmtPcPm ωωωωωω cos)0(sin)(cossin 2112 +=+++−  
 
Functions tt ωω cosandsin  are linearly independent of each other, which requires that 
the left-hand-side and right-hand-side terms multiplying tωsin  must equal each other, 
and the same for the terms multiplying tωcos , leading to two algebraic equations for the 
coefficients : 21 and PP
 

FPmPc =− 21 ω      and     021 =+ PcPmω  
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The second equation gives 12 )( PcmP ω−= , and substituting this into the first equation to 
eliminate  leads to: 2P
 

12221 and
)(

P
c
mP

cm
FcP ω

ω
−

=
+

=                                  (1-9) 

 
Rather than write out messy algebraic formulas for all the coefficients in this problem, it 
is convenient to express all others in terms of , as is  in Eq. (1-9). 1P 2P
 

To obtain the complete solution for the pulse duration, 0 ≤ t ≤ , we now com-
bine the homogeneous and particular solutions: 

dt

 
tPtPeCtvtvtv tmc

ph ωω cossin)()()( 21
)( ++=+= − , for 0 ≤ t ≤         (1-10) dt

 
Coefficient C in Eq. (1-10) is still not known; but now, finally, we can apply the initial 
condition (IC) to determine C: 
 

)1()0()1()0( 210 PPCvv ++==      ⇒     1020 )( PcmvPvC ω+=−=        (1-11) 
 
 Equations (1-9) through (1-11) describe the velocity response during the pulse 
duration, 0 ≤ t ≤ , so we still need to find the post-pulse response, for  < t.  To do so, 
we should recognize two facts:  (1) fx(t) = 0 for  < t; and (2) velocity v(t) cannot sud-
denly change at t =  (because acceleration cannot be infinite), rather, velocity must 
equal Eq. (1-10) evaluated at t = .  Fact 1 means that the ODE for  < t is homogene-
ous; hence, the particular solution is zero, and we have only a homogeneous solution, but 
now with a different coefficient, D, than before: 

dt dt

dt

dt

dt dt

 
tmceDtv )()( −= , for  < t                                          (1-12) dt

 
To find D, we use Fact 2, which essentially is the IC for  < t, and Eq. (1-10): dt
 

dd
tmc

d
tmc tPtPeCtveD dd ωω cossin)( 21

)()( ++== −−                     (1-13) 
 
                                                 ⇒     dtmc

d etvD )()(=  
 

⇒     
( )dtt

m
c

d etvtv
−−

= )()( , for  < t                                      (1-14)  dt
 
Equation (1-14), with Eq. (1-13) for v( ), combined with Eq. (1-9) and Eq. (1-11) for 
coefficients ,  and C, represents the response for  < t.  Because mass m and vis-

dt

1P 2P dt

 1-8



 Chapter 1  Introduction; examples of 1st and 2nd order systems; MATLAB calculations and graphics   
   

cous damping constant c are positive physical quantities, Eq. (1-14) is a pure exponential 
decay, which approaches zero as t → ∞. 
 
1-6  The mass-damper system (continued):  numerical/graphical evaluation of time 
response using MATLAB 
 
 For the mass-damper response solution developed in the previous section, con-
sider the following numerical case, with all quantities expressed in SI units:  m = 5 kg, c 
= 2 N-sec/m, F = 18 N,  = 7.5 sec,  = 3.3 m/sec.  A MATLAB script M-file, named 
MATLABdemo11.m, to calculate and graph the response from 0 to 25 seconds is given 
below.  The MATLAB commands are supplemented with explanatory comments, so you 
should be able to follow and understand the M-file without much difficulty.  Writing 
comments in this manner is good practice for your own programs; comments added while 
you are writing a computer program are especially helpful if you need to revise or refer 
back to the program long after you have forgotten the details. 

dt 0v

 
MATLAB script: 
 
%MATLABdemo11.m 
%Mass-damper system response to IC + half-sine pulse forcing 
m=5;c=2; %system mass & viscous damping coefficient, SI units 
F=18;td=7.5; %half-sine pulse, amplitude (N), pulse duration (sec) 
vo=3.3; %initial velocity (m/sec) 
w=pi/td; %circular frequency of half-sine pulse (rad/sec) 
t1=0:0.05:td; %time instants for forced response 
f1=F*sin(w*t1); %force pulse 
P1=c*F/((w*m)^2+c^2);P2=P1*(-w*m/c);C=vo-P2; %constants 
v1=C*exp(-c/m*t1)+P1*sin(w*t1)+P2*cos(w*t1);%time series of forced velocity 
nt1end=length(t1);v2o=v1(nt1end);%initial velocity for post-pulse response 
t2=td:0.1:25; %time instants for post-pulse unforced response 
v2=v2o*exp(-c/m*(t2-td));%time series of post-pulse unforced velocity 
f2=zeros(1,length(t2)); %null force after pulse 
plot(t1,f1/10,'k',t1,v1,'k',t2,f2,'k',t2,v2,'k'),grid,xlabel('Time t (sec)') 
ylabel('Force f_x(t) (daN), and Velocity v(t) (m/sec)') 
title('Response of mass-damper system to IC + half-sine pulse forcing') 

 
To execute in MATLAB an M-file that is stored on a folder (directory) of your com-
puter’s hard disk, you must have added that folder to the so-called MATLABpath.  In 
Versions 6 and higher of MATLAB, you can add the folder to the MATLABpath by 
specifying the folder as the “Current Directory” in the formatting toolbar above the 
MATLAB command window.  The command line below executes the script M-file. 
 
MATLAB command: 
 
>> MATLABdemo11 
 
The resulting MATLAB (Versions 6 and higher) graph, Fig. 1-2, is on the next page. The 
graph was edited in the MATLAB figure window, mainly to reduce the size and to add 
curve labels and arrows. 
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 Note that the unit of force “daN” on Fig. 1-2 is a deka-newton, which means 10 
newtons.  All of the mechanical units used in this book are described in Chapter 3. 
 
 

 
Figure 1-2  Excitation and response of a mass-damper system 

 
 
1-7  Some notes regarding good engineering graphical practice, with reference to 
Figure 1-2 
 
*  Always label both axes, and always include the units of physical quantities. 
 
*  Always write an explanatory one-line title.  Such a short title cannot explain everything 
about the graph, but any title you use will almost certainly help the reader to understand 
the graph. 
 
*  It is usually good practice to add grids to a graph.  Grids help the reader to perceive 
values correctly.  For example, the grids on Fig. 1-2 show clearly that the peak velocity 
response is just above 7 m/sec at a little after 5 sec. 
 
*  The commands in the script file that specify the densities of computed points are, first, 
t1=0:0.05:td while the pulse acts and, second, t2=td:0.1:25 following the pulse.  For 
example, the first line directs MATLAB to compute the response at 0.05-sec intervals; 
then plot(…,t1,v1,'k',…) directs MATLAB to plot small points for those instants, and 
to connect each two adjacent points with a straight line.  If you use high point densities, 
then the overall plotted line will capture all important features of the response (extreme 
values, for example), and will appear to be a smooth curve.  Indeed, the overall line 
should look like a smooth curve, because it represents a continuous physical response; 
neither the response itself nor its low-order derivatives should be discontinuous.  On the 
other hand, if you use low point densities, then you might miss important features of the 
response, and the overall line will be unnaturally piecewise linear, with kinks (slope dis-
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continuities).  To visualize an extreme example of low point density, suppose that for the 
mass-damper system you were to compute and plot the velocity response at 4-sec inter-
vals; the velocity graph in Fig. 1-2 would consist only of straight lines connecting the 
computed points at 0, 4, 8, 12, 16, and 20 seconds, which would badly represent the ac-
tual response.  So always specify high point density on graphs of continuous physical re-
sponse.  You might not know initially what point density you should use, especially if 
you are analyzing an unfamiliar system.  But try some plausible point density.  If your 
plotted response curve appears unnaturally kinky, then increase the point density appro-
priately and run the M-file again.  It will cost you nothing more than the little time re-
quired to edit and re-run the M-file (or any other graphing computer program). 
 
1-8  Plausibility checks of system response equations and calculations 
 
 We all make mistakes in the process of analyzing engineering problems.  Most 
common are mistakes in arithmetic, algebra, calculus, theory, and calculation algorithms 
(usually computer programming).  Also, sometimes we simply use incorrect data.  It 
seems that there are countless ways to make mistakes.  Therefore, it is important always 
to check your mathematical, numerical, and computational operations and results in every 
way possible.  An important type of check for any problem with physical results is the 
plausibility check, known more colloquially as reality check and sanity test.  Essentially 
you examine the results to determine if they are physically plausible (believable, credible, 
reasonable).  Do the results make sense physically?  A classic example of implausible 
result that often appears on exam papers in structures courses is the structural deforma-
tion on the order of 103 or 106 inches, when it ought to be on the order of 10−3 inches. 
 

To illustrate a plausibility check, let’s examine Fig. 1-2 for the velocity response 
of the mass-damper system to an initial condition and half-sine pulse excitation.  First, 
the specified initial velocity is  = 3.3 m/sec, and the response curve at time t = 0 cor-
rectly reflects that initial condition.  Next, for about the first half-second of response, the 
velocity decreases due to viscous drag force cv.  But then, as the applied force fx(t) in-
creases, the velocity dips to a local minimum and subsequently increases.  Applied force 
fx(t) peaks at 

0v

dtt 2
1=  = 3.75 sec, and the graph shows that the slope of the velocity curve, 

acceleration v , is maximum at about the same time.  The velocity itself peaks at a bit past 
5 sec.  Because velocity is the integral of acceleration (area under the acceleration curve), 
this lag of the velocity peak behind the force pulse peak is quite plausible.  After the ve-
locity peaks, it decreases monotonically toward zero as the applied force decreases to 
zero at t =  = 7.50 sec and remains at zero thereafter.  So the entire response, as de-
picted graphically, is physically plausible.  

&

dt

 
Plausibility of a calculated response does not guarantee that it is correct, although 

it is reassuring.  On the other hand, implausibility of a calculated response almost cer-
tainly guarantees that it is wrong.  The primary justification for conducting a plausibility 
check is to catch incorrect engineering predictions before they cause trouble (which can 
vary from point loss on homework or exams, to a major disaster, the unpredicted failure 
of an engineering system). 
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1-9  The mass-damper-spring system:  example of 2nd order LTI system and ODE 
 
 Consider a rigid body of mass m that is constrained to sliding translation x(t) in 
only one direction, Fig. 1-3.  The mass is subjected to an externally applied, arbitrary 

force fx(t), and it slides on a thin, viscous, liquid layer that has linear viscous damping 
constant c.  Additionally, the mass is restrained by a linear spring.  The force exerted by 
the spring on the mass is proportional to translation x(t) relative to the undeformed state 
of the spring, the constant of proportionality being k.  Parameters m, c, and k are positive 
physical quantities.  All of the horizontal forces acting on the mass are shown on the FBD 
of Fig. 1-3. 

 Idealized physical model 

m 
Liquid layer, viscous 
damping constant c 

 x(t) 
 fx(t) 

Free-body diagram (FBD) 

 fx(t)
 x(t) 

cv(t) 
Figure 1-3  2nd order mass-damper-spring mechanical system 

m  kx(t)

Linear spring, 
constant k 

 
 From the FBD of Fig. 1-3 and Newton’s 2nd law for translation in a single direc-
tion, we write the equation of motion for the mass: 
 

Σ (Forces)x = mass × (acceleration)x, where (acceleration)x = ; xv &&& =
 

vmkxcvtf x &=−−)( . 
 
Re-arrange this equation, and add the relationship between x(t) and v(t), : vx =&
 

)(tfxkvcvm x=++&                                            (1-15a) 
 

0=− vx&                                                      (1-15b) 
 
Equations (1-15a) and (1-15b) are a pair of 1st order ODEs in the dependent variables v(t) 
and x(t).  The two ODEs are said to be coupled, because each equation contains both de-
pendent variables and neither equation can be solved independently of the other.  Such a 
pair of coupled 1st order ODEs is called a 2nd order set of ODEs. 
 
 Solving 1st order ODE (1-2) in the single dependent variable v(t) for all times t > 

requires knowledge of a single IC, which we previously expressed as .  Simi-
larly, solving the coupled pair of 1st order ODEs, Eqs. (1-15a) and (1-15b), in dependent 
variables v(t) and x(t) for all times t > , requires a known IC for each of the dependent 
variables: 

0t )( 00 tvv =

0t
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)()( 000 txtvv &=≡  and )( 00 txx =                                     (1-16) 

 
In this book, the mathematical problem is expressed in a form different from Eqs. 

(1-15a) and (1-15b):  we eliminate v from (1-15a) by substituting for it from (1-15b) with 
 and the associated derivative xv &= xv &&& = , which gives4 

 
)(tfxkxcxm x=++ &&&                                            (1-17) 

 
ODE (1-17) is clearly linear in the single dependent variable, position x(t), and 

time-invariant, assuming that m, c, and k are constants.  The highest derivative of x(t) in 
the ODE is the second derivative, so this is a 2nd order ODE, and the mass-damper-spring 
mechanical system is called a 2nd order system. If fx(t) is defined explicitly, and if we also 
know ICs (1-16) for both the velocity  and the position , then we can, at least 
in principle, solve ODE (1-17) for position x(t) at all times t > .  We shall study the re-
sponse of 2nd order systems in considerable detail, beginning in Chapter 7, for which the 
following section is a preview. 

)( 0tx& )( 0tx

0t

 
1-10  The mass-spring system:  example of  solving a 2nd order LTI ODE for time 
response 
 
 Suppose that we have a system of the type depicted on Fig. 1-3 for which the 
damping force,  in Eq. (1-17), is negligibly small in comparison with inertial force 

 and structural force .  Figure 1-4 
is a photograph of a real system

xc &
xm && xk

5 with so 
little damping that, under some circum-
stances, we may neglect the damping 
force.  The mass carriage of this system 
rides back and forth on low-friction lin-
ear ball bearings, which are enclosed 
underneath the carriage and not visible 
in the photograph.  The entire length of 
this system, from the left (fixed) end of 
the spring, to the rightmost edge of the 
mass carriage is 8½ inches (21.6 cm), and each of the three light-colored metal slabs at-
tached to the carriage has mass of ½ kilogram. 

Figure 1-4  Laboratory mass-spring system 

 
 If we may neglect the damping force in a system such as that of Fig. 1-4, then the 
term  drops out of Eq. (1-17), and we are left with the simpler 2nd order ODE, xc&
 

                                                 
4 An alternative derivation of ODE (1-17) is presented in Appendix B, Section B-2.  The rate of change of 
system energy is equated with the power supplied to the system. 
5 This is part of a Model 210a Rectilinear Plant designed and fabricated by Educational Control Products of 
Bell Canyon, California, USA. 
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)(tfxkxm x=+&&                                                 (1-18) 
 
If we know ICs (1-16) and excitation force , then we can solve Eq. (1-18) for x(t).  
For future reference, note that mass quantity m and spring stiffness constant k are intrin-
sically positive values.  Also, observe that  may be applied to the system of Fig. 1-4 
through the link visible at the right-hand side of the mass carriage. 

)(tf x

)(tf x

 
 It will be instructive to determine a time response for this 2nd order mass-spring 
(m-k) system, by applying the standard ODE solution procedure described in Section 1-5.  
We shall find the complete algebraic solution as the sum of homogeneous and particular 
solutions, .  Suppose that at time t = 0 the spring is undeformed and 
the mass is at rest, so that ICs (1-16) are 

)()()( txtxtx ph +=

 
0)0( =x&  and 0)0( =x                                             (1-19) 

 
Suppose also that the excitation is a force pulse described by the equation  = )(tf x

)1()( mtt
mm ettF − ; by applying calculus to this function, you can easily prove that it rises 

from zero at t = 0 to the maximum value  at time t = , and, thereafter, it gradually 
drops back to zero (see Fig. 1-5).  In dynamics, a linear function of time such as 

mF mt

mtt  is 
often called a “ramp” function; since our excitation consists of a declining exponential 
function multiplied by a ramp function, we call this excitation a “ramped exponential”  
force pulse. 
 
 The homogeneous ODE associated with Eq. (1-18) is 0=+ hh xkxm && .  We cast 
this equation into a familiar form by dividing through by mass m and defining the posi-
tive quantity mkn =2ω , giving the ODE 
 

02 =+ hnh xx ω&&                                                  (1-20) 
 
The positive root mkn =ω  is called the natural frequency of this m-k system, and nω  
has physical significance that will be discussed below with the final solution.  You might 
remember from your previous study of ODEs, or you can easily verify by substitution in-
to Eq. (1-20), that the solution can be expressed as 
 

tCtCtx nnh ωω cossin)( 21 +=                                       (1-21) 
 
Constants  and  are unknown at this point in the solution process. 1C 2C
 
 With excitation by the ramped exponential pulse defined above, any particular so-
lution  must satisfy the non-homogeneous ODE )(tx p
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)1()( mtt
mmpp ettFxkxm −=+&&                                       (1-22) 

 
To find a particular  that satisfies ODE (1-22), we apply the method of undeter-
mined coefficients, just as in Section 1-5.  It is easy to show by successive differentia-
tions that all derivatives with respect to time of the function 

)(tx p

)1()( mtt
m ett −  produce only 

constant multiples of )1()( mtt
m ett −  itself, and of )1( mtte − .  Therefore, we seek a particular 

solution that consists of a linear sum of these two functions: 
 

)1(
2

)1(
1 )()( mm tttt

mp ePettPtx −− +=                                    (1-23) 
 
We determine constants  and  by substituting Eq. (1-23) into Eq. (1-22), equating 
the coefficients of 

1P 2P
)1()e −(  and mtt

mtt )1( mtte −  on the two sides of the resulting algebraic 
equation, and then solving for  and  [homework Problem 1.10(a)].   This process 
produces the results 

1P 2P

 

ktm
F

P
m

m

+
= 21      and     12

2

2
2

P
ktm

tm
P

m

m

+
=                             (1-24) 

 
 The complete (but not yet final) solution is 
 

)()()( txtxtx ph +=  = tCtC nn ωω cossin 21 +  + )1(
2

)1(
1 )( mm tttt

m ePettP −− +    (1-25) 
 
We now can determine the remaining unknown constants by substituting Eq. (1-25) into 
ICs (1-19),  and , and solving algebraically for constants  and  
[homework Problem 1.10(b)].  The results are 

0)0( =x& 0)0( =x 1C 2C

 
112

1 e
t

PPC
mnω

−
= , with 

m
k

n =ω      and                        (1-26) 1
22 ePC −=

 
 The complete and final solution is Eq. (1-25), with constants , , , and  
defined in terms of the basic parameters m, k, , and  by Eqs. (1-24) and (1-26).  
Let’s calculate and plot a time response for the system of Fig. 1-4.  The total mass of the 
carriage plus the three ½-kilogram attached metal slabs is m = 2.20 kg, and the stiffness 
of the spring is k = 770 N/m.  Suppose that the ramped exponential force pulse has maxi-
mum value  = 6 N at the instant  = 1/12 sec.  The MATLAB command lines on the 
next page calculate and print out the frequency quantity 

1C 2C 1P 2P

mF mt

mF mt
πω 2nnf = , and they calculate 

and plot the time response over the interval 0 ≤ t ≤ 2 sec.  Note that it was not necessary 
to assemble these command lines into a formal M-file; rather, the lines were composed in 
a text-editing program, then the entire group of lines was copied together and pasted onto 
the prompt “>>  ” on the MATLAB command window.  Also, since solution Eq. (1-25) 
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includes the product of two functions of time in the term )1()( mtt
m ett − , it is necessary to 

implement this product using MATLAB array multiplication (.*) in the operation  
prod=tt.*efun. 
 
>> %Mass-spring response: rest ICs; ramped exponential pulse input 
m=2.20;k=770; %system mass and stiffness, SI units 
wn=sqrt(k/m);fn=wn/2/pi; 
disp('Natural frequency (cycles/sec) fn ='),disp(fn) 
Fm=6.0;tm=1/12; %excitation parameters 
t=0:.005:2; %time sequence for excitation/response 
tt=t/tm;efun=exp(1-tt);prod=tt.*efun;f=Fm*prod; %excitation 
a1=m/tm^2;a2=a1+k;P1=Fm/a2;P2=2*a1*P1/a2; %P constants 
C1=(P2-P1)*exp(1)/wn/tm;C2=-P2*exp(1); %C constants 
wt=wn*t;x=C1*sin(wt)+C2*cos(wt)+P1*prod+P2*efun; %response 
plot(t,100*f/k,'k.',t,100*x,'k'),grid,xlabel('Time t [sec]'),... 
    ylabel('Translations reference f_x(t)/k and actual x(t) [cm]'),... 
    title('Response of mass-spring system to ramped exponential pulse') 
 
Natural frequency (cycles/sec) fn = 
    2.9775 
 
Figure 1-5 is the MATLAB graph produced by the sequence of commands above. The 
graph was edited in the MATLAB figure window, mainly to reduce the size and to add 
the legend. 
 

 
Figure 1-5  Excitation and response of a mass-spring system 

 
 The reference quantity ktf x )(  plotted on Fig. 1-5 represents the excitation force, 
but divided by k, so that it has the units of translation.  You can see from the basic ODE 
(1-18), , that the plotted quantity physically represents the spring defor-
mation that dynamic excitation  would produce if mass m were zero or negligible.  

)(tfxkxm x=+&&

)(tf x
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Because this reference quantity is calculated by neglect of the entire dynamic inertial 
force,  it is often called the pseudo-static response. ,xm &&

n

 
 Observe on Fig. 1-5 that the actual dynamic translation x(t) of the mass greatly 
overshoots the pseudo-static translation initially (with peak response of about +1.4 cm at 
about 0.18 sec), and that the actual response persists as significant vibration after the 
pulse excitation has died away.  These are important dynamic characteristics of many 
systems that we encounter in engineering practice.  In reality, all mechanical systems that 
consist of purely passive masses and passive structural members have some degree of 
positive damping; but, if the damping forces are low in comparison with inertial and 
structural forces, then these real systems will respond to excitation similarly, at least in a 
qualitative sense, to the “actual” response of Fig. 1-5.  For example, the real system of 
Fig. 1-4 is positively but lightly damped; in response to the given force pulse, this system 
would experience just about the same initial response and overshoot as shown on Fig. 1-
5, but the vibration would die away gradually, and motion would cease completely after 
three or four seconds. 
 
 The terms in Eq. (1-25) that primarily represent vibration are the sinusoidal func-
tions tωsin  and tnωcos , with the angle (in radians) argument of these periodic func-
tions being )(tθ  = tnω .  The period of such a function is the time required for the func-
tion to complete a full cycle and begin repeating itself.  In this case, let’s denote that pe-
riod as  and observe that its natural physical units are seconds/cycle.  The associated 
frequency , in the units cycles/second,

nT

nf 6 is obviously just the inverse of the period, 

nnf = T1 .  Thus, the angle (in radians) argument of the periodic sinusoidal functions can 
be written in the following equivalent forms:  )(tθ  = tnω  = )(2 nTtπ  = tf nπ2 .  The im-
portant relationship between circular natural frequency nω , in radians/second, and cyclic 
natural frequency , in cycles/second, is nf πω 2nnf = .  For the values of mass m and 
stiffness k used in the MATLAB calculations above, the printed-out value of  is 2.98 
cycles per second, and this is the frequency that is most obvious in Fig. 1-5; for example, 
as closely as we can detect by eye, almost exactly three complete cycles of vibration oc-
cur between t = 0.7 sec and t = 1.7 sec. 

nf

 

                                                 
6 More commonly in modern terminology, a cycle/second is designated as a hertz, with the abbreviation 
Hz. 
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1-11  Homework problems for Chapter 1 
 
1.1(a)  Super hero Dynaman is cruising along at 126 km/hr when the Dynamobile sud-
denly encounters wet pavement and begins hydroplaning.  Naturally, Dynamobile is 
headed straight for a thick, solid steel barrier and will crash if it can’t stop.  Also natu-
rally, Dynamobile is equipped not only with conventional brakes (useless against hydro-
planing) but also with jet reverse thrusters that can provide emergency braking in the 
form of a half-sine pulse.  Dynaman hits the panic button, which activates all sensors and 
the onboard computer.  The sensors instantly detect initial velocity  = 35.0 m/sec, Dy-
namobile total mass m = 1,500 kg, and hydroplaning viscous damping constant c = 7.70 
N-sec/m.  The computer calculates that a possible disaster-avoidance action is to deploy 
the maximum available braking thrust amplitude of F = −7,200 N (−7.2 kN) in a half-sine 
pulse extending over 10.0 sec [ fx(t) = F

0v

)100.0sin( tπ  for 0 ≤ t ≤ 10.0 sec].  Your task is 
to demonstrate the effectiveness of this braking thrust by making a MATLAB graph that 
shows the velocity of Dynamobile over 15 seconds (the 10-sec braking period plus an-
other 5 seconds of coasting).  Be sure to use good engineering graphical practice:  pro-
vide grids, a title, appropriate labels, and high point density.  Submit your MATLAB 
script as well as your graph. 
 
(b)  Consider the same scenario as in part (a), but with the following different data:   = 
40.0 m/sec, m = 1,700 kg, c = 130 N-sec/m, with braking force amplitude F = −30,000 N 
(−30.0 kN) in the pulse fx(t) = F

0v

)250.0sin( tπ  for 0 ≤ t ≤ 4.00 sec.  Make a MATLAB 
graph that shows the velocity of Dynamobile over 8 seconds (the 4-sec braking period 
plus another 4 seconds of coasting). 
 
(c)  Consider the same scenario as in part (a), but with the following different data:   = 
60.0 m/sec, m = 1,700 kg, c = 1,100 N-sec/m, with braking force amplitude F = −120,000 
N (−120 kN) in the pulse fx(t) = F

0v

)sin( tπ  for 0 ≤ t ≤ 1.00 sec.  Make a MATLAB graph 
that shows the velocity of Dynamobile over 3 seconds (the 1-sec braking period plus an-
other 2 seconds of coasting). 
 
1.2  Consider again the hydroplaning Dynamobile of Problem 1.1 with total mass m, hy-
droplaning viscous damping constant c, and initial velocity 0)0( vv ≡ .   
 
(a)  Integrate  given in Eq. (1-10) to derive an algebraic equation for )(tvx =& position x(t) 
while the braking pulse is active.  In order to keep the equation algebraically simple 
(relatively, anyway), leave it in terms of constants  (21 and,, PPC don’t write those con-
stants in terms of m, c, , F, and ).  Make sure that your x(t) equation gives the initial 
position as zero, x(0) = 0, by either (i) carefully evaluating the 

0v dt
definite integral of v(t) 

between the limits 0 and t [see Eq. (1-3)], or (ii) taking the  antiderivative of the v(t) 
equation and adding an appropriate constant of integration [see Eq. (1-4)].  Using the 
numerical data of Problem 1.1 [part (a) or (b) or (c), whichever you solved before], calcu-
late the distance traveled by Dynamobile at the end of the braking (pulse) period.  (Com-
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ment:  in reality, to prevent collision with the barrier, wouldn’t you need to know Dyna-
mobile’s initial distance from the barrier as well as its initial velocity?) 
 
(b)  Differentiate v(t) given in Eq. (1-10) to derive an algebraic equation for acceleration 

 while the braking pulse is active.  In order to keep the equation algebraically 
simple, leave it in terms of constants .  Using the numerical data of Problem 
1.1 [part (a) or (b) or (c), whichever you solved before], make a MATLAB graph that 
shows the acceleration in G’s of Dynamobile over the braking (pulse) period.  To calcu-
late acceleration in G’s, divide acceleration in m/sec2 by the nominal SI acceleration of 
gravity, g = 9.807 m/sec2.  [Comment:  we presume that Dynaman would not survive the 
collision if there were no braking, but, in fact, would he survive the deceleration (perhaps 
many G’s) required to prevent the collision?] 

vta &=)(

21 and,, PPC

 
1.3  Consider again the hydroplaning Dynamobile of Problems 1.1 and 1.2.  Suppose that 
all parameters are known except F, the pulse magnitude.  Now we want to find the opti-
mum pulse magnitude, , defined here as the value that will bring Dynamobile to a 
dead stop at the end of the pulse duration, v( ) = 0. 

optFF ≡

dt
 
(a)  Use Eqs. (1-9)-(1-11) for v(t) to derive an algebraic equation for  in terms of the 
parameters m, c, , and .  Next, evaluate your equation numerically for m = 1,700 kg, 
c = 130 N/m/sec,  = 40.0 m/sec, and  = 4.00 sec.  (answer:   = −22.87 kN) 

optF

0v

0v
dt

dt optF
 
(b)  Use the algebraic equation for position x(t) from Problem 1.2(a), and the value 

 from Problem 1.3(a) to calculate how far Dynamobile would travel after activa-
tion of thrust braking before coming to a dead stop.  (answer:  x( ) = 75.18 m) 

optFF ≡

dt
 
1.4  Consider a mass-damper system with a cosine forcing function, as described by the 
1st order, LTI ODE tFvcvm ωcos=+& , in which velocity v(t) is the dependent variable, 
and the known constant parameters are mass m, viscous damping constant c, force am-
plitude F, and circular frequency of forcing ω.  Use the method of undetermined coeffi-
cients to derive an algebraic equation (in terms of the given constants) for the particular 
solution vp(t) of this ODE and forcing function. 
 
1.5  The “standard” 1st order ODE is )(tubxax =−& . 
 
(a)  Suppose that tUtu ωsin)( = , t > 0, where U is a constant amplitude, and that x(0) = 
0.  Derive the following solution of the standard 1st order ODE: 
 

⎟
⎠
⎞

⎜
⎝
⎛ ++−

+
−

= t
a

te
aa

abUtx ta ωωωω
ω

cossin)( 22 , t ≥ 0 
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(b)  Suppose that tUtu ωcos)( = , t > 0, where U is a constant amplitude, and that x(0) = 
0.  Derive the following solution of the standard 1st order ODE: 
 

⎟
⎠
⎞

⎜
⎝
⎛ +−−

+
−

= tt
a

e
a

abUtx ta ωωω
ω

cossin)( 22 , t ≥ 0 

 
1.6  Symbolic software such as Mathematica7 and MATLAB (the Symbolic Math Tool-
box) can solve some ODEs, including those discussed in Chapter 1.  For an introduction 
to this type of solution, solve Problem 1.5(a) in MATLAB.  Begin with the following 
MATLAB commands: 
 
>> syms a b U w t 
>> x=dsolve('Dx-a*x=b*U*sin(w*t)','x(0)=0') 
 
The MATLAB response will probably be a long, algebraically undisciplined equation for 

.  In order to express the equation in a more economical form, type the command )(tx
 
>> x=simple(x) 
 
The simplified equation will still be in rather awkward computer notation, so, to express 
the equation in a more conventional form, type the command: 
 
>> pretty(x) 
 
A few words of warning about symbolic software are appropriate.  For more complex 
ODEs, symbolic software might give algebraic solutions that are correct, but are ex-
pressed in an unfamiliar form, or in an algebraic form that must be simplified by hand in 
order to be useful.  For this reason and others, engineers often regard symbolic software 
as useful mainly for providing checks on mathematical results that have been derived the 
old-fashioned way, by hand. 
 
1.7  Imagine a spherical cannon ball having the diameter d and mass m of a regulation 
baseball, but with a very smooth surface (not somewhat 
rough, like a baseball’s stitched cowhide cover).  Suppose 
that we launch this ball vertically upward from sea level 
against Earth’s gravity, with known launch (muzzle) vertical 

locity 0v  being sufficiently low that the acceleration of 
gravity g remains essentially constant over the entire ascent 
and descent of the ball.  Denote the varying altitude (vertical 
position) of ball as )(ty , positive upwards, so the ball’s 

(tv

 

 y(t) 

 y(0) = 0 

 v(t) 

 v(0) = v0

 g 

ve

the 
velocity is  = 

                                                

) )(ty& . 
 
(a)  First, let’s idealize the aerodynamic drag force as being linearly viscous with 
damping constant c,  (subscript 1 denotes this mathematical model of drag as vcD =1

 
7 Mathematica ® is a registered trademark of Wolfram Research, Inc. 
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proportional to the 1st power of velocity, v1).  Draw and label an appropriate free-body 
diagram (FBD), showing the direction of drag force, by convention in analysis of 
aerodynamics, as being opposite to the direction of velocity .  Using your FBD, apply 
Newton’s 2nd law to derive the ODE of motion,  +  = 

)(tv
vm & vc gm− .8   

 
(b)  Solve the ODE of part (a) to determine an equation for velocity , t ≥ 0, given the 
known IC,  = .  First, observe that the homogeneous ODE is the same as Eq. (1-6), 
so that Eq. (1-7) is the homogeneous solution.  Next, find the simplest possible particular 
solution, , a constant.  Next, enforce the initial condition to determine the unknown 
constant of the homogeneous solution.  From your  equation, show that  = , the 
constant terminal velocity of the ball’s descent for drag .  Also, derive an equation for 
the instant of time  when velocity is zero, which, of course, corresponds to the peak 
altitude,  of the ball.  (Partial answers:  

)(tv
)0(v

p

1max_

0v

1zt

v

y

)t
D

(v pv 1tv

1

cmgvt −=1 ; )1tv1 v−ln()( 0cm1zt = , in 
which ln denotes the natural logarithm, i.e., the logarithm to base e.) 
 
1.7(c)  Integrate  of part (b) to derive an equation for the ball’s altitude, , t ≥ 0; 
define the launch point to be the reference position, i.e., set the IC as  ≡ 0.  (Answer:  

)(tv )(ty
)0(y

tvevt1 )(−vcmty t
tmc

1
)(

0 )1)(()( +−= − .) 
 
(d)  Next, let’s consider the mathematical model for the aerodynamic drag force that is 
generally considered most appropriate for a smooth ball:  DCSqD ±=2

0
, with the plus 

sign for ascent ( ), and the minus sign for descent (0≥v <v ).  The terms in this equa-
tion are: 2vρ2

1q = , the dynamic pressure, with sea-level air density ρ  = 0.002377 
slug/ft3 = 0.002377 lb-sec2/ft4; 42dS π= , the ball’s projected area, with baseball 
diameter about d = 2.90 inches; and , the dimensionless drag coefficient, which is 
about  = 0.50 for the smooth ball, provided its airspeed is less than about 140 mph 
(miles/hour).  Write two 1st order ODEs for  with drag model , one ODE applying 
to ascent, the other to descent.  Explain what it is about these ODEs that makes them 
nonlinear.  Do 

DC

DC
)(tv 2D

not attempt to solve these ODEs in general, but use the appropriately sim-
plified form of the descent ODE to find an algebraic equation for , the constant termi-
nal velocity of the ball’s descent for drag ; and then calculate the value of  in mph.  
Use the average weight of baseballs, 

2tv

2D 2tv
gm  = 8

15  ounces, with g = 32.17 ft/sec2.  Note:  60 
mph = 88 ft/sec, 1 foot = 12 inches, and 1 lb = 16 ounces. (Partial answer:  v  = −74.91 
mph.  It might seem counterintuitive that the terminal velocity of a stitched baseball is 
−95 mph, a much greater speed than that of an otherwise equivalent smooth ball; see 
Adair, 1994, pages 5-12.

2t

9)  
 

                                                 
8 In Appendix B, Section B-2, this ODE is derived by an alternative method using energy and power. 
9 Literature references such as this are described in detail in the References section following Chapter 17. 
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(e)  Let’s attempt to establish some sort of “equivalent” linear mathematical model rela-
tive to the nonlinear model of part (d).  The only comparable results that we have deter-
mined for this purpose are the equations for terminal velocity.  Therefore, calculate an 
“equivalent” linear viscous damping constant c by equating  = .  Suppose that  = 
110 mph, the average speed at which a baseball rebounds from a bat on the ball’s way to 
a 400-foot major league home run.  Calculate the total ascent time  (in seconds) and 
the peak altitude  ≡  (in feet), quantities that are defined in parts (b) and (c).  
It happens that both nonlinear ODEs of part (d) can be solved in terms of standard mathe-
matical functions.

1tv 2tv

t

0v

1z

)( 1zty 1max_y

2zt

10  In particular, solution of the nonlinear ODE for ascent leads to the 
equation for total ascent time,  = [ ] [ ])2(tan)( 0

1
2 tt vvgv −− − , and the equation for peak 

altitude,  ≡  = )( 2zty 2max_y 2
20

2
2( tv )(1ln) tvvg + .  Calculate  and , and 

compare them, respectively, with  and ; note, however, that we cannot infer 
from this limited comparison the general quality of the “equivalent” linear model relative 
to the nonlinear model.  (Partial answers:  c =  2.955 × 10−3 lb-sec/ft; = 210.7 ft; 

 =  3.299 sec) 

2zt 2max_y

1

1zt 1max_y

max_y

2zt
 
1.8  The ODE solution procedure illustrated in Section 1-5 for a 1st order ODE can be 
used to solve any LTI ODE or system of LTI ODEs.  Consider, for example, the 2nd order 
ODE (1-17) for a mass-damper-spring system, )(tfxkxcxm x=++ &&& .  The physical pa-
rameters m, c, and k are known constants. 
 
(a)  Seek a homogeneous solution in the form  as follows.  First, show that 
the characteristic equation is a quadratic polynomial in the unknown λ .  Next, solve the 
polynomial equation and show in detail that there are two characteristic values (roots), 

t
h eCtx λ=)(

m
k

m
c

m
c

−⎟
⎠
⎞

⎜
⎝
⎛±−=

2

2,1 22
λ .  Assume that 

m
k

m
>⎟

⎠
⎞

2c
⎜
⎝
⎛

2
.  Therefore, the general homoge-

neous solution must have the form , with two initially unknown 
constants. 

tt
h eCeCtx 21

21)( λλ +=

 
(b)  Suppose that the excitation force has the sinusoidal form tFtf x ωsin)( = , in which 
force amplitude F and circular frequency ω (in radians/second) are considered to be 
known.  Seek a particular solution by using the method of undetermined coefficients.  
First, express the solution as tPtPtx p ωω cossin)( 21 += .  Now, substitute this  
into the non-homogeneous ODE to find algebraic equations for  and  in terms of the 

constants that m, c, k, F, and ω.  (Partial answer:  

)(tx p

1P 2P

F
c

c
222 )() ωωmk

P2 (
ω
+−

−
= ) 

 

                                                 
10 For examples of these solutions, see:  an ascent solution in Greenwood, 1965, Problem 3-4 on pages 128 
and 503; and a descent solution in Sommerfeld, 1964, pages 21-22. 
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(c)  Express the complete solution as )()()( txtxtx ph += .  Suppose that the mass m is 
initially at rest with ICs:  initial position 0)0( =x

1C
 and initial velocity .  Use 

these ICs to write two linear equations with unknowns  and .  Solve for  and ; 

show that they can be written as 

0)0( =x&

1C2C 2C

21

122

λλ
ωλ

−
− PP

1 =C   and 
21

1

λ
ω
−
− 12

λ
λPP

2 =C . 

 
Note that a reasonably efficient algebraic equation for the final result  is derived by 
defining constants  and  in terms of the previously defined λi and Pi , rather than 
writing them in terms of all the basic parameters, m, c, k, F, and ω. 

)(tx

1C 2C

 
1.9  Solve Problem 1.8 in MATLAB.  Begin with the following MATLAB commands: 
 
>> syms x t m c k F w 
>> x=dsolve('D2x+c/m*Dx+k/m*x=F/m*sin(w*t)','x(0)=0','Dx(0)=0') 
 
The MATLAB response will probably be an equation for of truly breathtaking 
length.  You can try simplification operations such as x=simple(x) and pretty(x) and 
the subexpr command, but they will not necessarily lead to a more useful equation for 

.  At some point, you might decide that, rather than continuing to flail away at the 
symbolic software, your time is used more efficiently if you just solve by hand and define 
intermediate symbols in terms of the basic parameters, as is done in Problem 1.8. 

)(tx

)(tx

 
1.10  This problem relates to the details of the mass-spring-system ODE solution pre-
sented in Section 1-10. 
 
(a)  Substitute the assumed particular solution Eq. (1-23) into non-homogeneous ODE (1-
22), then carry out the process in all algebraic detail to verify Eqs. (1-24) for  and . 1P 2P
 
(b)  Substitute ICs (1-19),  and 0)0( =x& 0)0( =x  into complete solution Eq. (1-25), then 
carry out the process in all algebraic detail to verify Eqs. (1-26) for  and . 1C 2C
 
1.11  Consider a mass-spring system with an “exponential step” forcing function, as de-
scribed by the 2nd order LTI ODE )1()( ctt

x eFtfxkxm −−==+&& , in which position x(t) 
is the dependent variable, and the known constant parameters are mass m, spring stiffness 
constant k, force amplitude F, and time constant tc.  The time constant is the time required 
for the “exponential unit-step” function, ctte−−1 , to rise from 0 at t = 0 to the value 

 = 0.6321, on its way to the asymptotic value 1 as t → ∞. 11 −− e
 
(a)  Use the method of undetermined coefficients to derive an algebraic equation (in 
terms of the given constants) for the particular solution xp(t) of this ODE and forcing 
function. 
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(b)  Let the ICs for this m-k system be 0)0( =x&  and 0)0( =x .  Use the result of part (a) 
and whatever else is required to derive in all detail the following complete algebraic so-
lution for x(t), t ≥ 0, in which mkn =ω :   
 

[ ]
⎭
⎬
⎫

⎩
⎨
⎧

++
+

−= − tttte
tk

Ftx ncnncn
tt

cn

c ωωωω
ω

cos)1(sin)1(
)1(1

11)( 2
2  

 
1.11 (c)  Consider the specific numerical case of mass m = 8.03 kg, spring stiffness con-
stant k = 317 N/m, and force amplitude F = 4.50 N.  Calculate the circular natural fre-
quency nω  and the cyclic natural frequency .  Let excitation time constant nf nct ω1= , a 
much shorter interval than the m-k system’s natural period nnT ωπ2= .  Compose and 
run a MATLAB program that does the following:  calculate the actual dynamic response 
x(t) and the pseudo-static response ktf x )(  over the time interval 0 ≤ t ≤ 2.5 sec; plot 
both x(t) and ktf x )(  on the same graph in units of either centimeters or millimeters. 
Explain in a sentence or two what feature of your plot of x(t) demonstrates and conforms 
with your calculation of . 

 

nf
 
1.12  Consider a mass-spring system with a sinusoidal forcing function, as described by 
the 2nd order LTI ODE tFtfxkxm x ωsin)( ==+&& , in which position x(t) is the depend-
ent variable, and the known constant parameters are mass m, spring stiffness constant k, 
force amplitude F, and excitation frequency ω .   
 
(a)  Use the method of undetermined coefficients to derive an algebraic equation (in 
terms of the given constants) for the particular solution xp(t) of this ODE and forcing 
function, a solution that is valid provided mk≠2ω . 
 
(b)  Let the ICs for this m-k system be 0)0( =x&  and 0)0( =x .  Use the result of part (a) 
and whatever else is required to derive in all detail the following complete algebraic so-
lution for x(t), t ≥ 0, in which mkn =ω :   
 

[ ]tt
k
Ftx nn

n

ωωωω
ωω

sin)(sin
)(1

1)( 2 −
−

= , valid for nωω ≠  

 
(c)  Consider the specific numerical case of mass m = 0.230 lb-sec2/inch (which weighs 
about 88.8 lb), spring stiffness constant k = 227 lb/inch, and force amplitude F = 45.0 lb.  
Calculate the circular natural frequency nω  and the cyclic natural frequency .  For 
excitation frequency 

nf

nωω 2.1= , compose and run a MATLAB program that does the 
following:  calculate the actual dynamic response x(t) and the pseudo-static response 

ktf x )(  over the time interval 0 ≤ t ≤ 2 sec; plot both x(t) and ktf x )(  on the same 
graph.  Your x(t) plot should exhibit the phenomenon of beating, which is analyzed more 
completely in Section 10-6. 
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(d)  The x(t) equation derived in part (b) is not valid if excitation frequency ω equals 
natural frequency nω , but note that in this case the x(t) equation has the indeterminate 
form 0/0, so that we can apply l’Hospital’s rule (which is described in any calculus text-
book) to find the limit-case response solution.  Define nωωβ = , so that tt nβωω = .  
Now, hold nω  constant and take the limit as β → 1 of the x(t) equation in order to deter-
mine the correct response x(t) equation for the case ω  = nω . 
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2-1  Review of complex numbers and arithmetic 
 
 We will find many uses in system dynamics for analysis with complex numbers 
and variables.  It is instructive first to imagine how complex numbers might have been 
developed historically.  It seems likely that they appeared first in solutions for roots of 
polynomial equations.  To see how, let’s examine the 2nd degree polynomial, the standard 
quadratic equation, and its solutions.  The quadratic equation is 
 

0=++ czbza 2                                                  (2-1) 
 
where z is the unknown and a, b, and c are known constants.  The standard solution for 
roots z is 
 

acbbz 41 2 −±−=
aa 22

                                          (2-2) 

 
Provided that b2 – 4ac ≥ 0, solution (2-2) can be calculated easily.  But suppose the con-
stants have values such that b2 – 4ac < 0, so that Eq. (2-2) indicates the square root of a 
negative number.  That must have seemed strange to early mathematicians.  Nevertheless, 
(2-2) is the correct solution regardless of the sign of b2 – 4ac, which you can verify sim-
ply by substituting (2-2) back into (2-1).  So it was necessary to recognize the existence 
of the square root of a negative number and to invent notation and terminology for de-
scribing such a number. 
 

For b2 – 4ac < 0, we can write 
 

2222 441)4)(1(4 bacjbacbacacb −≡−×−=−−=−  
 
in which we define the unit imaginary number as j ≡ 1− .  Perhaps early mathemati-
cians used the adjective “imaginary” because such a number seemed unreal to them.  
With this definition, we can write (2-2) in the form 
 

241 bacjbz −±−=
22 aa

 

 
This is called a complex number, which is the sum of a normal, or real number and an 
imaginary number (j times a real number being a general imaginary number). 
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 If x and y are reals, then any complex number can be written in the rectangular 
form:  

yjxz += ,  with real part )Re(zx ≡ ,  and imaginary part          (2-3) )Im(zy ≡
 
This form is called “rectangular” because it expresses the complex number in terms of its 
rectangular, or Cartesian components, x and y.  Equation (2-3) is similar mathematically 
to a two-dimensional vector v expressed in terms of Cartesian components and unit vec-
tors  and :  .  Therefore, we can represent a complex number x1 y1 yx 11v yx vv +=

yjxz = +  graphically in the Cartesian form similar to that used for two-dimensional 
vectors, as shown in Fig. 2-1. 

 Im(z)

Re(z) x 

 z 

 y 

Figure 2-1 

 θ 

length r  
 From Fig. 2-1, we can infer another useful way to 
represent a complex number.  By defining the magnitude 
(length, absolute value, modulus) of z as the positive num-
ber 
  

22 yxr +=                            (2-4) 
 
we can write 
 

yjxz +=  = ( )θθ sincos jr
r

j
r

+=⎟
⎠

⎜
⎝

+
yx ⎞⎛r                            (2-5) 

 
In Eq. (2-5), we employ the standard trigonometric functions of angle θ originating on 
the positive real axis and defined positive in the counterclockwise (CCW) sense, Fig. 2-1.  
Angle θ  is often called the argument of  z.  The general definition is 
 

⎟
⎠

⎜
⎝

= −

x
1tanθ ⎞⎛ y                                                        (2-6) 

 
It is necessary to recognize Eq. (2-6) as the four-quadrant inverse tangent (or arctan-
gent).  For example, if y is positive and x is negative, then (2-6) should give angle θ  in 
the second quadrant, 90° < θ < 180°; or, if both y and x are negative, then (2-6) should 
give angle θ in the 3rd quadrant, −180° < θ  < −90° (which also can be written as 180° < θ  
< 270°).  Unfortunately, the tan−1 or arctan function on hand calculators does not calcu-
late the four-quadrant inverse tangent, but only considers the sign of the quotient y/x, and 
produces a θ value in the 1st or 4th quadrants, −90° < θ < +90°.  So, if you are evaluating 
(2-6) on your hand calculator, you need to account for the signs of both y and x, and you 
need to modify appropriately the answer given by your calculator.  If you are evaluating 
(2-6) in MATLAB, then you should use MATLAB’s four-quadrant inverse tangent func-
tion, atan2(y,x). 
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 Equation (2-5) is just an intermediate result.  To achieve the desired final form, 
we rewrite (2-5) using the well-known Taylor power series expansions for sine, cosine 
and exponential functions: 
 

( ) ⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−+−=+= ...

!5!3
...

!4!2
1sincos

5342 θθθθθθθ jrjrz  

 

( ) ( ) ( ) ( ) ( ) ( ) θθθθθθθθ jerjjjjjrjrz ≡⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++++++=+= ...

!5!4!3!2
1sincos

5432

 

 
θjerz =                                                         (2-7) 

 
The important result 
 

θθθ jej =+ sincos                                               (2-8) 
 
is known as Euler’s equation (after Leonhard Euler, 1707-1783, Swiss mathematician 
and physicist).  See homework Problem 2.1 for other equations closely related to Eq.  (2-
8). 
 

A complex number in the form  is called the polar form because it em-
ploys polar coordinates r and θ.  We can visualize the complex exponential term  it-
self as a clock hand in the complex plane, Fig. 2-1; the clock hand has unit length, and it 
is rotated CCW by angle θ  from the 3 o’clock position.  Similarly, the full complex num-
ber  represents a clock hand of length r that is rotated CCW by angle θ  from the 
3 o’clock position, so the notation z = r∠θ  is often used, where the symbol ∠ stands for 
“angle.” 

θjerz =
θje

θjerz =

 
We will occasionally need to convert a complex number from rectangular form 

into polar form using Eqs. (2-4) and (2-6).  The MATLAB functions abs and angle are 
especially useful for this task, as is illustrated in Complex-arithmetic Example 2 below. 

 
We also will need to use complex arithmetic, so let’s review (from your mathe-

matics courses) some of the basics, supposing that we have two complex numbers z and 
w expressed in both rectangular and polar forms: 
 

θjeryjxz =+=   and    ,   where x, y, r, θ, u, v, q, and φ all are real. φjeqvjuw =+=
 
Addition or subtraction, rectangular:  )()( vyjuxwz ±+±=± . 
 
Addition or subtraction, polar:  . Θ≡≡± jjj eRZeqer φθ

 
)sinsin(coscos φθφθ qrjqrZ +±+=  
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[ ] [ ] )cos(2)Im()Re( 2222 φθ −++=+= rqqrZZR  
 

[ ] [ ])coscos()sinsin(tan)Re()Im(tan 11 φθφθ qrqrZZ ++±==Θ −−  
 
Multiplication, rectangular:  . )()()()( 2 yuxvjyvxuyvjyuxvjxuwz ++−=+++=×
 
Multiplication, polar:  . )( φθ +=× jeqrwz
 
The complex conjugate of is defined as θjeryjxz =+= θjeryjxz −=−= , so that the 
product of a complex number and its conjugate is real, and equal to the square of the 
magnitude:  22222) yjyxxy =−+−2 ( ryxjxzz =++= , or more easily in polar form,  

2) r=−θ(2erererzz jjj =×= − θθθ .  Suppose that we have the quotient of two complex 
numbers z by w, both in rectangular form, and we wish to cast the result into standard 
rectangular form; it is common practice first to multiply both denominator and numerator 
by the conjugate of the denominator, thus forming a real denominator:   
 

Division, rectangular:  2222))((
))((

vu
yuxvj

vu
yvxu

jvujvu
jvujyx

jvu
jyx

w
z

+
+−

+
+
+

=
−+
−+

=
+
+

=  

 

Division, polar, )( φθ −= je
q
r

w
z  

 
Complex-arithmetic Example 1  Cast the following complex fraction into standard rec-
tangular form, then convert it into polar form: 
 

21
5

)46(83
)21)(21(
)21)(43(

21
43 jj

jj
jj

j
jz −−=

−−+−
=

−+
−−

=
+
−

=  

 

rad034.2
180

rad6.116
1
2tan,236.2)2()1( 122 −=

°
×°−=⎟

⎠
⎞

⎜
⎝
⎛
−
−

==−+−= − πθr  

 

⇒     )rad034.2(236.2236.221
21
43 )6.116( −∠≡=−−=

+
−

= °−jej
j
jz  

 
Note that when you take tan−1(2) on your hand calculator, it gives 63.43°.  Because you 
are really trying to find tan−1(–2/–1), you must recognize that the correct angle is in the 
3rd quadrant and, therefore, add +180° or –180° to the calculator’s solution in order to 
obtain the correct result, +243.4° or –116.6°. 
 
Complex-arithmetic Example 2  Cast the following complex fraction into standard rec-
tangular form, then convert it into polar form: 
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47
13

324347
)32)(32(
)32)(514(47

32
)4)(23( jjj

jj
jjj

j
jjz +−

+
=+−

+−
+−

=+−
−

+−
=  

 

462.6692.34
13
327

13
43 jjz +−=⎟

⎠
⎞

⎜
⎝
⎛ ++⎟

⎠
⎞

⎜
⎝
⎛ −=  

 

°=°+°−=⎟
⎠
⎞

⎜
⎝
⎛
−

==+−= − 7.119180255.60
692.3

462.6tan,442.7)462.6()692.3( 122 θr  

 

⇒     °=+−=+−
−

+−
= 7.119442.7462.6692.347

32
)4)(23( jejj

j
jjz  

 
A solution of Complex-arithmetic Example 2 in terms of MATLAB operations follows: 
 
>> z=(3-2j)*(4+j)/(2-3j)-7+4j 
 
z = 
 
  -3.6923 + 6.4615i 
 
>> r=abs(z),theta=angle(z) 
 
r = 
 
    7.4421 
 
theta = 
 
    2.0899 
 
>> thetadeg=theta*180/pi 
 
thetadeg = 
 
  119.7449 
 
Note that MATLAB prefers, and gives results in terms of the unit imaginary number de-
noted as i, but it recognizes our notation of j.  Note also that the radian is MATLAB’s 
default unit for angles:  if you want a MATLAB angle result in degrees, you must convert 
from radians; also, if you wish to calculate a trigonometric function of an angle, you must 
express that angle in radians. 
 
2-2  Introduction to application of Laplace transforms 
 
 The Laplace transform (after French mathematician and celestial mechanician 
Pierre Simon Laplace, 1749-1827) is a mathematical tool primarily for solving ODEs, but 
with other important applications in system dynamics that we will study later.  In Laplace 
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transformation, we deal with a complex variable denoted as s, which is usually expressed 
in terms of its real and imaginary parts as 
 

s = σ + jω                                                     (2-9) 
 
in which σ and ω both are real.  We define a complex function of s, F(s).  The type of 
function that we will encounter often takes the form of a ratio of two polynomials: 
 

)())((
)())((

...

...
)(
)()(

211

211

1
1

21

1
1

21

n

m

n
nn

m
mm

pspspsa
zszszsb

asasa
bsbsb

sDen
sNumsF

−−−
−−−

=
+++
+++

=≡
+

−
+

−

L

L
     (2-10) 

 
In the first polynomial form of Eq. (2-10), , … ,  and , … ,  are real con-
stants (with the symbols and numbering system keyed to MATLAB notation); numerator 
Num(s) is an mth degree polynomial in s, and denominator Den(s) is an nth degree poly-
nomial in s, with m ≤ n in general.  In the second polynomial form, with factored Num(s) 
and Den(s), complex constants , … ,  are called zeros of F(s) because F(s)  is 
zero if s equals any one of them, and complex constants , … ,  are called poles 
of F(s) because F(s) is infinite if s equals any one of them.  If m < n, F(s) in Eq. (2-10) 
also goes to zero as s → ∞. 

1a

mz

1+na 1b

2p

1+mb

np
21 , zz

1 ,p

 
 Solving a simple ODE problem with Laplace transforms is a gentle introduction 
to the subject.  Consider the 1st order LTI ODE written in standard form:  , 
Eq. (1-1).  Let’s solve this ODE with a known IC, x(0) = , and with a specific expo-
nential input function, , U being a dimensional magnitude; in any physically 
realistic problem, constant w would be a real number, but for generality here we allow it 
to be a complex number.  So the complete problem statement is: 

)(tubxax =−&

0x
tweUtu −=)(

 
twebUxax −=−& , x(0) = , solve for x(t), t > 0                      (2-11) 0x

 
To begin the solution, we multiply the ODE by a complex exponential, , then take 
the definite integral over time from t = 0 to t = ∞ of the entire multiplied ODE: 

tse−

 

( ) ∫∫∫∫
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=
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−
∞=

=

−
∞=

=

−− =−⇒=−
t

t

twst
t

t

st
t

t

st
t

t

twst dteeUbdtxeadtxedteUbxaxe
0000

&&      (2-12) 

 
In (2-12), s is a complex variable that must have values for which the integrals exist.  
Based upon (2-12), we define the forward Laplace transform of dependent variable x(t)1: 
 

                                                 
1 In Section 8-4 we develop a more general definition, Eq. (8-12), in order to accommodate the ideal unit-
impulse function, which is important in linear-system theory and applications. 

 2-6



 Chapter 2 Complex numbers and arithmetic; Laplace transforms; partial-fraction expansion 
 

L[x(t)] ≡ X (s) ≡                                      (2-13) ∫
∞=

=

−
t

t

st dttxe
0

)(

 
In (2-13), the function x of time t is transformed by the definite integration into a function 
X of Laplace variable s.  Also, the ODE of (2-11) is transformed into (2-12), which, as we 
will find, becomes an easily solvable algebraic equation in the unknown X (s).  After we 
solve that algebraic equation for X(s), then we will reverse the process to find the original 
unknown x(t) by applying the inverse Laplace transform, denoted as [X(s)] ≡ x(t).  For 
any Laplace-transformable function , and its transform F(s), the companion equa-
tions L[ ] = F(s) and  [F(s)] = are called a Laplace transform pair. 

1−L
)(tf
)(tf)(tf 1−L

 
In order to transform Eq. (2-12) into an algebraic equation, let’s carefully consider 

each integration in (2-12), beginning with that on the right-hand side: 
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An important step in this derivation involves the complex exponential, with use of Eqs. 
(2-3) and (2-8):  .  Since  and  vary periodi-
cally as y varies, the only way for  to → 0 + j0 for all values of y is for 

)sin(cos)( yjyeee xyjxz +== +

ze
ysin ycos

−∞→x .  
Thus, in the last step of the integration, we assume that )Re( ws +  > 0, or  > 

, so that  = 0 + j0.  The integration above establishes the following La-
place transform pair, which is one of the most important of all pairs for applications: 

)Re(s
)Re(w− ∞+− )( wse

 

 twtw e
ws

L
ws

eL −−− =⎥⎦
⎤

⎢⎣
⎡

++
=

1and1][ 1                            (2-14) 

 
 For your convenience, transform pair (2-14) and all other fundamental Laplace 
transform pairs used in this book are tabulated in Appendix A at the end of the book.  
Appendix A also includes some of the longer but less instructive transform derivations, 
should you wish to study them. 
 
 Next, let’s evaluate the first term on the left-hand side of (2-12) by the standard 

method of integration by parts in the form : [ ] ∫∫
∞=

=

∞=
=

∞=

=

−=
t

t

t
t

t

t

duvvudvu
0

0
0
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}} [ ] [ ]
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)()0()()()()( 0

0
0

0

sXsx

sXsxexedtestxtxedtxe s
t

t
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ts
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dvu
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+−=

+−∞=−×−= −∞×−
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−∞=

=
−

∞=

=

− ∫∫ &

     (2-15a) 

 
To obtain this result, we assume that  = 0, which generally means Re(s ) > 0.  
This result is the important general Laplace transform of the first derivative of any trans-
formable function : 

)()( ∞∞×− xe s

)(tf
 

[ ] )0()()( fsFstfL −=&                                         (2-15b) 
 
Equation (2-15b) is the basis for derivation of the Laplace transform of a derivative of 
any order n, which we will use later (Ogata2, 1998, pp. 25-26): 
 

)0()0()0()()(
)1(

21
−

−− −−−−=⎥
⎦

⎤
⎢
⎣

⎡ n
nnn

n

n

ffsfssFstf
dt
dL L&              (2-16) 

 
For example, the Laplace transform of the 2nd derivative is (homework Problem 2.7): 
 

[ ] )0()0()()( 2 ffssFstfL &&& −−=                                      (2-17) 
 
 Proceeding with the solution of ODE + IC (2-11), we now substitute Eqs. (2-13), 
(2-14), and (2-15a) back into (2-12) to obtain an algebraic equation for transform , 
which is easily solved: 

)(sX

 

s – x(0) − a = )(sX )(sX
ws

bU
+

     ⇒     (s – a)  = )(sX
ws

bUx
+

+0  

 

⇒     
))(()(

1)( 0 wsas
bUx

as
sX

+−
+

−
=                                 (2-18) 

 
 To solve for the ultimate unknown x(t), we now need to find the inverse transform 
of  in (2-18).  Using (2-14) easily gives us the inverse of the first term on the right-
hand side: 
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⎛
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                               (2-19) 

 

                                                 
2 Literature sources such as this are described in detail in the References section following Chapter 17. 
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Inverting the second term on the right-hand side of (2-18) is a greater challenge, 
which requires us to use partial-fraction expansion in order to expand that term into two 
simpler terms, each of which has the easily invertible form of a constant divided by a sin-
gle factor of the form (s − p).  We first write the troublesome term as two simpler frac-
tions with unknown constant numerators, , which are called residues of the 
partial-fraction expansion.  (A more detailed justification for this form is derived in the 
next section.): 

21 and CC
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There are two common methods for finding , which we shall call the “labor-
saving” method and the “brute-force” method. 

21 and CC

 
Consider first the labor-saving method.  Let’s go in great detail through the steps 

required to find , for example.  First, multiply both sides of Eq. (2-20) by , the 
denominator of the  term: 

1C as −
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Isolate  on the left-hand side:  1C
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Now, in order to eliminate the  term on the right-hand side, set 2C as = .  Note that this 
does not eliminate the second right-hand-side term because )( as −  is in both the denomi-
nator and the numerator. 
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Thus, we obtain the required equation for : 1C
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Now that we see the logic of the labor-saving method, we can dispense with most of the 
intermediate steps and quickly write the corresponding equation for  directly from Eq. 
(2-20): 

2C
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Next, the brute-force method begins with use of the traditional algebraic method 

for combining the two fractions of Eq. (2-20) into a single fraction: 
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Equate coefficients of like powers of s in the numerators: 
 

1s :  0 = 21 CC +      ⇒     12 CC −=  
0s :  )(1 121 awCaCwC +=−=     ⇒     21

1 C
wa

C −=
+

=  

 
In this simple problem, the brute-force method is not much more demanding al-

gebraically than the labor-saving method.  However, for a slightly more complex original 
fraction, say, one with three denominator polynomial factors instead of just two, the 
brute-force method can require orders of magnitude more algebra than the labor-saving 
method.  The point of this discussion:  exert the mental energy to understand the labor-
saving method, and always use it rather than the brute-force method [see homework 
Problem 2.9(b)]. 
 
 Using the partial-fraction expansion developed above, we now express the com-
plete second term on the right-hand side of Eq. (2-18) in the easily invertible form 
 

⎟
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wsaswa
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wsas
bUsF 11
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Using the fundamental inverse transform from Eq. (2-14) gives 
 

( )twta ee
wa

bUtf −−
+

=)(                                            (2-21) 

 
 Finally, combining Eqs. (2-19) and (2-21) gives the inverse of (2-18) and the final 
desired solution of ODE + IC (2-11): 
 

( )twtata ee
wa

bUextx −−
+

+= 0)( , for t ≥ 0                             (2-22) 

 
 The introduction to Laplace transformation in this section is not mathematically 
rigorous.  The focus in introductory system dynamics is more with applying Laplace 
transforms than with the detailed theory.  It is relevant, however, to comment on the exis-
tence of Laplace transforms:  a transform generally exists (i.e., the defining integral Eq. 
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(2-13) can be evaluated, in principle) for any function  for which the product )(tf
0)( →− tfe ta  as t → ∞, where a is some finite, positive, real constant (Hildebrand, 

1962, Section 2.2).  Practically speaking, this means that any physically realizable func-
tion, the type of function that we encounter in engineering, has a Laplace transform. 
 
2-3  More about partial-fraction expansion 
 
 Let’s examine in more detail the justification for the form of the partial-fraction 
expansion presented in Eq. (2-20).  As an example, consider the following sum of three 
fractional terms: 
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        (2-23) 

 
In the combination of the three fractional terms into a single fraction, the denominator is 
a cubic polynomial (n = 3), and the degree of the numerator polynomial is, at most, m = 
2.  Depending upon the values of constants , the degree of the numerator polynomial 
can be from 0 to 2, so that 0 ≤ m < n. 

kC

 
Next, let’s generalize the observation of the previous paragraph by considering a 

general sum of fractional terms in the form 
 

∑
= −

=
n

k k

k
n ps

C
sF

1
)(                                                 (2-24) 

 
If we combine all n of these terms into a single ratio using the traditional algebraic 
method illustrated in Eq. (2-23), then the result will have the following general form: 
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The denominator is a polynomial of degree n, and the numerator is a polynomial of, at 
most, degree m = (n − 1).  We therefore can conclude the following:  a ratio of polyno-
mials, in which the numerator has a lower degree than that of the denominator, can usu-
ally be expanded into the simple partial-fraction form (2-24).  In other words, provided 
that 0 ≤ m < n, we can usually find finite residues  in the partial-fraction expansion: kC
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with the residues given by the labor-saving method as3 
 

[ ] nksFpsC
kpsnkk ...,,2,1,)()( =−= =                           (2-25b) 

 
 Consider, for example, part of the partial-fraction expansion of a quadratic di-
vided by a cubic: 
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Using Eq. (2-25b), to determine, for example, residue  gives: 1C
 

[ ]
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)()(
3121

312
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11
311 1 pppp
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sFpsC ps −−

++
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This equation for  reveals an exception to the rule:  this equation clearly would not be 
valid if the denominator polynomial were to have repeated roots, 

1C

21 pp =  or ; in 
that case, a form different than Eqs. (2-25) would be appropriate (Ogata, 1998, pp. 33-
34).  That is a special case which we shall address in this book only as the need arises. 

31 pp =

 
 Finally, observe that it is easy to check the validity/correctness of a partial-frac-
tion expansion after we have solved for residues .  Simply combine the individual 
fractions into a single ratio, as is illustrated in Eq. (2-23); the resulting ratio should equal 
the original ratio of polynomials that we expanded into partial fractions.  

kC

 
2-4  Additional useful functions and Laplace transforms:  step, sine, cosine, definite 
integral 
 
 We shall describe and transform several different useful mathematical functions.  
A common feature of most of these functions is that they are defined to have non-zero 
values only for positive time, i.e., they are zero before t = 0.  The fundamental function of 
this type is the basic Heaviside unit-step function (after English electrical engineer,  

physicist, and applied mathematician Oliver Heaviside, 
1850-1925) shown in Fig. 2-2: 
 

⎩
⎨
⎧

>
<

=
0for1
0for0

)(
t
t

tH

)(tH

                                                

 H(t) 

 t  0 

Figure 2-2 

 0 

 1 

                    (2-26) 

 
 is dimensionless, and it is undefined mathemati-

cally at the discontinuity at t = 0.  If we wish to write 

 
3 An interesting alternative form of Eq. (2-25b) is developed in Appendix A, Section A-2. 
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an equation for a physical input quantity that is applied quickly and remains constant 
thereafter, we can use  to represent it approximately; for example, a “step” force 

 can be described with the equation 
)(tH

)(tf x )()()( tHFtHFtf x ≡×= , where F is the di-
mensional force magnitude.  For many physical input quantities, a step function is an ide-
alized approximation; such a quantity increases quickly but continuously, not as a discon-
tinuous pure step, from zero to a constant value.  [The notation  used here for the 
unit-step function is common but not standard; in fact, there is no standard symbol in en-
gineering literature.] 

)

>
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(tH

) is: 

st
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t
t

for1
for0

st

 
 A more general unit-step function describes a step that occurs at some time dif-

ferent than the instant defined to be t = 0.  This func-
tion (Fig. 2-3

st

 

H(t - ) =               (2-27) 
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ss dtttttHL
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If the time of discontinuity is  = 0, then this more 
general function becomes the basic function of (2-26).  

The Laplace transform of H(t - ) is st

∞=t
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e sts−

                                               (2-28) 

 
Note, in particular, the version of Eq. (2-28) for the basic unit-step function with  = 0: 
 

s
tHL 1)( =

t

                                                    (2-29) 

 
 We will frequently use sine and cosine functions of time with circular frequency 
ω, the functions being non-zero only for positive time, t ≥ 0.  Using precise notation, such 
a sine function, for example, should be denoted H(t) × ωsin ; however, with few excep-
tions, we will consider mostly t ≥ 0, so we can almost always omit the “H(t) ×” part of 
the equation, with the implicit understanding that the analysis applies only for t ≥ 0. 
 

Next we derive the Laplace transform of the sine function by expressing the sine 
in terms of complex exponential functions (homework Problem 2.1) and using the basic 
forward transform of Eq. (2-14): 
 

 H(t - st ) 

 t  0 

Figure 2-3 

 1 

 0 
 st  
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Using a similar process, you can derive (homework Problem 2.10) the following Laplace 
transform of the cosine function: 
 

[ ] 22cos
ω

ω
+

=
s

stL                                               (2-31) 

 
 Another useful Laplace transform is that of a definite integral.  Suppose that a 
physically realistic function  has Laplace transform F(s) = L[ ) ], and that we need 

the transform of the definite integral .  Note the lower limit of τ = −∞; we will 

usually consider  only for t ≥ 0, but occasionally the integral of  over previous 
time, t < 0, is also needed.  The general transform, which is derived in Appendix A, Sec-
tion A-3, is: 
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For most applications, we will have  = 0 for t < 0, for which the simpler transform is: )(tf
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If we regard the integral of  as being the first “negative” derivative (antiderivative), 
then we see that transform (2-32) is logically consistent with transform (2-15b) for a 
“positive” derivative, with respect to both power of  s and the initial value term. 

)(tf
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2-5  Homework problems for Chapter 2 
 
2.1  Refer to Euler’s equation, Eq. (2-8), which is .  The cosine is an 
even (symmetric) function, 

θθθ sincos je j +=
θθ cos)cos( =− , and the sine is an odd (antisymmetric) func-

tion, θθ sin)sin( −=− , so the conjugate to Euler’s equation is 
 

θθθθθθ sincos)sin()cos()( jjee jj −=−+−== −−  
 

(a) Add the conjugate to Euler’s equation to prove 
2

cos
θθ

θ
jj ee −+

= . Subtract the con-

jugate from Euler’s equation to prove 
j
ee jj

2
sin

θθ

θ
−−

= . 

 
(b) Use the results of part (a) to prove the trigonometric identities )2cos1(cos 2

12 θθ +=  
and )2cos1(sin 2

12 θθ −= .  Use these results to prove . θθθ 2cossincos 22 =−
 
(c) Use the results of part (a) to prove the identity θθθ 2sincossin 2

1=× . 
 
2.2  Given the following complex numbers: 
 

(a)  
3.04.0

1
j−−

            (b)  5j × (2 − j)            (c)  
2.15.0
4.27.0

j
j

+
−             (d)  

8.06.0
510

j
j

+
+−  

 
First, express the complex number in rectangular form, z = Re(z) + j Im(z), where Re(z)  
and Im(z) are real numbers.  Next, express the complex number in polar form , that 
is, calculate by hand and calculator the radius r and the phase angle θ, where θ  is in de-
grees, −180° ≤ θ < +180°.  You may check your hand calculations by using the abs and 
angle commands appropriately in MATLAB. 

θjre

 
2.3  Given:  two complex numbers expressed in polar form  and , 
with 

1
11

θjerz = 2
22

θjerz =

2121 and,,, θ θrr  all real numbers.  
 
(a)  Use complex arithmetic with complex numbers in polar form to show that the conju-
gate of a product equals the product of conjugates, which is expressed in equation form as 
( ) 2121 zzzz ×=× . 
 
(b)  Use complex arithmetic with complex numbers in polar form to show that the conju-
gate of a quotient equals the quotient of conjugates, which is expressed in equation form 
as ( ) 2121 zzzz = . 
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2.4  Express a complex number in rectangular form, z = x + jy, and prove the following 
identity:  xzzz 2)(Re2 ==+ . 
 
2.5  Given:  complex numbers A = Ar + jAi and B = Br + jBi (Ar, Ai, Br, Bi all real) and 
complex variable z = x + jy (with real, non-zero values of x and y, which are independent 
of each other), in the equation zBzAC += . 
 
Prove:  use complex arithmetic with complex values in rectangular form to show that C 
can be real, C = Cr + j0, only if B = A .  (Note that you can also prove this by applying 
the results of homework Problems 2.3(a) and 2.4.) 
 
2.6  The following complex function will arise when we study the frequency response of 

a 2nd order system:  ( ) ζββ
β

21
1)( 2 j

Z
+−

= , in which β is a positive, real, dimensionless 

forcing frequency (not dimensional frequency ω ), and ζ  is a positive, real, dimen-
sionless ratio that represents viscous damping. 
 
(a)  Convert the Z(β) equation above into polar form Z(β) = .  In particular, 
carry out the detailed algebraic steps to show that the magnitude and phase angle are 

)()( βθβ jer

( ) ( )222 21

1)(
ζββ

β
+−

=r    and   ⎟⎟
⎠

⎞
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⎝

⎛
−
−

= −
2

1

1
2tan)(
β
ζββθ .  

 
(b)  Calculate values of the magnitude and phase angle for several values of forcing fre-
quency β and for two values of damping ratio ζ  (specifics below).  Make these calcula-
tions with a hand calculator, not with MATLAB or some other computer software (al-
though you may check your hand calculations with computer software).  These calcula-
tions will give you a small preview of frequency response, and (especially) they should 
help you to understand the care required when you evaluate the four-quadrant arctangent.  
Specifically, for each of the damping ratios ζ  = 0 and ζ  = 0.1 (or another value assigned 
by your instructor), calculate the quantities in the empty cells of the table below (to at 
least three significant figures, preferably four, but no more); also, calculate phase angles 
using the standard engineering convention, −180° ≤ θ < +180°, not 0° ≤ θ < +360°. 
 
Hints for the ζ  = 0 case:  (1) for the r(β) calculations, recognize that the equation re-
quires r(β) > 0, even if β > 1; (2) for the θ(β) calculations, imagine that ζ  has an ex-
tremely small, positive value, say ζ  = +1 × 10-10. 
 

β r(β) θ(β) 
degrees 

θ(β) 
radians 

0    
0.5    
1    
2    
5    
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2.7  Prove Eq. (2-17), [ ] )0()0()()( 2 ffssFstfL &&& −−= :  first define g(t) = ; now use 
the fundamental equation (2-15b) twice, first as 

)(tf&

[ ] )0()( fsFsfL −=&)(sG = , and then as 
. [ ] )0()( gsGsgL −=&

 
2.8  Consider the Laplace transform shown below, both in the first form, which is derived 
directly from an ODE, and in a partial-fraction expansion, 
 

ωωωω js
C

js
C

as
C

jsjsas
sF

+
+

−
+

−
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

+
−

⎟
⎠
⎞

⎜
⎝
⎛

−
= 321111)(  

 
in which a and ω  are real constants.  Find residues  in terms of a and 321 and,, CCC ω , 
and show that  is real.  Use the labor-saving method directly, 1C without first completing 
the products in the form derived from an ODE. 
 
2.9  Find the inverse Laplace transform , t ≥ 0, for the given function F(s) below.  
First use partial-fraction expansion to express F(s) as a sum of simple quotients, and then 
apply the appropriate inverse transformation equations.  Also, find the values of any ze-
ros and poles of F(s). 

)(tf

 

(a)  
)5)(1(

3)(
++

+
=

ss
ssF      [Answer:  ( )tt eetf 5

2
1)( −− += , t ≥ 0] 

 

(b)  
)4)(3(

)1(2)(
++

+
=

sss
ssF      [Answer:  tt eetf 43

2
3

3
4

6
1)( −− −+= , t ≥ 0] 

 

2.10  Derive the Laplace transform 22][cos
ω

ω
+

=
s

stL .  Follow the same procedure, 

with appropriate changes in details, as the derivation of ][sin tL ω , Eq. (2-30).  Show all 
steps, just as in the derivation of ][sin tL ω . 
 
2.11  Solution (2-22) of ODE problem (2-11) was derived by Laplace transformation, a 
technique that is probably new to you, so you might be a little skeptical.  To convince 
yourself that (2-22) is indeed the correct solution of (2-11), substitute (2-22) back into the 
ODE and IC of (2-11), and show that the original equations are satisfied.  This method 
can always be used to check the correctness of an ODE solution. 
 
2.12  Consider the standard 1st order ODE )(tubxax =−&  with IC .  Use 
Laplace transformation to solve for x(t) with the u(t) functions given below.  It will ease 
your algebraic burden greatly if you will make liberal use of the identities involving 
complex numbers proved in homework Problems 2.3 and 2.4.  Also, use where appropri-
ate the transforms of 

0)0( xx ≡

tωsin  from Eq. (2-30) and tωcos  from Eq. (2-31) or homework 
Problem 2.10. 
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(a)  Let tUtu ωsin)( = , t > 0, where U is a constant amplitude.   
 

[Answer:  ⎟
⎠
⎞

⎜
⎝
⎛ −−

+
+= ttae

a
bUextx atat ωω

ωω
ω cossin)( 220 , t ≥ 0] 

 
(b)  Let tUtu ωcos)( = , t > 0, where U is a constant amplitude. 
 

[Answer:  ( )ttaae
a

bUextx atat ωωω
ω

sincos)( 220 +−
+

+= , t ≥ 0] 

 
2.13  Suppose that t is a real number representing time, and that ω is imaginary, ω = jμ, 
where μ is real.  Use the results of homework Problem 2.1 and, from calculus, the defini-
tions of the hyperbolic cosine, tμcosh , and the hyperbolic sine, tμsinh , to prove the 
following:  tt μω coshcos = , and μμωω tsinhtsin = . 
 
2.14  For a mass-spring system with negligible damping, the appropriate ODE is Eq. (1-
18), .  Consider the case of this mass-spring system having imposed ini-
tial conditions at time t = 0, 

)(tfxkxm x=+&&

0)0( xx =  and 0)0( vx =& , and then after t = 0 being subjected 
to constant force F, which we can express mathematically as )()( tHFtf x = , or equiva-
lently, or .  In this application, unit-step function  is used to remind 
you that the Laplace transform is 

Ftf =)(  f t 0> )(tH
sFtfL x =)]([ .  (In fact, force F could have been ap-

plied even before t = 0, but that would be irrelevant because the initial conditions estab-
lish the state of the system at t = 0, regardless of whatever force acts before t = 0.)  Your 
task is to solve the problem by using Laplace transformation. 
 
(a)  First take the Laplace transform of the ODE, accounting for the ICs, and solve for the 
transform of the output to find 
 

( )2222
0

220
1)()]([

nn

n

nn ssm
F

s
v

s
sxsXtxL

ωω
ω

ωω +
+

+
+

+
=≡  

 
In this equation, we define the natural frequency of vibration, mkn =ω , from Eq. (1-
20).  (See Section 1-10 for an explanation of the physical significance of nω .)  Show all 
of your work leading to your result, as if the correct answer above were not given. 
 
(b)  In order to derive the inverse transform, , you could, of course, find 
partial-fraction expansions for each of the three terms )(s , then use the inverse 
transform of the fundamental transform pair (2-15b), and, after much algebra, finally de-
rive an acceptable final algebraic equation for x(t).  But this would be equivalent to re-
inventing the wheel, because people have been evaluating exactly the same inverse trans-
forms for the two centuries since Laplace developed the method.  To preclude the neces-

)()]([1 txsXL =−

in X
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sity for starting from scratch every time the same Laplace transform appears, the techni-
cal community has assembled tables of Laplace transform pairs in many handbooks and 
textbooks, in symbolic software, and even on the Internet.  Your assignment is to invert 

 and derive the complete algebraic equation for x(t), t ≥ 0.  You can find explicitly 
in Section 2-4 two of the three transform pairs in , but you are required to 

)(sX
)(sX look up 

the third pair in some source other than Chapter 2.   
 
2.15  Apply MATLAB’s residue operation to determine the partial-fraction expansion 

of 
65432

23) 234

23

(
+++−

+−
=

ssss
ssssF

+
.  Submit a copy of your MATLAB session, and also 

write out the partial-fraction expansion in equation form (as in the example below).  The 
following example illustrates the residue operation for the polynomial ratio of Problem 

2.9(b), 
sss

s
sss

ssF
127
)1(2

)4)(3(
)1(2)( 23 ++

+
=

++
+

= .  On the MATLAB command window, 

enter as arrays the coefficients of the numerator and denominator polynomials in de-
scending powers of s.  Then enter the residue command to calculate the residues, poles, 
and direct term (a constant or a term proportional to s raised to some positive power, 
which appears only if m ≥ n) of the expansion: 
 
>> num=2*[1 1];den=[1 7 12 0]; [resids poles dterm]=residue(num,den) 
 
resids = 
 
   -1.5000 
    1.3333 
    0.1667 

poles = 
 
    -4 
    -3 
     0 

dterm = 
 
     [] 

 

In equation form, ⎟
⎠
⎞
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⎝
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3-1  Common mechanical units 
 
 We shall evaluate mechanical systems numerically using three different systems 
of units that are common in the United States:  International System, SI (based on kilo-
gram mass, meter, and second; kg-m-sec), traditional aeronautical (based on pound 
force, foot, and second; lb-ft-sec), and traditional structural (based on pound force, inch, 
and second; lb-inch-sec).  Table 3-1 summarizes the units of mechanical quantities that 
arise most often in this book. 
  

Table 3-1  Common units of mechanical quantities 

             Unit System   
Quantity 

International System
SI (kg-m-sec) 

Traditional aero-
nautical (lb-ft-sec) 

Traditional struc-
tural (lb-inch-sec) 

Mass (translational 
inertia), m 

kilogram mass (kg) slug  
= lb-sec2/ft 

lb-sec2/inch 

Length, translational 
motion 

meter (m) foot (ft) inch (in.) 

Time, t 
 

second (sec) second (sec) second (sec) 

Force, translational 
action 

newton (N) 
= kg-m/sec2 

pound force (lb) pound force (lb) 

Translational stiff-
ness constant, k 

N/m lb/ft lb/inch 

Translational damp-
ing constant, c 

N/(m/sec) 
= N-sec/m 

lb/(ft/sec) 
= lb-sec/ft 

lb/(inch/sec) 
= lb-sec/inch 

Angle, rotational 
motion 

radian (rad), which 
is dimensionless 

radian (rad), which 
is dimensionless 

radian (rad), which 
is dimensionless 

Rotational inertia, J 
 

kg-m2 slug-ft2  
= lb-sec2-ft 

lb-sec2-inch 

Moment or torque, 
rotational action 

N-m lb-ft lb-inch 

Rotational stiffness 
constant, kθ 

(N-m)/rad  
= N-m 

(lb-ft)/rad  
= lb-ft 

(lb-inch)/rad  
= lb-inch 

Rotational damping 
constant, cθ 

(N-m)/(rad/sec) 
= N-m-sec 

(lb-ft)/(rad/sec)  
= lb-ft-sec 

(lb-inch)/(rad/sec)  
= lb-inch-sec 

 
SI is called an absolute system of units, and the other two are called gravitational 

systems.  Absolute and gravitational systems differ fundamentally in their primary and 
derived units as defined in the context of Newton’s 2nd law.  In any absolute system, mass 
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is a primary unit, along with length, and time, but force is a unit derived from those of 
mass, length, and time.  Thus, the SI force unit, the newton (N), is precisely defined from 
F = ma, as a kilogram-meter/second2 (kg-m/s2).  In any gravitational unit system, force is 
considered to be a primary unit, and mass is a derived unit.  Thus, from m = F/a, the mass 
unit in the traditional aeronautical system, commonly called a slug, is precisely defined as 
a pound-second2/foot (lb-sec2/ft).  In all of these systems, the weight of an object on Earth 
(in the force units) is defined as the mass times the standard sea-level gravitational accel-
eration, which is denoted as g, so W = mg.  Table 3-2 includes the relevant values of g. 

Table 3-2  Standard sea-level gravitational acceleration 

             Unit System   
Quantity 

International System
SI (kg-m-sec) 

Traditional aero-
nautical (lb-ft-sec) 

Traditional struc-
tural (lb-inch-sec) 

Standard accelera-
tion of gravity, g 

9.807 m/sec2 32.17 ft/sec2 386.1 inch/sec2 

 

Table 3-3  Prefixes for units 
 It is often convenient in technical notation to 
use prefixes that indicate powers of ten.  For example, 
a force of 456,700 N can also be written as 456.7 × 
103 N, or in more economical form as 456.7 kN, 
where kN denotes a kilo-newton = 103 N.  Table 3-3 
includes a standard set of prefixes used in dynamics 
of mechanical systems.  We also use the “e” notation 
that is becoming standard for input to and output from 
computer programs.  Thus, for examples, the 456.7 
kN force can be expressed as 456.7e3 (or e03, e+03, 
e+003, etc.) N, and a length of 4.321 mm can be 
expressed as 4.321e−3 (or e−03, e−003, etc.) m. 
 

 
3-2  Calculation of mass from measured weight 
 
 This practically important process is straightforward for the traditional aeronauti-
cal and structural unit systems, but we can be confused when working in the SI system if 
the particular sensor used measures weight in the kilogram force (kgf) unit.  Let’s con-
sider an example:  suppose we have a laboratory scale with two different modes of 
weight measurement, pound force (lb) and kilogram force (kgf).  We place an object on 
the scale with the display set to the lb mode, and the reading is W = 15.50 lb.  We next 
change the display to the kgf mode, and the reading changes to W = 7.031 kgf.  Let’s cal-
culate the mass in the three different unit systems using m = gW . 
 

lb-inch-sec system:  2sec/inch1.386
lb50.15

=m  = 0.04015 
inch

seclb 2−  ≡ 4.015e−2 
inch

seclb 2−  

 

Multiple Prefix Letter prefix 
109 giga G 
106 mega M 
103 kilo k 
102 hecto h 
10 deka da 

10−1 deci d 
10−2 centi c 
10−3 milli m 
10−6 micro μ 
10−9 nano n 
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lb-ft-sec system:  2sec/ft17.32
lb50.15

=m  = 0.4818 slug ≡ 4.818e−1 slug ≡ 4.818 deci-slug 

 
For the SI calculation, we need to recognize that the kgf is not a consistent SI force unit, 
even though many weight scales sold and used in the United States have been calibrated 
in this unit since the 19th century.  The only consistent SI force unit is the newton (N).  So 
let’s ignore the W = 7.031 kgf reading for now and use, instead, the W = 15.50 lb reading 
in association with the well-known conversion, 1 lb = 4.448 N: 
 

SI system:  22 sec/m807.9
N95.68

sec/m807.9
lb
N4.448lb50.15

=
×

=m  = 7.031 kg 

 
So, in the SI system, the mass in kg has the same numerical value as the weight in kgf, 
which, in the future, will relieve us from having to calculate a conversion.  This equality 
is precisely true only at elevations on Earth where g is exactly 9.807 m/sec2, but it is 
close enough for most engineering calculations using weights measured anywhere on 
Earth’s surface. 
 
3-3  Reaction wheel:  a rotational 1st order system 
 
 Reaction wheels are used for attitude control of spacecraft.  The principal compo-
nent of a reaction wheel is a rotor, the “wheel,” which is normally either not spinning or 
spinning at a constant nonzero rotational velocity.  When a motor increases or decreases 
the rotational velocity from the normal value, a control moment is imposed upon the ve-
hicle to which the reaction wheel is attached. 

 
Electric motor

Rotation 
angle θ(t)

Frame 

Bearings 

Bearings

W heel 

Shaft 

Figure 3-1  Laboratory reaction-wheel assembly:  photograph at left, schematic 
drawing at right 
 
 The reaction-wheel assembly drawn in Fig. 3-1 is a small laboratory device used 
in experimental research.  Its basic functioning is the same as that of a flight-qualified 
reaction-wheel assembly.  The rotating members are the wheel, the shaft, and the rotor of 
the motor.  We denote their combined rotational inertia about the shaft axis as J, also 
called moment of inertia.  The shaft is held in bearings, which are lubricated, but 
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nevertheless impose a drag moment.  The rotation angle of the rotating members is 
denoted )(tθ , and it is represented graphically in Fig. 3-1 by a double-headed arrow and 
the right-hand rule giving the polarity of rotation.  The rotational velocity (angular 
velocity, spin rate) is denoted , a symbol commonly used for angular velocity 
in aeronautical applications. 

)()( tpt ≡θ&

 
We will idealize the drag moment as having the linear viscous form , 

where  is the rotational viscous damping constant, which can be measured on real 
hardware.  Also, we will denote as Mm(t) the torque imposed on the rotating members by 
the electric motor, this torque being an independent input quantity. 

)(tpc ×θ

θc

 
 The drawing below is the free-body diagram (FBD) of all moments (torques in 
this case) acting on the rotating members, with the bearing drag shown as a single torque, 
even though it is actually distributed over all bearing surfaces: 

 

Motor torque Mm(t) 
θ(t), p(t) 

Bearing drag 
torque cθ × p(t)

Rotational inertia J 

 
In order to derive the equation of motion, we write Newton’s 2nd law for rotation about 
the shaft axis, based upon the FBD: 
 

Σ(Moments)about shaft axis = (rotational inertia) × (rotational acceleration)about shaft axis; 
 

)()( tMpcpJpJpctM mm                            (3-1) = ⇒ +− θθ && =
 
Converting (3-1) into the standard 1st order form gives 
 

J
b

J
c

atbMpaptM
J

p
J
c

p mm
1andwhere)()(1

=−==−⇒=⎟
⎠
⎞

⎜
⎝
⎛−− θθ &&      (3-2) 

 
3-4  Simple transient responses of 1st order systems, 1st order time constant and 
settling time 
 
 The adjective transient applies to system response that is dynamic for a finite time 
interval (often called the settling time), but is essentially static thereafter. 
 
 Consider the 1st order problem presented in Chapter 2, 
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twebUxax −=−& , x(0) = , solve for x(t), t > 0         (2-11, repeated) 0x
 
with solution,  
 

( )twtata ee
wa

bUextx −−
+

+= 0)( , for t ≥ 0              (2-22, repeated) 

 
 If we let w = 0, then the input term becomes the step function,  = 

,  being the Heaviside unit-step function defined in Section 2-
4.  So the problem and solution become: 

[ ] 0=
−

w
tweU

0for)( >= tUtHU )(tH

 
bUaxx =−& , x(0) = , solve for x(t), t > 0 0x

 

( ) tata exe
a

bUtx )(
0

)(1
)(

)( −−−− +−
−

= , for t ≥ 0                               (3-3) 

 
In Eq. (3-3), we write a = −(−a) because usually a < 0 for engineering systems, as in Eq. 
(3-2).  We want to consider two special cases of solution (3-3):  (1) pure initial condition 
response for U = 0; and (2) pure step response for  = 0. 0x
 
Stable initial condition (IC) response 
 

taextx )(
0)( −−= , for t ≥ 0                                            (3-4) 

 
Define the 1st order-system time constant,  
 

)(
1

1 a−
≡τ                                                        (3-5) 

 

For example, the time constant for the reaction wheel from (3-2) is 
θ

τ
c
J

≡1 .  You should 

satisfy yourself, using Table 3-1 if necessary, that the quantity θcJ  has the dimension of 
time (unit of second).  With this definition of time constant 1τ , solution (3-4) becomes: 
 

( )100 exp)( 1 ττ txextx t −≡= − , for t ≥ 0                                 (3-6) 
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Figure 3-2 is a graph of exponential decay indicated in Eq. (3-6). 
 

 

x(t) 

 t  0 

Figure 3-2 1st order initial-condition response

 0 

 x0 

4τ1 3τ1 2τ1 τ1 

0.368x0 

0.135x0 0.050x0 0.018x0 

 
At the time constant, t = 1τ , the response has decayed to e−1 = 37% of the initial value. 
The other time “milestone” to which we shall often refer is t = 4 1

 
τ , which we call the set-

tling time, at which time the response has decayed to e−4 = 2% of the initial value.  For 
most practical engineering purposes, this settling time is considered to be the time re-
quired for the response essentially to reach its final steady-state value, which is x = 0 in 

is case of IC response.  Mathematically, x → 0 only as t → ∞. th
 
 If the constant a is positive, then we write IC solution (3-4) as taextx 0)( = .  The 
mathematical response represented by this solution is unbounded:  x → ∞ as t → ∞.  In 
reality, no engineering variable will ever become infinite:  as the variable becomes large, 
something in the system will fail or overload, or the system will become nonlinear, or the 
response will be limited by a governor, etc.  Even though the actual response will not be-
come infinite, an exponentially increasing linear mathematical response such as this is 
usually undesirable for practical purposes; an engineering system that exhibits this kind 
of response is considered to be engineering system with 

egative
unstable.  On the other hand, an 

n  constant a is stable. 
 
 The time constant 1τ  is such an important quantity for stable 1st order systems that 
we shall re-cast the standard 1st order system ODE in terms of 1τ , rather than constant a, 
using Eq. (3-5).  Thus, rather than analyzing Eq. (1-1), )(tubxax =−& , hereafter we shall 
sually consider u the following standard stable form for 1st order systems: 

 

)(1

1

tubxx =+
τ

&                                                    (3-7) 

table step response
 
S  

In Eq. (3-3), we set 0x  = 0 and use time constant definition (3-5) to obtain 
 

 
 

( ) [ ( )]111 exp11)( 1 τττ τ tbUebUtx t −−≡−= − , for t ≥ 0                     (3-8) 
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s a graph of the exponential rise to a positive final value that is indi-

ated in Eq. (3-8). 
 

Figure 3-3 i
c

 

x(t) 

 t  0 

Figure 3-3 1st order step response

 0 

bUτ1 

4τ1 3τ1 2τ1 τ1 

0.632bUτ1

0.865bUτ1 
0.950bUτ1

0.982bUτ1 

 
The final value of unit-step response is bU 1τ , and it is approached asymptotically as  
t → ∞.  At the time constant, t = 1τ ,

.  At t = 4
 the response has risen from the IC of zero to 1 − e−1 

= 63% of the final value 1τ , the settling time, the response has risen to 1 − e−4 = 

(3-8) are close approximations to 

et’s denote a step in-
ut from the motor as Mm(t) = M × H(t).  Then ODE (3-2) becomes 

 

98% of the final value. 

Step response solutions such as (3-8) are usually an approximation to the actual 
response since, in reality, a pure, discontinuous step change in a physical input quantity is 
rarely achievable.  Nevertheless, step input is a sufficiently close approximation to many 
real physical inputs that step response solutions such as 
actual physical responses. 

Consider again the reaction wheel of the previous section.  L
p

J
b

J
c

atbMtHbMtbMpap m
1and1where,0for)()(

1

=−=−=>===−
τ

θ&      (3-9) 

o the time constant is S θcJaτ =−= 11 , and solution (3-8) becomes 
 

( ) ( ) ( )111 1111)( 1
τ

θ

τ

θ

ττ ttt e
c
Me

c
JM

J
ebMtp −−− −=−=−= rad/sec, for t ≥ 0     (3-10) 

ndard solution to the 
hysical problem at hand, rather than re-deriving the ODE solution. 

 

 
Note that in this case we adapt the “standard” mathematical solution (3-8) to a particular 
physical problem.  This approach is common in system dynamics.  In other words, it is 
not always necessary to solve an ODE for every new physical problem; if a standard 
ODE solution has already been derived, you may just adapt that sta
p
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3-5  Aileron-induced rolling of an airplane or missile 
 

The principal source for the aerodynamic theory of this section is Nelson, 1989, 
pages 19-20, 153-156 and 250-260.  The aerodynamic rolling moment on an airplane or 
missile is written in standard aeronautical notation as  

 

)()()()()( tpLtLtp
p
LtLtL p+≡
∂
∂

+
∂
∂

= δδ
δ δ                           (3-11) 

 
(There is a notational ambiguity between moment L(t) and the Laplace transform operator 
L[ ) ] introduced in Chapter 2; such ambiguities are unavoidable in technical work, so 
you should become accustomed to them.)  The roll (bank) angle (in radians) is 

(tf
)(tθ ,  de-

fined here as being positive clockwise as seen by an observer behind the vehicle, in other 
words, rightward rolling (Fig. 3-4).  In Eq. (3-11), )(tδ  is the input aileron deflection 
angle (in radians) to produce rolling, the right aileron being deflected upward and the left 
aileron being deflected downward to produce a positive roll rate,  (rad/sec). θ&≡)(tp

 
The dimensional aerodynamic derivatives in (3-11) are related to dimensionless 

coefficients by: 
 

⎟
⎠
⎞

⎜
⎝
⎛>=

rad
m-Nor

rad
ft-lb0δδ CbSqL                                (3-12) 

 

⎟
⎠
⎞

⎜
⎝
⎛<==

rad/sec
m-Nor

rad/sec
ft-lb0

22

2

ppp C
V
bSqC

V
bbSqL                  (3-13) 

 
The constants in Eqs. (3-12) and (3-13) are defined as: 
 

2
2
1 Vq ρ=  is the free-stream dynamic pressure (lb/ft2 or N/m2) 

 

 ½ b 

θ(t), roll angle
 p(t), roll rate 

Figure 3-4  Aileron-induced rolling of an airplane 

View from aft 

L(t), roll moment

View A-A A 

A 

δ(t), aileron angle 
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ρ  is air density (slug/ft3 or kg/m3) 

 is the free-stream airspeed (ft/sec or m/sec) 

 is the wing planform area (ft2 or m2) 

 is the full wing span (ft or m) 
 

oefficient (rad−1), rolling 
oment due to aileron deflection (a function of Mach number) 

 
 moment coefficient (rad−1), roll damp-

g due to roll rate (a function of Mach number). 
 

 
V
 
S
 
b

δC  > 0 is the dimensionless aerodynamic stability moment c
m

pC  < 0 is the dimensionless aerodynamic stability
in

The term Vb 2  in Eq. (3-13), the damping moment due to r , merits some oll rate
explanation. 2bp  The clockwise rolling velocity of the right wingtip is × , so the addi-

 

Right-hand  wing 
tip, viewed looking 
toward the root 

V, airstream velocity

 pb/2, rolling velocity  

 
V

pb
2

 

 Total velocity vector

tional angle of attack induced at the wingtip by the roll rate is 
VV 2

tan ≈⎥⎦⎢⎣
, a 

small angle gnitude of the angle is exaggerated in Fig. 3-5, just to im ve clar-

ity).  Thus, 

pbpb 2/1 ⎤⎡−

(the ma pro

)b  role as that of )(t(
2

tp
V

 in Eqs. (3-13) and (3-11) plays the same δ  in Eqs. 

-12) and (3-11).  
 

om such as sideslip and yaw).  Substituting Eqs. (3-11)-(3-13) 
into Newton’s law gives: 

 

(3

Newton’s 2nd law equation of motion for rolling is )(tLpJJ =≡ &&&θ , in which J 
(slug-ft2 or kg-m2) is the rotational inertia of the vehicle about its rolling axis.  This 
equation is based upon the assumption that the vehicle can only roll (i.e., no coupling 
with other degrees of freed

δδ δδ LpLpJpLLpJ pp =−⇒+= &&  
 

Figure 3-5  Angle of attack induced by rolling velocity
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⇒     )(2)( t
C

C
b
V

J
t

L
L

J
p

J
p ppp δδ δδ

⎟
⎟

⎜
⎜
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=⎟

⎟
⎜
⎜
⎝ −
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+&               (3-14) 

LLL

pp ⎠

⎞

⎝

⎛−

⎠

⎞⎛−−

Writing (3-14) in 1st order standard form (3-7) gives [with 
by B to reduce notational ambiguity]: 

 
b in (3-7) temporarily replaced 

 

)(1 tpp δ
τ

=+&                     
1

B                             (3-15) 

in which we have, respectively, time constant 
 

 and constant 1τ B: 
 

)(
4

)(
2

221
ppp CVSb

J
CSbq

VJ
L
J

−
=

−
=

−
=

ρ
τ  > 0                           (3-16) 

 

=⎟
⎟

⎜
⎜
⎝ −

⎟⎟
⎠

⎜⎜
⎝

=
p

p

C
C

b
V

J
B δ2

⎠

⎞⎛⎞⎛ − L
J

CbSq
C

C
b
V

p

δδ

τ
=⎟

⎟
⎠

⎜
⎜
−

21
> 0                   (3-17) 

 

⎞

⎝

⎛

1

Example 3-1:  Use the results of this section and the general 1st order step response Eq. 
(3-8) to calculate rolling response to a )(5.2)( tHt °=δ  step aileron input for a hypotheti-
cal medium-sized civilian transport airplane.  The following are representative data:  ro-
tational inertia about the rolling axis is J = 4.0e5 slug-ft2, wing planform area is S = 1,100 
ft2, and wing span is b = 90 ft; for flight at 10,000 ft altitude and free-stream airspeed V = 
350 ft/sec, aerodynamic dimensionless rolling-moment coefficients are = 0.061 per 

dian and = −0.34 per radian.  At 10,000 ft altitude, standard air density is ρ = 
0.001755 slug/ft3 (Nelson, 1989, p. 248). 

δC
ra  pC

 

2

2

32
12

2
1

ft
lb5.107

sec
ft350

ft
slug3755.1 =⎟

⎠
⎞

⎜
⎝
⎛×−×== eVq ρ  

 
( ) ( )

rad/sec
ft-lb5e65.4rad34.0

secft3502
ft90ft100,1ftlb5.107

2
1

2222

−=−×
×

××
== −

pp C
V
bSqL  

 

sec86.0
radft-sec-lb5e65.4

ft-sec-lb5e0.4
1 ==

−
=

pL
Jτ  

 
(

2

o mC m ents regarding units:  Angle is a dimensionless quantity, so the radian, w ic  is 
amental metric of angle, is unitless.  In the calculation above for pL , a e 

units shown, including radian, balance in the final result to give the correct resulting unit, 

h h
the fund ll of th

rad/sec
ft-lb ; it is important to recognize this unit as opposed, for example, to 

deg/sec
ft-lb , 
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which would be the case if pC  were given per degree.  However, in calculations that pro-
duce results which are not angular quantities, such as 1τ  above, the radian must be recog-
ized as unitless, and it should not appear in the units of the n

is
final numerical result.  This 

 a general characteristic t  can confuse us when we check to make certain that units of 
numerical answers are correct.) 
 

hat

2
1

1

1 34.0ft90sec86.0
××=⎟

⎟
⎠

⎜
⎜
⎝ −

=
pCb

B δ

τ
sec62.1

rad
rad061.0secft3502121 −

−

−

=
×⎛ CV  

 Eq. (3-8), the roll-rate response to the 2.5° step input is 

⎞

 
From
 

( )[ ] ( )sec)86.0(2
11 1sec86.05.2sec62.1exp1)( tetBUtp −− −×××=−−= ττ  deg

 

( )[ ]
sec

degrees16.1exp15.3 t−−  

 

)(tp =

he time constant is T sec86.0=1τ , and the steady-state roll rate of 3.5 is essen-secdeg
tially achieved in the settling time of sec44.34 1 =τ . 
 
3-6  Translational spring and viscous damper (dashpot) 
 

duced in Section 1-9 as the mechanical ele-
that simple case, the end of the spring at-
tached to the wall was stationary.  Now, 

t’s consider the more general case in 
which both ends of the spring can move, 
as indicated in Fig. 3.7.  The force )(tf x  
required to deform the spring by the 
amount )()( txtx ab

 The linear translation spring was intr
ment connecting a mass to a rigid wall; fo

o
r 

le)(txa  )(txb

− , relative to the unde-
formed length of the spring, is propor-
tional to

l s
 the deformation.  With the con-
pring law is stant of proportionality denoted as 

 
k, the more genera

[ ])()()( txtxktf abx −=                                             (3-18) 
 
The standard sign convention defines stretching of the spring as positive, 0>− ab xx , 
corresponding to tensile force, 0)( >tf x ; accordingly, compression is negative in the 

andard convention.  Equation (3-18) clearly accommodates both tension and comst
si

pres-
on of the spring.  Occasionally, however, it is convenient to define compression as 

positive, as is illustrated in Example 3-4 in the next section. 
 

Figure 3-7  Ideal linear spring with 
stiffness constant k 

 fx(t) ( )abx xxktf −=)(
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With the spring end forces equal and opposite as shown in Fig. 3-7, we have ne-
glected the inertial force of the spring.  Inertial forces are terms such as am× , mass 
times acceleration, in Newton’s 2nd law.  In this case, the inertial force of the spring is 

ss xm &&× , in which sm  is the mass of the spring, and sx&&  is acceleration of the spring’s cen-
ter of mass.  So neglecting inertial forces means we assume they are negligibly small in 
comparison with the force of Eq. (3-18).  Notice that this does not strictly mean we are 
eglecting the m  n ass, because even a tiny mass, when multiplied by a large acceleration,

can produce a non-negligible inertial force.  It is common to neglect the inertial forces of 
springs, but we should remember when doing so that we are really assuming both the in-
ertias are small and the accelerations are sufficiently slow. 
 

r) is a discrete component that resists tr A dashpot (mechanical viscous damp
lational velocity.  An idealized linear, visc
piston-cylinder assembly, Fig. 3-8.  This 
and cylinder.  With the forces on the dashpot def

e ans-
ous damper is represented graphically by a 

device opposes relative velocity betw
ined to be positive in tension, as shown 

een piston 

on Fig. 3-8, the linear damping law is  
 

[ ])()()( txtxctf pcx && −=        (3-19) 
 
in which c is the damping constant.  The 
damping constant plays the same role for a 
dashpot here that it plays in Chapter 1 

)(),( txtx pp &  )(),( txtx cc &

[Fig. 1-1 and Eq. (1-2)] for a block sliding 

rces of the cylinder and piston.  It is common to neglect the 
ertial f

on a viscous liquid film.  If we were to 
define the forces to be positive in compression, then we would have to reverse the signs 
in the damping law, Eq. (3-19); it is sometimes appropriate to do so, as in Example 3-4 in 
the next section. 
 

With the cylinder and piston forces equal and opposite as shown in Fig. 3-8, we 
have neglected the inertial fo
in orces of dashpots, but we should remember when doing so that we are really as-
suming that both the inertias are small and the accelerations are sufficiently slow.  On the 
other hand, in Example 3-4 of the next section, inertial forces of a piston-cylinder 
assembly are not neglected. 
 
 The idealized dashpot model of Fig. 3-8 and Eq. (3-19) is convenient for linear 
mathematical analysis because of its simplicity.  It is assumed to resist motion between 
piston and cylinder by means of the drag force produced by a viscous fluid boundary 
layer between the two solid objects.  We can use the simple dashpot to model approxi-
mately real devices such as door dampers and shock absorbers.  However, it is not a pre-
cise model for most real damping devices.  In most real translational dampers, a piston 

ajor portion of the 
ar mathematical analysis, the re-

sting 

forces fluid through an orifice within a cylinder, and this generates a m
resisting force.  Unfortunately for the purposes of line
si force is a complex and highly nonlinear function of the relative motion between 
piston and cylinder. 
 

Figure 3-8  Ideal linear, viscous dashpot 
ith damping constant c w

 fx(t) 

piston cylinder 

( )pcx xxctf && −=)(
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3-7  More examples of damped mechanical systems 
 

Let’s consider next some com binations of dashpots with springs and masses.  In 
ppropriate free-body diagrams, and 

ple 3-2:  Mass-damper-spring system, Fig. 3-9

each case, we will draw the physical device, draw a
en derive the equations of motion.  Force )(tf  is considered to be an independent in-th x

put quantity in all of these examples. 
 
Exam   
 
Newton’s 2nd law for translation of the mass:  xkxctfxm x −−= &&& )(  
 

)(:ODE tfxkxcxm x=++⇒ &&&                                            (3-20) 

 
Example 3-3:  Ideal shock strut, parallel damper-spring system, Fig. 3-10 
 
 This com , except the 
inertial forc d to be negligible.  

bination is very similar to the mass-damper-spring system
e of the mass (now considered just a rigid link) is assume

 
Newton’s 2nd law for translation of the link:  xkxctfxm x −−=≅ &&& )(0  
 

)(:ODE tfxkxc x=+⇒ &                                          (3-21) 
 
Note that Eq. (3-21) is a typical 1st order LTI ODE, but now the unknown quantity is 
translation (position) x(t) of the rigid link. 
 

 
k 

m 

x(t)

c 

 fx(t)  fx(t) 
m 

FBD of mass 
kx 

xc&  

Figure 3-9  Mass-damper-spring system

 
k x(t)

c 

 fx(t)  fx(t) 

FBD of link

xc&  

kx 

Figure 3-10  Parallel damper-spring system 
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Example 3-4:  Series combination of mass, dashpot, and spring, Fig. 3-11 
 
 For the examples above, it is not necessary to draw separate FBDs of the spring 
and of the dashpot’s piston and cylinder.  However, it is necessary to draw separate FBDs 
for systems such as that of Fig. 3-11, where dashpot and spring are arranged in series, not 
in parallel, and, for variety and generality, the inertial forces of the dashpot’s piston and 
cylinder are considered to be significant, not negligible.  Take notice of the component 
interaction forces fc and fk; note especially that piston-cylinder interaction force fc is 
shown as an equal and opposite pair, as required by Newton’s 3rd law. 
 

 

k 

xp(t) 

c 

xc(t) 

 fx(t) mc 

mp mp 

xc(t) xc(t) 

mc k  fx(t)
 fc 

Figure 3-11  Example series mass-dashpot-spring 
 fk 

Component FBDs Mechanical system 

 fk 

 
Newton’s 2nd law for translation of the dashpot piston:  cxpp ftfxm = −)(&&

kccc ffxm

 
 
Newton’s 2nd law for translation of the dashpot cylinder:  = −&&  
 

( )Damper law:  cpc xxcf && −=

ck xkf =

)(tfxcxcxm xcppp

 
 
Spring law:   
 
Combining equations of motion and damper/spring laws gives: 
 

=−+ &&&&

0

                                       (3-22a) 
 

=++− ccpcc xkxcxcxm &&&&                                      (3-22b) 
 
Equations (3-22) are a pair of coupled 2nd order ODEs in the two dependent variables 
xp(t) and xc(t).  Thus, the system of Fig. 3-11 is a 4th order system.  The dynamic response 
of a particular class of 4th order systems is discussed Chapter 12.  However, this book 
does not address the dynamic response of general 4th order and higher-order systems; that 
is a subject of more advanced textbooks such as Ogata, 1998, Chapter 10. 
 
Example 3-5:  Series damper-spring systems—idealized mechanical filters, Fig. 3-12 
 
 For both of the series damper-spring combinations in Fig. 3-12, we specify the 
known input quantity to be translation xi(t), which is produced by an idealized motor that 
is capable of dictating a commanded displacement regardless of the force required.  The 
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output quantity in each case is translation xo(t).  The damper and spring masses are as-
sumed here to be negligible, which cannot be valid for all practical circumstances; there-
fore, these are idealized, not real, mechanical systems.  But these idealized systems are 
worth studying because they have significant dynamic characteristics that will be the 

bjects of subsequent parts of this book. 
 

Low-pass filter

su

                                                High-pass filter 

 
Figure 3-12  Series damper-spring idealized mechanical filters 

)0( ox&

 
 
 
 
 

 
 The governing ODE for the low-pass filter, 
with spring and damper masses idealized to be negli-
gible, is derived easily from the FBD at right of the 
series combinatio spring and the 
damper piston:  )( io cxxk

n consisting of the 
−=− .  Therefore the 

DE for the low-pass filter is 
 
O

k
txxx ioo ≡=+ 1

11

),( τ
ττ

&                                        (3-23) 

h, without much alteration, low-frequency in-
uts, but it “blocks” high-frequency inputs. 

E for the damper-spring high-pass filter is left for 
omework Problem 3.7.  The result is: 

 

  

c11

 
The mathematical derivation and description of low-pass-filter characteristics will follow 
in later chapters, but it is appropriate here to describe the practical nature of the low-pass 
filter with use of the low-pass filter drawing in Fig. 3-12 and physical intuition.  Imagine 
that the input translation xi(t) is a steady oscillation at a fixed frequency.  If that fre-

ncy is very low, so that translational velocity is low, then the damper resisting force 
oxc&  will be very small and, consequently, both the spring and the damper piston will 

move slowly back and forth in unison by about the same distance as the input translation, 
xo(t) ≈ xi(t).  On the other hand, if the frequency of oscillation is very high, then the 
damper resisting force oxc&  will be great, so the input oscillatory translation xi(t) will com-
press and stretch the spring but the damper piston will act almost like a rigid wall, i.e., 
xo(t) ≈ 0.  For frequencies of oscillation between very low and very high, our intuition 
suggests that the output motion amplitude [the maximum of oscillatory xo(t)] will be 
between the two extremes of  the input motion amplitude and zero motion.  The low-pass 
filter is so named because it “passes” throug

que

p
 
 Derivation of the governing OD
h

k 

xi(t) xo(t) 

c 
 fx(t)k 

xi(t) xo(t)

c 

 

 fx(t) 

 

k(xo − xi) 

xi(t) xo(t)

)o0( xc &−

 

 3-15



Chapter 3  Mechanical units; low-order mechanical systems; transient responses of 1st order systems 
 

k
txxx ioo ≡=+ 1

1

),( τ
τ

&&                                         (3-24) 

 
As is done above for the damper-spring low-pass-filter, it is appropriate to describe the 
practical nature of the high-pass filter with use of the high-pass filter drawing in Fig. 3-12 
and physical intuition.  Ima  the input translation xi(t) is a steady oscillation at a 
fixed frequency.  If that frequency is very low, so that translational velocity is low, then 
the damper resisting force )( oi xxc && −  will be very small; consequently, the damper piston 
will move slowly back and forth within the cylinder by about the same distance as the 
input translation; but very little force will be imposed upon the cylinder and spring, so the 
spring will be deformed hardly at all, xo(t) ≈ 0.  On the other hand, if the frequency of os-
cillation is very high, then the damper resisting force )( oi xxc &&

c1

gine that

−  will be great, so the pis-
ton and cylinder will appear to become a single rigid body, and most of the input transla-
tion will be transmitted through the damper, xo(t) ≈ xi(t), to compress and stretch the 
spring.  For frequencies of oscillation between very low and very high, our intuition sug-
gests that the output motion amplitude will be between the two extremes of zero motion 
nd the input motion amplitude.  The high-pass filter is so named because it “blocks” 

mics due to the e

a
low-frequency inputs, but it “passes” through, without much alteration, high-frequency 
inputs. 
 
 The damper-spring high-pass filter system is said to have right-hand-side (RHS) 
dyna xplicit derivative of the input translation, ix& , on the RHS of ODE 
(3-24).  Therefore, Eq. (3-24) does not have the standard stable 1st order form of Eq. (3-
7), )()1( 1 tbuxx =+ τ& , with the input u(t) on the RHS, but none of its derivatives.  For 
standard forms such as Eq. (3-7), many readily available mathematical response solutions 
exist, e.g., step response Eq. (3-8).  But that is not the case for non-standard forms, so the 
on-standard cn

th
haracter might be considered inconvenient.  However, there is a process 

at converts non-standard ODE (3-24) into standard 1

variable xd(t): 
 form.   We define the difference 

 
)()()( txtxtx iod −=                                               (3-25) 

 
ifferentiating Eq. (3-25) and substituting thD

st
e result into Eq. (3-24) leads to the following 

andard-form ODE for xd(t) plus the auxiliary equation required to retrieve the desired 
output xo(t) from solution xd(t) of the ODE: 
 

)()()(),(11

11

txtxtxtxxx idoidd +=−=+
ττ

&                           (3-26) 

                                                 
1 The process shown here for a 1st order ODE is the simplest form of a more general process that can be 
applied to system ODEs of any order having RHS dynamics; see the textbook by Brogan, 1974, pages 174-
177. 
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3-8  Homework problems for Chapter 3 
 
3.1  Consider the reaction-wheel assembly described in Section 3-3.  The rotor has been 
carefully machined to have rotational inertia J = 2.56e−3 lb-sec2-inch.  We wish to de-
termine the viscous damping constant  of the bearings by indirect experimental 
measurement.  We feed electric current into the motor and spin up the rotor to a high 
speed.  Then we shut off the motor, allowing the wheel to spin down freely.  With an op-
tical tachometer, we measure the spin-down rotational speed at one instant to be 4,000 
revolutions per minute (rpm).  Exactly 20.0 seconds later, we measure the speed to be 
1,010 rpm.  From these data, calculate  in consistent lb-sec-inch units. 

θc

θc
 
3.2  Given:  an LTI reaction-wheel assembly, with unknown rotational inertia J and un-
known rotational viscous damping constant  associated with drag of the bearings.  
Your task is to calculate J and  from experimental measurement.  Starting with the 
wheel at rest (motionless), a motor torque in the form of a step is imposed upon the 
wheel, 

θc

θc

)()( tHMtM m ×= , where M = 1.5 N-m.  The resulting spin rate p(t) of the wheel 
is measured, in radians/second, and its time history for the first 10 seconds of spin-up is 
recorded on the following graph. 

 
Use the data from the graph to calculate (with as much precision as possible, given the 
graphical nature of the data) the values of J and  in consistent SI units. θc
 
3.3  The weight of an ocean surface ship is denoted as W, and the acceleration of gravity 
in consistent units is g.  The resistance to low-velocity motion of the ship is modeled as 
being proportional to velocity, with viscous damping constant c.  The ship is initially at 
rest when, at time t = 0, a tugboat begins pushing it with constant force F.  Write alge-
braic equations (in terms of the given parameters, all assumed to be in consistent units) 
for velocity v(t) and distance traveled x(t). 
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3.4  Nominal data (Nelson, 1989, p. 260) for the Boeing 747 civilian transport airplane 
are:  rotational inertia about the rolling axis J = 18.2e6 slug-ft2, wing planform area S = 
5,500 ft2, and wing span b = 195.68 ft.  For flight at Mach number 0.25 and at sea level 
altitude, nominal aerodynamic dimensionless coefficients relevant to uncoupled rolling 
are  = 0.0461 per radian and = −0.450 per radian.  At sea level, air density is ρ = 
0.002377 slug/ft3, and Mach number 0.25 corresponds to free-stream airspeed V = 279.0 
ft/sec. 

δC pC

 
(a)  Calculate the dimensional aerodynamic derivatives  (in lb-ft/rad) and  (in lb-ft 
per rad/sec), then calculate the 1st order system time constant 

δL pL

1τ . 
 
(b)  Suppose that the 747 is in level flight with zero initial roll rate, p(0) = 0, when the 
pilot cycles the ailerons through one complete sinusoid with amplitude 10° over a period 
of 5 seconds:  ( tt )πδ 4.0sin10)( °= , 0 ≤ t ≤ 5 sec.  Calculate the roll rate p (in degrees 
per sec) at the end of the 5-second period.  Don’t develop any new theoretical solutions 
for this problem; just adapt to this problem the result of Problem 1.5(a).  Your intuition 
might suggest that roll rate is zero at the end of the aileron cycling, since the total aileron 
“impulse” is zero, but you should find that roll rate is not zero. 
 
3.5  The A-4 Skyhawk was a durable and versatile small (17.5-24.5 klb) fighter-bomber-

trainer that first flew in 1954 
and was still used in military 
operations, with updated tech-
nology, in the 1990s (Light-
body et al., 1990, pp. 104-111).  
The relevant mass and geome-
try data for one model are:  
rolling rotational inertia J = 
8,090 slug-ft2; wing planform 
area S = 260 ft2; wing span b = 
27.5 ft.  A flight test of this air-
plane is conducted at sea level 
and Mach number 0.4, for 
which the air density is ρ = 

0.002377 slug/ft3 and the free-stream velocity is V = 446.6 ft/sec.  Starting from straight 
and level flight, the pilot at time t = 0 sec abruptly actuates the ailerons to +5° deflection, 
producing a step input that rolls the airplane clockwise.  The resulting roll rate is sensed 
by a rate gyroscope, digitized, and recorded.  The data are analyzed, and it is found that 
the following equation fits the data very wel

 

Planform sketch of A4D fighter airplane

Wing planform 
area, S = 260 ft2 

l:  ( )t667  degrees/seetpt .110.50)()( −−==θ& c. 

p δ

1

 
(a)  Use the measured roll rate to perform parameter identification, specifically to deter-
mine values for the two roll aerodynamic stability coefficients C  and C , both dimen-
sionless.  Begin by calculating time constant τ  of the response, then use that to calculate 
aerodynamic derivative , then use that to calculate .  Having these values, you can pL pC

Wingspan  
 b = 27.5 ft
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now use the steady-state roll rate to calculate .  Check the units of your calculations to 
make certain that your final calculated coefficients are, in fact, dimensionless. 

δC

 
(b)  Given that )0(θ  = 0 (level flight), derive an equation for )(tθ  in degrees, t ≥ 0.  
Evaluate that equation to calculate the bank angles at t = 1τ   (one time constant) and at t 
= 4 1τ   (≈ steady-state roll rate). 
 
3.6  Sketch (carefully) the appropriate free-body diagrams for the mechanical system 
drawn below.  The dashpot’s damping coefficient is c, its cylinder is fixed to the wall, 

and its piston has mass mp.  Next, use the 
FBDs and appropriate linear laws for the 
spring and dashpot to derive the ODEs that 
describe the motion of this system in terms of 
dependent variables xp(t) and x(t).  Note that 
the spring stretch is x − xp, so the tensile force 
developed in the spring is k(x − xp).  Do not 
neglect the inertial forces of the dashpot’s 

piston and of the block with mass m, which rolls without friction.  

 

k 

x(t) 

c 

xp(t) 

 fx(t)mc 

mp  m 

Series mass-dashpot-spring system 

Force fx(t) is an inde-
endent input quantity.   

g

(or more than o

p
 

h-pass filter of Fig. 3-12 is repeated below.  In this 
problem, neglect inertial forces of the damper and the 
spring.  Input xi(t) is translation of the damper piston, 
generated by some displacement-controlling motor.  
Output xo(t) is translation of the damper cylinder and 
spring end.  Sketch an appropriate free-body diagram 

ne), then write equilibrium equation(s) from which you derive the ODE 
ioo xxx && 11

3.7  The LTI damper-spring hi
 

ττ =+ , which has right-hand-side (RHS) dynamics.  Express time constant 1τ  
in terms of damper constant c and spring constant k.  (Hint:  recognize that piston force 
fx(t) shown is a dependent variable, related to independent input xi(t) and output xo(t), but 
fx(t) should not appear in the equation of motion.)     

k 

xi(t) xo(t) 

c 
 fx(t) 
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4-1  Definition of frequency response 
 
 We now consider system excitation that varies with time sinusoidally, as either 

tt ωω cosorsin , and persists for an indefinitely long duration.  The frequency of excita-
tion is ω radians/sec, or πω 2  Hz (for hertz, which means cycles/sec, named for German 
physicist and engineer Heinrich Rudolf Hertz, 1857-1894).  After any transients due to 
initial conditions have decayed away, a stable linear system responds in the same 
sinusoidal fashion.  That is, the steady-state response of a stable linear system to sinusoi-
dal excitation also varies sinusoidally, as either ( )ω +φtsin  or ( )ω +φtcos , where the fre-
quency ω is the same as the excitation frequency, and φ is a phase angle.  This steady-
state sinusoidal response is generally called frequency response.  Although the frequency 
of response is the same as that of excitation, the magnitude of response can vary greatly 
for different excitation frequencies; therefore, in order to prevent the overloading of a 
system, it is important to know the frequencies of excitation to which the system is most 
sensitive. 
 
 Both mathematical and experimental analyses of system frequency response are 
common in engineering practice.  We shall study the basic methods of mathematical 
analysis.  The two primary unknowns in the analysis are the magnitude and phase of re-
sponse as functions of excitation frequency.  We can consider the excitation to vary as 
either tt ωω cosorsin ; the steady-state frequency response magnitude and phase are the 
same in either case.  For consistency, we will consider primarily tωcos  excitation. 
 
4-2  Response of a 1st order system to a suddenly applied cosine, cos ω t 
 
 First, we derive a complete solution in the conventional manner for the original 
standard 1st order ODE  [Eq. (1-1)], with IC x(0) = , and with the sud-
denly applied (at t = 0) cosine input u

)(tubxax =−& 0x
tUt ωcos)( = , t > 0, where U is a constant ampli-

tude [Problem 2.12(b)]. 
 

ODE + IC:  
2

cos
tjtj eebUtbUxax

ωω

ω
−+

==−& , x(0) = , find x(t) for t > 0     (4-1) 0x

 

Laplace transformation of ODE + IC:  ⎟⎟
⎞

⎜⎜
⎛

+=−−
bUsaXxssX 11)()( 0

⎠⎝ +− ωω jsjs2
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Solve for X(s):  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

+
−−

+
−

=
ωω jsjsas

bU
as

x
sX 11

)(
1

2
)( 0  

 
Completed partial-fraction expansion (Problem 2.8): 
 

⎟⎟
⎠

⎞
⎜⎜
⎝
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+
+−

+
−
−−

+
−+

+
−

=
ω
ω

ω
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sX 21
2

)( 22
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Inverse transform:  ( )⎥⎦
⎤

⎢⎣
⎡ +−+−−+

+
+= − tjtjtata ejaejaae

a
bUextx ωω ωω
ω
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2
1)( 220  
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ω

sincos)( 220 +−
+

+=⇒ , t ≥ 0 
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⎟
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sincos

1

)(
20 , t ≥ 0     (4-2) 

 
 Next, we adapt solution (4-2) of general 1st order problem (4-1) to the damper-
spring system (ideal shock strut) of Fig. 3-9 with suddenly applied cosine force input 

tFtf x ωcos)( = , for which the comparable ODE + IC problem is 
 

tFxkxc ωcos=+& , x(0) = , find position x(t) for t > 0                   (4-3) 0x
 
Comparing (4-3) with (4-1), we define U ≡ F, then the other constants of the standard 
equation become 
 

ka
b

c
b

k
c

ac
ka 1and1and1constanttime1

1
1

=
−

==
−

≡⇒−≡−= τ
τ

 

 

( )tte
k
Fextx tt ωτωω

ωτ
ττ sincos

)(1
1)( 12

1
0

11 ++−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

+=⇒ −− , t ≥ 0      (4-4) 

 
 It is instructive to study the physical nature of response (4-4) in the context of a 
specific numerical example.  Consider an ideal shock strut with the initial condition  = 
−2 m, and with the system parameters c = 

0x
π1  N/(m/sec) = 0.3183 N-sec/m and k = 1 

N/m, so that time constant πτ 11 =  sec = 0.3183 sec.  Let the magnitude of the cosine 
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force be F = 1.5 N, and let the period of the cosine be Tp = 1 sec/cycle.  Therefore, the 
cyclic frequency is f = 1 Hz (cycle/sec), and the circular frequency is ω = 2π radians/sec.  
(Period, frequency, and phase of periodic signals are discussed more generally in Section 
4-4.)  The numerical solution of Eq. (4-4) with these parameters for time 0 ≤ t ≤ 3 sec is 
calculated and graphed in the following MATLAB operations. 
 
MATLAB M-file script: 
 
%MATLABdemo41.m 
%Damper-spring ideal shock strut response to IC + cosine forcing 
c=1/pi;k=1; %system viscous damping & stiffness constants, SI units 
F=1.5;Tp=1; %cosine forcing:  amplitude (N), period (sec) 
xo=-2; %initial displacement (m) 
w=2*pi/Tp; %circular frequency of cosine forcing (rad/sec) 
t1=c/k;denom=1+(w*t1)^2; 
t=0:0.01:3*Tp; %time instants for forced response 
fx=F*cos(w*t); 
x=(xo-(F/k)/denom)*exp(-t/t1)+(F/k)/denom*(cos(w*t)+w*t1*sin(w*t)); 
plot(t,fx,'k',t,x,'k.'),grid,xlabel('Time t (sec)'),... 
 ylabel('Force input f_x(t) (N) and displacement output x(t) (m)'),... 
 title('Time response of an ideal shock strut to IC + cosine input') 
 
MATLAB command/responses: 
 
>> MATLABdemo41 
 

The graph of input  and response x(t) is below (after figure editing in MAT-
LAB,Version 6 or later, to flatten the aspect ratio and to distinguish the two curves). 

)(tf x
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Let’s observe from the graph some important features of the response: 
 
*  As calculated above, the time constant of the exponential decay terms in Eq. (4-4) [the 
two terms involving )exp( 1τt− ] is 1τ  = 0.3183 sec, so the settling time for those terms 
is 14τ  = 1.273 sec.  In other words, the exponential decay terms in x(t)  have essentially 
vanished after about 1.3 sec of response, and this is clear from the graph.  Because the 
exponential decay terms are relatively short-lived, we often refer to them as the “tran-
sient” part of the total solution. 
 
*  After the exponential decay terms have vanished, only the tωcos  and tωsin  terms of 
Eq. (4-4) remain.  It appears from the graph that those two terms combine to make a sin-
gle sinusoid at frequency ω, and that the remaining steady-state x(t) sinusoid is displaced 
in time by a constant time lag from the  sinusoid.  This steady-state sinusoidal re-
sponse is what we call the frequency response, and we will derive equations that describe 
it explicitly in the remainder of the chapter. 

)(tf x

 
4-3  Frequency response of the 1st order damper-spring system  
 
 To extract the steady-state sinusoidal response  from total response equation 
(4-4), we drop the transient, exponential decay terms: 

)(txss

 

( tt
k
Ftxss ωωτω

ωτ
sincos

)(1
1)( 12

1

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

= )                             (4-5) 

 
We can write (4-5) in a form that is more physically expressive by using some al-

gebraic manipulation and the general trigonometric identity, 
 

( )φθφθφθ +=×−× cossinsincoscos                                 (4-6) 
 
The algebraic manipulation involves the sinusoidally varying terms of (4-5).  For gener-
ality, let’s assume that each term is multiplied by a general coefficient, C or −S, so that 
those terms can be written and manipulated as 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+
−

+
+=−

2222

22 sincossincos
SC

St
SC

CtSCtStC ωωωω  

 
Now we identify the coefficients of tωcos  and tωsin  inside parentheses as themselves 

representing trigonometric functions:  φφ sinandcos
2
≡

222
≡

++ SC
S

SC
C , where 

angle φ is given by a four-quadrant tangent function, 
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S 

C 

φ 

22 SC +   ⎟
⎠
⎞

⎜
⎝
⎛= −

C
S1tanφ                                      (4-7) 

 
These trigonometric relations are illustrated at left on the draw-
ing of a right triangle. 
 

So, with identity (4-6), the trigonometric sum becomes 
 

( ) (2222 )φωφωφωωω ++=−+=− tSCttSCtStC cossinsincoscossincos

1

  (4-8) 
 
 Associating (4-5) with (4-8), we have C = 1, S = −ωτ .  Therefore, (4-5) becomes 
 

( )φωωτ
ωτ

++⎟⎟
⎞
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⎛
+

= t
k
Ftxss cos)(1

)(1
1)( 2

12
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1
tan)(,)(cos)(cos

)(1
1)( 11

2

ωτ
ωφωφωωφω

ωτ
tXt

k
Ftxss

1

x

  (4-9) 

 
Let’s compare the steady-state response (output),  of Eq. (4-9), with the excitation 
(input), 

)(txss

tFtf ωcos)( = .  The magnitude of response, which is a function of excitation 
frequency ω, is 
 

2)(1
1)(
ωτ

ω
+

=
k
FX

1

                                          (4-10) 

 
We will often deal with the magnitude ratio, defined as the magnitude of response di-
vided by the magnitude of excitation, 
 

2)(1
11)(
ωτ 1

ω

+
=

kF
X                                            (4-11) 

 
 The phase (or phase angle, since it is an angle in radians or degrees) of response relative 
to the phase of the excitation is also a function of excitation frequency ω: 
 

)(tan)( 1ωτωφ −= 1−                                               (4-12) 
 
In general, if phase angle φ is positive, 0° < φ < 180°, it is called a phase lead, because 
the peaks and zeros of the response occur in time before those of the excitation.  If phase 
angle φ is negative, −180° ≤ φ < 0°, it is called a phase lag, because the peaks and zeros 
of the response occur in time after those of the excitation.  The response is said to be in-
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phase if φ = 0° exactly, and out-of-phase if φ = −180° exactly.  For the standard stable 1st 
order system considered presently, , which is a phase lag, always 
negative in the 4th quadrant, −90° < φ < 0°, with φ → 0° for very small ω and φ → −90° 
for very large ω. 

)(tan)( 1
1 ωτωφ −= −

 
 The frequency-response function (abbreviated FRF) is considered to consist of 
both the magnitude ratio, Eq. (4-11) in this case, and the phase angle, Eq. (4-12) in this 
case.  We will see later that both of these functions can be expressed together in a 
mathematical equation as a single complex function of frequency.  It is common in engi-
neering practice to plot these two real functions of frequency ω on a pair of over-and-un-
der graphs in the format of Fig. 4-1, which represents Eqs. (4-11) and (4-12) specifically.  
This format is a type of Bode diagram (after Hendrik Wade Bode, American mathemati-
cian, physicist, and control-system engineer, 1905-1982). 

 

ω 0 

φ(ω) 

0 

0° 

-45° 

-90° 

11 τω ≡b

k
1  

k
1

2
1  

F
X )(ω  

Figure 4-1  Frequency-response function of 1st order damper-spring system 

 
The break frequency 11ω τ≡b  is shown explicitly on Fig. 4-1.  There is no obvious 
“break” in the curves of Fig. 4-1; but a break does indeed exist, the form of which will be 
revealed in the following discussion. 
 

To represent frequency response over broad bands of frequency, the magnitude 
ratio and phase are often plotted versus the logarithm of frequency.  Moreover, to allow 
the possibility of very large dynamic ranges of magnitude response, the magnitude ratio 
itself is often plotted on a logarithmic scale, making the magnitude ratio a log-log graph, 
where “log” denotes logarithm to the base 10.  On such a graph, it is often possible to 
construct straight-line asymptotes that are useful for describing the variation with fre-
quency of the magnitude.  To illustrate this for the 1st order system, we re-write (4-11) as 
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a dimensionless ratio and, for clarity of expression, use the definition 11 τω ≡b , and then 
take the logarithm: 
 

222
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1
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In the last versions on the right-hand sides of Eqs. (4-13a and b), we have used ω ≡ 2π f 
and ωb ≡ 2π fb in order to express the equation in terms of cyclic frequency.  The low-
frequency asymptote is the limit of (4-13b) as the frequency → 0 from above: 
 

0)1log(
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The high-frequency asymptote is the limit of (4-13b) as the frequency → ∞ from below: 
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Figure 4-2 on the next page is a log-log graph of Eqs. (4-13) that shows the asymptotes 
(4-14) and (4-15).  Notice that on the log-log scale, the low-frequency asymptote is a 
good approximation for the actual function at frequencies f < fb, and the high-frequency 
asymptote is a good approximation for the actual function at frequencies f > fb.  The 
intersection of the two asymptotes is called the break (or corner) because it is a change in 
slope of the asymptotic approximations to the actual function.  The break (or corner) 
frequency is denoted fb.  For this 1st order system at fb = )2(12 1πτπω =b , the 

magnitude of response is reduced to 21  of its static (f = 0) value, and the phase is −45° 
(see also Fig. 4-1). 
 
 The high-frequency asymptote on Fig. 4-2 merits some additional comment.  Note 
that its slope on the log-log scale equals –1, i.e., the magnitude shrinks one decade (order 
of magnitude) for each decade increase in the frequency.  Frequency response magnitude 
ratios are often given in decibels (dB), especially in acoustics for sound pressure level.  A 
magnitude ratio in decibels is defined to be 20 × log(magnitude ratio).  If the magnitude 
ratio on Fig. 4-2 had been plotted in decibels versus log(frequency), then the slope of the 
high-frequency asymptote would be –20; this is often referred to as a 20 dB/decade roll-
off of the magnitude ratio. 
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 Another observation worth making, especially from Fig. 4-2, is that the standard 
1st order system considered here behaves like a mild low-pass filter:  the system responds 
most sensitively to excitation at frequencies below the break frequency, the magnitude of 
response being about equal to the static response.  However, at excitation frequencies 
above the break frequency, the system responds much less sensitively, and the magnitude 
of response diminishes progressively as the excitation frequency increases. 
 

 

 f (Hz)  fb 

kF
X
/

 

Figure 4-2  Log-log magnitude ratio of 1st order damper-spring system 
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4-4  Period, frequency, and phase of periodic signals 
 

Let’s consider more generally the temporal quantities of periodic signals, repre-
sented in our applications by sinusoids.  Period Tp is normally measured in seconds per 
cycle, so the cyclic frequency f in cycles per second is the inverse of period, pTf 1= . 
Also, the period is related to the circular frequency ω  by π2ω =pT  radians, so that  
 

⎟
⎠
⎞

⎜
⎝
⎛=≡=

sec
cyclesHz

2
frequencycyclicand,

sec
rad22frequencycircular

π
ωππω ff

Tp

 (4-16) 

 
These relationships between period and frequency are worth understanding completely 
and even memorizing, as we use them a great deal in system dynamics. 
 

It is important also to understand how FRF phase is manifested in time history 
plots of input and output.  This discussion is general, applicable for any LTI system. Sup-
pose that there are plotted on the same graph steady-state sinusoidal time histories of both 
the input u(t) and the output x(t), as in Fig. 4-3 on the next page.  We want to calculate 
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the FRF phase from measurements on the time-history plots.  First, find the nearest posi-
tive x(t) crest to the left of a reference positive u(t) crest, as shown on Fig. 4-3.  Measure 
the positive time interval Tlead in seconds that x(t) leads u(t).  (Note that you can measure 
Tlead also by comparing troughs or positive-going or negative-going zeros, as shown on 
Fig. 4-3.) 
 
 

u(t) = U cosω t 

x(t) = X cos(ω t + φ) 

time t 

Tlead Tlead 

Tlead 

Tlead 

 tcrest 

 Tp 

Figure 4-3  Frequency response phase measurement from time-history graphs 
 

 
 Now, referring to the positive crests, let’s denote as tcrest the instant corresponding 
to a positive crest of input u(t).  Then we see from the drawing that 
 

cosω tcrest = +1     ⇒     ω tcrest = 2π n, where n is some integer 
 

cos(ω [tcrest – Tlead] + φ) = +1     ⇒     ω [ tcrest – Tlead] + φ = 2π n 
 
Comparing these two equations shows that ω[– Tlead] + φ = 0, which gives the basic 
equation for phase angle (defined positive as a lead, negative as a lag): 
 

deg360
rad2
deg360rad22

p

lead

p

lead
lead

p
lead T

T
T

T
T

T
T ×=×===

π
ππωφ           (4-17a) 

 
where Tp (= f12 =ωπ ) is the period of the input and the steady-state output, as shown 
on Fig. 4-3. 
 

If you choose to select the nearest positive  crest to the )(tx right of a reference 
 crest, then you are finding time )(tu lag T , which is a negative lead.  In this case, you 

can find the phase angle, with the correct sign, from 
lag

 

deg360
p

lag
lag T

T
T ×−=−= ωφ                                     (4-17b) 
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Equations (4-17) give φ in the range 0° ≤ φ < 360°, which is correct but not com-

mon.  It is not common because the four-quadrant arctangent is conventionally expressed 
(in MATLAB, for example) in the range −180° ≤ φ  < +180°.  Therefore, if you measure 
and calculate by the procedure above a phase φ  ≥ +180°, then it is conventional to re-
place that φ  with (φ  − 360°).  For example, if you were to measure and calculate the 
phase φ  = 262°, then it would be conventional to express it as a phase lag, φ  = (262° − 
360°) = −98°, rather than a phase lead of 262°. 
 
4-5  Easy derivation of the complex frequency-response function for standard stable 
1st order systems 
 
 This section is an example of a much easier method (than that of Sections 4-2 and 
4-3) for deriving the frequency-response function of a system.  Let’s find the frequency 
response of standard stable 1st order systems.  From Eq. (3-7) the standard stable ODE 
with sinusoidal excitation is 
 

tbUtubxx ωτ cos)()1( 1 ==+&  
 
We seek steady-state sinusoidal response ( ))(cos)()( ωφωω += tXtxss , in which )(ωX  
and )(ωφ  are functions to be found.  The first step in the method is to take the general 
[for arbitrary u(t)] Laplace transform, setting the IC to zero: 
 

)]([)]([)1(
01

0
tuLbtxLs

x
=+

=
τ  

 
Next, we form the system general transfer function, , defined as the ratio of the 
output transform to the input transform, with zero IC: 

)(sTF
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1)]([
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)( 0
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=≡ =

s
b

tuL

txL
sTF x  

 
 The Laplace independent variable s is complex in general.  However, in order to 
analyze frequency response, we let s in TF(s) be purely imaginary, s = jω (ω being the 
real circular frequency), producing the complex frequency-response function FRF(ω): 
 

1
1

1 1
1

1
)()()(

ωτ
τ

ωτ
ωω

ω j
b

j
bFRFjTFsTF

js +
=

+
=≡≡

=
            (4-18a) 

 
Next, with use of Eqs. (2-4)-(2-7), we convert TF(jω) ≡ FRF(ω) algebraically into polar 
form: 
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     (4-18b) 

 
in which phase angle ( ) )(tan1tan)( 1

1
1

1 ωτωτωφ −=−= −− . 
 
 Equations (4-18) define the complex frequency-response function, FRF(ω), of 
standard stable 1st order systems.  It is proved in Sections 4-6 and 4-7 for LTI systems in 
general that the real magnitude )(ωFRF  of function FRF(ω) is the magnitude ratio of 
system frequency response, and the phase angle )(ωφ  of function FRF(ω) is the phase 
angle of system frequency response.  For example, let’s adapt standard solution (4-18b) 
to the damper-spring system, for which [from Eq. (4-3)] kccb == 1and1 τ .  Thus, the 
magnitude of FRF(ω) from (4-18b) is  
 

2
1

2
1

1

)(1
11

)(1
)()(

ωτωτ

τωω
+

=
+

==
k

b
U

XFRF                      (4-19) 

 
which is identical to damper-spring system FRF magnitude ratio FX )(ω  of Eq. (4-11).  
Also, the phase angle of FRF(ω) from (4-18b) is 
 

)(tan)()( 1
1 ωτωφω −==∠ −FRF                                   (4-20) 

 
which is identical to damper-spring system FRF phase )(ωφ  of Eq. (4-12).  Thus, with 
FRF(ω) of Eq. (4-18b), we have obtained here the same final results as before for the 
damper-spring system, but much more easily. 
 
4-6  Transfer function, general definition 

 
For any LTI, single-input-single-output (SISO) physical system, we denote the 

input as u(t) and the output as x(t).  For an nth order system, in general, the input and out-
put are related by an ODE of the form 
 

ub
dt

udb
dt

udbxa
dt

xda
dt

xda mm

m

m

m

nn

n

n

n

11

1

2111

1

21 +−

−

+−

−

+++=+++ KK            (4-21) 

 
11 ,, +naa K  and  are constants (with the numbering system keyed to MATLAB 

notation), and m ≤ n.  Also, we assume that the system is stable, which is defined more 
precisely in Section 4-7.  Taking the Laplace transform of the ODE, with all ICs equal to 
zero, gives 

11 ,, +mbb K
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Then, from (4-22), the system transfer function, defined to be the ratio of the output 
transform to the input transform, with zero ICs, is the ratio of two polynomials, 
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It is appropriate to state here (without proof) that the transfer function of any 

physically realizable system has m ≤ n, i.e., the degree of the numerator polynomial is 
less than or equal to the degree of the denominator polynomial.  The condition m ≤ n 
makes the transfer function causal, which means that the current (in time) output of the 
system is dependent only upon past and present (not future) values of the input.  In gen-
eral, the future values of an input cannot be predicted, so it is logical that a real system 
and its transfer function must be causal.  See Bélanger, 1995, page 440. 
 

Note also from Eq. (4-23) that, if given TF(s) and input u(t), we can express the 
transform of the output with zero initial conditions as 
 

)]([)()]([
0

tuLsTFtxL
ICs

×=
=

                                      (4-24) 
 
4-7  Frequency-response function from transfer function, general derivation 
 
 For frequency response of a general LTI SISO stable system, we define the input 
to be a time-varying cosine, with amplitude U and circular frequency ω, 
 

( )tjtj eeUtUtu ωωω −+==
2

cos)(                                    (4-25) 

 
in which we apply the complex exponential form for the cosine that is derived from 
Euler’s equation (Problem 2.1).  The Laplace transform of input (4-25) is 
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Substituting (4-23) and (4-26) into (4-24) gives 
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By expanding into partial fractions, we will usually be able to cast (4-27) into the form 
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in which A, B, , and  [the poles of TF(s)] all are constants.  Taking the inverse 
transform of (4-28) gives 

kC kp

 

∑
=

− ++=
n

k

tp
k

tjtj keCeBeAtx
1

)( ωω                                    (4-29) 

 
The first two right-hand-side terms of (4-29) are associated with steady-state 

forced sinusoidal response, and the third term is associated with response bounded by real 
exponential functions.  The nature of system stability is determined by the poles , in 
particular, by their real parts.  If 

kp
0]Re[ <kp  for all k = 1, 2, …, n, then each of the  

terms is bounded by a 

tpke
decaying exponential, that is, → 0 as t → ∞.  A system for 

which  for all k is said to be stable.  Therefore, for steady-state sinusoidal 
response (after all exponentially bounded transients have decayed) of a stable system, 
only the first two right-hand-side terms of (4-29) remain, 

tpke
0]Re[ <kp

 
tjtj

ss eBeAtx ωω −+=)(                                            (4-30) 
 
 Our objective now is to find the complex constants A and B in (4-30).  The first 
step is to recognize that  must be a real function mathematically; that is, in order to 
represent actual physical behavior, (4-30) cannot have any imaginary component.  From 
Problem 2.5, we conclude that B must be the complex conjugate of A, i.e., B = 

)(txss

A .  
Therefore, (4-30) becomes 
 

tjtj
ss eAeAtx ωω −+=)(                                            (4-31) 

 
The Laplace transform of (4-31) is 
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ωω js

A
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AtxL ss +
+

−
=)(                                         (4-32) 

 
Recognizing that we seek only constant A for the steady-state sinusoidal response (not 
any of the  constants associated with transient response), we now combine (4-32) and 
(4-26) into (4-24), 

kC
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To find complex constant A and its conjugate, we use the labor-saving method for partial-
fraction expansion from Chapter 2, 
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Comparing (4-34) and (4-35) shows that 
 

)()( ωω jTFjTF =−                                               (4-36) 
 
So now we can denote the transfer function terms in general polar form: 
 

)()()( ωφωω jejTFjTF = , where the phase is [ ])()( ωωφ jTF∠=           (4-37) 
 

)()()( ωφωω jejTFjTF −=−                                         (4-38) 
 
Substituting (4-37), (4-38), (4-34), and (4-35) back into (4-31) gives 
 

( ) ( ){ })()()(
2

)( ωφωωφωωω ω +−+− +=+= tjtjtjtj
ss eejTFUeAeAtx               (4-39) 

 
Applying again the formula from Euler’s equation that relates the cosine to complex ex-
ponentials gives the desired final result, 
 

( )
( ))(cos)(

)(cos)()(
ωφωω

ωφωω
+≡

+=

tX
tjTFUtxss                                  (4-40) 

 

in which )(ωX and φ(ω) are, respectively, the amplitude (magnitude) and phase of the 
steady-state sinusoidal response.  Note that UXjTF )()( ωω = , the magnitude ratio. 
 

 Therefore, we define the complex frequency-response function FRF(ω) to be 
TF(jω), (4-37).  Expressing FRF(ω) in polar form gives us the FRF magnitude ratio and 
phase directly, and relatively easily (without all the work of finding the particular solu-
tion of the ODE by the method of undetermined coefficients, or of finding the complete 
time response by forward and inverse Laplace transformation, etc.): 
 

)()()()( ωφωωω je
U

XjTFFRF =≡                                    (4-41) 
 
 This result is general for LTI SISO systems, it is valid for all of the systems con-
sidered in this book, and it is widely used in engineering practice. 
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4-8  Homework problems for Chapter 4 
 
4.1  This problem involves the data and results for the 1st order damper-spring system that 
is analyzed in Section 4-2 with use of MATLAB program MATLABdemo41. 
 
(a)  Substitute the damper-spring data and the given values of F and ω into Eqs. (4-10) 
and (4-12) in order to calculate the magnitude X and phase angle φ (in degrees, in the 
range −180° ≤ φ  < +180°) of the frequency response. 
 
(b)  Examine the time history graph generated by MATLAB program MATLABdemo41.  
The purpose of this problem is for you to evaluate that graph as if it were recorded from 
an experiment.  Consider, in particular, the time after about t = 1.3 sec, when the output 
has settled into steady-state sinusoidal response.  Measure from the graph the steady-state 
output magnitude X.  Measure whatever information is required from the graph, then cal-
culate phase angle φ (in degrees, in the range −180° ≤ φ  < +180°) of the steady-state state 
response.  These simulated experimental results for X and φ should be equal to (or at least 
close to, since it is not possible to make precise measurements from a graph) the compa-
rable results calculated in part (a) from theoretical formulas. 
 
4.2  An experimental frequency response test is conducted on an LTI system (not neces-
sarily a 1st order system), with input tUtu ωcos)( =  and output )cos()( = ω +φtXtx .  A 
simulated graph [(a) or (b) or (c), whichever is assigned] of the steady-state input and 
output quantities at one particular frequency is shown below or on the next page.  Cal-
culate from the graph, with as much accuracy as the data permits, the following values:  
(i) the sinusoidal period Tp, and then the frequency (in both Hz and rad/sec), (ii) the FRF 
magnitude ratio UX  (assume consistent physical units), and (iii) the FRF phase φ (in 
degrees, in the range −180° ≤ φ  < +180°). 
 

 

(a) 
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(b) 

 

 

(c) 

 
4.3  The governing ODE of the series damper-spring low-pass filter in Fig. 3-12 is Eq. (3-
23), )(1 txxx ioo =+&τ .  Show that the associated 1st order complex frequency-response 
function is )1(1)()( 1ωτωω jjTFFRF +==  .  The following MATLAB script graphs 
from this equation the FRF magnitude ratio and phase in one conventional format (log-
log for magnitude ratio, semilog for phase in degrees, magnitude ratio graph directly over 
phase graph), for the case of time constant 1τ  = 0.0145 sec, with excitation frequencies 
ranging from 1 Hz to 1,000 Hz.  Note that MATLAB does most of the work for you if 
you start with the complex FRF, and then use MATLAB’s capability for performing 
complex arithmetic.  In particular, the MATLAB function abs calculates the absolute 
value (magnitude) of a complex number, and the MATLAB function angle calculates the 
angle in radians of a complex number. 
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t1=0.0145; % First-order system time constant (sec) 
f=logspace(0,3,200);w=2*pi*f; % 200 pts. 1 Hz-1 kHz evenly spaced on log scale 
FRF=1./(1+j*w*t1); % complex FRF; note necessity of array operation ./ 
magrat=abs(FRF);fazdeg=angle(FRF)*180/pi; % magnitude ratio and phase in deg 
subplot(2,1,1),loglog(f,magrat,'k'),grid,ylabel('FRF magnitude ratio'), ... 
title('FRF of 1st order system with time constant = 0.0145 sec') 
subplot(2,1,2),semilogx(f,fazdeg,'k'),grid, ... 
ylabel('FRF phase (deg)'),xlabel('Frequency (Hz)') 

 
Run this script on your computer, and submit the graphs that it produces.  Additionally, 
(a) calculate the break frequency )2/(1 1πτ=bf  and show that it matches the break fre-
quency inferred from the MATLAB graphs; (b) use complex arithmetic to evaluate by 

hand (and hand calculator) the complex FRF, 
11

1)(
ωτ

ω
j

FRF
+

= , at frequency f = 30 

Hz, and show that your hand-calculated magnitude ratio and phase match those of MAT-
LAB.  You might have occasion to do more graphing of FRFs, so, for your future refer-
ence, make sure that you understand the operations of all the MATLAB commands in the 
above script. 
 
4.4  The governing ODE of the series damper-spring high-pass filter in Fig. 3-12 is Eq. 
(3-24), )()1( 1 txxx ioo && =+ τ  [see also homework Problem 3.7].   
 
(a)  Show that the associated 1st order high-pass filter complex frequency-response func-
tion is )1()( 11 ωτωτω jjFRF += . 
 
(b)  For frequency response, we are evaluating the input in the form tXtx ii ωcos)( =  
and the output in the form )cos()( φω += tXtx oo .  Use the FRF of part (a) to show that 
the equations for FRF magnitude ratio and phase are 
 

( )
( ) ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=−=

+
= −−

1

1
1

1

2
1

1 1tantan
2

)(,
1

)(
ωτ

ωτπωφ
ωτ

ωτω

i

o

X
X

 

 
Use this magnitude ratio equation to derive equations for the low-frequency and high-fre-
quency asymptotes, and sketch those asymptotes on a log-log graph such as Fig. 4-2.  
You may use the definition of break frequency, 11 τω =b , so that bb ff== ωωτω 1 .  
This system has the character of a mild high-pass filter, so your sketch of the asymptotes 
should have the appearance appropriate to that name. 
 
(c)  Let the time constant 1τ  = 1 sec, and consider the excitation frequency range 0.01 ≤ 
ω  ≤ 100 rad/sec (10-2 ≤ ω  ≤ 10+2 rad/sec).  Adapt the MATLAB program, and use the 
graphical format provided in homework Problem 4.3 to graph with MATLAB the FRF 
magnitude ratio and phase (in degrees).  As is done in Problem 4.3, program directly the 
complex FRF, in this case )1()( 11 ωτωτω jjFRF += , not the equations of part (c). 
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4.5  A standard LTI mass-damper-spring system has the ordinary differential equation of 
motion , in which  is the input and  is the output.   )(tfxkxcxm x=++ &&& )(tf x )(tx
 
(a)  Use the ODE to derive the transfer function [ ] [ ])()()(

0
tfLtxLsTF xICs=

≡  for the m-
c-k system.  This transfer function is an algebraic equation in terms of independent 
variable s and constants m, c, and k. 
 
(b)  Use transfer function TF(s) to derive the complex frequency-response function 
FRF(ω) for the m-c-k system in terms of independent variable frequency ω and constants 
m, c, and k. 
 
(c)  From FRF(ω) for the m-c-k system, write equations in terms of independent variable 
frequency ω and constants m, c, and k for the real magnitude ratio )(ωFRF  and the real 
phase angle )()( ωφω =∠FRF . 
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© 2016 by William L. Hallauer, Jr. 
 
5-1  Introduction 
 

Electrical circuits are systems that have many dynamic response characteristics in 
common with mechanical systems.  But electrical variables (voltage, current, charge) and 
circuits are quite different physically than mechanical variables and systems, and the 
physical laws and methods for deriving ordinary differential equations that describe be-
haviors of electrical circuits also are entirely different.  This chapter is an introduction to 
the theory of electrical circuits and basic analog electronics, and to some common but 
simple practical applications of the theory.  The material presented here provides the ba-
sis for many examples of system dynamic behavior in later chapters. 

 
Many engineering students in fields other than electrical engineering are exposed 

to electrical theory only in a required introductory physics course.  This presentation is 
designed for such engineers who, nevertheless, have applications for simple circuits and 
electronics.  For example, almost every engineer who works with electromechanical sys-
tems will at some time require at least the background in circuits and electronics that is 
presented in this chapter.  The same is true for almost every engineer who uses sensors of 
any kind, or is involved with testing of prototypes or products in the laboratory or in the 
field.  Even the process of logically evaluating for possible purchase the capabilities and 
specifications of modern electronic instrumentation requires more sophistication with cir-
cuits and electronics than a student can acquire from an introductory physics course. 
 
5-2  Passive components:  resistor, capacitor, and inductor 
 
 We denote the electrical potential, the voltage in volts (V) SI units, at a point in a 
circuit as e(t), and the flow of positively charged particles, the electrical current in amps 
(A) SI units, as i(t).  These two electrical quantities are the principal variables that will 
appear in derivations of the ODEs describing the dynamic behavior of circuits. 
 
 The circuit drawn in Fig. 5-1 depicts an ideal linear resistor, with resistance R 
ohms (usually denoted by the upper-case omega, Ω) in SI units.  The voltage difference 

2  between the positive and negative terminals of a battery 
causes current i to flow through the resistor.  The material of the 
resistor is an electrical conductor, but a poor conductor that 
provides much more resistance to current flow than a good con-
ductor such as copper wire.  This resistance converts part of the 
electrical energy into heat energy, causing the resistor’s tem-
perature to rise slightly.    For a standard, commercially pro-
duced resistor, the relationship between 

1 ee −

21 ee −  and i is linear, 
with resistance R defined as the constant of proportionality 

(Halliday and Resnick, 1960, Sections 31-2 and 31-3).  This relationship is known as 

 

Figure 5-1  Resistor 
in a simple circuit 
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Ohm’s law (after German physicist Georg Simon Ohm, 1787-1854), and it is usually 
expressed in one of the following two forms: 
 

R
ee

iiRee 21
21

−
=⇒=−                                          (5-1) 

  
Equation (5-1) applies at each instant, even if the voltages and the current are varying 
with time. 
 

Note from Ohm’s law the unit equivalence Ω = V/A; this relation giving the ohm 
in terms of the volt and the amp is useful for establishing correct units in calculations.  
Suppose, for example, that a 10-volt difference is imposed across a 5 kΩ resistor, typical 
numbers for instrumentation circuits.  Then, from (5-1), the current through the resistor is  

=
×

=
AV105

V10
3i 2e−3 A ≡ 2 mA. 

 
 The following two examples serve to introduce a fundamental physical principle 
for electrical circuits, Kirchhoff’s current law (abbreviated “KCL”, after German 
physicist Gustav Robert Kirchhoff, 1824-1887), and to illustrate applications of KCL. 
 
Electricity Example 5-1:  Given resistors R1 and R2 arranged in series, as in the figure 
below, find the equivalent single resistance Req. 

From the figure and Eq. (5-1), 
 

,
1

21
1 R

eei −
=  ,

2

32
2 R

ee
i

−
=  

eqR
ee

i 31 −=  

 
The form of KCL relevant to this situation is:  the quantity of current is continuous in a 
series arrangement, so that i ii ≡= 21 .  [This continuity condition for electrical current is 
directly analogous to the continuity condition for an incompressible fluid: the volume 
flow rate (average velocity × cross-sectional area) remains constant at all points along a 
flow tube or channel.]  The total voltage change is the sum of the individual changes,  
 

( ) ( ) ( )212211322131 RRiRiRieeeeee +=+=−+−=−  
 

⇒     21
21

31 RRR
RR
ee

i eq +=⇒
+
−

=

 

 

 
The resistance of a series combination of resistors is the sum of the individual resistances. 
 

e1 e2 e3 

 i1 

R1 

 = 

R2 e3 e1 
Req 

 i  i2 
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Electricity Example 5-2:  Given resistors R1 and R2 arranged in parallel, as in the figure 
below, find the equivalent single resistance Req. 

In this case, there are circuit junctions 
on both sides of the parallel resistors.  
The more general KCL applicable here 
is:  the quantity of current leaving a 
junction equals the quantity of current 
entering the junctio  iiin, so that =+ 21 . 
The voltage difference is the same 

across each of the parallel resistors, so KCL in terms of voltage 

 

e1 e2   i1 

R1 

R2 

  i2 
 =

e2 e1 
Req

 i 
 i  i 

 

differences is 
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=
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1 ee

 

 
The equivalent (effective) resistance is less than the smaller of the two parallel resis-
tances. 
 
 The circuit drawn in Fig. 5-2 depicts a linear capacitor, with capacitance C farad 
(F) in SI units.  A voltage generator produces the possibly time-varying voltage differ-

ence 2−  across the capacitor.  The graphical symbol 
representing the capacitor depicts two plates separated by a 
dielectric (insulating) material.  If there is a voltage difference 
between the plates of such a component, a positive electrical 
charge +q coulombs (SI unit) appears on one plate, and a 
negative electrical charge −q coulombs appears on the other 
plate (Halliday and Resnick, 1960, Section 30-2).  The quan-
tity of charge q is proportional to the voltage difference, with 
capacitance C defined as the constant of proportionality: 

 

Figure 5-2  Capacitor 
in a simple circuit 

e1(t) e2(t) 

i(t) 

 C 

e1(t) 

e2(t) 

 
)( 21 eeCq                                                     (5-2) = −

 
If the voltage difference is constant, then the charge on the plates remains con-

stant, so that there is no flow of charged particles, i.e., no current, which is the variation 

with time of the charge:  
dt

ti =)( dq .  However, if the voltage varies with time, then cur-

rent flows through the circuit in proportion with the derivative of the voltage difference: 
 

( )21
21 )()( eeC

dt
edC

dt
dqti && −===

0

0

e−                                   (5-3) 

 
Conversely, the voltage difference across the capacitor can be expressed in terms of the 
current by integrating (5-3) from initial time t  (when ICs are assumed to be known) to 
arbitrary time t > t : 
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Note from Eq. (5-3) the unit equivalence 
V

secAF
sec
VFA −

=⇒×= ; this 

relation for the farad in terms of the amp, the volt, and the second is useful for clarifying 
units in calculations.  Suppose, for example, that an instrumentation circuit contains a ca-
pacitor with C = 0.25 μF = 0.25e−6 F, a typical value.  If, at a particular instant, the volt-
age across the capacitor is changing at the rate 6,000 V/sec, then the current through the 

capacitor is, from (5-3),  ⎟
⎠
⎞

⎜
⎝
⎛ ××⎟

⎠
⎞

⎜
⎝
⎛ −

×= −

sec
V106

V
secA1025.0 36i = 1.5×10−3A ≡ 1.5 mA. 

 
Electricity Example 5-3:  1st order, RC low-pass filter circuit 
 
 This is a circuit containing both a resistor and a capacitor.  The input voltage sig-
nal produced by some source is denoted ei(t), and the output, filtered signal is denoted 
eo(t).  Figure 5-3 depicts this filter graphically in both the simple closed-circuit form on 

the left, and the more modern form on the right, in which the common ground (reference) 
potential is denoted by a special symbol and is assigned the value zero volts, to which all 
other circuit voltages are referenced.  The input and output terminals are denoted by 
small circles.  Note, in particular, that the output terminals are isolated away from the 
current-carrying portion of the circuit; this represents the realistic situation in which the 
filter output voltage is the input to some other circuit that has a very high input resistance, 
thereby essentially preventing any input current.  This downstream circuit could be some 
measuring instrument (oscilloscope, voltmeter, etc.), or another stage of a larger circuit of 
which the RC circuit is just one part.  Note also that this RC circuit, and any upstream cir-
cuit at its input, and any downstream circuit at its output, all must be referenced to the 
same ground voltage, which is constant and is the “zero” voltage relative to the other 
voltages in the circuit; this is an important requirement for practical circuits. 

 

Figure 5-3  RC low-pass filter circuit 
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 In order to derive the ODE describing the dynamics of this RC low-pass filter, we 
use Eq. (5-1) for current  through the resistor, and Eq. (5-3) for current  through the 

capacitor:  

Ri Ci

R
ee

i oi
R

−
= , ( ) oo eCeC &&& =−= 0Ci .  The resistor and capacitor are in series, so 

Kirchhoff’s current law relevant to this situation is RC ii = : 
 

iooiooo
oi eeee

RC
e

RC
eeC

R
ee

11

1111
ττ

=+⇒=+⇒=
−

&&&             (5-5) 

 

in which RC≡1τ  is the 1st order time constant. 
 
 Given ICs on output voltage eo(t) and given input voltage ei(t), we can in principle 
solve Eq. (5-5) for eo(t) using the mathematical methods discussed previously.  In par-
ticular, frequency response is the dynamic behavior that is of greatest practical interest 
for any circuit designed to be a filter.  For frequency response, the input voltage is 

tEte ii ωcos)( =  and the steady-state sinusoidal output voltage is )()( ωoo Ete =  × 
( )(cos )ωφω +t .  Let’s find the frequency response simply by adapting a previously 

derived standard solution.  First, we compare Eq. (5-5) with Eq. (3-7), =+ xx )1( 1τ&  
, which is the standard ODE for stable 1st order systems.  If we define )(tub =)(tu  

iEU ≡⇒i tetU ≡ )(cosω , then the other constant of the standard equation becomes 
.1 1τ=b   Therefore, the standard FRF magnitude ratio (4-19) is adapted as  
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and the standard FRF phase (4-20) is adapted as , )/(tan)(tan)( 1
1

1
bωωωτωφ −=−= −−

in which the break frequency is bb fRC πτω 2/1/1 1 === .  Figure 5-4 (adapted from 
Fig. 4-2) is the log-log graph of magnitude ratio versus frequency, which clearly shows 
the low-pass character of the frequency response. 
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Figure 5-4  Log-log magnitude ratio of 1st order RC low-pass filter 
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   The governing ODE of the mechanical series damper-spring low-pass filter in Fig. 
3-12 is Eq. (3-23), )(1 txxx ioo =+&τ  (see also homework Problem 4.3), which has exactly 
the same form as Eq. (5-5).  Accordingly, the electrical low-pass filter is an exact electri-
cal analog of the mechanical low-pass filter, input voltage ei(t) being directly analogous 
to input translation xi(t), output voltage eo(t) to output translation xo(t), and electrical time 
constant τ1 = RC to mechanical time constant τ1 = c ⁄ k. 
 

The passive electrical component drawn in Fig. 5-5 represents an ideal linear 
inductor, with inductance L henry (H) in SI units.  A time-varying current i(t) is shown 

flowing through the inductor.  The graphical symbol de-
noting the inductor depicts a coil of conducting wire.  If 
the current is changing with time in such a coil, then a 
voltage difference appears across the coil, a voltage dif-
ference that opposes the current change (Halliday and 
Resnick, 1960, Sections 36-1 and 36-3).  This voltage 
difference is called a self-induced emf (electromotive 
force); it is a manifestation of the interaction between 

electricity and magnetism that is described by Maxwell’s equations of electromagnetism 
(after Scottish physicist James Clerk Maxwell, 1831-1879).  The self-induced emf is pro-
portional to the rate of change of current, with inductance L defined as the constant of 
proportionality: 

 
dt
diti ),(  

e1(t) e2(t) 

Figure 5-5  Ideal inductor  

 L 

 

dt
die −1 Le =2                                                     (5-6) 

 
You might find it difficult to perceive how Eq. (5-6) represents physically a volt-

age difference that opposes current change dtdi .  If so, then the following example 
should illustrate this characteristic more understandably. 
 
Electricity Example 5-4:  1st order LR circuit 
 

Real inductors are not used in instrumentation circuits nearly as often as resistors 
and capacitors.  Moreover, there is no such thing as the ideal inductor instrumentation 
component of Fig. 5-5.  Because an inductor component consists primarily of coiled wire, 

and because a considerable length of very fine 
wire accumulates resistance, a real inductor usu-
ally has non-negligible resistance as well as in-
ductance.  A common, simple, approximate cir-
cuit model for such a real inductor is a series 
combination of an ideal inductor and a resistor, L 
and RL in the circuit of Fig. 5-6.  In this circuit, 
ei(t) is the input voltage (after switch S is closed 
to position c), and eo(t) is the output voltage.  R 
is a resistor placed between the inductor and 

ground to permit sensing (by an oscilloscope, for example) of eo(t), which is

Figure 5-6  LR circuit 
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Next, we derive an ODE governing the dynamic behavior of the LR circuit in Fig. 

5-6.  Observe that the derivative of current, dtdi , appears in Eq. (5-6), unlike Eq. (5-1) 
for a resistor and Eq. (5-3) for capacitor, in which equations current i(t) appears directly.  
Because of this, it is usually not convenient to apply Kirchhoff’s current law for a circuit 
containing an inductor.  It is usually better for such a circuit to apply Kirchhoff’s voltage 
law (abbreviated “KVL”):  the sum of all voltage rises around a circuit loop is zero.  If 
we proceed around the circuit loop in the direction of defined positive current flow, then 
the “voltage rise” across any component (including the input voltage generator and every 
passive component) is defined to be the upstream voltage minus the downstream voltage.  
To write KVL for this LR circuit, we start at the input voltage generator and proceed 
lockwise: 

 
c

0)0()()()0( =−+−+−+− omoimi eeeeee                              (5-7) 

lgebraic identity.  Next, we substitute Eq. (5-6) and Ohm’s law into Eq. (5-7): 
 

 
Kirchhoff’s voltage law is a fundamental law of circuits, but note that it also is just an 
a

( ) )(0)()()0( teiRR
dt
diLiRiR

dt
diLe iLLi =++⇒=−+−+⎟
⎠
⎞

⎜
⎝
⎛−+−        (5-8) 

 

 

tion (3-8), with ei(t) ≡ u(t) so that Ei ≡ U, to write the electrical response 
uantities as 

 

Equation (5-8) is a stable 1st order LTI ODE solvable for arbitrary input voltage 
)(tei .  For example, suppose that all ICs = 0 and that the input voltage is a step, )(tei =  

Ei H(t), which is accomplished with use of a battery and a switch, as shown in Fig. 5-6. 
Comparing (5-8) with standard stable 1st order ODE (3-7), we adapt the standard step-
response solu
q

( )
RR

Lte
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Eti
L

t

L

i

+
=≤−

+
= −

1whichin0,1)( 1 ττ                     (5-9a) 
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+

≡−≡−
+

==⇒ −− ,11)()( 11 ττ      (5-9b) 

der (Problem 5
ge would be achieved instantly, 

 
Step response Eqs. (5-9) clearly show the effect of the inductance in opposing and de-
laying the rise of current flow.  If the inductor were not present (i.e., if L = 0) in the cir-
cuit of Fig. 5-6, then the circuit would be a simple voltage divi .1), and the 
full step-response output volta )()( tHEte oo = , instead of 

sing gradually as in (5-9b). 

downstream terminal.  It is helpful to derive from Eqs. (5-7)-(5-9) the equation for that 

ri
 
 The response of this circuit illustrates the physical effect of the inductor’s self-in-
duced emf, Eq. (5-6).  In this circuit, the inductor’s upstream voltage is constrained to be 
the input, )(tei , so the self-induced emf must act in )(tem , the voltage at the inductor’s 
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voltage, ( )11)()()( τt
iLom eEtiRtete −−=+= , and the equation for the rate of change of 

current, 1)( τt
i eLEdtdi −= .  At time t = 0+ (just after switch S is closed to position c), 

we have 0)0( >=+ LEdtdi i  but 0)0( =+me  and i(0+) = 0.  Thus, at this instant, the 
inductor holds its downstream voltage at zero and prevents the current from rising in-
stantaneously as a step function, which it would do if the inductor were not present.  Af-
ter time t = 0+, the current gradually rises, but at a declining rate, and the current increase 
is still opposed by the inductor downstream voltage, which also rises at the same declin-
ing rate. 
 

From Eq. (5-6), we have the unit equivalence 
A

secVH
sec
AHV −

=⇒×= ; 

this relation for the henry is useful for clarifying units in calculations, as shown in the 
following example.  A particular “voice coil” is to be used in an electromagnetic force 
actuator; this is the type of wire coil found in the speakers of consumer sound systems.  
We wish to identify experimentally for this coil the parameters L and RL (based upon the 
series model of Electricity Example 4) by measuring the step response of the circuit of 
Fig. 5-6.  For this particular circuit, the sensing resistor has R = 17.5 Ω, and the battery 
voltage is 9.00 V.  We close switch S, then record the subsequent time-history graphical 
response onto the screen of a digital oscilloscope, which stores the data for analysis.  The 
response graph (below) has the appearance of Fig. 3-3, and we measure from it the time 

constant 

 

eo(t) 

0530.01 =τ  msec and the final value of output voltage 26.7=oE  V.  From the 
equations for 1τ  in (5-9a) and  in (5-9b), we derive the following equations for the re-
quired parameters L and RL, and then the subsequent calculated values: 

oE
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5-3  Operational amplifier (op-amp) and op-amp circuits 
 
 Figure 5-7 is the standard graphical symbol for an operational amplifier (op-amp).  
An op-amp has a “positive” input port that accepts input voltage eip, and a “negative” in-

put port that accepts input voltage ein.  The symbols eip and 
ein are merely labels; they are not meant to restrict the po-
larities of these input voltages, each of which can be either 
positive or negative relative to the ground potential.  An op-
amp has a single output voltage, labeled eo on Fig. 5-7.  The 
fundamental ideal output-to-input relationship of an op-amp 
is (Horowitz and Hill, 1980, Chapter 3) 

 

Figure 5-7  Operational 
amplifier (op-amp) 

 + 
 eip  eo 

 ein 

 
( )inipo eeKe −=                          (5-10) 

 
In Eq. (5-10), gain K is a very large positive number, on the order of 105 to 106 for com-
mon, commercially available op-amps.  The exact value of K varies gradually with the 
frequency of signals eip and ein, but this variation is not important provided that frequency 
is below a known upper value; as we shall see, a very important characteristic is that K is 
large, K ≥ O(105).  (This equation is a common mathematical expression meaning “K is 
on the order of or greater than 105.”)  Another important characteristic of an op-amp is 
the extremely high resistance of the input ports, on the order of 106 Ω to 1012 Ω.  The 
practical consequence of this high resistance is that essentially zero current can flow 
through the input ports. 
 
 An op-amp is an active device, requiring external power to produce high gain, 
unlike the simple passive elements (resistor, capacitor, and inductor) of Section 5-2.  An 
energy source (e.g., a ±15-volt power supply, or a pair of 9-volt batteries) is usually 
connected to an op-amp, but this connection is normally not indicated on graphical 
representations such as Fig. 5-7.  An op-amp itself is a complex integrated circuit, full of 
miniaturized transistors and other electrical components.  The physical form of op-amp 
seen most commonly on circuit boards is approximately the size and similar in 
appearance to a basement centipede with a black body (actually, more like a 8-legged or 
16-legged insect, because it has on each side four or eight metal connectors that look like 
legs). 
 
 Op-amps are not often used in the open-loop configuration of Fig. 5-7.  Most op-
amps can operate linearly according to Eq. (5-10) only over a limited range of ±Elim on 
output voltage eo.  The range depends upon the energy source, but typically Elim is on the 
order of 10 V.  If the input voltages eip and ein are such that (5-10) leads numerically to eo 
greater than +Elim or less than –Elim, then a real op-amp will limit and stick nonlinearly on 
either +Elim or –Elim, respectively.  When this happens, the op-amp is said to be 
overloaded or saturated.  Since gain K in (5-10) is so high, the input voltage difference 
eip – ein clearly must be very small in order for the op-amp to operate in the linear range 
for which it is primarily designed.   
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To operate an op-amp in its linear range, we almost always use feedback.  When 
there is an electrical connection between the output port and the negative input port, the 
op-amp is said to be wired in a closed-loop manner, with feedback from output to input, 
specifically in this case, negative feedback.  This negative feedback acts to make the in-
put voltage difference eip – ein so small that for practical purposes there is no difference, 
eip ≈ ein.   

 
We can illustrate the practical functioning of an op-amp by analyzing in detail 

what is probably the most common basic circuit consisting of an op-amp and resistors, 
the inverting amplifier depicted in Fig. 5-8.  
Note that there is an input resistor , and that 
there is negative feedback through feedback 
resistor f .  These resistances are chosen to 
be on the order of 101-104 Ω, at least two 
orders of magnitude less than the input 
resistances of the op-amp ports.  Note also that 
the positive input port is grounded, eip = 0 V.  
Hence, 

 

R i 

+  ei  eo 

Figure 5-8  Inverting amplifier 
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 ii 
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from Eq. (5-10), 

( )
 

K
e

eeKe o
inino −=⇒−= 0

iR fR

    (5-11) 

 
Due to the extremely high resistance of the negative input port relative to  and , the 
current through that port is essentially zero, so Kirchhoff’s current law in this case re-
quires the feedback current to equal the input current, ii = if .  Using Ohm’s law to write 
this condition of current continuity in terms of voltages gives 
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With a little algebra (which you should verify on your own), the solution of Eq. (5-12) for 
circuit output voltage in terms of input voltage is found to be 
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Let’s evaluate the denominator of the large fraction in Eq. (5-13a).  In typical applica-
tions of this circuit, the resistance ratio if RR is on the order of 102 at most.  Therefore, 
with gain K = O(105), the denominator is very, very close to 1:  1 + O(10−3) ≈ 1.  (This 
validates the earlier statement that only the large magnitude of K matters, the exact value 
being unimportant.)  So, the entire large fraction is essentially equal to one, and (5-13a) 
simplifies considerably to  
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i
i

f
o e

R
R

e −=                                                   (5-13b) 

 
The output voltage equals the input voltage amplified by the ratio if RR , and the sign is 
inverted; hence the name inverting amplifier. 
 

Note also, from (5-11), that the voltage at the negative input port is negligibly 
small relative to the output (and input) voltages: 
 

ip
o

in e
K
e

e =≈−= 0  (the voltage of the grounded port)                   (5-14) 

 
In other words, the op-amp’s high gain drives the voltage ein at the negative input port to 
be essentially equal to the voltage eip at the positive input port.  Equation (5-14) is just a 
special case of the simplifying assumption that we can use in general, from Eq. (5-10), 
 

ipin
o

inip ee
K
e

ee =⇒≈=− 0                                      (5-15) 

 
In circuit analysis, Eq. (5-15) is considered a useful “rule” or “axiom” rather than just an 
assumption.  In the future (unless directed otherwise, as for a homework or exam prob-
lem), you should always apply rule (5-15) right from the very beginning of the derivation 
for an op-amp circuit with negative feedback, because it simplifies the derivation so 
much.  For example, if we use (5-15) from the beginning for the inverting amplifier, then 
the derivation becomes two easy steps [using 0== ipin ee  in (5-12)]: 
 

⇒
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 Figure 5-9 depicts an extremely simple, closed-loop op-amp circuit that is useful 
in practice.  The input voltage signal is directed into the positive input port, and this 

port’s high resistance prevents the flow of any current 
from the input source.  Rule (5-15) in combination with 
the feedback connection states that the output voltage 
exactly equals the input voltage, .  This op-amp 
circuit functions as a current isolator and voltage 
transmitter, and it is usually called a voltage follower.  
Its main value is in providing a buffer between two dif-
ferent stages of a more complex circuit:  the buffer al-

lows the output voltage of the upstream stage to be the input voltage of the downstream 
stage, without permitting any current flow between the two stages.  Any such interstage 
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 ei 

 eo 

Figure 5-9  Voltage follower 
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current flow would usually cause malfunctioning of both stages.  The application of a 
voltage follower as a buffer between circuit stages is illustrated in the next section. 
 
5-4  RC band-pass filter 
 
 The circuit shown in Fig. 5-10 consists of a low-pass filter stage to the left of the 
voltage follower, and a high-pass filter stage to the right.  [The functioning of a high-pass 

filter is illustrated in homework 
Problem 5.4(b)].  As indicated on 
Fig. 5-10, the currents in the two 
stages are independent of each 
other, by virtue of the buffering 
due to the voltage follower.  
Therefore, the simple ODEs for 
each type of 1st order filter are still 
valid for the two-stage circuit of 
Fig. 5-10, with mid-circuit voltage 

em(t) being the quantity shared by the two stages, as the output from the low-pass stage 
and the input to the high-pass stage.  These ODEs are Eq. (5-5) for the 

 

Figure 5-10  RC band-pass filter  
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                                      (5-16) 
 
and the ODE derived in homework Problem 5.4(a) for the high-pass filter, 
 

==+ ττ ,&&

m&

                                   (5-17) τ
 
 An equation such as (5-17) is described as having “right-hand-side (RHS) dyna-
mics” because the right-hand-side includes a derivative of the input ( e  in this case), 
rather than just the undifferentiated input itself. 
 
 The combination of these two 1st order circuits turns out to be a 2nd order system, 
and we shall re-visit this subject in Sections 9-10 and 10-4.  We consider the RC band-
pass filter circuit now because it illustrates (1) application of a voltage follower, and (2) 
the important physical characteristic of op-amps that is described next. 
 

Note in Fig. 5-10 that the feedback wire across the op-amp connects directly to 
the negative input port; this port has essentially infinite resistance, so there cannot be any 
current in the feedback wire.  But Fig. 5-10 also shows the non-zero, second-stage current 
iH(t) downstream of the op-amp; this appears to contradict the claim of zero feedback cur-
rent in the op-amp, since the graphical representation of the op-amp suggests that the 
feedback wire is continuous electrically with the downstream circuit.  In fact, the stan-
dard graphical representation of an op-amp with negative feedback, such as that in 
Fig. 5-10, is oversimplified to the point of being misleading.  For an actual op-amp 
(as opposed to the standard graphical representation), the downstream current is 
not continuous with the feedback current, but instead, is completely independent.  In 
fact, the current downstream of an op-amp is determined only by the output voltage of the 
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op-amp and the downstream electrical components, for example, the second-stage ca-
pacitor and resistor in Fig. 5-10.  The technical characteristic of an op-amp that permits 
this independence of currents is very low output impedance (Horowitz and Hill, 1980, 
pages 25, 92-95, and 105).  For another example of the independence of feedback and 
downstream currents, see homework Problem 5.10. 
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5-5  Homework problems for Chapter 5 
 
5.1  The simple series circuit represented graphically below is a voltage divider, which is 

widely used in practical applications.  Show that the 
voltage output-to-input ratio is  R1 

  eo  R2 

   i 

  ei 
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5.2  Two capacitors are arranged in series, as shown below. 

 
(a)  Use the current-voltage equation for capacitor C1 

to show th
1

ee im −= &&

rent. 
C
i , where the e’s are the volt-

ages indicated on the drawing and i is the cur
 

 

 C1 C2 

ei eo 
h h h 

h h 

em 

  i 

(b)  Use the result of part (a) and the capacitor current-voltage equation for capacitor C2 
in order to derive an algebraic formula for the equivalent series capacitance Ceq (in terms 
of C1 and C2) in the equation )( oieq eeCi && −= . 
 
5.3  Given capacitors C1 and C2 arranged in parallel, as shown below, find the equivalent 
single capacitance Ceq. 
  

e1 e2   i1

C1

 C2 

  i2
 =

e2 e1 
Ceq

 i 
 i  i 

 
 
 
 
 
 
 
5.4  The simple circuit represented graphically below is a 1st order RC high-pass filter. 

 

Rei(t)

C

eo(t)

 

 (a)  Use current continuity and the formulas relating current 
to voltage-difference for resistors and capacitors to derive in 
all detail the following ODE with right-hand-side (RHS) 
dynamics, which governs the output voltage eo(t) in terms of 
input voltage ei(t): 
 

RCeee ioo ==+ 1
1

,1 τ
τ

&&  

 
Explain why this circuit is considered to be an exact electrical analog of the mechanical 
series damper-spring high-pass filter described in Fig. 3-12 and Eq. (3-24). 
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 (b)  For frequency response, the input voltage is tEte ii ωcos)( =  and the steady-state 
output voltage is )cos()( φω += tEte oo .  Use the governing equation from part (a) to de-
rive the algebraic equations for FRF of the 1st order high-pass filter:  the magnitude ratio 

io EE )(ω  and the phase φ(ω) (in radians) as functions of excitation frequency ω .  (par-

tial answer:  ( )2
11 1)( ωτωτω +=io EE .)  Suppose that R = 40 kΩ and C = 0.25 μF 

(recall that μ = 10−6).  Calculate the break frequency fb = )2(1 1πτ  in Hz.  To get some 
feeling for the functioning of a high-pass filter, calculate the FRF magnitude ratio 

io EE )(ω  for driving frequency ratios bff  = 0.01, 0.1, 1, 10, and 100.  (See also 
homework Problem 4.4.) 
 
(c)  Suppose that the input voltage is a ramp, )()()( tHttete rri = , where er is a reference 
voltage and tr is a reference time such that ei(tr) = er.  For IC eo(0) = 0 volt, solve the gov-
erning ODE from part (a) for the algebraic equation for eo(t) in terms of the given 
algebraic parameters.  Note that the derivative of the input voltage in this case is a step 
function, )()()( tHtete rri =& . 
 
5.5  The circuit drawn below is a series combination of a voltage source , a coil 

(having both inductance L and resistance RL), and a capaci-
tor C; this is known as an LRC circuit.  The input voltage is 
applied at time t = 0, at which time there is a non-zero volt-
age on the capacitor, .  Apply Kirchhoff’s voltage law, 
as in Electricity Example 4, and show that the equation for 

current )  is

)(tei

)0(oe

 RL 

ei(t) C 

eo(t) 

i(t) 

L em 

(ti )0()()(
0

oiL etedi
C

iR
dt

L −=++ ∫
=τ

ττ1 tdi =τ

. 

 
5.6  For the op-amp circuit represented 
graphically at right, an integrator, derive 
the algebraic equation for the transfer 
function between input and output 

voltages, 

 C 

R 

+ ei eo 
)]([
)]([

)(
teL
teL

s
i

o=

                                                

TF .  Assume that 

there is no initial charge on the capacitor 
at time t = 0.  To simplify the derivation, 
apply rule (5-15).1   

 
1 This integrator seems simple on paper, but design of a real integrator that functions properly is difficult, 
requiring expensive, precision components and many subtle refinements of the basic circuit.  Integrators 
based upon this circuit are essential components of the electronic analog computer (EAC), an elegant 
instrument dating from the 1940s for solving coupled ODEs, but one that has now almost completely been 
replaced by digital computers.  Fifer’s 1961 four-volume set is probably the most complete description of 
all types of analog computers; Peterson’s 1967 textbook includes standard instructional material on EACs; 
and Lang’s 2000 article is an interesting, more modern discussion of EACs. 
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5.7  For the op-amp circuit represented graphically below, a summing inverting amplifier, 
derive the algebraic equation for output voltage eo(t) in terms of resistances R1, R2, and 
Rf, and input voltages e1(t) and e2(t).  To simplify the derivation, apply rule (5-15). 
  Rf 

R1 

R2 

+ e1 

e2 

eo 

 

 
 
 
 
 
 
 
 
 
 
5.8  (a)  For the op-amp circuit represented graphically below, a non-inverting amplifier, 

derive the algebraic equation for output volt-
age eo(t) in terms of resistances R1 and R2, and 
input voltage ei(t).  To simplify the derivation, 
apply rule (5-15). 

 R2 

R1 

+ 
ei 

eo 

i1 

i2 ein 

iin 
 
(b)  Suppose that ei = 1.6 V, R1 = 5 kΩ, and R2 
= 15 kΩ.  Determine the values of ein (in V), iin 
(in milliamps, mA), i1 (in mA), i2 (in mA), and 
eo (in V). 
 

pR

e ime pR

 
5.9  The circuit drawing below shows an inverting amplifier, from Fig. 5-8, and, at the 
input of the amplifier, a variable resistor with a sliding contact, often called a wiper.  The 

maximum useable resistance of 
the variable resistor is ; how-
ever, by moving the wiper along 
the surface of the resistor (ad-
justed by turning a dial or a 
screw), we can connect between 

i  and  any portion α , 
where 0 ≤ α ≤ 1.  The purpose of 
this particular circuit configura-
tion is to allow the gain constant 
of the amplifier to djusted 

continuously to any value between zero and 

 

R i 

+ 

 ei 

 eo 

Inverting amplifier with coefficient-setting potentiometer 

R f 

 ein 

 eip  iim 

 if 

α R p (1 − α )R p 

0 ≤ α  ≤ 1 

 eim 

 wiper 

 be a
if RR , rather than being constrained to the 

value if RR  of Eq. (5-13b).  Your assignment is to derive the following voltage output-
-input equations:   

 
to
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i

pi

im

R
Re

e

)1(1

)1(

αα

α

−+

−
=      ⇒     

i

p

i

f

i

o

R
R

R
R

e
e

)1(1

)1(

αα

α

−+

−
−=  

  
In your derivation, do not neglect the current to ground through the side of the variable 
resistor with resistance pR)1( α− .  For applications in electronic analog computers (see 
the footnote to homework Problem 5.6), this arrangement of a variable resistor is called a 
coefficient-setting potentiometer or just a pot for short. 
 
5.10  The circuit represented graphically below consists of two stages, each stage being 
built around an op-amp.   

 

R1 

+  ei  eo 

R2 

 C 

R3 

R4 

 em + 

 
(a)  Derive from the left-hand stage the following ODE for interstage voltage :   )(tem

imm e
CR

e
CR

e
12

11
−=+&  

 
(b)  Combine the result of part (a) with the effect of the right-hand stage to show that the 

ODE for output voltage  is )(teo ioo e
CRR

R
e

CR 13

4

2

11
=+&e .  (Note:  This circuit is essen-

tially the electronic analog computer (see the footnote to homework Problem 5.6) for 
solving the standard stable 1st order ODE (3-7), ( ) )(1 1 tubxx τ+ =& )(ti

)(t )(to )(tx

CR21 =

.  Input voltage e  
is analogous to standard input u , output voltage e  is analogous to response , 

time constant τ , and constant 
CRR

R

13

4 1
=b .) 

 
5.11  The circuit represented graphically on the next page is the basic, ideal form of 
electronic analog proportional-integral (PI) controller, one of the subjects of Chapter 15.  
(In practice, a great deal of electronic refinement and conditioning is required to produce 
a circuit that behaves even close to ideally.)  The input voltage signal is ee(t), the 
intermediate voltage between the two stages is em(t), and the output voltage from the PI 
controller is w(t). 

 5-17



 Chapter 5  Basic electrical components and circuits 
 

 
 

R1 
+  ee(t) 

 w(t) 

 C2 

R2 

R3 

 em(t) + 

 C1 

(a)  By applying the methods of circuit analysis described in Chapter 5, show that the 
ODE relating PI-controller output w(t) to input ee(t), expressed in terms of the capacitor 
and resistor parameters of the circuit diagram, is: 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+= ee e

CR
e

CR
CR

w
1122

13 1
&&  

 

0

0

0

0

)]([

)]([
)(

=

=≡
eee

w

teL

twL
s(b)  Derive the PI-controller transfer function TF , expressed in terms 

of the capacitor and resistor parameters of the circuit diagram. 
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Chapter 6 General time response of 1st order systems by application of 
the convolution integral 

 
© 2016 by William L. Hallauer, Jr. 

  
 Up to this point in the book, we have derived time response solutions of LTI sys-
tems only for relatively simple input functions u(t).  The convolution integral will permit 
us to derive time response solutions for any physically realistic input function u(t), and 
even to compute time response solutions if u(t) is given in numerical form rather than 
equation form.  The general convolution transform and its inverse, the convolution inte-
gral, are defined and described in this chapter, and application of the convolution integral 
is illustrated specifically for 1st order systems. 
 
6-1  The convolution transform and its inverse, the convolution integral 
 
 Suppose that we have two physically realistic functions of time,  and , 
that are zero for all time t < 0 and non-zero only for t ≥ 0.  The convolution integral is 
defined (Meirovitch, 1967, pp. 16-17, 534) to be another function of time in terms of a 
definite integral involving  and : 

)(1 tf

)(1 tf )(tf

τ 0=

λλτ t 00 ===

ττ 00 ==

)(1 tf )(2 tf )(1 sF )(1 tf

)(2 tf

2

τττ
τ

dtfftCI
t

)()()( 21 −≡ ∫
=

 

 

 
In this definite integral, τ is the dummy variable of integration, and time t appears both in 
the upper limit of the integral and in argument (t − τ) of the integrand.  We can express 
the integral differently by making the change of integration variable λ = t − τ , so that  
τ  = t − λ and dτ  = −dλ , since t is regarded as a constant within the integration: 
 

λλλλλλτττ
λλτ

dftfdftfdtff
tt

)()())(()()()( 212

0

121 ∫∫∫
===

−=−−=−  

 
The final right-hand-side form results because exchanging the limits of a definite integral 
changes its sign.  In the final right-hand-side integral, λ is just the dummy variable of in-
tegration, which might as well be τ, so we can write the convolution integral in either of 
the following forms: 
 

ττττττ
ττ

dftfdtfftCI
tt

)()()()()( 2121 ∫∫
==

−=−=                        (6-1) 

 
 The Laplace transform L[CI(t)] is called the convolution transform.  Let’s suppose 
that the Laplace transforms of functions  and  exist: = L[ ] and 
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)(2 sF

F

= L[ ].  Then, as is derived in Appendix A, Section A-5, the product of these 
two transforms equals the convolution transform:  

)(2 tf

× F () 2

FL (1
1−

 

[ ] ⎥
⎦

⎤
⎢
⎣

⎡
−=⎥

⎦

⎤
⎢
⎣

⎡
−== ∫∫

=

=

=

=

ττττττ
τ

τ

τ

τ

dftfLdtffLtCILss
tt

)()()()()()( 2
0

12
0

11      (6-2) 

 
It follows that the inverse transform of the product is the convolution integral: 
 

[ ] ττττττ
τ

τ

τ

τ

dftfdtfftCIsFs
tt

)()()()()()() 2
0

12
0

12 ∫∫
=

=

=

=

−=−==×         (6-3) 

 
For LTI systems in general, the convolution integral (6-3) will permit us to derive time 
response solutions for any physically realistic input function u(t). 
 
 It is of interest to note that in MATLAB, the most common definition of convolu-
tion is a type of multiplication of two vectors.  If the vectors are the coefficients of two 
polynomials, then MATLAB convolution amounts to the multiplication of the two poly-
nomials.  Consider, for example, the following product of two polynomials in s: 
 

( ) ( ) 303824864532)() 232
2 +++=+×++=× sssssssFs(1F  

 
The following are MATLAB operations that execute this multiplication, using the conv 
command, and the result1: 
 
>> F1=[2 3 5];F2=[4 6];F3=conv(F1,F2) 
 
F3 = 
 
     8    24    38    30 
 
Similarly, MATLAB defines deconvolution as a type of division of two vectors.  If the 
vectors are the coefficients of two polynomials, then deconvolution amounts to the divi-
sion of one polynomial by the other.  The MATLAB command is deconv. 
 
6-2  General solution of the standard stable 1st order ODE + IC by application of the 
convolution integral 
 
 From Eq. (3-7), we have for stable 1st order systems: 
 

ODE + IC:  0for)(find,)0(),()1( 01 >==+ ttxxxtubxx τ&              (6-4) 
 
Solve by first taking the Laplace transform, 

                                                 
1 See also the description at the end of Section 8-11 of the relationship between the convolution sum and 
multiplication of polynomials. 
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L[ODE]:  )()()1()( 10 sbUsXxssX =+− τ  
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11
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)(
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1
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s

b
s
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48476
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Take the inverse transform, using Eq. (2-14) and convolution integral (6-3): 
 

∫∫
=

=

−−−
=

=

−− +=−+=
t

tt
t

tt duebexdtuebextx
τ

τ

τττ
τ

τ

ττ ττττ
0

)(
0

0
0 )()()( 1111          (6-5) 

 
Equations (6-5) are general solutions of problem (6-4) applicable for any input u(t).2  For 
both forms, the first term is obviously the initial-condition (IC) response and the second 
term is the forced response.  In applications with specific u(t) functions, the second form 
of the forced-response integral on the right-hand side of (6-5) is used more commonly 
than the first.  The first form is also valid, but the functional nature of u(t − τ) can 
sometimes be difficult to interpret correctly. 
 

The forced-response integrals in (6-5) are called convolution integrals, as in (6-1).  
They are also sometimes known as superposition integrals, because, as is shown in 
Section 8-10, they can be derived as the linear superposition of responses to differentially 
small inputs. 
 

In Eqs. (6-5), constants 1τ  and b should be expressed in terms of the physical con-
stants of the actual system analyzed, such as mass m, damping constant c, etc.   
 
6-3  Examples of 1st order system response 
 
Example 6-1:  response of a 1st order system to piecewise continuous input functions 
 

It is often the case that the input to a system is described by different functions, 
each function in effect over a different time period for t > 0.  For example, the following 
equation and drawing represent an input consisting of two different general functions: 
  

t 

u(t)
u1(t) u2(t) 

t1 0 
 0 

⎪
⎩

⎪
⎨

⎧

<
<<

<
=

tttu
tttu

t
tu

12

11

),(
0),(

0,0
)(

                                                

 

 
The general forced response to this 
type of input can be expressed nicely 

 
2 Note, however, that solutions (6-5) are not valid for a non-standard 1st order ODE, e.g., one with right-
hand-side dynamics such as Eq. (5-17). 
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in terms of convolution integrals, but we must recognize that it requires two different 
equations, and we must consider carefully the limits of the definite integrals.  First, for 
the time interval 10 tt ≤≤ , it is clear that the second form of Eqs. (6-5) is directly appli-
cable, with : )(1 tu≡)(tu
 

∫
=

=

−−− +=
t

tt duebextx
τ

τ

τττ ττ
0

1
)(

0 )()( 11      , for 10 tt ≤≤                   (6-6a) 

 
For the response during the second time interval, , the definite integral in the second 
form of (6-5) still must be evaluated over the limits 

1tt ≥
0=τ  to 1tt >=τ , which means that 

both  1u and  need to be integrated, but each only over the time interval for which it is 
defined: 

2u
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⎥
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⎤

⎢
⎢
⎣

⎡
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=

=

−−
=
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−−−
t
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t
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tt dueduebextx
τ

τ

ττ
τ

τ

τττ ττττ
1

1

1

11 )()()( 2
)(

0
1

)(
0      , for     (6-6b) 1tt ≥

 
Note especially in (6-6b) that 1t=τ  is both the upper limit of the integral that involves  
and the 

1u
lower limit of the integral that involves .  Equations (6-6) are especially useful 

for response to a pulse of limited duration, as is illustrated in the next example. 
2u

 
Example 6-2:  response of a mass-damper system to a half-sine pulse 
 
 We consider again the problem for velocity of a mass moving on a viscous film, 
which is solved by basic ODE methods in Section 1-5: 
 

ODE + IC:  0for)(find,)0(),( 0 >==+ ttvvvtfvcvm x&                (6-7) 
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ddd
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Here we have )()( tftu x= , cm=1τ , and mb 1= .  Relative to the notation of Example 
6-1 above,  is the half-sine pulse, and  is zero.   1u 2u
 
 While the pulse is active, 0 ≤ t ≤ td, Eq. (6-6a) becomes  
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−− +=
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tt dee
m
Fevtv
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0 sin)( 111                                  (6-8) 
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We can evaluate the definite integral by several different methods:  find it in a table of 
definite integrals (or indefinite integrals, but don’t forget the lower limit of integration); 
or integrate by parts twice; or evaluate it with software that does symbolic manipulation, 
such as Mathematica or recent versions of MATLAB.  The result is 
 

( )
([ ]112

1

1

0

cossin
1

sin 11 ωτωωτω
ωτ
ττωτ τ

τ

τ

ττ +−
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=
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ttede t
t

)                 (6-9) 

 
Combining (6-8) and (6-9) gives the velocity during the pulse duration: 
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At the instant t = td when the pulse goes to zero, ω td = π, so the velocity then is 
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 For the time after the pulse goes to zero, td ≤ t, Eq. (6-6b) becomes  
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With use again of Eq. (6-9), and of some algebra, (6-12) becomes 
 

( )
( ) 1111 )(

2
1

1
0 )(1

1
)( ττττ

ωτ
ωτ

dd tt
d

ttt etvee
c
Fevtv −−−− =+

+
+=   , for        (6-13) dtt ≥

 
The final form on the right-hand side of (6-13) uses Eq. (6-11), and it shows that the post-
pulse response is a pure exponential decay, which we would expect physically. 
 
Example 6-3:  response of reaction wheel spin velocity to a ramp input moment 
 

From Section 3-3, we have the equation of motion for spin velocity p(t) of a reac-
tion wheel (Fig. 3-1) with rotational inertia J, bearing viscous damping constant , and 
applied motor torque : 

θc
)(tM m

 

J
b

c
JtMbpptM

J
p

J
c

p mm
1andwhere)(1)(1

1
1

===+⇒=+
θ

θ τ
τ

&&    (3-2) repeated 
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Let the initial velocity be zero, p(0) ≡  = 0.  Let the motor torque have the form of a 
ramp: 

0p

 
  

Mm(t) 

 0 

 Mr 

   tr 
 0    t 

 

0,)( ≥= tt
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Then the second form of general solution (6-5) becomes 
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We can evaluate the integral easily using integration by parts: 
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Therefore, the total solution is 
 

( )[ ] ( )[ ]1111 111)( 1
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11
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r et
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t
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By sketching a plot versus time of the dimensionless spin velocity 
θcM

tp

r

)( , you can eas-

ily show that, as t → ∞, this quantity is asymptotic to the ramp function rtt )( 1τ− . 
 
6-4  General solution of the standard 1st order problem:  an alternate derivation  
 

Consider again the general standard 1st order problem, Eq. (1-1), in which u(t) is 
the known input (excitation), x(t) is the output (response) that we seek, and a and b are 
constants, with a not necessarily negative: 
 

)(tubxax =−& , with IC  assumed known, find x(t) for t  ≤ t          (6-15) )( 1tx 1

 
(We revert to the more general form now, rather than our stable standard 1st order ODE, 
(3-7) or (6-4), in order to make this derivation more general, applicable for any physically 
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realistic value or polarity of the constant a.)  This problem is a bit more general than we 
have considered previously, since we allow the initial time  to be different from zero.  
In order to expedite indexing of array quantities in computer algorithms, we use subscript 
1, instead of 0, to denote the initial time and the initial value:  

1t

x 11 )( xt ≡ . 
 

To find a general solution of this 1st order problem (ODE plus IC), we use the ex-
ponential function  and closely related functions, for which we have the following ba-
sic identities: 

tae

 
)( 11 ttatata eee −− =×  and                          (6-16) 10 ==× − eee tata

 
We begin the general solution by multiplying the ODE by the integrating factor , 
recognizing that this will make the left-hand side a perfect derivative: 

tae−

 

( ) ( ) ubexe
dt
dubexaexeubxaxe tatatatatata −−−−−− =⇒=−⇒=− &&  

 
Now we integrate the multiplied equation from the initial time  to an arbitrary time in-
stant t > , using τ  as the variable of integration: 
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Finally, we multiply through by , apply identities (6-16), move the IC term to the 
right-hand side, and arrive at the exact, general solution: 

tae
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−− +=
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tatta dubetxetx
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1

)( ,  ≤ t                           (6-17) 1t

 
The term  need not be inside the integral, since it is not a function of the integration 
variable τ .  Constant b also need not remain inside the integral.  Solution (6-17) is com-
parable to, but more general than, the second form of convolution solution (6-5). 

tae

 
6-5  Numerical algorithm for the general solution of the standard 1st order problem  
 
 We seek solutions of (6-17) in time-series form, that is, at discrete, equally spaced 
instants in time.  Accordingly, we define the following notation that employs descriptive 
subscripts: 
 

t = t1 t2 = t1 + Δt t3 = t2 + Δt … tn = tn - 1 + Δt tn + 1 = tn + Δt …
x(t) = x1 x2 x3 … xn xn + 1 …
u(t) = u1 u2 u3 … un un + 1 …
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Conceptually, we begin with the known values at t = t1, then integrate (6-17) from t1 to t2 
= t1 + Δt, in which we define Δt as the constant time step;  we now have known values at 
t = t2, so we can integrate again to go from t2 to t3 = t2 + Δt.  We proceed in this manner 
from one time to the next until we have determined values of x(t) at discrete instants in 
time over the complete time interval of interest.  From (6-17), the exact, general equation 
for stepping from time instant tn − 1 to the next instant tn is 
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By comparing Eq. (6-18) with Eq. (6-5), observe that the integral in (6-18) is clearly a 
forced-response convolution integral. 
 

Up to this point, the solution is exact.  But now we introduce what, in general, is 
an approximation.  We assume that u(τ) varies so little over the integration time step Δt 
that it introduces only small error to approximate u(τ) as being constant over Δt, with its 
value remaining that at the beginning of the integration time: 
 

u(τ) ≈ u(tn − 1) ≡ un − 1  for tn − 1  ≤ τ < tn                       (6-19) 
 
Using approximation (6-19) and tn = tn − 1 + Δt, we rewrite (6-18) with the convolution 
integral expressed in a more easily integrable form: 
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We change the variable of integration, τξ −Δ+= − ttn 1 , so that the integral becomes  
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Finally, with approximation (6-19), solution (6-18) can be written as 
 

( ) 1111 11
−−−

Δ
−

Δ +≡−+= nnn
ta

n
ta

n uxube
a

xex γφ                          (6-20) 

 
Equation (6-20) is a recurrence formula that is easy to evaluate numerically from one 
time instant to the next, especially since coefficients  and tae Δ≡φ ( ) =−≡ Δ abe ta 1γ  
( ) ab1−φ  are invariant once Δt has been selected.  Note that if the input u(t) is a con-
stant, as for a step function, then un = constant for all n = 1, 2, … , in which case (6-20) is 
an exact solution because Eq. (6-19) is exact, not an approximation.  Furthermore, if the 
actual u(t) is piecewise-constant, then (6-20) can be applied to produce exact results, 
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provided that Δt is chosen individually for each interval of constant u(t) such that the 
interval is an integer multiple of its own Δt. 
 
 To illustrate the application of Eq. (6-20), we re-visit the numerical solution of 
Section 1-6, the velocity response of a mass-damper system to a half-sine force pulse.  
M-file MATLABdemo11.m of Section 1-6, which calculates the response exactly, provides 
the benchmark for evaluating the approximate response calculation.  The MATLAB 
script M-file to calculate and graph the approximate response is: 
 
%MATLABdemo61.m 
%Mass-damper system approximate response to IC + half-sine pulse forcing 
m=5;c=2; %system mass & viscous damping coefficient, SI units 
a=-c/m;b=1/m; 
F=18;td=7.5; %half-sine pulse, amplitude (N), pulse duration (sec) 
w=pi/td; %circular frequency of half-sine pulse (rad/sec) 
Dt=1.5; %time step for recurrence calculations 
t=0:Dt:24;Lt=length(t); %array of time instants for recurrence calculations 
phi=exp(a*Dt);gam=(phi-1)/a*b; %constants in recurrence formula 
for n=1:Lt  %time series array of input force pulse 
    if t(n)<=7.5 
        fx(n)=F*sin(pi*t(n)/td); 
    else 
        fx(n)=0; 
    end 
end     
v=zeros(1,Lt);v(1)=3.3; %initialize velocity array, initial velocity (m/sec) 
for n=2:Lt 
    v(n)=phi*v(n-1)+gam*fx(n-1); 
end     
plot(t,v,'k'),bar(t+Dt/2,fx/10,1,'k') 

 
Note that the implementation of recurrence formula (6-20) in MATLABdemo61.m is a 
simple three-line for-loop. 

 
The figure on the next page was produced by combining the results of M-files 

MATLABdemo11.m and MATLABdemo61.m, and then adding explanatory labels and editing 
the bar graph.  For this example, time step Δt was intentionally chosen to be unreasonably 
large, Δt = 1.5 sec (compared with system time constant 5.21 =τ  sec), in order to 
produce clear distinctions between the exact and approximate dynamic variables.  
Nevertheless, the approximate calculation of velocity shows the correct trends 
qualitatively and is not highly inaccurate quantitatively.  If the calculations were repeated 
with a more reasonable time step,  Δt ≤ 0.1 1τ , then the results would be much more 
accurate (homework Problem 6.4). 
 
 Observe also in the figure on the next page the bar graph of approximate force 

 used in Eq. (6-20), which is the graphical representation of approximation (6.19).  
Because of its piecewise-constant character, this is sometimes called a stairstep 
approximation.  This approximation introduces a time delay or lag on the order of Δt into 
the approximate input.  This artificial time delay is obviously transmitted to the 
calculated approximate response. 

)(tf x
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 It is interesting and possibly useful to observe that, due to approximating u(τ) as 
being constant over each time step Δt, Eq. (6-20) is essentially IC + step response over 
each Δt.  Suppose that we were to seek an even more accurate recurrence formula than 
(6-20) by approximating u(τ) as varying linearly with time over each time step.  In that 
case, the solution would be essentially IC + step response + ramp response over each Δt.  
(Example 6-3 in Section 6-3 illustrates ramp response.)  So the more refined approximate 
recurrence formula would be (6-20) supplemented with an additional term that represents 
ramp response, and we would expect that additional term to include both un−1 and un as a 
consequence of the approximated linear variation of u(τ); see homework Problem 6.5. 
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6-6  Homework problems for Chapter 6 
 
6.1  Consider a mass-damper system with a suddenly applied cosine forcing function be-
ginning at t = 0, and let the mass have a known initial velocity.  The complete problem 
for velocity v(t) is described by the 1st order, LTI ODE =+ vcvm & tF ωcos , t > 0, and 
the IC v(0) = .  Use the general solution Eq. (6-5) to write an algebraic equation for the 
complete solution v(t) of this problem.  It will be necessary to evaluate the convolution 
integral.  You may use integration by parts and/or published tables of integrals, which are 
highly recommended.  Symbolic software (Mathematica, MATLAB, etc.) is also a po-
tential source of assistance with difficult integrals. 

0v
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6.2  Consider the standard 1st order LTI ODE (of a stable physical system) for dependent 
variable x(t):  )()1( 1 tubxx =+ τ& , with IC x(0) = 0.  Let the input function be the follow-
ing flat pulse of duration td: 
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(a)  Use solutions (6-6) to write two algebraic equations for the complete response x(t) of 
this problem.  One equation should apply for the time during which the pulse is active 
(including initial and final times), 0 ≤ t ≤ td, and the other equation should apply for the 
time after the pulse ceases, td ≤ t.  It will be necessary to evaluate the convolution inte-
gral. 
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Note that the result for td ≤ t can be written also as 
 

( ) tteebUtx d
ttt dd ≤−= −−− ,1)( 11 )(

1
τττ  

 
(b)  Suppose that 1τ=dt .  Sketch by hand (not by computer) a reasonably accurate time-

history plot of the nondimensionalized output 
1

)(
τUb
tx  versus time over the time interval 

150 τ≤≤ t . 
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6.3  Consider the equation of motion for spin velocity p(t) of a reaction wheel (from Ex-
ample 6-3 in Section 6-3):  )()1()( tMJpJcp m=+ θ& , with IC p(0) = 0.  Let the 
applied motor torque be the following sawtooth pulse: 
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Use solutions (6-6) to write two algebraic equations for the complete solution p(t) of this 
problem.  One equation should apply for the time during which the pulse is active (in-
cluding initial and final times), 0 ≤ t ≤ tr, and the other equation should apply for the time 
after the pulse ceases, tr ≤ t.  You may and should use without re-derivation the appropri-
ate results from Example 6-3 in Section 6-3, in which the applied moment is a per-
manently increasing ramp. 
 
6.4  Use MATLABdemo61.m in Section 6-5 as a template (which must be revised and sup-
plemented with labels, grids, etc.) to calculate approximately and graph the velocity re-
sponse of the same mass-damper system with the same IC, but now specifying smaller 
(than in Section 6-5) calculation time steps:  Δt = 0.5 sec and Δt = 0.25 sec.  You should 
find that the calculated dynamic response becomes progressively more accurate as you 
reduce Δt . 
 
6.5  (a)  Derive a more accurate recurrence formula than Eq. (6-20) by approximating 
u(τ) as varying linearly with time over each time step.  In other words, use in Eq. (6-18)  
the linear approximation  
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instead of the simpler approximation  (6-19).  By completing the integration, show (in all 
detail, as if the answer were not given) that the refined version of Eq. (6-20) is  
 

( )111 −−− −++= nnnnn uuuxx βγφ  
 

in which φ  and γ  are the constants defined in (6-20), and 
a
b

ta
−

Δ
≡

γβ . 

 
(b)  Revise M-file MATLABdemo61.m of Section 6-5 to implement the refined recurrence 
formula of part (a).  Using exactly the same numerical data as in the original program, 
run the revised program and plot the approximate time history v .  The approximate 
time history calculated by the refined recurrence formula should be substantially more 
accurate than that calculated by Eq. (6-20). 

)(t
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6.6  Consider the standard 1st order LTI-ODE of a stable system, Eq. (3-7), for dependent 
variable x(t):  )()1( 1 tubxx =+ τ& .  Let the initial condition be zero, x(0) = 0, and let the 
input function be a declining ramp, u(t) = )( ttc z − , in which c, a dimensional constant, is 
the downward slope of the ramp, and tz is the time at which the input passes through zero.   
 
(a)  Evaluate in all detail the convolution integral in Eq. (6-5) to show that the exact 
response solution is x(t) [[ ] ]11 )()1()( 11111

ττ τττττ t
zz

t
z etttbctetbc −− +−−+=−−+= . 

 
(b)  Let the numerical parameters be τ1 = 2.5 sec, tz = 10 sec, b = 3.5, and c = 1 (b and c 
in consistent units).  Write a MATLAB program, or adapt the code in Section 6-5 that 
executes the recurrence formula, to calculate and plot an approximate numerical solution 
for x(t) over the time interval 0 ≤ t ≤ 10 sec.  Adjust the time-step size Δt and the number 
of time steps over the 10-sec interval in your code until the graph of your approximate 
solution appears very similar to that of the corresponding exact solution from part (a).  
Submit your MATLAB code and your final graph of response. 
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Chapter 7 Undamped 2nd order systems:  general time response; 
undamped vibration 

 
© 2016 by William L. Hallauer, Jr. 

 
 The ideal 2nd order mass-damper-spring system was introduced in Section 1-9, 
and a theoretical response solution for an undamped system by elementary ODE methods 
was demonstrated in Section 1-10.  In this chapter, we explore ideal undamped 2nd order 
systems in greater detail, deriving theoretical response solutions by means of Laplace 
transformation with application of the inverse convolution transform from Chapter 6.  
The final section of this chapter is an introduction to vibration of real structures, 
including actual laboratory data. 
 
7-1  Standard form for undamped 2nd order systems; natural frequency ωn 
 

For the mass-damper-spring (m-c-k) system of Fig. 7-1, the ODE of motion (3-20) 
derived from Newton’s 2nd law, with use of 
the FBD in Fig. 3-9, is  
 

)(tfxkxcxm x=++ &&&             (7-1) 
 
 If we neglect damping by setting  
= 0 in Eq. (7-1), then we have an ideal (not 
real) undamped mass-spring (m-k) system.  
This undamped passive system is not fully 
realistic because every passive physical system is afflicted with some type and degree of 
energy dissipation, albeit very small in some systems.

xc &

1  Nevertheless, it is useful to study 
the undamped system because it reveals some important fundamental characteristics of 
2nd order systems.  From Eq. (7-1), the ODE for the m-k system is: 

 
k 

m 

x(t)

c 

 fx(t)

Figure 7-1 Mass-damper-spring system
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Let’s use Eq. (7-2) to develop the standard form that will apply for undamped 2nd 

order systems more generally.  First, we define algebraically the natural frequency of 
undamped vibration as the positive square root of the quotient of the stiffness and mass 
values (both of which are positive in most passive systems): 
 

m
k

n ≡ω                                                         (7-3) 

 

                                                 
1 In an active system with an external source of energy and feedback control, it is possible that the damping 
might be nullified; active systems are analyzed later, beginning in Chapter 14. 
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The natural frequency is very important physically:  it is shown in the next section that an 
undamped 2nd order system tends to vibrate (oscillate, pulsate, shake, quiver, …) 
periodically at circular frequency nω  radians per second.  Next, we define the standard 
input quantity 
 

)(1)( tf
k

tu x≡                                                      (7-4) 

 
So now we define x(t) as representing any appropriate output quantity (not necessarily 
just position as in Fig. 7-1), and we re-write (7-2) in standard form ( standard in this 
book, at least, and mostly standard in engineering literature): 
 

)(22 tuxx nn ωω =+&&                                                 (7-5) 
 

From Eq. (7-5) we see that input u(t) has exactly the same physical dimensions as 
output x(t).  In fact, we can identify u(t) as being the pseudo-static output, xps(t); that is, if 
x(t) varies slowly enough that  is negligible in comparison with , then ODE (7-5) 

reduces to a simple algebraic equation, , the solution of which is the 
pseudo-static response, x(t) = u(t) ≡ xps(t).  This response is called pseudo-static because 
it is not necessarily static (constant over time), but it varies slowly enough that the second 
derivative of response is negligible. 

x&& xn
2ω

)(22 tux nn ωω ≈

 
Example:  the simple pendulum, a rotational 2nd order system 
 
 You have probably seen the pendulum of a grandfather clock.  The ideal simple 
pendulum is very similar:  there is a bob of mass m attached to the lower end of a rod of 

length , the upper end of the rod being supported at frictionless 
hinge H.  We assume the rod to be rigid and to have negligible 
inertial moment.  The pendulum hangs downward and swings 
side-to-side with angle θ(t) in the plane of the paper, subject to 
the acceleration of gravity, g.  For completeness, we include an 
agent that can impose onto the pendulum an arbitrary applied 
moment M(t) about H.  Because we neglect the inertia of the 
rod, the rotational inertia of the pendulum about H m

l 

 m 

H 

 g 
θ(t) 

 mg 

 θsinl  

llength  

 M(t) 

 is 2lJ = . 
 

Newton’s 2nd law for rotation about H is 
 

Σ(all applied moments about H) = J × rotational acceleration =  θ&&l 2m
 

)(sinsin)( 22 tMmgmmmgtM =+⇒=×−⇒ θθθθ l&&l&&ll  
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Due to the sin θ  term, the exact ODE is nonlinear.  However, let’s consider only small 
rotational angles, °≈< 10θ , for which sin θ  ≅ θ  in radians.  This restriction linearizes 
the ODE: 
 

)()()( 222 tu
mg

tMggtMmgm nn ωθωθθθθθ =+⇒=+⇒=+ &&
lll

&&l&&l  

 
In the standardized form of the linearized ODE, the natural frequency is lgn =ω , and 
the standard input quantity (also the pseudo-static response) is lmgtMttu ps )()()( == θ .  
For the pendulum at small rotational angles, the term θlmg  is the restoring moment that 
opposes motion from the unforced static equilibrium position, θ  = 0; essentially, gravity 
plays the role of a rotation spring.  See homework Problem 7.4 for another interesting 
pendulous rotational system, a balloon carrying a basket. 
 
7-2  General solution for output x(t) of undamped 2nd order systems 
 
 Let’s solve Eq. (7-5) for output x(t), given any physically realistic input u(t), for 
time t > 0, and given appropriate initial conditions at t = 0.  We use Laplace transforma-
tion with application of the inverse convolution transform from Chapter 6.  To simplify 
the notation, we denote X(s) ≡ L[x(t)].  Transforming (7-5) with use of Eq. (2-17) gives 
 

)]([)()0()0()( 222 tuLsXxsxsXs nn ωω =+−− &                            (7-6) 
 
Equation (7-6) tells us that we need two initial conditions, one on the output and one on 
the derivative of the output, for this 2nd order ODE.  Accordingly, we simplify the writing 
with the definitions 
 

ICs for 2nd order ODE:  , initial “position”; )0(0 xx ≡ )0(0 xx && ≡ , initial “velocity”  (7-7) 
 

Solving Eq. (7-6) for X(s) with the use of notation (7-7) gives 
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We invert Eq. (7-8) using transforms (2-30) and (2-31), and the inverse convolution 
transform (6-3), to find the two equivalent general solution equations for the standard 
undamped 2nd order ODE, Eq. (7-5), with ICs 0)0( xx ≡  and 0)0( xx && ≡ : 
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7-3  Simple IC response and step response of undamped 2nd order systems 
 
 We find in this section two important special case solutions of Eqs. (7-9a,b):  (1) 
pure initial condition response for zero input, u(t) = 0; and (2) pure step response with 
both initial conditions being zero. 
 

For the case of pure initial condition response (also called free vibration), with 
u(t) = 0, Eqs. (7-9a,b) become  
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Let’s use a trigonometric identity [see Eqs. (4-6)-(4-8)] to combine the two sinusoids of 
(7-10) into a single term.  The following definition will reduce the writing required and 
also will turn out to be physically meaningful: 
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Figure 7-2 is an annotated graph of response (7-11)-(7-12) for positive values of 

the ICs,  > 0 and  > 0.  Clearly, the output is a pure sinusoid of amplitude xmax and  0x 0x&

Figure 7-2  IC response of an undamped 2nd order system 
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phase angle φ.  This form of response is called free vibration, because it occurs without 
any forcing input, u(t) = 0.  The circular frequency of vibration is ωn rad/sec, the natural 
frequency defined in Eq. (7-3).  The cyclic natural frequency is fn = ωn/2π cycles/sec 
(Hz), and the natural period annotated on Fig. 7-2 is Tn = 1/ fn = 2π/ωn sec/cycle.  Free 
vibration at the natural frequency is one of the most important characteristics of un-
damped systems and, more realistically, of lightly damped systems.  Damped 2nd order 
systems are discussed in Chapter 9. 
 
 For the case of pure step response, we set the ICs to zero, and we define the input 
to be a step function at time t = 0, with step magnitude U: 
 

u(t) = U H(t)                                                    (7-13) 
 
The appropriate form of the general solution to use in this case is Eq. (7-9a),  
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Here we used the property of the unit-step function that H(t − τ) = 1 for t − τ  > 0 (from 
Eq. (2-27) and Fig. 2-3); this inequality obviously is satisfied for τ  over the limits of the 
definite integral.  For most applications of the convolution integrals in Eqs. (7-9a,b), the 
form in (7-9b) is preferable because the integrand term u(t − τ) in (7-9a) is usually diffi-
cult to interpret and/or awkward to handle in the integration.  This case, however, is an 
exception since u(t − τ) is easy to interpret and is extremely simple.  Completing the inte-
gration gives 
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)cos1()( tUtx nω−=⇒ , 0 ≤ t                                     (7-14) 

 
Equation (7-14) is graphed for a few cycles of response in Fig. 7-3.  The response 

is sinusoidal and periodic with the system natural period Tn, as is the free-vibration IC  

Figure 7-3  Step response of an undamped 2nd order system 
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response.  However, (7-14) is forced response, and the input u(t) is non-zero and constant 
for t > 0, so this step response vibrates around a non-zero mean value (the pseudo-static 
output value xps = U ), oscillating between 0 and 2U.  In contrast, the free-vibration IC 
response of Eq. (7-12) and Fig. 7-2 vibrates around the zero mean value, oscillating 
between –xmax and +xmax. 
 
7-4  Discussion of the physical applicability of step-response solutions 
 
 The concept of step response in physical applications can be bothersome if one 
harbors the misconception that step response is valid only if the input is applied in an  

abrupt, discontinuous manner, as on the drawing at left.  
This misconception is natural and honest because of 
the mathematical definition of the step function, Eq. 
(2-26) and Fig. 2-2.  If we apply that strict definition to 
the step input analyzed in Section 7-3, without any 
recognition of the nature of the initial conditions, then 

the time history of the input would have to be a discontinuous step functio

 u(t) 

 t  0 
 0 

 U 

n. 
 
 However, it is instructive to consider also the role of initial conditions in step re-
sponse.  Step response solution (7-14) is derived for zero ICs,  = 0 and  = 0.  Imag-
ine that some powerful external agent enforces these ICs for time t < 0, then at t = 0, the 
external agent abruptly releases its hold on the system.  Under this circumstance, it does 
not matter whether the input u(t) jumps discontinuously from 0 to U at t = 0, as in the 

drawing above, or the input has value U both after 

0x 0x&

and 
before t = 0, as in the drawing at left.  An input value 
of U before t = 0 could not produce any effect on out-
put x(t), because it could not overpower the external 
agent that enforces the initial conditions before and 
right up to the instant t = 0.  A practical example to 
which we can relate is an airplane sitting on a runway, 

preparing to taxi for takeoff.  With the brakes firmly engaged, the pilot increases engine 
thrust, but the airplane is held motionless by the brakes.  In this example, the brakes play 
the role of “powerful external agent” that enforces the initial position and zero initial ve-
locity, and the engine thrust plays the role of input quantity.  After engine thrust has 
reached acceptable takeoff level, the pilot releases the brakes (at t = 0), and the airplane 
accelerates into takeoff taxi.  The engine thrust exists before t = 0, but it produces no 
taxiing motion then because the brakes completely restrain the air

 u(t) 

 t  0 
 0 

 U 

plane. 
 
 The conclusion of this discussion is that step response is a valid physical solution 
even if the input is constant before and after the initiation of motion (i.e., is not applied 
strictly like a mathematical step function), provided that initial conditions enforce the 
motion prior to the instant (usually t = 0) when the input becomes effective. 
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7-5  Dynamic motion of a mechanical system relative to a non-trivial static equilib-
rium position; dynamic free-body diagram 
 
 Consider the mass-spring system depicted in Fig. 7-4 (on the next page), which is 
representative in many respects of some real mechanical systems.  The system is oriented 
vertically in a gravity field with acceleration of gravity g.  Moreover, let’s suppose that 
the spring is close-wound:  a helical extension spring which, in its unstretched state, is 
wound with its coils forced into contact with each other, such that an initial tension force 

 is required to break the coil contact and allow the spring to begin stretching (Shigley 
and Mitchell, 1983, p. 449).  Figure 7-4 illustrates three possible states of such a system.  
The weight of mass m is W = mg, and it is a constant force vector acting downward 
through the center of gravity of the mass.  The spring has stiffness constant k and initial 
tension , so that the spring law is 

iF

iF ykFf iy +=  for , where y is spring stretch 
vertically downward.  State 1 of Fig. 7-4 shows the mass supported statically by an exter-
nally applied force W acting upward, with the spring unstretched and therefore exerting 
no force on the mass.  We define  as the 

iy Ff ≥

)(tyt total vertical motion of the mass (positive 
downward in this example, but not necessarily always so) relative to the unstretched-
spring position.  Now, if the externally applied upward force is slowly reduced, the 
weight of the mass is gradually transferred to the spring, and the spring stretches (pro-
vided that W > ), lowering the mass.  State 2 of Fig. 7-4 is the iF static equilibrium state 
that results after the externally applied upward force shrinks to zero, with the spring 
stretched by the amount y rom the State 1 position.  From the FBD of State 2, the equa-
tion of vertical static force equilibrium is 

s  f

 

k
FW

yWykF i
ssi

−
=⇒=+  , for W ≥                          (7-15) iF

 
 State 3 of Fig. 7-4 is a condition of dynamic response, with the dynamic force 

 acting on the mass.  We define the )(tf y dynamic position  as the motion relative 
to the static equilibrium position,  of Eq. (7-15).  We see from Fig. 7-4 that the total 
translation (from the unstretched-spring position) and the associated acceleration are 

)(tyd

sy

 
)()( tyyty dst +=     ⇒     )()( tyty dt &&&& =                               (7-16) 

 
The acceleration equation reflects the constancy of .  Let’s use the FBD for State 3 to 
write Newton’s 2nd law for vertical translation: 

sy

 
Σ(Forces)y = ( ) iytttiyt FWtfykymykFWtfym −+=+⇒+−+= )()( &&&&    (7-17) 

 
Now use Eq. (7-16) to eliminate  from Eq. (7-17): )(tyt

 
( ) iydsd FWtfyykym −+=++ )(&&                                   (7-18) 
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Figure 7-4  Static and dynamic positions of a hanging, spring-supported 
weight 

 1.  Spring 
      unstretched 

 2.  Static 
      equilibrium 

 3.  Dynamic  
      response 

 m 

 m 
 m 

 m  m  

 k  k 

 g

m 

 g 

 FREE-BODY DIAGRAMS:  Fi + k yt(t) 

Next, eliminate is , Eq. (7-15), from Eq. (7-18) in order to express the ODE in 
terms of 

FWyk −=
the motion relative to the static equilibrium position, the single dependent vari-

able, : )(tyd

 
)(tfykym ydd =+&&                                               (7-19) 

 
It is obvious physically that Eq. (7-19) is valid provided the upward dynamic motion does 
not exceed the static spring stretch:  0)()( >+= tyyty dst , i.e.,  sd yty −>)( .
 

Equation (7-19) is identical in form to Eq. (7-2), which applies for a mass-spring 
system oriented horizontally, with no involvement of a close-wound spring or gravity.  
The only difference is that the unknown in (7-19) is not the total motion, but, instead, the 
motion relative to the static equilibrium position established by gravity and the spring 
initial tension.  Consider the dynamic free-body diagram (DFBD) shown in Fig. 7-5 on 
the next page, which is similar to that of State 3 in Fig. 7-4, but without weight W and 
with only the spring force relative to the static equilibrium position.  These changes from 
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the FBD of State 3 in Fig. 7-4 are equivalent to eliminating 
 from Eq. (7-18) in order to obtain Eq. (7-19).  Clearly, 

applying Newton’s 2nd law to the DFBD Fig. 7-5 leads again, and much 
more easily, to Eq. (7-19).  

is FWyk −=

The important conclusion here:  if we want 
to solve only for the dynamic motion yd(t) relative to the static 
equilibrium position, not the total motion relative to the spring-
undeformed position, then we should use a DFBD from which all static 
influences (weight and spring initial tension in this case) have been 
eliminated.  The DFBD should include only dynamic forces (and/or 
moments) relative to the static equilibrium position. 

 

 fy(t) 

 m 

 k yd 

Figure 7-5 
Dynamic free-
body diagram  

This conclusion is useful more generally because, in many situations, we are, in-
deed, interested primarily in the dynamic response relative to the static equilibrium posi-
tion.  Homework Problem 7.3 is one example.  Moreover, this conclusion based upon the 
simple mass-spring system of Fig. 7-4 has broad applicability to other mechanical sys-
tems.  The subjects of Chapters 11 and 12 are more complex rotational systems and 
higher-order mechanical systems.  It is usually convenient when analyzing those systems 
to deal only with the simpler DFBDs and ODEs that we use when we solve only for the 
dynamic motion relative to the static equilibrium position. 

 
However, there are at least two classes of mechanical systems for which we must 

include (in FBDs and ODEs of motion) the weights of massive components:  (1) pendu-
lous systems for which gravity provides a spring effect, such as the simple pendulum ex-
ample in Section 7-1 and the balloon-basket vehicle of homework Problem 7.4; (2) 
systems for which initial conditions and/or dynamic inputs (forces, moments) are defined 
relative to the undeformed-spring state, for example, the airplane landing contact of 
homework Problem 7.5. 
 
Section 7-6  Introduction to vibrations of distributed-parameter systems 
 
 A system such as the mechanical mass-dashpot-spring system of Fig. 7-1 is often 
called a lumped-parameter system.  This descriptive term is used because the essential 
physical features are idealized to be spatially concentrated:  in Fig. 7-1, all of the mass is 
idealized to reside in one physical element, all of the damping in another, and all of the 
stiffness in yet another.  Some engineering systems can be modeled accurately using 
idealized lumped elements; but many real systems cannot, and these latter are called 
distributed-parameter systems.  A structural beam, such as that shown in Fig. 7-6 on the 
next page, is a prototypical distributed-parameter mechanical system.  It is obvious that 
the mass of this beam is not concentrated at a single point in space, but instead is 
distributed throughout the beam’s volume.  Similarly, the flexibility of the beam does not 
reside in a discrete spring, but also is distributed over the entire spring.  Finally, although 
there is very little damping in this particular system, it also is distributed throughout the 
beam in the forms of molecular “friction” within the deforming beam and fluid dynamic 
drag on the beam’s surface if the beam is immersed in air, another gas, or liquid. 
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Figure 7-6  Clamped uniform aluminum beam with nominal cross section 2 inch × 

81  inch.  Test configuration:  beam clamped at left between thick steel plates, 
leaving 10.0 inches of overhang; non-contacting proximity (displacement) sensor 
over right tip; bonded onto the beam’s right tip is a small, thin, steel plate, the 
“target” in which the proximity sensor induces eddy currents.  
 
 Figure 7-7 is an actual record of motion of the beam in Fig. 7-6 in response to a 
particular initial condition:  the tip of the beam was bent upward statically, then 

2released.      

 
Figure 7-7  Initial-translation dynamic response of the beam in Fig. 7-6, as detected 

shown in Fi

ry close to that 

by the proximity sensor. 
 
The subsequent time response was directly analogous to the theoretical IC response 

g. 7-2, with positive initial deflection, 00 >y , but zero initial velocity, 
00 =y& , )(ty  being vertical translation, positive upward, of the beam tip relative to the 

static equilibrium position under gravity loading.  Note in Fig. 7-7 that the character of 
the measured response appears ve predicted theoretically in Eq. (7-10) for 
an undamped 2nd order system, tyty nωcos)( 0= .  However, we can detect by detailed 
analysis of the data in Fig. 7-7 the following very small differences between actual and 

                                                 
2 In practice, this procedure is often called twang testing (also snapback, step-relaxation, and pluck test-
ing)—see homework Problem 9.4 for a more detailed discussion. 
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theoretical responses:  (i) slight reductions in amplitude from one cycle to the next, due to 
the very light system damping and to an imperfect release of the beam from its static 
initial deformation; (ii) a slight eccentricity of the vibration relative to the zero-translation 
position, due to a small instrumentation error, which is almost unavoidable in 
experimental measurements; and (iii) almost imperceptibly small distortion of the wave-
form shape relative to a perfect cosine.  (More easily observed distortion appears in Fig. 
7-9, which is discussed below.)  This small waveform distortion occurs because the beam 
is not a perfect 2nd order, lumped-parameter system; in reality, the beam is, mathemati-
cally, a much more complicated distributed-parameter system.  Nevertheless, it turns out 
that in many circumstances, including this particular one, we can approximately model 
distributed-parameter structures as 2nd order systems, with acceptable accuracy for many 
nginee

sured perio ystem’s natural period, and so the undamped 

e ring purposes. 
 
 Careful study of the experimental data in Fig. 7-7 shows that the time between 
any two successive peaks of the response signal, the “period” of damped vibration, is Td 
≈ 0.0294 sec.  The system of Fig. 7-6 is damped, so Td is not a true undamped “natural” 
period.  However, theoretical solutions for mathematical models predict that a measured 
period such as this for a very lightly damped system is almost equal, for all practical 
purposes, to the true natural period.  Therefore, in the example problems below, we shall 
assume that the mea d is the s
natural frequency is =≈ dn
 
 Figure 7-8 illustrates the spatial distribution of the beam vibrating after the same 
type of initial condition as that of Fig. 7-7, but with a much greater magnitude of defor-
mation.  For this edge-on photo, the shutter of the digital camera was open for ¼ second, 
during which time the beam vibrated through 8+ complete cycles.  The upper and lower 
limits of dynamic deformation appear as fairly distinct curved lines against the dark 
background in the photo, whereas the intermediate states of deformation appear as a blur.  
This occurs because the velocity of motion was zero at the extreme deformations; 
therefore the digital camera’s photosites were exposed during dispropor

Tf 1  34.0 Hz. 

tionately longer 
es to the extreme deformations than to the intermediate deformations. 

 
tim

 
Figure 7-8  Edge-on, ¼-second exposure photo of the beam of Fig. 7-6 vibrating af-

ple Pr

ter an initial static deformation and release of the beam tip. 
 
Exam oblem 7-1:  a calculation of the “effective” tip mass of the vibrating beam.   

Consider the system of Fig. 7-6.  By loading the beam statically with small cali-
brated weights hanging from the beam tip, and by measuring the resulting beam-tip 
downward vertical deflection with the prox ity sensor, students determined a beam-tip 

 

im
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average “effective” stiffness constant to be Ek  = 7.86 lb/inch.  With this stiffness and the 
measured natural frequency nf  = 34.0 H e can infer a value for the “effective” tip 

ass from Eq. (7-3) in the form  
 

z, w
m

=
×

=== − 2122 )sec0.342(
lb/inch86.7

)2( ππω n

E

n

E
E f

kkm 1.72e−4 lb-sec2/inch 

 

 
herefore, the total mass

It is appropriate to conduct a plausibility check of this result, especially since 
most of us find it difficult to relate intuitively to values of mass that are expressed in the 
traditional structural system of units (see Section 3-1).  Students measured the 10.00-inch 
overhang of the uniform aluminum beam in Fig. 7-6 to weigh Wb = 0.230 lb, and they 
measured the weight of the small steel target at the beam tip as 0.13 oz = 0.0081 lb. 
T  of the beam plus the steel target is  
 

= (0.238 lb) ÷ (386.1 inch/sec2) = 6.16e−4 lb-sec2/inch gWm TT =
 
The mass ratio is TE mm = 0.28.  In view of the photo of the vibrating beam, Fig. 7-8, it 
seems physically plausible that roughly 28% of the total structural mass is effectively 

volved in the vibration.  This ends Example Problem 7-1. 

ulations based upon ideal theory, nominal dimensions, and 

in
 
Example Problem 7-2:  calc
standard material constants 

ate of the natu
 
 Let’s calculate an estim ral frequency of the beam system of Fig. 7-6 
using Eq. (7-3) in the form EEn mkf π2

1= .  In this calculation, let’s assume that we do 
not have measured data from actual hardware or instrumentation, i.e., that we have only 
the type of information that would normally be available in the preliminary-design phase 
f an engineering project, before even a prototype is fabricated. 

 

le

o

First, let’s calculate the theoretical effective stiffness constant Ek .  From your 
courses and textbooks on static structural behavior, you might be familiar with the 
deformation under loading of structural members such as uniform (prismatic) beams and 
shafts that are fabricated from homogeneous, isotropic, linearly elastic materials.  The 
theory relevant to the present situation is that for a cantilever (ideally clamped-free) 
beam.  From any textbook with the words “mechanics of materials” or “strength of 
materials” in its tit 3, you can find that the effective stiffness at the tip of a uniform 
cantilever beam is Ek  = 33 LEI , in which E is the material modulus of elasticity, I is the 
2nd area moment (also called area moment of inertia) of the beam cross section, and L is 
the overhanging length of the beam.  For the beam of Fig. 7-6, let’s use the standard (in 
preliminary-design calculations) elastic modulus for aluminum:  E = 10.0e+6 lb/inch2.  
The nominal rectangular cross-sectional dimensions of the beam are wid 00 th b = 2.

                                                 
3 Examples of such textbooks, listed in the References section:  Beer and Johnston, 1992; Hibbeler, 1997; 
and Timoshenko and Young, 1962. 
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inches and depth h = 1/8 inch, for which the theoretical 2nd area moment is 123bhI =  = 
3.255e−4 inch4.  Using the overhang length of 10.00 inches, we calculate the effective 

-tip stiffness to be 
 
beam

3

4426

)inch00.10(
)inch10255.3()lb/inch1000.10(3 −××××

=Ek  = 9.766 lb/inch 

 

inches) = 0.2500

Next, let’s calculate an effective tip mass Em .  Consider first the vibration of an 
ideal uniform cantilever beam alone (i.e., without a concentrated tip mass such as the 
steel target shown on Fig. 7-6).  More advanced theory4 shows that, for such a bare beam, 
the effective tip mass vibrating at the fundamental natural frequency is 0.242672 of the 
total beam mass, which we determine next.  The weight of a uniform beam is Wb = wAL, 
in which w is the weight density (weight per unit volume), and the cross-sectional area of 
a rectangular beam is A = bh.  Let’s use the standard (in preliminary-design calculations) 
weight density of aluminum, w = 0.1000 lb/inch3, so that the weight of our ideal canti-
lever beam is Wb = (0.1000 lb/inch3)×(¼ inch2)× .00  lb.  Hence, the 
effective tip mass of the bare beam alone is bEm  = 

(10
gWb×242672.0  = 0.242672 × 

(0.2500 lb) ÷ (386.1 inch/sec2) = 1.571e−4 lb-sec2 h.  To obtain an intuitively logical 
estimate of the total effective tip mass, w add bEm  the mass of the steel target that is 
bonded to the beam tip

/inc
 

bE

e 
 on Fig. 7-6:  =  + (0.0081 lb) ÷ (386.1 inch/sec2) = 

−4

uency based upon ideal theory, nominal dimensions, and 
aterial constants is  

 

to
m Em

1.78e  lb-sec2/inch.   
 

Finally, the natural freq
standard m

/inchseclb1078.1
lb/inch77.9

2
1

2
1

24 ⋅×
== −ππ Em

 
See homework Problem 7.8 for an analysis of the discrepancy between this calculate

E
n

k
f  = 37.3 Hz 

d 
atural 

p-
ward with a small hammer, the tip moved vertically as shown on Fig. 7-9, next page.   

                                                

n frequency and the measured value of 34.0 Hz.  This ends Example Problem 7-2. 
 
 The clamped-beam system of Fig. 7-6 appears to behave very much like a 2nd or-
der system when it responds dynamically to a simple initial static deflection of the beam 
tip.  However, when it is subjected to most other possible types of excitation, its dynamic 
response is more complicated.  For example, when the beam tip was tapped lightly u

 
4 Theory from, among many possible sources, the following textbooks on structural dynamics that are list-
ed in the References section:  Bisplinghoff, et al., 1955, Example 3-1; Craig, 1981, Example 10.3; Meiro-
vitch, 1967, Section 5-10; and Meirovitch, 2001, Example 8.4. 
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Figure 7-9  Dynamic response to a hammer tap at time t = 0 sec of the beam on Fig. 
7-6, as detected by the proximity sensor. 
 

The input force that stimulated the response of Fig. 7-9 was approximately a half-
sine pulse (as described in Sections 1-5 and 1-6) of very short duration relative to the 
lightly damped period of this system, Td ≈ 0.0294 sec.  In Chapter 8, theory is developed 
showing that, if the system were a true undamped 2nd order system, then the time re-
sponse to such a pulse would have almost a perfect sine waveform, starting at time t = 0 
sec.  However, the waveform in Fig. 7-9 is quite different from a perfect sine waveform; 
in fact, it is closer to being the sum of many sinusoids, in the general spirit of a Fourier 
series, but without the property of Fourier series that all higher series sinusoids have fre-
quencies that are integer multiples of the frequency of the first (fundamental) sinusoid.5  
In the case of Fig. 7-9, the total motion consists primarily of a first sinusoid with fre-
quency 34.0 Hz, plus a second, lower-amplitude sinusoid with frequency approximately 
215 Hz.  The motion at 34.0 Hz represents the first (fundamental) mode of vibration, and 
the motion at 215 Hz represents the second mode of vibration.   
 

In fact, the beam system of Fig. 7-6 has many more than two modes of vibration, 
each with a characteristic frequency higher than that of the previous mode.  The third and 
higher modes are not evident in Fig. 7-9 only because the particular pulse stimulus ap-
plied in this case did not noticeably excite those higher modes; however, they could be 
excited by any number of other stimuli, such as sharp pulses applied at particular loca-
tions, high-frequency sound-pressure waves, etc.  In reality, every distributed-parameter 
system is a higher-than-2nd-order system, and, if only lightly to moderately damped, has 
many modes of vibration.  For example, every acoustic musical instrument is a fluid or 
structural distributed-parameter system whose distinctive sound quality is a direct conse-
quence of its particular modes of vibration.6  However, except for this short descriptive 
introduction, the subject of distributed-parameter systems is beyond the scope of this 

                                                 
5 The subject of Fourier series is developed in most textbooks on advanced calculus (for example, Hilde-
brand, 1962, pages 216-226) and in most textbooks on elementary partial differential equations. 
6 If you are interested in the physics of musical instruments, see Cannon, 1967, Sections 13.2-13.6, for an 
excellent introduction written by an engineer for students of engineering. 
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book.  The subject of vibration modes appears again in Chapter 12, which deals with un-
damped, 4th order, lumped-parameter systems that have two modes of vibration. 

 
Observe from Fig. 7-9 that the translation response of the beam system of Fig. 7-6 

was still dominated by the first vibration mode, even though the tip-pulse stimulus also 
excited the second mode, but to a much lower amplitude than that of the first mode.  
Hereafter in this book, the only response of any distributed-parameter system that we 
shall consider is the contribution of the first mode, and we shall assume that it dominates 
the total response.  Indeed, this is often a good engineering approximation for distributed-
parameter structural systems that include relatively large, spatially concentrated masses.  
Consider, for example, the system of Fig. 7-10, which is the same as that of Fig. 7-6 but 
with the addition at the beam tip of a concentrated-mass assembly that consists of two 
ceramic magnets and an aluminum spacer, and weighs 0.254 lb. 
 

 
Figure 7-10  Structural system of Fig. 7-6, with the addition at the beam tip of two 
ceramic magnets and an aluminum spacer.  Note the same steel-plate tip-target for 
the proximity sensor as on Fig. 7-6. 
 
 When the beam tip of Fig. 7-10 was tapped lightly upward with a small hammer, 
the tip moved vertically as shown on Fig. 7-11.  The tip-translation response curve is a 
very clean sine waveform with almost no discernible distortion.  The absence of 
significant distortion in the waveform means that, for our purposes, this beam-mass 
system behaves like a 2nd order system, even though it is a distributed-parameter system.   
 

 
Figure 7-11  Dynamic response to a hammer tap at time t = 0 sec of the beam on Fig. 
7-10, as detected by the proximity sensor. 
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The addition of a relatively large quantity of mass at the beam tip reduces consid-
erably the frequency of the waveform on Fig. 7-11 relative to the 34.0-Hz frequency of 
the fundamental waveform on Figs. 7-7 and 7-9; a careful analysis of the data in Fig. 7-11 
shows that the frequency of vibration is f = 15.85 Hz. 
 
Example Problem 7-3:  a predictive calculation of the vibration frequency of the beam-
mass system of Fig. 7-10.   
 
 Suppose that we had wanted to predict the frequency of the beam-mass system of 
Fig. 7-10 before actually assembling the system and measuring the frequency.  The 
following is an intuitively logical approach, though not necessarily theoretically rigorous.  
Providing that the clamped beam deforms linearly under load, the addition of mass and 
weight to the beam tip should not alter the beam’s stiffness constant, so we use the same 
measured beam-tip effective stiffness as that of Example Problem 7-1,  = 7.86 lb/inch.  
As stated previously, the concentrated-mass assembly that was added to the beam tip 
weighs 0.254 lb.  To obtain the total effective vibrating tip mass, it seems reasonable to 
add together this value and the effective tip mass of the bare beam plus the steel target, as 
determined in Example Problem 7-1.  Thus, we find the total effective mass  =  

Ek

Em
)inch/sec1.386(lb254.0 2  + 1.72e−4 lb⋅sec2/inch = 8.30e−4 lb⋅sec2/inch.  Finally, we 

calculate the predicted natural frequency to be 
 

/inchseclb1030.8
lb/inch86.7

2
1

2
1

24 ⋅×
== −ππ E

E
n m

k
f  = 15.5 Hz 

 
 This predicted natural frequency is lower than the actual measured value of 15.85 
Hz by a margin that is unexpectedly large, presuming that all assumptions underlying the 
theory are valid.  This suggests that the actual effective stiffness during the dynamic re-
sponse of Fig. 7-11 was greater than 7.86 lb/inch.  This is quite possible, because the 
students measured the beam-tip average effective stiffness constant to be 7.86 lb/inch 
over a range of very small downward deformation of the beam, but they also observed 
that the local stiffness (slope of the curve of load versus deflection) increased pro-
gressively as the downward deformation increased.  Observe on Figs. 7-6 and 7-10 at the 
clamped end of the beam that there appears to be a small gap between the edge of the 
upper steel clamping plate and the beam top surface; although not clearly visible on these 
photos, there is a similar gap between the lower clamping steel plate and the beam lower 
surface.  These gaps are widest when the beam is undeformed, but as the beam is de-
formed downward, the lower gap gradually closes, thus slightly reducing the beam’s ef-
fective length L and thereby more significantly increasing its tip stiffness,  =  Ek 33 LEI , 
from Example Problem 7-2.  The static gravity load of the concentrated-mass assembly 
shown on Fig. 7-10 closed the lower gap, relative to its width on Fig. 7-6 without the 
concentrated-mass assembly.  Thus, it is indeed likely that the average beam-tip stiffness 
during the response recorded on Fig. 7-11 was greater than that during the responses re-
corded on Figs. 7-7 and 7-9.  The actual clamping support and restraint of the aluminum 
beam in this experiment is clearly not the ideal, perfectly sharp edge and completely rigid 
wall that the elementary theory assumes for a cantilever beam. 
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7-7  Homework problems for Chapter 7 
 
7.1  A particular device is known to be an LTI mass-spring system having negligible 
damping.  It is required that stiffness constant k and mass m be identified experimentally.  

First, a static force of 100 N is ap-
plied through a string tied to the 
mass, producing a static translation 
of the mass.  Next, the string is cut 
cleanly, allowing the system to vi-
brate freely from the initial static 
translation (with zero initial veloc-
ity).  The subsequent motion is 

measured by an accelerometer, a sensor that is attached to the system mass and measures, 
of course, translational acceleration of the mass.  The measured acceleration is described 
with good accuracy by the equation 

  Taut string 
 before t = 0

 m 

 x0 

 Position of mass for 
 unstretched spring 

 k 

 Stretched spring 
 before t = 0 

 Accelerometer

 

)10cos(93.4)()( ttxta π−=≡ &&
2sec

m , for 0 < t, with t in seconds 

 
(a)  Differentiate twice Eq. (7-12) for displacement, ( )φω += txtx ncos)( max :  first, to de-
rive the associated equation for velocity, )()( txtv &= ; and second, to derive the associated 
equation for acceleration, )(t)()( xtvta &&& == .   
 
(b)  From the experimental data given previously and your results in part (a), infer values 
(with units) for stiffness constant k and mass m. 
 
7.2  Consider again the reaction wheel assembly introduced in Section 3-3 (Fig. 3-1), but 
now suppose that there is a rotational spring with stiffness constant kθ connecting the 
shaft to a rigid wall.  Also, for this problem only, assume that the bearing viscous 
damping torque is negligible. 

  
Motor  
torque Mm(t) 

 kθ  

Rotational 
inertia J 

θ(t) 

(a)  Sketch a rotational FBD (similar to that in Sec-
tion 3-3, but with appropriate differences), then ap-
ply Newton’s 2nd law for rotation to derive the 2nd 
order ODE for wheel rotation θ(t).  This ODE 
should have the form of Eq. (7-2), but with the 
notation appropriate for this system. 
 

(b)  Convert the ODE of part (a) into the standard form (7-5), .  Write 
specific equations (in terms of this system’s parameters and notation) for natural fre-
quency ωn and input quantity u(t).   

)(22 tunn ωθωθ =+&&

 
(c)  The electric torque motor that drives the rotor generates 4.00 oz-inch of torque per 
amp of electrical current (1 lb = 16 oz).  According to the motor manufacturer, the current 
should be limited to 5.00 A or less in order to avoid toasting the motor, so the maximum 
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motor torque is 20.0 oz-inch.  Suppose that this maximum torque is applied to the rotor as 
a step function.  It is required that the subsequent rotation angle θ(t) of the rotor not ex-
ceed 45°.  Calculate the minimum stiffness constant kθ (units of lb-inch/rad) that will 
limit the step response θ(t) to 45° or less.  Also, calculate the natural frequency in Hz of 
the system with this value of kθ.  The rotor has rotational inertia J = 2.56e−3 lb-sec2-inch. 
 
7.3  In the test laboratory of a spacecraft manufacturer, a vibration-isolation platform is 
supported on a flexible foundation so that the vibration induced by traffic on a busy 
nearby freeway will not disturb functional testing of delicate space-qualified components.  

The platform weighs 907 kgf , and the flexible foundation has 
nominal stiffness constant k = 3,440 kN/m.   

 

  Flexible foundation 

  Platform 

  y(t) 

 
(a)  Calculate the predicted values of system natural frequency 
in rad/sec and Hz, and system natural period Tn.  Recall from 
Section 3-2 that the kgf is not a consistent unit in the SI sys-
tem. (partial answer:  ωn = 61.6 rad/sec) 
 

(b)  In a test to determine precisely the dynamic characteristics of this mass-spring 
system (having negligible damping), the platform is to be given initial downward 
displacement y(0) = −0.104 mm (relative to the static equilibrium position) and initial 
upward velocity  = +7.20 mm/sec.  The platform will then be allowed to vibrate 
freely.  Write the numerical algebraic equation for the predicted response y(t) in mm. 

)0(y&

 
7.4  Consider the rolling motion of a balloon carrying a basket, with the vehicle neither 
ascending nor descending.7  Weight W of the vehicle acts downward through the 

vehicle’s center of gravity G, and buoyancy force W acts 
upward through center of buoyancy M, which is the 
center of gravity of the volume of air displaced by the 
vehicle.  We denote as R the separation of G and M in 
the vehicle’s plane of symmetry.  Note that with M 
above G, weight and buoyancy form a stabilizing couple 
moment, the moment arm being θsinR .  Suppose that 
wind, gusts, and possibly other forms of disturbance and 
control exert an externally applied rolling moment about 
G, which is denoted as Mr(t).  Denote the vehicle’s 
rotational inertia about G as JG.  Assume that the vehicle 
rolls about point G, as if there were a frictionless hinge 
at G, and neglect all sources of damping. 

W 

M θ(t) 
R 

 
(a)  Apply Newton’s 2nd law for rotation to derive the linearized 2nd order ODE for roll 
angle θ(t), assumed to be sufficiently small that radianssin θθ ≈ .  This ODE should 
have the form of Eq. (7-2), but with the notation appropriate for this system. 
 

                                                 
7 The same basic principles of dynamics and fluid statics apply if the vehicle is a submerged submarine. 

W 

G 

Mr(t) 
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(b)  Convert the ODE of part (a) into the standard form (7-5), .  Write 
specific equations (in terms of this system’s parameters and notation) for rolling natural 
frequency ωn and standard input variable u(t).  (partial answer:  

)(22 tunn ωθωθ =+&&

Gn JWR=ω ) 
  

  Landing 
gear beams 

Fuselage  
cross-   
section 

7.5  (adapted from Craig, 1981, Problem 5.1 on page 120)  In 
single-engine, high-wing, general-aviation airplanes, the structures 
of the main landing gears are usually simple tilted cantilever 
beams, as illustrated in the drawing at right.  When this type of 
airplane touches down in a landing, the beams, in combination 
with the flexible tires, constitute a structural spring that cushions 
the landing impact. 

0 an = V. 

 
The drawings below show a simplified model used to study landing impact of a light 
airplane, with mass m being that of the airplane body, and stiffness k being that of the 

landing gear beams and tires.  (The model 
also represents a person bouncing passively 
on a pogo stick.)  The airplane’s sinking 
speed just before touchdown is denoted as 
V, and g is the acceleration of gravity.  Let’s 
call the instant of tire contact t = 0 and 
measure the airplane’s downward vertical 
motion y(t) relative to its position at that in-
stant, as indicated on the right-hand draw-
ing.  Hence, the initial conditions are y(0) = 

d 0(y& )

 

V 

 k 

 m 

 t = 0 

g 

 y(t) 

 m 

 before contact 

 
(a)  Sketch a FBD of the forces acting upon m during the time of tire contact with the 
ground, and use that FBD and Newton’s 2nd law to write the 2nd order ODE of motion for 
y(t).  Note in this case that we measure motion relative to the spring-undeformed position, 
not relative to the static equilibrium position, so it is necessary to include the body weight 
W = mg on the FBD.   
 
(b)  Put the ODE of motion into standard form.  Now combine both the IC solution (since 

= V > 0) )0(y& and the step-response solution (since W is essentially a step input) that are 
derived in Section 7-3 to write the algebraic equation for the response y(t) during the time 
of tire contact.  Express this equation in the form y(t) = C1 + C2 sin(ωnt − C3), where the 
Ci and ωn are positive constants that you should define in terms of the given algebraic 
parameters.  You should find useful the trigonometric identity sinA cosB ± cosA sinB = 
sin(A ± B).  If necessary, review the procedure in Section 4-3, Eqs. (4-6)-(4-8), for com-
bining sines and cosines. 
 
(c)  Use the correct result from part (b) above to sketch a time history of the response y(t) 
during the time of tire contact.  To make it relatively easy to sketch, suppose that the 
landing is hard, with kWV , and show that n 3=ω [ ])30sin(21)()( °−+= tkWty nω .  

 7-19



 Chapter 7  Undamped 2nd order systems:  general time response; undamped vibration 
 

From your y(t) equation and sketch, infer general algebraic equations (not applicable only 
for kWV n 3=ω ) for the maximum value ymax, the time at which y(t) = ymax, and the 
time at which the tires loses contact with the ground upon rebound.  For what range of 
landing impact velocities V does this theory predict that the tires will lose ground contact 
upon rebound?  Is this theory completely realistic? 
 
7.6  The ideal LC circuit8 drawn below is a series combination of a voltage source , 
an ideal inductor (having only inductance L, no resistance), and a capacitor with 
capacitance C.  Recall that the current is the rate of change of charge q(t) on the 

capacitor, 

)(tei

dtdqi = .  Apply Kirchhoff’s voltage law, as in 
Electricity Example 4 of Section 5-2, and show that the ODE for 

)  is(tq )()1( teqCqL i=+&& .  Convert this ODE into the standard 

2nd order form (7- )(tu ; write specific equations 
[in terms of L, C, and )(t ] for natural frequency ωn and input 

5),

quantity u(t).   

the methods of Chapter 

 22qq nn ωω =+&&

 ei

 

ei(t) C
eo(t) 

i(t) 

L 

 
7.7  The circuit9 drawn at 
right consists of three stages, 
each built around an op-amp, 
and there is feedback of vol-
tage ef(t) from the last (right-
hand) stage to the first (left-
hand) stage, where the input 
voltage ei(t) is applied.  The 
circuit output voltage, eo(t), is 
the output of the middle stage.  For the first stage, a summing, inverting integrator, use 

5 to derive the first ODE, miiff eCReRe &111 −=+ .  Next, for 
the middle sta in  integrator, derive the second ODE, ge, an verting =2Rem  oeC &2−  
(homework Problem 5.6).  Now differentiate the second ODE and use the result to 
substitute for me&  in the first ODE.  The last stage is a simple sign inverter, for which ef  = 
− eo  from Eq. (5-13b).  Substitute for ef  and show that the ODE relating output voltage 

ircuit is eo(t) to inpu e ei(t) for the entire ct voltag i
f

oo e
R
R

CRCR
e

CRCR
e 111

=+&& .  

Convert this ODE nd order form Eq. (7-5), )(22 tuee nono ωω =+&& ; write 
specific equations (in terms of this circuit’s resistances, capacitances, and input voltage) 
for nat

iff 111221122

 into the standard 2

ural frequency ωn and input quantity u(t).   

                                                 
8 The LC circuit is a simplified model for devices such as antennas and cavity resonators that transmit and 
receive electromagnetic energy (Halliday and Resnick, 1960, Chapters 38 and 39).  Also, cascades of LC 
pairs are often used as passive filters in radiofrequency, 100 kHz and above, applications (Horowitz and 
Hill, 1980, pages 654-656). 
9 This circuit with op-amps, capacitors, and resistors is essentially the electronic analog computer (see the 
footnote to Problem 5.6) for solving ODE (7-5). 

 C1 C2 R 

R2 R R1f 

R1i 

ei(t) 

em(t) ef(t) eo(t) 
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7.8  If you compare the experimental results for a beam that are presented in Example 
Problem 7-1 (page 7-11) with the ideal theoretical results presented in Example Problem 
7-2 (page 7-12), you will observe that there are some significant differences between the 
two sets of results.  In this problem, you will investigate some reasons for those 
differences. 
 
(a)  The beam of Fig. 7-6 is an extruded aluminum “flat”.  Due to manufacturing imper-
fections, its cross section is not completely uniform (constant) along the length; however, 
students made the following careful measurements of average cross-sectional dimen-
sions:  width b = 2.00 inches, depth h = 0.120 inch.  The students also measured the 
average weight per unit length of 0.0230 lb/inch.  Using this information, calculate the 
“actual” average weight density w in lb/inch3, and compare your value with the standard 
(in preliminary-design calculations) value for aluminum, 0.1000 lb/inch3, which is used 
in Example Problem 7-2.  Also, calculate the total weight of the beam,  in lb, based 
upon the lengthwise weight density 0.0230 lb/inch, and assuming L = 10.00 inches. 

bW

 
(b)  In  a series of independent tests on aluminum flats from the same manufactured lot as 
the beam of Fig. 7-6, students measured the average modulus of elasticity in bending E = 
9.43e+6 lb/inch2, which is about 6% lower than the standard (in preliminary-design cal-
culations) value of 10.0e+6 lb/inch2.  Use this measured value, along with the measured 
dimensions from part (a) to calculate the effective beam-tip stiffness constant  = Ek

33 LEI , assuming that the beam overhang length is precisely L = 10.00 inches.  Also, 
compare this calculated value of  with the measured value of 7.86 lb/inch from 
Example Problem 7-1 and with the ideal theoretical value of 9.766 lb/inch from Example 
Problem 7-2.

Ek

10  [NOTE:  It can be shown, by evaluation of propagation of error,11 that a 
small error in the value of depth h produces three times that error in the calculated 
stiffness constant  (for example, a 2% error in h produces a 6% error in ); similarly, 
a small error in the value of length L produces three times that error in .] 

Ek Ek

Ek
 
(c)  Use the weight  that you calculated in part (a) to calculate the effective tip mass of 
the bare beam alone from  = 

bW

bEm gWb×242672.0 , in which 0.242762 is the theoretical 
factor introduced in Example Problem 7-2.  Next, calculate the total effective tip mass, 
including the mass of the steel target that is bonded to the beam tip on Fig. 7-6, from  
=  + (0.0081 lb) ÷ (386.1 inch/sec2).   Finally, use this  and the  that you calcu-
lated in part (b) to determine a corrected estimate (relative to that of Example Problem 7-
2) for natural frequency  in Hz. 

Em

bEm Em Ek

nf
                                                 
10 Example Problem 7-3 (page 7-16) describes how tiny gaps between the thick steel clamping plates and 
the aluminum beam surfaces might change the effective beam length L.  It is worth observing also that an-
other possible source of stiffness error, which is difficult to assess quantitatively, is some significant flexi-
bility in the steel clamping plates.  The theoretical equation for beam-tip stiffness is based on the assump-
tion that the clamping medium is completely rigid. 
11 Propagation of error is discussed in textbooks on experimental instrumentation and measurements, for 
example, Dally, Riley, and McConnell, 1984, pages 544-545. 
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7.9  For the undamped (or lightly damped) mass-spring system drawn below at left, Eq. 
(7-3) gives the natural frequency as mkn =ω .  If we attach an additional mass  to 
the original mass, as drawn below at right, then the natural frequency of the modified 
system is 

am

)( aan mmk +≡ω . 
 

k 
m 

x(t)

Original system Original system Added-mass system 

x(t) 

m ma 

k 

(a)  Suppose that the parameters m and k of the original system are unknown, but that we 
know the value of the added mass , and that we are able to measure experimentally 
the natural frequencies 

am

nω  and anω .  Derive algebraically the following equation for the 

unknown mass m:  
1−)2

an

am
(

=
ωn

m
ω

.  The traditional method described here may be 

called the added-mass or added-inertia method.12  
 
(b)  Apply the added-mass method of part (a) to calculate both the 2nd order effective tip-
mass quantity  Em and the 2nd order effective tip-stiffness constant  of the beam struc-
tural system shown on Fig. 7-6.  The data that you will need is stated in Example Prob-
lems 1 and 3:  the measured natural frequency of the original system is  = 34.0 Hz; the 
concentrated-mass assembly that was added to the beam tip (Fig. 7-10) weighs 0.254 lb; 
and the measured natural frequency of the added-mass system is  = 15.85 Hz. 

Ek

nf

anf
 
7.10  A distributed-parameter structural system13 is shown in the drawing; the “snapshot” 

of a dynamic deformation state (with exaggerated 
magnitude) is drawn in dashed lines.  This system 
consists of an essentially rigid block of mass m and 
two parallel cantilever beams.  The two flexible (in 
bending) beams are nominally uniform and identi-
cal to each other, with rectangular cross section of 
width b, depth h, and cross-sectional area A = bh.  
The beams are embedded into the mass, just as 
they are embedded into the foundation below.  In-
plane rotation of mass m is suppressed by the very 

 

h 

 x(t) 

Side view Front view 

 m 

L 

 b 
 fx(t)

                                                 
12 The added-mass method is an elegantly simple technique for finding experimentally the unknown para-
meters of a 2nd order, or approximately 2nd order, linear mechanical system.  The method requires only that 
we be able to measure accurately the free-vibration frequencies; otherwise, the motion sensors and other 
instrumentation can be uncalibrated.  Use of the added-mass method is a simple example of system identifi-
cation, which is discussed at greater length in Section 9-9. 
13 This structure is a rudimentary form of one-story shear building that is used for studying the structural 
dynamics of buildings (Craig, 1981, pages 42, 265, 346, etc.; Clough and Penzien, 1974, pages 226-227).  
The rigid mass represents a floor slab/girder, and the flexible beams represent structural columns. 
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high axial stiffness of the beams and the separation of the two beams.  The bending 
slopes of the beams where they join mass m are essentially zero due to the rigidity of 
mass m and of the beam-to-mass joints.   Provided that forcing [such as fx(t) on the 
drawing] and/or initial conditions are in the plane of the paper, motion of the mass is 
restricted to one-dimensional translation, x(t).  You should be able to verify from a 
textbook on mechanics of materials that the total effective stiffness constant of the two 
beams that restrain motion of mass m is staticxE ( xfk )≡  = 3122 LEI× .  We can account 
for the contribution of the beams’ mass to the approximately 2nd order dynamics of this 
system by using what is known in more advanced theory as the consistent mass of a 
distributed-parameter structure.  We denote the weight per unit volume of the beam 
material as w and the mas  as s density gw≡ρ .  Then the total consistent mass from the 
two beams, which effectively moves with mass m through translation x(t), is c  m2  =

LAρ)420156(2×  (Craig, 1981, page 387);  thus, the total effective mass of the struc-
tural system is  = m . Em cm2+
 
(a)  Write an algebraic equation for the natural frequency nω  in rad/sec of this structural 
system in terms of the system parameters E, I, L, m, w, A, and g. 
 
(b)  Consider an actual fabricated version of this structural system, shown in the photo-
graph, which is used in an instructional laboratory 
experiment.14  The beams are extruded aluminum 
“flats”, from which students made the following 
careful measurements of average dimensions and 
properties:  L = 12.00 inches, b = 2.010 inches, h = 
0.1259 inch; w = 0.0965 lb/inch3; E = 9.40e+6 lb/ 
inch2.  The relatively rigid mass m was machined 
from an aluminum block; the students measured its 
weight as 1.61 lb.  Calculate the natural frequency 

 in Hz of this laboratory apparatus. nf

                                                 
14 The principal plane of the actual laboratory apparatus is horizontal relative to gravity.  The photograph is 
rotated 90° to make the plane appear vertical, in order to match the drawing on the previous page. 
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We analyzed previously the response of systems to a half-sine pulse input (e.g., in 

Sections 1-5 and 1-6).  In this chapter, we will continue analysis of pulse excitation and 
subsequent dynamic response.  Most importantly, we will extend the analysis to the con-
cept of the impulse, which in its simplest form is u × td, the product of excitation and the 
duration of excitation.  In particular, the Dirac delta or ideal unit-impulse function is es-
sential in the theory of linear systems and also useful in practical applications. 
 
8-1  Flat pulse 
 
 This is probably the simplest form of limited-duration input.  We define the flat 
pulse initially in the form of a general (standard) input quantity u(t) that can be used with 
standard forms of system ODEs such as )()1( 1 tubxx =+ τ&  for a stable 1st order system 
and  for 2nd order systems.  
Figure 8-1 illustrates a flat pulse of duration td.  It can be 
described mathematically with use of two unit-step func-
tions, as defined in Section 2-4: 

)(2 22 tuxxx nnn ωωζω =++ &&&  

Figure 8-1  Flat pulse 

 u(t) 
 U 

 0  t  td  0  
[ )()()( dttHtHUtu ]−−=                  (8-1) 

 
The Laplace transform of Eq. (8-1), from Eqs. (2-28) and (2-29), is 
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−= 11)]([ )                                    (8-2) 

 
Example: response to a flat pulse of an undamped 2nd order system1 
 
 The ODE for an undamped 2nd order system is .  Let the initial 
conditions be zero:  , .  The general solution then is either of the two convo-
lution integral forms, Eqs. (7-9a) and (7-9b).  Of those two, the easier one to interpret for 
the discontinuous flat pulse is Eq. (7-9b), which with zero ICs becomes 

)(22 tuxx nn ωω =+&&

00 =x 00 =x&

 

∫
=

=

×−=
t

nn duttx
τ

τ

τττωω
0

)()(sin)(                                     (8-3) 

 

                                                 
1 See also homework Problem 8.3 for a simple yet elegant direct Laplace-transform solution of this problem 
and a physically meaningful response equation. 
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Rather than use Eq. (8-1) explicitly, we can observe the form of Fig. 8-1 and write Eq. (8-
3) for two different time intervals: 
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0           (8-4) 

 
The second integral for td ≤ t is obviously zero.  This leaves us with a single integral for 
each time interval, each integral having the same integrand and lower limit.  However, 
the integrals have different upper limits, so let’s denote a general upper limit as T, and 
evaluate that common integral with use of the change of integration variable λ = t − τ   ⇒   
dλ = − dτ : 
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Upper limit T ≡ t for  of Eq. (8-4), and T ≡  for dtt ≤≤0 dt ttd ≤ , so substituting the in-
tegration result into (8-4) gives the final equations, 
 

( )
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Equation (8-5) for  is just the simple step response of Eq. (7-14), as it logically 
should be. Inspection of Eq. (8-5) shows that the response x(t) is continuous at t = ; by 
differentiating both response equations, we could show that the velocity term  also is 
continuous at t = .  Indeed, these response quantities should be continuous, because Eq. 
(8-5) describes a physical response (e.g., of a mass-spring system).  In fact, we could 
solve this problem differently from the beginning by using the requirement of continuity 
along with step-response (7-14) and IC response (7-12).  Step response (7-14) is valid 
from t = 0 to t = ; then we could find  and  from the step response and use 
those values as initial conditions for the IC solution to be valid for t ≥ . 

dtt ≤≤0

d

d

dt
)(tx&

t

t )( dtx )( dtx&

dt
  

 m 

8-2  Impulse-momentum theorem for a mass particle 
translating in one direction 
 
 An unrestrained mass particle subjected to force 
acting only in the x direction is shown in the drawing at 
right.  The equation of motion is 

  td 
 0  0  t 

 fx(t)
Area = IF (td) 

 fx(t)

 x(t), v(t) 
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)()( tfvmtfxm xx =⇒= &&&  
 
Integrating the equation of motion from time zero to any time t > 0 gives 
 

)()()0()(
00

tIdfmvtmvd
d
dvm F

t

x

t

≡=−= ∫∫
=

=

=

=

τ

τ

τ

τ

τττ
τ

                         (8-6) 

 
in which  is the area under the force time history and is called the impulse of the 
force, with dimensions of force × time.  Equation (8-6), the impulse-momentum theorem 
for a mass particle, states that the change of momentum equals the impulse.  For a pulse, 
a force of limited duration as in the drawing on the previous page, we are generally inter-
ested in the total impulse , which remains unchanged for t > td. 

)(tI F

)( dF tI
 
8-3  Flat impulse 
 
 The flat impulse, Fig. 8-2, is defined almost identically with the flat pulse, the 
only difference being that we specify the magnitude of the generalized impulse, IU, which 
is the area under the time history of the flat pulse, then we 
define the magnitude of the input function in terms of the 
impulse and duration, dU tIU = .  Thus, for the flat im-
pulse, from Eq. (8-1), 

 

Figure 8-2  Flat impulse

 u(t) 

 
d

U

t
IU =  

 0  t  td  0 

 Area IU 

 

[ )()()( d
d

U ttHtH
t
I

tu −−= ]                    (8-7) 

 
8-4  Dirac delta function, ideal impulse 
 
 Consider a limit process with the flat impulse of Fig. 8-2, in which process we 
progressively shorten the pulse duration while maintaining constant the impulse magni-
tude (the shaded area), thereby progressively increasing the input magnitude, dU tI .  If 
we carry the process to the limit as  → 0 while maintaining  constant, then magni-
tude 

dt UI

dU tI → ∞.  The limit process is illustrated on Fig. 8-3.  The function that results is 
called an ideal impulse with magnitude , and it 
is denoted as u

UI
)()( tIt U δ×= , in which )(tδ  is 

called the Dirac delta function (after English 
mathematical physicist Paul Dirac, 1902-1984) or 
the unit-impulse function.  The ideal impulse func-
tion )(tIU δ  is usually depicted graphically by a 
thick picket at t = 0, as on Fig. 8-3.   With I  = 1 
in Eq. (8-7), a formal mathematical definition of 
the unit-impulse function is 

U

 

Figure 8-3  Ideal impulse 

 u(t) 

 
d

U

t
I  

 0  t  td  0 

 Area IU 

 0 

 ∞

 ⇒ 

 t 0  0 

 u(t) = IU δ (t) 

 

 8-3



 Chapter 8  Pulse inputs; Dirac delta function; impulse response; initial-value thm.; convolution sum 
 

[ )()(1lim)(
0 d

d
t

ttHtH
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δ ]δ                                        (8-8)                                        (8-8) 

  
Observe from Eq. (8-8) that the dimension of δ (t) is time−1, since the unit-step is dimen-
sionless, so the typical unit of δ (t) is sec−1.   
Observe from Eq. (8-8) that the dimension of δ (t) is time−1, since the unit-step is dimen-
sionless, so the typical unit of δ (t) is sec−1.   
  
 By definition, the area under  By definition, the area under )()( tItu U )()( tItu U δ=  equals , so the area under UI )(tδ  
equals 1 (hence the name unit-impulse function).  This unit area under an infinitely short 
impulse suggests an important effect of the Dirac delta function in integrands.  In order to 
describe this effect, we define a more general unit-impulse function, )( δδ tt − , which 
peaks infinitely at some arbitrary time  that is not 
necessarily zero; otherwise, the nature of 

δt
)( δδ tt −  is 

identical to that of )(tδ  [in fact, )(tδ  = )( δδ tt −  for 
 = 0].  Now suppose that we have some realistic 

physical function  that is defined over the time 
interval , and suppose that time  is within 
this interval, as in the figure at right.  Then the useful 
integration effect of 

δt
)(tf

(

21 tt → δt

)δδ t−t  is: 
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)()()(
2

1

δδδ tfdttttf
tt

tt

=−∫
=

=

                                          (8-9) 

 
Equation (8-9) states that, as a multiplier within the integrand, )( δδ tt −  essentially “se-
lects” the value of f (t) at t = .  Result (8-9) is intuitively clear, and it can be proved 
more rigorously with the theory of so-called generalized functions (Lighthill, 1958). 

δt

 
If the upper limit of integration in Eq. (8-9) is an arbitrary time t > , then the re-

sult is a step function: 
δt

 

)()()()(
1

δδ

τ

τ
δ

δ

ττδτ ttHtfdtf
tt

t

−=−∫
>=

=

                                (8-10) 

 
Setting 1)( =τf  in Eq. (8-10) leads to a fundamental integral relationship between the 
unit-impulse function and the unit-step function: 
 

)()(
1

δ

τ

τ
δ

δ

ττδ ttHdt
tt

t

−=−∫
>=

=

                                        (8-11) 

 

  tδ 

 

 t 0 

 δ (t − tδ ) 

   t2 

 f (tδ) 
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 Next, we use Eq. (8-9) to derive the Laplace transform of delta function )(tδ  = 
)0( −tδ .  According to the definition of Eq. (2-13), this transform would 

be written as L[ )(tδ ] = ; however, there is a problem 

with this particular definition:  at t = 0, which is the lower limit of the 
integrand (and the initial-value instant for most ODEs that we solve us-
ing Laplace transforms), the function 

∫
∞=

=

− −
t

t

st dtte
0

)0(δ

( )0−tδ  is nominally infinite, so 
the meaning of the integral is uncertain.  We choose to remove the un-
certainty by specifying that )0( −tδ  must lie within the limits of the inte-
gration.  In order to indicate this clearly in notation, we now define three different refer-
ence instants, as depicted on the drawing at right:  (1) t = −0 , the instant just before activ-
ity of the ideal impulse function, at and before which )0( −tδ  = 0; (2) t = 0, the instant 
when )0( −tδ  acts and is nominally infinite; and (3) t = +0 , the instant just after activity 
of the ideal impulse function, at and after which )0( −tδ  = 0.  Accordingly, we re-define 
the Laplace transform, more generally than in Eq

 

 0+  t
 0  0− 

 δ (t − 0)

. (2-13), as 
 

L[ ] =                                            (8-12) )(tf ∫
∞=

=

−

−

t

t

st dttfe
0

)(

 
The distinction between t = 0 and t =  in the lower limits of Eqs. (2-13) and (8-12), re-
spectively, is meaningless for all problems considered in this book except those in which 

 involves an ideal impulse function.  Application of Eqs. (8-9) and (8-12) now leads 
to the Laplace transform of the basic ideal impulse function: 

−0

)(tf

 

L[ )(tδ ] =                                (8-13) 1)0( 0

0

==− ×−
∞=

=

−∫
−

s
t

t

st edtte δ

 
8-5  Ideal impulse response of a standard stable 1st order system 
 
 From Eq. (3-7), the problem statement for a standard stable 1st order system is 
 

ODE + IC:  0for)(find,)0(),()1( 01 >==+ ttxxxtubxx τ&   (6-4, repeated) 
 
Let the input function be the ideal impulse, U )()( tItu δ= .  Although there are several 
methods for finding response to an ideal impulse, the conventional Laplace-transform 
approach is relatively simple and probably the most instructive, so we will use this 
method.  With )]([ tL δ  = 1 from Eq. (8-13), the steps of the solution are: 
 

L[ODE]:  1)()()1()( 10 ×==+− UIbsbUsXxsXs τ  
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1

0

1
)(

τ+
+

=⇒                                        (8-14) 
s

Ibx
sX U      

 
⇒     1)()( xtx = 0

τt
U eIb −+                                       (8-15) 

As a check, we evaluate the solution at t = 0: 
 

 
00

0
0

1)()0( xIbxeIbxx UU ≠+=+= − τ                               (8-16) 
 
It appears that something is wrong with response solution Eq. (8-15), because Eq. (8-16) 
for x(0) contradicts the original IC, x(0) = 0x .  In order to explain this discrepancy, we 
must account mo e carefully for the nature of response to an ideal impulse, and for the 
distinction between the three different reference instants that are defined in the previous 
section:  (1) t = −0 , the instant 

r

just before activity of the ideal impulse function; (2) t = 0, 
e insth tant when )0( −tδ  acts; and (3) t = 0 , th+ e instant just after ac
puls ws. 

We begin by integrating the basic ODE, 

tivity of the ideal 
im e function.  The more detailed analysis follo
 
 )()1( 1 tIbxx U δτ =+& , across the ideal 
impulse function, just from t =  t =  
 

− o0  t +0 :

∫
−=0τ

τ
τ

d
d

 + 
+=0τ dx

∫
−=01 τ

τ
τ

dx  = ∫
−=

− )0(
τ

ττδ dIb U     (8-17) 

 
The fi  left-hand-side term of Eq. (8-17) is ide ically equal to )0()0( −+ − xx ; this re-
sult introduces the new quantity )0( +x  which apparently is the post-impulse initial value 
at t = +0 ; the pre-impulse initial value, )0( −x  ≡ 0x , is the original IC specified in Eq. (6-
4), but now understood to exist at t = −0 .  The right-hand-side integral of Eq. (8-17) gives 
he 

+=01 τ

                     

rst nt

+=0

0

τ

 

,

t finite area I  under the infinite ideal impulse functioU n.  In c ond left-
 of Eq. (8-17) has a finite

ontrast, the sec
hand-side term  integrand; we can use the trapezoid rule to ap-
proximate the value of the integral and find that it is zero: 
 

{ }txx
t

Δ+≈ −+

→Δ
= −

)]0()0([lim 2
1

0
0τ

 = 0                                (8-18) 

 
In Eq. (8-18) 0+

dx
=

∫
+0τ

τ

, , in the spirit of the idealization that the ideal impulse 
nction acts o l time interval.  Therefore, Eq. (8-17) gives −

+ 

 00 →−≡Δ −t
ver an infinitesimafu )0( +x   0x   

01 1 ×τ  = UI× , or b
 

U0 Ibxx +=+ )0(                                                 (8-19) 
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Comparing Eqs. (8-16) and (8-19) shows that the term  in the former equation really  )0(x
should be the post-impulse initial value, )0( +x . 
 

X (s) by Equation (8-19) can also be found directly from the Laplace transform 
application of the initial-value theorem:  
 

[ ])(lim)0()(lim
0from0

sFsftf
stt ∞→

+

>→
=≡

+
                                 (8-20) 

 
e present only the rW

th
elevant application of the initial-value theorem here; derivation of 

e theorem itself is postponed to Section 8-6.  Applying Eq. (8-20) to Laplace transform 
solution (8-14) gives 
 

[ ] UUs

U

ss
IbxIbx

ss
ssXsx +=⎟

⎠
⎜
⎝

+×=⎟⎟
⎠

⎜⎜
⎝ +
×==

∞→∞→∞→

+
00

1

0 )(lim
1

lim)(lim)0(
τ

 sIbx ⎞⎛⎞⎛ +

m
at right.  The m locity  =

fo  
=

 
This consequence of the initial-value theorem is identical to Eq. (8-19), which was de-
rived by a different method. 
 
 Finally, we present an application of Eq. (8-19) to a mec
show that the result conforms with a principle of m
system with ass m and viscous damping constant c, as drawn 

ass is initially moving with ve  0v  
when, at t = −0 , the mass is disturbed by an ideal 

 (tI F

hanical system, and we 
echanics.  Consider a mass-damper 

 
)0( −v

rce impulse,
)(tf x  )δ .  The equation of motion is )(tfm xvcv =+& , or 

in terms of a stand stable 1st order system, ard )()1( 1 tubvv =+ τ& , in which cm=1τ , 
m1b = , and ))( Itu F ()( ttf x δ== , so that FU II = .  The initial (pre-impulse) momen-

tum of th  is .  According to Eq. (8-19), the post-impulse velocity of the mass 
is )0( +v  = 0v  + 

e mass 0vm

FIm ×)1(  = 0v  + mI F , so that the post-impulse momentum of the 
mass is )0( +vm  = 0vm  + FI .  In words, the momentum of the mass is increased exactly 
by the magnitude of the ideal impulse, in agreement with the impulse-momentum theo-
rem, Eq. (8-6).  Force impulse )(tI F δ  is a mathematically ideal impulse, not a physically 
realizable excitation, so the mathema tum occti

n on t
cal c urs instantly, and the 
his in

h
s
ange in momen
tviscous dashpot h influas no e ce antaneous response.  From Eq. (8-15), the 

post-impulse response of the mass is 1)()( 0vtv = τt
F emI −  > 0. + , t

 
8-6  De heorivation of the initial-value t rem 
 

Consider a physical function , with derivative )(tf dtdf , and with Laplace trans-
form .  The initial-v  is:   )()]([ sFtfL = alue theorem
 

 m 
 c 

 x(t)

 f (tx )
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[ ])(lim)(lim
0from0

sFsftf
stt ∞→>→

≡
+

                 (8-20, repeated) 

 
In general, Eq. (8-20) gives the initial value )0( +f  of a time function )(tf  based only on 
the Laplace transform L ] = F(s), without requiring that the equation for )(tf  be 
available.  I  is dynamic response to excitation that involves the ideal unit-impulse 
function )0( −t

)0( + =

[ (tf )
f )(tf

δ , then f )0( +  is the post-impulse initial value, as defined in Section 8-5; 

Our derivation of the initial-value theorem (from a more detailed proof in Can-
m of Laplace transform that can accommodate the 

ideal impulse function 

otherwise, )0( +f  ≡ )0(f  ≡  )0( −f , which is the standard initial value known to exist 
before excitation occurs. 
 
 
non, 1967, p. 569) is based upon the for

)0( −tδ : 
 

First, we need the following Laplace transform of a derivative, the transform that is asso-
ciated with definition (8-12): 
 

L[ )(tf ] = ∫ −

−

st dttfe )(                            (8-12, repeated) 
∞=

=

t

t 0

 

)0()()(
0

−

=

− −==⎥⎦
⎤

⎢⎣
⎡ ∫

−

fsFsdt
dt

etf
dt

L
t

ts                            (8-21) 

The derivation of Eq. (8-21) using integration by parts is almost identical to the deriva-
tion shown in Eq. (2-15a), the only difference being the lower limit of the integral at t = 

−  instead of t = 0.  We don’t need the corresponding formul

∞= dfd t

 

a for higher-order deriva-
to state that the initial conditions at t = 0 in gen-

eral formula (2-16) may si rly be replaced by values at t = :  
 

0
tives right now, but it is appropriate here 

mila −0

⎥
⎦

⎢
⎣

)(tf
dt

L n  = )0()0()( 21 −−−− −−−− nnn ffsfssFs L&⎤⎡ d n

            (8-22) 

 
Next, taking the limit of all terms in Eq. (8-21) as s → ∞ gives 

 

)0(
)1(

−
−n

[ ] )0()(lim1limlim
00

−

∞→
=

−

=
∞→∞→

−=⎟
⎟
⎠

⎜
⎜
⎝

+×=⎥⎦⎢⎣ ∫∫
+−

fsFsdt
dt

edt
dtdt

L
s

t

ts

t
ss

       (8-23) 

 
In Eq. (8-23), we separate the definite integral into two parts:  (1) a part over the interval 
from t = −0  to t = +0 , during which we set ts  = 1 (and during which an ideal impulse 
includin

0 ∞== ⎞⎛⎤⎡
+

dfdfdf tt

 e−

g ( )0−tδ  could be acting  
cond part includes , and since s → ∞, we ral to 

); and (2) a part over the interval from t = +0  to t = ∞ . 
The integrand of the se tse−  set this integ
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zero:  0)(lim
0

=∫
∞

=

−

∞→ +

t

t

ts

s
dtdtdfe .  Furthe t in now is inde-

endent of s , is eva

=
rmore, the firs tegral, which 

luated identically as p ∫
+

−

=

=

0

0
)(

t

t
dtdtdf  = .  Therefore, 

Eq. (8-23) becomes  
 

)0()0( −+ − ff

⎥⎦
⎤

⎢⎣
⎡

∞→ dt
dfL

s
lim  =  = )0()0( −+ − ff [ ] )0( −− f)(lim

∞→
sFs

s
                     (8-24) 

 
⇒     )0(f  = + [ ])(lim sFs

s ∞→
 

 
This is the version of initial-value theorem that was applie  re-derive d in Section 8-5 to
result (8-19). 
 
 If  )(tf  is dynamic response to excitation that does not involves an ideal unit-im-
pulse function )0( −tδ , then t + −here is no discontinuous jump at t = 0, i.e. −

 0.  For this case, therefore, Eq. (8-24) gives the more common (but less general) ver-
sion of initial-value theorem: 

, )0(f   )0(f  
=

 
)0( −f  = [ ])(lim sFs

s ∞→
 

 
8-7  Ideal impulse response of an undamped 2nd order system 
 
 The ODE for a standard undamped 2 d order system is )(22 tuxx nn ωω =+&& .  Let 
the input function be the ideal impulse, )(tu  = )(tIU

n

δ , and let the pre-impulse initial 
conditions be 0)0( xx ≡− , 0)0( xx && ≡− .  Just as for the 1st order system with ideal-impulse 

olve the  problem by the conventional Laplace-
transform app

&& 2

excitation in se
 will use eriva  

 = 

 Section 8-5, 
roach.  No

)0()( −− fss

we will s
te that we

)0( −− f& .  W

pre
 th

ith [L

nt
e second-d
)]

tive form of Eq. (8-22): 
][ fL Fs (tδ  = 1 from Eq. (8-13), the steps of the 

solution are: 

L[ODE]:
 

 
  1)()()( 22

00
2 ×==+−− Unn IsbUsXxxssXs ωω&  

22022
0

22
00

2

)(
nn
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n
Un
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Un

s
sx

s
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I
s

xsxI
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ωω
ω

ω
ω

ω
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+
+

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

+

++
=⇒

&&
     (8-25) 

 

⇒     txt
x

Itx nn
n

Un ω 0⎟
⎠

⎜
⎝

 

ωωω cossin)( 0 +⎟
⎞

⎜
⎛

+=
&

, t ≥                   (8-26) 

At the risk of being excessively repetitive, we emphasize that the discussions in 
Sections 8-5 and 8-6 show that response (8-26) is the post-impulse

 +0

 solution, certainly 
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valid mathematically for t ≥ , but not necessarily correct, in particular, for the pre-
impulse initial conditions at t = . 

+0
−0

 
 Solution (8-26) holds for a general undamped 2nd order system; let’s adapt it spe-
cifically to a mass-spring system, with zero initial conditions, that is hit by an ideal im-
pulse of force having magnitude , with units, for example, of N-sec or lb-sec.  From 
Eq. (7-4), we find 

FI

 
kIIktItIktftu FUFUx =⇒=⇒= )()()()( δδ                 (8-27) 

 
So, for translational motion x(t) of the mass, Eq. (8-26) with zero initial conditions be-
comes (recall k = ) 2

nmω
 

t
m
I

t
k
I

tx n
n

F
n

F
n ω

ω
ωω sinsin)( ==                                   (8-28) 

 
Figure 8-4 shows a few cycles of response Eq. (8-28). 
 

 
 time t 

Figure 8-4  Ideal impulse response of a mass-spring system 
nωπ   0 nωπ4nωπ3nn T=ωπ2

n

F

m
I
ω
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I
ω
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8-8  Ideal impulse response vs. real response of systems 
 
 Section 8-5 shows that, for a 1st order system subjected to excitation by an ideal 
impulse function, the post-impulse initial value at t =  of output x(t) differs from the 
pre-impulse initial value at t = .  Let’s now investigate the initial values in x(t) and 

 that are associated with the 2nd order system of Section 8-7.  The output itself is 
given by Eq. (8-26):  

+0
−0

)(tx&
txtxtx nnnn IU ωωωω cos0sin)()( 0+ += & , t ≥ .  Evaluating this 

equation at t =  shows that the post-impulse value is ; this is exactly the 
same value as the given initial value at t = , so there is no discontinuous change in the 
initial value of  x(t) itself for the 2nd order system.  Differentiating Eq. (8-26) gives the 
“velocity” function: 

+0

0
+0 )0( xx =+

−0
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txtxItx nnnn ωωωω sincos)()( 00
2 −+= && , U

 
t ≥                       (8-29) 

valuating Eq. (8-29) at t =  gives 
 

                                    (8-30) 

r system, there is a discontinuous change in the initial value of the 
veloci

 +0

E +0

)0()0( 2 −+ =≠+= xxxIx &&&& ω 00Un

 
hus, for the 2nd ordeT

“ ty” function.   
 

The discontinuous changes that we observe in initial values for both 1st and 2nd 
order systems violate physical laws governing real systems, so ideal impulse response 
solutions appear to be defective and perhaps not applicable to real systems.  The reason 
for this defectiveness is the ideal, not real, nature of the Dirac delta function )(tδ .  In 
physical reality, there is no such thing as a pulse of infinitely short duration and infinitely 
great magnitude; so )(tδ  and IU )(tδ  are mathematical functions that do not represent 
exactly any real physical quantities. 
 
 However, the ideal impulse responses that we find can still be useful in applica-
tions to real systems, because the ideal impulse function )(tIU δ  can approximate the ef-
fect of a real, time-limited pulse that has the same impulse magnitude, UI ; therefore, the 
ideal impulse response can approximate the actual physical response.  Why would we use 
the approximate ideal impulse response rather than just determining the more precise re-
sponse solution based upon the actual pulse?  We would do this because it is always 
much easier to derive and compute the ideal impulse response than the actual pulse re-
sponse; moreover, the equation for the ideal impulse response is always simpler and more 
menable to practical purposes (such as system identification, a form a of which is dis-

Th

cussed in Section 9-9) than the equation(s) for the actual pulse response. 
 
 When is ideal impulse response a good approximation of real pulse response, and 
when is it not?  It depends on the duration td of the actual input pulse relative to the short-
est characteristic time Tc of the system that is being analyzed.  The characteristic time is 
defined loosely as the time interval required for system response to change substantially.  

e system characteristic times that we know from previous chapters are time constant 
1τ  for a 1st order system and about one quarter of a natural period Tn for a 2nd order sys-

tem.  If td is brief relative to the system characteristic time, td << Tc, then the ideal im-
pulse response [Eq. (8-15) for a standard stable 1st order system, Eq. (8-26) for a standard 
undamped 2nd order system, other equations for other types of systems] will be a good 
approximation to the actual pulse response; on the other hand, if td is on the order of or 
greater than the system characteristic time, O(td) ≥ O(Tc), then the ideal impulse response 
would be a poor approximation, and we should solve for the response using the actual 
hysical pulse.  There is no hard and fast rule as to how small the ratio td/Tc should be to 
stify 

p
ju use of the ideal impulse response solution. 
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 In what manner would ideal impulse response differ from the actual pulse re-
sponse?  Let’s consider, for example, an undamped 2nd order system with zero ICs.  Sup-
pose that the duration of the actual pulse satisfies td << ¼Tn, so that, according to the dis-
cussion above, the ideal impulse response should be a good approximation to the actual 
response.  But we already know from Eq. (8-30) that the initial velocity of the ideal im-
pulse response will be wrong, with value Un I2ω  when it ought to be zero.  How will the 
remainder of the ideal impulse response compare with the actual response?  Figure 8-5 
depicts conceptually the 
nature of both ideal im-
pulse response and the 
comparable real response 
for a 2nd order system dur-
ing the initial portion of 
r sponse.  The real re-
sponse shows the correct 
initial zero slope, 00 =x& .  
For a brief period after t = 
0, the slope of real re-
sponse increases rapidly 
until both the response x 
and the slope x&  essentially 
match the comparable val-
ues of the ideal response, 
but with a short time lag 
relative to the ideal re-
sponse.  In other words, the 
ideal response has a short, 
artificial time lead relative 
to the real response. After 
the pulse ends, td < t, the real response is essentially identical to the ideal response, but 
the ideal response maintains the same artificial time lead for all of the remaining dynamic 
response.  If the pulse duration is very short relative to the system quarter-period, then the 
artificial time lead will be very small, perhaps not even dete

e

ctable on a graph of the re-
onse.  In this case, ideal impulse response will clearly be an excellent approximation to 
e act

r a 2  order system, but 
ot necessarily for other system types.  In particular, for a 1  order system, the differ-

se have a 
ifferent character (see, for example, homework Problem 8.5). 

 (IRF)

 

Figure 8-5  Conceptual ideal impulse response and real 
pulse response for an undamped 2nd order system 

 u(t) 

Area IU 

 0  t  td  0 
 x(t) 

 0  0  t 

Ideal impulse 
response 

Real pulse 
response 

 Short artificial time lead of ideal vs. real 

IU δ(t), ideal impulse 

Actual pulse 

sp
th ual response, and the ideal impulse response will be much easier to derive and 
compute than the actual response. 
 
 Note that the previous paragraph applies specifically fo nd

stn
ences between a real pulse response and the approximating ideal impulse respon
d
 
8-9  Unit-step-response function and unit-impulse-response function  

 From Chapter 4, Eq. (4-24), the general equation 
transform to the input transform through the system transfer function is 

 
that relates the output Laplace 
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)]([)()]([ tuLsTFtxL ×=                                        (8-31) 

 
0ICs=

quation (8-31) is valid for anyE  LTI SISO system.  Suppose that the input to such a sys-
tem is the unit-step function, )()( tHUtu =  with step magnitude U = 1: 
 

)()( tHtu =      ⇒     from Eq. (2-29),     
s

tHLtuL )]([)]([ ==              (8-32) 

 

1

e denote the unit-step-response function as ; as usual for unit-step response and 
unit-impulse response, we specify zero ICs.  Substitutin
 

W )(txH

g Eq. (8-32) into Eq. (8-31) gives 

s
sTFtxL H )()]([ ×=                                              (8-33) 

 

1

Next, suppose that the input is the ideal unit )()( tItu U δ=-impulse function,  with 
impulse magnitude = 1UI  : 
 

)()( ttu δ=      ⇒     from Eq. (8-13),    L[u(t)] = L[δ(t)]  = 1               (8-34) 
 
We denote the unit-impulse-response function, with zero 

portant function in text as IRF.2  Substituting Eq. (8
ICs, as h(t), and we abbreviate 
-34) into Eq. (8-31) gives this im

 
)(1)()]([ sTFsTFthL ≡×=                                         (8-35) 

 
Equatio system theory:  The Laplace trans-

rm of ls the transfer function (TF).   

Comparing Eqs. (8-32) and (8-34) shows that 

n (8-35) is an important relationship in linear-
 the unit-impulse-response function (IRF) equafo

 

 
)]([)]( tLtH[sL δ=                                                (8-36) 

Next, applying Eq. (8-21), with  = 0, then Eq. (8-36),  gives 
 

 
)0( −H

)]([)()0()()]([
dt

LtHLs ⎢⎣
= tLt

dt
dHLHtdH δ=⎥⎦

⎤
⎢⎣
⎡=+⎥⎦

⎤⎡ −                    (8-37) 

Thus, we infer from Eq. (8-37) that 
 

                                                

 

 
2 It would be consistent with notation xH (t) to denote the IRF as xδ (t), but the symbol h(t) is traditional and 
very common.  For examples, see Cannon, 1967, pp. 210, 293 and Meirovitch, 1967, p. 14. 
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)()( ttdH δ=                                                    (8-38) 

 
We can also derive Eq. (8-38) formally by differentiating with respect to time t the fol-

lowing specific form of Eq. (8-11):  )0(

dt

−tH  =  ττδ
τ

τ∫
>=

= −
−

0

0
)0(

t
d .  Expressed in words, 

the time derivative of the unit-step function is the unit-impulse function.  These deriva-
tions of Eq. (8-38) are not mathematically rigorous, and the result might seem implausi-
ble since both )(tH  and )(tδ  are strongly discontinuous functions.  However, Eq. (8-38) 
an be ighthill, 1958), and it can also 

ocesses on functions other than the 
at impulse of Section 8-3 (e.g., homework Problem 8.6). 

 
Comparing Eqs. (8-33) and (8-35) shows that 

c proved with the theory of generalized functions (L
onstrated plausibly with the use of limiting prbe dem

fl

 
)]([)]([)( thLtxsLsTF H ==                                         (8-39) 

 
Applying Eq. (8-21) again, with = 0 by def)0( −

Hx  inition, gives 
 

)()( tht
dt

dxH =                                                    (8-40) 

 
In words, the velocity of unit-step response equals the unit-impulse response.  Equation 
(8-40) for responses (outputs) is directly analogous to Eq. (8-38) for excitations (inputs).  

he identical form of the two equations is a consequence of system linearity. Equation 
ll have a 

onvenient application in Section 9-8. 
 

T
(8-40) is another important relationship in linear-system theory, for which we sha
c

8-10  The convolution integral as a superposition of ideal impulse responses 
 

Suppose that an LTI system has zero ICs and that the input is an arbitrary physi-
cally realistic function, )(tu  f ’s apply directly the principle of superposition 
to derive an equation for response )(tx  at some arbitrary instant of time t > 0.  At any in-
stant 

or t > 0.  Let

τ  less than t, 0 < τ  < t, t put )he in (τu
f magnitud

 imposes onto the s
small i pulse o

ystem a differentially 
m e ττ du )(dIU = , as is indicated c

right.  Then the differenti lly small response at time t > τ  
due to this impulse at τ  is )(tdx  = )(

onceptually on the figure at 
a

τ−× thdIU  = 
τττ dthu )()( − , in which )( τ−th  is the IRF due to a unit 

impulse acting at instant τ .  Because this system is linear, 
we can express the total response as the superposition of re-
sponses due to all separate inputs, as is stated in Section 1-
2.  In this case, there are an 

b
infinite num
er of instants 

ber of

 

 separate in-
e infinite numputs m thfro τ  between time 

zero and time t, so the superposition, or summation, be-

 u

 dx
 dτ 

 dx(t)

 u(τ)dτ 

 0 

 τ  t  0 
 0 
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comes a definite integral: 
 

∫∫
=

==
=ICs

ττ 00
0

Equations such as (8-41) and its versions for specific systems [with explicit functions for 
)(

=

−==
tt

dthutdxtx
ττ

τττ )()()()(                                (8-41) 

 

τ−th ] are often called Duhamel integrals (after Jean-Marie Duhamel, 1797-1872, 
rench mathematician and physicist), especially in the literature of structural dynamics 

(e.g., C
F

raig, 1981, p. 124). 
 

Equation (8-41) is general, valid for any LTI
on, let’s r rd undamped 2nd order system

 system.  To see a specific applica-
e-visit the standa .  With ti 1=UI , Eq. (8-26) gives 

the IRF as tth nn ωω sin)( = , so Eq. (8-41) becomes  
 

∫
=

=
= nnICs

τ 0
0

 
Equation (8-42) is the Duhamel integral response solution for the standard undamped 2nd 
order system, and it is identical to convolution integral response solution Eq. (7-9b) with 
zero ICs.  Recall that Eq. (7-9b) was derived mostly from the mathematics of convolution 
integrals and tran

−=
t

dtutx
τ

ττωτω )(sin)()(                                  (8-42) 

sforms in Chapter 6.  On the other hand, the derivation of Eq. (8-42) 
bove is primarily physical, based upon the IRF and the principle of superposition for 

-11  Approximate numerical solutions for 1st and 2nd order LTI systems based on 

a
linear systems.   
 
8
the convolution sum 
 
 In Section 6-5, we developed a recurrence formula for the approximate numerical 
solution of an LTI 1st order ODE with any IC and any physically plausible input function 
u(t).  It is possible to generalize the recurrence-formula approach to 2nd and higher order 
LTI ODEs, but it would require development of theory and detail that are beyond the ob-
jectives of this book (see, for examples:  Craig, 1982, Section 7.1; and Meirovitch, 2001, 
Section 4.10).  There is, however, an alternative, relatively simple approach based upon 

e convolution integral, and this approach is readily applicable to calculating approxi-
ate n

To describe this approach, we begin with the general convolution (Duhamel) inte-
gral for forced response, which is valid for any LTI system: 
 

th
m umerical solutions for forced response of 1st and 2nd order LTI systems.  
 
 

∫
=

=
=ICs

τ 0
0

 

−=
t

dthutx
τ

τττ )()()(                        (8-41, repeated) 
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If initial conditions (ICs) are not zero, then appropriate IC-response solutions must be 
added to the convolution integral, which represents only the forced response.  Examples 
of such IC-response solutions are given explicitly in Eqs. (6-5), (7-9), and, later, (9-20).  

ereafter in this section, we will consider only the forced response, so it will be conven-

ek approximate evaluations of Eq. (8-41) in time-series form, that is, at 
iscrete, equally spaced instants in time.  Accordingly, just as in Section 6-5, we define 

the followin ota t sc cr , w in t defined 
as time zero: 
 

t1  t2 =  Δt 
=  

t3 =  Δt 
= t 

tn = tn Δt 
= (n )Δt 

H
ient to omit the “ICs = 0” subscript from the output variable and denote it simply as x(t), 
and later as x with subscripts, x5 for example. 
 
 We se
d

g n tion tha  employs de riptive subs ipts ith the initial stan

t =  ≡ 0 t1 +
 Δt

t2 +
 2Δ

…  − 1 + 
 − 1

… 

x(t) = x1 x2 x3 … xn … 
u(t) = u1 u2 u3 … un … 
h(t) = h1 h2 h3 … hn … 

 
Let’s designate as a sequence of length N any series of N numbers such as t1, t2, … , tN , 

r x1, x2, … , xN, and let’s denote the entire sequence as {t}N, or {x}N.  If time t is the 

approximation.  We assume that the integrand product u(τ) h(t − τ) varies 
 little over the integration time step Δt that it introduces only small error to approximate 

u(τ) h(t − τ) as bei
e time step: 

u(τ) h(t − τ) ≈ u(tk − 1) h(t − tk − 1)  for  tk − 1  ≤ τ < tk                      (8-42) 

In Eq. 

of time {t}N, input {u(t)}N, and IRF 
h(t)}N, and we wish to calculate the corresponding forced-response output sequence, 

{x(t)}N.  Then, using approximation (8-42), we express Eq. (8-41) as follows, with the 
convolution integral approximated as a summation: 
 

o
independent variable, and quantity f(t) is any time-dependent function, let’s denote the 
values of f(t) at times t1, t2, … , tN as {f(t)}N. 
 
 Forced-response solution Eq. (8-41) is exact.  But now we introduce what, in 
general, is an 
so

ng constant over Δt, with its value remaining that at the beginning of 
th
 

 
(8-42), k is an index that varies, just as τ varies over the integration limits in Eq. 

(8-41).   
 

Suppose that we have matching sequences 
{

⎪⎭

⎬≤≤Δ−= ∑
−

=

Nnttthtutx
k

knkn 2for,)()()(
1

                          (8-43) 

 
Additional explanation of Eq. (8-43) might be helpful, because the extrapolation of Eq. 
(8-41) from continuous time to discrete time is not completely obvious.  Physically, the 

⎪
⎫=tx

n

0)(
1

1
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forced response must be zero at the instant t = t1 = 0 when forcing is begun, even if the 
initial input value u(0) is nonzero; also, the exact convolution integral Eq. (8-41) gives 
the same result for the upper limit τ = t1 = 0; hence, x(t1) = 0.  Regarding summation over 

nly  n − 1 values of product u(tk) h(tn − tk) Δt  in order to obtain x(tn), consider again 

 x(tn) is the product u(tn − 1) h(tn − tn − 1) Δt. 

 Equation (8-43) can be written in the following simpler form, using subscript 
notation and the constancy of time step Δt: 
 

                                  (8-44) 

pretation of the process.  Suppose that we have sequences of input values 
u(t)}N and IRF values {h(t)}N, with length N ≥ 4, and we wish to find the corresponding 

sequence of responses {x(t)}N.  Th
Eq. (8-44), are: 
 

                                                                           (8-45a)

o
approximation (8-42).  Equation (8-42) means that the very last term in the summation of 
Eq. (8-43) that approximates the integral for
 

⎪⎭

⎪
⎬

⎫=

=

N

x
n

k

0

1

1

≤≤Δ= ∑
−

− nhutx knkn 2for,
1

 
The summation in Eq. (8-44) is called a convolution sum. 
 
 It is instructive to write out explicitly a few terms of Eq. (8-44), and then to study 
a graphical inter
{

en the first five terms in the response sequence, from 

01 =x   
 

)( 112 hutx Δ=                                                                 (8-45b) 
 

)( 12213 huhutx +Δ=                                                       (8-45c) 
 

)( 1322314 huhuhutx ++Δ=                                            (8-45d) 
 

)( 142332415 huhuhuhutx +++Δ=                                 (8-45e) 
 
 Figure 8-6 on the next page is a graphical representation of many aspects of the 
previous discussion.  The figure consists of three graphs of conceptual time-dependent 
functions, with the three time axes aligned.  The top graph is a typical input function, 
u(t); and one plot on the middle graph is a unit-impulse-

st
response function (IRF), h(t), 

hich was chosen to resemble the exponential IRF of a 1  order system, with, in particu-
r, h(0

“folding” h(t) about a vertical line through time t4/2 and then setting to zero the folded 
function for all times t < 0.  One of the dictionary definitions for the word “convolution” 
as a noun is “a fold”, and this is apparently the reason for the use of “convolution” as the  

w
la ) ≠ 0.  The second (dashed) plot on the middle graph is the function h(t4 − t), and it 
was chosen to illustrate Eq. (8-45e) for output quantity x5. 
 
 Observe on the middle graph of Fig. 8-6 that h(t4 − t) is derived from h(t) by 
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Figure 8-6  Graphical representation of the convolution sum for a conceptual problem 
with input function u(t) and impulse-response function h(t), with h(0) ≠ 0 
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name of a transform, integral, or sum (Evans, 1954, pp. 199-204).  It seems that “convo-
lution sum”, for example, sounds more elegant in English than “folding sum”; however, 
the German noun for mathematical convolution is Faltung, meaning “folding” or “bend-
ing”, and Faltung was often used interchangeably with “convolution” in older English-
language textbooks and other technical literature. 
 
 The plot on the bottom graph of Fig. 8-6 is the product u(t) h(t4 − t).  At the times 
t1, t2, t3, and t4, the discrete products uk h5−k are marked, and approximation (8-42) of 
piecewise constancy is illustrated by straight horizontal lines, each representing the time 
step Δt.  This is a stairstep approximation similar to that used in Section 6-5.  The bottom 
graph shows that Eq. (8-45e) for x5 is the area under all the cross-hatched rectangles (the 
entire “staircase”); that area is an approximation of the integral from Eq. (8-41), 

.  It is obvious from this graphical interpretation of the convolution 

sum that smaller values of time step Δt will produce more accurate numerical inte-
grations, at the expense of longer calculations. 

∫
=

=

−
5

0
5 )()(

t

dthu
τ

τ

τττ

 
 For the conceptual example of Fig. 8-6, which resembles a 1st order system that 
has initial IRF value h(0) = h1 ≠ 0, and also initial input value u(0) = u1 ≠ 0, Eq. (8-45b) 
gives .  This is noted because it is easy to make the mistake of calcu-
lating approximate time response by applying directly the MATLAB function conv, as in 
the command line X = conv(u,h), and then by taking the first N elements of the result-
ing sequence {X}2N−1 to be the desired forced response, {x(t)}N ; this process executes the 

0)( 112 ≠Δ= hutx

incorrect equation  =  = , for 1 ≤ n ≤ N.  

This incorrect equation calculates a sequence with N − 1 elements the same as those of 
the correct forced-response sequence, but the incorrect sequence is shifted backward in 
time by a single time step, Δt.  In particular, the incorrect process sets , 
which would be nonzero for the conceptual problem of Fig. 8-6, and might alert the 
analyst that something is wrong.  (Recall from the discussion above that the initial 
forced-response value  must be zero.)  But for most systems other than standard 1st 
order systems, the initial value of the IRF is zero, h1 = 0, so the error in  
would not be obvious in the calculated results.  The lessons from this discussion are:  (1) 
use of the incorrect convolution sum might produce results that are not obviously incor-
rect; in fact, for very small Δt, the incorrect and correct plots of approximate response 
versus time might be almost indistinguishable visually; and (2) if you apply directly 
MATLAB’s function conv, then, in order to obtain the correct approximate forced-
response sequence, be sure to shift the sequence calculated by conv forward in time by a 
single time step, Δt, and to set  = 0. 

ttthtutx
n

k
knkn Δ−= ∑

=
+

1
1 )()()(

1x

1x

nx ∑
=

−+Δ
n

k
knk hut

1
1

)( 111 hutx Δ=

)( 111 hutx Δ=

 
 The following are two numerical examples of the application of Eq. (8-44), first 
for a 1st order ODE, next for an undamped 2nd order ODE. 
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Convolution-sum Example 1:  1st order system  Consider the standard 1st order LTI-ODE 
of a stable system, Eq. (3-7), for dependent variable x(t):  )()1( 1 tubxx =+ τ& , with IC 
x(0) = 0.  From Section 8-5 and homework Problem 8.5(a), the unit-impulse-response 
function (IRF) is 1)( τtbeth −= .  Let’s set the input function to be a declining ramp, u(t) = 

, in which c, a dimensional constant, is the downward slope of the ramp, and a is 
the time at which the input passes through zero.  For reference, the 

)( tac −
exact solution for this 

problem is derived from Eqs. (6-5) or (8-41):3 
 

∫
=

=

−=
t

t duebetx
τ

τ

τττ ττ
0

)()( 11  = ∫
=

=

− −
t

t dacebe
τ

τ

τττ ττ
0

)(11  

 
[ ]teabc t −−+= − )1()( 1

11
τττ  

 
With parameters τ1 = 2.5 sec, a = 10 sec, b = 3.5, and c = 1 (b and c in consistent units), 
the MATLAB commands to calculate and plot the exact solution x(t), and the approxi-
mate solution from Eq. (8-44), for the relatively large time step Δt = 1 sec, are given next, 
followed by the resulting graph, which was edited later to add labels, title, and legend.  
Observe in the MATLAB code that the declining-ramp is entered into the input sequence 
{u(t)}N , as is the IRF sequence {h(t)}N.  Note that the simple code to calculate the con-

volution sums over the entire forced-response sequence, ∑
−

=
−=

Δ

1

1

n

k
knk

n hu
t

x
 for 2 ≤ n ≤ N, 

consists of a for loop over index k nested within a for loop over index n. 
 
>> a=10;b=3.5;c=1;tau=2.5; 
dt=1;t=0:dt:10; 
N=length(t); %sequence length 
u=c*(a*ones(1,N)-t); %declining-ramp excitation 
plot(t,tau*b*u,'k--'),grid %pseudo-static response 
h=b*exp(-t/tau); %IRF, impulse-response function 
xc(1)=0; %zero initial value 
for n=2:N 
    sum=0; 
    for k=1:(n-1) 
          sum=sum+u(k)*h(n-k);   
    end 
    xc(n)=sum; 
end 
xc=dt*xc; 
hold,plot(t,xc,'ko-') 
te=0:0.05:10; 
xe=c*b*tau*((a+tau)*(1-exp(-te/tau))-te); %exact solution 
plot(te,xe,'k') 
 

                                                 
3 Details of the integration process are not shown.  Note, however, that you can easily verify the validity of 
the given solution by substituting it into the ODE and IC and finding that they are satisfied. 
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The graph above shows that Eq. (8-44) with the relatively large time step Δt = 1 sec pro-
duces a poor approximation to the exact solution of the 1st order ODE in this  problem.  
The following MATLAB command lines evaluate Eq. (8-44) and plot the results for three 
progressively smaller values of Δt.    
 
>> a=10;b=3.5;c=1;tau=2.5; 
tend=10; 
m=[2 8 16]; %inverses of time steps for convolution 
maxln=tend*max(m)+1; 
t=zeros(3,maxln);xc=zeros(3,maxln); %initialize oversized arrays 
for j=1:3 
    dt=1/m(j);tj=0:dt:tend;N(j)=length(tj);t(j,1:N(j))=tj; 
    u=c*(a*ones(1,N(j))- tj); %excitation 
    h=b*exp(-tj/tau); %IRF 
    xc(j,1)=0; %zero initial value 
    for n=2:N(j) 
        sum=0; 
        for k=1:(n-1) 
              sum=sum+u(k)*h(n-k);   
        end 
    xc(j,n)=dt*sum; 
    end 
end         
plot(t(1,1:N(1)),xc(1,1:N(1)),'ko',t(2,1:N(2)),xc(2,1:N(2)),'ks') 
hold,plot(t(3,1:N(3)),xc(3,1:N(3)),'k.') 
te=0:0.05:tend; 
xe=c*b*tau*((a+tau)*(1-exp(-te/tau))-te); %exact solution 
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plot(te,xe,'k'),grid 
 

 
 
The results above demonstrate for this 1st order system that the approximate solution 
calculated from the convolution sum approaches the exact solution as Δt → 0.  This 
concludes Convolution-sum Example 1. 
 
Convolution-sum Example 2:  undamped 2nd order system  Consider the LTI-ODE Eq. 
(7-5) for a standard undamped 2nd order system, , with ICs x(0) = 0 
and  = 0.  From Sections 8-7 and 8-10 [Eqs. (8-26) and (8-42)], the unit-impulse-
response function (IRF) is 

)(22 tuxx nn ωω =+&&
)0(x&

tth nn ωω sin)( = .  Let’s set the input function to be a declin-
ing-ramp pulse, 
 

⎩
⎨
⎧

<
<≤−

=
tt

tttac
tu

d

d

,0
0,)(

)(  

 
in which c, a dimensional constant, is the downward slope of the ramp, ca is the input at t 
= 0, and td is the pulse duration.  For reference, the exact solution equations for this prob-
lem are derived next from Eqs. (7-9), without details of the integration processes.  For the 
interval during which the pulse is active, 0 ≤ t ≤ td , we apply Eq. (7-9a), although Eq. (7-
9b) would serve just as well: 
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∫
=

=

−×=
t

nn dtutx
τ

τ

τττωω
0

)(sin)(  =  ∫
=

=

−−×
t

nn dtac
τ

τ

τττωω
0

)]([sin

 
[ ]ttatac nnn ωωω sin)1(cos +−−= , valid for  0 ≤ t ≤ td 

 
For the time after the pulse ceases, td < t, Eq. (7-9b) is preferable since the input u(t) is 
zero for td < t, so that the upper limit of integration is clearly td : 
 

    =   ∫
=

=

×−=
t

nn duttx
τ

τ

τττωω
0

)()(sin)( ∫
=
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τ
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           =  
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⎥
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=
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          , valid for td < t 
[ ]{
[ ]}⎭

⎬
⎫
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)sincos)(/1()cos1(cos
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Let the parameters be:  undamped natural frequency ωn = π /4.5 rad/sec (making the asso-
ciated period 9 sec), a = 10 sec, c = 1 (in consistent units), and pulse period td = 10 sec.4  
The MATLAB commands to calculate and plot the exact solution x(t), and the approxi-
mate solution from Eq. (8-44), for the relatively large time step Δt = 1 sec, are given next, 
followed by the resulting graph of response, which was edited later to add labels, title, 
and legend.  Observe in the MATLAB code that the entire declining-ramp pulse, includ-
ing zeros, is entered into the input sequence {u(t)}N , as is the IRF sequence {h(t)}N.  
Also, just as in Convolution-sum Example 1, the simple code to calculate the convolution 

sums over the entire forced-response sequence, ∑
−

=
−=

Δ

1

1

n

k
knk

n hu
t

x
 for 2 ≤ n ≤ N, consists of 

a for loop over index k nested within a for loop over index n. 
 
>> a=10;c=1;wn=pi/4.5;td=10; 
tend=25; %time range (sec) 
dt=1;t=0:dt:tend; 
nd=td/dt+1; %warning: not necessarily an integer for arbitrary td 
N=length(t); %sequence length 
u=zeros(1,N); 
u(1:nd)=c*(a*ones(1,nd)-t(1:nd)); %declining-ramp pulse 
plot(t(1:nd),u(1:nd),'k--'),grid %pseudo-static response 
hold,plot(t(nd:N),zeros(1,(N-nd+1)),'k--') 
h=wn*sin(wn*t); %IRF, impulse-response function 
xc(1)=0; %zero initial value 
for n=2:N 
    sum=0; 
    for k=1:(n-1) 
          sum=sum+u(k)*h(n-k); 

                                                 
4 With td = a, the pulse is continuous at zero when it ends. 
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    end 
    xc(n)=sum; 
end 
xc=dt*xc; 
plot(t,xc,'ko-') 
t1=0:0.1:td;t2=(td+0.1):0.1:tend;te=[t1 t2]; 
wt1=wn*t1;wt2=wn*t2; 
x1=c*(a-t1-a*cos(wt1)+sin(wt1)/wn); 
arg=wn*td;sn=sin(arg);cn=cos(arg); 
S=a*sn-(arg*sn+cn-1)/wn;C=a*(1-cn)-(-arg*cn+sn)/wn; 
x2=c*(S*sin(wt2)-C*cos(wt2)); 
xe=[x1 x2]; %exact solution 
plot(te,xe,'k') 
 

 
 
The graph above shows that Eq. (8-44) with the relatively large time step Δt = 1 sec 
produces only a mediocre approximation to the exact solution of the 2nd order ODE in 
this  problem.  But the plot of the convolution-sum solution also illustrates an important 
point:  not only is x1 = 0, the requirement discussed previously, but also x2 = u1h1 = 0 be-
cause the initial IRF value h1 = 0 for the 2nd order ODE, regardless of the initial value u1 
of the input.  The appropriate approximation in this case for the initial time derivative of 

response is 0)0( 12 =
Δ
−

≈=
t
xx

t
dt
dx .  The necessary initial conditions (ICs) for a 2nd order 

ODE are both  )0(x and ) .  As is stated at the beginning of this section, any nonzero 
ICs must be accounted for by separate IC-response solutions, as these ICs cannot be in-
cluded in the forced-response solution, which is the convolution sum.  This means that 

0(x&
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we must have x1 = x2 = 0 for this, or, in fact, any correct convolution-sum approximate 
solution of a standard 2nd order ODE.  The plot above of the convolution-sum solution 
also demonstrates a negative (relative to numerical accuracy) consequence of the neces-
sary condition x2 = 0:  a consistent time lag, of the approximate solution relative to the 
exact solution, on the order of Δt.  The following MATLAB command lines evaluate Eq. 
(8-44) and plot the results (on the next page) for two progressively smaller values of Δt.    
 
>> a=10;c=1;wn=pi/4.5;td=10; 
tend=25; %time range (sec) 
m=[2 8]; %inverses of time steps for convolution 
maxln=tend*max(m)+1; 
t=zeros(2,maxln);xc=zeros(2,maxln); %initialize oversized arrays 
for j=1:2 
    dt=1/m(j);tj=0:dt:tend;N(j)=length(tj);t(j,1:N(j))=tj; 
    nd=td/dt+1; %warning: not an integer for arbitrary td 
    u=zeros(1,N(j)); 
    u(1:nd)=c*(a*ones(1,nd)-tj(1:nd)); %declining-ramp pulse 
    h=wn*sin(wn*tj); %IRF, impulse-response function 
    xc(j,1)=0; %zero initial value 
    for n=2:N(j) 
        sum=0; 
        for k=1:(n-1) 
              sum=sum+u(k)*h(n-k);   
        end 
    xc(j,n)=dt*sum; 
    end 
end         
plot(t(1,1:N(1)),xc(1,1:N(1)),'ks') 
hold,plot(t(2,1:N(2)),xc(2,1:N(2)),'k.'),grid 
t1=0:0.1:td;t2=(td+0.1):0.1:tend;te=[t1 t2]; 
wt1=wn*t1;wt2=wn*t2; 
x1=c*(a-t1-a*cos(wt1)+sin(wt1)/wn); 
arg=wn*td;sn=sin(arg);cn=cos(arg); 
S=a*sn-(arg*sn+cn-1)/wn;C=a*(1-cn)-(-arg*cn+sn)/wn; 
x2=c*(S*sin(wt2)-C*cos(wt2)); 
xe=[x1 x2]; %exact solution 
plot(te,xe,'k') 
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The numerical solution for time step Δt = ½ sec is a fair approximate solution, but still 
with a noticeable time lag, relative to the exact solution, on the order of Δt.  However, the 
numerical solution for time step Δt = ⅛ sec is almost indistinguishable from the exact so-
lution by eye on the graph.  This concludes Convolution-sum Example 2. 
 
 Finally, we note a curious intersection of two seemingly unrelated mathematical 
operations, convolution sum and multiplication of polynomials.  Suppose that we have 
two arbitrary sequences of numbers, {u}N and {h}M.  Consider the convolution sum in the 
form applied by the MATLAB command line X = conv(u,h), which produces the 

sequence for 1 ≤ n ≤ (N + M − 1):  ∑
=

−+=
n

k
knkn huX

1
1 111 huX = , 212 huX =  + ,  = 

, 

12hu 3X

132 huh + 14 uX231 uhu + 1423324 huhuhuh +++= , etc.  Evans (1954, pp. 201-203) ob-
served that the convolution-sum process can be executed with use of tables in a “process 
similar to multiplication.”  First, we define the table of sequences {h}M and {u}N : 
 
{h}M = h1 h2 h3 h4 …  
{u}N = u1 u2 u3 u4 …  
 

In order to execute the operation using the sequences {h}M  and {u}N , 

we construct the table of products below.  The first row of the table consists of the prod-

∑
=

−+=
n

k
knkn huX

1
1
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ucts u1 × {h}M , the second row consists of the products u2 × {h}M and this sequence is 
offset by one column toward the right, the third row consists of the products u3 × {h}M 
and this sequence is offset by two columns toward the right, etc. 
 

 n = 1 n = 2 n = 3 n = 4 … 
k = 1 u1h1 u1h2 u1h3 u1h4 … 
k = 2  u2h1 u2h2 u2h3 … 
k = 3   u3h1 u3h2 … 
k = 4    u4h1 … 

…     … 
 
Then each element Xn of the sequence {X}N+M-1 is the sum of the products in the corres-
ponding nth column of the table of products above: 
 
{X}N+M-1 = X1 = u1h1 X2 = u1h2 + 

u2h1  
X3 = u1h3 + 
u2h2 + u3h1   

X4 = u1h4 + 
u2h3 + u3h2 + 
u4h1 

…  

 
 A numerical example applying MATLAB’s conv function to multiplication of 
two polynomials was given in Section 6-1.  Here is another example of the process using 
the notation in the tables above, the product of a 1st degree polynomial, P1, with a 2nd 
degree polynomial, P2: 
 
P1 × P2 =  322231

2
1221

3
1132

2
121 )()()()( hushuhushuhushuhshshusu +++++=++×+

 
With zero input polynomial coefficients ui = 0 for i > 2 and hj = 0 for j > 3, the coef-
ficients of the product cubic polynomial (in descending order of powers of s) are the 
coefficients X1, X2, X3, and X4 from the last table above. 
 
 If you wished to execute product P1 × P2 , you would probably use the basic alge-
bra below for multiplication of two polynomials, which, although less general, is essen-
tially the same as the tabular process described above. 
 
Polynomial P2 = 2

1sh  + sh2  + 3h   
Polynomial P1 = su1  + 2u     
                                            −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 

su1  × P2 = 3
11 shu  + 2

21 shu  + shu 31   

2u  × P2 (offset) =  2
12 shu  + shu 22  + 32hu  

                                            −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 
P1 × P2 = column sums = 3

11 shu  + 2
1221 )( shuhu +  + shuhu )( 3131 +  + 32hu  
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8-12  Homework problems for Chapter 8 
 
8.1  A “shaped”, 10-millisecond force pulse in 
pounds is described by the equation 
 

[ ]sec)01.0(
lb)]

−t
tπ

)(
100(sin50[)( 2

−×
=

HtH
tf x  

 
which is graphed at right.  In a calculation of sys-
tem response to this input force, we wish to ap-
proximate the force as an ideal impulse function, 

)()( tItf Fx δ≅

FI
.  What is the value (with units) of 

?  (Hint:  before embarking on a long integra-
tion, examine the graph carefully for symmetries 
that will make the calculation almost trivial.) 
 
 
8.2  Consider an undamped mass-spring system.  The mass weighs 20.0 lb including an 
air-jet thruster that is attached to it, and the spring is calibrated to stretch 0.279 inch when 
subjected to 100 lb of tension.  The air-jet thruster has been designed and calibrated to 
provide 0.767 lb of thrust in a nearly perfect flat pulse.  Let’s study the dynamic position 
response x(t) of the mass, starting from zero ICs, to this force input from the thruster. 

50

 
(a)  Calculate the natural frequency of the mass-spring system in rad/sec and Hz, and the 
natural period of the system in seconds and milliseconds.  Calculate the impulse magni-
tude  delivered by the air-jet thruster in a blast of duration td = 4.00 milliseconds.  
(Partial answers:   = 75.53 msec,  = 3.068 × 10-3 lb-sec) 

FI

nT FI
 
(b)  Model the 4.00-msec air-jet blast as a perfect flat pulse of force.  For this input, write 
equations that describe the real pulse response x(t) (in inches); for help, see Eq. (8-5) and 
Eq. (7-4); don’t re-derive anything that is already available.  Use MATLAB to make an 
accurate time history plot of this real pulse response x(t) (in inches) over the time interval 
0 ≤ t ≤ 40 msec. 
 
(c)  Approximate the air-jet force input as an ideal impulse with the same impulse mag-
nitude  as calculated in part (a).  Use Eq. (8-28) to write the numerical equation for the 
ideal impulse response x(t) in inches.   

FI

 
(d)  Use MATLAB to make two accurate time history plots, on the same graph, of x(t) (in 
inches) over the time span 0 ≤ t ≤ 40 msec:  the real pulse response of part (b) and the 
ideal impulse response of part (c). 
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8.3  Consider the mass-spring system drawn below with m = 8.03 kg and k = 317 N/m.  
This system is initially at rest in the static equilibrium position when it is hit by a flat 
force pulse [ )()()( dy ttHtHFtf ]−−=  of magnitude F = 4.50 N and short duration = 
0.05 sec.  In this problem, we analyze the dynamic displacement of the mass relative to 
the initial static equilibrium position. 

dt

 
(a)  The following succinct response equation can be derived easily with 
use of transform Eq. (8-2) and the general Laplace transform of a func-
tion that is  L

 

  m 

  k 

 y(t)  fy(t) 

 translated in time: [ ]))( dd ttHttf ( −−  = .  )(sFe dst−

 

( ) ( )[ ])()(cos1)(cos1 ddnn ttHtttHt
k
F

−−−−− ωω)(ty =

 Eq. (7-4) that

 

 
Show that this equation is fully equivalent to the response equations in 
the two-part solution Eq. (8-5).  Note from  kFU = .  

 
Next, use MATLAB to plot the response curve of y(t) versus t from t = 0 to t = 1 sec, the 
period of the mass-spring system. 
 
(b)  In order to compare with the real response, plot [on the same graph as part (a)] the 
ideal impulse response of the system, tmIty nnF ωω sin)()( = , Eq. (8-28), using for  
the value of the actual impulse from given data.  Label clearly which curve is the real re-
sponse and which is the ideal impulse response; title and label your graph appropriately.   

FI

 
8.4  In this exercise, let’s apply the initial-value theorem to the problem of Section 8-7:  
the standard undamped 2nd order system that has non-zero initial conditions and is dis-
turbed by an ideal impulse, u )()( tIt U δ= . 
 
(a)  Determine the post-impulse initial value, , by using Eq. (8-25) for  in the 
initial-value theorem.  Is your result the same as that found directly from Eq. (8-26)? 

)0( +x )(sX

 
(b)  Use Eq. (8-25) for  to find the Laplace transform  of the “velocity” 
function; be sure to include 

)]([ txL )]([ txL &

both terms of Eq. (8-21) for the transform of a derivative. 
 
(c)  Determine the post-impulse initial “velocity”, ,  by using your  from 
part (b) in the initial-value theorem.  Is your result the same as that of Eq. (8-30)? 

)0( +x& )]([ txL &

 
8.5  Consider the standard 1st order LTI-ODE (of a stable physical system) for dependent 
variable x(t):  )()1( 1 tubxx =+ τ& , with IC x(0) = 0, and with excitation by an ideal im-
pulse, u )()( tIt U δ= . 
 
(a)  Infer from the results of Section 8-5 the unit-impulse-response function (IRF), h(t). 
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(b)  Use the result from part (a) to write the Duhamel integral response solution for the 
standard stable 1st order system, which is comparable to Eq. (8-42) for the standard un-
damped 2nd order system. 
 
(c)  The object of this part is to compare numerically the ideal impulse response derived 
in Section 8-5 with the response to a real, flat pulse that has the same impulse magnitude 
as the ideal impulse and a pulse duration that is short relative to the system time constant.  
Use MATLAB to make two accurate time history plots, on the same graph, of the dimen-
sionless output UIbtx )(  versus dimensionless time 1τt  over the time interval 0 ≤ 1τt  
≤ 1.  One plot will be the response to the ideal impulse.  The other plot will be the re-
sponse to a flat pulse having dimensionless duration 1τdt  = 0.2; for this plot, use the 
response equations derived in homework Problem 6.2.  You should find that the ideal im-
pulse response is much easier to calculate than the real-pulse response.  However, is the 
ideal impulse response a sufficiently accurate approximation to the real response, and, if 
so, is it accurate over all time, or over just some portion of the response time? 
 
8.6  If you compare Fig. 2-2 for the Heaviside unit-step function H(t) with Fig. 3-3 for 
step response of a stable 1st order system, you can see that as time constant 1τ  becomes 
progressively smaller, the 1st order step response looks progressively more like the unit-
step function.  Using Eq. (2-26) for  as a model, let’s define the “exponential-unit-
step” function : 

)(tH
)(tH e

 

⎩
⎨
⎧

>
<

=
0for1
0for0

)(
t
t

tH      ⇒     
⎩
⎨
⎧

>−
<

≡ − 0for1
0for0

)(
1 te

t
tH te τ  

 
It is clear that  can be defined as a limit of :   = .  Now, let’s 

define the “exponential-unit-impulse” function 

)(tH )(tH e

)(te

)(tH )(lim
01

tH e→τ

δ : 
 

( )
⎪⎩

⎪
⎨
⎧

>=−

<
≡ −− 0for11

0for0
)( 11

1

tee
dt
d

t
t tte ττ

τ
δ  

 
Sketch by hand an over-and-under pair of graphs, the upper graph being  vs. t and 
the lower graph being 

)(tH e

)(teδ  vs. t.  Sketch conceptually the two exponential functions for 
a few values of time constant 1τ ; show in particular how  and )(tH e )(teδ  evolve as 1τ  
becomes progressively smaller.  Describe the character of )(teδ  as 01 →τ .  Is it plausi-
ble physically to define the Dirac delta function as ))(t (lim

01

teδδ
τ →

= , which, with the defi-

nition H(t) = , is equivalent to )t(lim
01

H e→τ
dtdHt =)(δ ?  [This is one of many possible 

limit-process definitions of )t(δ ; Eq. (8-8) is a more commonly used definition.] 
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8.7  Consider the mass-spring system (with damping neglected) of Fig. 1-4, for which the 
ODE of motion is , and the system parameters are m = 2.20 kg and k = 
770 N/m.  Initial conditions are zero:  x(0) = 0 and 

)(tfkxxm x=+&&

( )0x&  = 0.  The excitation is a ramped 
exponential force pulse, fx(t) = Fm (t ⁄ tm) exp(1 − t ⁄ tm), with Fm = 6.0 N and tm = 1/12 sec.  
Write a MATLAB program, or adapt the code of Convolution-sum Example 2 in Section 
8-11, to calculate and plot an approximate numerical solution for x(t) over the time inter-
val 0 ≤ t ≤ 1 sec.  Adjust the time-step size Δt and number of time steps over the 1-sec 
interval in your code until the graph of your approximate solution appears very similar to 
that on Fig. 1-5 of the corresponding exact solution.  Submit your MATLAB code and 
your final graph of response. 
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9-1  Homogeneous solutions for damped 2nd order systems; viscous damping ratio ζ 
 

For the mass-dashpot-spring (m-c-k) system of Fig. 9-1, the equation of motion 
(3-20) derived from Newton’s 2nd law, with 
use of the FBD in Fig. 3-9, is  

m 

x(t) 
k  

c 

)(tfxkxcxm x=++ &&&

)(txh

 fx(t)          (9-1) 
 
Although 2nd order systems appear in many 
different mechanical and electrical forms, 
the m-c-k system of Fig. 9-1 is generally 
considered to be the prototype. Figure 9-1 Mass-dashpot-spring system
 

To provide direction for developing a standard form of damped 2nd order ODE, 
let’s consider the homogeneous form of Eq. (9-1) and seek a homogeneous solution 

  using the conventional method that is described in Section 1-5 [Eq. (1-6) and the 
subsequent discussion]: 
 

0=++ hhh xkxcxm &&&                                               (9-2) 
 
We seek , in which C and λ are unknown: t

h eCtx λ=)(
 

( ) 0=⇒ t

0)( ≠= t
h eCtx λ

02 =++ kcm λλ

2 ++ eCkcm λλλ  
 
Now  for a non-trivial solution, leading to the characteristic equation: 
 

                                                  (9-3) 
 
We solve Eq. (9-3) for characteristic values λ using the quadratic formula, recognizing 
k/m = ωn

2 from Eq. (7-3): 
 

2
222

22222
4

nm
c

m
c

m
k

m
c

m
c

m
mkcc ωλ −⎟

⎠
⎞

⎜
⎝
⎛±−=−⎟

⎠
⎞

⎜
⎝
⎛±−=

−±−
=  

 
The dimensionless viscous damping ratio ζ  and the critical viscous damping constant cc 
are defined as follows: 
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mkmc
c
c

mk
c

m
c

nc
cn

22where
22

=≡≡=≡ ω
ω

ζ                    (9-4) 

 
Recall that constants m, c, and k are normally positive for a passive, stable system, so that 
ζ  and cc also are normally positive.  With definitions (9-4), the characteristic values take 
the form 
 

1
22

222
2

−±−=−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
±⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−= ζωζωωω

ω
ω

ω
λ nnnn

n
n

n m
c

m
c              (9-5) 

 
Depending upon the value of ζ  relative to 1, there are three possible distinct solution 
types for characteristic value λ and the associated homogeneous solution : )(txh

 
Type 1:  ζ  > 1, overdamped or supercritically damped system 
 

Both roots are real and negative: 
 

12
, −±−= ζωζωλ nnIII                                            (9-6) 

 
The corresponding homogeneous solution is an exponentially decaying response with two 
distinct time constants: 
 

IIIIII
t

II
t

I
t

II
t

Ih
IIIIII eCeCeCeCtx ,, 1where)( λτττλλ −≡+=+= −−        (9-7) 

 
If we were given initial conditions , we could now solve for constants  
and  in terms of the ICs, and thus obtain an IC solution for the overdamped m-c-k sys-
tem.  We will obtain such a solution in Section 9-10, using different methods. 

)0(and)0( hh xx & IC

IIC

 
Type 2:  ζ  = 1, critically damped system 
 

The two roots (9-5) are equal and negative: 
 

nIII ωλ −=,                                                        (9-8) 
 
Due to the existence of repeated roots, the homogeneous solution involves both a pure 
exponential decay term and a term multiplied by time t that also decays, but more slowly 
than exponential: 
 

t
II

t
Ih

nn etCeCtx ωω −− +=)(                                           (9-9) 
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The case of critical damping is more of academic than practical interest, since it is rare in 
practice that physical parameters lead to the exact value ζ  = 1.  (see homework Problem 
9.11) 
 
Type 3:  0 ≤ ζ < 1, underdamped or subcritically damped system 
 

In this case, the terms in Eq. (9-5) within the square root are negative, so we have 
two complex characteristic values, each with a negative real part: 
 

22
, 1where1 ζωωωζωζωζωλ −≡±−≡−±−= nddnnnIII jj      (9-10) 

 
Frequency dω  is called the damped natural frequency.  The corresponding homogeneous 
solution is 
 

( ) ( ) ( )tj
II

tj
I

ttj
II

tj
I

t
II

t
Ih

ddndndnIII eCeCeeCeCeCeCtx ωωωζωωζωωζλλ −−−−+− +=+=+=)(  
 
By applying Euler’s equation (2-8) and combining constants  and  appropriately to 
form two new constants  and , we can re-write this homogeneous solution in the 
form of an exponentially decaying sinusoid: 

IC IIC

ID IID

 
( )tDtDetx dIIdI

t
h

n ωωζω sincos)( += −                                  (9-11) 
 
If we were given initial conditions , we could now solve for real constants 

 and  in terms of the ICs, and thus obtain an IC solution for the underdamped m-c-
k system.  We will obtain this solution in Section 9-4, using the general solution for x(t) 
obtained from Laplace transformation.  Underdamped systems are the most important and 
common in practical applications and the most interesting, so we will devote more atten-
tion to them than to the other two types of damped 2nd order systems. 

)0(and)0( hh xx &

ID IID

 
9-2  Standard form of ODE for damped 2nd order systems 
 
 Using the concepts and notation developed in the previous section, we now derive 
the “standard” form of ODE governing response of damped 2nd order systems, beginning 
with ODE (9-1) for an m-c-k system: 
 

k
tf

m
ktf

m
x

m
kx

m
k

mk
cxtfxkxcxm x

xx
)(

)(1
2

2)( ==++⇒=++ &&&&&&     (9-12) 

 
Using the definitions from the previous section and the standard input quantity (7-4), 

 ≡ )(tu ktf x )( , we re-write Eq. (9-12) in the standard form: 
 

)(2 22 tuxxx nnn ωωζω =++ &&&                                        (9-13) 
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In Eq. (9-13), x(t) represents any appropriate output quantity (not necessarily just position 
as in Fig. 9-1) for a damped 2nd order system.  Recall from Chapter 7 that we can identify 
u(t) as being the pseudo-static output, xps(t); if x(t) varies slowly enough that the terms  
and 

x&&
xn &ζω2  are negligible in comparison with , then ODE (9-13) reduces to a 

simple algebraic equation, , the solution of which is the pseudo-static 
response, x(t) = u(t) ≡ xps(t).   

xn
2ω

)(22 tux nn ωω ≈

 
Example 9-1:  the LRC circuit, a 2nd order electrical system 
 

Let’s derive an ODE governing the dynamic behavior of the LRC circuit in the 
figure below.  To write Kirchhoff’s voltage law for this circuit, we start at the input volt-

age generator and proceed clockwise [see Eq. (5-7)]: 
 R 

ei(t) 
C 

eo(t) 

i(t) 

L em  
0)0()() =−()0( +−+−+− omoi eeeemi ee  

 
Next, we substitute in Eq. (5-6) for the inductor and Ohm’s 
law (5-1) for the resistor: 
 

)(0)( teeiRdiLeiR ioo =++⇒=−−+
dtdt

diLei ⎟
⎠
⎞

⎜
⎝
⎛−+  

 
For the capacitor, we use (5-3), then differentiate the result and substitute into the ODE: 
 

)(
)0(

teeeRCeLCeCideC
ed

Ci iooooo
o =++⇒=⇒=
−

= &&&&&&
dtdt

 
 
Therefore, we can write the ODE in the standard 2nd order form (9-13) as1 
 

)(11 teeeRe iooo =++ &&&
LCLCL

 
 

From this standard form, we see that the undamped natural frequency is LCn 1=ω , 

and the viscous damping ratio is LCRLR 1))(21( == ωζ n 2 . 
 
Example 9-2:  the rate gyroscope, a 2nd order mechanical system 
 
 The schematic three-view engineering sketch on the next page represents the ba-
sic functional form of a single-axis rate gyroscope (gyro), a sensor of rotational velocity.2  
The supporting turntable in the sketch could be a fixture in a laboratory setup for cali-

                                                 
1 In Appendix B, Section B-3, this ODE is derived by an alternative method using energy and power.  The 
rate of change of system energy is equated with the power supplied to the system. 
2 Gyroscopes have been used in sensors and actuators for both aerospace vehicles and water-borne vehicles.  
Some examples are described by Cannon, 1967, pages 159-163, 617-626, 696-697, and by Den Hartog, 
1956, pages 108-112. 
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brating the sensor; the 
turntable rotates clockwise 
(as viewed from above) 
with rotational velocity 
(rate) p(t).  At the heart of 
the rate gyro is a spinning 
rotor with polar rotational 
inertia Jr about its spin axis; 
it is driven by a motor to 
spin counterclockwise (as 
viewed from the front) at 
the high constant spin rate 
(rotational speed) Ωr, which 
is usually orders of magni-
tude greater than │p(t)│.  
The motor and spinning 
rotor are attached to a gim-
bal (rotating frame) and 
shaft segments that fit into 
bearings within brackets 
projecting from the turn-
table.  The gimbal-shaft as-
sembly (including the mo-
tor and spinning rotor) can 
rotate through small angle 
θ(t) about the so-called 
“gimbal axis”.  This θ(t) ro-
tation is resisted by a rota-

tional spring with constant kθ, and by a rotational viscous damper with constant cθ.  (Drag 
is imposed by viscous liquid within a gap between the outer surface of the shaft segment 
and the inner surface of the sleeve, which is attached to the bracket.)  The polar rotational 
inertia of the gimbal-shaft assembly about the gimbal axis is Jθ.   Due to the inertia Jr and 
high speed Ωr of the spinning rotor, turntable rotation p(t) induces an inertial moment 
about the gimbal axis, Mθ(t) = Jr Ωr p(t) cos θ(t) [as derived from Newton’s laws of rigid-
body dynamics by, e.g., Cannon, 1967, pages 152-163]; we assume that θ(t) is small 
enough that cos θ(t) ≈ 1, so that Mθ(t) ≈ Jr Ωr p(t), as labeled on the sketch..  From Eq. (3-
1), Newton’s 2nd law for rotation of the gimbal-shaft assembly about the gimbal axis is 

)()( tpΩJkcJJkctM rr=++⇒=−− θθθθθθ θθθθθθθ
&&&&&&

 
Σ(Moments)about gimbal axis = (rotational inertia) × (rotational acceleration)about gimbal axis 

 

 
 
Therefore, we can write the ODE in the standard 2nd order form (9-13) as 
 

)()( tp
k
ΩJ

J
k

tp
J
ΩJ

J
k

J
c rrrr

θθ

θ

θθ

θ

θ

θ θθθ ==++ &&&  
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From this standard form, we see that the undamped natural frequency is θθω Jkn = , 
and the viscous damping ratio is ζ = (cθ ⁄ Jθ) ⁄ (2ωn), and the standard input quantity, with 
the same dimensions as rotation-angle output θ(t), is u(t) = (Jr Ωr ⁄ kθ) p(t) ≡ θps(t), the 
pseudo-static output.   
 
 In practical application of a rate gyro, a transducer detects the rotation of the gim-
bal-shaft assembly and generates an electrical signal proportional to θ(t), which might be 
displayed and/or recorded by a data-acquisition-and-processing system, and might also 
serve as an input to a control system.  Spinning-rotor rate gyros come in various sizes and 
shapes; typical units are around the size of a one- or two-pound can of vegetables, and 
their cases can be cylindrical or box-shaped.3 
 
9-3  General solution for output x(t) of underdamped 2nd order systems 
 
 We want to solve Eq. (9-13) for output x(t) during positive time t > 0, given any 
input u(t), and given appropriate initial conditions at t = 0.  We will use Laplace trans-
formation with application of the inverse convolution transform.  To simplify the nota-
tion, let’s denote X(s) ≡ L[x(t)].  Transforming Eq. (9-13) with use of Eq. (2-17) gives 
 

[ ] )]([)()0()(2)0()0()( 222 tuLsXxssXxsxsXs nnn ωωζω =+−+−− &  
 
We denote the two initial conditions, )0(0 xx ≡  initial “position” and  initial 
“velocity”.  Collecting terms algebraically and rearranging the equation gives 

)0(0 xx && ≡

 
( ) ( ) )]([2)(2 2

00
22 tuLxxssXss nnnn ωζωωζω +++=++ &                 (9-14) 

 
Note that up to this point in the derivation, no restriction has been placed on the value of 
damping ratio ζ . 
 

To cast Eq. (9-14) into an easily solvable form, we use two algebraic tricks that 
are not obvious a priori.  The first trick is to re-write the left-hand-side quadratic term 
[which, essentially, is the same as the quadratic term in characteristic equation (9-3)]: 
 

( ) ( ) ( ) 2222222 2 dnnnnnn ssss ωζωζωωζωωζω ++=−++=++           (9-15) 
 
We shall regard  as a positive parameter in the following, so Eq. (9-15) is nominally 
valid only for an underdamped system (0 ≤ ζ < 1).  The second trick is to split into a 
particular form the IC terms on the right-hand side of Eq. (9-14): 

2
dω

 
( ) ( ) ( )000002 xxxsxxs nnn ζωζωζω +++=++ &&                         (9-16) 

                                                 
3 This type of spinning-rotor gyro can be considered a “legacy” design, not necessarily the most modern or 
the best for current applications.  Rotation sensors using laser optics and microelectromechanics (MEMS) 
have been developed more recently. 
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Applying Eqs. (9-15) and (9-16) to Eq. (9-14), then solving for X(s) gives: 
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            (9-17) 

 
The motivation for casting the solution into form (9-17) is a relevant general 

Laplace transform pair that has not appeared previously in this book:  given a function 
, its Laplace transform F(s), and the exponential function , where σ  is a con-

stant, then the Laplace transform of the product  is 
)(tf teσ

)(tfe tσ

 

[ ] )()()()(
0

)(

0

σσσσ −≡== ∫∫
∞=

=

−−
∞=

=

− sFdttfedttfeetfeL
t

t

ts
t

t

ttst                 (9-18) 

 
The associated inverse transform is 
 

[ ] )()(1 tfesFL tσσ =−−                                            (9-19) 
 

Returning to Eq. (9-17), we identify σ  = −ζωn  and invert the two IC-response 
terms using Eq. (9-19) in conjunction with sine and cosine transforms (2-30) and (2-31).  
To invert the forced-response term, we apply both Eq. (9-19) and inverse convolution 
transform (6-3).  This leads to the two equivalent general equations for output x(t) of an 
underdamped 2nd order system: 
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(9-20a) 
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(9-20b) 
 
Note the emphasis that Eqs. (9-20) are valid for underdamped systems.  This solution is 
nominally not valid for overdamped systems, although we will see in Section 9-10 that it 
can be converted easily.  The nominal restriction to underdamped systems stems from the 
use of sinusoidal transforms (2-30) and (2-31), which are valid in this case only for posi-
tive , which holds only if 0 ≤ ζ < 1, from Eq. (9-10).  For example, we used the in-2

dω
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verse transform t
s

L ω
ω

ω sin22
1 =⎥⎦

⎤
⎢⎣
⎡

+
− , valid for  > 0, in order to find (9-20), but the 

following transform holds for a negative term in the denominator:  

2ω

⎥⎦
⎤

⎢⎣
⎡

−
−

22
1

ω
ω

s
L  = 

tωsinh , a hyperbolic sine. 
 
9-4  Initial-condition transient response of underdamped 2nd order systems 
 
 One form of transient, free vibration is response from non-zero initial conditions, 
with input u(t) = 0 for all time.  With u(t) = 0, response (9-20) becomes 
 

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
+= − txxtxetx

d

n
d

tn

ω
ζωωζω cos)( 00

0
&

dωsin , for 0 ≤ t and 0 ≤ ζ < 1     (9-21a) 

 
By following the procedure of Eqs. (7-11)-(7-12) for combining the two sinusoids of Eq. 
(9-21a), we can also express the IC, free-vibration response as 
 

( )φωζω += − textx d
tn cos)( max , for 0 ≤ t and 0 ≤ ζ < 1                  (9-21b) 
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xxxx
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ω
ζω

φ
ω
ζω &&

 

 
Note that for ζ = 0, response equations (9-21) reduce to the results (7-10) and (7-12) de-
rived for an undamped system in Chapter 7.  In this regard, it is useful to keep in mind 
the definition of the damped natural frequency, 21 ζωω −≡d . n

 
The equation 21 ζωω −≡ nd  also shows that damping reduces the frequency of 

free vibration, and increases the period, ddT ωπ2≡ .  However, the words “frequency” 
and “period” are used loosely in this case, because the damped response is not truly 
periodic.  More correctly,  is defined as the time between successive local crests or 
troughs of the response, and between successive positive-going or negative-going zeros. 

dT

 
 Figure 9-2 on the next page is an annotated sketch of response (9-21) for positive 
values of the ICs,  > 0 and > 0, and for the small damping ratio 0x 0x& ζ  = 0.11.  The 
output is a sinusoid, ( )φω +tdcos , modulated by a decaying exponential envelope, 

2
maxmax

τζω tt exex n −− ±≡±

2

.  In this equation for the exponential envelope, we define the 
time constant τ  appropriate for underdamped 2nd order systems as 
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nζω
τ 1

2 ≡                                                       (9-22) 

 

 

 

Figure 9-2  IC response of a damped 2nd order system,  = 0.11 ζ
 
 It is often necessary to measure experimentally the dynamic response of mechani-
cal systems, which requires sensors (transducers) that sense a response quantity and con-
vert it into an electrical voltage.  The sensors most abundant and relatively inexpensive 
for mechanical systems are translational accelerometers (see homework Problem 10.12).  
Velocity sensors and translation (displacement) sensors are also used, but less commonly. 
It is appropriate, therefore, that we find from “displacement” Eqs. (9-21) the corre-
sponding equations for free-vibration “velocity” and “acceleration.”  One differentiation 
f (9-21b) gives o

 
( ) ( )[ ]φωω +tdd sin  

Next, we combine the two sinusoi se of the trigon ntity 
)sin(sincoscosin BABABA

φωζωζω −+−= − textx dn
tn cos)( max&

 
dal terms with u ometric ide

s +=+  and the equation 21 ζωω −≡ nd , leading to 
 

( )ζφωω ζω 1
max sinsin)( −− ++−= textx d

t
n

n& , for 0 ≤ t and 0 ≤ ζ < 1           (9-23) 

ne more differentiation of (9-23) followed by a similar combination procedure gives 
 

 
O

( )ζφωω ζω 1
max

2 sin2cos)( −− ++−= textx d
t

n
n&& , for 0 ≤ t and 0 ≤ ζ < 1         (9-24) 

ation of system parameters such as ζ and ωd, a subject addressed in subsequent sections. 

-5  Calculation of viscous damping ratio ζ  from free-vibration response

 
We see that displacement, velocity, and acceleration all have the same damped sinusoidal 
form.  Therefore, experimental measurements of any of the three can be used for identifi-
c
 
9  
 
 Consider an underdamped 2nd order system in a state of free vibration, i.e., with 
zero input, u(t) = 0.  This free vibration can be an initial-condition response or the resid-
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ual response after input excitation has ceased, e.g., for t > td  if the input is a pulse.  Then 
the free-decay will have the form of Fig. 9-3.  On the figure, a reference local 
extreme value 00 )( xtx ≡  is annotated (at a crest on Fig. 9-3, but it could just as well be at 
a trough), and subsequent local extreme values (both crests and troughs) also are anno-
tated.  We wish to calculate viscous damping ratio ζ  from the graph of resp

response 

onse.  Note 

Figure 9-3  Free-vibrat  order system 

We use Eq. (9-21b) for free-vibration response: 

also that the exponential envelope is indicated on Fig. 9-3 with dashed lines. 

 

 

 

ion response of a damped 2nd

( )φωζω += − textx tn cos)(                        (9-21b) repeated 

From 

dmax

 
this equation, we form the ratio rxx0  of the reference extreme absolute value 

)( 0tx  divided by the rth crest or trough absolute valu own on Fig. 9-3 can 

have either integer or half-integer values.  Note that 

e, where r as sh

( ) 1=φ  at ea lo
extrem dT

cos +ω td ch of the cal 
e values, and that the time of the rth extreme value is r rtt += 0 , where dT  = 

dωπ2  is the da
 

mped natural period.  So the required ratio is 
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     (9-25) 

aking the natural logarithm of logarithmic decrement: 
 

rn

 
T Eq. (9-25) gives the so-called 

( )
s

r

r r
xx

r
x
x

ζ
πζ

ζ

ζ

ζπ ≡=
−

⇒
−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
2

ln

11
2ln 0

22

0                  (9-26) 

 
In the last term of Eq. (9-26), we define sζ  as being the accurate approximation for 
“small” damping ratio ζ .  It is very common f tem to have positive, but small 
damping.  We define damping to be smal

or a sys
l if 11 2 ≈−ζ

equations such as (9-26).  For ζ = 0.2, 

, which simplifies considerably 

980.01 2 =−ζ , so this is a reasonable upper 
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limit for “smallness.”  We can find the exact equation for ζ  by squaring (9-26) and then 
proceeding algebraically to derive 
 

21 s

s

ζ

ζ
ζ

+
= , for 0 ≤  ζ < 1                                       (9-27) 

 
 It might appear that the preceding derivation requires the values of  and  to 
be at crests and troughs of the response plot, and that these should be zero-to-peak values; 
but neither of these restrictions is necessary.  The values of  and  can be at 

0x rx

0x rx any con-
venient instants along the time history (zeros of the response, as well as extremes), pro-
vided that we interpret  and  as being the magnitudes of the 0x rx exponential envelope at 
the chosen instants.  Normally, only the free-vibration response plot is available (from a 
storage oscilloscope, strip-chart recorder, etc.), so we should sketch in the exponential 
envelope to aid in measuring ,  and r.  Moreover, rather than measuring zero-to-
peak values, it is more accurate and easier to measure  and  as peak-to-peak values, 
from the lower exponential boundary to the upper exponential boundary. 

0x rx

0x rx

 
 Let’s summarize the procedure for measuring/calculating ζ   from a plot of free-
vibration response.  First, sketch in the exponential envelope.  Next, choose time instants 
along the graph at which you can measure with reasonable accuracy the number of peri-
ods r (usually an integer, half-integer, or quarter-integer) and the magnitudes  and  
between the exponential boundaries.  Next, substitute the measured values of r, , and 

 into Eq. (9-26) and calculate 

0x rx

0x

rx sζ .  If this sζ  is ≤ 0.2, then ζ  ≈ sζ  with sufficient engi-
neering accuracy.  However, if 0.2 < sζ  < 1, then calculate ζ  more accurately from Eq. 
(9-27). 
 
 There is a simplified version of Eq. (9-26) that is often used for quick calculation 
of small ζ .  If possible, we find the reference magnitude and the rth magnitude such that 

20 =rxx , and we label the number of periods as .  Hence, 2/1r π2)ln( 0 rxx  ≡ 0.110, 
which leads us from Eq. (9-26) to the half-amplitude formula for small ζ : 
 

ζζ ≈=
2/1

110.0
rs                                                  (9-28) 

 
 Finally, the preceding derivation was based upon Eq. (9-21b) for “displacement” 
response x(t).  However, the formulas derived for ζ  are equally valid if the measurements 
are made from graphs of “velocity”  or “acceleration” .  This is so because, from 
Eqs. (9-23) and (9-24), the derivatives of x(t) have the same exponentially-bounded sinu-
soidal form as x(t) itself. 

)(tx& )(tx&&
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9-6  Step response of underdamped 2nd order systems 
 
 For step response, we set the ICs to zero, and we define the input to be a step 
function at time t = 0, with step magnitude U:  u(t) = U H(t).  The appropriate form of the 
general solution to use is Eq. (9-20a), which becomes [with )( τ−tH  = 1 for τ  < t] 
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This integral can be evaluated by hand (e.g., using integration by parts), but the process is 
tedious.  The following evaluation was completed with use of a table of integrals: 
 

( )[ ]

( )[ ])(1cossin1

cossin
)(
1)( 022

2

ddddn
t

d

t
dddn

dnd

n

tteU

eUtx

n

n

ωωωωζω
ω

τωωτωζω
ωζωω

ω

ζω

τ

τ
τζω

−−−−=

−−
+−

=

−

=

=
−

 

 

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−= − tteUtx d

d

n
d

tn ω
ω
ζωωζω sincos1)( , for 0 ≤ t and 0 ≤ ζ < 1         (9-29) 

 
Note that the coefficient of tdωsin  in Eq. (9-29) is dependent only on the damping ratio: 
 

s

n

n

d
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ζ
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ω
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=
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22 11

     [see Eq. (9-26)] 

 
Step response (9-29) for small damping ratio ζ  = 0.11 is plotted over a few 

cycles of response on Fig. 9-4.  Relative to the pseudo-static response,  = U, the actual psx
 

Figure 9-4  Step response of a damped 2nd order system, ζ = 0.11 
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step response of a damped system initially overshoots, then undershoots, then overshoots 
again, then undershoots again, etc., etc.  But damping dissipates the energy of vibration, 
causing the response eventually (not shown on Fig. 9-4) to settle statically at  = 

 = U.  Several step-response characteristics (called specifications, or specs in engi-
neering jargon) of a system can be quantified and often are of great interest in practice.  
For example, the rise time is the time required for the response first to reach U, which on 
Fig. 9-4 is just a bit longer than 

)(lim tx
t ∞→

psx

nωπ2
1 .  However, before studying those characteristics 

in more detail, it is appropriate that we first consider impulse response. 
 
9-7  Ideal impulse response of underdamped 2nd order systems 
 
 For impulse response, we set the ICs to zero, and we define the input to be an 
ideal impulse at time t = 0, with impulse magnitude :  UI )()( tItu U δ= .  The more 
appropriate form of the general solution to use is Eq. (9-20b), which becomes 
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Using the integration property of )(τδ , Eq. (8-11), we find the relatively simple result: 
 

teItx d
t

d

n
U

n ω
ω
ω ζω sin)(

2
−= , for 0 < t and 0 ≤ ζ < 1                       (9-30) 

 
 Ideal impulse response (9-30) for small damping ratio ζ  = 0.11 is plotted over a 

few cycles of response on Fig. 9-5.  Observe that this ideal response violates the specified   

     Figure 9-5  Ideal impulse response of a damped 2nd order system, ζ = 0.11 
 
initial condition ; thus, the solution is defective in this respect, as is discussed in 
Section 8-7.  Figure 9-5 shows the exponential envelope; note, in particular, the values at 
t = 0 of the exponential envelope, 

0)0( =x&

dnUI ωω 2± .  This magnitude is easily measurable 
from a graph, after we have sketched in the exponential envelope, if necessary, and it is 
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essential in the process of estimating mechanical system parameters from an experimen-
tal response to a short force pulse (Section 9-9). 
 
 From Eq. (9-30), we find the unit-impulse-response function (IRF, as defined in 
Section 8-7) for underdamped 2nd order systems: 
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=≡ , for 0 < t and 0 ≤ ζ < 1                (9-31) 

 
Further, from Eq. (8-25), we find the Duhamel integral giving general response to input 
u(t), with zero ICs, for underdamped 2nd order systems: 
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Duhamel integral (9-32) is identical to convolution-integral response solution (9-20b) 
with zero ICs. 
 
 Finally, it is worthy of mention that convolution sum Eq. (8-44) for approximate 
numerical forced response applies just as well to damped 2nd order systems as to 1st order 
and undamped 2nd order systems.  Therefore, to calculate approximate forced response of 
an underdamped 2nd order system, we would apply exactly the same procedure described 
in Convolution-sum Example 2 of Section 8-11, but instead of calculating in Eq. (8-44) 
the IRF tth nn ωω sin)( =  for an undamped system, we would calculate Eq. (9-31). 
 
9-8  Step-response specifications for underdamped systems 
 
 Engineering systems are often designed so that the time history of an output quan-
tity will mimic as closely as possible the time history of the input quantity.  An example, 
with reference to Section 3-5, is the aileron-induced rolling of an airplane, for which the 
original input is the control wheel angle set manually (“commanded”) by the pilot, and 
the ultimate output is the airplane roll rate.  Another example is the modern automobile; 
we usually describe a car as being “responsive” if the steering (or the acceleration, or the 
braking) mimics quickly and precisely the driver’s commands set by hand or foot. 
 

Step response of a system is often used for measuring and quantifying dynamic 
“responsiveness.”  Ideally, step response would mimic exactly the step input, but system 
characteristics such as inertia and damping prevent such instantaneous response.  The de-
gree to which step response fails to mimic step input is quantified in the following four 
step-response specifications:  rise time, ; peak time, , maximum overshoot ratio, rt pt px , 
and settling time, .  These step-response quantities are illustrated on Fig. 9-6 on the 
next page.  They are called “specifications” or “specs” because it is common in the be-
ginning of a project to specify them as design targets; later, these step-response quantities 
are measured experimentally on prototype and/or production test articles. 

st
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Figure 9-6  Step-response specifications of an underdamped system 
 
 For underdamped 2nd order systems, we can apply step-response solution (9-29) 
and impulse-response solution (9-30) to derive specific equations for the step-response 
specifications: 
 
Rise time, tr 
 
 From Fig. 9-6, we evaluate Eq. (9-29) at t = t , the r first time when x(t) = U : 
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This last equation shows that as ζ  → 0 from positive values, then ωtan

rd t
 → −∞ from 

negative values; therefore, nω  → ×π2
1  from higher values, where n = 1, 5, 9, …; and 

the first time when x(t) = U corresponds to n = 1:  rd tω  → π2
1

r

 from higher values.  We 
can see this in Fig. 9-4, where t  is just a bit after nωπ2

1
nd (keep in mind that ω ω≤ ).  

This leads to the conclusion that the rise time is given by 
 

 

ωd tr 

 x 

 y 

ωd tr 

 −ζ 

21 ζ−  
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

−
−

= −

ζ
ζ

ω

2
1 1

tan1

d
rt                         (9-33) 

 
In Eq. (9-33), we take the value of the four-quadrant inverse 
tangent that is between π2

1  and π , as shown on the drawing at 
right. 
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Peak time, tp 
 
 From Fig. 9-6,  is the time at which x(t) is maximum and the first time after t = 
0 that  = 0.  So we need to differentiate Eq. (9-29), set it to zero, and solve for  
from the resulting equation.  From the appearance of Eq. (9-29), though, that differentia-
tion will be long and tedious.  But that drudgery will not be necessary, because a funda-
mental relationship derived in Section 8-7 will come to our rescue.  We identify the unit-
step response as Eq. (9-29) with step magnitude U = 1: 

pt
)(tx& pt
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Clearly,  is independent of step magnitude U.  Now, Eq. (8-24) gives the derivative of 
Eq. (9-34) as 

pt
)(thdtdxH = , where the IRF  in this case is Eq. (9-31).  Therefore, the 

equation leading to  that we seek is 
)(th

pt
 

0sin)(
2

=== − teth
dt

dx
d

t

d

nH n ω
ω
ω ζω  at t =                             (9-35) pt

 
The required solution of Eq. (9-35) is the lowest positive value of t that satisfies tdωsin  
= 0, which is 
 

d
pt

ω
π

=                                                        (9-36) 

 
The graphical equivalent of this mathematical derivation of Eq. (9-36) is evident in an 
examination of Figs. 9-4 and 9-5, where we can see that both the peak of the step re-
sponse and the first zero of the ideal impulse response occur at an instant t just a bit after 

nωπ  (recall that nd ωω ≤ ). 
 
Maximum overshoot ratio, px  
 
 From Fig. 9-6, Eq. (9-29), and Eq. (9-36), the maximum overshoot ratio is 
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So the maximum overshoot ratio is a function only of viscous damping ratio ζ  .  Con-
versely, ζ  can be determined from a measurement of px  by taking the natural logarithm 
of Eq. (9-37): 
 

s
p

p

x
x ζ

ζ

ζ
π

π
ζ

ζ
≡

−
=−⇒

−
−=

22 1

ln

1
ln  , valid for 0 < px  ≤ 1     (9-38) 

 
Note the similarity of Eq. (9-38) to Eq. (9-26) for the logarithmic decrement.  Therefore, 
we arrive again at Eq. (9-27), the exact equation giving ζ  for any overshoot in the range 

0 < px  ≤ 1:  21 ss ζζζ += , for 0 ≤  ζ < 1, now with πζ ps xln−= . 
 
 If damping is small such that 11 2 ≈−ζ , i.e., 0 ≤ ζ  ≤ 0.2, then Eqs. (9-37) and 
(9-38) are approximated as: 
 

πζ−≈ ex p     and     
π

ζ pxln
−≈      valid for 0 ≤ ζ ≤ 0.2 and 0.534 ≤ px  ≤ 1    (9-39) 

 
Settling time, ts 
 
 This specification is defined as the time required for response x(t) to settle to 
within ±2% of the final steady-state (pseudo-static) value, U.  For this underdamped 2nd 
order system, the time constant of the exponential envelope is Eq. (9-22), nζωτ 12 ≡ .  
From Chapter 3, we have 1 − e-4 = 0.982 (see Fig. 3-3), so the settling time is defined as 
 

n
st

ζω
τ 44 2 ≡=                                                  (9-40) 

 
It is appropriate here to evaluate the variation in step response of a standard 2nd 

order system as damping varies.  Figure 9-7 on the next page displays 2nd order step re-
sponses for a range of viscous damping ratios ζ .  [The response curves of Fig. 9-7 are 
calculated as follows: for underdamping, 0 ≤ ζ  < 1, from Eq. (9-29); for critical damping, 
ζ  = 1, from the result of homework Problem 9.11; for overdamping, ζ  = 1.2, from the 
result of homework Problem 9.16.  The time reference is undamped natural period Tn = 
2π ⁄ ωn.]  As engineers designing a system, we might wish to design into the system a 
quantity of damping ζ  that makes the time history of an output quantity mimic as closely 
as possible the time history of the input quantity.  This means, in the context of step 
response, we would want both to make rise time as fast as possible and to minimize 
overshoot.  However, Fig. 9-7 shows that we cannot simultaneously do both for a stan-
dard 2nd order system:  rise time is fastest for small ζ , but overshoot is minimized or 
eliminated with larger ζ .  Therefore, we would have to compromise and select a value of 
ζ  that produces practically acceptable values of both rise time and overshoot, even 
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though neither response parameter would be the best possible.  Observe from Fig. 9-7 
that overshoot exists only for underdamping.  
 

 
Figure 9-7  Step responses of standard 2nd order systems as viscous damping varies 
 
 The transient response of engineered control systems is very important in practice, 
so there is more analysis and discussion of subjects such as rise time and overshoot later 
in the book, beginning in Chapter 14. 
 
9-9  Identification of a mass-damper-spring system from measured response to a 
short force pulse 
 
 Suppose we have a mechanical system that is known to be an m-c-k system (or a 
close enough approximation thereto, for engineering purposes), such as that of Fig. 9-1, 
and suppose we need to estimate from experimental measurements the system 
parameters: mass m, effective viscous damping constant c, and stiffness constant k.  This 
is a form of the process known generally as system identification (ID).  There are many 
methods of system ID using both transient response and frequency response.  In this 
section, we illustrate one common method based upon pulse response. 
 
 The theoretical basis for system ID by pulse testing of a mechanical m-c-k system 
is the ideal impulse response given by Eq. (9-30), with use of Eq. (8-13), kII FU = , and 

the equation for natural frequency, mkn =2ω : 
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Similarly, the values at t = 0 of the upper and lower boundaries of the exponential enve-
lope (for guidance, see Fig. 9-5) are 
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                                              (9-42) 

 
The practical implementation of these equations is based upon using them to approximate 
the real response from a short force pulse, as is discussed extensively in Section 8-6. 
 
 The experimental procedure is as follows.  An engineer or technician strikes the 
mass lightly but sharply with a specially designed hammer.  A force sensor mounted in 
the head of the hammer measures the pulse.  A displacement sensor measures motion of 
the mass due to the force pulse.  For accuracy of the system ID, it is essential that the 
pulse duration td of the hammer strike be very short relative to a quarter of the system 
natural period:  td << ¼ Tn ; achieving this might require some experimental iteration, 
testing hammer contact tips of different degrees of hardness.  The time history fx(t) of 
force input to the mass is recorded; this force pulse might be somewhat irregular, such as 
Fig. 8-5, or it might appear to have a more regular form, such as a half-sine. The time 
history of displacement response, x(t), also is recorded; with a properly short pulse dura-
tion, response x(t) should look very much like the damped sinusoid of Fig. 9-5, ideal im-
pulse response.  The steps of the subsequent calculation algorithm are: 
 
1.  Calculate from measurements on the x(t) graph the damped natural frequency fd (Hz)  
and the viscous damping ratio ζ .  In order to obtain reasonably accurate values of fd and  
ζ , be sure to average over as many cycles as possible of the damped sinusoid.  To aid in 
the calculation of ζ , first sketch in the exponential envelope.  Next, use the values of fd 
and ζ  to calculate the two circular natural frequencies in rad/sec:  dω  = 2π fd  and nω  =  

21 ζω −d .  For small ζ , these two frequencies will be essentially identical. 
 
2.  From the fx(t) graph, use graphical or approximate theoretical integration to calculate 
the actual force impulse .  From the x(t) graph, find the value at t = 0 of the upper and 
lower boundaries of the exponential envelope, which are approximately 

FI

dF mI ω±  from 
Eq. (9-42).  It is important in this step to be very careful with the units of these quantities 
measured from experimental data.  Now, you have the data required to calculate the mass 
from the identity 
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3.  Finally, calculate the stiffness constant using , and calculate the effective 

viscous damping constant from Eq. (9-4), 

2
nmk ω=

mkmc n ζωζ 22 == . 
 
 It is always essential in engineering practice to check your calculations as much 
as is practical.  After you have calculated m, c, and k from the procedure described above, 
you can check the validity of your values by using MATLAB (or some similar calcula-
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tion software) to graph the ideal impulse response of your calculated system, Eq. (9-41); 
then compare the calculated graph with the recorded experimental response.  If the two 
graphs are very similar, then your system ID is probably correct, provided that you cal-
culated  correctly.  However, suppose that you use an incorrect value of , then 
calculate wrong values of m, c, and k based upon this wrong ; if you then graph the 
ideal impulse response, using these wrong values in Eq. (9-41), the result will look very 
much like the recorded experimental response, giving you a false indication that your 
system ID is correct.  Therefore, be sure to calculate correctly the force impulse . 

FI FI

FI

FI
 
9-10  Deriving response equations for overdamped 2nd order systems 
 
 For ζ  > 1, we can consider the damped natural frequency to be an imaginary 
number: 
 

1where11 222 −≡≡−=−= ζωμμζωζωω nddnnd jj  is real    (9-44) 
 
The general method of deriving transient response equations for the overdamped case is 
to substitute (9-44) into the Laplace transform (9-17), and then proceed to invert the re-
sulting equation, leading to general expressions that include IC response terms and con-
volution integrals, analogous to Eqs. (9-20). 
 
 There is an easier method for finding overdamped-system response equations if 
the comparable underdamped-system equations have already been derived.  The method 
is to use Eq. (9-44) in order to convert trigonometric terms of the ζ  < 1 equations into 
hyperbolic terms for the ζ  > 1 equations.  From homework Problem 2.13, we have the 
following conversions valid for ζ  > 1: 
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=                        (9-45) 

 
 An example of applying Eqs. (9-44) and (9-45) is conversion of IC response Eq. 
(9-21a) from the underdamped (ζ  < 1) form into the overdamped (ζ  > 1) form: 
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 for ζ  > 1         (9-46a) 

 
in which 12 −= ζωμ nd .  This IC-response equation is valid for 0 ≤ t and ζ  > 1.  The 
hyperbolic functions are defined in terms of exponential functions as 
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Therefore, IC-response equation (9-46a) can be written a bit more clearly as 
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All terms in Eq. (9-46b) are exponentially damped.  Even the first term within the square 
brackets decays away exponentially because =−+−=+− 12ζωζωμζω nndn  

( ) 012 <−−− nωζζ  for ζ  > 1. 
 
Example 9-3:  RC band-pass filter, an overdamped 2nd order system  
 
 We re-visit Section 5-4, where the input voltage to the RC band-pass filter is de-
fined as , the mid-circuit voltage between low-pass and high-pass stages is , 
and the output voltage is ; also, the 1st order time constants of the low-pass and 
high-pass stages are 

)(tei )(tem

)(teo

Lτ  and Hτ , respectively, defined in terms of resistance and 
capacitance values in the circuit.  The two coupled 1st order ODEs derived in Section 5-4 
are 
 

for the low-pass filter stage,     immL eee =+&τ          (5-16) repeated 
 

for the high-pass filter stage,     mHooH eee && ττ =+        (5-17) repeated 
 

We combine these coupled 1st order ODEs into a single 2nd order ODE with the 
following operations:  differentiate Eqs. (5-16) and (5-17); in the differentiated (5-16), 
replace  using the original (5-17), and replace  using the differentiated (5-17); re-
arrange and collect terms to find the ODE relating output  to input : 

me& me&&
)(teo )(tei

 
( ) iHooHLoHL eeee &&&& τττττ =+++                                   (9-47) 

 
Due to the right-hand-side dynamics (the presence of  rather than just ), we cannot 
cast this entire equation into the standard form (9-13); see homework Problem 9.15 for a 
modified standard form of ODE and for convolution-integral response solutions.  How-
ever, the order of the circuit is determined only by the left-hand-side terms, and it is 
clearly 2nd order, with natural frequency and damping ratio defined as  

ie& ie
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Suppose, for example, that a particular circuit has the high-pass and low-pass break 
frequencies  = 10 Hz and  = 500 Hz, respectively.  Then the time constants are Hf Lf

== )1 HHH f= 2(1ω πτ 1.592e−2 sec, and === )2(11 LLL fπωτ 3.183e−4 sec, and the 
undamped natural frequency is =nω 4.443e2 rad/sec ( == πω 2nnf 70.71 Hz).  Finally, 
the damping ratio is =ζ 3.606, which means that this is a strongly overdamped system. 
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9-11  Homework problems for Chapter 9 
 
9.1  In the system drawn below, mass m is attached to a movable support by viscous 

dashpot c1 and spring k, and the mass also 
slides on a lubricated surface, which causes 
viscous damping with constant c2 .  There are 
two independent input quantities:  (1) support 
displacement xi(t) shown (displacement con-
trol, e.g., by a cam), which is often called base 
excitation,4 and (2) force fx(t) shown.  The out-
put quantity is displacement x(t) of the mass.  

Sketch and label clearly appropriate free-body diagrams, then use your FBD to derive the 
differential equation of motion for x(t) in terms of constants m, c1, c2 and k, and variable 
inputs xi(t) and fx(t).  Your ODE of motion should include some non-standard right-hand-
side dynamics. 

 
k 

m 

xi(t)

c1 

x(t) 

c2 

 fx(t) 

 
9.2  Given, a standard m-c-k system, Fig. 9-1, with the following parameters:  weight of 

the mass W = 0.386 lb, so that m = 
inch

seclb001.0
secinch/386
lb386.0 2

2

−
==

g

x&

W ; damper vis-

cous constant c = 1.1 × 10−3 lb/inch/sec; spring stiffness constant k = 3.025 lb/inch. 
 
(a)  Calculate the following quantities, all to at least 3 significant figures:  ωn in rad/sec, 
fn in Hz, ζ , ωd in rad/sec, fd in Hz, and Td ≡ 1/fd . You may calculate these quantities in 
MATLAB, if you wish, using the command format short e. 
 
(b)  Given initial conditions x(0) = 0.5 inch and (0) = 35 inch/sec, calculate and graph 
with MATLAB the free-vibration response due to the ICs over about 20 complete de-
caying cycles.  Since you are multiplying sinusoidal time functions by an exponential 
time function, it is necessary that you use array multiplication (.*) in MATLAB.  Draw 
grids on your graph and add an appropriate title and appropriate axis labels.  
 
(c)  Sketch by hand the exponential envelope on your graph, then use the grids and/or a 
graduated straight edge to measure amplitudes of local peaks of the decaying sinusoid.  In 
particular, find (approximately) the quantity 21r ≡  the number of decaying cycles to de-
cay to half amplitude (not necessarily an integer).  Now calculate the dimensionless ratio 

21110.0 r

                                                

 ; the value that you calculate should match closely with your previously calcu-
lated value of ζ . 
 

 
4 Base excitation is displacement input imposed at the “ground” or “base” side of the spring instead of 
directly upon the mass. It is very common to consider base excitation in analyses of earthquake-induced 
response of buildings, automobile tires rolling over bumpy roads, and vibration isolation of sensitive 
devices such as delicate payloads in rocket boosters. 

 9-23



 Chapter 9  Damped 2nd order systems:  general time response 
 

9.3  The free-vibration response to initial conditions of a standard damped 2nd order sys-
tem is given by ( )11.100.12cos24.2)( 300.0 −= − tetx t  mm, where t is in seconds.  Calcu-
late (i) the damped natural frequency fd in Hz, (ii) the damping time constant 2τ  in sec-
onds, and (iii) the viscous damping ratio ζ  (use the small-ζ  approximation).  Show your 
calculations. 
 
9.4  A simple type of vibration testing often used for underdamped mechanical systems, 
such as the m-c-k system of Fig. 9-1, is called twang testing (named after the sharp, 
ringing sound made by plucking a string of a musical instrument; Section 7-6 
demonstrates twang testing of a flexible beam):  the mass is displaced from its static 
equilibrium position by amount (with zero initial velocity,  0x 00 =x& ), then it is released.  
From the record of subsequent transient response, we can calculate directly the damped 
natural frequency fd and the viscous damping ratio ζ .  If we know initially either the mass 
m or the stiffness constant k, then we can use the measured fd and ζ  to calculate the other 
constant and the effective viscous damping constant c.  Use Eq. (9-21b) to show that 
twang test response is 
 

( )φωζω += − textx d
tn cos)( max , for 0 ≤ t and 0 ≤ ζ < 1 

 
( )212

0max 1tanand1where ζζφζ −−=−= −xx  
 
For a very lightly damped system, the preferred simple approximation of this twang re-
sponse is  
 

( )textx n
tn ωζω cos)( 0

−≈ , with φ  ≈ 0 
 
How small must ζ  be so that phase lag φ  is so small (say, |φ| ≤ 5°) that it can’t be distin-
guished from zero phase lag, φ  ≈ 0?  [NOTE:  the measurement resolution on a typical 
analog graphical record of transient-decay vibration response (for example, from a small 
oscilloscope screen) is so limited that the resolution of calculated phase is probably only 
around ± 5°.] 
 
9.5  A laboratory mass-damper-spring system was set into motion and then allowed to 
vibrate freely.  The time-history acceleration on the next page was sensed by a light-
weight accelerometer attached to the mass.  The graph was copied from the screen of a 
digital oscilloscope.  Calculate from measurements on a photocopy of the graph the 
damped natural frequency fd (Hz) = ωd /2π and the viscous damping ratio ζ .  In order to 
obtain reasonably accurate values for fd and ζ , be sure to average over many cycles of the 
damped sinusoid.  To calculate ζ , first sketch in the exponential envelope.  Also, note 
that the zero level of the acceleration signal is offset from the center horizontal grid line; 
therefore, peak-to-peak amplitude measurements are more appropriate than zero-to-peak 
measurements, as well as more accurate.  Annotate your measurements on the graph 
(submit the annotated graph), and show your calculations clearly.  From your values for fd 
and ζ , calculate the undamped natural frequency fn (Hz).  For a lightly damped system 
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such as this one, is the difference between fd and fn numerically significant, given the 
limited precision of the measured quantities? 
 

 
9.6  A standard m-c-k system is initially at rest.  Then an engineer strikes the mass with a 
soft-tipped hammer that produces a relatively slow half-sine force pulse of amplitude 25 
lb and duration 0.1 sec [ fx(t) = 25 lb × sin(10π t) for 0 ≤ t ≤ 0.1 sec].  Both the force pulse 
fx(t) and the displacement response x(t) of the mass are recorded on the graph below.  To 
support the calculations assigned (next page), annotate your measurements on a 
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photocopy of the graph (hand in the annotated graph), and show your calculations clearly.   
 
(a) Calculate from the fx(t) equation the impulse  produced by the force.  However, 
you should 

FI
not use this  in Eq. (9-43) to determine m.  Explain why not. FI

 
(b) Calculate from the graph, with as much accuracy as the data permits, the damped 
natural frequency fd (Hz), and the viscous damping ratio ζ  of the system. 
 
(c) The system’s mass m is known to be 0.0652 lb-sec2/inch.  Calculate stiffness constant 
k and damping constant c. 
 
9.7  A large mass-damper-spring (m-c-k) system is initially at rest.  Then a machine im-
poses upon the mass a slowly varying force in the form of a sawtooth pulse of amplitude 

800 N and pulse duration 1.5 sec, fx(t) = t×
sec5.1
N800  for 0 ≤ t ≤ 1.5 sec.  Both the force 

pulse fx(t) and the displacement response  of the mass are recorded on the graph 
below.  The unusual displacement scale “  (mm * 100)” is employed in order to 
accommodate the ranges of both fx(t) and  on the same graph; this scale simply 
means that the range of displacements on the graph is −6.00 mm  ≤ )  ≤ +8.00 mm.  To 
support the calculations assigned (next page), annotate your measurements on a photo-
copy of  the graph (hand in the annotated graph), and show your calculations clearly. 

)(tx
)(tx
)(tx

(tx
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(a)  Calculate the total impulse  produced by the force.  However, you should FI not use 
this  in Eq. (9-43) to determine m.  Explain why not. FI
 
(b)  Calculate from the graph, with as much accuracy as the data permits, the damped 
natural frequency fd (Hz), and the viscous damping ratio ζ  of the system. 
 
(c)  The system’s stiffness constant k is known from static testing to be 120.0 kN/m.  Cal-
culate mass m and damping constant c. 
 
(d)  Find the algebraic/numerical equation for the pseudo-static response xps(t) while the 
pulse is active (0 ≤ t ≤ 1.5 sec), and compare your xps(t) with the actual response x(t) on 
the graph. 
 
9.8  Consider the mass-damper-spring system shown in the figure below, with:  
 
(a)   = 10.0 kg, c = 40.0 N-sec/m, k = 400 N/m, and  = 2.00 kg;   0m 1m
 
(b)   = 225 lb, c = 2.10 lb-sec/inch, k = 30.5 lb/inch, and  = 105 lb. gm0 gm1

 
The system is initially at rest (the left-hand figure) in the static equilibrium position for 
weight .  At t = 0, mass  is gently placed upon  and then released.  This im-
poses an  step force (the weight, due to 
gravity) onto the system.  

gm0

m1

1m 0m
g

Note also that mass 
 changes the system, since the total vibrat-

ing mass now will be  + , not just m .  
Use Eq. (9-29) for underdamped 2nd order 
system step response to write the 

1m

0m 1m 0

numerical 
equation for response y(t) in inches of com-
bined mass  + m  (relative to the static 
equilibrium position for the weight of m  
alone, as indicated on the figure).  Then use MATLAB to plot the response curve of y(t) 
versus t from t = 0 until the mass has settled to within at least 2% of its final steady-state 
position.  This means plot to at least four time constants, t = 4

0m 1

 

k c 
y(t) 

0

2τ , where 2τ  = (ζωn)−1.  
Since you are multiplying sinusoidal time functions by an exponential time function, it is 
necessary that you use array multiplication (.*) in MATLAB.  Provide appropriate grids, 
titles, and labels on your graph.  It is not required, but you can check from your graph 
that the response has the values of frequency, steady-state (final static, pseudo-static) dis-
placement, and viscous damping ratio that you can calculate from the original data for 
mass, damping, stiffness, and applied force. 
 

m0 m0  

m1  

c k  
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9.9  For the m-c-k system and step input/response of homework Problem 9.8 [part (a) or 
(b), whichever is assigned], use the equations of Section 9-8 to calculate rise time , 
peak time , maximum overshoot ratio 

rt

pt py , and settling time .  These calculations 
should agree with the comparable results that you can measure from your MATLAB 
step-response graph for homework Problem 9.8, assuming that your graph is correct. 

st

 
9.10  Weight W2 = 98.1 N (mass m2 = 10.0 kg) is suspended by a string from weight W1 = 
196.2 N (mass m1 = 20.0 kg), which is attached to the ceiling by spring k and viscous 
dashpot c, as shown below.  The system is in static equilibrium when, at time t = 0, the 
string is cut cleanly, dropping W2.  (This simulates the release of a bomb from a flexible 
airplane wing.)  Consider the subsequent motion x(t), t ≥ 0, of  m1.  With the y(t) datum 
shown on the drawing, you can think of this as step-response, with the release of W2 be-
ing equivalent to imposing upon m1 an upward step force equal to W2. 
 

(a)  Calculate the undamped natural frequency fn 
(Hz), the damping ratio ζ , the damped natural 
frequency fd (Hz), and the damped period of os-
cillation Td (sec). 
 
(b)  Calculate the final (as t → ∞) static value of y 
and the settling time ts required for the motion to 
settle within 2% of that final static value. 
 
(c)  Sketch a plot of the response y(t) versus t 
from t = 0 until about t = ts.  Don’t carry out ex-
tensive calculations; just use the results of parts 

(a) and (b) to sketch an engineer’s back-of-the-envelope type of quick graph that clearly 
shows the principal features of the response, bu

 

k = 20,000 
       N/m 

m1 = 20 kg 

c = 140  
   N-sec/m

y(t) 

m2 = 10 kg 
string cut at 
t = 0 W2 = 98.1 N

t is not precise like a computer-generated 
raph. g

 
9.11  Derive the algebraic equation for step response x(t) with zero ICs of cri lytical  
damped 2nd order systems:  Uxxx nnn

222 ωωω =++ &&& , for t ≥ 0, with x(0) = 0 and )0(x&  = 
0.  One easy method of solution, the conventional approach of Section 1-5, is to use 
homogeneous solution (9-9), add to it an appropriate pa enforce the rticular solution, then 

s to determ er:  

me  (9-

31) to obtain

IC ine the unknown constants.  (Answ

ssy Laplace transform pairs.  Use Eq. (9-17) 

])1(1[)( t
n

netUtx ωω −+−= , t ≥ 0) 

first with Eq. (9-29) and next with Eq.

 
9.12  Having solved by inverse convolution transform for step and impulse responses of  
underdamped 2nd order systems, we can now use those results to obtain rather easily two 

⎥⎦+ ]) dn ωζω
⎥
⎤

⎢
⎢
⎣

⎡

+
= −

[(
)( 22

2
1 n

H ss
Ltf

ω
 and 

⎥
⎥
⎦

⎤
⎢
⎡

+
= −

22

2
1)(

d

nLtf
ωζω

ω
δ , both 

r 0 ≤ t , 
⎢⎣ +)( ns

fo ζ  < 1 , and 02 >dω .  Write the algebraic equations for )(tf H  and )(tfδ . 
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9.13  Consider the LRC circuit drawn below.  The ODE describing output voltage  
in terms of input voltage  is derived in Ex-
ample 9-1 of Section 9-2.  Because an inductor 
consists primarily of coiled wire, and because 
coiled wire accumulates resistance, a real in-
ductor has resistance as well as inductance.  A 
common, simple, approximate circuit model for 
such a real inductor is a series combination of an 
ideal inductor and a resistor, L and RL , as shown 
in the drawing.  Suppose that one small circuit 

component has the values L = 1.4 H and RL = 210 Ω, and that it is in series with a ca-
pacitance of C = 0.25 μF (micro-farad), as shown in the drawing.  Calculate the natural 
frequency fn (Hz) and damping ratio ζ  of this circuit.  Suppose further that the input volt-
age is  = 1.50 H(t) volts (a 1.5-volt battery is connected suddenly by switch S), and 
that all ICs are zero (in particular, there is no initial charge on the capacitor).  Use MAT-
LAB to plot output voltage e  over a time interval from zero until e  settles to 
within at least 2% of its final steady-state value. 

)(teo

)(tei

S 

Ei 

ei(t) 
 c RL L 

C 

eo(t

i(t) 

em 

)(tei

)(to )(to

 
9.14  A particular device is known to be a mass-damper-spring system.  It is required that 
the mass m, the viscous damping constant c, and the stiffness constant k be identified ex-
perimentally from a transient-response test.  In this test, an engineer strikes the mass 
sharply with a specially designed hammer that is instrumented with a force sensor.  The 
force input to the mass is recorded, and examination of the actual force time history 
shows that it is closely approximated by a particular half-sine force pulse that lasts only 
20 milliseconds, [ ]sec)02.0()(50sin9.58)( × −= tHtHttf x −π  lb.  The measured dis-
placement response of the mass is shown on the graph below.  Use this information to 
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calculate m, c, and k in consistent units and with as much accuracy as the data permits.  
To support these calculations, annotate your measurements on the graph (hand in a photo-
copy of the annotated graph), and show your calculations clearly.  The input force pulse 
is very short relative to the oscillatory period of the system.  Therefore, for the purpose of 
approximate parameter identification, you should assume that the response is very close 
to ideal impulse response of the system to an ideal impulse,  = IFδ(t), )(tf x with IF having 
the value of the impulse of the actual half-sine force pulse.  [NOTE:  after you calculate 
m, c, and k, you can easily check the validity of your values by graphing (with 
MATLAB) the ideal impulse response of your system and then comparing that graph 
with the actual time history of response.  However, this check is valid only if you use the 
correct value of impulse IF , so first be 100% certain that your IF is correct.]   
 
9.15  For systems with the particular type of right-hand-side dynamics of Eq. (9-47), we 
can define a physical constant T having dimensions of time, then write a modified form 
of standard ODE (9-13) as .  [You can easily verify, for 
example, that T = 

)(2 22 tuTxxx nnn &&&& ωωζω =++

Hτ  for the band-pass filter, Eq. (9-47).]  The pure IC-response of this 
equation is the same as Eq. (9-21), so let’s focus on the forced response and set all ICs = 
0.  Also, let’s assume initially that 1<ζ , so that . 0)2 >= ωω nd 1( 22 −ζ
 
(a)  For this modified ODE, follow the steps from Eqs. (9-14) to (9-17), and assume also 

that  to find L[x(t)] = .0)0( =u
)( 22

2

L
s

sT

dn

d

d

n

ωζω
ω

ω
ω

++
[ ])(tu .  Next, use a Laplace 

transform pair developed, in effect, between Eqs. (9-17) and (9-20) to solve for  if 
the input is step function .  Which of the zero ICs is or is not preserved in 
this solution? 

)(tx
)()( tHUtu =

 
(b)  Use the inverse transform for step response of part (a), and the general transform 
[ ])(tfL &  =  to derive the following inverse transform: )0()( fsFs −

 

( )tte
s

s
L dndd

t

dn

d n ωζωωω
ωζω

ω ζω sincos
)( 22

1 −=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

++
−−  

 
(c)  Use the result of part (b) and the inverse convolution transform to write 

0
)(

=ICs
tx  

equations, which involve convolution integrals, that apply for arbitrary input function 
. )(tu

 
(d)  Use the result of part (b) and Eq. (8-24) to show that the algebraic equation for the 
unit-impulse-response function (IRF) valid for the modified 2nd order ODE with right-
hand side dynamics is h(t) = [ ]ttTe ddnd

t
n

n ωωζωωω ζω sin)(cos2 −− .  Now use this IRF to 
write a Duhamel integral equation, Eq. (8-25), for 

0=ICs
 that applies for )(tx arbitrary 

input function )(tu . 
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(e)  The results of parts (a)-(d) apply for an underdamped 2nd order system, 1<ζ .  But 
Example 9-3 in Section 9-10 shows that an RC band-pass filter, for one, is an over-
damped 2nd order system, so we need to convert the previous results to obtain results 
valid for 1>ζ .  Use the methods of Section 9-10 to write an algebraic equation for IRF 

h(t) and an integral equation for 
0

)(
=ICs

tx , both valid for the modified overdamped 2nd 
order ODE with right-hand side dynamics and the latter valid for arbitrary input function 

. )(tu
 
9.16  Figure 9-7 includes a curve that is step response of a standard overdamped 2nd order 
system.  Use the methods of Section 9-10 to derive the algebraic equation from which 
that particular curve was calculated.  Answer:   
 

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−= − tteUtx d

d

n
d

tn μ
μ
ζωμζω sinhcosh1)( , for 0 ≤ t and ζ > 1, 12 −≡ ζωμ nd  

 
9.17  The circuit drawn 
at right5 consists of 
three stages, each built 
around an op-amp, and 
there is feedback of 
voltage  from the 
last (right-hand) stage 
to the first (left-hand) 
stage, where the input 
voltage is applied.  The circuit output voltage, , is the output of the middle 
stage.  The first stage is a summing, inverting integrator; use the methods of Chapter 5 to 
derive the first ODE, 

)(te f

)(tei )(teo

ma eC &ibfcm ReReRe −=++ .  Next, for the middle stage, an 
inverting integrator, derive the second ODE, =bme R  oe&C−  (homework Problem 5.6); 
now use the second ODE to substitute for  in the first ODE, and differentiate the 
second ODE and use the result to substitute for  in the first ODE.  The last stage of the 
circuit is a simple sign inverter, for which 

me
e&m

of ee −=  from Eq. (5-13b); substitute for  
and show that the ODE relating output voltage e  to input voltage  for the entire 

circuit is 

fe
)(to )(tei

i
a

b

b
o

b
o

c
o e

R
R

CR
e

CR
e

CR

22
111

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
++ &&&

)(2 22 tueee nonono ωωζω =++ &&&

                                                

e .  Convert this ODE into the standard 

damped 2nd order form (9-13), ; write specific equations 
(in terms of this circuit’s resistances, capacitances, and input voltage) for undamped natu-
ral frequency ωn, viscous damping ratio ζ , and input quantity u(t).  

 
5 This circuit is essentially the electronic analog computer (see the footnote to homework Problem 5.6) for 
solving ODE (9-13). 

 

C C Rd 

Rb Rd Rb 

Ra 

ei(t) 

em(t) ef(t) eo(t) 

Rc 
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9.18  One rate gyroscope (Example 9-2 in Section 9-2) has the following rotor parame-
ters:  polar rotational inertia Jr = 2.9 × 10−4 kg-m2, and spin rate Ωr = 2,100 revolutions 
per minute (rpm); also, it has the following gimbal-shaft parameters:  polar rotational in-
ertia Jθ = 2.2 × 10−4 kg-m2, and damping constant cθ = 0.0046 N-m/(rad/sec), and stiff-
ness constant kθ = 0.096 N-m/rad.  Consider output gimbal-shaft rotation θ(t) in response 
to an input turntable rotational rate that approximates step function p(t) ≈ P × H(t).  (Only 
a physically impossible ideal impulse moment acting on the turntable could produce an 
exact step change in rotational rate; therefore, imagine for this problem that a very short 
but very large moment pulse produces the approximate step function, but use the equa-
tions that apply for an exact step function.)  For the step magnitude P = 15 degrees/sec, 
calculate the following response quantities:  pseudo-static gimbal-shaft rotation, θps (in 
degrees); and rise time, tr ; and peak time, tp ; and maximum overshoot ratio, px .  (Partial 
answer:  tp = 0.174 sec)  The theory developed in Example 9-2 is accurate only if gimbal-
shaft rotation θ(t) is sufficiently small that cosθ(t) ≈ 1, say, cosθ(t) > 0.95.  For the para-
meters in this problem, is this criterion for accuracy satisfied? 
 
9.19  Another type of single-axis gyroscopic sensor is similar to the rate gyro described in 
Example 9-2 of Section 9-2 except that there is no spring to restrain the rotation of the 
gimbal-shaft assembly, so kθ = 0 in the equations derived in Example 9-2.  Therefore, the 
equation of motion becomes effectively a 1st order ODE in dependent variable , the 
rate of gimbal-shaft rotation: 

)(tθ&

 
)(tpΩJcJ rr=+ θθ θθ

&&&  
 
Observe from the ODE that the pseudo-static response is )()()( tpcΩJ rrps θθ =& .  But the 

electrical transducer of this device detects θ(t), not ) , which means that the sensed 
quantity has the form 

(tθ&

∫∫ ==
trrt

cΩJdt τττθθ θ )()()( & dp τ )( .  Therefore, this type of sen-

sor is called a rate-integrating gyroscope; its output is proportional, not to the rotational 
rate, but to the actual rotational angle of the turntable, ∫= t

dpt ττψ )()( , where ψ&≡p .  

Consider output gimbal-shaft rotational rate and)(tθ&  rotation θ(t) in response to an input 
turntable rotational rate that approximates the following flat pulse of duration td : 
 

⎪
⎩

⎪
⎨

⎧

<
<<

<
=

tt
ttP

t
tp

d

d

,0
0,

0,0
)(  , in which magnitude P is constant 

 
(Only physically impossible ideal impulse moments acting on the turntable could produce 
exact step changes in rotational rate; therefore, imagine for this problem that very short 
but very large moment pulses produce the approximate step changes, but use the equa-
tions that apply for the exact flat pulse.) 
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(a)  The mathematical solution for response of a standard stable 1st order system to a flat-
pulse input is given in homework Problem 6.2(a).  Adapt this solution to write response 
equations for the rate-integrating gyro’s gimbal-shaft rotational rate, , given the IC 

= 0.  Next, integrate appropriately (show all details!) the  equations, given the 
IC θ(0) = 0, to derive the following equations for gimbal-shaft rotation: 

)(tθ&

)0(θ& )(tθ&

 
[ ]
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where b ≡ Jr Ωr ⁄ Jθ and τ1 ≡ Jθ ⁄ cθ . 
 
(b)  One rate-integrating gyro has the following rotor parameters:  polar rotational inertia 
Jr = 2.9 × 10−4 kg-m2, and spin rate Ωr = 420 revolutions per minute (rpm); also, it has the 
following gimbal-shaft parameters:  polar rotational inertia Jθ = 8.5 × 10−4 kg-m2, and 
damping constant cθ = 9.2 × 10−3 N-m/(rad/sec).  For the flat-pulse rotational-rate mag-
nitude P = 5 degrees/sec and pulse duration td = 2.5 sec, calculate and plot from the equa-
tions of part (a) the gimbal-shaft rotation θ(t) (in degrees) over the time interval 0 ≤ t ≤ 5 
sec.  The theory developed in Example 9-2 is accurate only if gimbal-shaft rotation θ(t) is 
sufficiently small that cosθ(t) ≈ 1, say, cosθ(t) > 0.95.  For the parameters in this prob-
lem, is this criterion for accuracy satisfied? 
 
(c)  Since )()()()()( tcΩJtpcΩJ rrrrps ψθ θθ && == , it is clear the rate-integrating gyro’s 
output is designed to be proportional, as closely as its dynamics permit, to the actual ro-
tational angle of the turntable, i.e., )()()( tcΩJt rr ψθ θ≈ ; therefore, the equation that 
estimates )(tψ  from the measured gimbal-shaft rotation is )()]([)( tΩJct rr θψ θ≈ .  Use 
your calculated θ(t) from part (b) to calculate and plot the quantity )()]([ tΩJc rr θθ  over 
the same time interval, 0 ≤ t ≤ 5 sec. Next, calculate the actual turntable rotational angle 

from ∫=
t

0
) dpt )(( ττψ , given the IC ψ(0) = 0, and plot it on the same graph for compari-

son with )(t)]([ ΩJc rr θθ .  In this case, how well does the rate-integrating gyro follow 
the actual turntable rotation? 
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Chapter 10 2nd order systems:  frequency response; beating response to 
suddenly applied sinusoidal (SAS) excitation 
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10-1  Frequency response of undamped 2nd order systems; resonance 
 
 As discussed in Section 7-1, a truly undamped 2nd order passive system is physi-
cally unrealistic.  Nevertheless, it is useful to derive the frequency response for this ideal 
type of system because the results reveal important characteristics of the resonating be-
havior of general underdamped 2nd order systems.  Moreover, the frequency response of 
an undamped 2nd order system is, for many practical purposes, a simple yet satisfactory 
engineering approximation to the frequency response of the corresponding lightly 
damped 2nd order system. 
 
 Consider the standard ODE for idealized undamped 2nd order systems: 
 

)(tuxx nn&& 22 ωω =+                 (10-1), Eq. (7-5) repeated 
 
To derive frequency response, we let tUtu ωcos)( =  and seek the steady-state sinusoidal 
response in the form tXtx S ωω cos)()( = , in which )(ωSX  is the unknown quantity.  
We find an equation for )(ωSX  by substituting into Eq. (10-1): 
 

( ) tUtX nSn ωωωωωω coscos)( =+− 222  
 

222

2 1)( nS

U
X

ωω
ωω

−
==⇒

)(1 nn ωω −
                              (10-2) 

 
Note from Eq. (10-2) that )(ωSX  is a signed quantity; it can be positive or negative de-
pending upon the value of frequency ratio nωω  relative to 1.  But our conventional no-

tation for a frequency response function is )()()( ωφωω je
U

XFRF =

)(

, Eq. (4-41), in which 

magnitude ωX  ≥ 0.  Therefore, we infer from Eq. (10-2) the following magnitude-ratio 
and phase functions in the conventional notation: 
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Equations (10-3) give the frequency response function (FRF) of an undamped 2nd order 
system.  The magnitude ratio UX )(ω  and phase )(ωφ  are plotted on Fig. 10-1 as func-
tions of excitation frequency ratio nωω .   

 
The most important feature 

of FRF (10-3) is the infinite mag-
nitude of steady-state response 
when excitation frequency ω ex-
actly equals natural frequency ωn.  
This is the extreme version of the 
phenomenon called resonance.  In 
reality, any damping, no matter 
how small, reduces the infinite 
resonance magnitude of Fig. 10-1 
to some finite value, as is demon-
strated in the next section; but that 
finite value will still generally be 
much greater than the static or 
pseudo-static response, which is 

UX =≈ )0(ω .  Figure 10-1 shows 
also that the response magnitude is 
greatly amplified relative to static 
response even if the excitation fre-
quency is close (but not equal) to 
the natural frequency; note, for ex-
ample, that the dynamic amplifica-
tion exceeds five (5) whenever ex-
citation frequency ω is within 
about ±10% of natural frequency 
ωn.  This high sensitivity to excita-
tion near the natural frequency is a 

very important characteristic of lightly damped 2nd order systems.  The

U
X )(ω

Figure 10-1  Frequency response function 
of an undamped 2nd order system 

 0 

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

 0  1  2 ω ⁄ωn
0° 

−180° 

 ∞  ∞

)(ωφ

re is additional 
iscussion of resonance in the next section. 

 
d

FRF (10-3) contains not only the magnitude but also the phase φ :  for ω < ωn, the 
phase is 0°, so the response is exactly in phase with the excitation; however, for ω > ωn, 

e phase is −180°, so the response is exactly out of phase with the excitation. 

0-2  Frequency response of damped 2nd order systems

th
 
1  

From Section 9-2, the standard form of the 2nd order ODE is: 
 

)(2 22 tuxxx nnn ωωζω =++ &&&       (10-4), Eq. (9-13) repeated 

o derive frequency response, we take the Laplace transform of (10-4), with zero ICs: 

 
 

 
T
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( ) )]([)]([2 2

0
22 tuLtxLss nICsnn ωωζω =++

=
                           (10-5) 

efinition (4-23) for the transfer function gives 
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(4-41) between the transfer function and the complex 
equency response function gives 

 

 
Then the fundamental relationship 
fr
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ency ratio, the excita-
on frequency relative to the system undamped natural frequency: 

 

 
To simplify notation, we define the dimensionless excitation frequ
ti

nω
ωβ ≡                                                        (10-8) 

With not elati nd the magnitude ratio 
 

ation (10-8), the r onship (4-41) between FRF(ω) a
UX  and phase angle )(ωφ)(ω  of the frequency response gives 
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e fol-
wing equations for magnitude ratio and phase angle [homework Problem 2.6(a)]: 

 

 
After the standard manipulation of the complex fraction in Eq. (10-9), we find th
lo
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Note that results (10-10) are valid for any non-negative value of viscous damping 

ratio, ζ  ≥ 0; unlike most of the time-response equations derived in Chapter 9, Eqs. (10-
10) alone apply for underdamped, critically damped, and overdamped 2nd order systems. 

mework Problem 4.3 [starting with complex FRF 
0-9), not the real equations (10-10)]: 

 

 
 Results (10-10) are plotted on Fig. 10-2 (page 10-5) for viscous damping ratios 
varying from 0 to 1.  The graphs of Fig. 10-2 were produced with use of MATLAB (Ver-
sion 6 or later).  First, an M-file was programmed to calculate and graph FRFs using the 
method described in the statement of ho
(1
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%frf2orddamped.m 
%Fig. 10-2  Frequency response, damped 2nd order 
%Magnitude ratio for zero damping, zeta=0 
bt0a=logspace(-1,log10(0.998),100); 
frf0a=(1)./(1-bt0a.^2); 
loglog(bt0a,frf0a,'k'),hold on 
bt0b=logspace(log10(1.002),1,100); 
frf0b=(1)./(bt0b.^2-1); 
loglog(bt0b,frf0b,'k') 
%Magnitude ratio for several cases of zeta > 0 
bt1=logspace(-1,1,400); 
zt=[ 0.05 0.1 0.2 0.5 1/sqrt(2) 1];nzts=length(zt); 
for i=1:nzts 
    frf=(1)./(1-bt1.^2+j*2*zt(i).*bt1); 
    magrat=abs(frf); 
    loglog(bt1,magrat,'k') 
end 
hold off 
%Phase angle in degrees for zero damping, zeta=0 
bt0a=[0.1 1];faz0a=zeros(1,2); 
figure,semilogx(bt0a,faz0a,'k'),hold on 
bt0b=[1 10];faz0b=-180*ones(1,2); 
semilogx(bt0b,faz0b,'k') 
%Phase angle in degrees for several cases of zeta > 0 
for i=1:nzts 
    frf=(1)./(1-bt1.^2+j*2*zt(i).*bt1); 
    faz=angle(frf)*180/pi; 
    semilogx(bt1,faz,'k') 
end 

 
After the M-file was executed, the extensive figure editing features of MATLAB were 
used to set axis limits and to generate titles, labels, and curve annotations. 
 

Even though Fig. 10-2 was produced by computer-aided graphics, it is still im-
portant that you understand how to evaluate Eqs. (10-10) with a hand calculator.  These 
equations appear simple, but they can be tricky, particularly for the special case ζ = 0.  
See homework Problem 2.6(b) for help with understanding how to evaluate Eqs. (10-10) 
numerically. 
 

There are several noteworthy characteristics of the frequency response of damped 
2nd order systems, from Eqs. (10-10) and Fig. 10-2: 
 
*  Resonance:  maximum (peak) magnitude ratio  The frequency at which the peak 
magnitude ratio occurs is called the resonance frequency, denoted rω , and this frequency 
is lower than natural frequency nω  if damping is positive, ζ  > 0.  To find the maximum, 
we differentiate the magnitude ratio of Eqs. (10-10), set the result to zero, and solve for 
the associated frequency (you can verify the result yourself, or see Meirovitch, 2001, pp. 
115-116 for the details of calculus and algebra; also, there are instructive alternative ap-
proaches in Ogata, 1998, pp. 480-481 and in Clark, 1962, pp. 316-322): 
 

22 21210)( ζωωζββ
β

−=⇒−=⇒=⎟
⎠
⎞

⎜
⎝
⎛

nrrU
X

d
d           (10-11) 

 10-4



 Chapter 10  2nd order systems:  frequency response; beating response to SAS excitation 
 

 

 
 
Figure 10-2  Frequency response functions for standard 2nd order systems with 
viscous damping ratios ζ  varying from 0 to 1
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Subscript r in Eq. (10-11) denotes a resonance quantity corresponding to the peak magni-
tude ratio Xr ⁄ U.  The excitation frequency must be real and greater than or equal to zero, 
so 221 ζωω −= nr  is valid only for 0 ≤ ζ  ≤ 21  = 0.707.  If ζ  is positive but very 
small, then UX r  occurs almost at the natural frequency, nr ωω ≈ .  As ζ  increases from 

very small positive values, rω  decreases until, for ζ = 2 r1 , ω  = 0.  However, dynamic 
amplification is insignificant for values of ζ  greater than about 0.5.  Substituting Eq. (10-
11) back into UX )(ω  of Eqs. (10-10) gives (after more algebra) the resonance value: 
 

212

1)(

ζζ

β

−
==

U
X

U
X rr                                       (10-12) 

 
Note from Eq. (10-12) that for ζ = 21  [the maximum permissible value for validity of 
Eq. (10-11)], we have UX r  = 1 at rω  = 0.  As indicated by the trend on Fig. 10-2, for 
higher damping ratios, ζ  ≥ 21 , the magnitude UX )(ω  is maximum at ω  = 0, and 
decreases monotonically as ω increases.  
 
*  Response at the natural frequency  The frequency response at nωω = , 1=β , consists 
of phase angle °−= 90)( nωφ  regardless of the value of viscous damping ratio ζ , and 
magnitude ratio )2(1)( ζω =UX n .  Also, the peak magnitude response occurs essen-
tially at nωω =  if damping is small, as discussed next. 
 
*  Small viscous damping, small-ζ  approximation  If damping is so small that 221 ζ−  
≈ 1, then we can use the following accurate approximations of the values associated with 
response at resonance, from Eqs. (10-11) and (10-12): 
 

nnr ωζωω ≈−= 221                                          (10-13) 
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X nr                                 (10-14) 

 
The upper limit of viscous damping ratio for which the small-ζ  approximation is practi-
cally useful is about ζ  = 0.2, which we can see on Fig. 10-2.  At this upper limit, the ap-
proximation is in error on the order of 4%, since 959.0)2.0(21 2 =− .  The small-ζ  
resonance amplification factor (10-14) is sometimes called the quality factor, and it is 
denoted )2(1 ζ=Q .  The “quality” reference is to tuning, especially of a receiving de-
vice such as a radio (Hammond, 1961, pp. 106-114).  When you turn the analog tuning 
dial of an old radio, you are varying the value of capacitance in an LRC electrical tuning 
circuit in order to produce resonance with the electromagnetic carrier signal, which gives 

 10-6



 Chapter 10  2nd order systems:  frequency response; beating response to SAS excitation 
 

the strongest possible reception.  Clearly, a high Q is desirable in the tuning circuit of a 
radio.  On the other hand, high Q is often undesirable in mechanical systems, because it 
can lead to structural failure or other negative consequences.  For example, if the system 
consisting of a car’s tire, suspension spring, and damping strut happens to resonate with 
the waves in a washboard dirt road, then the resulting vibration will produce poor ride 
quality and might even break car parts. 
 

Note on the Fig. 10-2 graph of magnitude ratio that the 0=ζ  curve bounds the 
curves for all 0>ζ , and that it provides a good approximation for small ζ at all frequen-
cies except those close to nω ; for small damping, therefore, the simple equation (10-3a) 
for magnitude ratio will, for some calculations, be sufficiently accurate. 
 
*  Phase angles of frequency response  Figure 10-2 shows that the more lightly damped a 
system is, the closer its response is to being in phase with excitation below the natural 
frequency, and out of phase with excitation above the natural frequency.  Furthermore, 
for excitation at the natural frequency, nωω = , response lags excitation by exactly 90°, 
regardless of the level of viscous damping; this so-called quadrature phase is an impor-
tant characteristic often used to help determine natural frequencies in vibration testing of 
machines and structures. 
 
*  2nd order low-pass filter  A moderately damped ( 15.0 ≤≤ ζ ) 2nd order system can 
function as a low-pass filter, with natural frequency ωn being the break (corner) fre-
quency.  Compare the magnitude ratio curve for ζ = 21  = 0.707 on Fig. 10-2 with the 
magnitude ratio curve for a 1st order low-pass filter, Fig. 4-2.  The most significant differ-
ence between the two curves is in their high-frequency asymptotes:  the 2nd order magni-
tude ratio rolls off at the rate of two decades for each decade increase of frequency (40 
dB/decade rolloff), twice as steeply as the 1st order magnitude ratio.  Thus, the 2nd order 
filter functions much more effectively than the 1st order filter.  However, an important 
practical deficiency (in some potential applications) of both types of low-pass filters is 
that they impose on the low-passed output large phase lags relative to the input. 
 
10-3  Frequency response of mass-damper-spring systems, and system identification 
by sinusoidal vibration testing 
 
 Reviewing the basic 2nd order mechanical system from Fig. 9-1 and Section 9-2, 
we have the m-c-k and standard 2nd order ODEs: 
 

⇒=++ )(tfkxxcxm x&&& )(2 22 tuxxx nnn ωωζω =++ &&&                (10-15) 
 
with the definitions  
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So we can use the correspondence kFU =  to adapt FRF (10-10) directly for m-c-k sys-
tems: 
 

( ) ( ) mkkF
X ωβ

β
ζβωφ

ζββ

ω
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2

1

222
      (10-17) 

 
 In the conceptually simplest form of forced-vibration testing of a 2nd order, linear 
mechanical system, a force-generating shaker (an electromagnetic or hydraulic transla-
tional motor) imposes upon the system’s mass a sinusoidally varying force at cyclic fre-
quency f ,  = )(tf x )2cos( tfF π . The resulting steady-state sinusoidal translation of the 
mass is  = )t(x )2cos( φπ +tfX .  Calibrated sensors detect  and x(t), and then F, X, 
f and φ are measured from the electrical signals of the sensors.  In principle, the testing 
involves a stepped-sine sweep:  measurements are made first at a lower-bound frequency 
in a steady-state dwell, then the frequency is stepped upward by some small increment 
and steady-state measurements are made again; this frequency stepping is repeated again 
and again until the desired frequency band has been covered and smooth plots of 

)(tf x

FX  
and φ  versus frequency f can be drawn. 
 

For system identification (ID) of 2nd order, linear mechanical systems, it is com-
mon to write the frequency-response magnitude ratio of Eq. (10-17) in the form of a di-
mensional magnitude of dynamic flexibility:1 
 

( ) ( ) ( ) 2222222

1
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11)(

ωωζββ

ω
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=                 (10-18) 

 
Also, in terms of the basic m-c-k parameters, the phase angle of Eq. (10-17) is 
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ω
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mk
c                                         (10-19) 

 

Note that if ω → 0, dynamic flexibility (10-18) reduces just to the static flexibility (the 
inverse of the stiffness constant), kFX 1)0( = , which makes sense physically.  In fact, 
the first step in the system ID process is to determine the stiffness constant.  Electromag-
netic shakers are not very effective as static loading machines, so a static test independent 
of the vibration testing might be required.  In principle, static force F imposed on the 
mass by a loading machine causes the mass to translate an amount X(0), and the stiffness 
constant is computed from 
 

)0(X
Fk =                                                     (10-20) 

 
                                                 
1 However, see homework Problem 10.16 for the practical reasons why it might often be better to measure 
dynamic stiffness, Eq. (10-31), rather than dynamic flexibility. 
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However, suppose that it is more convenient to shake the mass at a relatively low fre-
quency (that is compatible with the shaker’s capabilities) than to conduct an independent 
static test.  Note from Fig. 10-2 that if the excitation frequency is less than about 25% of 
natural frequency ωn , then the magnitude of dynamic flexibility is essentially the same as 
the static flexibility, so a good approximation to the stiffness constant is 
 

1)25.0( −

⎟
⎠

⎞
⎜
⎝

⎛ ≤
≈

F
X

k nωω
                                       (10-21) 

 
Even if it is possible to generate frequency response data at frequencies only as low as 
60-70% of ωn, one can still knowledgeably extrapolate the dynamic flexibility curve 
down to very low frequency and apply Eq. (10-21) to obtain an estimate of k that is 
probably sufficiently accurate for most engineering purposes. 
 
 Assuming that all necessary experimental data have been collected, and assuming 
that the system can be modeled reasonably as an LTI, SISO, m-c-k system with viscous 
damping, then the steps of the subsequent system ID calculation algorithm are: 
 
1.  Calculate k from Eq. (10-20) and/or Eq. (10-21), preferably both, in order to check 
that both static and dynamic testing lead to the same result.  
 
2.  Determine natural frequency ωn from the frequency response curves.  The frequency 
at which the phase angle is −90° is the natural frequency, regardless of the level of 
damping.  Also, if viscous damping ratio ζ  is small, less than about 0.2, then the fre-
quency at which the dynamic flexibility peaks is essentially the natural frequency.  With 
ωn and k known, calculate the mass:  2

nkm ω= . 
 
3.  Measure the resonance (peak) dynamic flexibility, FX r .  Then the maximum dy-
namic amplification equation (10-12) gives the following equation from which any vis-
cous damping ratio ζ  ≤ 21  can be calculated:  
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The calculation is simplified considerably if ζ  is small, less than about 0.2: 
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                             (10-23) 

 
Finally, the viscous damping constant is calculated from Eq. (10-16): 
 

nc mmkcc ωζζζ 22 ==×=                                    (10-24) 
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10-4  Frequency-response function of an RC band-pass filter 
 
 We re-visit once again Section 5-4 and the example of Section 9-10, where it is 
demonstrated that a typical RC band-pass filter, as depicted below, is an overdamped 2nd 

order system with right-hand-side 
dynamics.  Our goal now is to de-
rive the FRF of this filter circuit. 
Rather than analyze 2nd order ODE 
(9-47) directly, it is instructive to 
start with the coupled 1st order 
ODEs of the two stages:  Eq. (5-
16), i

 

Figure 5-10  RC band-pass filter (repeated)  

eo(t)

RL 

 em(t) 

 CL 

iL(t) 

ei(t)  CL 

 CH 

RH 

 iH(t) 

 em(t) 
− 
+ 

mmL eee =+&τ , with Lτ  = 

L , for the upstream, low-pass 
filter; and Eq. (5-17), 

LCR

ooH ee +&τ  = 

mH e& HHH CR=τ , with τ , for the downstream, high-pass filter.  In this approach, we rep-
resent a system (the band-pass filter, in this case) as an assemblage of stages or lower-
order sub-systems (the low-pass and high-pass filters, in this case).  This section is a pre-
view of the more general discussion beginning in Chapter 13. 
 
 Taking the Laplace transform of the ODE for the low-pass stage, with the as-
sumption that all ICs are zero, gives 
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Next, we take the Laplace transform of the ODE for the high-pass stage, still with the as-
sumption that all ICs are zero, and then substitute Eq. (10-25) into the result:  
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So the transfer function of the entire RC band-pass filter circuit, clearly displaying right-
hand-side dynamics, is 
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Finally, the system complex frequency-response function is 
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See homework Problem 10.11 for a numerical evaluation of this frequency response that 
demonstrates the practical function for which a band-pass filter is designed. 
 
10-5  Common frequency-response functions for electrical and mechanical-struc-
tural systems 
 
 The term frequency-response function (FRF) is general, meaning physically the 
magnitude and phase in steady-state sinusoidal variation with time of some subject vari-
able, relative to the magnitude and phase of some other reference variable.  Often, but not 
always, the subject variable is clearly a physical response (output), and the reference 
variable is clearly a physical excitation (input).  During over a century of development, 
engineers have found uses for many different types of FRF subject and reference vari-
ables, and names for these types are widely recognized.  Many of the most common of 
these FRF definitions, their names, and examples are presented in this section. 
 
 Diagrams such as Fig. 4-1 and Figs. 10-1 and 10-2 display FRFs graphically, and 
there are many different forms of these diagrams.  One of the most well-known and use-
ful forms is the Bode diagram, on which relative magnitude and phase are plotted sepa-
rately against the sinusoidal frequency, which is on a logarithmic scale (as on Fig. 10-2).  
Relative magnitude is usually plotted on the decibel scale [dB = 20 × log10(relative 
magnitude)], and relative phase is usually expressed in degrees.  Another useful graphical 
format for FRFs is the Nyquist diagram or plot (after Harry Nyquist, Swedish-born 
American electrical engineer and physicist, 1889-1976), which is described at length in 
Section 17-2.  Application of Bode diagrams and Nyquist diagrams to analysis of control 
systems is discussed in Chapter 17. 
 
 The use of FRFs apparently began during the 1880s with the definitions of admit-
tance and impedance in the context of electrical engineering.  Electrical admittance is 
traditionally assigned the symbol Y(ω).  With Δe(t) being a specified voltage difference 
and i(t) being a specified current, admittance is defined by the equation 
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Δ
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)]([
)]([)(                                           (10-29) 

 
Keep in mind that the Laplace transforms in Eq. (10-29) and all other definitions of FRFs 
are for zero initial conditions.  Electrical impedance is traditionally assigned the symbol 
Z(ω), and it is defined to be the inverse of admittance:  Z(ω) = )(1 ωY .  In general, 
admittance is the degree to which an electrical system admits (or permits, if you prefer) 
the flow of current, and impedance is the degree to which the system impedes the flow of 
current.  The simplest examples of electrical admittance and impedance are for an ideal 
linear resistor of resistance R, with voltage difference Δe(t) across the resistor and current 
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i(t) flowing through it.  Ohm’s law, Eq. (5-1), is Δe(t) = )(tiR× , so Y(ω) = R1  and Z(ω) 
= R, the same for all frequencies.2   
 
 The electrical FRFs for an ideal linear capacitor with capacitance C are more 
complicated.  The relationship between voltage difference Δe(t) across a capacitor and 
current i(t) flowing through it is Eq. (5-3):  i(t) = C × dtted )]([Δ .  Taking the Laplace 
transform of this equation gives L[i(t)] = )]([ tesLC Δ× , so, from Eq. (10-29), a capa-
citor’s admittance is Y(ω) = jωC, and its impedance is Z(ω) = )(1 Cjω  = )(1 Cj ω×− .  
The magnitude of this impedance is called capacitive reactance (Hammond, 1961, pp. 
97-100), and is usually written as )Cf2(1)(1 CX C πω == .  Physically, for a given 
magnitude of voltage difference and a given capacitance C, the magnitude of current 
permitted by a capacitor is directly proportional to frequency ω or f, and the current leads 
the voltage difference by 90°. 

 
 The relationship between voltage difference Δe(t) across an ideal linear inductor 
and current i(t) flowing through it is Eq. (5-6):  Δe(t) = L  × dttid )( (denoting inductance 
≡ L  in this paragraph only, to distinguish it from Laplace transform operator L).  You can 
show easily that the associated admittance and impedance are, respectively, Y(ω) = 1 ⁄ 
(jωL ) = −j × 1 ⁄ (ωL ) and Z(ω) = jωL .  The magnitude of this impedance is called 
inductive reactance, and is usually written as XL = ωL = 2π fL .  Physically, for a given 
magnitude of voltage difference and a given inductance L , the magnitude of current 
permitted by an inductor is inversely proportional to frequency ω or f, and the current 
lags the voltage difference by 90°. 
 
 The subject and reference variables of FRFs commonly used for mechanical and 
structural systems are, of course, different than those used for electrical systems.  During 
much of the 20th century, conflicting and ambiguous names for these FRFs appeared in 
the engineering literature, but the names in English have been more uniformly standard-
ized in recent years, as described by Ewins, 1984, pp. 26-27, and by Maia and Silva, 
1997, pp. 38-39.  In the following, we will derive theoretical FRF equations for an m-c-k 
system; however, in engineering practice, these FRF definitions are also applied both 
theoretically and experimentally for much more general and more complicated mech-
anical and structural systems.  
 
 For mechanical admittance, the subject variable is a physical displacement (trans-
lation or rotation) at some point and in some direction on the mechanical or structural 
system, and the reference variable is a physical action (force or moment) imposed at 
some point and in some direction onto the system (Bisplinghoff et al., 1955, pp. 663-
665).  Thus, for an m-c-k system, from Laplace transformation of the ODE  +  + 

 = , and with use of notation defined in Eqs. (10-8) and (10-16), the equation for 
complex mechanical admittance is 

xm && xc &
xk )(tf x

                                                 
2 Clearly, the SI unit for impedance is the ohm (Ω), that of resistance; apparently since admittance is the 
inverse of impedance, the SI unit for admittance was given the whimsical name mho (Ω−1). 
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The magnitude ratio and phase angle associated with Eq. (10-30) were written earlier in 
Eqs. (10-18) and (10-19).  Some synonyms in English for mechanical admittance are 
dynamic flexibility, dynamic compliance, and receptance.   
 
 The inverse of mechanical admittance is known as dynamic stiffness (occasionally 
also mechanical impedance, but this name usually denotes a different FRF, as described 
below); thus, the dynamic stiffness of an m-c-k system is 
 

[ ζββωω
ω

2)1()(
)]([
)]([ 22 jkcjmk

txL
tfL

js

x +−=+−=
⎭
⎬
⎫

⎩
⎨
⎧

=

]               (10-31) 

  
The definition of Eq. (10-31), with the Laplace transform of action in the numerator and 
that of displacement in the denominator, might seem unorthodox, since an action (force 
or moment) is usually the physical input and a displacement is usually the physical 
output.  However, this type of FRF is useful in practice for experimental measurements, 
as is described in homework Problem 10.16.  Dynamic stiffness is also the basis of an 
advanced method for analyzing theoretically the dynamics of distributed-parameter struc-
tures (Clough and Penzien, 1975, Chapter 20; Fergusson and Pilkey, 1991). 
 
 For mechanical and structural systems, the first and second time derivatives of 
displacement are also of interest, primarily because velocity sensors and, especially, ac-
celerometers are often used to measure motion.  Accordingly, appropriate FRFs have 
been defined.  For mobility, the subject variable is a velocity, and the reference variable is 
an action.  Since  = s × L[x(t)], the mobility of an m-c-k system, from Eq. (10-30), 
is 

)]([ txL &
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The inverse of mobility is usually given the name mechanical impedance.  Accordingly, 
the mechanical impedance of an m-c-k system is 
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For accelerance (also known as inertance), the subject variable is an acceleration, and the 
reference variable is an action.  Since  = s2 × L[x(t)], the accelerance of an m-c-k 
system, from Eq. (10-30), is 

)]([ txL &&
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It is worth noting that for static loading (ω = 0), mechanical admittance equals a nonzero 
static flexibility, but both mobility and accelerance are zero.  The inverse of accelerance 
is called apparent mass, as motivated by the following expression for an m-c-k system: 
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 All of the mechanical and structural FRFs described in this section have dimen-
sional units.  For example, common units of accelerance used in the dynamic testing of 
structures are G’s or meters/sec2 (of acceleration) per pound or newton (of force). 
 
10-6  Beating response of 2nd order systems to suddenly applied sinusoidal excitation 
 

Thus far in Chapter 10, we have considered only the pure frequency response of 
2nd order systems, i.e., the steady-state sinusoidal response to sinusoidal excitation.  In 
frequency-response analysis based upon Eq. (4-41), initial conditions are ignored, as is 
any non-steady-sinusoidal start-up portion of the excitation; in other words, both pure 
sinusoidal excitation and response are idealized to start at some indefinite time in the 
past.  But any real excitation must start at some definite time, at which time any real dy-
namic system has some initial conditions.  After the initiation of sinusoidal excitation, 
there will be a transitional interval of response between the initial conditions and, pro-
vided the system is stable, the achievement of steady-state sinusoidal response.  Section 
4-2 illustrates such a transitional interval for a stable 1st order system, which does not ex-
hibit natural oscillatory behavior.  In this section, we consider a form of transitional re-
sponse, beating, that is often observed in lightly damped vibrating systems, the simplest 
forms of which are underdamped 2nd order systems. 
 
 The basic character of beating response to sinusoidal excitation is best illustrated 
theoretically by the idealized undamped 2nd order system.  Consider again the standard 
ODE for undamped 2nd order systems, Eq. (10-1).  Suppose now that u(t) = 0 for t < 0, 
and let’s define the suddenly applied sinusoidal (SAS) excitation as u(t) = U sin ωt for t ≥ 
0.  (We use sin ωt here rather than the customary cos ωt because it is more natural, espe-
cially for mechanical systems, that the excitation begins continuously from zero at t = 0, 
rather than with a discontinuity.)  Thus, the ODE Eq. (10-1) becomes 
 

tUtuxx nnn ωωωω sin)( 222 ==+&& , for t ≥ 0                          (10-36) 
 
For simplicity, we let the initial conditions be zero:  0)0( =x&  and .  The com-
plete algebraic solution of ODE (10-36) with these rest ICs is found in homework Prob-
lem 1.12 by the method of undetermined coefficients:   

0)0( =x
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[ ] nttUtx nn
n

ωωωω
ωω

sin)(sin
)(1

)( 2 −
−

= , valid for ωω ≠ , t ≥ 0      (10-37) 

 
Equation (10-37) is valid only if the excitation frequency is different than the natural fre-
quency, ω ≠ ωn; however, this is not a serious practical restriction, because it is almost 
impossible in reality to excite a system exactly at its natural frequency.  [But see home-
work Problem 1.12(d) for the theoretical solution valid if ω = ωn.]    
 
 It is appropriate to write the response solution Eq. (10-37) in a slightly different 
algebraic form:   
 

[ ]tttUtx nnn
n

ωωωωω
ωω

sin)1(sinsin
)(1

)( 2 −+−
−

=                 (10-38) 

 
This form of x(t) allows us to invoke a useful trigonometric identity: 
 

)(sin)(cos2sinsin 2
1

2
1 tttttt nnn ωωωωωω −×+=−                   (10-39) 

 
Now we can express the solution (10-38) in an equation that more clearly displays the 
characteristics of beating: 
 

[ ]tttUtx nnnn
n

ωωωωωωω
ωω

sin)1()(sin)(cos2
)(1

)( 2
1

2
1

2 −+−×+
−

=   (10-40) 

 
For computation, with definitions of driving frequency ratio β ≡ ω ⁄ ωn and natural period 
Tn ≡ 2π ⁄ ωn , we express Eq. (10-40) in the dimensionless form: 
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 Let’s use numerical evaluation and graphical display to help us examine the parts 
of Eqs. (10-40) and (10-41); Figure 10-3 on the next page includes plots of both suddenly 
applied sinusoidal excitation and the associated response calculated from Eq. (10-41), 
with the excitation frequency set at 90% of the natural frequency, ω = 0.9 nω  or β  = 0.9. 
 
 With use of Fig. 10-3, we can identify the roles of the terms within square brac-
kets of Eqs. (10-40) and (10-41) for any case in which the excitation frequency ω is 
somewhat close to the system natural frequency ωn.  The dominant (in magnitude) term 
that closely resembles the excitation is 2 tn )(cos 2

1 ωω + , a sinusoid whose frequency is 
the average of the excitation and natural frequencies.  But this dominant term is multi-
plied by tn )(sin 2

1 ωω − , which is a slowly varying amplitude modulator whose frequency 
is half the difference between the excitation and natural frequencies.  For the case of Fig. 
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10-3 with nωω  = 0.9, we have )(2
1

nωω −  = nω05.0 .  Therefore, the full period of the 
amplitude-modulating term is nωπ 05.02  = ; from Fig. 10-3, this period is the total 
interval between time t = 0 sec and the 

nT20
second subsequent minimum of the amplitude-

modulating envelope.  Furthermore, the beating terms are minimal in amplitude at every 
half-period of the amplitude-modulating term, in this case 0, , , …, and the 
beating terms are maximal in amplitude at instants between the half-period instants, in 
this case  , , …   

nT10 nT20

nT5 , nT15 nT25
 

 
Figure 10-3  Upper graph:  suddenly applied (at t = 0) sinusoidal (SAS) excitation 
with frequency ω = 0.9ωn; lower graph:  response from zero initial conditions of a 
standard undamped 2nd order system having natural frequency ωn. 
 
 The apparent period of beating is the interval between successive minima or suc-
cessive maxima of response,  in the case of Fig. 10.3, which is half the period of the 
amplitude-modulating term.  Therefore, the apparent 

nT10
frequency of beating is nωω − , 

which is twice the frequency of the amplitude-modulating term.  Similarly, when we hear 
two musical tones of close but not identical pitches (frequencies), the frequency of beat-
ing that we perceive is the difference between the two tonal frequencies. 
 
 Let’s consider now the remaining term, tnn ωωω sin)1( − , within the brackets of 
Eqs. (10-40) and (10-41).  Pure undamped beating, in general, is the combination of two 
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sinusoids that have different but closely spaced frequencies, as the two sinusoids pass 
into and out of phase with each other.  The beating of the undamped 2nd order system 
shown on Fig. 10-3 is the combination of two sinusoids in the term tωsin  − tnωsin  of 
Eq. (10-38).  These two sinusoids represent (1) the driven response of the system at the 
excitation frequency ω, and (2) most of the free-vibration response of the system at its 
natural frequency ωn .  When these two sinusoids are in phase, they combine and, to-
gether with the smaller contribution of the term tnn ωωω sin)1( − , form the maximal re-
sponse; when they are out of phase, they nullify each other completely, leaving only the 
small remaining part of the free-vibration response due to the term tnn ωωω sin)1( − . 
 
 Thus far, we have examined response to suddenly applied sinusoidal excitation of 
a physically unrealistic undamped 2nd order system.  Let’s consider next the influence of 
more realistic subcritical damping by solving for complete time response of an under-
damped 2nd order system the ODE  with u(t) = 0 for t < 0 and 
u(t) = U sin ωt for t ≥ 0, and with rest ICs x(0) = 0 and 

)(2 22 tuxxx nnn ωωζω =++ &&&

0)0( =x& .  An appropriate 
convolution-integral solution is Eq. (9-20a):  
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The damped frequency is 21 ζωω −≡ nd , so we can express the response integral in 
dimensionless form as 
 

∫
=

=

− −×−
−

=
t

n
n te

U
tx

n

τ

τ

τζω ωτζω
ζ

ω

0

2

2
(sin1sin

1
)( dττ )                (10-42) 

 
After evaluation of the formidable integral in Eq. (10-42), the solution is3 
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 (10-43) 

 
 The equation for response of an undamped 2nd order system that is most similar in 
algebraic form to Eq. (10-43) is Eq. (10-37), and you can easily show that for ζ = 0 Eq. 
(10-43) reduces to Eq. (10-37).  However, unlike Eq. (10-37), Eq. (10-43) apparently 
cannot be reconfigured into a form comparable to Eq. (10-40) that is amenable to physi-
cal interpretation relative to beating behavior.  To learn the physical character of Eq. (10-
43), it seems that the best we can do is to evaluate it computationally with relevant nu-
merical parameters and then interpret the results.  For computation of Eq. (10-43), with 
                                                 
3 The author derived Eq. (10-43) first with MATLAB by applying the syms, int, simple, and pretty 
symbolic operations, and then by implementing the human touch with pencil and paper to simplify further 
the MATLAB result.  See homework Problems 1.6 and 1.9. 
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definitions of driving frequency ratio β ≡ ω ⁄ ωn and natural period Tn ≡ 2π ⁄ ωn , we can 
express the time-dependent function arguments of Eq. (10-43) in the following forms in 
terms of dimensionless time   nTt / : )/(2 nn Ttt πζζω −=− , =tdω )/(12 2

nTtζπ − , and 
)/(2 nTtt πβω = .  Figure 10-4 includes plots of SAS response calculated from Eq. (10-

43) for zero damping and for light viscous damping ratios ζ = 0.01 and 0.02, with the 
excitation frequency set at 90% of the natural frequency, ω = 0.9 nω  or β  = 0.9, the same 
as for Fig. 10-3. 

 
Figure 10-4  Calculations of Eq. (10-43) for a standard 2nd order system having 
undamped natural frequency ωn , with zero damping (top) and two positive values of 
viscous damping ratio, ζ = 0.01 and 0.02; response from rest initial conditions to a 
suddenly applied (at t = 0) sinusoidal (SAS) excitation with frequency ω = 0.9ωn. 
 
  The response in Fig. 10-4 for ζ = 0 is, of course, the same as that in Fig. 10-3, 
with very significant beating.  However, the responses for ζ = 0.01 and 0.02 show that 
even these relatively small quantities of damping suppress the beating, at least for this 
case of ω = 0.9 nω .  Although less obvious than for zero damping, the apparent period of 
beating for ζ = 0.01, ~10Tn , is still quite evident.  However, for ζ = 0.02, the response in 
Fig. 10-4 after 25 natural periods has almost settled into its steady-state condition, for 
which you can calculate from Eq. (10-10) that the steady-state frequency-response 
magnitude ratio is X ⁄ U = 5.171.  To investigate the nature of beating for any other case of 
damping ratio ζ > 0 and excitation frequency ratio β ≡ ω ⁄ ωn , we would need again to 
evaluate Eq. (10-43) numerically; see, for example, homework Problem 10.17. 
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10-7  Homework problems for Chapter 10 
 
Problems 10.1–10.4 are frequency response problems (inspired by Myklestad, 1944) 
about standard 2nd order mass-damper-spring systems.  In each case, the mass is excited 
by sinusoidal force  = )(tf x tF ωcos

)
, and it responds with steady-state sinusoidal 

displacement cos()( φω += ttx X , where excitation frequency in Hz is f =ω /2π.  Some 
partial answers are given to help you see if you are on the right track; you still must 
calculate these values as if the answers were not given.  To derive maximum benefit from 
these problems, use the appropriate equations for calculations, but also figure out how the 
results are represented in the FRF magnitude and phase graphs, Figs. 10-1 and 10-2.  Be 
sure to use the appropriate value for g, either 386.1 inch/sec2 or 9.807 m/sec2. 
 
10.1  (Myklestad, 1944, p. 61)  Suppose that damping is negligibly small.  The measured 
weight of the mass is W = 19.0 lb, and the spring stiffness is k = 13.0 lb/inch.  With F = 
5.00 lb at a certain frequency of excitation, the response amplitude is X = 0.750 inch.  
Calculate the dimensionless dynamic amplification )/( kFX .  There are two different 
excitation frequencies, f1 < f2 , that can produce this particular dynamic amplification; 
calculate both frequencies (in Hz), and the response phase φ (in degrees) at both fre-
quencies.  (partial answers:  φ1 = 0°, f2 = 3.18 Hz) 
 
10.2  Suppose that damping is negligibly small.  The measured weight of the mass is W = 
8.50 kgf , and the spring stiffness is k = 2.50 kN/m.  With F = 5.00 N at a certain frequen-
cy of excitation, the response amplitude is X = 20.0 mm.  Calculate the dimensionless 
dynamic amplification )/( kFX .  There are two different excitation frequencies, f1 < f2 , 
that can produce this particular dynamic amplification; calculate both frequencies (in Hz), 
and the response phase φ (in degrees) at both frequencies.  (partial answer:  f2 = 2.86 Hz) 
 
10.3  The mass weighs W = 1.26 kN, and the viscous damping and spring constants are, 
respectively, c = 2,400 N-sec/m and k = 1.12 MN/m.  Calculate the undamped natural 
frequency fn in Hz and the viscous damping ratio ζ .  Suppose that the response amplitude 
is X = 2.50 mm when the phase φ  = −90.0°; calculate the corresponding amplitude F of 
the excitation force.  (partial answer:  F = 560 N) 
 
10.4  (Myklestad, 1944, p. 113)  The mass weighs W = 2.36 lb, and the spring and 
viscous damping constants are, respectively, k = 37.8 lb/inch, and c = 0.0169 lb-sec/inch.  
The force amplitude is F = 0.785 lb.  Calculate the critical damping constant cc , the 
damping ratio ζ , the maximum possible amplitude of response Xr , and the amplitude X 
and phase φ (in degrees) for excitation at 13.0 Hz.  (Note:  to calculate φ correctly, you 
must account carefully for the quadrant of the fraction in the arctangent argument; if you 
just calculate the fraction and use the arctan function on your calculator, you will get the 
wrong answer; if you need some help, see the atan2 command in MATLAB).  Is the 
small-ζ  approximation appropriate for this system?  (partial answers:  Xr = 0.591 inch, φ 
= −155°) 
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10.5  A frequency response measurement is conducted on a standard 2nd order m-c-k sys-
tem with known stiffness constant k, so that the input pseudo-static displacement is cal-
culated from the measured input force, u(t) = fx(t)/k .  A measured graph of the input and 
output displacements at one particular excitation frequency is shown below.  Calculate 
from the graph, with as much accuracy as the data permits, the following quantities:  the 
frequency (in Hz); the FRF magnitude ratio X/U; the FRF phase φ (in degrees).  What are 
the natural frequency fn (in Hz) and the damping ratio ζ  of this system? 

 
 
10.6  The mechanical system of homework Problem 9.1 [with fx(t) = 0] has base 
excitation input xi(t) and output x(t).  The ODE of 
motion is ii kxxckxxccxm +=+++ &&&& 121 )( , which 
includes right-hand-side (RHS) dynamics, where m 
is the mass, c  and c  are viscous damping con-
stants, and k is the stiffness constant.  

k 

m 

xi(t)

c1 

x(t) 

c2 

1 2

 
(a)  Derive for this system the transfer function 

)]([)]([)(
0

txLtxLsTF iICs=
= . 

 
(b)  Use the fundamental result )(])([)()( ωφωωω j

i eXXFRFjTF ==  and the result 
from part (a) to derive the relatively simple algebraic equation for real magnitude ratio 

iXX )(ω .  This equation should be in terms of physical parameters m, c , c , and k, and 
excitation frequency ω.  [NOTE:  You should implement complex division by the 

1 2

polar 
method described on pages 2-3 and 2-4; do not use the rectangular method, because it 
will produce an awful algebraic mess!]  If you wish, you may derive the associated 
relatively simple algebraic/trigonometric equation for the real phase angle )(ωφ  (in 
radians), but that is not required. 
 
(c)  Let the system constants be m = 128.5 kg, c1 = 1,600 N-sec/m, c2 = 800 N-sec/m, and 
k = 1.12 MN/m.  Calculate and plot the frequency response (magnitude ratio X/Xi, and 
phase φ in degrees) over the range of excitation frequencies 0-30 Hz.  Use the over-under 
graphical format of Fig. 10-2, except plot both graphs on linear (not log) scales.  As in the 
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script that produced Fig. 10-2, let MATLAB do most of the work for you by starting with 
the complex frequency response function FRF(ω) from part (b), then using MATLAB's 
capability for performing complex arithmetic with the abs and angle functions.  If you 
need some help with the array multiplications required for this FRF, see the "frf=..." 
command lines in the script that produced Fig. 10-2.  Submit your MATLAB script along 
with your FRF graphs. 
 
10.7  The drawing represents a very simplified model of a land vehicle driving over a 
wavy (washboard) road with constant 
forward velocity V.  The vehicle mass is 
m, and it is connected to the rolling 
wheel through the shock strut that has 
viscous damping constant c and stiffness 
constant k.  The deviation of the road 
surface from flatness is denoted as 

)2cos()( λπ xYxy ss = , in which x is 
horizontal distance traveled from a 
reference position,  is the amplitude 
(wave height at the crests), and λ is the wave length.  We make the following 
assumptions for this model:  the wheel itself is rigid, it rolls without slipping, and it 
maintains contact with the road at all times due to the weight of mass m; also, wave 
height Y  is small relative to wheel radius, so that, in effect, the contact point is always 
directly beneath the wheel axle, which means that  plays the role of base excitation, 
and essentially is a function of time:  

sY

s

sy
tYx sys ωcos)( = .   

 
(a)  Assume for the moment that  is )(tys arbitrary base excitation.  Draw a dynamic free-
body diagram of mass m, and derive from your DFBD the ODE of vertical dynamic 
motion , measured relative to the static equilibrium position for a flat road surface.  )(ty
First, write the ODE in terms of constants m, c, and k; second, use the standard 
definitions from Eqs. (7-3) and (9-4) to write the ODE in terms of natural frequency nω  
and viscous damping ratio ζ . 
 
(b)  Use the second ODE of part (a) to derive the complex frequency response function 

for arbitrary input  and output  as )(tys )(ty
ζββ

ζβω
2)1(

21)( 2 j
jFRF
+−

+
=  ≡ )()( ωφω j

s

e
Y

Y , in 

which nωωβ ≡ .  Even though this system has right-hand-side dynamics that influence 
response, let’s consider the condition nωω = .  Derive equations for FRF magnitude ratio 

sn YY )(ω  and phase )( nωφ , in terms of ζ.  (NOTE:  To obtain the most manageable 
algebra, implement complex division by the polar method described on pages 2-3 and 2-
4, not by the rectangular method.)  If ζ is small, e.g., ζ = 0.05, how close are your values 
of sn YY )(ω  and 

 
 m 

 k  c  V 

 λ 

 y(t) 

 x 

 Ys 

)( nωφ  to the values at ω nω=  that would prevail if there were no right-
hand-side dynamics? 
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(c)  For the washboard road surface, we use the kinematic relation tVx =  to express the 
base excitation as a sinusoidal function:  tYstVYty ss λ ωπ cos)2cos()( ≡= , in which 

λπω V2≡ .  Write the algebraic equation, in terms of m, k, and λ , for the velocity Vn at 
which base excitation frequency equals the undamped natural frequency, nωω = .   
 
10.8  A particular device is known to be an LTI mass-damper-spring system.  You (the 
engineer) are required to identify experimentally the mass m, the viscous damping con-
stant c, and the stiffness constant k.  First, you apply a static force of 162 lb, and you ob-
serve that the mass deflects statically by 0.108 inch.  Next, you run a stepped-sine fre-
quency-response test, applying sinusoidal force onto the mass, with the frequency in-
creasing in small increments from 8 to 20 Hz.  You measure at each frequency the 
steady-state input force magnitude F (in lbs), the output translation magnitude X (in 
inches) and the phase of translation relative to force.  The frequency response is plotted 
below.  Use this information to calculate m, c, and k in consistent units and with as much 
accuracy as the data permits.  Show all calculations.  
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10.9  A particular device is known to be an LTI mass-damper-spring system, but the mass 
m, viscous damping constant c, and stiffness constant k are unknown. It is required that 

the system parameters be iden-
tified experimentally with a 
combination of static and vi-
bration testing.  First, a static 
force of 52.0 N is applied, and 
the mass is measured to de-
flect statically by 1.13 mm.  
Next, sinusoidal force is ap-
plied to the mass by an elec-
tromagnetic shaker, with the 
frequency increased in small 
increments from 1 to 10 Hz. 
The steady-state input force 
magnitude F and output 
translation magnitude X are 
measured at each frequency, 
as is the phase φ of translation 
relative to force.  The fre-
quency-response translation-
to-force magnitude ratio and 
phase are plotted at left.  Use 
this information to calculate 

m, c, and k in consisten

 

t SI un  accuracy as the data permits.  Show all 
alculations. 

 a

Section 9-2), and its ODE nd

its and with as much
c
 
10.10  You, the engineer, are asked to determine experimentally the electrical constants 
(inductance L and resistance RL) of a small coil, based upon the simple model of inductor 
and resistor in series, to see if these constants match the design specifications.  You elect 

 frequency response test on an LRC circuit driven by a sine-
wave voltage generator, with the coil connected in series to 
a calibrated capacitor with capacitance C = 0.500 μF.  The 
circuit is shown in the drawing (from the example in 

in standard 2  order form is 

to infer these constants from

)(te
LC

e
LC

e
L

e iooo =++ &&& .  You run a stepped-sine 

frequency-response t t, applying sinusoidal input voltage 
of constant magnitude iE  = 1.00 V, with the frequency in-

creasing in small increments from 100 to 1,000 Hz.  You measure at each frequency the 
steady-state output voltage magnitude oE , and the phase 

11R

es

φ  of output voltage relative to 
input voltage.  The frequency response is plotted on the next page.  Use this information 
to calculate L and RL i

 RL ei(t) 

C 

eo(t) 

i(t) 

L em 

n consistent units and with as much accuracy as the data permits.  
Show all calculations. 
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10.11  Consider the RC band-pass filter described in Section 10-4, for which the fre-

quency response function is ( )( )11
)()(

++
==

LH

H

jj
jjTFFRF

ωτωτ
ωτ

ωω .  The purpose of 

this problem is to demonstrate the practical function for which that filter is designed, by 

means of FRF graphs.  Let 
102

1
×

=
π

τ H sec and 
5002

1
×

=
π

τ L sec to make the high-pass 

and low-pass break frequencies be, respectively, 10 Hz and 500 Hz.  Now, use MATLAB 
to calculate and plot the FRF magnitude ratio and phase (in degrees) over the frequency 
range 0.1 to 10,000 Hz.  Use the graphical format described in homework Problem 4.3 
(log-log for magnitude ratio, semilog for phase in degrees, magnitude ratio graph directly 
over phase graph).  As in Problem 4.3, let MATLAB do most of the work for you by 
starting with the complex FRF representation, and then using MATLAB’s capability for 
performing complex arithmetic.  Recall, in particular, that the MATLAB function abs 
calculates the absolute value (magnitude) of a complex number, and the MATLAB 
function angle calculates the angle in radians of a complex number. 
 

x(t) xi(t)

case 
bodyk 

m 

c 

10.12  An idealized mechanical model for motion 
sensors of the seismic type is shown in the figure.  
Such a sensor is entirely mounted on a moving 
body (is said to be “structure-borne”), unlike, for 
example, the proximity displacement sensor shown 
in Figs. 7-6 and 7-10.  The mechanical part of the 
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sensor is a mass-damper-spring system sealed within a sturdy case, which is attached 
firmly to the body whose motion is sensed.  The stimulus to the sensor is base excitation:  
translation xi(t) of the body and the case.  The absolute translation of seismic mass m is 
x(t).  A transducer within the case detects the relative translation z(t) ≡ x(t) − xi(t) and 
generates an electrical signal4 proportional to z(t), which typically is displayed and/or 
recorded by a data-acquisition-and-processing system, and may also serve as an input to a 
control system.   
 
(a)  Sketch and label appropriate free-body diagrams, then use your FBDs to derive an 
ODE of motion for z(t) [not x(t)] in terms of constants m, c, and k, and variable input 
quantity xi(t) or its derivatives.  Convert your ODE into the standard form Eq. (10-4), ex-
cept with z(t) [not x(t)] as the dependent variable:  .  Write an 
explicit equation for standard input quantity u(t) in terms of the appropriate constants and 
xi(t) or its derivatives. 

)(2 22 tuzzz nnn ωωζω =++ &&&

 
(b)  Evaluate the use of this seismic sensor as a translational accelerometer, a sensor of 
the body’s acceleration in the direction defined by x(t) and xi(t).  First, use the results of 
part (a) to show that the pseudo-static response is )()()( txkmtz ips &&−= .  This means that 

if the quantity zz n &&& ζω2+

x&&

 is small (or zero) in comparison with , then the seismic 
sensor acts as an accelerometer, since then z(t) and its corresponding electrical signal are 
directly proportional to .

zn
2ω

)(ti
5  This pseudo-static response is reflected clearly in the 

FRF graphs of Fig. 10-2:  If the frequencies of motion within base excitation xi(t) are 
substantially below the natural frequency of the sensor (β ≡ ω/ωn = 1), then both the 
magnitude and phase of response follow closely those of excitation.  An accelerometer is 
a seismic sensor intended to measure frequencies that are considerably lower than the 
sensor’s own natural frequency.  Suppose you are designing an accelerometer that will 
measure with reasonable engineering accuracy body accelerations whose frequencies are 
no higher than 25% of the sensor’s natural frequency.  What is the highest value of 
damping ratio ζ (to three significant digits) that your sensor can have in order that phase 
error will be less than 5°, and what is the maximum magnitude error for that ζ ?  Use Fig. 
10-2 to find an estimate, then make trial-and-error iterative calculations (preferably with 
MATLAB) to determine more precisely the required ζ and magnitude ratio. 
 
(c)  Evaluate the use of this seismic sensor as a translational seismometer, a sensor of the 
body’s translation xi(t).  Now, due to the right-hand-side second derivative , your first 
ODE from part (a) is 

ix&&
not in the standard form Eq. (10-4), so it is necessary to derive new 

response equations.  The appropriate transfer function is defined as TF(s) = 
0

)]([L
=ICs

tz ÷ 

0
)]([

=ICsi txL .  Derive this TF(s), then use it to derive the corresponding FRF:   

                                                 
4 For most commercially available sensors, the electrical signal passes through wires connected to the 
sensor, but some modern sensors send the signal wirelessly.  The size of such a sensor ranges typically 
from that of an aspirin tablet to that of a large soda bottle. 
5 Although the theoretical constant of proportionality is −m/k, the true constant, including polarity, of any 
real sensor is always measured by laboratory calibration. 
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Suppose that a seismometer has damping ratio ζ = 0.22, high enough to dampen resonant 
response quickly.  Plot over the range 0.1 ≤ β  ≤ 10 the frequency response magnitude 
ratio Z(ω)/Xi and, separately, phase angle φ(ω) in degrees.  (If necessary, see for guidance 
the description of producing Fig. 10-2 with MATLAB.)  From these graphs, and if you 
wish from low- and high-frequency asymptotes of Z(ω)/Xi , you should recognize that:  A 
translational seismometer is a seismic sensor intended to measure frequencies that are 
considerably higher than the sensor’s own natural frequency.  Suppose this seismometer 
is intended to measure with reasonable engineering accuracy body translations whose 
frequencies are no lower than five (5) times that of the sensor’s natural frequency.  Cal-
culate the greatest values of sensor error, percent of magnitude ratio and degrees of phase 
angle?6  Describe physically the motion of the seismic mass in response to base-motion 
frequencies that are considerably higher than the seismometer’s natural frequency. 
 
10.13  The drawing at right is the prototypical idealized model 
for the subject of vibration isolation.  Suppose that mass m in 
the drawing houses a reciprocating internal combustion engine 
with a single vertically oriented piston-cylinder pair, and that 
the damper-spring-base assembly attaches the mass to the 
floor.  The engine exerts an oscillatory vertical force f (t) on 
mass m, and the mass-damper-spring system transmits force 
through the rigid base to the stiff floor, which reacts the trans-
mitted force with oscillatory vertical force fR(t).7  For the 
benefit of the floor and its superstructure (building, vehicle, etc.) and for the comfort of 
the occupants, it is usually desirable to design the damper-spring support so that fR(t) is as 
small as practical, in other words, to isolate the engine from the floor.  In practice, the 
damper-spring support often is an elastomeric (rubber-like) padding. 

 m 

 k/2  c 

 y(t)  f (t) 

 fR(t) 

 k/2 

 
(a)  Use a dynamic free-body diagram (DFBD), if necessary, to write the ODE of dyna-
mic motion y(t) relative to the static equilibrium position, in terms of excitation force f (t) 
and constants m, c, and k.  Take the Laplace transform of the ODE (assuming zero ICs) to 
obtain an equation for transform L[y(t)] ≡ Y(s), which equation will include as the input 
quantity transform L[f (t)] ≡ F(s).  Next, write an equation for dynamic reaction force fR(t) 
in terms of y(t) and its derivative and the appropriate constants, then take its Laplace 
transform to find an equation for transform L[fR (t)] ≡ FR(s).  Next, combine the two trans-
form equations appropriately to find the transfer function TF(s) = FR(s)/F(s) relating the 
floor-reaction dynamic force to the excitation force.  Finally, use the standard definitions 

                                                 
6 For the phase-angle error, regard a 180° phase difference as being equivalent to 0°, because it is simply a 
sign difference that is corrected in calibration and/or data processing. 
7 The floor’s true reaction is distributed force, i.e. stress, acting against the base over the area of contact.  
Discrete force fR(t) in the drawing is the equivalent resultant of the distributed force, that is, fR(t) has the 
magnitude of the total force distribution and its point of application is the center of the distribution. 
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of ωn, ζ, and β to show that the corresponding complex frequency-response function, 

known as transmissibility, is 
ζββ
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(b)  Plot on a single graph the transmissibility magnitude ratio FR(ω)/F  for the cases of 
zero damping, ζ = 0, and the relatively high damping ratio ζ = 0.25; plot these curves on 
linear (not logarithmic) scales over the frequency ratios 0 ≤ β  ≤ 4, and display the mag-
nitude ratio only over the range 0 ≤ FR(ω)/F ≤ 2.5.  (If necessary, see for guidance the 
description of producing Fig. 10-2 with MATLAB.)  Explain how your graph shows 
(don’t bother with any theory) that there is effective vibration isolation only if β  > 2 .  
Suppose that you know mass m and excitation frequency ω; what is the range of spring 
constant k for which there is effective vibration isolation?  Physically, should the springs 
be stiff or soft, and how stiff or soft?  Does positive damping either increase or decrease 
the effectiveness of vibration isolation at all excitation frequencies, or is damping a 
mixed blessing, helpful in some range of frequencies, but not so much in others? 
 
10.14  The translational velocity v(t) of a point on an object is sometimes measured with 
use of a structure-borne accelerometer (see homework Problem 10.12).  An accelerome-
ter is a transducer that senses translational acceleration in one direction, e.g. , 
and converts the motion into an electrical voltage signal, ea(t), which can be displayed, or 
recorded, or processed, or used in a control system.  The transducer’s output signal is 
nominally ea(t) = Cea a(t) + n(t) + ε :  Cea is the sensor’s calibration factor, with units such 
as volts per meter/sec; n(t) is small, randomly varying electrical “noise”; and ε is a small, 

)()( txta &&=

constant offset voltage.  Error voltage n(t) + ε is unrelated to the sensed motion; it is an 
unwanted but practically unavoidable by-product of a transducer’s circuitry.  Accelera-
tion is the rate of change of velocity, = a(t), so the accelerometer’s output signal must 
be integrated to produce an electrical signal ev(t) that is proportional to velocity.  Thus, 
the basic ODE that an 

)(tv&

exact integrator (in analog circuitry or a digital algorithm) would 
solve is = )(tev& )1( T ea(t), where T is a physical constant having dimensions of time 
(e.g., T = −RC for the op-amp-circuit integrator of homework Problem 5.6).  However, in 
practice exact integration of an accelerometer’s signal is not desirable due to constant er-
ror ε, because   = ∫ dttea )(  = ∫ ++ dttntaCea ])()([ ε ∫ dttaCea )(  + ∫ dttn )(  + ε t.  The 

term  typically is negligible because random n(t) has average value of zero.  On 

the other hand, the error term ε t is artificial drift that grows with time and distorts the ex-
act integrator’s output signal, regardless of how small ε is.  Therefore, it is necessary to 
use 

∫ n dtt)(

approximate integration that is not vulnerable to artificial drift but is still sufficiently 
accurate for practical purposes.  Perhaps the simplest approximate integrator, which we 
name the low-pass approximate integrator, is defined by the 1st order ODE  + ve& veΩ = 

)1( T

                                                

ea(t); the static response to non-zero constant ea is clearly non-zero, ev = ea ⁄ (ΩT).  
This non-zero static response makes the low-pass approximate integrator unsuitable for 

 
8 This FRF applies for a vibration isolator with viscous damping.  However, the internal-friction mathemat-
ical model of structural damping is more realistic than viscous damping.  In Appendix B, Section B-5, the 
internal-friction model is described and applied for vibration isolation. 
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applications that require the device’s output to have zero offset voltage.  To avoid such an 
artificial constant static response, we have the band-pass approximate integrator defined 
by the 2nd order ODE )()1(2 teTeee avvv &&&& =Ω+Ω+ , which has right-hand-side dynamics. 
 

(a)  Using the definition of dimensionless excitation frequency β ≡ ω ⁄ Ω, derive and show 
that the complex frequency-response functions of the exact integrator, the low-pass ap-
proximate integrator, and the band-pass approximate integrator can be written in the 
forms, respectively, [ΩT × FRF(ω)]exact = 1 ⁄ (jβ), and [ΩT × FRF(ω)]low-pass = 1 ⁄ (1 + jβ), 
and [ΩT × FRF(ω)]band-pass = jβ ⁄ (1 − β 2 + jβ). 
 

(b)  Plot on one graph the magnitudes versus β  (at least over the range 0.1 ≤ β  ≤ 10) of 
[ΩT × FRF(ω)]exact , and [ΩT × FRF(ω)]low-pass , and [ΩT × FRF(ω)]band-pass .  Plot on an-
other graph the phases versus β  (over the same range) of these three frequency-response 
functions.  Your graphs should clearly display features noted earlier such as the static re-
sponses of the low-pass and band-pass approximate integrators, and they should show 
that for β ≡ ω ⁄ Ω > 6 both approximate integrators have negligible magnitude error, rela-
tive to the exact integrator, and phase error less than 10°. 
 
10.15  Consider the reaction-mass actuator (RMA) drawn schematically below, which 
includes an m-c-k system that is augmented with an internal force generator, fi(t).  An 
external dynamic voltage signal ei(t) commands the force generator to impose equal and 
opposite dynamic forces fi(t) upon reaction mass m and the rigid interface, forces fi(t) that 
are proportional to input ei(t).  The intended function of the RMA is to “react” against m 
in order to impose a dynamic force fa(t) through the connecting rod onto the rigid wall 
drawn at left.  However, due to the dynamics of the m-c-k system, the actuation force fa(t) 
actually transmitted through the connecting rod is different than internal force fi(t).   

Your tasks in this problem are to derive the mathematical relationship between the output 
actuation force fa(t) and the input voltage signal ei(t), and then to calculate and plot fre-
quency response that illustrates the character of RMA functioning.   
 
(a)  Derive the very simple ODE relating translation x(t) of reaction mass m to the actua-
tion force fa(t) shown acting onto the rigid interface.  (The masses of the internal compo-
nents—spring, damper, and force generator—are negligible relative to m.)  Then derive 
from that ODE the transfer function Fa(s)⁄ X(s), where Fa(s) and X(s) are the Laplace 
transforms, respectively, of fa(t) and x(t). 

fi(t)

rigid 
connecting rod 

command signal ei(t) 

rigid interface 

reaction mass 
m force generator 

fi(t)

x(t)
   k 

fa(t) fa(t) fi(t)

   c 

Reaction-Mass Actuator (RMA) in a calibration setup 
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(b)  The linear relationship between generated internal force fi(t) and input voltage signal 
ei(t) is fi(t) = G ei(t), where gain (calibration) constant G has units such as newtons/volt.  
Derive the ODE relating the translation x(t) of reaction mass m to the internal force fi(t) 
shown acting onto m, and then to input signal ei(t).  Then derive from that ODE the trans-
fer function X(s)⁄ Ei(s), where Ei(s) is the Laplace transform of ei(t). 
 
(c)  Multiply the transfer functions of parts (a) and (b) in order to show that the required 
transfer function relating the output actuation force fa(t) to the input voltage signal ei(t) is 
Fa(s)⁄ Ei(s) = Gs2⁄ ( s2 + 2ζωn s + ωn

2), where, as usual, ωn
2 = k⁄ m and ζ = c⁄ (2mωn). 

 
(d)  During the 1990s, a team of aerospace companies designed a specialized RMA and 
fabricated several units of the device for use as vibration-control actuators in experiments 
on a test bed that simulated a space-satellite laser-beam-director structure [Dettmer, 1995, 
which uses another common name, proof-mass actuator (PMA) for the device].9  
Imagine that these RMAs are restored for a new project and that you, as an 
instrumentation engineer, are assigned to perform system identification and calibration 
tests on one of them.  First, you run free-vibration tests with the force generator turned 
off, fi(t) = 0.  You excite vibration by displacing reaction mass m from x = 0, then 
releasing it (twang testing, see homework Problem 9.4).  You measure the frequency of 
the resulting free vibration of m to be 5.00 Hz, with very light inherent damping that 
reduces the amplitude of vibration in half in exactly 9 full cycles [in Eq. (9-28),  r1/2 = 
9.00].  The RMA has a flange allowing you to bolt a calibrated mass of 3.00 kg firmly to 
reaction mass m; so you run a second twang test, from which you measure the frequency 
of free vibration of reaction mass plus added mass, m + 3.00 kg, to be 4.23 Hz (see 
homework Problem 7.9).  Next, you remove the 3.00-kg added mass and turn on the force 
actuator.  In static testing, you measure a linear relationship between applied voltage ei 
and translation x, with maximum voltage ei = +10.0 V moving m the distance x = −6.00 
mm (and, conversely, −10.0 V producing +6.00 mm).  Use your measured data to infer 
values for the components m, c, k, and G of the RMA system (Partial answer:  G = 4.47 
N/V).  Finally, calculate the frequency-response function corresponding to transfer 
function Fa(s)⁄ Ei(s) of part (c), and plot it in the format of Fig. 10-2 [log(magnitude ratio) 
vs. log(frequency in Hz), linear(phase in degrees) vs. log(frequency in Hz)] over the 
excitation-frequency range 1-100 Hz.  These graphs should indicate that the RMA 
produces output actuation force fa(t) nicely representative of input voltage signal ei(t) for 
frequencies above about twice the RMA’s natural frequency, but that fa(t) is not at all 
representative of ei(t) for frequencies near and below the RMA’s natural frequency. 
                                                 
9 The schematic drawing for this problem shows the connecting rod attached to a rigid wall, which is a con-
figuration suitable for calibrating an RMA; however, in any end-user practical application, the connecting 
rod would be attached to a flexible structure.  RMAs are applied in practice to impose dynamic forces upon 
structures, both to provide excitation for vibration testing, and to suppress unwanted vibration as actuators 
in control systems.  An RMA can be structure-borne, meaning it can be completely supported by the struc-
ture onto which it imposes dynamic force.  For example, large RMAs have been installed in the top floors 
of tall buildings in order to reduce bending vibration excited by wind and ground tremors; an RMA in this 
civil engineering application is often called an active tuned-mass damper (ATMD).  The internal force gen-
erators of ATMDs are hydraulic motors, whereas those of small RMAs (having total weight on or under the 
order of 100 lb) are electromagnetic linear motors. 
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10.16  A distributed-parameter shear-building structural model used in an instructional 
laboratory is shown in the drawing and the photograph, and is described in detail in 

homework Problem 7.10.  Measurements by 
students give the effective vibrating mass as E  = 
0.00473 lb-sec2/inch, and the lateral stiffness due 
to the two L = 12-inch aluminum beams as E  = 
43.6 lb/inch.  The inherent structural and aero-
acoustic damping of the vibrating beams and mass is very, very small, but a sup-
plementary dashpot (near top left in the photo) attached between the mass and ground 
increases the total measured effective viscous damping constant to  = 0.0309 lb-
sec/inch. 

 

h 

 x(t) 

Side view Front view 

 m 

L 

 b 
 fx(t)

m

k

Ec

                                                

 
(a)  Calculate the undamped natural frequency fn in Hz and the damping ratio ζ .  (An-
swers:  fn =  15.3 Hz, ζ = 0.0340) 
 
(b)  A small electromagnetic shaker10 is attached to the right-hand side of the mass, and it 
produces the time-varying force fx(t) labeled on the drawing.  Any real force actuator has 
a maximum stroke, the range of motion of the device’s moving parts, over which:  (i) the 
output force fx(t) is proportional to the input electrical command signal, and/or (ii) the 
moving parts of the device can deflect without damaging themselves or other parts within 
the device.  It is important to recognize that the moving parts of the shaker are attached 
directly to the structure, so they experience the same deflection as the attachment point 
on the structure.  Hence, the structural vibration can actually cause the maximum shaker 
stroke to be exceeded, especially at or near resonance.  Suppose you want to run an 
experiment to measure an FRF of the shear-building model, in a stepped-sine sweep of 
excitation frequency f in Hz from 0.5 fn to 1.5 fn .  The shaker will drive the mass with 
sinusoidal force fx(t) = F cos(2π f t), and the mass will respond with steady-state sinusoi-
dal translation x(t) = X cos(2π f t + φ).  Suppose the shaker in this case has the maximum 

 
10 This device is similar to the driver of a speaker in a sound system.  The primary components are a wire 
voice coil and a magnetic field structure, within which is a small but strong permanent magnet.  The wire 
coil is wrapped around and bonded to a spool, which is attached directly to the mass.  The coil is embedded 
within a magnetic field that acts across an annular gap in the front of the field structure.  Electrical current 
driven through the coil by a power amplifier interacts with the magnetic field to produce a force onto the 
coil and spool that is proportional to the current.  The force is transmitted to the mass through the spool. 
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stroke of ±0.05 inch and maximum force magnitude Fmax = 2 lb (typical values for a 
small commercial off-the-shelf shaker).  If you were to run the stepped-sine sweep so as 
to measure directly the mechanical admittance (also known as dynamic flexibility) by 
holding the force magnitude constant at 80% of its capability, F = 0.8Fmax , what are the 
theoretically predicted magnitudes X of structural (and shaker moving parts) translation at 
the frequencies 0.5 fn , fn , and 1.5 fn ?  (Partial answer:  X(fn) = 0.539 inch)  Why would 
this dynamic-flexibility approach not work in real life? 
 
(c)  Suppose you run a stepped-sine sweep, with the same shaker properties as defined in 
part (b), in such a way as to measure directly the dynamic stiffness, instead of the dyna-
mic flexibility.  For example, imagine that at each discrete excitation frequency in the 
sweep you adjust the shaker force magnitude so that the response magnitude equals 80%, 
X = 0.04 inch, of the maximum shaker stroke.  Calculate the theoretically predicted 
magnitudes F of required shaker force at the excitation frequencies f = 0 (the static 
condition), 0.5 fn , 1.0 fn , and 1.5 fn .  (Partial answer:  F(fn) = 0.119 lb)  For what (if any) 
range of excitation frequencies would this dynamic-stiffness approach work in real life? 
 
(d)  Calculate and plot the theoretically predicted dynamic stiffness (magnitude and 
phase) of this structural system for excitation frequency over the range 0 ≤ f ≤ 1.5 fn . 
 
10.17  Evaluate Eq. (10-
43) numerically (using 
MATLAB or your choice 
of software) to calculate 
and plot the time response 
from rest ICs to a sud-
denly applied sinusoidal 
(SAS) input into the elec-
tronic analog computer 
circuit at right.  The ODE 
relating output voltage eo(t) to input voltage ei(t) derived in homework Problem 9.17,  is, 
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tage is zero for time t < 0 and ei(t) = Ei sin(2π f t) for t ≥ 0, in which Ei = 3.20 V and f = 
14.2 Hz.  The circuit component values are:  Ra = Rd = 50.0 kΩ, Rb = 5.00 kΩ, Rc = 500 
kΩ, and C = 2.04 μF.  Calculate and plot both excitation and response over the time in-
terval −0.1 ≤ t ≤ 2.4 sec, at increments of 0.001 sec (to produce suitable graphical resolu-
tion).  This circuit was “patched” (programmed with plug-in wires) on a Comdyna GP-10 
analog computer, and the given input voltage was produced by a sine-wave generator; 
graphs of the actual measured time-varying input excitation and output response are on 
the next page.  Do the numerically simulated excitation and response that you calculate 
look very similar to the measured excitation and response? (If not, they should!)  
Although the circuit is lightly damped, there is still clear beating behavior.  Show that the 
period and frequency of beating evident in the time-response graph are what you would 
expect, based upon Eq. (10-40) for beating of an undam

1
22

R
e

CR
e

abb
o

c
o

⎠⎝⎠
⎜⎜
⎝

⎛
++ &&&

ped 2nd order system. 

 10-31



 Chapter 10  2nd order systems:  frequency response; beating response to SAS excitation 
 

 

  
 

 10-32



 Chapter 11  Mechanical systems with rigid-body plane translation and rotation 
 

 11-1

Chapter 11 Mechanical systems with rigid-body plane translation and 
rotation 

 
© 2016 by William L. Hallauer, Jr. 

 
Up to this point, we have considered mechanical systems with motion consisting 

of either translation in only one direction or rotation about one axis, but not both together.  
Simple rotational systems have appeared in previous chapters (for example, in Sections 
3-3, 3-5, and 7-1), but now we will treat rigid-body plane motion more generally, as 
consisting of both translation and rotation, and with the two forms of motion possibly 
coupled together by system components and system geometry.  The focus in this chapter 
is on deriving correctly the equations of motion, which generally are higher-order, 
coupled sets of ODEs.  Chapter 12 introduces some methods for solving such equations, 
leading to fundamental characteristics of an important class of higher-order systems. 
 
11-1  Equations of motion for a rigid body in general plane motion 
 
 Consider a rigid body that is restricted to motion in the xy plane.  Figure 11-1 
shows the body in its reference static equilibrium position (solid lines) and in a position 
of motion (dashed lines) relative to the reference position.  The xy axis system shown is 
an inertial reference with its origin at point O, which is either motionless or translating at 
a constant velocity.  We will use vectors and vector operations, so we need to recognize 
that the inertial reference system is really the three-dimensional Cartesian xyz axis 
system, with the z axis being perpendicular to the xy plane and pointed toward us, in the 
sense of the right-hand rule.  We denote the fixed unit vectors in the reference Cartesian 
directions as 1x, 1y, and 1z.  From the background of your previous dynamics and physics 
courses, you should be familiar with vectors, vector algebra and calculus, and vector 

kinematics and dyna-
mics; if necessary, 
you should review 
these concepts in 
your engineering dy-
namics text

 

Figure 11-1  Rigid body in general plane motion 
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Of particular 
interest is the position 
and orientation of the 
rigid body’s center of 
mass C.  At any in-
stant of time t, C has 
relative position coor-
dinates [xC(t), yC(t)].  
Thus, the vector posi-
tion of C relative to 
some absolutely fixed 
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point P is  = )(tCr yxOOCO 11rrr )()()()()( tytxttt CC ++=+

)(tCv OOCO vvv )()()( ttt

, where  is the known 
instantaneous position of O relative to P.  Similarly, the vector velocity of C relative to 
absolutely fixed point P is  = 

)(tOr

x1 yC&+ y1)()( ttxC&+=+ , where 
 is the )(tOv constant velocity of O relative to P.  Because  is constant, the absolute 

vector acceleration of C is  =  
)(t

y1
Ov

)(tCa xOC 1a )()()( tytxt CC &&&& += .  We denote as θ (t) the 
positive-counterclockwise rotational orientation of mass center C (indeed, of the entire 
body, since it is rigid).  Position  of O is known, so if we can determine at any 
instant the three motion quantities xC(t), yC(t), and θ (t), then we can calculate from sim-
ple geometry the position of any point on the rigid body.  These three quantities are 
independent in general plane motion, and only these three [plus known ] are 
required to describe completely the position in space of the rigid body.  Therefore, xC(t), 
yC(t), and θ (t) are called degrees of freedom, and general plane rigid-body motion is 
called a three-degrees-of-freedom (3-DOF) problem. 

)(tOr

)t(Or

 
 For generality, we identify three other points fixed to the rigid body, at which 
point actions (forces or moments) are applied by sources external to the body.  (In gen-
eral, there can be more or fewer points of externally applied actions; analyzing such sit-
uations will require only minor modifications to the present derivation.)  Point A is a con-
nection to the external environment, possibly through springs, dampers, etc.; actions 
applied at Point A are vector reaction force yxA 11F yAxA FF +=  and vector reaction 
moment MA = MA 1z.  It is useful to express the vector position of point A in terms of that 
of mass center C:  CAOCOA rrr +=  (see Fig. 11-1).  An arbitrary vector force 

 is applied at point B, and that point’s vector position is expressed as 
.  Finally, an arbitrary vector moment MD = MD 1z acts at point D. 

yxB 11F yBxB FF +=

CBOCOB rrr +=
 
 We denote as m the mass of the rigid body.  Newton’s 2nd law for forces, written 
in vector form, is 
 

BAC FFa +=m                                                  (11-1) 
 
Expressing Eq. (11-1) in terms of scalar components gives the two scalar ODEs: 
 

xBxAC FFxm +=&&                                               (11-2a) 
 

yByAC FFym +=&&                                              (11-2b) 
 
We denote as JC the rotational inertia of the rigid body about an axis normal to the plane 
of motion and passing through mass center C.  Newton’s 2nd law for moments relevant to 
this plane-motion case states that the inertial moment about mass center C equals the sum 
of all applied moments about mass center C; it is expressed as follows in vector notation, 
including vector cross products:  
 

 11-2
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zBCBACAz 1FrFr1 )( DAC MMJ ++×+×=θ&&                         (11-3) 
 
Despite the vector notation, Eq. (11-3) is actually a scalar equation, because the vector 
cross products obviously produce vectors in the z direction; the use of these cross prod-
ucts just provides economy of notation.1 
 

We shall see an application of general-plane-motion Eqs. (11-2) and (11-3) to a 
specific aeroelastic system in Section 11-3 (Example 11-3); but, first, it is appropriate to 
develop in Section 11-2 and to illustrate in Section 11-3 (Examples 11-1 and 11-2) the 
special case of pure plane rotational motion about a fixed point. 
 
11-2  Equation of motion for a rigid body in pure plane rotation 
 
 An important special case of general plane motion is pure rotation about a fixed 
pivot or hinge, as depicted in Fig. 11-2.  To analyze this case, let’s suppose that reaction 

point A of Fig. 11-1 is 
the hinge point, and let’s 
position the xyz origin O 
at point A.  To emphasize 
the character of this 
hinge point, we re-label 
it as H; in other words, 
both points A and O on 
Fig. 11-1 now become 
hinge point H on Fig. 11-
2.  We can use the 

previous equations simply by setting position vector OAr  on Fig. 11-1 equal to zero:  OAr  

HCr

 

Figure 11-2  Rigid body in pure rotation about point O
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in terms o OC OC .  Using these substitutions in Eq. (11-3) give
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zBOCOBAOCz 1FrrFr1 )()( DAC MMJ ++×−+×−=θ&&                 (11-4a) 

 
After we replace subscripts O and A with H and re-arrange terms, Eq. (11-4a) becomes 
 

zBHBBHHCz 1FrFFr1 )()( DHC MMJ ++×=+×+θ&&                  (11-4b) 
 
Next, substituting Eq. (11-1) into Eq. (11-4b) gives 
 

zBHBCHCz 1Frar1 )( DHC MMmJ ++×=×+θ&&                     (11-5a) 

 
1 For Eqs. (11-2) and (11-3), the reference xyz axis system is inertial, either stationary in space or moving at 
a constant translational velocity, and motion of the rigid body is measured relative to this inertial system.  
However, for many problems in dynamics, it is preferable to derive equations of motion using a reference 
axis system that is fixed in the body and moves with it.  A plane-motion problem of this type is the leading-
lagging rotation of a hinged helicopter rotor blade, as analyzed by Bramwell, 1976, pp. 51-52. 
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Since hinge point H is fixed, let’s simplify notation by writing CHC rr ≡  and BHB rr ≡ .  
Also, we can express the acceleration as CC ra &&≡ , so Eq. (11-5a) becomes 
 

zBBCCz 1Frrr1 )( DHC MMmJ ++×=×+ &&&&θ                        (11-5b) 
 

We can simplify the  term on the left-hand side of Eq. (11-5b) by using the 
kinematics of rigid-body, plane, pure rotation about point H.  For this task, it is conven-
ient to work in polar rather than Cartesian coordinates, so we define on Fig. 11-2 the or-
thogonal rotating unit vectors 1r and 1θ; thus, we can express the position vector to mass 
center C as , where  is the constant radius from hinge point H to mass center 
C.  We express the rotational velocity vector as .  (In this context, the vector 
symbol  denotes rotational velocity, which is standard in dynamics textbooks, whereas 
everywhere else in this book the scalar symbol ω denotes frequency of vibration.)  There-
fore, the first derivative of the mass-center position vector is 

Cr&&

CrrC 1r Cr=

z1ω θ&=
ω

 
θrzCC 111rωr θθ &&& CC rr =×=×=                                   (11-6) 

 
To obtain the second derivative, we differentiate product (11-6), recognizing that  is 
constant, but that 1θ is rotating: 

Cr

 
[ ] [ ] [ ]rθθzθθθC 1111111r 2)( θθθθθθθ &&&&&&&&&&&&& −=×+=+= CCC rrr         (11-7) 

 
With Eq. (11-7), the vector cross product on the left-hand side of Eq. (11-5b) becomes 
 

[ ] zrθrCC 1111rr θθθ &&&&&&& 22
CCC rrr =−×=×                             (11-8) 

 
With Eq. (11-8), the left-hand side of Eq. (11-5b) becomes 
 

zzCCz 11rr1 θθθ &&&&&&&&
HCCC JrmJmJ ≡+=×+ )( 2                       (11-9) 

 
In Eq. (11-9), we use the parallel-axis theorem to define the rotational inertia of the rigid 
body about center of rotation H, .  Thus, Eq. (11-5b) becomes 2

CCH mrJJ +=
 

zzBBz 11Fr1 )aboutmomentsreactiveandactiveall()( HMMJ DHH Σ≡++×=θ&& (11-10) 
 

To summarize, for a rigid-body in pure plane rotation about point H, the only de-
gree of freedom is rotation θ (t), and the single, relatively simple ODE of motion is 
 

)aboutmomentsreactiveandactiveall( HJ H Σ=θ&&                    (11-11) 
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in which  is the rotational inertia of the rigid body about center of rotation H.   HJ
 

Note that the reaction force at hinge H does not appear in ODE (11-11).  In fact, 
to find this reaction force, you would have to solve (11-11) for θ (t), then find the accel-
eration of C, then substitute the results back into Eqs. (11-1) or (11-2).   
 
11-3  Examples of equations of motion for rigid bodies in plane motion 
 
Example 11-1:  damped, spring-supported rigid bar, hinged at point H 
 

Let’s derive the specific ODE of motion for the system of Fig. 11-3, assuming 
small angles of rotation.  The bar has rotational inertia  about hinge H, which we as-
sume to have negligible friction.  The bar is shown in the reference static equilibrium po-
sition, subject to static gravity but 

HJ

before applied dynamic force F(t) becomes active.  
Dynamic degree of freedom θ (t) shown with dashed lines is the small rotation relative to 
the static equilibrium position.  (It is this book’s graphical convention for this and all sub-
sequent systems of this type that the rigid body is drawn in its static equilibrium position, 
and dynamic motion relative to this reference position is indicated with dashed lines and 
annotation.)  Note the rotation spring with spring constant kθ at hinge H; this spring re-
sists rotation by generating an opposing moment of magnitude kθ × θ .  Typical units for 
kθ are lb-inch/radian and N-m/radian. 
 
 

 B 

 ky 

 c 

 kθ 

 F(t) 
 y(t) 

 θ (t)

  H

 2l   1l   

 Figure 11-3  Example 11-1:  damped, spring-supported, hinged rigid bar
 

 
Before drawing a dynamic free-body diagram (DFBD, as defined in Section 7-5), 

we need to express appropriately the reaction forces on the bar at point B from the trans-
lational spring (ky × y) and the translational viscous damper ( yc &× ).  Observe that point B 
moves in a circular arc of radius , so that 2l θsin2l=y .  For arbitrarily large θ , the term 

θsin  and its time derivative would make equation of motion (11-11) nonlinear.  How-
ever, the assumption of small rotation, |θ (t)| < ≈10°, linearizes that ODE; the geometry of 
small rotation gives approximate linear equations in terms of θ  for stretch y of the trans-
lational spring due to motion of point B, and for damper-piston velocity : y&
 

θθ 22 sin ll ≈=y  (θ in radians),      and      θθθ &l&l& 22 cos ≈×=y
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The geometry of small rotation was used previously in the example of Section 7-1 to lin-
earize the pendulum equation of motion.  For the system of Fig. 11-3, the assumption of 
small rotation is physically plausible as well as mathematically expedient, because the 
translational and rotational springs most likely would restrict rotation of the bar to small 
angles relative to the static equilibrium position. 
 

The appropriate DFBD is drawn below.  Note that we do not include bar weight 
among the applied forces.  We omit bar weight because we are interested only in dynamic 

motion relative to the static equilibrium position, and because this bar is approximately 
horizontal so that gravity has no pendulous effect on it; if you are not sure why we ne-
glect weight in this case, then review Section 7-5. 

 

 kθ θ 

 F(t) 

 H 

 2l   1l   

  θ2lyk

 θ&l 2c   

  
   FH 

 
From the DFBD and Eq. (11-11), the ordinary differential equation of motion is 

 
)()( 2221 θθθθ θ l&lll&&

yH kcktFJ +−−=  
 

⇒                                  (11-12) )()( 1
2

2
2

2 tFkkcJ yH ll&l&& =+++ θθθ θ

 
Equation (11-12) can be put into the standard form for a 2nd order damped system, and all 
of the relevant results of Chapters 9 and 10 can be expressed in terms of the physical pa-
rameters of this particular mechanical system.  For example, we can immediately find 
equations for the system undamped natural frequency and viscous damping ratio: 
 

H

y
n J

kk 2
2l+

= θω ,     
)(2

12
2

2

2
2

2
2

l

ll

yHH
n

kkJ

c
J

c

+
=⇒=

θ

ζζω      (11-13) 

 
NOTE:  It is easy to make mistakes in algebra when we derive results such as (11-13).  
One good, easy type of partial check that you can use is to evaluate the physical dimen-
sions of algebraic results.  (It is only a partial check because dimensional consistency is a 
necessary condition, but it does not guarantee the correctness of an algebraic equation.)  
Do Eqs. (11-13) have the correct physical dimensions?  You should be able to show that 
the equation for ωn has the dimension (time)−1 and that the equation for ζ  is dimen-
sionless.  Don’t forget that rotation θ  is dimensionless and that the radian, the natural 
metric of rotation, is unitless.  If you are more comfortable working with units than di-
mensions, it’s satisfactory to check units instead.  Table 3-1 should be helpful relative to 
mechanical units. 
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Example 11-2:  1-DOF typical-section model for study of aeroelastic wing twist 
 
 Since the beginning of modern aeronautical engineering in the late 1800s and 
early 1900s, the interaction of aerodynamic pressure with airplane structural flexibility 
has often produced unexpected and sometimes disastrous consequences.  The subject of 
these phenomena became known as aeroelasticity.  During and after World War I, high-
aspect-ratio, cantilevered monoplane wings tended to be susceptible both to aeroelastic 
flutter, undamped vibration that can escalate to destruction of wing and airplane, and to 
aeroelastic divergence, the gradual twisting-off of a wing in, for example, pull-up from a 
dive.2  In their attempts to analyze these aeroelastic phenomena, early aeronautical 
engineers used simplified, low-degrees-of-freedom dynamic models of wing structures.  
The basis of these models is called a typical section:  one “typical” cross-section of a 
high-aspect-ratio, straight, unswept wing is treated aerodynamically as an airfoil in two-
dimensional flow (without spanwise flow), and structurally as a spring-supported rigid 
body (without spanwise beam bending and twisting). 
 
 The simplest typical-section model is the one-degree-of-freedom (1-DOF) system 
drawn in Fig. 11-4.  It is helpful to visualize this as a physical model mounted for testing 
in a wind tunnel.  Elastic axis EA (the hinge) is assumed to be frictionless, and rotation 
spring kθ represents wing torsional stiffness.  (The term elastic axis refers to the line 
along the span of a high-aspect-ratio, straight, unswept wing about which the wing chord-
wise sections rotate if a pure twisting moment is imposed upon the wing.)  This model is 
intended primarily for the study of aeroelastic divergence.  Figure 11-4 shows the typical 

section in the reference static equilibrium position before the wind tunnel fan is turned 
on.  Turning on the wind tunnel fan then produces an airstream of steady free-stream 
velocity V flowing over the typical section at small angle of incidence αr relative to the 
reference chordline of the typical section.  The airstream creates a resultant lifting force 
FL that acts through aerodynamic center AC, and a resultant pitching moment MAC that 
acts about AC.  For most cases of practical interest, AC is forward of EA by some positive 
distance e, as shown on Fig. 11-4; the polarity e > 0 is very important relative to diver-
gence.  Aerodynamic actions FL and MAC impose moments upon rotation spring kθ , and 
the spring flexibility permits structural rotation θ  relative to the reference position.   

 

 AC  V 

 e 

 kθ 

 FL 

 αr

θ 

 EA 

 Figure 11-4  Example 11-2:  1-DOF typical section in an airstream 

 MAC
 α 

 chord  c

                                                 
2 For the early history of aeroelastic divergence, see Bisplinghoff et al., 1955, pp. 3-7, and Gordon, 1978, 
pp. 259-270. 
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 The DFBD associated with Fig. 11-4 is drawn below.  The equation of motion 
comes directly from the DFBD and Eq. (11-11), with the assumption of small angles of 

incidence and rotation, |αr | < ≈10° and |θ (t)| < ≈10°, and with  being the rotational 
inertia of the typical section about EA: 

EAJ

 

 
ACLEAACLEA MeFkJkMeFJ +=+⇒−+= θθθθ θθ

&&&&              (11-14) 
 

We can cast Eq. (11-14) into a more interesting and useful form by relating the 
aerodynamic actions to the structural rotation.  We assume that the airstream direction 
coincides with the zero-lift attitude of the airfoil, i.e., that FL would be zero for any value 
of airspeed V if the airfoil incidence were fixed at αr = 0.  Consequently, the total angle 
of attack of the airfoil relative to the zero-lift attitude is α = αr + θ .  Then aerodynamic 
lift and moment can be expressed as 
 

( )θαα αα +== rLLL CSqCSqF ,      and        MACAC CcSqM =           (11-15) 
 
Note especially in Eqs. (11-15) that an aerodynamic action (in this case, lift FL) is de-
pendent upon structural deformation (in this case, rotation θ ); this type of interaction 
between aerodynamics and structural flexibility is an important characteristic of all aero-
elastic phenomena.  The symbols used in (11-15) beyond those previously defined are: 
 

2
2
1 Vq ρ=  is the free-stream dynamic pressure (lb/ft2 or N/m2). 

 
ρ  is air density (slug/ft3 or kg/m3). 
 
S = b c is the planform area of the typical section (ft2 or m2). 
 
b is the span of the typical section into the plane of the paper (ft or m). 
 

αLC  > 0 is the slope of the curve of section lift coefficient ( SqFL ) versus angle of at-
tack (rad−1), which we assume here to be constant for small angles of attack. 
 

MACC  is the dimensionless coefficient of pitching moment about AC, normally positive 
for a positively cambered airfoil, but zero for an uncambered thin airfoil. 
 

 AC 

 e 

 kθθ 

 FL 

  EA

 MAC

 FEA 
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Wind tunnel experiments and aerodynamic theory show that aerodynamic action 
Eqs. (11-15) are valid only for steady flow, for which angle of attack α does not vary 
with time.  However, we will approximate a bit here and assume that Eqs. (11-15) are at 
least qualitatively valid for slowly-time-varying angle of attack, α(t) = αr + θ (t).  This 
approximation is sometimes called quasi-static or quasi-steady aerodynamics.  Sub-
stituting Eqs. (11-15) into Eq. (11-14) gives 
 

( ) MACrLEA cCSqeCSqkJ ++=+ θαθθ αθ
&&  

 
⇒     ( ) MACrLLEA cCSqeCSqeCSqkJ +=−+ αθθ ααθ

&&                      (11-16) 
 

Note in Eq. (11-16) that the total stiffness constant, eSCqk Lαθ −  (structural stiff-
ness plus aerodynamic “stiffness”) can, for e > 0, become zero or even negative if dy-
namic pressure q  is sufficiently large.  This is critically important relative to the stability 
of the system.  Consider steady flow, for example, for which ; in this case we can 
solve Eq. (11-16) algebraically for the static structural rotation: 

0=θ&&

 

)(
)()(

qqeC
cCeCq

eCSqk
cCeCSq

DL

MACrL

L

MACrL

−
+

≡
−

+
=

α

α

αθ

α αα
θ                      (11-17) 

 
In Eq. (11-17), we define the divergence dynamic pressure in terms of other fixed system 
parameters as 
 

eCS
k

q
L

D
α

θ≡                                                   (11-18) 

 
If it is possible for a given set of physical parameters to increase the wind-tunnel airspeed 
V up to the point that eCSkqq LD αθ=→ , then, from Eq. (11-17), clearly something 
very interesting will happen.  From your knowledge of aerodynamics and structures, what 
types of physical behavior do you think are possible?  Keep in mind that Eq. (11-17) is 
predicated on the assumptions of small angles and complete linearity of both aerody-
namics and structures (in this system, the rotation spring). 
 
 A conventional airplane control surface is mounted on the trailing edge of a major 
lifting surface, with the leading edge of the control surface hinged to the lifting surface 
(e.g., an aileron on a wing).  In this case, the aerodynamic center of the control surface is 
aft of the elastic axis, making the moment arm e negative (see Fig. 11-4).  From Eq. (11-
16), this produces the negative moment eCSq rL αα , which is called a blowdown moment, 
and it also augments the structural stiffness in the total stiffness constant eCSqk Lαθ − .  
Therefore, a conventional trailing-edge control surface cannot diverge aeroelastically. 
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Example 11-3:  2-DOF typical-section model for coupled wing bending and torsion 
 

We now return to general-plane-motion Eqs. (11-2a), (11-2b), and (11-3), which 
are three ODEs in three unknown DOFs:  , , and θ (t).  In practice, these 
ODEs are often coupled by system geometry and the nature of the active and reactive ac-
tions.  Moreover, if motion is allowed to have arbitrarily large magnitude, then the equa-
tions are usually nonlinear.  In general, these arbitrary-plane-motion equations can be 
solved only in numerical form, not in the form of algebraic equations.  However, the me-
chanical systems considered in this book are limited, in most cases, to those for which 
center-of-mass translation is small relative to rigid-body dimensions, and for which rota-
tion is small, |θ (t)| < ≈10° (e.g., Examples 11-1 and 11-2 in this section); these limitations 
allow us to linearize the ODEs into more easily solvable forms. 

)(txC )(tyC

 
 One of the first forms of aeroelastic wing flutter that was observed and carefully 
analyzed during the early 1900s involves coupled bending and torsional vibration (Bis-
plinghoff et al., 1955, Section 9-2).  The two-degrees-of-freedom (2-DOF) typical section 
depicted in Fig. 11-5 is a very simplified structural model used to study wing bending-
torsion flutter.3  The airfoil section is hinged without friction at elastic axis EA to a verti-
cal bar (assumed rigid and of negligible inertial force), which is restricted to vertical 
translation by frictionless linear bearings.  Rotational spring kθ simulates wing torsional 
stiffness, and translational spring ky simulates wing bending stiffness.  The theory of un-
steady aerodynamics, even for two-dimensional flow, is very complicated, so we shall 
simply represent the aerodynamic resultant actions generally as lift FL(t) and pitching 
moment about the aerodynamic center MAC(t), and we shall focus on the structural 
dynamics.  

 

 AC 
 kθ 

 FL(t)
θ(t)

 EA 

Figure 11-5  Example 11-3:  2-DOF typical section 

 MAC(t) 

 C

 yC(t) 

 ky 

 yEA(t) 

 e 
 r 

 

                                                 
3 Physical typical-section airfoils were designed, fabricated, and tested in recent wind-tunnel experimental 
research studies of unsteady aerodynamics (as summarized by Bennett, 2000), and of feedback control to 
suppress flutter (DeMarqui, et al., 2005 and 2006).  Homework Problem 16.11 applies an approximate 
theory of unsteady aerodynamics in a simulation of one such experimental project. 
 

 11-10



 Chapter 11  Mechanical systems with rigid-body plane translation and rotation 
 

 In order to write the equations of motion for this typical section, we select as de-
grees of freedom the vertical translation yC(t) of mass center C, and pitching rotation θ (t), 
both relative to the reference static equilibrium position.  The geometry of small rotation 
is represented by the relationship between yC(t) and yEA(t): 
 

)()()()()()(sin)()( trtytytrtytrtyty CEAEAEAC θθθ −≈⇒+≈+=    (11-19) 
 
The DFBD associated with Fig. 11-5 is drawn below, with approximation (11-19) used to 
annotate the force due to translation spring ky. 

 

 AC 

 kθθ 

 FL(t)

 EA 

 MAC(t) 

 C

 ky (yC − rθ)  e 
 r 

  
Using this DFBD, we write the two relevant equations of motion, (11-2b) and 

(11-3) in scalar form, as 
 

)()( θryktFym CyLC −−=&&                                     (11-20a) 
 

)()()()( θθθ θ rykrktMtFreJ CyACLC −+−+−=&&                  (11-20b) 
 
It is appropriate to express Eqs. (11-20) with all terms involving degrees of freedom yC(t) 
and θ (t) transposed to the left-hand sides: 
 

)(tFkrykym LyCyC =−+ θ&&                                    (11-21a) 
 

                (11-21b) )()()()( 2 tMtFrekrkykrJ ACLyCyC +−=++− θθ θ
&&

 
Equations (11-21) are a pair of 2nd order, coupled ODEs in unknowns yC(t) and θ (t).  Just 
as Eqs. (1-15a) and (1-15b), Eqs. (11-21a) and (11-21b) are described as being coupled 
because each equation contains both dependent variables and neither equation can be 
solved independently of the other.  It is possible, though we won’t bother doing it, to 
combine these two equations into a single 4th order ODE in a single unknown function of 
time; therefore, this 2-DOF typical section is actually a 4th order system.  It is appropriate 
and common also to express the set of ODEs (11-21) in matrix form: 
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       (11-22) 
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 The labeled left-hand-side coefficient matrices of Eq. (11-22) are typical for struc-
tural dynamic systems, and they exhibit some important general properties.  The inertia 
matrix in this case is diagonal; more generally, it will be non-diagonal but symmetric.  
The inertia matrix will always be positive definite because all matter has positive mass; 
therefore, the determinant of the inertia matrix will always be positive.  In (11-22), that 
determinant is simply the product m JC  > 0.  The structural stiffness matrix in (11-22) is 
symmetric, and this is a general property resulting from linearity between applied actions 
and structural deformations.  Moreover, if a structure is restrained by grounded supports, 
such as the rotational spring kθ and translational spring ky of the typical section, then each 
of the diagonal elements of the stiffness matrix will be positive, and the stiffness matrix 
itself will be positive definite.  You can check easily that the determinant of the stiffness 
matrix in (11-22) is the product ky kθ > 0.  The coupling between vertical translation yC(t) 
and pitching rotation θ (t) of the typical section is both produced by and displayed by the 
non-zero off-diagonal terms of the stiffness matrix, each being yrk− . 

 11-12



 Chapter 11  Mechanical systems with rigid-body plane translation and rotation 
 

11-4  Homework problems for Chapter 11 
 
11.1  The trimming tab of a small airplane is attached to the elevator by a hinge at axis H 
and a rotational spring (the actuator linkage) with constant kθ , as shown in the drawing 
below.  You are required to determine experimentally both rotational inertia JH of the 
elevator about the hinge, and rotational stiffness kθ .  The field experiment consists of two 
separate twang tests.  (See homework Problem 9.4 for a detailed description of twang 
testing and relevant equations.)  First, the rotational spring is disconnected from the tab, 
and a vertical translational support spring of known stiffness ky = 15.6 lb/inch (and low 
mass, producing negligible inertial force) is attached near the trailing edge, as shown.  
Then the tab is twanged (displaced statically from the static equilibrium position, then 
released).  A non-contacting displacement sensor picks up the dynamic motion at a point 
near the support spring:   inch (t in seconds).  (There is 
slight damping due to friction at the hinge, internal structural damping in the spring, and 
drag of the surrounding air.)  From this first twang test, calculate JH (in lb-sec2-inch).  
Next, translational spring ky is removed, rotational spring kθ  is re-connected, and the tab 
is again twanged.  The same displacement sensor as in the first twang test now measures 
dynamic motion y(t) =  inch.  From the previous results and this 
second twang test, calculate kθ (in lb-inch/radian). 

)9.59cos(107.0)( 144.0 tety t−=

)0.66cos(132 112.0 te t−.0

 
Elevator 

Trimming tab

3.50 inches

 kθ 

 ky 

 y(t) 

H 

 
 
11.2  The system depicted on the next page consists of a rigid bar, a mass, and springs.  
The rigid bar is supported at frictionless hinge H, where it is elastically restrained by ro-
tational spring kθ , and the rotational inertia of the bar about point H is JH .  Mass m is 
connected to the bar by translational spring ky at point B, and the mass is restrained to 
move only vertically by frictionless walls.  An externally applied vertical force F (t) acts 
on the bar at point B.  Degrees of freedom y(t) and θ (t) are the small motions relative to 
the static equilibrium position.  Sketch and label a DFBD for the bar and a DFBD for 
mass m, then use these diagrams to derive the two coupled differential equations of 
motion for this system.  (Hints:  Show that for small bar rotation, the stretch of spring ky 
is ya −θ .  Do not include mg or bar weight among the applied forces, because we are 
interested only in dynamic motions relative to the static equilibrium position; if you are 
not sure why we neglect weights in these equations of motion, then review Section 7-5.) 
 

 11-13



 Chapter 11  Mechanical systems with rigid-body plane translation and rotation 
 

 

 B 

 ky 

 m 

 a
kθ 

 F(t) 

 y(t) 

θ(t) 
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11.3  The two-degrees-of-freedom system drawn below consists of a pendulum supported 
at frictionless hinge H, and a mass-spring connected by a viscous damper to the pendu-

lum rod.  The inertial moment of the 
lightweight pendulum rod is negligible, 
so pendulum rotational inertia about H 
is JH = p

2l .  Degrees of freedom x(t) 
and θ (t) are 

m
small motions relative to 

the static equilibrium position.  Show 
that the velocity of the damper cylinder 
relative to the damper piston is .  
Both gravity and the externally applied 
horizontal force F(t) act on mass mp of 
the pendulum bob.  Sketch and label an 
FBD for the pendulum and an FBD for 
mass m, then use these diagrams to de-
rive the two coupled differential equa-
tions of motion for this system.  In addi-
tion to the motion and force variables 

and the constant parameters shown on the drawing, the acceleration of gravity acting ver-
tically downward is denoted g.  For this problem, unlike for Problems 11.1 and 11.2 and 
the examples in Section 11-3, you should sketch your pendulum FBD with the pendulum 
rotated through a small angle, so that you can indicate the restraining effect of weight mpg 
on pendulum rotation; see the pendulum example in Section 7-1. 

θ&a−

 

 x(t) 

 c  k 

 F(t) 

 m 

 a 

 l 

θ(t) 
mp 

 H 

&x

 
11.4  The form of the typical-section ODEs of motion represented by Eqs. (11-21) and 
(11-22) is not unique.  Suppose, for example, you want to define yEA(t) as the vertical 
translation degree of freedom, instead of yC(t).  With use of geometry, inertia, and alge-
braic manipulation, you can cast the ODEs into a cosmetically different, but mathe-
matically equivalent form.  First, substitute Eq. (11-19) into Eqs. (11-21) in order to 
replace yC(t) with appropriate terms that include yEA(t) and small-rotation θ(t); next, use 
the parallel-axis theorem to replace JC with the rotational inertia about the elastic axis, 
JEA, and a term including mass m; finally, perform any additional algebraic substitution 
required to write the ODEs of motion in the following relatively simple matrix form:  
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Which terms in this matrix equation produce and display the coupling between vertical 
translation yEA(t) and pitching rotation θ(t)?  Will this coupling still exist if the applied 
aerodynamic actions FL(t) and MAC(t) are either constant or vary slowly enough that the 
response is pseudo-static?  Prove the positive definiteness of these inertia and structural 
stiffness matrices by finding the values and polarities of their determinants. 
 
 11.5  Consider the pendulum-spring system depicted below.  The inertial moments of the 
lightweight pendulum rods are negligible, so pendulum rotational inertias about their 
hinges are Ji = mi , i = 1, 2.  Degrees of freedom 2l )(1 tθ  and )(2 tθ  are small rotations 
relative to the vertical hanging static equilibrium positions.  A horizontal translational 
spring with stiffness constant k connects the two 
pendulums, and it is undeformed when the  pendulums 
are in the vertical hanging static equilibrium positions.  
Show that the stretch of the spring is given by 

)( 12 θθ −a .  Externally applied moment M2(t) acts on 
pendulum 2 at its hinge (applied, for example, by a 
motor).  Sketch and label an FBD for each pendulum, 
then use these diagrams to derive the two coupled 
differential equations of motion for this system.  In 
addition to the motion and applied action variables and 
the constant parameters shown on the drawing, the 
acceleration of gravity acting vertically downward is 
denoted g.  In this problem, you should sketch your 
FBDs with the pendulums rotated through small angles, 
so that you can indicate the restraining effect of the 
weights mig, i = 1, 2, on the rotations; see the pendulum 
example in Section 7-1. 

 
 M2(t)

 k 

 a 

 l 

θ1(t) 
m1 

 H1 

m2 

H2 

θ2(t)

 
11.6  The drawing below depicts a very simplified model for the pitch-translation dy-
namics of an automotive vehicle.  The body and frame are considered to be rigid, with 
center of mass C located as shown, and having mass m and rotational inertia JC  about C.  

 

 k2 

 a1 

 k1 

 yC(t)
 θ (t) 

 C

 c1  c2 
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The wheel-axle assemblies are considered to have negligible inertial forces.  The flexi-
bilities of tires and suspension systems are lumped together into a single rear-axle trans-
lational spring k1 and a single front-axle translational spring k2.  Damping is provided by 
shock struts and rubber tires, and it is lumped into viscous dashpots c1 and c2 arranged in 
parallel with the respective springs.  Sketch and label a DFBD for this vehicle model, 
then use it to derive the two coupled differential equations of motion for this system, in 
terms of the given parameters.  Use as degrees of freedom the small vertical translation 

 and the small pitching rotation θ (t), both relative to the static equilibrium position. )(tyC
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12-1  Introduction:  undamped mass-spring system 
 

 The subject of this chapter is free vibration of undamped mechanical systems, 
beginning with the one-degree-of-freedom (1-DOF) mass-spring system of Fig. 12-1.  
We evaluated the m-k system more generally in Chapter 7, but we will re-visit it here 
using a different approach.  Free vibration can arise from initial translation of the mass 
(relative to the static equilibrium position) and/or initial velocity, and also from excitation 
that has ceased, which might provide the mass with both initial translation and initial 
velocity at the instant when excitation ceases.  However, it is easiest 
conceptually to visualize this motion as response to only non-zero initial 
translation relative to the static equilibrium position.  Doing so sacrifices a 
little generality because we cannot also account for a non-zero initial 
velocity, but the essential characteristics of the free vibration are revealed 
by this approach.  Consider an undamped mass-spring system with non-
zero initial translation, , and zero initial velocity, 

 

  m 

  k 

 y(t)
 fy(t)

 Figure 12-1

0)0( yy = 0)0( =y&

0)(

, but 
without forcing excitation, so that fy(t) = 0.  From Eq. (7-2), the ODE of 
free vibration is 
 

==+ tfykym y&&

tYty

                                             (12-1) 
 
 We now ask the questions:  Can motion exist in the form ωcos)( =

0cos)(cos)cos( 22 =+−=+− tYkmtYktYm ωωωωω

, and, if 
so, what are the constants Y and ω ?  To find the answers, we substitute the presumed 
form of motion into ODE (12-1), perform the differentiations and algebra, and see where 
the process leads: 
 

 
 
This equation can be satisfied in general, for a non-trivial solution, only if 
 

mkmk nn ==⇒≡= ωωωω 22  
 
Moreover, we can use the initial condition to find Y: 
 

( )Yy Yy =×== 0cos)0( 0 ω  
 

tyty nωcos)( 0                                              (12-2) ⇒ =
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This simple result was already derived in Eq. (7-10); we re-derive it differently here just 
to establish the approach that will be useful next for higher-order systems. 
 
12-2  Undamped two-mass-two-spring system 
 
 Next, we analyze the two-degrees-of freedom (2-DOF) undamped mass-spring 
system of Fig. 12-2.  Dynamic translations  and  shown are relative to the sta-
tic equilibrium positions.  As usual for the purpose of drawing forces on dynamic free-
body diagrams (DFBDs, as defined in Section 7-5), 
we let the translational springs be stretched at the 
instant depicted, so that, in particular, the dynamic 

)(1 ty )(2 ty

tension in the lower spring i )1ys ( 22 yk − .  From 
the DFBDs, Newton’s 2nd law gives the ODEs of 
motion: 
 

11122111 ()( yktfym ) yky −−+=&&

)()( 122222 yyktfym

 
     (12-3) 

−−=&&

)()( 12212111 tfykykkym

 
 
Transposing dependent-variable terms to the left-
hand sides, and collecting terms gives 
 

=−++&&

22 ym

 
     (12-4) 
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Figure 12-2  Two-mass-two-
spring mechanical system 
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Now, expressing Eqs. (12-4) in the same matrix form as Eq. (11-22) gives 
 

                       (12-5) 

 
You can verify easily that, just as in Eq. (11-22), the inertia and structural stiffness matri-
ces of Eq. (12-5) are positive definite, and all diagonal elements of both matrices also are 
positive definite. 
 
 Next, we want to solve matrix Eq. (12-5) for free vibrations, so we set to zero the 
applied forces, .  Following the procedure in Section 12-1 for the 1-DOF 
system, let’s seek response to non-zero initial translations, with zero initial velocities.  
Accordingly, we assume motion solutions of the unforced 2-DOF system in the form 

0)()( == tftf

ωcos)( 11 = tYty and ωcos)( 22 = 1Y 2, in which ω, , and Y  are the unknown quanti-
ties.  It is efficient and appropriate to express the assumed solution in matrix form: 
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Substituting Eq. (12-6) into Eq. (12-5) with zero forcing gives 
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The common multiple tωcos  in Eq. (12-7) cannot be zero in general, so we cancel it out 
of the equation.  Further, we consolidate all of the coefficients of  and  into a single 
matrix, giving 

1Y 2Y
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 Before dealing with Eq. (12-8), let’s review a little from your mathematics back-
ground about solving two linear algebraic equations in two unknowns.  In general, the 
equations are expressed in matrix notation as 
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in which the aij’s are known constant coefficients, the xi’s are the unknowns, and the bi’s 
are known right-hand-side constants.  It is useful to express the matrix equation symboli-
cally by using bold fonts, brackets, and parentheses:  [a]{x} = {b}.  Then the determinant 
and the adjoint matrix of the coefficient matrix are, respectively, 
 

12212211][det aaaa −=a                                           (12-10) 
 

⎥
⎦

⎤
⎢
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⎡
−

−
=

1121

1222][adj
aa
aa

a                                           (12-11) 

 
The solution of Eq. (12-9) for the unknowns involves the inverse [a]−1 of the coefficient 
matrix, which is defined in terms of the determinant and the adjoint matrix: 
 

}{
][det
][adj}{][}{ 1 b

a
abax == −                                       (12-12) 

 
If {b} = 0, which is the case for Eq. (12-8), then there are two possible types of solutions:  
(i) if {b} = 0 and det[a] ≠ 0, then the solution must be the trivial result {x} = 0; (ii) how-
ever, if {b} = 0 and det[a] = 0, then the right-hand side of Eq. (12-12) has the indetermi-
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nate form 00 , so that there exists, and we can solve for a non-trivial {x} ≠ 0, but any 
constant multiple of {x} is also a solution since {b} = 0 in Eq. (12-9).  Therefore, for our 
current application, Eq. (12-8), we must seek a type (ii) solution. 
 
 To find the same type (ii) result as in the last paragraph, but without using matri-
ces or theory from linear algebra, let’s write Eq. (12-8) as two separate scalar equations, 
and then attempt to solve them algebraically for  and : 1Y 2Y
 

11
2

21
2

22211
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21 )(10)( Ymkk
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212 )(1)(0)( Ymkk
k
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Re-arranging the last part of Eq. (12-13b) a bit differently gives 
 

[ ] 0))((
2

12
22

2
21

2
21 =−−−+

k
Ykmkmkk ωω                          (12-14) 

 
We want to solve Eq. (12-14) for a non-zero , which leads us to conclude that:  (1) the 
bracketed term multiplying 

1Y

21 kY must be zero  [Note that the bracketed term is the deter-
minant of the coefficient matrix in Eq. (12-8).]; and (2) we cannot yet assign any specific 
value to  (but we will be able to do so later if we chose to regard this problem as being 
time response to specific initial translations). 

1Y

 
 The bracketed term in Eq. (12-14) must be zero; upon carrying out the multiplica-
tions, we see that it leads to a quadratic equation in the unknown : 2ω
 

[ ] 0)()( 21
2

21221
22

21 =++−−+ kkkkmkmmm ωω                     (12-15) 
 
This type of polynomial equation is generally called the characteristic equation of the 
free-vibration problem.  For any realistic values of the mass and stiffness constants, Eq. 
(12-15) has two real, positive roots, which we denote as  and . 2

1ω
2

2ω
 

Let’s consider a numerically simplified case for which the masses are equal,  = 
, and the stiffness constants also are equal, 

1m
mm ≡2 kkk ≡= 21 .  In this case, the quad-

ratic equation (12-15) becomes 
 

03)( 22222 =+− kkmm ωω                                      (12-16) 
 
Using the standard solution of quadratic equations, Eq. (2-2), we find the roots of Eq. 
(12-16) to be 
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m
k

m
k )618.2,382.0(

2
532 =

±
=ω                                 (12-17) 

 
For future reference, note that the lower of the ± signs gives the smaller (the “first”) of 
the two  roots, and that the 2ω upper sign gives the larger (the “second”) of the two  
roots.  Only positive circular frequencies are physically meaningful, and they are: 

2ω

 
mkmkmk 618.1and618.0)618.1,618.0( 21 ==⇒= ωωω   (12-18) 

 
Of the two circular frequencies in Eqs. (12-18), the smaller value 1ω  is called the first or 
fundamental natural frequency, and the larger value 2ω  is called the second natural 
frequency.  By convention, natural frequencies are always numbered in ascending order 
for all higher-order systems that have two or more natural frequencies.  It is mathe-
matically systematic to define an integer subscript n that is either 1 or 2, and to identify 
the natural frequencies more generally as nω , n = 1, 2.  (In this case, the symbol n per-
forms double-duty, because it both implies natural frequency of vibration and takes the 
values 1 or 2 to distinguish the two natural frequencies from each other.) 
 
 Next, let’s seek values of  and  associated with each of the natural frequen-
cies.  It is appropriate and efficient to extend use of the subscript n to these motion mag-
nitude values by labeling as  and  the values associated with frequency 

1Y 2Y

nY1 nY2 nω , n = 1, 
2.  Let’s re-write Eqs. (12-13) using this notation and the numerically simplified case of 
equal masses and equal stiffness constants: 
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As is stated in the discussion of Eq. (12-14), we cannot yet assign any specific value to 

.  If we leave n  arbitrary (but not zero) for now, then Eqs. (12-19) appear to give 
two different ways of solving for nY2  in term  of nY1 .  Let’s use natural frequency Eq. 
(12-17) to evaluate both equ

nY1  Y1

s
ations: 
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Both equations (12-20) give the same answer!  Mathematically, this result is related to 
the zero of the determinant of the coefficient matrix in Eq. (12-8), but the detailed theory 
is best left to a more advanced book (for example, Craig, 1981, Section 13.1).  For our 
purposes, it is enough to recognize from this example that, in this type of problem, both 
equations have the same solution, so it is necessary to solve only one of them. 
 
 Next, let’s collect together from Eqs. (12-18) and (12-20) all the numerical results 
for each value of the index n into modes of vibration, the physical significance of which 
will become clear later.  We have observed already that  is some arbitrary non-zero 
value, so nothing is lost if we set  = 1 (with dimension of translation, i.e., length) for 
both modes of vibration. 

nY1

nY1

 
n = 1, first (fundamental) mode of vibration:  [the lower sign in Eqs. (12-20)] 
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n = 2, second mode of vibration:  [the upper sign in Eqs. (12-20)] 
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For reasons that will become clear later, the column matrices  and  are called 

the mode shapes of, respectively, the first and second modes of vibration.  
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NOTE:  In 
Eqs. (12-21) we set  with dimension of length, but that does not necessarily 
imply that the magnitudes of physical responses  are one meter or one 
foot or one inch (depending upon the unit system in use).  The actual physical response 
magnitudes are determined by initial conditions, as is discussed in the next paragraph. 

11211 == YY
)(2 tyand)(1 ty

 
 Recall that we are seeking response to non-zero initial deformation, with zero ini-

tial velocity, and so we chose the solution in the form , Eq. (12-6).  

In view of the free-vibration results (12-21), it is quite plausible physically (and it can be 
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proved rigorously) that the general initial-translation response can be written as the linear 
sum of two terms like Eq. (12-6), one for each of the vibration modes: 
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In Eq. (12-22), the dimensionless multiplying constants  show the contribution 
to the total response due to each mode of vibration; they are found from given initial 
translations  and  by writing (12-22) for t = 0: 
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The determinant of the 2 × 2 mode-shape matrix [Y] in Eq. (12-23) is non-zero, so that 
matrix can be inverted and the equation can be solved by application of Eq. (12-12), for 
arbitrary known  and , to give mode contribution constants : )0(1y )0(2y 21 and CC
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 Now, suppose that the initial translation is chosen to have the shape of the first 

mode, in other words, to be proportional to  with dimensionless constant of propor-

tionality :   .  Substituting this initial translation into Eq. (12-24) 

gives  
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Therefore, the total response (12-22) is  for t ≥ 0.  Let’s express 

this mathematical result in words:  if we impose the initial translation in the shape of the 
first mode of vibration, then the subsequent free vibration of the system will be pure sinu-
soidal motion at the first natural frequency, and the relative positions of the two masses at 
each instant of time will remain in the first mode shape.  In other words, both masses will 
vibrate with frequency 
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1ω , and at each instant t ≥ 0 the ratio )()( 12y tyt  will have the 
same value, 1121 YY , which is 1.618 for the numerical example of Eqs. (12-16)-(12-18) 
and (12-20)-(12-21).  In this case, the two masses move in the same direction at each 
instant, so they are said to move in phase with each other. 
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 Suppose next that the initial translation is chosen to have the shape of the second 

mode, to be proportional to  with dimensionless constant of proportionality .  

By following the procedure of the last paragraph, we can find that the total response Eq. 

(12-22) is  for t ≥ 0.  In words, the subsequent free vibration of 

the system will be pure sinusoidal motion at the second natural frequency, and the rela-
tive positions of the two masses at each instant of time will remain in the second mode 
shape:  both masses will vibrate with frequency 
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2ω , and at each instant t ≥ 0 the ratio 
)t()( 12 yty  will have the same value, 1222 YY , which is −0.618 for the numerical exam-

ple of Eqs. (12-16)-(12-18) and (12-20)-(12-21).  In this case, the two masses move in 
opposite directions at each instant, so they are said to move out of phase. 
 
 The modes of vibration of this 2-DOF mass-spring system, the numerical example 
of Eqs. (12-16)-(12-18) and (12-20)-(12-21), are depicted graphically in Fig. 12-3.  The 

system is shown in its static equilibrium 
position for reference, and in deformed 
positions corresponding to each of the 
modes of vibration.  We can’t animate on 
the printed page the dynamic motion of a 
vibration mode, so we imagine that we are 
viewing a snapshot of the masses taken at 
one instant of time when the deformations 
are non-zero during any cycle of 
vibration. 
 
 The object in this chapter is to de-
rive and illustrate the physical character of 
modes of vibration of undamped 2-DOF 
systems.  The clearest and most direct 
way to do this is to restrict attention to 
response resulting from simple initial de-
formation, with zero initial velocity and 
zero input action.  We will not go further 
in this book, but you should be informed 
that the theory started here can be ex-

tended to account for arbitrary non-zero initial conditions (both deformation and velocity) 
and arbitrary non-zero input actions imposed on damped 2-DOF systems.  Indeed, the 
theory can be extended to damped higher-order systems having any number of degrees of 
freedom, which are often called N-DOF systems, with N ≥ 2.  The general method of 
analysis is called modal analysis, and it is used extensively in engineering practice and 
research for both mathematical and experimental studies.  This book just scratches the 
surface of modal analysis; the theory is extended to general response of LTI mechanical 
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Figure 12-3  Vibration modes of the 
2-DOF mass-spring system that has 
equal masses and equal springs 
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systems by more advanced books on linear-systems analysis and structural dynamics, two 
examples being Meirovitch, 2001, Chapter 7 and Craig, 1981, Chapters 13-15. 
 
12-3  Vibration modes of an undamped 2-DOF typical-section model of a wing 
 

From Example 3 of Section 11-3, the system is depicted again in Fig. 12-4: 
 

 

 AC 

  e
 kθ 

 FL(t)
θ2(t)

 EA 

Figure 12-4  2-DOF typical section
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The degree-of-freedom symbols  and )(tyC )(tθ  used in Chapter 11 are changed here, 
respectively, to 1  and 2)(ty )(tθ , in order to denote clearly that these motion quantities 
are, respectively, degrees of freedom (DOFs) #1 and #2.  
 
 The matrix equation of motion in DOFs  and )(1 ty )(2 tθ , from Eq. (11-22) is 
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To analyze Eq. (12-25) for modes of free vibration following the procedure described in 
the previous section, we set to zero the applied aerodynamic actions, and we seek motion 
solutions of the unforced system in the form: 
 

                                     (12-26) 

 
Substituting Eq. (12-26) into Eq. (12-25), canceling the common ωcos  term, and col-
lecting all coefficients in a single square matrix leads to 
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Setting to zero the determinant of the coefficient matrix gives the quadratic equation for 
the natural frequencies (the characteristic equation of the free-vibration problem), 
 

[ ] 0)()( 2222 =+−+−+ θθ ωω kkkJkrkmmJ yyCyC                  (12-28) 
 
For physically realistic values of the parameters in Eq. (12-28), there are two positive real 
roots, , one for each of the vibration modes, n = 1, 2.  After these roots have 
been found, they can be substituted back into either scalar equation of matrix Eq. (12-27) 
to give equations for the mode shapes.  We choose to use the first scalar equation 
(because it has fewer terms than the second), and we solve for pitch mode shape 
component  in terms of vertical translation component : 

2
2

2
1 ωω <

2Θ 1Y
 

n
y

ny
nnynny Y

rk
mk

rkYmk 1

2

221
2 0)(

ω
ω

−
=Θ⇒=Θ−− , n = 1, 2        (12-29) 

 
 There is an interesting physical feature of motion in a pure vibration mode that is 
sometimes exhibited by bodies such as the typical-section model of Fig. 12-4, bodies that 
both translate and rotate:  whereas most of the body is vibrating at a natural frequency 

nω , there might be a particular point on the body that is completely motionless.  Such a 
point is called a node or nodal point of the vibration mode.  We can determine the loca-
tion of a nodal point on the typical section by referring to Fig. 12-5, which shows both 
the airfoil in the static equilibrium position and the displaced chord line at some arbitrary 
instant during a cycle of pure modal vibration.  We define on the diagram a stationary x 
axis with its origin at mass center C of the airfoil in the static equilibrium position.  The 

coordinate xnp shown at the intersection of the static equilibrium chord line and the dis-
placed chord line is the nodal point.  Using the geometry of small rotation and the nota-
tion on Fig. 12-5, we have )()( 21 txty npθ−≈ ; the minus sign is necessary because  as 
shown is negative (aft of point C), but the values of 21

npx
)(and)( tty θ  shown are positive.  

Therefore, the location of the nodal point for vibration mode n is given by 
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                                        (12-30) 
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Figure 12-5  Nodal point tion in a mode of vibration of the 2-DOF typical sec
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If mode n is mostly translation, with little rotation, then the coordinate  might have 
such a large magnitude that there is no motionless point along the chord of the airfoil.  
However, if there is a nodal point on a typical section in a vibration test, one can easily 
observe it by sprinkling a little sand on the airfoil in the vicinity of the nodal point.  As 
the body vibrates, the sand will migrate away from oscillating surfaces and accumulate 
on the motionless nodal point. 

nnpx )(

 
 Rather than deal with an excessive number of algebraic symbols in equations such 
as (12-28), it is convenient now to consider a numerical example.  A certain wind-tunnel 
typical section has a chord of 12 inches, weighs mg = 5.00 lb, has rotational “weight” 
about its mass center  = 90.0 lb-inch2, and has its mass center located r = 3.00 inches 
forward of the axis at which it is supported by lightweight flexible beams that function as 
springs.  The spring constants provided by the beams are  = 51.0 lb/inch and  = 920 
lb-inch/radian.  The MATLAB session printed below evaluates Eqs. (12-28) through (12-
30) for this numerical case. 

gJC

yk θk

 
» mg=5.00;Jcg=90.0;r=3.00;g=386.1; %mass and inertia constants 
» ky=51.0;kt=920;format short e %stiffness constants 
» p=[mg*Jcg/g^2 -(mg*(kt+ky*r^2)+Jcg*ky)/g ky*kt] %coeffs of Eq.(12-28) 
 
p = 
 
  3.0187e-003 -2.9746e+001  4.6920e+004 
 
» w_sqrd=roots(p) %roots w^2 of quadratic Eq.(12-28) 
 
w_sqrd = 
 
  7.8822e+003 
  1.9720e+003 
 
» wn=[sqrt(w_sqrd(2)) sqrt(w_sqrd(1))] %circular natural frequencies 
(in rad/sec) arranged in ascending order 
 
wn = 
 
  4.4407e+001  8.8782e+001 
 
» fn=wn/2/pi %cyclic natural frequencies (in Hz) 
 
fn = 
 
  7.0676e+000  1.4130e+001 
 
» Th2n=(ky-mg/g*wn.^2)/(r*ky) %Eq.(12-29) for mode shape components Θ2n, 
with Y1n = 1 inch 
 
Th2n = 
 
  1.6642e-001 -3.3382e-001 
 
» XNPn=(-1)./Th2n %Eq.(12-30) for locations of the nodal points 
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XNPn = 
 
 -6.0087e+000  2.9956e+000 
 
 The numerical results of the MATLAB calculations are summarized in the fol-
lowing table: 
 

Mode of vibration n 1 2 
Natural frequency nω  and 

πω 2nnf =  
1ω  = 44.41 rad/sec 

1f  = 7.068 Hz 
2ω  = 88.78 rad/sec 

2f = 14.13 Hz 
Mode shape 

⎥
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22

12Y
 

Nodal point location  nnpx )( −6.01 inch +3.00 inch 
 
 The vibration modes of this typical section are also displayed effectively in a 
graphical format, Fig. 12-6, which is comparable to Fig. 12-3 for the mass-spring system.  
Figure 12-6 indicates the airfoil in its reference position with a solid chord line, and in a 
modal displaced position with a dashed chord line.  Let’s suppose that mass center C is 
located 5 inches aft of leading edge LE along the 12-inch chord.  In this case, the nodal 
points of both modes (listed in the table above) are located on the airfoil as shown on Fig. 
12-6, not forward of LE or aft of trailing edge TE.  For graphical clarity, the magnitudes 
of motions )(and)( 21 tty θ  are shown greatly exaggerated relative to the 12-inch chord.  
Actual motions of a realistic typical section would be tens or hundreds of times smaller. 
 

 

 θ2(t) = 0.166 y1(t) 

  C 
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 Vibration mode 1 

LETE 

 f1 = 7.068 Hz 

  C
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 Vibration mode 2 

LE TE

 f2 = 14.13 Hz 
 θ2(t) = −0.334 y1(t) 

Figure 12-6  Vibration modes of the example typical section 
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12-4  Homework problems for Chapter 12 
 
12.1  Consider again the 2-DOF system of homework Problem 11.2, depicted below.  
 

 B 

 ky 

 m 

 a
kθ 

 F(t) 

 y1(t)

 θ2(t)

H 

 
The two coupled differential equations of motion for this system, as derived for home-
work Problem 11.2 and now expressed in matrix form, are 
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All the parameters in these equations are defined on the figure except , which is the 
rotational inertia of the bar about frictionless hinge H .  Consider the free-vibration prob-
lem, with .  First, show that the characteristic equation in general is 

HJ

0)( =tF
 

[ ] 0)()( 2222 =+−+−+ θθ ωω kkkJkakmJm yyHyH  
 
Now, consider the following situation.  Suppose that you are a design engineer working 
on a new satellite project for an aerospace company.  You have designed a sensor pack-
age that includes a small mechanical device in the form of the subject 2-DOF system.  
The satellite has been fabricated, and is now being subjected to functional ground testing.  
The primary attitude-control actuator for the satellite is a control-moment gyroscope 
(CMG), the rotor of which spins at 11,400 rpm in normal operation.  The spin-up time for 
this CMG is about four hours.  During the first functional test, at the very end of the 
CMG spin-up, test engineers observe a short period of loud buzzing coming from the vi-
cinity of your sensor package.  The buzzing suddenly stops, and nobody thinks anything 
more about it until functional tests begin on your sensor.  Unfortunately, the readings 
from your sensor are gibberish.  The sensor package is removed and opened up, and ex-
amination shows that the 2-DOF device is completely destroyed:  both springs are frac-
tured, the bar is badly bent, the mass is detached, and the bar and mass have banged 
against near-by circuit boards within the package.  It is now your responsibility to deter-
mine what went wrong.  One experienced test engineer speculates that the 2-DOF device 
might have resonated due to base excitation caused by the CMG.  Although the rotors of 
space-qualified CMGs are always carefully balanced, it is impossible to remove all im-
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balance.  Consequently, rotor-spin imbalance imposes small periodic forces at the spin 
rate onto the CMG supports, and these forces produce vibration that is transmitted in 
waves throughout the spacecraft structure.  With the assistance of calibration technicians, 
you determine that the numerical parameters of the 2-DOF device are:  m = 19.2 g  = 
0.0192 kg,  = 37.3e−6 kg-m2, ky = 16.9 N/mm = 16.9 kN/m, kθ = 12.8 N-m/rad, and a 
= 30.0 mm = 0.0300 m.  Calculate the vibration modes of this system (natural frequen-
cies, mode shapes, and sketches of the mode shapes), and discuss in a few sentences the 
probable cause of the structural failure within your satellite sensor package. 

HJ

 
12.2  Consider again the 2-DOF pendulum-spring system of homework Problem 11.5, 
depicted below.  The two coupled differential equations of motion for this system, as de-
rived for homework Problem 11.5 and now expressed in matrix form, are 
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Consider the free-vibration problem, with 0)(2 =tM

2
1lm

.  
It will simplify the writing if, initially, you will use the 
following notational abbreviations:  , 1J = =2J  

, , , and 2
2lm 11 kagmk += l 22 kagmk += l2 2 =c
2ka

k  
 (the “coupling” coefficient).  First, show that the 

characteristic equation in general is 
 

0)( 2
2112 +−−+ kJkJ ω)( 22

21JJ ω 2
21 =− ckkk  

 
Now consider the special case with 22

1
1 mm =  and  

.  Express all the coefficients of the char-
acteristic equation in terms of , and then 
show that this quadratic equation can be put into the 
form 

ck
lgmka 2

2 ==
land,,2 gm

0)(4)(5)( 2222 =+− ll gg ωω

CJ

.  For this spe-
cial case, solve for the natural frequencies and mode shapes, and sketch the mode shapes. 

 
 M2(t)

 k 

 a 

 l 

θ1(t) 
m1 

 H1 

m2 
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12.3  Consider again from homework Problem 11.6 the simplified model for pitching-
translation dynamics of an automotive vehicle, depicted below.  The rigid body frame has 
mass m and rotational inertia   about center of mass C. 

 

 k2 

 a1 

 k1 

 y1(t) 
 θ2(t) 

 C
 a2 

 c1  c2 
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The two coupled differential equations of motion for this system, as derived for home-
work Problem 11.6 and now expressed in matrix form, are  
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To obtain the vibration modes of the undamped system, we set 021 == cc , which deletes 
the entire second term of the matrix equation.  The following data are representative for a 
compact four-door sedan:  mg = 2,150 lb,  = 5.47e6 lb-inch2, gJC == 21 kk  155 lb/inch, 

 inches, and  inches.  Calculate the natural frequencies, mode shapes, 
and nodal point locations, and sketch the mode shapes. 

7.821 =a 4.352 =a

 
12.4  Consider again Fig. 12-2, but now suppose that the entire undamped mass-spring 
system consists of a primary sub-system, with mass m1 
and spring k1, plus a smaller auxiliary sub-system, with 
mass m2 and spring k2; also, that a steady sinusoidal force 
f1(t) = F1 cos ωt acts upon m1, but no externally applied 
force acts upon m2,  f2(t) = 0.  Your assignment is to solve 
for and evaluate the steady-state forced sinusoidal re-
sponses y1(t) = Y1(ω) cos ωt and y2(t) = Y2(ω) cos ωt.  To 
solve, use the theory developed in Section 12-2, not the 
more general procedure described in Section 4-7 for 
finding frequency-response functions. 
 
(a)  Determine algebraic equations for Y1(ω) and Y2(ω) in 
terms of m1, k1, m2, k2, F1, and ω.  Also, write the charac-
teristic equation of the free-vibration problem, and explain what happens if its roots are 
substituted into the equations for Y1(ω) and Y2(ω). 

  m1 

  k1 

 f1(t) = F1 cos ωt y1(t) 
  k2 

 y2(t) 

  m2 

 

Partial answer:  2
22

2
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2
21
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ωω

ωY  

 
(b)  Suppose that this is a system for which vibration isolation is required:  primary mass 
m1 includes an unbalanced reciprocating motor or machine that oscillates with specific 
frequency ω = Ω, which tends to cause m1 to vibrate vertically at frequency Ω; but it is 
desirable to protect from that vibration the supporting structure to which primary spring 
k1 is attached.  (See homework Problem 10.13 for additional discussion of vibration iso-
lation.)  According to your solution in part (a), what happens to motion amplitudes Y1(Ω) 
of m1 and Y2(Ω) of m2 if you tune the single-DOF frequency of the auxiliary mass and 
spring, m2 and k2, to the excitation frequency, i.e., if you design the auxiliary sub-system 
so that k2 ⁄ m2 ≡ Ω 2?  With k2 ⁄ m2 ≡ Ω 2, what is the sinusoidal force k2[y2(t) − y1(t)] that 
spring k2 imposes on primary mass m1?  With the correct answers to these questions, you 
will have explained the functioning of an ideal undamped dynamic vibration absorber. 
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(c)  An ideal undamped dynamic vibration absorber is unattainable in reality because 
systems always have some damping.  Moreover, even if we could magically eliminate all 
damping, the ideal absorber would still have a serious deficiency:  if the excitation fre-
quency were to differ from the nominal value, which usually happens in practice during 
motor start-up or off-nominal operation, then the system could experience a 2-DOF reso-
nance failure.  Suppose, for example, we have the following numerical parameters:  m1 = 
25.3 kg, k1 = 2.62 MN/m, Ω⁄ 2⁄ π = 50 Hz, and the auxiliary sub-system is tuned to 50 Hz 
with m2 = 5.066 kg and k2 = 0.5 MN/m.  First, solve the characteristic equation to calcu-
late the two system natural frequencies in Hz, f1 = ω1 ⁄ 2⁄ π < f2 = ω2 ⁄ 2⁄ π; if you wish, you 
may use the roots MATLAB function for this task.  Next, calculate and plot versus ex-
citation frequency (in Hz) the frequency-response dynamic flexibility, Y1(ω) ⁄ F1, of the 
primary sub-system.  The range of excitation frequencies over which you plot this re-
sponse must include at least all three frequencies, f1, Ω⁄ 2⁄ π, and f2; it probably should 
even extend somewhat below the lowest of these three and somewhat above the highest.  
Be sure to include appropriate axis labels on your graph.  Your graph should display 
clearly both the strengths and the weaknesses of the ideal undamped dynamic vibration 
absorber for these particular numerical parameters.1   
 
12.5  The drawing at right represents a rotational mechanical 
system that is directly analogous to the translational mechani-
cal system of Fig. 12-2.  Rotational inertias J1 and J2 are analo-
gous, respectively, to masses m1 and m2 on Fig. 12-2; rotational 
springs K1 and K2 are analogous to translational springs k1 and 
k2; applied moments M1(t) and M2(t) are analogous to applied 
forces f1(t) and f2(t); and rotations θ1(t) and θ2(t) are analogous 
to translations y1(t) and y2(t).  Therefore, the matrix equation of 
motion for this rotational system is directly analogous to Eq. 
(12-5) for the translational system: 
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Consider a 2-DOF inertia-spring system with rotational inertias J1 = J2 = 0.01042 kg-m2 
and rotational stiffness constants K1 = K2 = 2.77 N-m/rad.  Your assignment is to calcu-
late and plot, over the time interval 0 ≤ t  ≤ 5 seconds, the unforced initial-condition (IC) 
responses, rotations θ1(t) and θ2(t), of this system if the initial rotations are θ1(0) = θ2(0) = 
14.58 degrees, and the initial rotational velocities are zero.  Use the theory (and even the 
appropriate calculations, if you wish) of Section 12-2.  The given inertias and stiffness 
constants are those of a real structural system, which is described on the next two pages, 
and the given initial conditions were imposed on that system, producing the measured re-
sponses shown on the graph following this paragraph.  Your theoretical responses should 
                                                 
1 Homework Problem 12.4 is only an introduction to the subject of dynamic vibration absorbers.  See Den 
Hartog, 1956, Sections 3.2 and 3.3, for a more advanced and extensive treatment of this subject. 
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appear somewhat similar to the measured responses, but the theoretical and measured re-
sponses should differ in one significant respect.  Read the description below of the actual 
structural system, then identify the property of all real mechanical dynamic systems that 
is not modeled by the theory of Chapter 12, and explain how this modeling deficiency is 
illustrated in the differences between the theoretical and measured responses shown on 
the graphs. 

 
 The photograph on the next page shows the relevant structural portion of the ac-
tual laboratory system2 that is represented by the drawing on the previous page, and from 
which the IC-response graph above was measured.  Three steel disks are attached to a 
continuous steel shaft of diameter about 3.2 mm.  Each disk is 20 cm in diameter and 0.5 
cm thick, with four radial slots to accommodate added masses.  The total length of shaft 
between lower and upper disks is about 68 cm.  The shaft is supported near the middle 
and upper disks by bearings, which impose some damping on the structure.  The lower 
disk is clamped to the frame, so the shaft is fixed at the bottom but is free to twist 
everywhere else along its length.  Two metal cylinders, each of nominal mass 0.5 kg, are 
bolted symmetrically at 9-cm radii to each of the middle and upper disks.  The rotational 
inertias of the two bulked-up disks are orders of magnitude greater than that of the shaft, 
so this system is effectively a 2-DOF rotational structure, those DOFs being rotations 
θ1(t) and θ2(t) of the middle and upper disks, respectively.  θ1(t) and θ2(t) are sensed by 
the optical encoders shown on the photograph; each encoder shaft is connected to the 

                                                 
2 This is a Model 205a Torsional Plant designed and fabricated by Educational Control Products of Bell 
Canyon, California, USA. 
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structural shaft by a lightweight belt and pulleys, which add to the system some damping 
but negligible inertia. 
 
 A clever student determined experimentally the inertias and stiffness constants of 
this system, rather than relying on purely theoretical calculations, mostly by using the 
added-inertia method (from homework Problem 7.9).  To determine J2 and K2, the student 
clamped the middle disk to the frame, and then measured free-vibration frequencies of 
the upper disk [θ2(t) with θ1(t) = 0], both bare and with symmetrically added combina-
tions of the metal cylinders.  The student determined J1 and K1 + K2 by clamping the up-
per disk, and then measuring free-vibration frequencies of the middle disk [θ1(t) with 
θ2(t) = 0].  The values of the parameters determined by this process are J1 = J2 = 0.01042 
(± 0.00003) kg-m2 and K1 = K2 = 2.77 (± 0.04) N-m /rad. 
 
 The initial rotations, θ1(0) = θ2(0) = 
14.58°, were imposed on the middle and upper 
disks by twang, also known as snapback, exci-
tation:  a fine thread was tied around the front 
cylinder of the middle disk, the thread was 
pulled laterally and the opposite end was an-
chored, thus imposing onto the middle disk the 
static initial rotation, then the thread was cut 
with scissors, abruptly releasing the middle 
and upper disks to free vibration.  The struc-
tural shaft was fixed only at the bottom, so the 
initial rotation of the upper disk was the same 
as that of the middle disk.   
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12.6  A structure’s fundamental mode of vibration is represented in the drawing below by 
mass m1 and spring k1, with the translation of m1 denoted as x1(t).  Suppose we wish to 
exercise active control over that vibration by use of an attachment to the structure:  a re-
action-mass actuator (RMA), represented in the diagram by reaction mass m2, spring k2, 
and internally generated force fi(t) acting equally and oppositely on m2 and m1, with the 
translation of m2 denoted as x2(t).  (To simplify the equations here, we neglect the nor-
mally small natural passive damping inherent in both structures and RMAs.)  Use Eq. 

(12-5) to write the matrix equa-
tion of motion for this combina-
tion of structure and RMA.  Next, 
revise this equation to include the 
particular type of feedback vibra-
tion control described in the fol-
lowing.  Suppose that reaction 
mass m2 carries a transducer that 
senses the translational velocity of 
m2 relative to that of m1 and gen-
erates an electrical voltage signal 
proportional to that relative ve-

locity, , where V is a calibration constant with units such as volt per 
meter/sec.  Homework Problem 10.15 explains that an external voltage signal ei(t) [not 
shown on this drawing] commands internal force fi(t) according to the linear relationship 
fi(t) = G ei(t), G being a constant with units such as newton per volt.  Suppose that we 
multiply the relative velocity signal ev(t) by a variable gain factor F (using, e.g., a non-
inverting amplifier, homework Problem 5.8) and then 

)()( 12 xxVtev && −=

feed the multiplied signal back to 
serve as the force-command signal, ei(t) =  =  )(tFev 12 )( xxFV && − .  Therefore, the gener-
ated internal force is fi(t) = G ei(t) = )( 12 xxGFV && −  ≡ )( 12 xxC && − , where we define the 
overall feedback constant C ≡ GFV with units such as newton per meter/sec.  Revise your 
matrix equation of motion to reflect the feedback vibration control described here; in 
particular, show that the feedback produces an artificial viscous damping matrix, 

 .  With sufficiently large feedback gain factor F and sufficient authority of 

the RMA’s internal force generator, this form of control can impose significant positive 
damping upon a structure’s vibration. 
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NOTE:  It is not in required in this problem, but it might be of interest to you that re-
placing dependent variable x2(t) with the relative translation of reaction mass m2, z(t) =  
x2(t) − x1(t) can transform the matrix equation of motion into the following form, in 
which the inertia matrix becomes full and symmetric, but the artificial damping and stiff-
ness matrices become simpler and diagonal: 
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 We will consider in Chapter 13 a graphical format, the Laplace block diagram, 
which is useful in the analysis of complicated systems that consist of more than one sub-
system.  While developing closed-loop block diagrams, we will also analyze the equation 
of motion and the time response of a base-excited mass-damper-spring system, which 
turns out to be an instructive prototype for output feedback control.  All of this is prepa-
ration for the more general study of feedback-control systems beginning in Chapter 14. 
 
13-1  Laplace block diagrams for an RC band-pass filter 
 
 To introduce the Laplace block diagram for a simple case, we re-visit again the 
RC band-pass filter considered previously in Sections 5-4, 9-10, and 10-4.  As shown in 
Fig. 5-10, this circuit consists of a low-pass-filter stage to the left of the voltage follower, 
and a high-pass-filter stage to the right.  The Laplace transforms derived for these stages 
in Section 10-4, assuming zero ICs, are:  for the low-pass stage, with LLL CR= , τ
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Figure 5-10 (repeated) RC band-pass filter  
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 Figure 13-1 shows a convenient 
graphical format, the block diagram, for rep-
resenting these Laplace-transform output-to-
input relationships.  From Eqs. (13-1) and 
(13-2), we have the individual transfer func-
tions of the low-pass and high-pass stages:   

Figure 13-1  Laplace block diagrams of
the RC band-pass filter 
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In the upper row of Fig. 13-1, transfer functions (13-3) and (13-4) are shown as individ-
ual blocks, and the Laplace transforms are shown as input and output “signals” relative to 
the blocks.  The most basic rule of “block-diagram algebra” is that the input signal (trans-
form) multiplied by the block transfer function equals the output signal (transform), 
which gives Eqs. (13-1) and (13-2). 
 

One common objective in construction of Laplace block diagrams is to simplify 
the process of deriving the transfer function of the overall system from the transfer func-
tions of individual sub-systems.  To help achieve this objective, we have the second basic 
rule of block-diagram algebra:  multiply the transfer functions of two adjacent blocks in 
order to obtain the more general transfer function relating the output signal from the 
downstream block to the input signal into the upstream block.  The result of this opera-
tion in the present case is shown in the lower row of Fig. 13-1, where transfer function 
(10-27) of the entire RC band-pass filter circuit is derived once again: 
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 Each of the block diagrams in Fig. 13-1 has a single forward (left-to-right) path or 
branch.  A more general type of block diagram has a forward branch and also one or 
more backward paths denoting signal flow in the opposite direction; such a right-to-left 
path is called a feedback branch.  A forward branch combined with a feedback branch 
forms a closed loop, and a block diagram that includes closed loops is called a closed-
loop block diagram.  Accordingly, a block diagram with only a forward branch is called 
an open-loop block diagram.  The next section develops the concept of closed-loop block 
diagrams in the context of a familiar mechanical system. 
 
13-2  Laplace block diagram with feedback branches for an m-c-k system with base 
excitation 
 

Let’s proceed beyond the most basic aspects of Laplace block diagrams by ana-
lyzing the m-c-k system with base excitation shown on Fig. 
13-2.  The input is base translation , and the output is 
mass translation .  The ODE of motion for this system 
(from homework Problem 9.1) is  

)(txi

)(tx

)(txkxkxcxm i

 
=++ &&&

)()]([ sXtxL =

)()()()( sXksXksXscsXsm i=++

 

 m 
 k  c 

 xi(t)  x(t) 

Figure 13-2  m-c-k system 
with base excitation 

                 (13-6) 
 
It is convenient to denote the input transform as  =  and the output trans-
form as .  Taking the Laplace transform of Eq. (13-6) with zero ICs, for 
the purpose of deriving the transfer function, gives  

)]([ txL i )(sX i

 
2                              (13-7) 
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Equation (13-7) clearly leads to the transfer function, 
  Xi(s) 

kscsm
k

++2  X(s) 
kscsm

k
sX
sXsTF

i ++
=≡ 2)(

)()(         (13-8) 

 
Equation (13-8) is represented in the simple open-loop Laplace block diagram just above. 
 

It will be instructive for our later study of feedback control to develop now an al-
ternative but equivalent block diagram from Eq. (13-7).  First, we transpose to the right-
hand side all terms other than the X(s) term of highest order: 
 

)()()()(2 sXksXscsXksXsm i −−=                               (13-9)      
 
Now we “solve” algebraically for X(s) on the left-hand side of Eq. (13-9) simply by di-
viding through by the coefficient of the left-hand-side X(s): 
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Observe in Eq. (13-10) that output transform X(s) appears in the right-hand-side terms as 
well as on the left-hand side; these right-hand-side terms imply feedback.  Using (13-10) 
leads to the following block diagram with several different transfer-function blocks and 
with two feedback branches: 
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Figure 13-3  Laplace block diagram with feedback branches for a 
base-excited m-c-k system 

 
The input and output signals for every block are labeled on Fig. 13-3 in order to help you 
relate the block diagram to Eq. (13-10), and you should carefully compare the equation 
and the diagram until you are certain that you understand.    
 

Also, block diagram Fig. 13-3 introduces two kinds of junctions.  The first kind is 
a simple branch point (black circle), from which the same block-
output “signal” travels onward on two different branches, as is 
indicated by the signal labels on Fig. 13-3.  The second kind is a 
summing junction, shown at right with input and output signals la-

 In1(s) Out(s)

In2(s) 
 +  − 
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beled.  This summing junction is configured for negative feedback, so it differences the 
two input signals, Out(s) = In1(s) − In2(s). 
 
 In this section, we started with ODE (13-6) and developed from it Laplace block 
diagram Fig. 13-3.  This approach is primarily for the purpose of presenting some im-
portant features of block diagrams.  This approach is actually the reverse of the standard 
procedure for analysis of feedback-control systems, which we will consider in later chap-
ters.  There, we will start with the block diagram of a system, something like Fig. 13-3, 
and derive from it the closed-loop transfer function, CLTF(s) ), which in this case is just 
Eq. (13-8).  The process of deriving CLTF(s) from the system block diagram will require 
some new operations in block-diagram algebra; it is expedient to postpone the descrip-
tions of these operations until we need them in later chapters. 
 
13-3  Forced response of an m-c-k system with base excitation 
 
 It will be helpful for our introduction to feedback control in Chapter 14 if we now 
examine the relationship between input motion  and output motion  for the me-
chanical system of Fig. 13-2 and Eq. (13-6).  Let’s adopt the perspective here that we 
want to use  in order to 

)(txi )(tx

)(txi control ; in particular for this system, let’s suppose that 
we want to make motion  of mass m be as close as possible to input motion .  
You can visualize intuitively from Fig. 13-2 that if  is imposed very slowly, then 

 will be essentially the same as ; in this case, the inertial force of mass m will be 
negligible, and spring k will deform only slightly, therefore acting essentially as a rigid 
link.  (You can, of course, prove theoretically this qualitative analysis, for example, by 
finding frequency response at a very low input frequency.) 

)(tx

)(txi

)(tx )(txi

)(txi

)(tx

 
But can output motion  be made close to input  if  is )(tx )(txi )(txi not imposed 

slowly?  Your intuition probably fails to answer this question because, in this case, spring 
k might deform significantly, and the inertial force of mass m might not be negligible.  
We will have to analyze this situation theoretically.  Let’s do so specifying that input 
motion  is a step function of magnitude  imposed at time t = 0.  An ideal step 
input is not merely fast; it is in fact the 

)(txi HX
fastest imaginable (though not physically realiz-

able) base excitation, because base position changes with infinite velocity at t = 0 from 
 to .  So this ideal input poses a formidable challenge to the control objec-

tive:  can output translation  approximate in some reasonable manner the input trans-
lation , even though initially the input translation is infinitely fast?  

0=ix HXix =

)(txi

)t(x

 
 In order to analyze this case, let’s first adapt ODE (13-6) to the standard ODE for 
damped 2nd order systems as it is defined in Chapter 9.  Dividing Eq. (13-6) through by 
m, and then applying the standard definitions (7-3) for undamped natural frequency, nω  

= mk , and (9-4) for viscous damping ratio, ( )mkc 2=ζ , casts the ODE into the 

form .  Comparing this ODE with Eq. (9-13) shows that in-)(2 22 txxxx innn ωωζω =++ &&&
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put  for this particular base-excited m-c-k system is exactly equal to the standard in-
put quantity:  .  We define step input 

)(txi

)()( tutxi ≡ )()( tHXtx Hi = .  Therefore,  ≡ U, 
which is the general step-input magnitude of Section 9-6, and we can write the step-re-
sponse solution for 

HX

1<ζ  directly from Eq. (9-29): 
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In Eq. (13-11), the damped natural frequency is 21 ζωω −≡ nd .  Also, for use in Fig. 
13-4, the period of the undamped system is nnT ωπ2= .  Recall that our control objec-
tive is to make the output motion at least approximately equal to the input motion.  At t = 
0, input motion  jumps discontinuously from 0 to , then  remains constant 
thereafter, so we would like the output motion  to approximate that step input as 
closely as possible.  In particular, we want the final, steady-state value of  to be . 

)(txi HX ix
)(tx

)(tx HX
 
 It is instructive to calculate and graph Eq. (13-11) for a few different values of  
ζ , assuming that the system is underdamped, 10 <≤ ζ .  The step-response graphs are 
shown on Fig. 13-4.  If the system is undamped, c = 0, then the mass oscillates forever (in 
theory) about the desired final position, x = ; in this ideal (with zero damping) case, 
the control objective cannot be achieved. 

HX

 

 
Figure 13-4  Base-excitation control of mass position for an m-c-k system  

 
However, Fig. 13-4 also demonstrates that, if there is positive damping, 0>ζ , 

then the motion output  does, indeed, )t(x approximate the step input, :  
 rises from 0, though with finite velocity, and it eventually settles at the desired final 

value, x = . 

)(t)(txi = HX H

)(tx

HX
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Note that the equations for step-response specifications (rise time, peak time, 
maximum overshoot ratio, and settling time) derived in Section 9-8 are applicable to this 
case of excitation of an m-c-k system by base motion. 

 
The base-excited mass-damper-spring system of Fig. 13-2 is an instructive proto-

type for output feedback control of mechanical position, which is the subject of Chapter 
14.  Therefore, we shall refer back to this system and to the results of Sections 13-2 and 
13-3 in order to clarify and justify some of the control-system developments presented in 
Chapter 14. 
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13-4  Homework problems for Chapter 13 
 
13.1  Consider the standard ODE (3-7) for a stable 1st order system, )()1( 1 tubxx =+ τ& , 
in which  is the input quantity,  is the output quantity, )(tu )(tx 1τ  is the positive time 
constant, and b is a constant.  Denote the Laplace transforms as L[u(t)] = U(s) and L[x(t)] 
= X(s).  Derive and draw for this system a Laplace block diagram with feedback, a block 
diagram of the same type as Fig. 13-3.  The input signal on the left side of your block 
diagram is U(s), and the output signal on the right side is X(s). 
 
13.2  With input and output voltages ei(t) and eo(t), respectively, the governing ODE for 
the electrical LRC series circuit is )()1()1( teCeCeReL iooo =++ &&& , as derived in 
Section 9-2.  Denote the Laplace transforms as L[ei(t)] = Ei(s) and L[eo(t)] = Eo(s), then  
derive and draw for this system a Laplace block diagram with feedback, a block diagram 
of the same type as Fig. 13-3.  The input signal on the left side of your block diagram is 
Ei(s), and the output signal on the right side is Eo(s). 
 
13.3  A certain 3rd order system has excitation u(t) and response x(t), and its governing 
ODE is , in which all ai and b are constants.  Denote the 
Laplace transforms as L[u(t)] = U(s) and L[x(t)] = X(s).  Derive and draw for this system 
a Laplace block diagram with feedback, a block diagram of the same type as Fig. 13-3, 
but somewhat more complicated.  The input signal on the left side of your block diagram 
is U(s), and the output signal on the right side is X(s).  Your block diagram should have 
three feedback branches. 

)(4321 tbuxaxaxaxa =+++ &&&&&&

 
13.4  Consider the higher-order (4th order in this case), 2-DOF mechanical system of 
homework Problems 11.2 and 12.1, for which the coupled matrix equation of motion is 
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(a)  From the matrix equation, write the two separate scalar ODEs that are coupled by the 
term 2θyka−

1yka y−

 in the “  ODE” (i.e., the ODE that includes acceleration ), and the 
term  in the “

)(1 ty
)(2 t

1y&&

θ  ODE.”  This system has the single input, force , but )(tF two 
output quantities, translation  of the mass, and rotation )(1 ty )(2 tθ  of the rigid bar.  
 
(b)  Denote the Laplace transforms as , )]([ tFL )()]([ 1 sYtyL = , and )()]([ 2 stL Θ=θ .  
Take the Laplace transforms of both ODEs, with zero ICs.  Now, derive and draw for this 
system a Laplace block diagram (in the form of Fig. 13-3, but with differences) that has 
feedback and also “feed-across” between the forward-flowing branch that develops from 
the  ODE and the forward-flowing branch that develops from the )(1 ty )(2 tθ  ODE.  The 
input signal on the left side of your block diagram is , and the )]([ tFL two output signals 
on the right side are  and , one from each of the forward-flowing branches.  )(sY )(sΘ
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14-1  Initial definitions and terminology 
 
 As an introduction to feedback control and related matters, this chapter considers 
a common task for many engineering systems:  remote (indirect) control of the rotational 
position of some solid body; let’s refer to this solid body generically as the rotor.  The 
input to a rotation-control system is typically a command issued by a human operator us-
ing a device such as a steering wheel, control column, dial, computer keyboard, etc.; the 
input can also be a computer-generated signal that carries previously programmed in-
structions.  The output is the rotational position of the rotor.  The modifiers “remote” and 
“indirect” of “control” mean that there is no direct, rigid, mechanical linkage between the 
input device and the rotor; instead, for a remote control system, there might exist between 
the input device and the rotor such engineering equipment as sensors, electrical circuits, 
signal processors (analog and/or digital), flexible links or cables, electromagnetic or 
acoustic transmitters and receivers, and actuators of many types (motors, thrusters, etc.).   
 
 The following are a few of the many “rotors” in modern engineering practice with 
which you are probably familiar:  aerodynamic and hydrodynamic control surfaces, such 
as rudders, elevators, and ailerons; the steering mechanisms that guide land vehicles and 
taxiing airplanes; nozzles of rocket engines or vectored-thrust jet engines; any entire ve-
hicle itself, the three-dimensional rotational orientation (roll, pitch, yaw) of which is gen-
erally called the vehicle’s attitude.  You can probably add other rotors to this list from 
your own experience. 
 

In general, the mass center of a solid body can have three degrees of rotational 
freedom.  However, in order to keep the rotational dynamics simple here and to focus on 
feedback control, we will restrict our attention to rigid rotors that rotate in a plane about a 
fixed point, so that there is only one degree of rotational freedom.   
 
 Consider the simple generic rotor shown in Fig. 14-1.  Let’s specify that it is re-
stricted to rotating about the shaft axis, that its rotation angle relative to some reference 

position is θ (t), and that its angular velocity is 
θ& .  The rotational inertia of the rotor 

about the axis of rotation is denoted as J, and 
the total moment applied onto the rotor by all 
sources is denoted as M(t).  This is the physical 
object that we wish to control; in the terminol-
ogy of control, the object or process to be con-
trolled is often called the plant.   

≡)(tp
Applied moment 

M(t) 
θ (t), p(t)

Rotational 
inertia J 

Figure 14-1  Generic rotor, the plant 
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Provided that there is no damping moment proportional to p(t) imposed upon the 
rotor, the equation of motion for the plant of Fig. 14-1 is a simplified version of Eq. (3-1):  
 

)(tMJpJ == θ&&&                                                 (14-1) 
 
Let’s derive the transfer function of the plant, PTF(s), by taking the Laplace transform of 
Eq. (14-1) with zero initial conditions: 
 

2
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θθ                   (14-2) 

 
 In our previous work, we usually assumed that M(t) is known, and we then solved 
for the resulting  p(t) and/or θ (t).  Now, our objective is different:  for control, we want to 
command a desired rotor-position time history.  The command usually is something like a 
steering-wheel position or dial setting, or a signal carrying computer-generated instruc-
tions.  In order to distinguish the input command from the output rotor angle, we intro-
duce a different symbol for the command: 
 

≡)(tr  operator setting intended to produce the desired )(tθ              (14-3) 
 
Operator setting r(t) is the reference input quantity, which is transmitted to the system by 
electrical circuitry, mechanical linkages or cables, electromagnetic or acoustic waves, etc. 
 
14-2  More definitions, and examples of open-loop control systems  
 
 As an initial attempt to produce the desired motion history θ (t), it is probably 
most natural simply to seek the input setting r(t) that will do the job completely, without 
the need for any further design refinement.  This type of control is called open-loop con-
trol, for reasons that will be given later.  Figure 14-2 depicts an open-loop control system. 
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Figure 14-2  Functional diagram of open-loop rotor-position control system 
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 Operator setting r(t) is shown in Fig. 14-2 as a general quantity, and the input 
transducer is assumed to be a general linear device that produces voltage signal er(t) =  
Kr r(t); if the input device were a rotary dial, for example, the operator setting might be a 
rotational position in degrees, and the transducer might be a variable resistor in a voltage 
divider circuit (see homework Problems 5.1 and 5.9), with accurately calibrated sensi-
tivity of Kr volts per degree.  The actuator also is assumed to be a general linear device 
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that produces control moment Ma(t) = Ka er(t) = Ka Kr r(t); if it were an electromagnetic 
actuator, for example, it would probably consist of a power amplifier and a motor, both of 
which are designed to function linearly.  In practice, device sensitivity constants do not 
have to be positive and often are negative, but let’s assume here that all are positive (Ka > 
0, Kr > 0, etc.) just to avoid unnecessary complications. 
 

Also shown on Fig. 14-2 is disturbance moment Md(t) acting upon the rotor.  In 
the terminology of control, a disturbance is some extraneous action upon the plant, not 
the intended control action.  In the system of Fig. 14-2, for example, an actuator moment 
produced by unwanted electrical noise in the circuitry would be an internal disturbance, 
and a moment produced by wind or impact from solid objects onto the rotor would be an 
external disturbance.  Disturbances are often random, or at least unpredictable, so that we 
usually cannot write equations to describe their variation with time.  In most cases, dis-
turbances tend to influence adversely the performance of a control system. 
 
 Let’s analyze the control system of Fig. 14-2.  The total moment acting upon the 
rotor is Ma(t) + Md(t), so that Eq. (14-1) becomes 
 

)()()()( tMtrKKtMtMJ drada +=+=θ&&                             (14-4) 
 
Disturbance Md(t) in Eq. (14-4) is the nemesis of open-loop control, so let’s consider ini-
tially the case with zero disturbance, Md(t) = 0.  If we have an equation for the desired 
motion history θ (t), then we can solve (14-4) directly for the required operator setting: 
 

θ&&
ra KK

Jtr =)(                                                   (14-5) 

 
This method for finding r(t) is easy, and open-loop control appears to be a feasible en-
gineering tool.  However, open-loop control has some serious deficiencies.  A more de-
tailed example will help to reveal these deficiencies, so we consider next an application 
of open-loop attitude control for a spacecraft. 
 

Suppose that a capsule carrying astronauts is re-entering Earth’s atmosphere, Fig. 
14-3, and that pitch angle θ(t) must be controlled in order to position the heat shield for 
optimal functioning and to prevent unstable tumbling.  
Two collinear pairs of gas thrusters (usually fueled by 
liquid chemicals) are separated by moment arm e so 
that they actuate rotation by a couple (pure moment), 
without causing mass center C to translate.  Firing of 
the two thrusters shown active on Fig. 14-3 produces a 
positive couple, and firing of the two opposite collinear 
thrusters would produce a negative couple.  To simplify 
the analysis, let’s assume that the thrusters are continu-
ously throttleable, so that thrust force is related linearly 
to the operator setting by 

 

Figure 14-3  Pitch control of  
a re-entry capsule 

 fy(t) 

 fy(t) 

 θ(t)
C 
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)()( trKtf y =                                                   (14-6) 

ment is Ma(t) = e fy(t) = e K r(t), so 
at the equation of motion equivalent to Eq. (14-4) is 

 
                              (14-7) 

e Eq. (14-7) for the required operator 
tting in terms of the desired pitching maneuver: 

 

 
In Eq. (14-6), K is a positive sensitivity constant, with appropriate dimensions depending 
upon the specific character of r(t).  Then the control mo
th

)()()()( tMtrKetMtMJ dda +=+=θ&&

 
in which J is the capsule’s rotational inertia about mass center C.  If we neglect all 
possible disturbances, Md(t) = 0, then we can solv
se

θ&&
Ke
Jtr =)(                                                     (14-8) 

 

4, which is 
xpressed by the equation1 

 

For example, let’s require that 
the spacecraft rotate smoothly from θ 
= 0 to final pitch angle θ = θ f during tf  
seconds, according to the lower time 
history graphed on Fig. 14-

 

Figure 14-4  Example operator setting and 
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tituting the re-
lt into Eq. (14-8) leads to 

 

 
for ftt ≤≤0 .  Differentiating Eq. (14-
9) twice and then subs
su

2

2
,2sin)(

f

f
A

f
A tKe

J
rt

t
rtr

θππ
≡⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
= ,   for ftt ≤≤0                    (14-10) 

his reference input setting r(t) is shown on the upper graph of Fig. 14-4. 
 

the moment curve) in this maneuver is zero; since the total impulse is zero, the final (t ≥ 

                                                

 
T

Note that Eqs. (14-9) and (14-10) and Fig. 14-4 illustrate the impulse-momentum 
theorem for 1-DOF rotation, which is directly analogous to the impulse-momentum theo-
rem for 1-DOF translation (Section 8-2).  The control moment is proportional to r(t), 
Ma(t) = e K r(t), so the r(t) time history shows that the total moment impulse (area under 

 

resulting pitch maneuver for re-entry capsule

1 Maneuver time history Eq. (14-9) comes from Sarafin, 1995, pages 644-645, a book that includes addi-
tional interesting discussions of spacecraft attitude control. 
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tf) angular momentum also is zero, , so the spacecraft is rotated to the final 
position θ = θ f  with zero final rotational velocity, . 

0=θ&J
0=θ&

 
Let’s pause for a reality check.  One feature of the control equipment described 

for this spacecraft maneuver is not practically realistic:  space qualified gas thrusters in 
common use are nonlinear on-off (approximately) force generators; they are not continu-
ously throttleable as assumed in this example, Eq. (14-6).  Gas thrusters are, in fact, used 
to actuate spacecraft attitude and position control, but their on-off character produces 
rougher motion (abrupt changes in acceleration) than that of Eq. (14-9); see Sarafin, 
1995, pp. 636-637.  A smooth maneuver such as Eq. (14-9) would be actuated in practice 
by a space-qualified reaction wheel or control-moment gyroscope.  We have assumed the 
hypothetical throttleable gas thrusters for this example just because it is easy to visualize 
this situation and to describe it in equations.  
 
 Now, with reference to the example above of spacecraft attitude control, let’s 
evaluate open-loop control as represented generally by Fig. 14-2, with particular interest 
in identifying the following deficiencies: 
 
1.  Note from Fig. 14-4 that output θ (t) is not a single-valued, monotonic function of op-
erator setting r(t).  For example, to r = 0 there correspond three different output values:  θ 
= 0 before the maneuver, θ = ½θf  during the maneuver, and θ = θf  after the maneuver.  
This type of complicated functional relationship is not necessarily an operational defi-
ciency, but it certainly is counter-intuitive to the natural engineering expectation of a 
unique, monotonic, often linear relationship between cause and effect. 
 
2.  Equations (14-5), (14-8), and (14-10) show that the validity of derived operator setting  
r(t) is directly dependent upon the accuracy of the plant parameters and control system 
sensitivities, and upon the fidelity of the theoretical model of the system.  If, for example, 
we use an inaccurate value of rotational inertia J (a distinct possibility for most vehicles, 
since burning of fuel changes inertias), or if the thrusters fail to function exactly as we 
model them, then the derived r(t) clearly will not lead to the exact desired rotation time 
history, θ (t). 
 
3.  The r (t) equations (14-5) and (14-8) are predicated on the absence of disturbances; but 
if Md(t) ≠  0, then the derived r (t) will fail to produce the exact desired θ (t) .  In practice, 
unpredictable disturbances are common, and they should not be ignored.  For example, 
moments that can act upon a re-entering spacecraft might be produced by atmospheric 
drag, impact from space debris, astronauts shifting position within the vehicle, etc. 
 
Deficiencies 2 and 3 above can be described in a more general manner:  the performance 
of an open-loop control system is strongly dependent upon the quality of the theoretical 
model of the system and its environment; in other words, the control performance is 
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highly sensitive to imperfections in the theoretical model, which are inevitable for most 
real engineering situations.2 
 
 It is a fundamental characteristic and weakness of open-loop control that the ac-
tual output is not measured and compared with the desired output, for the purposes of as-
sessing the output error and attempting to reduce the error.  A simple and natural remedy 
for this weakness is to “close the loop” with feedback, which is described in the next sec-
tion.  Note that the absence of a feedback branch from Fig. 14-2 leads to the designation 
“open-loop.”   But even this designation is at least a little misleading because there is no 
“loop” at all; there is simply a single branch that carries forward-flowing signals! 
 
14-3  Closed-loop control of rotor position using position feedback  
 
 Let’s modify the open-loop control system of Fig. 14-2 in the following manner:  
measure the output with a rotational-position sensor, and send the voltage output from 
this sensor back to a summing junction that forms the error signal, which is the differ-
ence between the signal representing the operator setting and the signal representing the 
actual output.  The feedback branch and summing junction convert the open-loop system 
into the closed-loop system depicted on Fig. 14-5. 

Transducer 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
settingunit 

volt
rK

Operator 
setting    
r (t)  er = Kr r θ (t) 

Figure 14-5  Functional diagram of position-feedback control system 

Actuator 

⎟
⎠
⎞

⎜
⎝
⎛
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torque

aK

Ma = Ka ee 

 J 

Disturbance 
moment Md(t) 

Position sensor 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
angle
volt

θK  

θ (t)   eθ = Kθ θ  

 
Error signal 
ee = 
 er − eθ 

 
 The elements of the closed-loop system are the same as those of the open-loop 
system, Fig. 14-2, but with the addition of the output sensor and the summing junction 
(defined in Section 13-2).  We assume that the sensor is a device such as an optical en-
coder, with accurately calibrated positive sensitivity Kθ (volt per degree or radian).  The 
summing junction could be a simple circuit consisting of an inverting amplifier (Fig. 5-8) 
and a summing inverting amplifier (homework Problem 5.7). 
 
 This closed-loop system tends to be self-correcting.  We can understand this ten-
dency by writing in detail the equation for the control moment, from the signals labeled 
on Fig. 14-5: 
                                                 
2 In the language of control engineering, a control system is described as robust if its performance and sta-
bility are insensitive to potentially detrimental influences such as disturbances, deficiencies in the theoreti-
cal model of the plant, and inaccurate response measurements due to sensor dynamics. 
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[ ] [ ])()()()()()( tKtrKKteteKteKtM raraeaa θθθ −=−==             (14-11) 

 
From Eq. (14-11), the control moment is zero when 0)()( =− tKtrKr θθ , so that 
 

)()( tr
K
Kt r

θ

θ =                                                 (14-12) 

 
Equation (14-12) clearly is the desired instantaneous linear relation of output θ (t) to input 
r(t).  At instants when (14-12) is not satisfied, the control actuator imposes a corrective 
moment.  Suppose, for example, that at a certain instant both θ (t) and r(t) are positive, 
but that the output is less than the desired value, )(][)( trKKt r θθ < ; at this instant, then, 
the error signal is 0)()()( >=− tetKtrK er θθ , and 0)()( >= teKtM eaa ; thus, when the 
output is less than it ought to be, the closed-loop control system imposes a positive mo-
ment to increase the output.  Moreover, by reversing the inequality signs above, you can 
show that the control system imposes a negative moment to decrease the output when the 
output is greater than it ought to be. 
 

Because the corrective moment is proportional to the output error and is inde-
pendent of the theoretical model, the self-correcting tendency of this closed-loop control 
system is in effect regardless of how well the theoretical model represents the system and 
its environment. 

 
To infer more information about the closed-loop system of Fig. 14-5, let’s derive 

the ODE of motion by substituting Eq. (14-11) into Eq. (14-4): 
 

[ ] )()()()()( tMtKtrKKtMtMJ drada +−=+= θθ θ
&&  

 
)()( tMtrKKKKJ draa +=+⇒ θθ θ

&&                              (14-13) 
 
From Eq. (14-13), we make the following observations:  (1) the feedback control in Fig. 
14-5 has the effect of attaching between the operator setting and the rotor inertia an artifi-
cial restoring spring with stiffness constant ; (2) if only operator input r(t) acts, i.e., 
if Md(t) = 0, then the desired output (14-12) is actually the pseudo-static response of the 
system (as defined in Section 7-1), 

θKKa

 

)()()( tr
K
KttrKKKK r

psrapsa
θ

θ θθ =⇒=                         (14-14) 

 
(3) if only operator input r(t) acts, and if the input-transducer sensitivity equals the out-
put-sensor sensitivity, Kr = Kθ , then the closed-loop system is directly analogous to an 
undamped, base-excited mass-spring system [as described by Eq. (13-6) with c = 0]; (4) 
the self-correcting tendency even counteracts the adverse influence of many types of 
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disturbance, which we can conclude from our previous experience with forced-response 
solutions for 2nd order systems.  If, for example, the disturbance is time-limited, such as a 
pulse, then post-pulse response due to the pulse will oscillate about zero but will not 
contain any constant steady-state component.  If, for another example, the disturbance is 
sinusoidal, then the resulting response will oscillate about zero but will not contain any 
constant steady-state component; however, we can also see that if the frequency of the 
sinusoidal disturbance is in the neighborhood of the closed-loop system natural fre-
quency, nω  = JKK a θ , then the disturbance could produce resonance, which this par-
ticular control system could not prevent. 
 
 To establish the method for analysis later of more complicated control systems, 
let’s draw and analyze the Laplace block diagram corresponding to functional diagram 
Fig. 14-5.  For this task, we define the following Laplace transforms:  L[r(t)] ≡ R(s), 
L[θ (t)]  ≡  Θ(s),  L[er(t)]  ≡  Er(s),  L[eθ(t)]  ≡  Eθ(s),  L[ee(t)]  ≡  Ee(s),  L[Ma(t)]  ≡  Ma(s), 
L[Md(t)] ≡ Md(s), and L[M(t)] ≡ M(s).  The Laplace block diagram, Fig. 14-6, is similar to 
the functional diagram, 
except that we replace 
the rotor in Fig. 14-5 
with its transfer func-
tion, PTF(s) of Eq. (14-
2), and we use a sum-
ming junction to denote 
the actions upon the ro-

r of both control mo-
ment M

 

 transfer function, 

to
a(t) and distur-

bance moment Md(t). 
 

This system actually has two in
a single-input-single-output (SISO) s
relationship for this control system is th
we now will focus on that relation-
ship by setting Md(t) = 0.  Therefore, 
Md(s) = 0, and we re-draw Fig. 14-6 
as the SISO block diagram at right, 
with the objective of deriving from 
it the closed-loop

 

R(s) 

Kθ 

Θ(s)
+ _ 2

1
sJ

 Ka Kr 
Μa(s) 

+  
Er(s) Ee(s)

Eθ(s) 

Figure 14-6  Laplace block diagram, including disturbance 
input, of position-feedback control system 

Μd(s) 
Μ(s) 
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dependent inputs, r(t) and Md(t), so it is not strictly
ystem.  However, the most important fundamental 

at between the reference input and output θ (t), so 

)()()( sRssCLTF Θ≡ . 
 

inct steps  reduce Fig. 14-7 to a 
ngle block, the , that separates inpu

Three dist  of block-diagram algebra are required to
si  )(sCLTF t and output signals: 
 
1.  Combine (multiply) the two block 
transfer functions within the forward 
branch of the loop, as shown at right.  
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Figure 14-7  Laplace block diagram of SISO 
position-feedback control system 
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This multiplication operation is derived in Section 13-1. 

 in the next section; it is an important basic tool for the analysis of control 
stems. 

 to produce the required re-
lt shown at right. 

 
For this relatively

bra in order to estab-
sh the approach that is appropriate for more complicated systems. 

ance and then developing an addition to the 
stem that will improve the performance. 

4-4  Transfer function of a single closed loop

 
2.  Resolve the forward-branch and feedback-
branch transfer functions of the closed loop into 
the single equivalent transfer function shown at 
right.  The block-diagram algebra used in this step 
is derived

 R(s) Θ(s)

sy
 
3.  Finally, and obviously, just multiply the re-
maining two blocks
su

 simple system, the SISO version of ODE of motion (14-13) is 
)(trKKKKJ raa =+ θθ θ

&& .  It is very easy to derive the same CLTF(s) directly from this 
ODE, but we have derived CLTF(s) here using block-diagram alge
li
 
 We shall re-visit this position-feedback control system in Section 14-5, with the 
objectives of evaluating its control perform
sy
 
1   
 

 f

 seek the clo

Consider Figure 14-8, which is a more general version, in standard notation, of 
unctions G(s) and H(s) are, respectively, the for-
ward-branch and feedback-branch transfer func-
tions.  E(s) is the actuating error signal, and B(s) 
is the feedback signal.  We sed-loop 
transfer function, the ratio 

the closed loop in Fig. 14-7a.  General

)()( sInsOut .  All of 
the quantities labeled on Fig. 14-8 are denoted 
as functions of Laplace variable s, but it is im-
portant to recognize that there are two funda-
mentally different types of functions:  (1) the 

“signals” In(s), E(s), B(s), and Out(s), which actually are Laplace transforms of time-
dependent variables such as motion and voltage; and (2) the transfer functions G(s) and 
H(s), which represent in the Laplace domain the characteristics of systems and objects 
such as inertia  and circuits.  To emphasize the difference in the following 
derivation of 

s, actuators,
)()( sInsOut , let’s omit the functional notation “(s)” from the signals, at 

ast in the intermediate steps.  The steps follow naturally from Fig. 14-8: 
 
le
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Figure 14-8  Laplace block diagram 
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)()]()(1[ sGInsHsGOut ×=+×⇒  

 

)()(1
)(

)(
)(

sHsG
sG

sIn
sOut

+
=⇒                                       (14-15) 

 algebra of Section 14-3.  From
we identify:  

 
 Equation (14-15) is an important, general, labor-saving tool for analysis of loops 
in any control system, not just the systems discussed in this chapter.  To illustrate its ap-
plication, let’s use it to derive in detail the loop transfer function written in Step 2 of the 
block-diagram  Step 1 of that process (or from Fig. 14-7a), 

θKsHsJKsG a == )(and)( 2 .  Substituting these into Eq. (14-15) gives 

θθ KKsJKsJKsIn aa ++ 22 )(1)(
KsJKsOut aa ==

2)( , which is the loop transfer function shown in 

e block diagram as the result of Step 2. 

.  First, we define numerator and denominator polynomials that 
ake up G(s) and H(s): 

 

th
 
 A transfer function in Eq. (14-15) often has the form of a ratio of polynomials in 
s, such as G(s) in the previous paragraph, so it is useful to derive a version of (14-15) in 
terms of the polynomials
m

)(
)()(and

)(
)(

)(
sD
sNsH

sD
sN

sG
H

H

G

G ≡≡                               (14-16) 

(s)” from 
e transfer functions and polynomials in the interest of notational conciseness: 

 

 
Next, we carry out the algebra of Eq. (14-15), dropping the functional notation “
th

HGHG
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HHGG
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NNDD
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DNDN
DN

GH
G

sIn
sOut

+
=

×+
=

+
=

)()(11)(
)(          (14-17) 

For e exampl e prev
 

 
th e of th ious paragraph, the simple polynomials are aG KN = , GD  = 

2sJ and 1=HD ; substituting these terms into Eq. (14-17) obviously leads to 
the 

, θKN H = ,
)()( sInsOut  result derived in the previous paragraph, but with a bit less algebra be-

cause the algebra has been completed in (14-17).  Equation (14-17) expresses the closed-
loop transfer function as a ratio of polynomials, and it applies in general, not just to the 
roblems of this chapter.   

 
cialized form of Eqs. (14-15) and (14-

7) for the case of unity feedback, H(s) = 1 = 1/1

p

Finally, we will use later an even more spe
1 : 
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1)(
)(                                       (14-18) 
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 Equations (14-15), (14-17), and (14-18) are very useful for the analysis of feed-
back control.  In the future, whenever you encounter a simple loop with the form of Fig. 
14-8 in the Laplace block diagram of a system, you may (and usually should) apply 
whichever of these equations is most appropriate to derive the loop transfer function, 
without repeating the algebra that goes into the derivation of these equations. 
 
14-5  Closed-loop control of rotor position using position feedback plus rate feed-
back 
 

Let’s re-visit the position-feedback control system of Section 14-3 in order, first, 
to evaluate its control performance and, next, to develop an addition to the system that 
will improve the performance. 
 
 It is easy to evaluate the control performance just by considering the SISO version 
of ODE of motion (14-13), which is 
 

 )                                        (14-19) (trKKKKJ raa =+ θθ θ
&&

 
As was noted earlier, the pseudo-static response of Eq. (14-19) is )(][)( trKKt rps θθ = ; 
this would be good controlled response, but it is not necessarily the total response.  
Therefore, let’s consider in more detail the total transient response.  Equation (14-19) is 
an undamped 2nd order ODE of the type analyzed extensively in Chapter 7.  By dividing 
(14-19) through by J and then defining appropriate parameters, we can adapt this ODE to 
the standard form (7-5), , in which the natural frequency is )(22 tunn ωθωθ =+&& nω  = 

JKKa θ , and the standard input quantity is )(][)( trKKtu r θ= .  We can also adapt 
any appropriate response solutions already derived in Chapters 7 and 8 to this position-
feedback control system.  For example, if the operator setting is the step function  = 

, then 
)(tr

)(tHRH ≡= )(][)( tHRKKtu Hr θ

)(t
 , so the standard solution (7-14) leads 

to step response 
)(tHU

θ  = )cos tn1()( RKK Hr ωθ − .  This step response is plotted on the 
figure at right, with the period defined as 

nnT ωπ2= .  Due to the absence of 
damping, the response oscillates forever 
about the desired constant pseudo-static 
response, HR)rps KK( θθ = .  The re-
sponse never settles at psθ , so the control 
system fails to deliver the desired performance. 
 

We must conclude from this example that the absence of damping renders the 
position-feedback control system of Section 14-3 (Fig. 14-5) unsuitable for most, if not 
all engineering applications of control.  However, there is a relatively simple design fea-
ture that can be added to the control system, a feature that will provide damping to the 
system and will greatly improve the control performance. 
 

 

HR
t)(θ θKKr2

nT0 

θKKr

 0 

Time t 
nT2  nT3
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 In order to describe the 
motivation for this new feature 
of the control design, let’s re-
visit the base-excited m-c-k 
system of Sections 13-2 and 13-
3.  The principal elements of 
Fig. 13-3, that system’s Laplace 
block diagram, are reproduced 
on Fig. 14-9.  The inner feed-
back loop makes Fig. 14-9 more 
complicated than any control 
system block diagram that we 
have encountered previously in 
this chapter.  Consider, however, 
the case of zero damping, c = 0, 
for which the system is an 
undamped, base-excited mass-
spring (m-k) system, and Fig. 14-
9 loses the inner feedback loop, 
taking on the simpler ap-
pearance of Fig. 14-10.  Now, 
let’s compare the Laplace block 
diagram of the base-excited m-k 
system with that of the rotor 
position-feedback control sys-
tem, Fig. 14-7a, which is re-

peated here.  The Laplace block diagrams of the two systems have nearly identical forms, 
with, for example, constants d 

 Xi(s)  X(s)
+ _  k + _ 

sX(s)

 k 

 c 

Figure 14-9  Laplace block diagram with feedback 
branches for a base-excited m-c-k system 

sm
1

s
1
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 k 

Figure 14-10  Laplace block diagram with 
feedback branch for a base-excited m-k system

2

1
sm

 R(s) 

Kθ 

Θ(s)
+ _ 2sJ

Ka
Kr 

Er(s) Ee(s) 

Eθ(s) Θ(s)

Figure 14-7a (repeated)  Laplace block diagram 
of SISO position-feedback control system 

Kr an JKa  in Fig. 14-7a being directly analogous, 
respectively, to constants k and m1  in Fig. 14-10.  Only the possibility on Fig. 14-7a that 
input block constant Kr and feedback block constant Kθ  can be different keeps Fig. 14-7a 
from being completely analogous to Fig. 14-10.  This is a minor difference that has no 
substantive effect in the following discussion.   
 
 Let’s exploit the similarities between the base-excited m-c-k system and the rotor-
position control system in order to guide us toward a method for improving the latter.  
First, we refer back to the solution in Section 13-3 for response of the base-excited m-c-k 
system to step input .  The step response is presented graphically on Fig. 
13-4, which is repeated on the next page for your convenience. 

)()( tHXtx Hi =

 
Recall the following definitions for the m-c-k system:  mkn =ω , nnT ωπ2= , 

and ( )mkc 2=ζ .  Note on Fig. 13-4 that the addition of positive damping (c > 0   ⇒   
ζ  > 0) to the undamped system produces output x(t) that approximates the input; there-
fore, the positively damped m-c-k system is, indeed, a suitable control system, whereas 
the undamped m-k system is not.  
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Figure 13-4 (repeated)  Base-excitation control of mass position for an m-c-k system  
 
 Can we modify the undamped rotor-position control system in such a way that it 
has the same type of positive damping, and therefore suitable control performance, as the 
m-c-k system?  Block diagram Fig. 14-9 for the positively damped m-c-k system suggests 
that we might improve the rotor-position control system by adding an inner feedback 
loop to its block diagram, Fig. 14-7a, a loop that is similar to the inner loop of Fig. 14-9.  
But are there practical physical operations and devices corresponding to the purely 
mathematical addition of this type of loop to Laplace block diagram Fig. 14-7a?  To an-
swer this question, let’s observe that the Laplace feedback signal of the inner loop on Fig. 
14-9 is sX(s), which is the Laplace transform of velocity .  Therefore, the inner loop 
on Fig. 14-9 represents mathematically the physical operations of detecting the output 

)(tx&

velocity and multiplying that velocity by negative constant −c to create a damping force 
that opposes motion of mass m.  We can perform the analogous physical operation for the 
rotor-position control system by measuring output rotational velocity  with an 
appropriate sensor (such as a rate gyroscope) and feeding that signal negatively back to 
the input of the actuator.  Figure 14-11 depicts the modified rotor-position control sys-
tem, with 

)()( ttp θ&≡

both this rate feedback (to provide positive damping) and the original position 
feedback (to provide positive stiffness). 

 

Transducer 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
settingunit 
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Operator 
setting    
r (t)  er = Kr r Actuator 

⎟
⎠
⎞

⎜
⎝
⎛

volt
torque

aK
er − eθ  

er − eθ − ep
θ (t) 

Figure 14-11  Functional diagram of rotor-position control system with both position feed-
back and rate feedback 
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 Figure 14-12 is the Laplace block diagram corresponding to functional diagram 
Fig. 14-11.  For measuring and feeding back the rotational velocity, the appropriate form 
of plant ODE of motion (14-1) is )(tMpJ =& , so the appropriate plant transfer function in 
the new inner loop is L[p(t)] ⁄ L[M(t)] ≡ P(s) ⁄ M(s) = 1 ⁄ (Js).  Also, the definition of 
rotational velocity  leads to the forward-branch integration transfer function, 
Θ(s) ⁄ P(s) = 1 ⁄ s.  Comparing Fig. 14-12 with Fig. 14-9 for the base-excited m-c-k system, 
we see that the two Laplace block diagrams have nearly identical forms, except for the 
presence of the disturbance moment on Fig. 14-12.  Thus, and to summarize, we have 
modified the rotor-position control system to add positive damping, using the base-
excited m-c-k system as a model.  

)()( tpt ≡θ&

 

R(s) 

Kp 

+ _ Ka Kr 

Kθ 

+ _ 
Μa(s) 

Kp sΘ(s)

Kθ Θ(s)

Figure 14-12  Laplace block diagram of rotor-position control system 
with both position feedback and rate feedback 

Θ(s)  P(s) = sΘ(s) 
sJ

1
s
1

+ 
Μ(s) 

Μd(s) 

 
 The position-feedback and rate-feedback types of control illustrated by Figs. 14-
11 and 14-12 are relatively simple output operations:  this control involves no more than 
basic arithmetic operations on the sensed output signals, without any modification of the 
error signal in the forward branch.  Chapter 15 introduces control by input error oper-
ations, which involves more general mathematical operations upon a single error signal. 
 

Next, let’s analyze in detail the SISO version of the modified rotor-position con-
trol system.  Thus, we set Md(t) = 0 and Md(s) = 0, and we re-draw Fig. 14-12 as SISO 
block diagram Fig. 14-13.  Our objectives are:  first, to derive from Fig. 14-13 the closed-
loop transfer function, )()()( sRssCLTF Θ≡ ; second, to infer from CLTF(s) the charac-
teristics of the SISO system.   
 

 R(s) 

Kp 

+ _ Ka Kr 

Kθ 

+ _
Μa(s) 

Kp sΘ(s)

Kθ Θ(s)

Figure 14-13  Laplace block diagram of SISO rotor-position 
control system with both position feedback and rate feedback 

Θ(s)  P(s) = sΘ(s)
sJ

1
s
1
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 We could resolve block diagram Fig. 14-13 by the “brute-force” method of apply-
ing Eq. (14-17) first to the inner loop, then to the outer loop.  However, we can achieve 
the same result more simply by using some sensible block-diagram algebra.  The ap-
proach in each step is to modify a block and/or branch so as to simplify the diagram 
without changing the most important output signals.  The obvious first step, is to combine 
the two blocks in the forward branch of the inner loop on Fig. 14-13 into transfer function 
Ka ⁄ (Js).  Next, we move the branch point of the inner loop to the right of the integration 
block, and modify accord-
ingly the feedback transfer 
function of the inner loop, as 
shown at right.  Next, we 
multiply the two blocks of 
the forward branch inside the 
loops into transfer function 
Ka ⁄ (Js2).  Now, both feed-
back branches essentially originate at the same branch point and terminate at the same 
summing junction, so we combine 
them into a single feedback branch 
with an appropriate transfer 
function, as shown at right.  This 
block diagram has only a single 
loop, so we can apply Eq. (14-17) 
with the follow

 
R(s) 

Kp s 

+_Kr 

Kθ 

+_

Kp sΘ(s)

Kθ Θ(s)

Θ(s)
s
1

Kr R − (Kθ + Kp s) Θ 

sJ
Ka  

 R(s) 
+_Kr 

(Kp s + Kθ) Θ(s) 

Θ(s)
2sJ

Ka  Kr R − (Kθ + Kp s) Θ 

Kp s + Kθ 

ing transfer-function polynomials:  NG = Ka, DG = Js2, NH = Kps + Kθ, and 
H = 1.  The result is:  
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Finally, multiplying this loop transfer function by the input transducer sensitivity gives  
 

θKKsKKsJ
KK

sR
ssCLTF

apa

ar

++
=

Θ
≡ 2)(

)()(                           (14-20) 

cited m-c-k mped natural f

 
 Let’s cast system transfer function (14-20) into a form that displays more clearly 
the fundamental characteristics of the closed-loop system.  We again use as a guide the 
base-ex  system of Section 13-2.  The unda requency of that sys-
tem is mkn =ω , and the viscous damping ratio is ( )mkc 2=ζ .  Using these defini-
tions, we can express transfer function (13-8) in terms of these fundamental system char-
cteristics rather than the physical parameters m, c, and k: 
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=≡   (14-21) 
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Manipulating (14-20) in a similar manner, with an additional step to account for the pos-
sibility that Kr ≠ Kθ , gives: 
 

22
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2 2)()(
)()(

nn

nr
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ssK
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×=

++
×=

Θ
≡  (14-22) 

 
In Eq. (14-22) the undamped natural frequency and viscous damping ratio of the rotor-
position control system are 
 

 
J
KK a

n
θω =       and      

n

pa

J
KK
ω

ζ
2

=                               (14-23) 

 
Equation (14-22) differs in form from Eq. (14-21) only in the presence of pseudo-static 
multiplier θKK r , which is defined in Eq. (14-14). 
 

The system with transfer function (14-21) behaves as a control system should:  in 
this case, as a positively damped, 2nd order system.  For example, if the parameters in Eq. 
(14-22) are selected such that ζ  is in the range 0.3 to 0.5, and if the operator setting is 
step function , then the 
inverse Laplace transform developed in 
homework Problem 9.12 gives the type 
of step response shown on the figure at 
right.  The output cannot exactly follow 
this infinitely fast input, but it rises 
quickly and settles quickly to the desired 
pseudo-static response.  This example illustrates a general characteristic of control sys-
tems:  it is generally impossible to achieve absolute accuracy instantly (in this case, the 
pseudo-static response), but a good control system can achieve practically acceptable ac-
curacy, with a practically acceptable time lag between the input and the desired output. 

)()( tHRtr H=  

HR
t)(θ θKKr2

nT0 

θKKr

 0 

Time t 
nT2  nT3

 
 It was observed earlier that position feedback through the sensor with gain Kθ  has 
the effect of attaching between the operator setting and the rotor inertia an artificial re-
storing spring with stiffness constant Ka Kθ .  We see now, additionally, that rate feedback 
through the sensor with gain Kp has the effect of imposing upon the absolute motion of 
the rotor an artificial viscous damper with damping constant  Ka Kp . 
 

Finally, let’s note that the favorable and stable performance of this rotor-position 
control system is strongly dependent upon the positivity of constants Ka Kθ and Ka Kp .  In 
practice, it is possible (in fact, too easy) to make these constants negative, usually by 
accident or negligence, which could cause the system to be unstable.  Chapters 16 and 17 
examine in more detail the important issue of system stability. 
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14-6  Comments regarding classical control theory and modern control theory 
 
 In the words of Brogan, 1974, page 1, “Control theory can be divided into two 
major categories, classical and modern.”  Chapters 14-17 of this book constitute an intro-
duction to the former, namely, classical control theory for linear, time-invariant (LTI) 
systems.  Whereas classical control theory focuses on relatively simple single-input-sin-
gle-output (SISO) systems, modern control theory, which is based upon the state-space 
mathematical representation of systems, is very well suited for design and analysis of 
control for both simple systems and much more complicated multiple-input-multiple-out-
put (MIMO) systems.3 
 
 The state-space representation of systems is a generalization of the standard 1st 
order ODE Eq. (1-1), , which has only the single input u(t) and the single 
dependent variable x(t).  In the generalization to an LTI-MIMO system of, say, r inputs 
and n dependent variables, scalar x(t) becomes the n × 1 state vector (column matrix) x(t) 
of dependent variables, scalar u(t) becomes the r × 1 vector of inputs u(t), single constant 
a becomes the n × n matrix A of system constants, single constant b becomes the n × r 
matrix B of input constants, and single ODE 

)(tbuaxx =−&

)(tbuaxx =−&  becomes the system of n cou-
pled 1st order ODEs written in matrix form, )(tBuAxx =−& .  All of the 2nd order systems 
analyzed in this book can be expressed in state-space form with x(t) being  2 × 1 state 
vectors; for example, the two scalar Eqs. (1-15) can clearly be written as the following 
single matrix ODE: 
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Further, the 2-DOF systems of Chapters 11 and 12 can be expressed in state-space form 
with x(t) being 4 × 1 state vectors.  
 
 Chapters 14-17 of this book should provide adequate preparation for study of the 
fundamental aspects of modern control theory.  Three appropriate textbooks, among the 
many available, are Brogan, 1974, Franklin, et al., 1991, and Ogata, 2001. 
 

                                                 
3 Franklin, et al., 1991, page 361, wrote that the adjective “modern” is misleading “… since the state-space 
method of description for differential equations is over 100 years old and was introduced to control design 
in the late 1950s, … .”  Those authors prefer the designations “transform methods” rather than “classical 
control” and “state-space methods” rather than “modern control”. 
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14-7  Homework problems for Chapter 14 
 
14.1  In Section 14-3 for the rotor-position control system with position feedback, the 
transfer function relating output rotor position to input operator setting, with zero 
disturbance, is derived by a series of block-diagram algebraic operations to resolve 
(simplify) Fig. 14-7.  In practice, for assessment of control system quality, it is often 
required also to determine the transfer function that relates output rotor position to the 
disturbance, with zero operator setting.  The appropriate block diagram for that task in 

this case comes from Fig. 14-6, with R(s) 
= 0, as shown at left.  Derive from this 
block diagram the transfer function 

θKKsJs
s

a+
=

Θ
2

d

1
)(M

)( .  This task is not 

difficult:  just write Ma(s) in terms of 
Θ(s), then M(s) = Ma(s) + Md(s), and 

)(1)(M 2 ssJs Θ=× , which steps should lead you to the required result.  This result can 
also be derived directly from the ODE of motion (14-13), but the assignment here is to 
derive it from the block diagram, to give you practice with block-diagram algebra. 

 

Kθ 

Θ(s)
+ _ 2

1
JsKa 

Μa(s) 
+  

Kθ Θ(s) 

Μd(s) 
Μ(s) 

Θ(s) 

 
14.2  In some systems, information is fed forward as well as backward.  Each of the La-
place block diagrams (a) and (b) shown below includes both a feedforward branch and a 
unity-feedback branch.  Transfer functions F(s) and G(s) represent arbitrary plant, filter, 
sensor, etc. system elements.  (We could also include a transfer-function block in the 
unity-feedback branch, but its value would be simply 1, so it is standard practice to omit 
that obvious block.)  For the part(s) assigned, derive the algebraic equation for the system 
transfer function, )()( sRsX , in terms of F(s) and G(s). 

 
 
 
 
 
 

 

R(s) X(s) 
+ _ )(sG  + 

(a) 
)(sF  

 

R(s) X(s) 
+_ )(sG  + 

(b)
)(sF  

 
(c)  The idealized series damper-spring high-pass mechanical filter shown in Fig. 3-12 
has the governing ODE with right-hand-side (RHS) dynamics, oo xx )1( 1τ+&  = , Eq. 
(3-24).  The transfer function from this ODE is clearly Xo(s) ⁄ Xi(s) = s ⁄  (s + 1 ⁄ τ1), where 
L[xi(t)] ≡ Xi(s) and L[xo(t)] ≡ Xo(s).  With the definition of a new independent variable 
xd(t) and the auxiliary equation xo(t) = xd(t) + xi(t), the ODE is converted into an alternate 
form without RHS dynamics, 

)(txi&

)()1()1( 11 txxx idd ττ −=+& , Eq. (3-26).  Construct a La-
place block diagram using the alternate ODE and the auxiliary equation; this diagram 
should have input Xi(s) on the left and output Xo(s) on the right, and it should include a 
feedforward branch.  Use block-diagram algebra on this diagram to derive again the sys-
tem transfer function Xo(s) ⁄ Xi(s) = s ⁄  (s + 1 ⁄ τ1). 
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14.3  Consider a system represented by the somewhat general Laplace block diagram at 
the right.  Constant Kr is an in-
put sensor gain, and transfer 
functions G1(s), G2(s), H1(s), 
and H2(s) represent arbitrary 
plant, filter, sensor, etc. system 
elements.  Use block-diagram 
algebra to show in detail that 
the closed-loop transfer function is  

 R(s) X(s) 
+_Kr +_ G1(s)

H1(s)

H2(s)

G2(s) 

 

22111

21

 1)(
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HGGHG
GGK

sR
sXsCLTF r

++
=≡  

 
14.4  Consider a system represented by the block diagram below.  The feedback branch is 
a unity-feedback path; we could include a transfer-function block in that branch, but its 
value would be simply 1, so it is standard practice to omit that obvious block. 
 
(a)  Show that the closed-loop transfer function is   R(s) X(s)

+ _ 1+s  
2

10
s

  

1010 
)1(10

2 ++)(
)()( +
==

sR
sXsCLTF

ss
s  

 
(b)  Evaluate the denominator quadratic equation to calculate the viscous damping ratio 
ζ , which should indicate that the closed-loop system is overdamped. 
 
(c)  Factor the denominator quadratic into the form ( ))( 21 psps −− , find the values of 
poles .  (partial answer:  21 and pp 127.11 −=p  sec−1)  
 
(d)  Suppose that the ICs are zero and that the input is a step function, .  De-
termine the complete algebraic equation for output x(t).  First express X(s) in a partial-
fraction expansion, then find the inverse Laplace transform.  Use your x(t) equation to 
find the 

)(5)( tHtr =

final value, 
t

, after all dynamic motion has damped out.  (partial answer:  

one of the terms in the equation for x(t) should be –5.728 e−8.873 t.) 

)(lim tx
∞→

 
14.5  Consider position control of a reaction wheel (from Section 3-3) by position feed-
back plus rate feedback, for which the system Laplace block diagram is: 
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Kp 

Θ(s) 
+ _ Ka Kr 

Kθ 

+ _ 
s
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This block diagram is identical to Fig. 14-13, except that the plant transfer function from 
Eq. (3-1) is )(1 θcsJ + , not just sJ1 , due to the presence of bearing friction with as-
sumed viscous damping constant .  The following data were measured for a small labo-
ratory reaction-wheel assembly: 

θc

 

J = 2.56 × 10-3 lb-inch-sec2, 
secrad
inchounce020.0=θc , 

V
inchounce950.0=aK  

 
For the case(s) assigned, the control system transducer and sensor sensitivities are as 
shown in columns 2, 3, and 4 of the following table: 
 

Case Kr (V/rad) Kθ (V/rad) Kp (V-sec/rad) tr (sec) px  
1 15 10 0.36 0.1280 0.3858 
2 1.5 1.5 0.27 0.4507 0.1117 
3 14 21 0.35 0.08163 0.5355 
4 3.5 3.5 0.24 0.2255 0.3260 

 
 (a)  Calculate from the values in table columns 2, 3, and 4 the following quantities for 
this closed-loop system:  pseudo-static multiplier θKK r , undamped natural frequency 
ωn (rad/sec), viscous damping ratio ζ , and damped natural frequency ωd (rad/sec). 
 
(b)  Suppose that the input is a step function, )()( tHRtr H= , with magnitude  = 30 
degrees.  For the subsequent step response, calculate the rise time , the peak time ,  
the maximum overshoot ratio 

HR

rt pt

px , and the settling time  (see Section 9-8).  Also, calcu-
late the 

st
final static value of wheel position, )(tlim

t
θ

∞→
 in degrees, after all dynamic motion 

has damped out.  Partial answers are given in columns 5 and 6 of the table above to help 
you know if you are, or are not on the right track, but you still must show all derivations 
and calculations leading to these answers. 
 
(c)  For the same step input as in part (b), use MATLAB to calculate and plot the step re-
sponse )(tθ  in degrees from t = 0 until at least the settling time t = . st
 
14.6  In Section 14-5 for the rotor-position control system with position feedback and rate 
feedback, the transfer function relating output rotor position Θ(s) to input operator setting 
R(s), with zero disturbance, is derived by a series of block-diagram algebraic operations 
to resolve (simplify) Fig. 14-13.  In practice, for assessment of control system quality, it 
is often required also to determine the transfer function that relates output rotor position 
to the disturbance, with zero operator setting.  The appropriate Laplace block diagram for  
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that task in this case comes 
from Fig. 14-12, with R(s) = 
0, as shown on the figure at 
right.  Derive from this block 
diagram the algebraic equa-
tion for transfer function 

)(M
)(

d s
sΘ .   
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+ _ 
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14.7  Consider a system represented by the 
Laplace block diagram at right.  The outer 
feedback branch is a unity feedback path; we 
could include a transfer-function block in that 
branch, but its value would be simply 1, so it 
is standard practice to omit that obvious block. 

 R(s) X(s)
+ _ + _ 

 K2 

sm
K1  

s
1

 
(a)  Use the result of Problem 14.3 or any other method of your choice to show that the 
closed-loop transfer function is  
 

121
2

1

 )(
)(

KsKKsm
K

sR
sX

++
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(b)  Suppose that the ICs are zero and that the input to this system is a step function,  
= .  For the case(s) assigned, the value of the mass-like parameter m (in consis-
tent units) is given in column 2 of the table below.  Calculate the values of constants K1 
and K2 (in consistent units) that will produce the values of maximum overshoot ratio 

)(tr
)(tHRH

px  
and peak time  given in columns 3 and 4 of the table (see Section 9-8).  Note that this 
is a design exercise:  you are calculating values of system parameters that are intended to 
produce specified control objectives.  Complete the problem by calculating also the rise 
time tr and the settling time ts.  Partial answers are given in columns 5 and 6 of the table 
below to help you know if you are, or are not on the right track, but you still must show 
all derivations and calculations leading to these answers. 

pt

 
Case m px  pt  (sec) K2 ts (sec) 

1 150 0.25 0.35 0.08230 1.010 
2 0.085 0.75 0.015 8.672e-4 0.2086 
3 35 0.055 1.1 0.3490 1.517 
4 2.5 0.125 0.75 0.2198 1.443 

 
(c)  Let the step magnitude of part (b) be  = 0.753 (in consistent units).  Calculate the HR
final value, , after all dynamic motion has damped out.   )(lim tx

t ∞→
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15-1  Initial definitions; proportional-integral-derivative (PID) control 
 

Figure 15-1 is a general functional block diagram that represents many engineer-
ing control systems.  The term input-error operation can be defined in the context of this 
diagram:  a single output quantity is fed back and differenced from the operator-setting 
input quantity, and the error signal is manipulated mathematically by a controller, also 
called control processor or filter, in such a way as to produce effective control.  The con-
troller usually consists of analog electronic circuitry and/or a digital processor. 

Input 
transducer  

Operator 
setting    
r (t)  er(t)  ee(t)

Figure 15-1  Functional block diagram of general control system using input-error 
operations 

Output 
sensor  

Controller, 
Processor, 

Filter  

Actuator Plant  
Output  w(t)

 
 Proportional-integral-derivative (PID) control is a class of input-error operations 
used widely in industry.  Let ee(t) be the error voltage signal that is input to the controller 
and w(t) be the output voltage from the controller, as shown on Fig. 15-1.  The mathe-
matical operations performed by an ideal PID controller are described by the equation 
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The physical constants in Eq. (15-1) are proportional gain P , integral time constant iτ , 
and derivative time constant dτ .  Each of the binary constants  has dimen-
sionless value 1 or 0, depending upon whether or not integral and/or derivative actions 
are included in the control.  Determining what these constants should be for a particular 
application is a major part of the control design process.  To find the transfer function of 
the ideal PID controller, we define the Laplace transforms L[ee(t)] ≡ Ee(s) and L[w(t)] ≡ 
W(s).  Taking the Laplace transform of Eq. (15-1) gives the 

di bb and

ideal-PID-controller transfer 
function: 
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We shall consider in examples three subsets of PID control that are in common 

usage:  for proportional (P) control, only the first term inside the brackets of Eqs. (15-1) 
and (15-2) is used, so bi = bd = 0; for proportional-integral (PI) control, only the first and 
second terms are used, so bi = 1 and bd = 0; and for proportional-derivative (PD) control, 
only the first and third terms are used, so bi = 0 and bd = 1. 
 
 To make the concept of PI control, for example, more concrete, Fig. 15-2 depicts 
a specific analog electrical circuit that, in principle, acts as an ideal PI controller.  (In 
practice, a great deal of electronic refinement and conditioning is required to produce a 

circuit that behaves even close to ideally.)   By applying the methods of circuit analysis 
described in Chapter 5 (homework Problem 5.11), we can show that the PI (bi = 1 and bd 
= 0) constants in Eqs. (15-1) and (15-2), expressed in terms of the circuit parameters of 
Fig. 15-2, are: 

 

R1 
+  ee(t) 

 w(t) 

 C2 

R2 

R3 

 em(t) + 

 Figure 15-2  Electronic analog PI controller 

 C1 

 

11
22

13 , CR
CR
CR

P i == τ                                            (15-3) 

 
The detailed design of PID controllers involves a great deal of engineering art as 

well as engineering science, and it has been developed extensively; see, e.g., Ogata, 2001, 
Chapter 10.  The present chapter is just an introduction to PID control, so we will not 
delve deeply into design details; instead, we shall explore some of the more general char-
acteristics of P, PI, and PD types of control in the context of relatively simple examples.   
 
15-2  Examples of proportional (P) and proportional-integral (PI) control 
 
 Figure 15-3 on the next page depicts a mechanical plant that is appropriate for the 
purpose of illustrating P control and PI control.  A lightweight rotor is immersed in a vis-
cous liquid, so that the damping moment imposed upon the rotor is .  The rotor is 
attached to the mechanical operator-setting device (a control wheel, for example) through 
a highly flexible torsion spring that has rotational stiffness constant .  The rotor has 

θθ &c−

θk
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 kθ (r − θ )  cθ θ&  

Figure 15-3  Lightweight rotor immersed in a viscous liquid, with connection 
to the input through a soft torsion spring 

Output 
θ(t) 

Operator setting 
r(t) 

 cθ 

 kθ 

Idealized physical model Free-body diagram of rotor 

 θθ &,

sufficiently low rotational inertia J, and viscous damping constant  is sufficiently large, 
that we assume inertial moment  to be negligible in comparison with the damping 
and structural moments.   

θc
θ&&J−

 
The equation of motion comes from the FBD on Fig. 15-3: 

 

θ

θ

θ

θ
θθ τθθτθθθθθ

k
c

trr
k
c

Jcrk ==+⇒=+⇒≈=−− 11 where(0)( &&&&& ),  (15-4) 

 
Taking the Laplace transform of Eq. (15-4) gives the basic plant transfer function:  
 

1
1
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)]([
)]([)(

1 +
=

Θ
≡=

ssR
s

trL
tLsPTF

τ
θ                                   (15-5) 

 
Clearly, this idealized open-loop mechanical plant by itself is a simple 1st order system 
with time constant θθτ kc=1 ; furthermore, this system is the rotational equivalent of the 
translational series damper-spring low-pass filter described by Fig. 3-12 and Eq. (3-23). 
 
 The input to the plant is operator-setting angle r(t), and the output is rotor position 
θ (t).  From ODE (15-4), we see that the pseudo-static output is exactly equal to the input, 
θ ps(t) = r(t).  So let’s specify that our control objective for this system is to make the ac-
tual output θ(t) be as close as possible to input r(t).  To develop a physical feel for the 
behavior of the open-loop plant in Fig. 15-3, let’s suppose that the operator quickly 
moves the control wheel to one side so that input r(t) is close to a step function.  The tor-
sion spring will immediately be wound up more tightly, and will impose a moment upon 
the rotor.  However, as we can visualize intuitively, the viscous restraint upon the rotor 
will prevent it from moving as quickly as the input, and the rotor angle will lag the input.  
As time goes on and the torsion spring gradually unwinds, the rotor angle will eventually 
settle to the input angle. 
 

Let’s suppose that the open-loop response is too slow for our purposes, and that 
we want to speed-up the response by using sensors, an actuator, feedback, and P or PI 
control in the system depicted on the next page, in functional form on Fig. 15-4, and as a 
corresponding Laplace block diagram on Fig. 15-5.  The transfer function on Fig. 15-5 
for the P or PI controller comes from Eq. (15-2), and the transfer function for the rotor-
spring-liquid plant comes from Eq. (15-5).  The input transducer and the output position 
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Figure 15-4  Functional diagram of a system for controlling the position of a 
spring-connected rotor in a viscous liquid, based on proportional-integral control 

PI 
controller

 ee(t)

Position 
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 w(t) er(t) Input 
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Operator 
setting 
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 eθ(t) 

sensor shown on Figs. 15-4 and 15-5 are familiar from Chapter 14 (on Fig. 14-5, for ex-
ample).  But the “position actuator”  is something new.  Whereas the output of most mo-
tors is torque, the output of this position actuator is specified to be rotational position.  To 
make an actuator behave in this manner requires a feedback control system within the 
actuator itself; this is a characteristic of control systems that we now pause to examine.  
 

 In fact, most actuators and sensors of all types are themselves complicated dy-
namic systems, often with internal feedback circuits.  But this begs the following ques-
tion:  if there are control systems within actuators and/or sensors, then why aren’t the de-
tails of these systems included in the device or sub-system transfer functions shown on 
block diagrams such as Fig. 15-5? 
 

A general response to this question is based upon the relative “speeds” of differ-
ent systems.  To illustrate this concept of system speed, we imagine that two standard 2nd 
order systems, A and B, have equivalent values of subcritical viscous damping ratio ζ, 
but that System A’s undamped natural frequency is 100 times that of System B, ωnA ⁄ ωnB 
= 100.  Consequently, System A’s settling time for step inputs, tsA = 4⁄ (ζωnA) [Eq. (9-
40)], is only 0.01 that of System B; in this case, we regard “the dynamics of System A” 
as being “100 times faster” than “the dynamics of System B.”  Engineers usually select 
for a control system sensors1 and, when possible, actuators that are much faster than the 
dynamics of the plant under control; in such cases, we usually approximate the behavior 
of a sensor or actuator with a simple linear sensitivity constant, in equations such as 

, )()( trKte rr = )()( tKte θθθ = , and =)(taθ )(twKa , all of which are represented on Fig. 

                                                 
1 Examples that appear in this book of such sensors are the accelerometer [homework Problem 10.12(b)], 
the rate gyroscope (Example 9-2 in Section 9-2, and homework Problem 9.18), and the rate-integrating 
gyroscope (homework Problem 9.19). 

  Θ(s) 

Figure 15-5  Laplace block diagram of a system for controlling the position of a 
spring-connected rotor in a viscous liquid, based on proportional-integral 
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15-5.  In these cases, we are making the approximation that the dynamics of the sensors 
and actuators are essentially infinitely fast and are independent of, or “uncoupled from” 
the dynamics of the plant.   

 
 Be aware, though, that the full dynamics of devices used for control, especially 
actuators, cannot always be considered uncoupled from the dynamics of the plant.  For 
one example, the dynamics of a reaction-mass actuator (homework Problem 10.15) in a 
vibration-control system are usually inextricably coupled with those of the structural 
plant, as in homework Problem 12.6.  For another example, homework Problem 15.7 is 
an exercise of incorporating the dynamics of a position actuator into a control-system 
model; in this case, the process involves even more than just inserting the actuator’s 
transfer function in series within the block diagram of the overall system.  In yet another 
example, Dettmer, 1995, Section 1.3.4 describes a control system for which it was neces-
sary to account for the dynamic characteristics of both sensors and actuators. 

 
Returning now to the rotor-position control system of Figs. 15-4 and 15-5, our 

objective is to make the output follow the input, )()( trt ≈θ , so it is appropriate to define 
a revised (relative to Fig. 15-3) open-loop configuration.  If the feedback loop in Fig. 15-
5 were broken, and if the PI controller were not present (P = 1, bi = 0), then the transfer 
function for this open-loop system clearly would be )1(1 1 +×× saKK r τ .  We want this 
to be the same as that of the bare (devoid of control devices) plant, Eq. (15-5), so let’s 
suppose that we have the ability to set the sensitivities of the input transducer and the po-
sition actuator so that 1=× ar KK .  Also, it will greatly simplify the algebra in the 
following developments if we suppose further that we can use identical sensors on the 
input angle and the output angle in the feedback path, so that θKK r = .  To summarize, 
we shall apply the following restrictions on the device sensitivities: 
 

1=× ar KK      and     1=
rK

Kθ                                        (15-6) 

 
 To compare open-loop and closed-loop system performances, let’s consider re-
sponse (from zero initial conditions) to step input sRsRtHRtr HH =⇒= )()()( .  Then, 
for the open-loop system, using transfer function (15-5) and partial-fraction expansion 
gives 
 

⎟⎟
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11 1

11
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11)(
ττ ss

R
ss

Rs HH                               (15-7) 

 
Taking the inverse Laplace transform gives the step response of the open-loop system: 
 

0for),1()( 1 ≥−= − teRt t
H

τθ                                       (15-8) 
 
Equation (15-8) is simple 1st order step response of the type shown on Fig. 3-3.  At the 
end of this section, there is a comparative numerical evaluation of this open-loop re-
sponse and step responses for P and PI types of closed-loop control.  For now, though, 
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let’s just observe from (15-8) that the asymptotic or “final” value of response for times 
much greater than time constant 1τ  equals the magnitude of the step input, as required: 
 

Ht
Rt =

∞→
)(limθ                                                    (15-9)   

 
 Next, let’s analyze closed-loop proportional (P) control, for which bi = 0 on Fig. 
15-5.  Thus, for the closed loop on Fig. 15-5, we have for Eq. (14-16) the polynomials 

, aG KPN ×= 11 += sDG τ , θKN H = , and 1=HD , which we use to find the following 
CLTF(s): 
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With simplifying assumptions (15-6), this becomes 
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in which the new time constant for the proportionally controlled system is 
 

PP +
≡

1
1

1
τ

τ                                                    (15-11) 
 

For step input sRsRtHRtr HH =⇒= )()()( , Eq. (15-10) gives the transform 
 

1
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ssP
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s
Rs
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H
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τ
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Hence, we find the step response of the proportionally controlled system just by compar-
ing Eq. (15-12) with Eq. (15-7) and then modifying Eq. (15-8) appropriately: 
 

0for),1(
1

)( 1 ≥−
+

= − te
P

PRt Pt
H

τθ                                (15-13) 
 
The asymptotic or “final” value of proportionally controlled step response for times much 
greater than time constant P1τ  is: 
 

P
PRt Ht +

=
∞→ 1

)(limθ                                             (15-14) 
 

This situation provides the opportunity to introduce the final-value theorem and to 
illustrate its application; this is a useful mathematical tool that is derived in the next sec-
tion.  This theorem allows us to find the finite asymptotic value of a time function , )(tf
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assuming that such a value exists, based only on the Laplace transform , 
without requiring that the equation for  be available: 

)()]([ sFtfL =
)(tf

 

[ ])(limlim
0

sFs
st →∞→

)(tf =                                           (15-15) 
 
  For step response of the proportionally controlled system, the final-value theo-

rem and Eq. (15-12) give 
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This is another, easier method for finding result (15-14).  The final-value theorem was 
not needed to derive the correct asymptotic solution for this simple case, but it will be a 
useful, labor-saving tool for more complicated cases in the future.  
 
 Comparing Eq. (15-14) with the required asymptotic value Ht

Rt =
∞→

)(limθ , Eq. 

(15-9), we see that, because 1)1( ≠+ PP , the proportionally controlled system fails to 
satisfy the requirement exactly.  Let’s examine possible values of proportional gain P.  
Equation (15-11) requires that P > −1 so that the system is stable, 01 >Pτ .  Equation (15-
13) requires that P > 0 so that the response has the same sign as the input.  Moreover, P 
should be a positive number as large as possible, within practical hardware limitations, 
because (1) the greater the value of P, the smaller is time constant P1τ , making the sys-
tem faster than the open-loop system, and (2) the greater the value of P, the closer is the 
asymptotic value of the output to the value of the input, from Eq. (15-14).  The value P = 
4 is a commonly used proportional gain.  But even for a large, positive value of P, the 
steady-state response will be at least a little smaller than the input.  The steady-state out-
put error, also known as offset, is defined as 
 

P
R

P
PRRH −                                   (15-16) H

Hoffset +
=

+
≡Δ

11
θ

 
A large value, P > 9, is required to reduce the offset to less than 10% of the desired 
steady-state output. 
 
 There is a simple explanation for the offset produced by proportional (P) control, 
which also will suggest a remedy.  Block diagrams Fig. 15-4 and Fig. 15-5 show that the 
final value of aθ  must be non-zero, equal to the final value of output θ .  In other words, 
the torsion spring must be completely relaxed (unloaded) at the end of the control proc-
ess, which is obvious physically.  Furthermore, by tracing backwards on the forward 
branches of the loops on Figs. 15-4 and 15-5, we find the other relevant final values:  w = 

aaa KK θ= , and, with bi = 0, 0)()( ≠=== PKPKPwe aaaeθ θ θ .  Ideally, the final 
error signal  should be zero, corresponding to the output being exactly the θeer −ee =
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desired final value; however, the preceding argument shows that the final error for P con-
trol alone is inevitably non-zero.  This argument also suggests that we seek some way to 
make the final error equal zero, 0=ee

0
, but still to preserve non-zero input into the posi-

tion actuator, , so that 0≠w ≠aθ , and so that the final output equals the desired value, 
r=θ .  Integral (I) action can produce this effect:  if we add a term to w that is propor-

tional to the integral of the error signal, , then we can have a final non-zero 

control signal, , even though the final error itself is zero, 
∫

=

=

t

e de
τ

τ
ττ

0
)(

0≠w 0=ee . 
 
 Therefore, let’s next find the closed-loop transfer function for closed-loop propor-
tional-integral (PI) control (bi = 1) .  For the closed loop on Fig. 15-5, the forward-branch 

transfer function is 
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and )11 +s(= sD iG ττ .  For the feedback branch, θKN H =  and 1=HD .  Therefore, Eq. 
(14-16) gives the following CLTF(s) ): 
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With simplifying assumptions (15-6), this becomes 
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 Before analyzing Eq. (15-17) in more detail, let’s first determine if, as predicted 
above, PI control eliminates the P-control offset of Eq. (15-16).  For step input  = )(tr

sRsRtHR HH =⇒ )()( , Eq. (15-17) gives the transform 
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Applying final-value theorem (15-15) to Eq. (15-18) gives 
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Therefore, integral action does indeed eliminate the error that is inevitable from purely 
proportional control. 
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 Returning to transfer function (15-17), we see that integral action has increased 
the order of the system to 2nd order from the 1st order of the plant.  Accordingly, we can 
re-write the transfer function in terms of parameters appropriate for a 2nd order system: 
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in which the undamped natural frequency and the viscous damping ratio are, respectively,  
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Note that this system is not a standard 2nd order system, as defined in Eq. (9-13).  The 
term  in the numerator of Eq. (15-20) makes this system non-standard; that term 
corresponds to right-hand-side dynamics in the ODE describing the system, which is 

.  The non-standard character means, among other 
things, that the step-response specifications derived in Section 9-8 do 

sin τω 2

2 n +&θζω )(22 rrinn +=+ &&& τωθωθ
not apply exactly 

for this system. 
 
 For comparison with the previous cases of open-loop and P control, let’s solve for 
response of the PI-controlled system to step input sRsRtHRtr HH =⇒= )()()( .  Eq. 
(15-20) gives the transform 
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(15-22) 
 

The second form of Eq. (15-22) is written subject to the condition 1<ζ , so that  ≡ 

; since ζ  > 0 from Eq. (15-21), this means that we assume the system to 
be underdamped, at least initially.  With Eq. (15-22) in the second form, we can apply the 
following inverse Laplace transforms.  First, Eqs. (9-17) and (9-20) give: 
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Next, Eqs. (9-17) and (9-29) give (see homework Problem 9.12):  
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Substituting (15-23) and (15-24) into the inverse transform of (15-22), then combining 
terms appropriately, gives the step response of the PI-controlled underdamped system: 
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, for 10 <≤ ζ  and   (15-25) t≤0

 
In the numerical example to follow, we shall encounter cases of both underdamping and 
overdamping; therefore, it is appropriate to apply conversion Eq. (9-45) to underdamped 
response equation (15-25) in order to write the following equation for step response of 
the PI-controlled overdamped system: 
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in which 12 −= ζωμ dd . 
 
  Now that we have derived the equations for step response, let’s evaluate a numeri-
cal case with physically plausible parameters; in particular, let’s calculate and compare 
the step responses:  Eq. (15-8) for the open-loop system; Eq. (15-13) for the P-controlled 
system; and Eq. (15-25) or Eq. (15-26) for the PI-controlled system.  We let the time con-
stant of the open-loop system have the value 11 =≡ τθθ kc  sec, and we use the typical 
value P = 4 for the proportional gain.  For the PI-controlled system, we consider three 
different integral time constants, τi = 1/3, 2/3, and 1 sec.  The following is a MATLAB 
M-file that calculates the step responses and plots them on a single graph: 
 
%MATLABdemo151.m 
%1st order system:  spring-connected rotor in a viscous fluid 
%Step responses: open-loop, P-controlled, and PI-controlled 
t=0:.01:4; 
tau1=1;%time constant of open-loop system = 1 sec 
thOL=1-exp(-t/tau1);%open-loop step response ratio 
P=4;tau1P=tau1/(1+P); 
thP=P/(1+P)*(1-exp(-t/tau1P));%step response ratio, P control 
plot(t,thOL,t,thP),hold 
taui=[1/3 2/3 1];%step response ratios, three cases of PI control 
for ni=1:3, 
  wn=sqrt(P/(taui(ni)*tau1));zeta=(1+P)/(2*wn*tau1); 
  sig=zeta*wn;case_taui_zeta=[ni taui(ni) zeta] 
  if zeta < 1 
    wd=wn*sqrt(1-zeta^2); 
    thPI(ni,:)=1-exp(-sig*t).*(cos(wd*t)+(sig-wn^2*taui(ni))/wd*sin(wd*t)); 
  else 
    md=wn*sqrt(zeta^2-1); 
    thPI(ni,:)=1-exp(-sig*t).*(cosh(md*t)+(sig-wn^2*taui(ni))/md*sinh(md*t)); 
  end     
  plot(t,thPI(ni,:),'k') 
end 
grid,xlabel('Time t (sec)'),ylabel('Step response ratio \theta(t)/R_H') 
title('Position control of a spring-connected rotor in a viscous fluid') 

 

 15-10



 Chapter 15  Input-error operations:  proportional, integral, and derivative types of control 
 

The MATLAB command and resulting output are printed below.  The three cases shown 
are for PI control with integral time constant (“taui”) τi = 1/3, 2/3, and 1 sec; note the 
values of viscous damping ratio (“zeta”) ζ :  the system is underdamped for  τi = 1/3 sec, 
but overdamped for  τi = 2/3 and 1 sec. 
 
>> MATLABdemo151 
Current plot held 
 
case_taui_zeta = 
 
    1.0000    0.3333    0.7217 
 
case_taui_zeta = 
 
    2.0000    0.6667    1.0206 
 
case_taui_zeta = 
 
    3.0000    1.0000    1.2500 

 
Figure 15-6 is the graphical output from the MATLAB M-file. 
 

 
Figure 15-6  Step responses for no control (open-loop), proportional (P) control, and 
proportional-integral (PI) control 
 
 Figure 15-6 illustrates clearly the results derived previously regarding the time 
constants for open-loop and P control, and the final values of step response for open-loop, 
P control and PI control.  The new and interesting results on Fig. 15-6 relate to step re-
sponse of the system under PI control.  For all three values of τi , the speed of response is 
much faster than that of the open-loop system, and comparable to that for P control.  
Moreover, there is a design trade-off for this 2nd order system between rise time and over-
shoot.  Recall from Section 9-8 that rise time is the time required for the response first to 
reach the desired value, and overshoot is the maximum amount by which the response 
exceeds the desired value.  For most cases, the control designer would like to make rise 
time as fast as possible, and to minimize overshoot.  However, Fig. 15-6 shows that we 
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cannot simultaneously do both in this case:  rise time is fastest for small τi , but overshoot 
is minimized or eliminated with larger τi .  Therefore, the control designer must compro-
mise and select a value of τi  that produces practically acceptable values of both rise time 
and overshoot, even though neither response parameter would be the best possible. 
 

It is interesting to observe also from Fig. 15-6 that, for this non-standard 2nd order 
system, there is overshoot for τi = 2/3 sec ⇒ ζ = 1.02; in other words, there is overshoot 
even though the system is overdamped.  This is different from the step response of a posi-
tively damped standard 2nd order system (Section 9-8), for which overshoot can occur 
only if 0 ≤ ζ < 1. 
 
15-3  Derivation of the final-value theorem 
 

Consider a continuous physical function , with continuous derivative )(tf dtdf , 
and with Laplace transform )()]([ sFtfL = .  The final-value theorem expresses the final, 
steady-state value of  in terms of  as: )(tf )(sF
 

[ ])(lim)(lim
0

sFstf
st →∞→

=                             (15-15) repeated 

 
This theorem is useful for finding the final value because it is almost always easier to de-
rive the Laplace transform and evaluate the limit on the right-hand side, than to derive the 
equation for  and evaluate the limit on the left-hand side.  Final-value theorem (15-
15) is valid 

)(tf
provided that  exists (i.e., is a finite, constant value).  But we must 

apply Eq. (15-15) with care, because the theorem itself fails to distinguish between func-
tions for which the limit exists and functions which have no limit.  Indeed, the theorem 
can predict falsely that an unstable system has a limit when, in fact, there is none, i.e., 
that . 

)(lim tf
t ∞→

∞
∞→

)(lim tf
t

±→

 
 Derivation of the final-value theorem is based upon definition (2-13) of a Laplace 
transform and the Laplace transform (2-15b) of a derivative: 
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Taking the limit of all terms as s → 0 gives 
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s
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Now the integral is evaluated easily: 
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[ ] )0()(lim)0()()(
0

0

fsFsffdttf
dt
d

s

t

t

−=−∞≡⎥⎦
⎤

⎢⎣
⎡

→

∞=

=
∫  

 
⇒     [ ])(lim)(lim)(

0
sFstff

st →∞→
=≡∞  

 
This completes the derivation of final-value theorem (15-15), which was applied earlier 
to re-derive result (15-14) and in Eq. (15-19). 
 
15-4  Example of proportional-derivative (PD) control 
 
 Next, we consider the effect of derivative control, the third type of operation on 
the error signal indicated in Eqs. (15-1) and (15-2).  The derivative term (with bd = 1) in 
the actuator signal w(t) is dtdeP ed ×τ .  This term is proportional to the rate of change 
of the error signal, so it anticipates, in a sense, any increase in the error, and it acts to op-
pose that increase.  Derivative action is used in combination with proportional action or 
proportional-integral action, but not by itself.  Whereas proportional action has the effect 
of a restoring linear spring, derivative action has the effect of a viscous damper.  There-
fore, derivative control by itself would fail to provide action that forces system output 
toward the desired value. 
 
 A reality check is appropriate at this point.  The derivative output f an ed etx &≡)(  o
ideal PID controller in Eq. (15-1) is physically unrealistic, because it is not possible to 
measure exactly, in real time, the derivative  of the error signal.  Exact real-time meas-
urement of a derivative at an instant would require information about 

ee&
future values of the 

signal, but future values are unknown.  Another manifestation of the unrealism of the de-
rivative term is the associated transfer function, 1sEX ed = , which is written here as a 
fraction on the right-hand side so as to emphasize that the polynomial order (in s) of the 
numerator is higher than that of the denominator.  Thus, this transfer function is acausal, 
meaning that the current output of the ideal differentiator must be dependent upon future, 
as well as past and present, values of the error signal (see Bélanger, 1995, p. 440). 
 

Since the exact differentiator of Eq. (15-1) cannot be realized physically, an actual 
PD controller often includes an approximate differentiator in the form of a 1st order high-
pass filter described by the ODE eddd exx &&ε + =τ ; in this ODE, dτ  is the derivative time 
constant, and ε  is a small positive number typically selected to be in the range 0.1 to 0.3 
(Ogata, 2001, pages 700 and 727).  The transfer function of this approximate differen-
tiator is =)()( sEsX ed )1( +ss dετ , which is causal, therefore physically realizable.  For 
error signals that are slowly varying in time relative to the high-pass-filter break 
frequency )(1 dετ  rad/sec, this approximate differentiator is very accurate, but for faster 
error signals the device’s output fails to approximate the derivative of the error signal 
(see homework Problem 15.4).  In practice, therefore, the selection of parameters dτ  and 
ε  is based at least partly on the speed of signals that the PD controller is expected to 
process.  The operation of an actual PD controller using the approximate differentiator is 
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w(t) = [ )()( txteP dde ]τ+ ; you can easily show that the transfer function of the actual PD 
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It is standard in introductory discussions to describe PD control in the context of 

the ideal (though physically unrealizable) differentiator ed ex &≡ , rather than the more 
realistic approximate differentiator eddd exx && =+ετ .  The approximate differentiator 
leads to a higher-order system and much more complicated algebra, from which it is dif-
ficult to infer basic physical characteristics of PD control.  Therefore, in the rest of this 
section, and in the continued examination of this same example in homework Problem 
15.1 and in Section 16-2, we shall follow the standard introductory procedure and use the 
ideal PD-controller transfer function P(1 + τd s) from Eq. (15-2).  Most of the theoretical 
results produced by this approach are good approximations to what would be realized 
from a properly designed real PD controller, at least for sufficiently slowly varying inputs 
and outputs. 

 
 To illustrate proportional-derivative (PD) control, we consider again the problem 
of controlling position )(tθ  of a rotor with significant inertia J, as discussed in Chapter 
14 [Figs. 14-1, 14-2, and 14-5, and Eqs. (14-1) 
and (14-2)].  Recall that the input to the system 
is operator setting r(t).  Let’s neglect distur-
bance moments, Md(t) = 0.  Figure 15-7 is the 
Laplace block diagram for the P-controlled 
system, from which the loop transfer functions 
are G(s) = PKa ⁄ (Js2) and H(s) = Kθ .  Hence, we 
use Eq. (14-16) to find  

 R(s) Θ(s)
+_ 2

1
Js P 

Figure 15-7  Proportional control of 
rotor position 

Ka Kr 

Kθ 
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Undamped natural frequency in this CLTF(s) is defined by ωn
2 = PKaKθ ⁄ J.  Suppose that 

the input is a step function with magnitude RH :  r(t) = RHH(t).  For this input, the Laplace 

transform of response is 22

2

)(
n

nrH

sK
K

s
R

s
ω

ω

θ +
=Θ .  Application of inverse transform (15-

24), with 0=ζ , gives the step response )cos1)(()( tKKRt nrH ωθ θ −= .  This is un-
damped motion that oscillates forever about the desired final value, θθ KKR rH= [see 
Eq. (7-14) and Fig. 7-3], so it is unacceptable for a position control system.  In this case, 
P control alone has the effect of a restoring linear spring, but it provides no damping. 
  R(s) Θ(s)

+_ 2
1

Js

Figure 15-8  Ideal proportional-derivative 
(PD) control of rotor position 

Ka Kr 

Kθ 

)1( sP dτ+
W(s)  In order to improve the control 

performance, we add derivative action, 
upgrading from P control to ideal PD 
control.  From Eq. (15-2) with bi = 0 
and bd = 1, the ideal PD-controller 
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transfer function is )1( sP dτ+ , so the Laplace block diagram for the closed-loop system 
becomes that shown in Fig. 15-8.  In this case, the loop forward-branch transfer function 
is G(s) = P(1 + τds)Ka ⁄ (Js2), so the closed-loop transfer function of the system is  
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As we did in Eqs. (15-20) and (15-21), which apply to PI control (but of a different 
plant), we can now re-write this PD closed-loop transfer function in terms of parameters 
appropriate for a damped 2nd order system: 
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In Eq. (15-27) the undamped natural frequency and the viscous damping ratio are, respec-
tively:  
 

dnd
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n J

KPK
J

KPK
τωτ
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2
1

2
1and ===                  (15-28) 

 
The obvious effect of the derivative action is to add damping to the 2nd order system, and 
this damping improves the control performance (see homework Problem 15.1).  Note also 
that the term  in the numerator of Eq. (15-27) makes this system non-standard 
relative to definition (9-13) of the standard 2nd order ODE.  The non-standard character 
means, among other things, that the step-response specifications derived in Section 9-8 
do 

sdn τω 2

not apply exactly for this system. 
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15-5  Homework problems for Chapter 15 
 
15.1  Consider closed-loop transfer function (15-27), with definitions (15-28), for posi-
tion control of a rotor by an ideal PD controller. 
 
(a)  Suppose that we know rotational inertia J, actuator sensitivity Ka , and equal input 
and feedback transducer sensitivities, Kr = Kθ , and that we want to specify (i.e., “design”) 
the undamped natural frequency ωn and the viscous damping ratio ζ for this controlled 
system.  Hence, we need to determine appropriate values for proportional gain P and de-
rivative time constant τd , which we would set in the PD controller.  For a particular sys-
tem, we have J = 2.56e−3 lb-sec2-inch (the value for a small aluminum wheel about four 
inches in diameter, Fig. 3-1), and the product Kr Ka = 0.0350 lb-inch/rad; let’s specify fn = 
ωn ⁄  2π = 1.00 Hz (so that step-response rise time will be around ¼ sec) and ζ = +0.1 (too 
low for most practical control systems, but it suits the overall purposes of this problem).  
Calculate the required values of P and τ d (sec).  
 
(b)  Use the MATLAB residue operation (see homework Problem 2.15) to expand the 
transfer function [with the numerical values of part (a)] into a partial-fraction expansion.  
The poles are critical to the stability of any system, which is the subject of Chapter 16.  
For this system, you should find a pair of poles that are complex conjugates, and their 
real part should be negative—this means that the system is stable. 
 
(c)  Let the input be a step, r(t) = RH H(t).  First, apply the final-value theorem to find 

)(lim t
t

θ
∞→

.  Next, use inverse transforms (15-23) and (15-24) [or just appropriately adapt 

step response (15-25) to this case] to show that the step response is  
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Finally, let the input step magnitude be RH  = 0.1 radian, with the numerical values of part 
(a), and  use MATLAB to plot the output θ(t) over the time interval 0-2.5 sec, about 2½ 
cycles. 
 
(d)  To simulate what would happen if you made a mistake and got the wrong sign for τd 
(and therefore for ζ ), let ζ  = −0.1, and repeat the operations of parts (b) and (c).  If you 
can plot θ(t) for both ζ  = +0.1 and ζ  = −0.1 on the same graph, it will enhance compari-
son of the two cases.  For ζ = −0.1, you should find the real part of the complex conjugate 
poles to be positive; the associated time history θ(t) should indicate system instability.  
Observe for this unstable system that the final-value theorem incorrectly predicts a finite 
steady-state value for this step response. 
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15.2  Consider ideal PID 
control of the position of 
a rotor that has significant 
inertia J.  Let’s also ac-
count for a disturbance 
moment Md(t) acting up-
on the rotor.  The Laplace block diagram for this 3rd order system is drawn above.  In the 
following exercises, assume that this system is stable. 
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(a)  For zero disturbance, Md(s) = 0, derive the algebraic equation for closed-loop transfer 
function Θ(s)/R(s).  For step input, r(t) = RH H(t), apply the final-value theorem to find 

)(lim t
t

θ
∞→

. 

 
(b)  For zero input, R(s) = 0, derive the algebraic equation for closed-loop transfer func-
tion Θ(s)/Md(s).  For step disturbance, Md(t) = MH H(t), apply the final-value theorem to 
find )(lim t

t
θ

∞→
.  A control system should suppress permanent output due to a step distur-

bance. 
 
15.3  Consider PI control of the speed (not position) of a rotor that has significant inertia 
J.  The sensor on the output is a tachometer with gain constant Kp, so the electrical signal 
that is fed back is Kp .  (This configuration illustrates a general rule-of-thumb in control-
system design:  sense and feed back the quantity that you want to control.)  This is a sim-

plified model, for example, of 
an automobile’s cruise-control 
system.  Let’s also allow for a 
disturbance moment Md(t) act-
ing upon the rotor.  The La-
place block diagram for this 
system is at left.  

θ&
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(a)  For zero disturbance, Md(s) = 0, derive the algebraic equation in terms of all parame-
ters on the Laplace block diagram for the closed-loop transfer function )(][ sRL θ&  that 
relates output rotational velocity  to input command r(t).  For step input, r(t) = RH ×  
H(t), apply the final-value theorem to find the algebraic equation for , assuming 

that this asymptotic value exists.  Explain (perhaps using an example from your own ex-
perience, such as a cruise-control system) the physical significance of the ratio Kr /Kp of 
the input-transducer sensitivity to the tachometer sensitivity. 

)(tθ&

)(lim t
t

θ&
∞→

 
(b)  Derive algebraic equations for undamped natural frequency ωn and viscous damping 
ratio ζ of this controlled system, in terms of inertia J, actuator sensitivity Ka , tachometer 
sensitivity Kp , proportional gain P, and integral time constant τ i .   
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15.4  In this problem, you will produce graphically and compare the frequency-response 
functions of the exact, but physically unrealizable differentiator ed ex &≡  (which is used in 
this book for ideal PD control) and an approximate, but physically realizable differenti-
ator that has the character of a high-pass filter.  
 
 (a)  Section 15-4 gives the ODE of the approximate differentiator as eddd exx && =+ετ , 
with dτ  being the positive derivative time constant and ε  being a small positive number 
in the range 0.1-0.3; show that the complex frequency-response function (FRF) of output 
signal  relative to input signal  is)(txd )(tee ( )djjFRF ωετωω = +1)( . 
 
(b)  For frequency response, the input signal has the steady-state sinusoidal form =)(tee  

tEe ωcos  and the output signal has the corresponding form )cos()()( φωω += tXtx dd .  
Use the FRF of part (a) to show that the equations for FRF magnitude ratio and phase of 

the approximate differentiator are ωπω 1tan
2

)( −−=φ
ω

ω
ω

ω
2

and
1

)(

+
=

eb

d

E
X

, in which 

the break frequency is bdb fπετω 2)(1 =≡  and the dimensionless frequency ratio is 

bb ff=≡ ωωω .  Use the magnitude-ratio equation to derive equations for the low-
frequency and high-frequency asymptotes, and sketch those asymptotes on a log-log 
graph such as Fig. 4-2.  The approximate differentiator should exhibit the character of a 
high-pass filter, analogous to the system of homework Problem 4.4.  Use the asymptotes 
as an envelope to guide you in sketching the actual curve of ( )ebd EX ωω)( , as is done 
on Fig. 4-2.  Finally, on a semi-log graph below the log-log graph (analogous to Fig. 4-1), 
sketch the variation with frequency of phase )(ωφ . 
 
(c)  Now consider the exact differentiator, with equation ed ex &≡ .  Repeat all the steps of 
parts (a) and (b) for the exact differentiator, sketching the magnitude-ratio and phase 
curves on the part (b) graphs, but in some different color or line style, so that the curves 
for exact and approximate differentiators are clearly distinguishable.  You should be able 
to infer from these final graphs the ranges of frequency over which the approximate dif-
ferentiator is reasonably accurate, or inaccurate. 
 
15.5  Consider the transfer function of the PD-controlled rotor position of Section 15-4, 
Eq. (15-27) with equal input and feedback transducer sensitivities, Kr = Kθ , in the form 

ardar

dar

PKKsPKKJs
sPKK
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s

++
+

=
Θ

τ
τ

2

)1(
)(
)( .  Use this transfer function and the block diagram of 

Fig. 15-8 to write the algebraic equation for the transfer function of the PD controller, 
W(s) ⁄ R(s).  Now, examine the nature of W(s) ⁄ R(s) in the following steps: 
 
(a)  Find the order m of the numerator polynomial and the order n of denominator poly-
nomial of W(s) ⁄ R(s).  Is this transfer function causal or acausal, and what does that mean 
in theory regarding the physical realism of W(s) ⁄ R(s)? 
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(b)  Suppose that the input is the infinitely fast step function r(t) = RH H(t) of homework 
Problem 15.1(c).  Show that the controller-output transform W(s) must have a constant 
direct term, as defined in homework Problem 2.15.  What is the component of time 
response w(t) that corresponds to the direct term of W(s), and is this a physically 
realizable signal from a real device?  Your conclusions from parts (a) and (b) should be 
compatible. 
 
(c)  If you conclude in parts (a) and (b) that something is physically unrealistic about 
these theoretical results, then what is there in the theoretical analysis that makes the re-
sults defective?  Propose a remedy that should produce physically realizable results, and 
show succinctly, with appropriate algebraic equations and written explanation (but no 
calculations), why your proposed remedy should work. 
 
15.6  Consider control of a spacecraft’s pitch attitude, θ(t), for which the ODE of motion, 
from Eq. (14-7), is , where  is a disturbance moment.  In this 
problem, you will apply a physically realizable form of PD control, with the control 
actuator moment defined as = Ka × w(t), where Ka is the actuator sensitivity.  The 
output signal from the realizable PD controller is w(t) = 

)()( tMtMJ da +=θ&&

)(tM a

)(tM d

[ ])()( txteP dde τ+ , where  
is the dependent variable in the ODE 

)(txd

ee&dd xx&d =+ετ  (see the relevant discussion in Sec-
tion 15-4).  The input error is ee(t) = Kr r(t) − Kθ θ(t), where r(t) is the input operator set-
ting, and Kr and Kθ are the transducer sensitivities at, respectively, the input and output 
feedback. 
 
(a)  Draw and label completely the Laplace block diagram of this system, from input R(s) 
≡ L[r(t)] to output Θ(s) ≡ L[θ(t)], including disturbance moment signal Md(s) = L[Md(t)]. 
 
(b)  For Md(s) = 0, derive from the block diagram of part (a) the closed-loop transfer 
function CLTF(s) = Θ(s) ⁄ R(s) = Num(s) ⁄ Den(s), where Num(s) and Den(s) are polyno-
mials in powers of s.  Partial answer:  Den(s) = Js2(ετd s + 1) + PKa Kθ [τd (1 + ε) s + 1] 
 
(c)  For step input, r(t) = RH H(t), apply the final-value theorem to find )(lim t

t
θ

∞→
, provided 

that the system is stable. 
 
(d)  How does CLTF(s) in part (b), for a physically realizable form of PD control, differ 
from the corresponding closed-loop transfer function that applies for an ideal but unreal-
izable PD controller, for which w(t) = [ ])()( teteP dde &τ+ ?  [Do not re-derive this CLTF(s) 
from scratch; instead, just make a simple substitution in the CLTF(s) of part (b).]  Discuss 
in one or two sentences. 
 
15.7  Consider the “position actuator” depicted on functional diagram Fig. 15-4, which 
represents a system for control of a rotor immersed in a viscous liquid.  Suppose that the 
position actuator is the rotor-position control system of Fig. 14-11, and that Fig. 14-12 is 
the actuator’s Laplace block diagram.  Your assignment in this problem is to revise the 
immersed-rotor control system’s Laplace block diagram, Fig. 15-5, to incorporate the po-

 15-19



 Chapter 15  Input-error operations:  proportional, integral, and derivative types of control 
 

sition-actuator dynamics, replacing the simplified block of actuator gain Ka with an ap-
propriate version of Fig. 14-12, and making any other necessary modifications.  There are 
at least three significant changes required, the first two being notational.  (1) You should 
re-label the input of the modified Fig. 14-12 to W(s) ≡ L[w(t)], replacing R(s), and also 
re-label the output to Θa(s) ≡ L[θa(t)], replacing Θ(s).  (2) In order to avoid notational 
ambiguity, you should re-label all system components on Fig. 14-12 having subscripted 
symbol K, with subscripted symbol Q, e.g., on the revised Fig. 14-12, Kr  Qr , and Ka 

 Qa , etc.  (3) It is necessary to recognize that the rotational spring with stiffness kθ 
shown on Fig. 15-4 imposes upon the position actuator a moment kθ(θ − θa).  The quanti-
ties labeled on Figs. 14-11 and 14-12 that can represent moment kθ(θ − θa) are, respec-
tively, Md(t) and Md(s), for example, Md(s) = kθ[Θ(s) − Θa(s)].  (However, the moment 
kθ(θ − θa) is clearly defined and not at all random or unpredictable mathematically, so it 
is not truly a disturbance in the sense defined in Section 14-2, with reference to Fig. 14-
2.)  Accounting for items (1)-(3) and any other necessities, draw a Laplace block diagram 
of the immersed-rotor control system, a diagram that incorporates the position-actuator 
dynamics from Fig. 14-12.  This block diagram will be somewhat longer than others ap-
pearing in this book.  It is not required that you simplify this block diagram to derive an 
algebraic expression for the closed-loop transfer function; it is possible to do so using the 
operations of block-diagram algebra described in Chapters 13 and 14, but the process 
would be complicated algebraically, and it would produce a very long and messy equa-
tion for CLTF(s).  Modern processes using specialized computer software are more ap-
propriate than algebra-by-hand for a task such as this.  For example, if you had numerical 
values for all the system parameters (J, kθ , Qr , …, τ1 ,  P, etc.), then you could easily 
generate a single equation for CLTF(s) with MATLAB by using the functions tf, and 
feedback, and series (or, rather than series, simply the operation of transfer function 
multiplication). 
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 Section 16-1 is a lengthy and detailed, perhaps almost tedious, development of the 
theory underlying time-response stability criteria.  Section 16-2, on the other hand, is a 
specific example, based upon a control system from Chapter 15, which illustrates explic-
itly many of the theoretical results of Section 16-1.  Rather than reading the two sections 
sequentially, in series, you, the student, might find the material more interesting and in-
structive if you read Sections 16-1 and 16-2 together, in parallel. 
 
16-1  General time-response stability criterion for linear, time-invariant systems 
 

For any linear, time-invariant (LTI), single-input-single-output (SISO) physical 
system, we denote the input as u(t) [or r(t), the reference operator setting for controlled 
systems] and the output as x(t).  For an nth order system, in general, the input and output 
are related by an ODE of the form 
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Symbols  and  are constants (with the numbering system keyed to 
MATLAB notation), and m ≤ n.  With use of Eq. (2-16), especially for initial-condition 
terms, the Laplace transform of Eq. (16-1) is 
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The initial-condition terms on the left-hand side are algebraically messy; it will suit our 
purposes to combine together known ak constants and known initial conditions into con-
stant coefficients denoted as ICk , and to express the initial-condition terms in the follow-
ing simpler algebraic form, arranged in order of descending powers of s: 
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Therefore, we can express Eq. (16-2) in the algebraically simpler form, 
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The algebraic solution of Eq. (16-3) for the Laplace transform of the output is: 
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It is appropriate now to examine the nature of transform solution (16-4).  Let’s re-
fer to the first term on the right-hand side as the “IC-response transform,” and to the sec-
ond term as the “forced-response transform.”  Observe first that the coefficient of input 
transform L[u(t)] in the forced-response transform is the system transfer function, from 
Eq. (4-23), 
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If the system is controlled with use of feedback, then Eq. (16-5) represents the closed-
loop transfer function, which we usually denote as CLTF(s).  It is conventional to express 
TF(s) in the following form, with both numerator and denominator polynomials factored: 
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The m roots zk of polynomial equation Num(z) = 0 are called the zeros of the transfer 
function, since TF(s) = 0 if s equals any zk .  The n roots pk of polynomial equation 
Den(p) = 0 are called the poles of the transfer function, because TF(s) → ∞ if s equals 
any pk .  [Imagine the complex space surface TF(s) graphed as a function of coordinates 
Re(s) and Im(s):  for s in the vicinity of any pk , the surface will look something like that 
of a circus tent near where it is held up by a structural pole; however, whereas the circus-
tent pole has finite length, the mathematical pole is infinitely long.] 
 

Observe next that both right-hand-side terms of Eq. (16-4) have in their denomi-
nators the term Den(s) defined in Eq. (16-6).  This term is the key to system stability.  
The nth degree polynomial equation Den(p) = 0 is the general1 characteristic equation of 
the system, and its n roots are the poles pk , k = 1, 2, …, n.  System stability is determined 
by the signs of the real parts of the poles.  The general result is: 
 

If  Re(pk) < 0 for all k = 1, 2, …, n, then the system is stable.  If, on 
the other hand, there is at least one pole for which Re(pk) > 0, then 
the system is unstable. 

                                                 
1 The characteristic equation of the free-vibration problem described in Chapter 12 is a specific form, 
applicable only to undamped free vibration, of this general characteristic equation. 
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In order to justify this general stability criterion, we shall continue the analysis of Eq. 
(16-4) by deriving the inverse transform conceptually; however, it is appropriate first to 
state the criterion above, without proof, so that you can see the simple yet very important 
result of the analysis without being burdened by all the details of the derivation. 
 

First, let’s review without proof some basic results from the theory of polynomial 
equations with real coefficients, a subject covered in most algebra textbooks.  The roots 
of such equations are either real or complex.  Moreover, complex roots always appear in 
conjugate pairs.  For example, if one of the roots of Den(p) = 0 is complex,  = kp

kk jωσ + , where kk ωσ and  are real, then one of the other roots is the complex conju-
gate, kk jkpkp ωσ −==+1 . 
 
 Returning to Eq. (16-4), let’s evaluate first the IC-response transform.  The nu-
merator polynomial is of degree less than n, that of the denominator polynomial, so we 
can usually expand the entire term into simple partial-fraction form [see the discussion 
surrounding Eq. (2-25)]: 
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Right-hand-side constants Ck in Eq. (16-7) are called residues.  Some relevant results 
from the theory of fractions of polynomials with real coefficients are:  if pole pk is real, 
then the associated residue Ck also is real; if pole pk is complex, then the associated resi-
due Ck also is complex, and the residue associated with the complex conjugate pole pk+1  
is the conjugate of , kC kk CC =+1 .  It will be useful in derivations that follow to express a 
complex residue in polar form, kCj

kk eCC ∠≡ , in which kC  is the absolute value (as in 
the MATLAB function abs), and kC∠  is the angle (as in the MATLAB function angle).  
See Section 2-1 for a review of complex numbers and complex arithmetic. 
 
 Taking the inverse transform of Eq. (16-7) to find initial-condition response, we 
deal, in general, with two “Types” of terms:  (1) terms that have real poles and real 
residues; and (2) pairs of terms that have complex conjugate poles and complex 
conjugate residues.  The inverse of any Type 1 term is a simple real exponential, from 
Eq. (2-14): 
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In Eq. (16-8), if pk < 0, then the term decays exponentially as time increases, which is 
stable response.  Such a term decays eventually to a static equilibrium state of zero; let’s 
call this exponential stability.  However, if pk > 0, then the term is a permanently growing 
exponential as time increases, which is unstable response.  Finally, if pk = 0, then the term 
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is constant in time; such response is bounded and therefore not unstable, which is good 
for practical purposes; but it is also not so stable that it eventually decays to zero. 
 
 Next, let’s consider Type 2 terms, as defined above Eq. (16-8), and derive the in-
verse transform of a pair of terms that have complex conjugate poles and complex conju-
gate residues.  In the following sequence of operations, we apply:  first, Eq. (2-14); next, 
identities derived in homework Problems 2.3(a) and 2.4; and, finally, Euler’s equation, 
Eq. (2-8): 
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Equation (16-9)2 varies with time as a sinusoid modulated by an exponential envelope.  
With respect to stability, the critical term is the exponential envelope, , and its 
character is determined by the sign of 

tkeσ

)Re( kk p≡σ .  If  < 0, then is a de-
caying exponential, and the total response is a 

)Re( kp te pk )Re(

stable positively damped oscillation.  
However, if  > 0, then is a permanently growing exponential, and the total 
response is an 

)Re( kp tpke )Re(

unstable ever-expanding oscillation.  Finally, if  = 0, then is 
constant in time, and the total response is a sinusoid of constant magnitude; such re-
sponse is bounded and therefore not unstable; but it is also not so stable that it eventually 
decays to a static equilibrium state, i.e., it is 

)kpRe( tpk )Re(e

not exponentially stable. 
 

Now that we have derived the stability criterion for the IC-response terms of Eq. 
(16-4), let’s turn our attention to the forced-response transform, 
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(16-10) 
 
We shall consider explicitly in this derivation only transfer functions for which the fol-
lowing practically common conditions apply:  m < n; no pole is repeated; no zero equals 
any pole.  With these restrictions and with another restriction described in the next para-
graph, this particular derivation does not apply to all conceivable LTI systems.  However, 
the general derivation is more involved than necessary for our purposes.  The stability 
criterion that we shall derive applies to any LTI system, even though we will not prove it 
in general.  In Section 16-2, a specific, non-trivial system is analyzed in detail, in order to 
illustrate all of the theory that is developed in this section. 
 

                                                 
2 When applying Eq. (16-9), you should assign the title of pk  to the one root (of the complex conjugate pair 
of roots) for which  Im( pk) ≡ ωk > 0, in order to define the oscillatory frequency as being positive.  Then 
you should assign the title of  Ck  to the residue that is associated with the root for which  Im( pk) > 0. 
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In order to find the conceptual inverse of Eq. (16-10), let’s consider the nature of 
transform L[u(t)] for physically common input functions u(t).  In this derivation, we shall 
consider explicitly only the type of input function whose Laplace transform is a fraction 
of polynomials in the Laplace variable s, with the numerator polynomial being of lower 
degree than the denominator polynomial.  (However, the same stability criterion that we 
derive for this special type of input function can be derived for any physically realizable 
input function.)  The following are simple examples of this type of input function, which 
are defined to be non-zero only for t ≥ 0:  ideal step , for which )(tH stHL 1)]([ = ; ex-
ponential-unit-impulse ττte− , for which )1[ +− seL t ττ (1] =τ ; exponential-unit-step 

τte−−1 , for which )]1([1]1[ +=− − sseL t ττ  (see homework Problem 8.6 for a discussion 
of the exponential-unit-step and exponential-unit-impulse functions); ramped exponential 
pulse τtet − , for which ][ τtetL −  = 2)1(1 τ+s ; and sinusoid cosωt, for which L[cosωt] = 

)( 22 ω+ss .  Let’s denote the Laplace transform of such input functions in a general 
form: 
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Constants ci and di are known coefficients of powers of s, and constants qi and wi are, re-
spectively, poles and zeros of the input transform.  Keep in mind that we assume Nu(s) in 
Eq. (16-11) to have lower degree than Du(s), mu < nu . 
 
 Proceeding with the conceptual forced-response solution, we substitute Eq. (16-
11) into Eq. (16-10): 
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Forced-response transform (16-12) is a fraction of polynomials in s, with numerator poly-
nomial degree m + mu being less than denominator polynomial degree n + nu.  Therefore, 
we can, in principle, usually expand (16-12) into the following form, in which terms that 
are associated explicitly with the transfer-function poles have simple partial-fraction 
form, including residues : kCU
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The symbol  denotes terms associated explicitly with poles qi of the input trans-
form.  Depending upon the specific nature of , these terms might or might not 
have simple partial-fraction form.  In any case, the terms in  have the same poles 
qi as the input transform, which are always stable poles, so these terms cannot produce 
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instability.  Therefore, instability of the forced-response can exist only in the terms 

∑
=

−
n

k
kk psCU

1
)( , i.e., the terms containing the poles of the system transfer function. 

 The forced-response terms ∑
=

−
n

k
kk psCU

1

)(  are identical in form to the IC-re-

sponse terms ∑
=

−
n

k
kk psC

1
)(  of Eq. (16-7).  Recall that the analysis of stability for IC-

response [Eqs. (16-8) and (16-9) and the associated discussion] was based upon that 
form.  Therefore, the analysis of stability for forced-response is identical to that for IC-
response, so we need not repeat it.  However, it is worth repeating, for emphasis, the gen-
eral stability criterion for LTI systems that has been derived (albeit, not generally) here: 
 

For an nth order LTI system, the poles of the transfer function are 
denoted as pk, k = 1, 2, …, n.  If  Re(pk) < 0 for all k = 1, 2, …, n, 
then the system is stable.  If, on the other hand, there is at least one 
pole for which Re(pk) > 0, then the system is unstable. 

 
Observe from the derivation that the stability or instability of an LTI system does 

not depend upon ICs or forcing—it is an intrinsic property of the system.  However, by 
referring to general transform solution (16-4), one might make the mathematical argu-
ment that if all initial conditions were zero, and if forcing input u(t) also were zero, then 
the solution would be x(t) = 0, and therefore even a system that has an unstable pole, 
Re(pk) > 0, would be stable if there were no stimulus.  In physical reality, though, there is 
always some perturbation or excitation, no matter how small, acting upon a system; and 
even the tiniest IC or forcing input, which would be negligible for a stable system, will 
always be enough to provoke the instability of an unstable LTI system. 
 
16-2  Stable and unstable PD-controlled-rotor systems 
 
 In this section, we analyze in detail a specific example of the theory developed in 
Section 16-1.  The situation considered is ideal proportional-derivative (PD) control of 
position θ(t) of a rotor with significant inertia J, as described in Section 15-4 and home-
work Problem 15.1.  The sensitivity of identical input and output-feedback transducers is 
denoted Kr = Kθ , moment actuator sensitivity is Ka, and, for the ideal PD controller, pro-
portional gain is P and derivative time constant is τd .  The transfer function of this sys-
tem, from Eqs. (15-27) and (15-28), is 
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with 2nd order-system standard parameters defined as 
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 The first useful thing that we can do with transfer function (16-14) is infer the 
system ordinary differential equation (ODE) by inverse Laplace transformation: 
 

)(2)()]1([)(]2[ 22222 rrsRssss dnnndnnn +=++⇒+=Θ++ &&&& τωθωθζωθτωωζω  
(16-15) 

 
Recall that the transfer function is based upon zero ICs for the output.  But we want to 
account for ICs now, so let’s take the complete Laplace transform of the ODE, including 
the possibly non-zero ICs, initial rotation rate  and initial position 0)0( θθ && ≡ 0)0( θθ ≡ : 
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 The solution of Eq. (16-16) for the output transform is 
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Compare specific transform solution (16-17) with the general form (16-4).  Next, let’s 
factor the denominator polynomial of the transfer function.  It is convenient for this pur-
pose to assume that 1<ζ , and to define the positive, real, damped natural frequency as 

dω  = 21 ζω −n .  You can easily derive from the quadratic formula (or just substitute in 
the right-hand side to verify) the factoring: 
 

))((2 22 pspsss nn −−=++ ωζω , where the complex pole is dn jp ωζω +−=  (16-18) 
 
Hence, we re-write transform (16-17), and express it in terms of IC-response and forced-
response components: 
 

)()()(
))((

)1(
))((

)2(
)(

2
000 sssR

psps
s

psps
s

s fic
dnn Θ+Θ≡
−−
+

+
−−

++
=Θ

τωθζωθθ &
      (16-19) 

 
The IC-response term of Eq. (16-19) is expanded into partial-fraction form: 
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Using the conventional labor-saving partial-fraction-expansion method of Sections 2-2 
and 2-3, and dn jp ωζω +−=  from Eq. (16-18), and a little algebra, we find the follow-
ing complex residue of Eq. (16-20): 
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Hence, substituting Eqs. (16-18) and (16-20) into inverse transform (16-9) gives the IC-
response [with C given by Eq. (16-21)]: 
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 Next, let’s derive the forced response of this controlled system to a specific, non-
trivial input, the ramped exponential pulse ττ t

p etRtr −= )()( , the maximum value of 

which is . The Laplace transform of this pulse is R(s) = 1
max )( −=== eRtrr pτ

2)1 τ+()( τ sRp .  The transform of the forced response, from Eq. (16-19), is 
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The fraction of polynomials in Eq. (16-23) can be expanded in the following form: 
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CR, A, and B are constants that we need to find.  We have not previously encountered a 
case of repeated poles such as this.  The last two right-hand-side terms in Eq. (16-24) 
show the form that a partial-fraction expansion must have for repeated poles (Ogata, 
1998, p. 33).  We find complex residue CR using the conventional method: 
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in which dn jp ωζω +−= .  To find constants A and B, it is useful to multiply through Eq. 
(16-24) by the denominator factor with repeated poles (Ogata, 1998, p. 33): 
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From Eq. (16-26), we easily find constant A using the conventional method: 
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Finding constant B is expedited by first differentiating Eq. (16-26) with respect to s, so 
that constant B stands alone in the last right-hand-side term: 
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Hence, we find constant B by evaluating Eq. (16-28) at τ1−=s : 
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Even though p is complex, dn jp ωζω +−= , the constants A in Eq. (16-27) and B in Eq. 
(16-29) turn out to be real.  The factors that appear to be complex are: )1)(1( pp ++ ττ  
=  )dn j1()1( dn j ωζωζω ω ττ −−+−  =  22)1( dn ωζωτ +− , which is real; and τ2  + 
p  + )1(2 np ζωτ −= , which also is real.  Thus, the final, more clearly real formulas for 

constants A in Eq. (16-27) and B in Eq. (16-29) are 
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With complex residue CR from Eq. (16-25), and real constants A and B from Eq. (16-30), 
the forced-response equation is found from the inverse transform of Eq. (16-24): 
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τ
ω

τ
ω
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pf eBtACRteCRRsFLRt n −−− ++∠+== )()cos(2)()(

2
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2

(16-31) 
 

The terms τteBtA −+ )(  in Eq. (16-31) are associated with the poles of the forcing func-
tion ττ t

p etRtr −= )()( .  Observe that these terms vary in time similarly to , but that 
they have 

)(tr
no influence over the positive or negative stability of the system.  Only the ex-

ponential function , which is in the term associated with the system (transfer-func-
tion) poles, determines the state of system stability. 

tne ζω−

 
The complete output equation is the combination of IC-response (16-22) and 

forced-response (16-31): 
 

)()()( ttt fic θθθ +=                                             (16-32) 
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Let’s calculate and plot responses for a particular system.  The basic parameters 
are:  rotor inertia J = 0.00256 lb-sec2-inch (the inertia of a small aluminum wheel about 
four inches in diameter); and product of sensitivities Kr Ka = 0.0350 lb-inch/radian.  Let’s 
specify for the closed-loop system:  undamped natural frequency fn = ωn ⁄ (2π)  = 1.0 Hz 
(so that step-response rise time would be around ¼ sec); and damping ratios ζ = + 0.12 
for a case of positive stability, and ζ = − 0.03 for a case of instability.  The MATLAB M-
file below uses Eq. (15-28) to calculate the proportional gain P = ωn

2J ⁄ (Kr Ka) = 2.888 
and the derivative time constants τ d = 2ζ ⁄ ωn = 0.0382 sec and −0.00955 sec listed in the 
alphanumeric output for the two different cases. 
 

In order to have non-trivial initial conditions, let’s specify initial rotation rate 
 ≡  = −0.29 rad/sec and initial position )0(θ& 0θ& 0)0( θθ ≡  = −0.025 radian.  For the ramp-

ed-exponential input function τt−τp etRtr = )()( , let’s specify magnitude  = 0.1 × e 

radian = 0.2718 radian and time constant τ  = 1.5 sec, so that  = 0.1 radian at 
time t = 1.5 sec.  (Most of the input values specified above were chosen by trial and error 
to produce clear and instructive graphical output.) 

pR
1

max
−= eRr p

 
A MATLAB script M-file for computing and graphing the response follows: 

 
%MATLABdemo161.m 
%Stability of a PD-controlled rotor 
%Excitation with initial conditions and a ramped exponential pulse 
J=2.56e-3;KrKa=0.035;fn=1;wn=2*pi*fn;P=wn^2*J/KrKa; 
disp('P ='),disp(P) 
zeta=[0.12 -0.03]; 
for nc=1:2; 
zt=zeta(nc);wd=wn*sqrt(1-zt^2);p=-zt*wn+j*wd;Td=2*zt/wn; 
disp('Case #, zeta, Td, p ='),disp([nc zt Td p]) 
%Initial-condition response 
th0=-0.025;dth0=-0.29; 
C=(th0-j*(dth0+zt*wn*th0)/wd)/2;abC=abs(C);anC=angle(C); 
t=0:.05:10; 
thic=2*abC*exp(-zt*wn*t).*cos(wd*t+anC); 
%Forced response 
Rp=0.1*exp(1);tau=1.5;r=Rp/tau*t.*exp(-t/tau); 
CR=(Td*p+1)/(j*2*wd*(p+1/tau)^2);abCR=abs(CR);anCR=angle(CR); 
c1=1-Td/tau;c2=1/tau-zt*wn;c3=c2^2+wd^2;A=c1/c3; 
B=(c3*Td+2*(1-Td/tau)*c2)/c3^2; 
thf=Rp*wn^2/tau*(2*abCR*exp(-zt*wn*t).*cos(wd*t+anCR)+(A*t+B).*exp(-t/tau)); 
subplot(2,1,nc),plot(t,thic+thf,t,r),grid 
end 
 
The command to execute the M-file, and the resulting alphanumeric output and graphical 
output (after use of MATLAB’s editing features for annotation and graphical enhance-
ment) are: 
 
>> MATLABdemo161 
 
P = 
    2.8876 
 
Case #, zeta, Td, p = 
   1.0000             0.1200             0.0382            -0.7540 + 6.2378i 
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Case #, zeta, Td, p = 
   2.0000            -0.0300            -0.0095             0.1885 + 6.2804i 

 

 
Figure 16-1  Ramped-exponential input operator setting r(t) and output 
rotor positions θ(t) for an ideal proportional-derivative (PD) controlled 
rotor, with two different derivative time constants 

 
 Case 1 of Fig. 16-1 displays good performance of the PD control system:  despite 
rather adverse initial conditions, the output follows the input nicely, especially after the 
initial transient response has decayed.  In normal engineering practice, derivative time 
constant τ d would probably be set considerably higher than in this academic case, which 
would suppress the transient oscillation even more quickly and produce even better con-
trolled response. 
 

Case 2, on the other hand, exhibits a serious dynamic instability, which would be 
unacceptable in normal engineering practice.  Note the different y-axis scales for Cases 1 
and 2.  In real life, the oscillations would continue to grow exponentially until some me-
chanical or electrical part would fail (possibly a protective fuse that is designed to fail 
under excessive load), or some mechanical governor would limit motion, or some electri-
cal component (e.g., an op-amp) would saturate, or until the control system would some-
how be disabled intentionally.  This example demonstrates that feedback control systems 
can be dangerous; engineers should design and test any feedback control system with 
great care in order to make certain that it is positively stable and safe. 
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16-3  Routh’s stability criteria 
 

 We denote the transfer function of an nth order LTI system as 
)(
)()(

sDen
sNumsTF =  , 

in which Den(s) is an nth degree polynomial in s.  As derived in Section 16-1, the system 
is stable or unstable depending upon the signs of the roots of the characteristic equation, 
 

0)( 1
1

21 =++++= +
−

nn
nn apapapapDen L                        (16-33) 

 
For positive stability, we must have Re(pk) < 0 for all roots, k = 1, 2, … , n.  The roots are 
dependent upon the polynomial coefficients a1 , a2 , … , an , an+1 , so it would seem that 
the state of stability could be determined directly from these coefficients, without the ne-
cessity of calculating the roots.  This is indeed the case, and the conditions that these co-
efficients must satisfy for positive stability are known as Routh’s stability criteria (after 
Edward John Routh, 1831-1907, English mathematician, physicist, and educator, who 
developed the systematic framework).  These quantitative criteria can be written for a 
system of any order n, but they become progressively more complicated as n increases.  
For that reason, we examine in this section only the criteria for 1st, 2nd, and 3rd order sys-
tems; Routh’s criteria for 4th order systems are presented in homework Problem 16.9(c). 
 
 The first requirement for a system of any order, for the system to be posi-
tively stable, is that all coefficients of characteristic equation (16-33) be non-zero 
and have the same sign.  This is a necessary condition but, for n > 2, not a sufficient 
condition for stability.  Consider the simplest case, any 1st order system: 
 

1

2
21 0)(

a
apapapDen −=⇒=+=                             (16-34) 

 
It is clear that p < 0 if  are both non-zero and of the same polarity, so no other 
condition is required for stability.  Consider next any 

21 and aa
2nd order system: 

 
0)( 32

2
1 =++= apapapDen                                     (16-35) 

 
The quadratic formula gives the following roots of Eq. (16-35): 
 

1
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a
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⎠
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⎝

⎛
±−=                                     (16-36) 

 
Careful study of Eq. (16-36) shows that these roots have negative real parts only if a1 , a2  
and a3 all are non-zero and have the same sign.  Therefore, for the 2nd order system, the 
requirement that all three polynomial coefficients be non-zero and have the same sign is a 
sufficient as well as necessary condition for stability.  Note that a2 = 0 means the system 
has zero damping; if, in addition, a1 and a3 have the same sign, then the free-vibration 
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response of the system is pure sinusoidal oscillation (at the natural frequency) with 
constant amplitude.  In this case, the system is not unstable, since the response is 
bounded, but it is also not exponentially stable; the response does not decay away to a 
static equilibrium state. 
 

Finally, let’s consider the more challenging 3rd order system: 
 

0)( 43
2

2
3

1 =+++= apapapapDen                               (16-37) 
 
For the system to be stable, a1 , a2 , a3 and a4 all must be non-zero and have the same sign.  
The other requirement for positive stability of a 3rd order system establishes upper 
and lower bounds on the product a1 × a4: 
 

04132 >×>× aaaa                                            (16-38) 
 
The derivation of these two Routh criteria for stability of a 3rd order system is relatively 
simple, but more lengthy than necessary for our study; it is presented clearly by Cannon, 
1967, pages 406-409. 
 
 Let’s evaluate Routh’s stability criteria applied to the 3rd order system depicted on 
Fig. 16-2.  It is similar to the system of Section 14-3 for output-position-feedback control 
of rotor position, but there are two additions to that system.  First, there is bearing friction 
that produces a passive rotational moment, , with  being the viscous damping 
constant.  Second, there is, in the feedback branch downstream of the position sensor, an 
electrical 1st order low-pass filter with time constant τL.  The filtering of sensor voltage 
signals in this fashion is very common in practice.  The usual purpose for low-pass fil-
tering is to cut out high-frequency electrical components from the sensor signal.  Such 
unwanted components might arise from the electronics in a “noisy” sensor, from stray 
electromagnetic fields and/or improperly shielded electrical cables, and even from extra-
neous mechanical vibrations.  So the amplitude-reduction function of a low-pass filter is 
almost always beneficial to control-system functioning.  However, a low-pass filter also 
changes the 

θθ &c− θc

phase of sensor signals, as well as reducing the amplitude of high-frequency 

 Output 
position 
θ (t) 

Figure 16-2  Functional diagram of a rotor position-feedback control 
system with a 1st order low-pass filter in the feedback branch 
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noise, as shown on Fig. 4-1.  Phase shifts can produce adverse effects on control systems, 
including reduction of control effectiveness and degradation of system stability, even to 
instability.  From Fig. 4-1, we see that the extreme phase shift introduced by a 1st order 
low-pass filter is −90°, and we can think of this as “almost changing the sign” of the sig-
nal that goes through the filter.  According to Routh’s criteria, the change of a sign can 
produce instability.  (The effect on stability would be even more dramatic if there were a 
2nd order, rather than 1st order, low-pass filter in the feedback branch, Fig. 10-2 with ζ  > 
∼0.5; the extreme phase shift produced by a 2nd order filter is −180°, which is a complete 
sign change in the signal that goes through the filter.  See homework Problem 16.5.) 
   

The ODE of motion for the damped rotor comes from Eq. (3-1):   = 
.  With the notation 

pcpJ θ+&

)(tMcJ a=+ θθ θ
&&& )()]([ stL Θ≡θ , the Laplace transform for zero ICs 

of the ODE of motion is , so that the transfer function of the 
basic damped-rotor plant is 

)]([)( tMLs a=)( 2 scsJ Θ+ θ

 

scsJtML
s

a θ+
=

Θ
2

1
)]([

)(                                          (16-39) 

 
With plant transfer function Eq. (16-39) and low-pass-filter transfer function Eq. (13-3), 
Fig. 16-3 is the Laplace block diagram for the system of Fig. 16-2.  The branch transfer 
functions for the loop in Fig. 

16-3 are 
scsJ

K
sG a

θ+
= 2)(  and 

1
)(

+
=

s
K

sH
Lτ

θ .  Hence, with 

use of Eq. (14-16), we find the 
following closed-loop transfer 
function: 
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Figure 16-3  Laplace block diagram of position-
feedback control system with low-pass filtering 
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Algebraic manipulation of this transfer function casts it into the following more useful 
forms: 
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(16-40) 
 
The two final algebraic forms of Eq. (16-40) are intended to expedite both evaluation by 
Routh’s criteria next and by a more general analysis of stability in Section 16-4. 
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From transfer function (16-40), we find the characteristic equation: 
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Routh’s first set of criteria for positive stability requires that all polynomial coefficients 
be non-zero and of the same sign.  Since a1 = 1, the following inequalities are necessary 
but not sufficient conditions for positive stability:   
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Rotational inertia J and filter time constant τL should always be positive physical con-
stants, so Eqs. (16-42) require for positive stability that damping constant cθ must be 
positive, and that the product of sensitivities KaKθ must be positive.  Routh’s final re-
quirement for positive stability of a 3rd order system is Eq. (16-38):   
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The common factor Lτ1  was removed to produce the final form of Eq. (16-43a). 
 
 Let’s suppose that parameters J, cθ , and τL are positive and fixed, but that the 
positive product of sensitivities KaKθ is a control gain which we have the ability to vary 
in order to modify the performance and/or stability of the control system.  It will be con-
venient for continued analysis to define a special symbol that denotes the varying fraction 
in Eq. (16-43a) and to express the stability requirement in terms of that symbol: 
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Equation (16-43b) establishes upper and lower stability boundaries for KaKθ ⁄ J ≡ 

Λ.  To illustrate, let’s express the stability criterion numerically for some plausible sys-
tem values.  Suppose that the circular break frequency of the low-pass filter is ωb ≡ 1⁄τL  = 
300 rad/sec, corresponding to cyclic break frequency fb = ωb ⁄ 2π = 47.75 Hz, a realistic 
value for a low-pass filter used in the control of a mechanical system.  Suppose also that 
the plant parameters have values such that cθ ⁄ J = 100 sec−1.  Substituting these constants 
into Eq. (16-43b) gives the criterion:  40,000 sec−2 > Λ > 0 for positive stability. 
 

To test the correctness of Routh’s criteria, let’s calculate with MATLAB some re-
sponses of this system to the initial condition θ(0) ≡ θ0 = 0.1 radian, with all other ICs 
zero and with zero input, r(t) = 0.  Let’s find the IC response for these three cases: 
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Case I  
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175.0I  = 30,000 sec−2; this should give stable response. 

 

Case II  
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100.1II  = 40,000 sec−2, the upper boundary of stability;  

but Λ is supposed to be less than 40,000 sec−2 for stability (not equal to it), so 
what will be the nature of this response? 

 

Case III  
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125.1III  = 50,000 sec−2; this should give unstable response. 

 
To solve for IC responses of this system, we adapt Eq. (16-2) to this problem.  A 

little algebra leads us from Eq. (16-2) to the following transform of the IC response: 
 

43
2

2
3

1

32
2

10 )(
)(

asasasa
asasa

s
+++

++
=Θ

θ
                                    (16-44) 

 
The ak constants in Eq. (16-44) are defined in Eq. (16-42), and the numerical parameters 
are given in the paragraph following Eq. (16-43b).  For the numerical values of Cases I, 
II, and III described above, the partial-fraction expansion of Eq. (16-44) has the form  
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in which residue  and pole  are real constants, with  negative for all three cases, 
and residue  and pole 

1C 1p 1p

2C 222 ωσ jp +≡  are complex constants.  Therefore, from Eqs. 
(16-8) and (16-9), the time response has the form 
 

)cos(2)( 2221
21 CteCeCt ttp ∠++= ωθ σ                            (16-46) 

 
The MATLAB script M-file below computes the constants of transform (16-45), 

using MATLAB’s residue operation (see homework Problem 2.15), and it computes 
and plots time response (16-46). 
 
%MATLABdemo162.m 
%Stability of a damped rotor with low-pass-filtered position feedback 
%Excitation with initial position 
wb=300;covrJ=100;a2=wb+covrJ;a3=wb*covrJ;Lmub=a2*covrJ; 
th0=0.1;t=0:0.0004:0.16;format short e,figure,hold 
Lm=[0.75 1 1.25]*Lmub; 
for nc=1:3; 
    a4=Lm(nc)*wb; 
    Num=th0*[1 a2 a3];Den=[1 a2 a3 a4];[C,p,k]=residue(Num,Den); 
    disp('Case #, Lambda ='),disp([nc Lm(nc)]) 
    disp('Poles p ='),disp(p.'),disp('Residues C ='),disp(C.') 
    sig=real(p(2));wd=imag(p(2));abC=abs(C(2));anC=angle(C(2)); 
    th=C(1)*exp(p(1)*t)+2*abC*exp(sig*t).*cos(wd*t+anC); 
    plot(t,th,'k') 
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end 
grid,xlabel('Time t (sec)'),ylabel('Position \theta (t) (radian)') 
title('Response of a 3^r^d order system with different control gains') 

 
The command to execute the M-file, and the resulting alphanumeric output and graphical 
output (after use of MATLAB’s editing features for annotation and graphical enhance-
ment) follow: 
 
>> MATLABdemo162 
Current plot held 
 
Case #, Lambda = 
           1       30000 
 
Poles p = 
 -3.8302e+002               -8.4887e+000 +1.5305e+002i -8.4887e+000 -1.5305e+002i 
 
Residues C = 
  1.4354e-002                4.2823e-002 -2.0336e-002i  4.2823e-002 +2.0336e-002i 
 
Case #, Lambda = 
           2       40000 
 
Poles p = 
 -4.0000e+002               -4.3965e-014 +1.7321e+002i -4.3965e-014 -1.7321e+002i 
 
Residues C = 
  1.5789e-002                4.2105e-002 -1.8232e-002i  4.2105e-002 +1.8232e-002i 
 
Case #, Lambda = 
           3       50000 
 
Poles p = 
 -4.1484e+002                7.4222e+000 +1.9001e+002i  7.4222e+000 -1.9001e+002i 
 
Residues C = 
  1.6864e-002                4.1568e-002 -1.6786e-002i  4.1568e-002 +1.6786e-002i 

 

 
 
Figure 16-4  Initial-condition response of a rotor output-position-feedback 
control system with a 1st order low-pass filter in the feedback branch 
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 For this system with three poles, at least one pole must be real.  For Cases I, II, 
and III evaluated above, this real pole, p1 , turns out to be strongly negative, so it does not 
contribute to any instability.  The second pole, p2 , is complex, and the third pole is the 
conjugate of the second.  (The other possibility for a 3rd order system is that all three 
poles can be real, but the gains Λ used in this example preclude that.)  For gain ΛI , 
Re(p2) is negative; consequently, the Case I system is positively stable, as predicted by 
Routh, Eq. (16-43b).  For gain ΛIII , Re(p2) is positive; consequently, the Case III system 
is unstable, also as predicted by Routh.  Gain ΛII is on the upper boundary between 
positive and negative stability, according to Routh, and the alphanumeric output above 
shows that Re(p2) = 0.  (The tiny number calculated, −4.4e−14, is non-zero due to round-
off error; comparison of this number with the values of the other poles shows that it is 
effectively zero.)  We see from Fig. 16-4 that the time response associated with Case II is 
a pure, undamped sinusoid;  the response is bounded, therefore not unstable, but it is not 
exponentially stable, i.e., it does not decay to zero. 
 

The control system of Figs. 16-2 and 16-3 has two major dynamic sub-systems:  
the damped rotor with transfer function [ ])(1 θcsJs + ; and the low-pass filter with trans-
fer function )1(1 +sLτ .  Each of these passive sub-systems by itself dissipates energy, 
i.e., acts as an energy sink, and is positively stable.  But the complete system is clearly 
capable of being unstable.  The complete system includes an energy source, the moment 
actuator, and therefore is said to be active.  Any system that includes feedback and an en-
ergy source is potentially capable of being unstable. 
 

Observe that Routh’s criteria essentially tell us only that a system is stable or un-
stable, the nature of stability in an absolute sense.  They do not tell us the type of re-
sponse (monotonic-exponential or oscillatory) or the degree of stability (essentially, the 
magnitudes of the real parts of transfer-function poles), which is also known as relative 
stability.  The method introduced in the next section finds the relative stability. 

 
16-4  Loci of roots for 2nd order systems 
 

Let’s seek both the type of response and the degree of stability, by directly solv-
ing for the roots of the characteristic equation Den(p) = 0 [i.e., the poles of TF(s) or 
CLTF(s), whichever is appropriate].  Further, we will observe how these roots vary as 
some particular system parameter is changed.  The graphical representation of this varia-
tion in the complex p-plane is known commonly as locus of roots; however, systems of 
2nd and higher orders always have multiple roots, so it is more correct to use the Latin 
plural:  loci of roots.  Stability analysis using loci of roots is more general than the basic 
Routh’s criteria, and more informative about the character of a system and the nature of 
its stability. 
 
 We begin by studying the roots of any 2nd order system.  This will be instructive 
and will also establish the basis for interpretation of loci-of-roots graphs for LTI systems 
of higher order.  The characteristic equation of any 2nd order system can be expressed as: 
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02)( 22 =++= nn pppDen ωζω                                  (16-47) 
 
Some examples of 2nd order system transfer functions that lead to Eq. (16-47) are Eqs. 
(10-6), (10-27), (13-8), (14-21), (15-20), and (15-27).  We are accustomed to studying 
stable systems for which ζ and ωn

2 are positive values.  However, these parameters are 
not necessarily always positive in systems; they can be negative, especially for feedback 
control systems and for self-excited systems.  An example of a self-excited system is a 
flexible wing in an airstream, as discussed in Examples 11-2 and 11-3 of Section 11-3. 
 

First, let’s study the roots of Eq. (16-47) when ζ varies, in both magnitude and 
sign, while ωn is fixed and positive, ωn  > 0.  Solving first for ⎜ζ  ⎜ ≥ 1, using the quadratic 
formula, gives the two real-valued poles: 

 

12
2,1 −±−= ζωζω nnp                                       (16-48a) 

 

For ⎜ζ  ⎜ ≤ 1, the poles are the complex conjugate pair:  
 

dnnn jjp ωζωζωζω ±−≡−±−= 2
2,1 1                          (16-48b) 

 

Figure 16-5 shows the loci of roots Eqs. (16-48) as ζ varies from more negative than −1 
to more positive than +1.  Note that the x-axis is the real part of the roots, Re(p), and the 

y-axis is the imaginary part, Im(p); these two axes encompass the complex p-plane.  For 
selected values of ζ, the roots are indicated by ×’s and the ζ values are labeled.  The 
directions of the loci as ζ increases are indicated by arrowheads.   

 

Break-away point 
 ζ  > +1  −1  > ζ  −1  > ζ

+1 > ζ  > 0

ζωn
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 ζ  = 0 
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0 > ζ  > −1

Stable Unstable

 Im(p), sec−1

 Re(p), sec−1 

Break-in point 
 ζ  > +1 

 ζ  = +1 

Sinusoidal

increasing ζ 

Figure 16-5  Loci of roots of p2 + 2ζωn p + ωn
2 = 0 as ζ  varies from 

less than −1 to greater than +1, with ωn > 0 held constant 
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For −1 > ζ, the two real roots, (16-48a), are in the right (“east”) half of the p-

plane, on the Re(p) axis; the type of time response associated with these roots is mono-
tonically growing exponential, an instability.  At ζ = −1, these two real roots come to-
gether with value +ωn ; this is called a “break-away” point because, for the slightest in-
crease in ζ above −1, the roots separate into complex conjugates, (16-48b), one root 
headed directly “northward” and the other directly “southward.”  The type of response 
associated with complex conjugate roots that are in the right half-plane off the Re(p) axis 
is oscillation modulated by a growing exponential envelope, an instability.  For +1 > ζ > 
−1, the loci of roots form a perfect circle of radius ωn and centered on the origin:  

 =   = .  The roots for ζ = 0 are imaginary, 22 yx + 22 )()( dn ωζω ±+− 2
nω njp ω±=2,1 , 

for which the time response has pure, undamped sinusoidal form.  For +1 > ζ > 0, the 
complex conjugate roots are in the left (“west”) half-plane off the Re(p) axis; the type of 
time response associated with these complex conjugate roots is oscillation modulated by 
a decaying exponential envelope, which is stable response.  As increasing ζ approaches 
the value +1, the two complex roots come together and become real, with value −ωn , at 
the “break-in” point.  Finally, as ζ increases above +1, one real root heads farther west-
ward on the Re(p) axis, and the other creeps eastward toward the origin; the type of time 
response associated with these real roots in the left half-plane is monotonically decaying 
exponential, which is stable response.   
 

Keep in mind that both monotonic-exponential response and oscillatory response 
are bounded by the exponential envelope .  If Re(p) < 0, in the left half-plane, then 
we define, as in Eq. (9-22), the 2nd order time constant, 

tpe )Re(

)Re(12 p−≡τ > 0, so that the 
decaying exponential envelope is 2τte− ; 2τ  is the time for the stable exponential envelope 
to decrease by the factor .  The degree of positive stability1−e  associated with a particular 
stable root increases as Re(p) becomes progressively more negative and 2τ  becomes pro-
gressively smaller.  In other words, the farther westward from the origin that a pole is lo-
cated, the greater is the degree of positive stability associated with that pole.  On the other 
hand, if Re(p) > 0, in the right half-plane, then )Re(1 p+  is the time for the unstable 
exponential envelope to increase by the factor .  The degree of instability1+e  associated 
with a particular unstable root increases progressively as Re(p) becomes progressively 
more positive; in other words, the instability worsens as the unstable pole moves farther 
eastward from the origin.  Although these observations are made in the context of Fig. 
16-5, they are equally applicable to the loci of roots of any LTI system having any order. 
 

Note on Fig. 16-5 the construction of a right triangle consisting of horizontal leg 
ζωn , vertical leg ωd , and hypotenuse ωn , which extends from the origin to a complex 
pole p.  This right triangle is based on the definition , 
which is valid for ⎜ζ  ⎜ < 1.  Thus, the frequency of vibration (in rad/sec) associated with 
this particular complex pole is the vertical leg ωd along the Im(p) axis.  Further, the hori-
zontal leg ζωn (if in the left half-plane) determines the time constant, 

22222 )()1( nnnd ζωωζωω −=−=

nζωτ 12 =  (in sec).  
Finally, the value of damping ratio ζ is the sine of the angle labeled on Fig. 16-5 between 
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the Im(p) axis and hypotenuse ωn ; for a stable pole p in the left half-plane, as drawn on 
Fig. 16-5, ζ is positive; for an unstable pole  p in the right half-plane, ζ would be nega-
tive.  Although this derivation is based on Fig. 16-5, these methods derived for 
determining the frequency ωd , time constant 2τ , and damping ratio ζ associated with a 
particular complex pole are applicable to the loci of roots of any LTI system. 
 

Figure 16-5 shows the loci of roots of a 2nd order system as generalized damping, 
represented by ζ , varies.  Next, let’s consider the loci of roots for a 2nd order system as 
generalized stiffness varies.  Rather than using the symbols ζ and ωn , it is better for this 
task to revert back to the notation of Section 9-1 representing a generalized mass-damper-
spring system.  Accordingly, we have Eq. (7-3), ωn

2 = k ⁄ m, and from Eq. (9-4), ζωn = 
)2( mc .  In these definitions, we specify that k represents a generalized stiffness, which 

will vary, and that c and m represent, respectively, generalized damping and generalized 
inertia, which are considered positive constants and will remain fixed while k varies.  For 
convenience, let’s use the following simplified notation: 
 

Kmkn ≡=2ω      and     Cmcn ≡= )2(ζω                          (16-49) 
 
Therefore, for the case mkmc ≥2 , we re-write the real roots (16-48a) as  
 

KCCp nωnn −±−=−±−= 222
2,1 )(ζωζω                     (16-50a) 

 
For mcmk 2≥ , the complex conjugate roots (16-48b) are 
 

22)n

 poin

2
2,1 ( CKjCjp nn −±−=−±−= ζωωζω                   (16-50b) 

 
Figure 16-6 is an incomplete graph of loci of roots Eqs. (16-50) as K varies with 

C > 0 fixed.  (Homework Problem 16.3 is an exercise for completing the task.)  Partial 
annotation shows the lo-
cations of the two real 
poles for K = 0.  Note, in 
particular, that for K < 0 
one real locus is entirely in 
the right half-plane.  The 
type of time response 
associated with this locus 
is monotonically growing 
exponential, an instability.  
(Of course, Routh also 
shows that the system is 
unstable for K < 0 and C > 
0, since then coefficients 
of the characteristic equa-
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tion have different signs.)  The passive mechanical springs with which we are familiar 
always have positive stiffness, so it might appear that this type of instability is purely 
academic, without any practical significance.  Such is not the case.  Recall that, in the 
present discussion, k (and therefore K also) represents generalized or total stiffness, not 
just mechanical stiffness.  An elastically restrained airfoil within an air stream is one 
practical engineering system for which the total stiffness is not necessarily positive.  As 
shown in the discussion accompanying Eq. (11-16), the total mechanical plus 
aerodynamic stiffness of this system can become zero or even negative at high airspeeds; 
the resulting unbounded pitching of the airfoil, called aeroelastic divergence, is an 
important example of the type of instability represented in Fig. 16-6 for K < 0. 
 
 Developing loci-of-roots graphs Figs. 16-5 and 16-6 for 2nd order systems is rela-
tively simple, but useful as an instructive introduction to this type of stability analysis.  In 
the next section, we will consider the more demanding task of determining loci of roots 
for systems of higher order. 
 
16-5  Loci of roots for a 3rd order system 
 

In Section 16-4, we used the quadratic formula to evaluate easily the loci of roots 
for 2nd order systems.  It is more typical in practice, however, that engineering systems 
have higher orders than 2nd order, so that determining loci of roots requires repeatedly 
solving polynomial equations of 3rd and higher degrees, which can be a challenging task.  
This section introduces by example the methods of solution for higher-order systems that 
are commonly used in practice. 
 

For this example, we consider again the system described in Section 16-3 (Figs. 
16-2, 16-3, and 16-4), a rotor position-feedback control system with a 1st order low-pass 
filter in the feedback branch.  Closed-loop transfer function (16-40) gives the 3rd degree 
characteristic equation in two different algebraic forms, one of which is 
 

011)( 23
43

2
2

3
1 =++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
++=+++=

L

a

LL J
KK

p
J
c

p
J
c

papapapapDen
τττ

θθθ  (16-51a) 

 
In Section 16-3, we held constant rotor inertia J, viscous damping constant cθ of 

the bearings, and time constant τL of the 1st order low-pass filter, all positive values; in 
particular, we chose for numerical evaluation the values cθ ⁄ J = 100 sec−1, and, for the 
filter break frequency, ωb ≡ 1 ⁄ τL = 300 rad/sec.  We allowed the value of product KaKθ of 
control system sensitivities to vary.  Using Routh’s criteria, we determined the lower and 
upper stability boundaries for the parameter KaKθ ⁄ J ≡ Λ:  the system is positively stable 
provided that 0 < Λ < 40,000 sec−2. 
 

Now, let’s conduct a more detailed evaluation of stability by calculating and plot-
ting the loci of roots as Λ varies, using the same numerical values of the other constants 
as in Section 16-3.  We solve numerically for the roots of polynomial (16-51a) using 
MATLAB’s root operation:  for each value of Λ, the input is the array of coefficients  
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[a1 a2 a3 a4], and the output is the 3 × 1 matrix of roots.  We will calculate and plot the 
loci of roots twice:  first, for a set of Λ values that we choose (guess) somewhat arbitrar-
ily to encompass the entire possible range of practical interest; second, for another set of 
Λ values that are refined, based upon the results of the first pass, to focus on the specific 
roots of greatest practical significance. 
 

For the first pass, we vary Λ from −30,000 sec−2 to +70,000 sec−2 in increments of 
10,000 sec−2.  The following is a MATLAB script M-file that computes the roots of poly-
nomial (16-51a) repeatedly over these values of Λ, then prints the input and output values 
in a table, then plots the loci of roots: 
 
%MATLABdemo163.m 
%Stability of a damped rotor with low-pass-filtered position feedback 
%Loci of roots 
wb=300;covrJ=100;a2=wb+covrJ;a3=wb*covrJ; 
Lm=[-3 -2 -1 0 1 2 3 4 5 6 7]*1.0e4;Np=length(Lm); 
for i=1:Np; 
    a4=Lm(i)*wb; 
    p(i,1:3)=roots([1 a2 a3 a4]).'; 
end 
nc=1:Np;anout=[nc' Lm' p]; 
disp('Roots #, Lambda, p'),disp(anout) 
plot(p,'kx'),grid,xlabel('Real part of pole (sec^-^1)') 
ylabel('Imag part of pole (sec^-^1)') 
title('Loci of roots of a 3^r^d order system as \Lambda varies') 

 
The command to execute the M-file, and the resulting tabular output follows:  
 
>> MATLABdemo163 
 
Roots #, Lambda, p 
  1.0e+004 * 
 
   0.0001      -3.0000            -0.0253 + 0.0141i  -0.0253 - 0.0141i   0.0107           
   0.0002      -2.0000            -0.0242 + 0.0111i  -0.0242 - 0.0111i   0.0085           
   0.0003      -1.0000            -0.0227 + 0.0056i  -0.0227 - 0.0056i   0.0055           
   0.0004            0                  0            -0.0300            -0.0100           
   0.0005       1.0000            -0.0337            -0.0031 + 0.0089i  -0.0031 - 0.0089i 
   0.0006       2.0000            -0.0363            -0.0019 + 0.0127i  -0.0019 - 0.0127i 
   0.0007       3.0000            -0.0383            -0.0008 + 0.0153i  -0.0008 - 0.0153i 
   0.0008       4.0000            -0.0400            -0.0000 + 0.0173i  -0.0000 - 0.0173i 
   0.0009       5.0000            -0.0415             0.0007 + 0.0190i   0.0007 - 0.0190i 
   0.0010       6.0000            -0.0428             0.0014 + 0.0205i   0.0014 - 0.0205i 
   0.0011       7.0000            -0.0440             0.0020 + 0.0217i   0.0020 - 0.0217i 

 
The associated loci-of-roots plot (after use of MATLAB’s editing features for annotation 
and graphical enhancement) is Fig. 16-7, on the next page. 
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Figure 16-7  First-pass loci of roots of Eq. (16-51a) for varying 
control parameter Λ = KaKθ  ⁄ J 

 
We infer from Fig. 16-7 the following relevant information.  For Λ < 0, the sys-

tem has an unstable pole associated with monotonic exponentially growing time re-
sponse; we already knew from Routh that the system is unstable for Λ < 0, but Routh did 
not reveal the type of response.  For Λ = 0, the poles are all real and have the values 0, 
−100, and −300 sec−1.  This is also obvious in the alternate algebraic form of the 3rd 
degree characteristic equation that comes from closed-loop transfer function (16-40): 
 

( )( ) 0)( =Λ+++= bbpJcpppDen ωωθ                         (16-51b) 
 

From (16-51b) with Λ= 0, the poles are clearly p1 = 0, p2 = −cθ ⁄ J  = −100 sec−1, and p3 = 
−ωb ≡ −1 ⁄ τL  = −300 sec−1.  The arrows on Fig. 16-7 indicate the directions of loci as Λ 
increases.  The arrows show that there is a break-in point (as defined on Fig. 16-5) for Λ 
somewhere in the range −10,000 sec−2 < Λ < 0, and a break-away point for Λ somewhere 
in the range 0 < Λ < +10,000 sec−2.  For future reference, let’s denote the break-away 
value of Λ as Λba , which is not yet determined.  We also observe from Fig. 16-7 and the 
tabulated roots that the upper boundary of stability (with purely complex roots, p2,3 =  
±j173 rad/sec) is Λ = 40,000 sec−2, and that the time response is oscillatory for values of 
Λ in the vicinity of the upper boundary; we knew from Routh the value of the upper 
boundary, but not the type of response.  Moreover, since the real pole for Λ > Λba is 
associated with heavily damped exponential decay, the complex loci for Λ > Λba of Fig. 
16-7 suggest that the time response is primarily oscillatory for Λ > Λba.  See Fig. 16-4 for 
examples of this primarily oscillatory response.  For Λ > Λba , this system has a heavily 
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damped exponential mode of response and a lightly damped oscillatory mode, and the 
latter, with poles closest to the imaginary axis, is the dominant mode. 
 

Now let’s refine the loci-of-roots calculation, using a new set of Λ values that 
would be of greatest practical interest.  This set probably would consist of values for 
which the system is stable, namely 0 < Λ < 40,000 sec−2.  The value Λba is significant:  it 
is the boundary between a system (with 0 < Λ < Λba) for which all transient response is 
decaying exponential and a system (with Λba < Λ) for which the dominant transient re-
sponse is oscillatory.  We certainly could choose the refined set of Λ values by numerical 
trial and error, letting MATLAB do most of the work.  However, this situation provides 
the opportunity for introduction of a theoretical and more systematic approach, which we 
shall consider next.  This approach is general, but our limited objective in this introduc-
tion will be to determine theoretically only the upper boundary of stability, Λ ≡ Λub, and 
the break-away value Λba. 
 
 This approach is based upon form (16-51b) of the characteristic equation, which 
we re-write as 
 

( )( ) Λ−=++ bbpJcpp ωωθ                                     (16-52) 
 
It is important that the sub-system poles are separated into factors on the left-hand side of 
Eq. (16-52).  Each factor is a complex number, in general, and it can be expressed in 
complex polar form, as described in Section 2-1.  It is helpful to regard each factor as a 
two-dimensional complex vector with its tail at the sub-system pole, so that we write 
 

1
10 θjerpp ≡−= , ( ) 2

2
θ

θθ
jerJcpJcp ≡−−=+ ,  3

3)( θωω j
bb erpp ≡−−=+

(16-53) 
 
The real right-hand side of Eq. (16-52) also is written in polar form:  Λ− bω  = 

[ ...),3,(exp ]ππω ±±Λ jb .  Therefore, the entire characteristic equation is expressed in the 
following polar form, which any root must satisfy: 
 

)(
321321

321321 θθθθθθ ++=×× jjjj errrererer  = [ ]...),3,(exp ππω ±±Λ jb      (16-54) 
 
The drawing at right is a graphical representation of both the polar vectors of Eq. (16-53) 
and characteristic equation (16-54).  The small ×’s are the sub-system poles, at which the 
tails of the complex vectors are located.  The large X is a pole of the complete system, 
i.e., a root of Eq. (16-51b), and a value that satis-
fies Eq. (16-54).  Complex equation (16-54) in-
cludes two real equations, both of which must be 
satisfied by any system pole.  The first equation is 
the equality of angles on the two sides of (16-54): 
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The second equation is the equality of magnitudes: 
 

b
b

rrr
rrr

ω
ω 321

321 =Λ⇒Λ=                                   (16-56) 

 
For our first application of this approach, 

let’s use Eq. (16-55) to find the pole djω  at the 
upper stability boundary Λub, and then Eq. (16-56)  
to find the value of Λub itself.  The pole is shown 
on the drawing at right.  We have by definition for 
this stability boundary:  r dω=1  and 21 πθ = .  
Therefore, Eq. (16-55) gives 232 πθθ =+ .  [We 
rule out the other possibilities −π, ±3π, … in Eq. (16.55) just by inspecting the figure.]  
Some trigonometry is required now.  Angle α  between the arrowheads of  and  is 
labeled on the drawing.  Angles α and 

1r 3r

3θ  are the complementary acute angles of a right 
triangle, so we have also 23 πθα =+ .  Therefore, 2θα = .  Hence, we find dω  by equat-
ing the tangents of the two similar right triangles: 
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by applying Eq. (16-56), which, after a little algebra, gives 
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This result for Λub is, of course, identical to the upper boundary found by Routh’s criteria 
in Eq. (16-43b). 
 
 For a more subtle application of this theoretical approach, let’s:  first, use Eq. (16-
55) to find the value of the two identical poles at the break-away point, which is evident 
on Fig. 16-7 (on the real axis, somewhere between the origin and −cθ /J = −100 sec-1); and 
then, use Eq. (16-56) to find the associated value of Λba .  It is obvious that Eq. (6-55) is 
satisfied identically right at the break-away point, where θ1 = π and θ2 = θ3 = 0, so this 
does not provide any useful information.  But Eq. (6-55) must apply also for all other 
points on the loci of roots, in particular now, for points that are close to the break-away 
point; this fact will lead to a useful result.  Suppose that Λ is just slightly greater than Λba  
so that one of the complex poles is a small distance ε above the break-away point on the 
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real axis, as shown on the drawing below.  As ε shrinks but remains > 0, the acute angles 

between the sub-system radii and the real axis become very small, so we can use in Eq. 
(16-55) the approximation θ ≈ θsin .  Hence, Eq. (16-55) gives 
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This equation must be valid even if ε is very small but non-zero, so we conclude that 
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In the limit as the pole goes to the break-away point on the real axis, ε = 0, the radii are 
related as Jcrr θ=+ 21  and brr ω=+ 31

)( 231 rrr
.  Substituting into the equation above to elimi-

nate  and  gives 2r 3r 32rr ++−  = ))(( 11 rrJc b −−− ωθ  + )( 111 rJcrr b −+− θω  = 
0, and this leads, after some algebra, to a quadratic equation in unknown : 1r
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Solving for  with the quadratic formula gives 1r
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Substituting into this equation bω  = 300 sec−1 and Jcθ  = 100 sec−1 gives the roots 
221.53 and 45.14 sec−1, with the latter root corresponding to the break-away pole that we 
seek between the origin and −100 sec−1 on the real axis, i.e.,  = 45.14 sec−1.  Then Eq. 
(16-56) gives the associated value of the varying control parameter: 

1r
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ω

ω
ω

θ ))(( 111321 −−
==Λ  = 2,103.77 sec−2 

 
 The approach used above to determine theoretically the stability-upper-bound and 
break-away values of the varying control parameter Λ, based upon Eqs. (16-52)-(16-56), 
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is a small portion of an extensive set of procedures for completely determining loci of 
roots, which is known as the root-locus method.  Walter R. Evans (1920-1999, American 
electrical engineer) developed and published this elegant method around 1950.  Using the 
root-locus method, an experienced engineer can develop quickly, without the need for a 
digital computer, complete loci of roots, even for systems of somewhat higher order.  For 
about a quarter-century after this method became widely known, the slide rule was still 
an engineer’s primary computational tool, and the root-locus method profoundly influ-
enced the design and analysis of control systems during that era.  Now that digital com-
puters and highly specialized software are readily available, Evans’ root-locus method is 
no longer so essential if you need only to analyze a given system.  However, if you want 
to design control systems logically and efficiently, then the concepts underlying Evans’ 
method, represented in this example by Eqs. (16-52)-(16-56), will be extremely valuable.  
Details of Evans’ method are available in many references, one of the clearest and most 
complete being Cannon, 1967, Sections 11.8 and 11.9 and Chapter 21.  
 

Let’s return now to the task of choosing a refined set of Λ values and using MAT-
LAB to calculate and graph loci of roots for this refined set.  We specify that this set con-
sists of values for which the system is stable, 0 < Λ < 40,000 sec−2, with particular em-
phasis on the range of values associated with the dominant oscillatory mode of response, 
Λba < Λ < 40,000 sec−2.  Therefore, the value Λba = 2,103.77 sec−2 calculated above is 
useful, and is included in the refined set of Λ values.  The other values are chosen by trial 
and error to produce moderately uniform spacing between the complex poles in the p-
plane; the complete set, in ascending order is Λ = 0, 1,000, 1,800, Λba , 2,300, 3,500, 
6,250, 10,000, 20,000, and 40,000 sec−2.  Except for this different set of Λ values, the 
MATLAB script M-file is the same as that which produced Fig. 16-7.  The command to 
execute the M-file, and the resulting tabular output follows:  
 
>> MATLABdemo164 
 
Roots #, Lambda, p 
  1.0e+004 * 
 
   0.0001            0                  0            -0.0300            -0.0100           
   0.0002       0.1000            -0.0305            -0.0083            -0.0012           
   0.0003       0.1800            -0.0308            -0.0064            -0.0027           
   0.0004       0.2104            -0.0310            -0.0045 + 0.0000i  -0.0045 - 0.0000i 
   0.0005       0.2300            -0.0311            -0.0045 + 0.0015i  -0.0045 - 0.0015i 
   0.0006       0.3500            -0.0315            -0.0042 + 0.0039i  -0.0042 - 0.0039i 
   0.0007       0.6250            -0.0326            -0.0037 + 0.0066i  -0.0037 - 0.0066i 
   0.0008       1.0000            -0.0337            -0.0031 + 0.0089i  -0.0031 - 0.0089i 
   0.0009       2.0000            -0.0363            -0.0019 + 0.0127i  -0.0019 - 0.0127i 
   0.0010       3.0000            -0.0383            -0.0008 + 0.0153i  -0.0008 - 0.0153i 
   0.0011       4.0000            -0.0400            -0.0000 + 0.0173i  -0.0000 - 0.0173i 

 
The associated loci-of-roots plot, Fig. 16-8, is on the next page.  MATLAB’s editing 
features for annotation and graphical enhancement were used on Fig. 16-8.  In particular, 
the axes were set to be “equal,” which means in this case that the x axis [i.e., Re(p)] and 
the y axis [i.e., Im(p)] have exactly the same linear scale. 
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Figure 16-8  Refined loci of roots of Eq. (16-51a) for varying control 
parameter Λ = KaKθ  ⁄ J 

 
The roots on Fig. 16-8 for one example value, Λ = 6,250 sec−2, are labeled in or-

der to illustrate calculation of basic 1st order and 2nd order parameters for a higher-order 
system.  The real root is  = −326 sec−1 (taken approximately from Fig. 16-8, but more 
precisely from the table of roots on the previous page).  The associated 1st order time con-
stant is 

1p

11 1 p−=τ  = 3.07e−3 sec = 3.07 msec.  The imaginary roots for Λ = 6,250 sec−2 
are  = −37 ± j66 sec−1, and the angle labeled on Fig. 16-8 is φ ≈ 30° (for its relevance, 
see Fig. 16-5).  The associated 2nd order response parameters are:  time constant 

3,2p

2τ  = 
)Re( p1 3,2−  = 27 msec (much longer than 1τ ); frequency )Im( 2pd =ω  = 66 rad/sec; 

and damping ratio 5.0≈= sinφζ   We can use MATLAB’s poles to calculate more 
precisely the damping ratio associated with a stable complex pole,  = kp kk jωσ +  (the 
notation of Section 16-1), by recognizing that kσ  = Re( ) ≡ kp n )( kζω−   and kω  = 

Im( ) ≡  kp kd )(ω , and that (dropping the k subscripts temporarily)  =  − :    2
dω 2

nω (ζω 2)n
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Therefore (restoring the k subscripts), the damping ratio is 
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=                                             (16-57) 

 
Applying Eq. (16-57) for Λ = 6,250 sec−2 gives 2

2 )3766(11 +=ζ  = 0.49. 
 

The calculations in the previous paragraph suggest the following question:  why 
does this 3rd order system have one real pole that corresponds to monotonic exponential 
1st order response, and a pair of complex conjugate poles that correspond to damped 
oscillatory 2nd order response?  In fact, this is a simple example of an important general 
property of linear time-invariant systems.  Every LTI system has modes of response that 
are associated with its poles, the roots of the system’s characteristic equation.  We show 
this by re-writing characteristic equation (16-33) in the general factored form: 
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where the symbol  denotes multiplication of n terms.  Since all coefficients ak are real, 

this equation can always be factored into 1st order terms with real poles and 2nd order 
terms with complex conjugate poles for which 

n
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∏
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It might be conceptually clearest to think of the modes in terms of response to initial con-
ditions, without the complication of forcing inputs.  The mode of IC response associated 
with any real pole [pi in Eq. (16-59)] is monotonic exponential, exactly that of a basic 1st 
order system.  The mode of IC response associated with any pair of complex conjugate 

poles [ 21 jjjj j ζωωζ −±−  in Eq. (16-59)] is oscillation modulated by an exponential 

envelope, exactly that of a basic 2nd order system for which ⎜ζ ⎜ < 1.  The total time re-
sponse of an LTI system to initial conditions and forcing inputs is the superposition of the 
responses of all of its individual 1st order and 2nd order modes.  If the response is stable, 
then the greatest contributors to this total response typically are a few, at most, dominant 
modes, those whose poles are closest to the imaginary axis. 
 

The modes of vibration introduced in Section 7-6 and Chapter 12 represent a 
special case of the more general modes of response discussed in the previous paragraph.  
An undamped structural system of the type considered in Chapter 12 always has even 
order (i.e., n = 2, 4, 6, …), so that its characteristic equation has an even number of roots.  
These roots appear in purely imaginary conjugate pairs, each pair for a particular mode of 
vibration; the absolute value of any root is the natural frequency of that particular mode. 

 
Before proceeding, we should observe a general feature of loci-of-roots diagrams.  

The poles are either real or, if complex, appear in conjugate pairs, as is expressed by Eq. 
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(16-59).  Therefore, loci-of-roots diagrams are always symmetric about the Re(p) axis.  
This symmetry is evident in Figs. 16-5, 16-7, and 16-8. 
 
16-6  Open-loop transfer functions and loci of roots  
  

Fig. 14-8 (repeated)  Laplace block 
diagram of general closed loop 

G(s) 

H(s) 

In(s) Out(s)E(s) 

B(s) 

Let’s review and consider again Fig. 14-8, 
the general Laplace block diagram for an SISO 
closed-loop system with feedback.  In Section 14-
4, we used Fig. 14-8 to derive the closed-loop 
transfer function, )()( sInsOut : 
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It is common practice also to refer to the ratio )()( sEsB  as the open-loop transfer func-
tion, which is expressed more completely as 
 

∏

∏

=

=

−

−
×≡==≡ n

k
k

m

k
k

HG

HG

Ps

Zs
C

sDsD
sNsN

sHsGsOLTF
sE
sB

1

1

)(

)(

)()(
)()(

)()()(
)(
)(          (16-61) 

 
In Eq. (16-61), C is some physical constant, the finite zeros Zk of OLTF(s) are the roots of 
NG(s)NH(s) = 0, and the poles Pk of OLTF(s) are the roots of DG(s)DH(s)   = 0. [For n > m, 
there are also n − m zeros of OLTF(s) as s → ∞.]  
 
 The nth degree characteristic polynomial of the closed-loop system is Eq. (16-58), 

.  Note that the denominator of CLTF(s), Eq. (16-60), equals the 

denominator plus the numerator of OLTF(s), Eq. (16-61).  Therefore, after we divide out 
coefficient a1, the characteristic equation for closed-loop system poles p can generally be 
put into one of the following forms: 
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In Eqs. (16-62), c is some known physical constant, and Λ is the varying control para-
meter.  The system evaluated by root-locus methods in Section 16-5 includes open-loop 
poles Pk (called there the “sub-system poles”), but not any finite open-loop zeros Zk , so 
that system’s characteristic equation, Eq. (16-51b), is of form (16-62a).  On the other 
hand, the systems of homework Problems 16.8, 16.9, and 16.10 have both open-loop 
poles and open-loop zeros, so their characteristic equations have form (16-62b). 
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 Some simple but general features of loci of closed-loop roots can be inferred from 
Eqs. (16-62).  Both equations show clearly that when Λ = 0, the closed-loop poles are 
exactly the same as the open-loop poles.  At the other extreme, as Λ becomes very large, 
Λ → ∞, m of the loci → the finite open-loop zeros Zk .  This is obvious from Eq. (16-
62b), because the term including the open-loop poles becomes progressively less 
significant in relative size as the magnitude of Λ increases.   
 
 As Λ → ∞ in Eq. (16-62a), in order for an equation of magnitude equality such as 
Eq. (16-56),  = ωbΛ, to remain satisfied, all n of the loci of that equation must go to 
some ∞ locations in the p-plane.  Similarly, as Λ → ∞ in Eq. (16-62b), although m of the 
loci terminate at the finite open-loop zeros Zk , the remaining n − m loci must go to some 
∞ locations in the p-plane.  For both Eqs. (16-62) as Λ → ∞, the values of the finite open-
loop zeros Zk  and of the open-loop poles Pk  have a secondary influence, so the directions

321 rrr

 
θA in the p-plane of the n − m straight-line asymptotes of the Λ → ∞ loci are the solutions 
for angles of , which leads to: 0=Λ+ c−p mn

 

[ ]...),3,(exp)( ππθ ±±Λ=− jcre mnj A   ⇒  ...,3,)( ππθ ±±=− Amn  
 

( ...,3,1 ππθ ±±
−

=
mnA )                                        (16-63) 

 
However, Eq. (16-63) neglects the values of Zk  and Pk , so it implies incorrectly that the 
asymptotes “radiate” (or “emanate”) from the origin of the p-plane; in fact, it can be 
proved (Cannon, 1967, pages 658-659) that all n − m asymptotes emanate from a point on 
the real axis defined by the equation: 
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 It is useful also to know the directions in which loci “depart” from the open-loop 
poles as Λ increases from zero.  Suppose that we seek the direction (angle) of departure 
(θj)dep of the locus of closed-loop roots from open-loop pole Pj .  Let’s use the following 
notation:  (θP)kj is the angle from open-loop pole Pk to open-loop pole Pj ; and (θZ)kj is the 
angle from open-loop zero Zk to open-loop pole Pj .  Provided that all of the open-loop 
poles and zeros are single (not repeated or multiple) roots, then the required angle is cal-
culated from the equation (Cannon, 1967, pages 660-661): 
 

                                  (16-65) kj
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 We use Section 16-5’s numerical example to illustrate the information about loci 
of roots that is provided by open-loop poles; that example is a 3rd order system for which 
n = 3 and m = 0.  From Eq. (16-51b) with Λ= 0, the open-loop poles are p1 = 0 sec−1, p2 =  
−100 sec−1, and p3 = −300 sec−1.  These open-loop poles are marked by ×’s on Fig. 16-9.  
There are no open-loop zeros, so as Λ → ∞, the three loci must go to some ∞ locations in 
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the p-plane; the directions of the lines asymptotic to these loci are given by Eq. (16-63) as 
θA = ±π /3 and θ = π .  The point on the real axis from which all three asymptotes emanate 
is given by Eq. (16-64) as pA = (0 −100 −300)/3 = −133⅓ sec−1.  The asymptotes are the 
straight dashed lines on Fig. 16-9.  Equation (16-65) gives the angles of departure from 
open-loop poles as (θ1)dep = π − (0 + 0) = π , (θ2)dep = π − (π + 0) = 0, and (θ3)dep = π − (π 
+ π) = −π .  These angles of departure are represented on Fig. 16-9 by short, bold arrows.  
Although the directions of departure for this particular system are either due east or due 
west, this is not always the case; for systems in general, a direction of departure can be 
any angle. 

j200 θA = +60° 

j100 

 
Figure 16-9  Example of information about loci of roots that is 
provided by the open-loop poles 

 
 We can make educated guesses as to the appearance of the completed diagram of 
root loci, even from the incomplete diagram Fig. 16-9.  First, it seems likely that the locus 
originating (i.e., for Λ = 0) at open-loop pole p3 = −300 sec−1 just proceeds westerly along 
the asymptote θA = π , without straying away from the Re(p) axis.  That being the case, 
then the loci originating from the open-loop poles p1 = 0 sec−1 and p2 = −100 sec−1 must 
initially approach each other, then come together somewhere between p1 and p2 , and then 
break away from the Re(p) axis and become the complex conjugate pair of curves to 
which the asymptotes θA = ±π /3 are tangent as Λ → ∞.  Certainly, the incomplete dia-
gram Fig. 16-9 is qualitatively similar to the exact diagram Fig. 16-8, and Fig. 16-9 even 
includes some of the same significant quantitative information. 
 
 When you use software to determine loci of roots, you should also make the easy 
calculations presented in this section based upon open-loop poles and zeros.  If the soft-
ware calculations match yours, then this check will validate (partially, at least) that the 
software is correct and that you are using it correctly. 
 

−400 −300 −200 −100 

−j100 

Im(p), sec−1 
θA = 180° 

Re(p), 
sec−1 

θA = −60° −j200 
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16-7  Homework problems for Chapter 16 
 
16.1  Examine whichever of the following characteristic equations are assigned, using 
Routh’s criteria to determine if all of their roots have negative real parts so that the 
associated systems are positively stable. 
 
(a)  p − 3 = 0         (b)  2p + 11 = 0        (c)  p2 + 2p + 8 = 0        (d)  2p2 − 9p + 29 = 0  
 
(e)  2p3 + 4p2 + 4p + 12 = 0    (f)  p3 + 6p2 + 12p + 8 = 0    (g)  p4 − p3 + 7p2 + p − 8 = 0  
 
16.2  Consider the conceptual Laplace closed-loop-system block diagram below, with 
two possibly variable system parameters, K and Q.  
Write the equation for the closed-loop transfer 
function.  Next, expand the denominator (charac-
teristic) polynomial and apply Routh’s stability 
criteria to write all of the algebraic inequality re-
lationships involving K and Q (in general) that must be satisfied in order for the system to 
be positively stable.  (Don’t worry about the units of K and Q, just assume that they are 
consistent.)  Calculate the range of K for which the system is positively stable for which-
ever of the following cases is assigned:  (a) Q = −0.5 and +0.5; (b) Q = −1.0 and +1.0; (c) 
Q = −1.5 and +1.5.     

 R(s) X(s)
+ _ ))(1( Qsss

K
++

 

 
16.3  Consider the characteristic equation p2 + 2Cp + K = 0.  With mass m being positive-
definite, this is the characteristic equation of the standard mass-damper-spring system 
described by equation of motion xkxcxm ++ &&&  = fx(t), but with the notation C ≡ c ⁄ (2m) 
and K ≡ k ⁄ m.  The roots of this 2nd degree polynomial equation are the poles of the 
system transfer function.  Suppose that damping constant C = 6 sec−1, and that you want 
to evaluate the system stability characteristics for different values of stiffness constant K 
sec−2.  Consider first non-negative values of K.  For what positive value of K ≡ Kc is the 
damping critical, and what values do the polynomial roots have for K ≡ Kc ?  (Definition:  
if damping is positive but less than critical, then the roots are complex, corresponding to 
initial-condition response that is oscillation modulated by a decaying exponential enve-
lope; if, on the other hand, damping is equal to or greater than critical, then the roots are 
negative real, corresponding to monotonic exponentially decaying initial-condition re-
sponse.)  What values are the roots for K = 0 and for K = 2Kc ?  Show each of these roots 
by marking large X’s at the correct positions on a complex p-plane graph [x-axis is Re(p),  
y-axis is Im(p), both in sec−1]; label the axes and the linear scale of the axes, the same 
scale on both axes, as on the MATLAB graph Fig. 16-8.  Explain concisely what quality 
of the roots indicates that the system is stable for all values of K > 0.  Now calculate the 
values of the roots for a negative stiffness, say K = −3Kc , and mark those roots on your 
p-plane graph.  From the roots for a negative stiffness, what can you state conclusively 
about the system stability for all negative values of K ?  Indicate clearly on your p-plane 
graph the loci of roots as K increases from −3Kc to 0, then from 0 to +Kc , then from Kc to 
2Kc , and finally for Kc > 2Kc .  Is there a break-away point on your loci of roots; if so, for 
what value of K ? 
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16.4  The following characteristic equations are expressed in completely or partially fac-
tored forms.  For whichever equations are assigned, find the order n of the associated sys-
tem, solve for the roots and mark their locations with large X’s on a sketch of the com-
plex p-plane, and state whether the system is stable or unstable; give the reason(s) for 
your conclusion. 
 
(a)   (b)  0 )346)(2( 2 =+−+ pppp)5)(4)(3)(4( =+++− pppp 0
 
(c) 0)53)(53)(1( =++−++ jpjpp  (d)  0)204)(22)(3( 22 =+++++ ppppp
 
16.5  The Laplace block diagram 
at right represents a system simi-
lar to that of Figs. 16-2 and 16-3:  
it is a damped rotor with position 
feedback that is low-pass-filtered.  
But the low-pass filter in this case 
is 2nd order, whereas the filter of 
Fig. 16-3 is 1st order.  The filter transfer function on the block diagram is from Eq. (10-6):  
low-pass break frequency bω  is the undamped natural frequency, and γ  is the filter 

viscous damping ratio.  We specify the value 21=γ ; as shown on the frequency-
response magnitude-ratio graph of Fig. 10-2, for this γ , the magnitude attenuation at 

bωω =  is 21  (same as for a 1st order filter), and the high frequency roll-off is two 
decades for each decade increase of frequency (twice as steep as the roll-off of a 1st order 
filter).  (See also the discussion of 2nd order low-pass filters at the end of Section 10-2.) 

 R(s) 
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(a)  Derive from the block diagram the algebraic equation for the closed-loop transfer 
function, )()()( sRssCLTF Θ≡  (in terms of the symbols shown, without numbers at this 
stage).  From your , write the characteristic equation, . )(sCLTF 0)( =pDen
 
(b)  Use the same values as for the calculations of Chapter 16:  bω  = 300 rad/sec and 

Jcθ  = 100 sec−1, as well as 21=γ .  Also as in Chapter 16, denote the varying 
control-system parameter as JKKa θ≡Λ .  Use MATLAB’s root operation to calculate, 
print out, and plot the loci of roots of this system over the entire range of Λ values for 
which the system is positively stable.  Your graph and numerical output should show 
with at least 2-3 significant-figure precision any break-away points and the upper and 
lower boundaries of stability.  Find by trial and error the approximate value of Λ for 
which the dominant oscillatory mode of response has the system damping ratio ≈ζ  

21 , and also calculate the time constant 2τ  and the frequency dω  for this value of Λ. 
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16.6  The Laplace block diagram here represents a system to control the angular position 
of a satellite in one plane.  The 
unfamiliar input-error block in the 
forward branch of the loop is the 
transfer function of a compensator, 
which in this case is designed to 
place a pair of the system’s closed-
loop poles at )11(2 j±−π  sec−1 in the p-plane, for one value of control parameter Λ ≡ 

JKKK ac θ .  For these poles, the frequency is πω 2ddf =  = 1 Hz, and the viscous 

damping ratio is 21=ζ . 

 R(s) 

Kθ 

Θ(s)
+_ π
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sKc Ka Kr 2

1
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(a)  Derive from the block diagram the algebraic equation for the closed-loop transfer 
function, )()( sRsΘ , then write the characteristic equation, 0)( =pDen . 
 
(b)  Use MATLAB’s root operation to calculate, print out, and plot the loci of roots of 
this system over the parameter range 2000 ≤Λ≤  sec−2.   
 
(c)  Use Evans’ root-locus method to determine the numerical value of Λ that produces 
poles )11(2 j±−π  sec−1. 
 
16.7  (Adapted from Franklin, et al., 1991, Problem 5.25 on page 347)  The Laplace 
block diagram of the speed-control system of a magnetic-tape drive is shown in the figure 
below.  The operator setting is input voltage signal ein(t), the Laplace transform of which 
is Ein(s).  Each major sub-system of the control system functions as a 1st order system.  
The sub-system consisting of a power amplifier and a torque actuator has variable sensi-
tivity Ka (N-m/V) and time constant τa = 1.0 sec.  The tape drive has rotational inertia J = 
4.0 N-m per rad/sec2 and lubricated-shaft viscous damping constant cθ = 1.0 N-m per 
rad/sec; the output of the tape drive in this application is rotational speed p(t) in rad/sec 
[with Laplace transform P(s)], not 
rotational position θ(t).  The rota-
tional-speed sensor in the feedback 
branch has sensitivity Kp = 1.250 V 
per rad/sec; this sensor is suffi-
ciently slow relative to the other 
sub-systems that we must account 
for its time constant, τp = 0.5 sec. 

Ein(s) P(s) 

1+s
K

p

p

τ
 

θcsJ +
1  

Tape drive 

1+s
K

a

a

τ+_

Speed sensor 

Amplifier-actuator

 
(a)  Derive the closed-loop transfer function P(s)/Ein(s), and then show that the character-
istic equation of this system can be expressed as 
 

0))()(( 11 =Λ++++ −−
pa ppJcp ττθ , or   ...)],3,(exp[321

321 ππθθθ ±±Λ=×× jererer jjj

 
where the variable control parameter is defined as )( papa JKK ττ=Λ , with units of 
sec−3. 
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(b)  Determine (by hand, not MATLAB) all of the open-loop poles, all of the asymptotes 
(as Λ → ∞) of the closed-loop poles, and the directions of departure of the root loci from 
the open-loop poles as Λ increases from zero.  Sketch on graph paper a p-plane, and indi-
cate on it the information that you determined for this system.  See Fig. 16-9 for an exam-
ple of the type of diagram that yours should be.  Make educated guesses and sketch on 
your diagram the forms you think the root loci should have. 
 
(c)  From part (a), any point on a locus of roots must satisfy the angle equality:  θ1 + θ2 + 
θ3 = ±π, ±3π, … .  Use this equality to write a transcendental equation that can be solved 
for the closed-loop pole jωd at the upper stability boundary Λub of the complex oscillatory 
loci; your equation will include trigonometric functions for the θi angles that involve ωd 
and the numerical values of the open-loop poles.  It is not necessary for you to solve the 
transcendental equation, but you may show just by substitution that ωd = 1.6583124 sec−1 
= 211  sec−1 is the solution.  Finally, again using the result of part (a), solve for the 
value Λub = r1 × r2 × r3; your equation will include terms for the ri magnitudes that in-
volve ωd and the numerical values of the open-loop poles.  [Note:  you could also solve 
this part by applying Routh’s criteria, Eqs. (16-37) and (16-38), to calculate Λub , then 
substituting Λub back into the characteristic equation to solve for p = jωd .] 
 
16.8  The open-loop transfer function of a certain control system is 
 

G(s)H(s) ≡ OLTF(s) = 
)262)(1(

1044
2

2

+++
++

Λ
sss

ss  

 
where Λ (with units sec−1) is a variable parameter with possible range 0 ≤ Λ < +∞. 
 
(a)  Determine (by hand, not MATLAB) all of the open-loop poles and open-loop zeros 
of this system, any asymptotes (as Λ → ∞) of the closed-loop poles, and the directions of 
departure of the root loci from the open-loop poles as Λ increases from zero.  Sketch on 
graph paper a p-plane, and indicate on it the information that you determine for this sys-
tem.  See Fig. 16-9 for an example of the type of diagram that yours should be.  However, 
whereas Fig. 16-9 does not display any open-loop zeros, your diagram should; it is tradi-
tional to mark an open-loop zero by an ο, just as an open-loop pole is marked by an ×.  
Make educated guesses and sketch on your diagram the forms you think the root loci 
should have. 
 
(b)  Show that the characteristic equation of the closed-loop system is 
 

0)41(26)7(4)3( 23 =Λ++Λ++Λ++ ppp  
 
Apply Routh’s criteria, Eqs. (16-37) and (16-38), to calculate bounds and ranges of Λ for 
stability; in particular, solve a quadratic equation in unknown Λ to show that two of the 
bounds are Λ1,2 = 8 ± 5.49  sec−1 = 0.964376 sec−1 and 15.0356 sec−1.  In order to inter-
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pret the significance of these bounds relative to stability, calculate the quadratic equation 
for values of Λ slightly above and below these two bounds.  Next, substitute the values 
Λ1 and Λ2 back into the characteristic equation as p = jωd1 and p = jωd2 to solve for the 
oscillatory frequencies ωd1 and ωd2 at Λ1 and Λ2 , respectively—there will be both a real 
and an imaginary part of the equation that you can solve; calculate the ωd1,2 from the 
easier part, then just substitute that value of ωd1,2 into the harder part to show that it also 
is satisfied.  What is the significance of ωd1,2 and Λ1,2 on your diagram in part (a)? 
 
16.9  The characteristic equation of a certain LTI-SISO system can be expressed as  
 

0
)22)(3)(1(

11)()(1 2 =
+++−

+
Λ+=+

pppp
ppHpG  

 
where Λ is a variable gain parameter with possible range 0 ≤ Λ < +∞. 
 
(a)  Determine (by hand, not MATLAB) all of the open-loop poles and the open-loop 
zero of this system, all of the asymptotes (as Λ → ∞) of the closed-loop poles, and the 
directions of departure of the root loci from the open-loop poles as Λ increases from zero.  
Sketch on graph paper a p-plane, and indicate on it the information that you determine for 
this system.  See Fig. 16-9 for an example of the type of diagram that yours should be.  
However, whereas Fig. 16-9 does not display any open-loop zeros, your diagram should; 
it is traditional to mark an open-loop zero by an ο, just as an open-loop pole is marked by 
an ×.  Make educated guesses and sketch on your diagram the forms you think the root 
loci should have. 
 
(b)  Your information in part (a) should suggest that one locus of roots is on the Re(p) 
axis, starting from an open-loop pole at p = +1 (for Λ = 0), and terminating on an open-
loop zero at p = −1 (for Λ → ∞).  If that is true, then this particular locus must, for some 
value of Λ between 0 and ∞, cross the origin of the p-plane from p > 0 (unstable) to p < 0 
(stable).  Your assignment is to express the characteristic equation in polar form [in the 
manner of Eqs. (16-53)- (16-56)], use that form to prove the segment −1 ≤ p ≤ +1 of the 
Re(p) axis is or is not a locus, and, if it is, find the value of Λ at p = 0, the boundary be-
tween instability and stability. 
 
(c)  Your solution from part (b) should indicate:  there is a locus on the segment −1 ≤ p ≤ 
+1 of the Re(p) axis; and that locus has stable roots for Λ greater than its value at p = 0.  
On the other hand, your information from part (a) should show there is a pair of complex 
conjugate open-loop poles in the stable western half-plane; it also should suggest that the 
loci departing from those complex open-loop poles (for Λ = 0) then proceed in an easterly 
direction as Λ increases from zero, then, for some positive value of Λ, cross over the 
Im(p) axis into the unstable eastern half-plane.  So, as Λ increases from zero, one real lo-
cus of closed-loop roots goes from being unstable to stable, but a pair of complex conju-
gate loci go from being stable to unstable.  Therefore, we must ask if there is any range of 
Λ for which all of the loci are in the western half-plane and the closed-loop system is sta-
ble?  Perhaps the best way to answer this question is to use Routh’s stability criteria.  
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Consider a general 4th order characteristic equation:  a1 p4 + a2 p3 + a3 p2 + a4 p + a5 = 0.  
The associated system is stable if and only if all of the following conditions are satisfied 
(Ogata, 2001, pages 275-277):  
 
* all ai > 0, i = 1, 2, 3, 4, 5; 
 
* R2 ≡ a2 × a3 − a1 × a4 > 0; 
 
* R3 ≡ R2 × a4 − a2

2
 × a5 > 0. 

 
Use Routh’s stability criteria to determine the range of Λ for which the closed-loop 
system is stable, if there is such a range.   
 
16.10  (adapted from Nelson, 1989, Problem 7.7 on pages 222-223)  The 1903 Wright 
Flyer by itself was inherently unstable in longitudinal motion (coupled pitch and vertical 
translation).  However, Wilbur and Orville Wright stabilized, just barely, the system of 
airplane + pilot by providing sufficient control authority with a canard and by developing 
flying skill through extensive experimentation and practice with piloted gliders.  A math-
ematical model3 of the system was formulated, the Laplace block diagram for which is 
shown below.  The input to the system is commanded pitch attitude θc(t), and the output 

is actual pitch attitude θ(t).  Incremental ca-
nard position is δ(t), for which the Laplace 
transform is Δ(s).  The canard-position-to-
pitch-attitude transfer function incorporates 
both rigid-body dynamics and aerodynamics; 
the estimated model of this transf
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(a)  Determine (by hand, not MATLAB) all of the open-loop poles and open-loop zeros 
of this system, all of the asymptotes (as pilot gain Λ → ∞) of the closed-loop poles, and 
the directions of departure of the root loci from the open-loop poles as Λ increases from 
zero.  Sketch on graph paper a p-plane, and indicate on it the information that you deter-
mined for this system.  See Fig. 16-9 for an example of the type of diagram that yours 
should be.  However, whereas Fig. 16-9 does not display any open-loop zeros, your dia-
gram should; it is traditional to mark an open-loop zero by an ο, just as an open-loop pole 
is marked by an ×.   
 
(b)  Show in detail that the characteristic polynomial equation in the form a1 p4 + a2 p3 + 
a3 p2 + a4 p + a5 = 0, with all ai coefficients either numerical or combinations of numbers 
and pilot gain Λ, is given by:   
 

                                                 
3 Culick, F.E.C.:  “Building a 1903 Wright ‘Flyer’—by Committee,” AIAA Paper 88-0094, 1988 
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0)136.175.16()072.05.38()212.611(62.6 234 =−Λ+−Λ+−Λ++ pppp  
 
(c)  If we wish at this point to program into software the calculation of loci of roots, we 
know only to consider 0 < Λ < ∞; but, without more information, it is difficult to know 
what specific range or even order of magnitude of Λ to enter initially in the calculations.  
However, Routh’s stability criteria can provide that necessary additional information.  
Use Routh’s criteria [homework Problem 16.9(c)] and the characteristic-equation coeffi-
cients to evaluate the absolute stability of the Wright Flyer system, thereby determining 
quantitatively a candidate range of Λ for use in calculation of loci of roots.4  (Answer:  
for stability, Λ > 1.3096)  
 
(d)  Use MATLAB’s root operation to calculate, print out, and plot the loci of roots of 
this system over a range of Λ values for which the system is stable.  From Eq. (9-28), 
viscous damping ratio ζ = 0.11 of the oscillatory mode produces 50% amplitude decay 
during each cycle; show from your calculations that Λ = 3.24 is the lower pilot gain for 
which ζ = 0.11, to reasonable engineering accuracy.  From your results for Λ = 3.24, do 
you expect an oscillatory mode to be dominant in time response, or an exponential mode, 
or perhaps a combination of the two? 
 
(e)  It is of interest to examine in more detail the case of pilot gain Λ = 3.24, beginning 
with the closed-loop transfer function CLTF(s).  Note that we essentially already have the 
denominator of CLTF(s):  in the characteristic equation of part (b), just replace p  s  
and set Λ = 3.24.  Show that the closed-loop transfer function, in the form of Eq. (16-5), 
is: 
 

324.36668.124428.2962.6
)5.15.3(64.35
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)()( 234

2

++++
++

=
Θ
Θ

=
ssss

ss
s
ssCLTF
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Now apply MATLAB’s residue operation (see homework Problem 2.15) to calculate 
the residues and poles of CLTF(s), and write out the partial-fraction expansion form of 
CLTF(s).  Note that the poles found in this step should match those of part (d) for Λ = 
3.24.  
 
(f)  Finally, consider a forced-response solution in time, with zero initial conditions.  Sup-
pose the pilot commands a short pulse to the pitch-control lever; represent this pulse ap-
proximately with a Dirac delta function (Section 8-4):   θc(t) = Iθ δ(t), for which the La-
place transform is Θc(s) = Iθ .  Let the impulse magnitude be Iθ = 2 degree-sec.  Use the 
partial-fraction expansion form of CLTF(s) from part (e) to derive the equation for the 
                                                 
4 This exercise requires several calculations.  Rather than calculating manually, you might prefer to use 
symbolic software.  If you use MATLAB’s Symbolic Math Toolbox (see homework Problem 1.6), be 
aware that this symbolic software performs calculations exactly, expressing numbers as fractions of inte-
gers if at all possible.  But the integers in these fractions can become quite large and unwieldy.  You can 
convert these fractions into decimal numbers by using “variable precision arithmetic.”   For example, if a 
symbolic term is expressed as v = 4115/2263*w, you can convert the fractional coefficient into a five-
digit decimal with the operations >> digits(5);v5=vpa(v), the result of which is v5 = 1.8184*w. 
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pitch response θ(t) to this control excitation, and then calculate and plot this transient re-
sponse over a 15-sec interval. 
 
16.11  We know from Chapter 16 that the process of calculating and plotting loci of roots 
is useful in analysis of control-system stability; the objective of this problem is to illus-
trate another important application of root-loci:  analysis of the stability of a system for 
which the potentially destabilizing feedback is natural and intrinsic, not human-designed.  
Systems with this characteristic are often described as self-excited (see, e.g., Den Hartog, 
1956, Chapter 7).  The particular phenomenon we consider here, aeroelastic dynamic re-
sponse of a typical-section airfoil, including unstable flutter, originated in aeronautical 
engineering but is relevant also to many other applications of force-generating objects 
that are immersed within moving fluids (e.g., hydrofoils, wind-turbine blades, and pro-
pellers).  The typical-section airfoil is described in Section 11-3, Examples 11-2 and 11-
3, and we consider here the form depicted below, an uncambered, symmetric thin airfoil 
supported by springs in a wind tunnel, and immersed within an incompressible airstream 
of density ρ and freestream velocity V.   
 
 

 AC 

 F(t) 
θ(t)

 EA 

 M(t) 

 C

 ky , cy 

    y(t) 

 e 

 D 

 d  e 

 chord c 

 V 

 r  kθ , cθ

 
Structural dynamic equations of motion with vertical translation of mass center C, yAC(t), 
and pitch θ(t) as degrees of freedom (DOFs) are derived and expressed in matrix form in 
Eq. (11-22).  However, a more appropriate vertical translation DOF for this problem is 
yEA(t) ≡ y(t) of the elastic axis EA, as labeled on the figure above; the equations of motion 
for DOFs y(t) and θ(t) are derived in homework Problem 11.4 and are expressed below, 
with the addition of a damping matrix that represents approximately the energy dissipa-
tion within the springs (using the viscous-damping mathematical model described in Ap-
pendix B, Section B-5). 
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We assume that aerodynamic resultant lift force and moment (positive nose-up) are due 
both to the motions of the typical section itself (self-excitation), and to sources such as 
gusts that are independent of the motion, which we denote as lift FG(t) and moment 
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MG(t).  There is no exact and readily applicable theory of unsteady, motion-dependent 
aerodynamics; therefore, we use here one of the many approximate theories, the quasi-
steady aerodynamics of Fung, 1955, pages 191-193.  In these equations of unsteady lift 
and moment, we replace Fung’s lift-curve slope for an airfoil of infinite span, CLα = 2π 
per radian, with a reduced value of CLα  that applies for an airfoil of finite span.  This is 
appropriate for the specific numerical parameters considered below in part (b), which are 
chosen to represent an actual experimental research investigation of typical-section aero-
elasticity.  Since dynamic pressure is q  = ½ρV 2, it is appropriate to define in Fung’s 
equations the constant K ≡ ½ρS(2π) → K ≡ ½ρSCLα .  Thus, the motion-dependent and 
motion-independent aerodynamic resultant lift and nose-up moment are written as:  
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(a)  Substitute Eqs. (P16.11-2) into Eq. (P16.11-1), then transpose the motion-dependent 
terms from the right-hand side to the left-hand side so that the damping and stiffness ma-
trices in (P16.11-1) become more general; for example, the structural-plus-aerodynamic 

stiffness matrix becomes .  Now you have a set of equations that, in 

principle, can be solved for DOFs y(t) and θ(t) by Laplace transformation.  Assume null 
initial conditions, y(0) = 0 and θ(0) = 0, and assume that FG(t) and MG(t) are Laplace 
transformable functions, then express the Laplace-transformed equations of motion in the 
following form, writing explicit quadratic (in s) polynomials for the four Mij(s;V) ele-
ments of the left-hand side coefficient matrix: 
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The matrix solution of Eq. (P16.11-3) can be written as 
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where the 2 × 2 coefficient matrix [ ] [ ] 1);();( −= VsVs ΜTF  is the multiple-input-multiple-
output (MIMO) transfer-function matrix relating two outputs, Y(s) and Θ(s), to two in-
puts, L[FG(t)] and (L[MG(t)] + eL[FG(t)]); however, it is clear that each element of matrix 

 is itself a single-input-single-output (SISO) transfer function.  Use Eqs. (12-
10)-(12-12) to write an equation for 
[ );( VsTF ]

[ ]);( VsTF  in terms of the four Mij(s;V) elements.  
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Note, in particular, that the denominator of each of the SISO transfer functions, TFij(s;V), 
is the determinant  = M11(s;V) × M22(s;V) − M21(s;V) × M12(s;V).  By the 
logic of Section 16-1, therefore, the quartic (in p) polynomial equation,  = 0, 
is the general characteristic equation of the system, and its four roots pi(V) at each free-
stream airspeed V determine both the character of unforced time response (e.g., exponen-
tial, oscillatory, etc.) and the system stability or instability at that particular airspeed. 

[ );(det VsΜ ]
[ ]);(det VpΜ

 
(b)  In this part, you will use the equations of part (a) to calculate and plot the loci of 
roots, as wind-tunnel freestream airspeed V varies, using numerical parameters that were 
selected to represent the research project of a Brazilian group, DeMarqui, et al., 2005 and 
2006.  The parameters of the typical-section airfoil and the wind-tunnel atmosphere are: 
 

Mass m = 18.0 kg 
Rotational inertia about mass center C:  JC = 0.219 kg-m2; so JEA = JC + mr2 
Offset of mass center C forward of elastic axis EA:  r = 5 mm = 0.005 m 
Stiffness constant of vertical-translation spring:  ky = 1,110 N/m 
Stiffness constant of pitch-rotation spring:  kθ = 49.8 N-m/radian 
Viscous-damping constant of vertical-translation spring:  cy = 0.0107 sec × ky  
Viscous-damping constant of pitch-rotation spring:  cθ = 0.00318 sec × kθ  
Planform:  chord c = 0.45 m; span = 0.80 m; so, area S = c × span = 0.36 m2 
Offset of ¼-chord aerodynamic center AC forward of elastic axis EA:  e = c/4 
Offset of ¾-chord dynamic-pitch point D aft of elastic axis EA:  d = c/4 
Standard air density at 800-m average altitude of Sao Paulo, Brazil:  ρ = 1.1337 kg/m3 
Lift-curve slope for this low-aspect-ratio airfoil:  CLα = 2.64 per radian 

 
The most significant single result that you seek is the wind-tunnel freestream airspeed VF 
at which the typical section experiences aeroelastic flutter.  The flutter airspeed VF is that 
value of V at which the dominant time response of the typical section is a pure sinusoid; 
for lower airspeeds, 0 ≤ V  < VF , the dominant response is stable positively damped os-
cillation; but for higher airspeeds, V  > VF , the dominant response is unstable exponen-
tially expanding oscillation.  Begin the numerical analysis by using Eq. (11-18) to calcu-
late the aeroelastic divergence airspeed VD in m/sec; because usually VD  > VF , this value 
of VD will suggest to you the range of airspeeds, 0 ≤ V  < VD , over which you should cal-
culate the loci of roots in order to determine VF .  Use MATLAB’s conv and  root opera-
tions to calculate, print out, and plot the loci of roots of characteristic equation M11(p;V) × 
M22(p;V) − M21(p;V) × M12(p;V) = 0.  You might find useful the form of MATLAB script 
M-file MATLABdemo164.m that produced Figs. 16-7 and 16-8 in Section 16-5.  In this 
problem, freestream velocity V plays the same role that control gain parameter Λ plays in 
MATLABdemo164.m. 
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Chapter 17 Introduction to system stability: frequency-response criteria  
 

© 2016 by William L. Hallauer, Jr. 
 
 Frequency-response concepts have been discussed extensively in many previous 
chapters, most notably in Chapters 4 and 10 relative to methods of calculation and the 
physical characteristics of frequency response in stable systems.  In this chapter, we con-
sider methods using frequency response for assessing the stability of systems. 
 

To examine the stability of a closed-loop control system, we examine in particular 
the frequency response of the associated open-loop system, for which the transfer func-
tion OLTF(s) = G(s) × H(s) was described in Section 16-6.  The open-loop system itself is 
usually manageable, not unstable, even though its closed-loop version might be unstable.  
Therefore, the frequency-response function OLFRF(ω) ≡ OLTF(jω) = G(jω) × H(jω) can 
typically be measured on actual hardware, even if there is no good mathematical model 
for the system.  The reason for measuring and/or computing OLFRF(ω) is that it provides 
metrics of the absolute and relative stability of the closed-loop system.  In other words, to 
determine the stability of the closed-loop system, it might not be necessary to close the 
loop with real hardware, possibly risking damage and/or injury. 

 
Recall that root-locus analysis is based on the characteristic equation 1 + G(s) × 

H(s) = 0, or G(s) × H(s) = −1; obviously, the right-hand-side number −1 is important to 
the closed-loop poles and to closed-loop system stability.  Similarly, the number −1 is 
also highly significant when we evaluate stability using open-loop frequency response 
G(jω) × H(jω). 

 
17-1  Gain margins, phase margins, and Bode diagrams 

 
In order to describe and illustrate the most basic form of frequency-response sta-

bility analysis, we consider again a familiar system from Chapter 16:   the rotor position-
feedback control system with a 1st order low-pass filter in the feedback branch, for which 
the functional diagram is Fig. 16-2 and the block diagram is Fig 16-3.  We have already 
studied this system to determine absolute stability by Routh’s criteria in Section 16-3, and 
relative stability by calculating 
loci of roots and by applying the 
root-locus method in Sections 16-
5 and 16-6.  Knowing the stabil-
ity characteristics in advance will 
guide us in interpreting the fre-
quency-response analysis. 
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The closed-loop transfer function is )]()(1[)()( sHsGsGsCLTF += ; the denominator of 
CLTF(s) in this form for the system of Fig. 16-3 is 
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where Λ ≡ Ka Kθ /J is the control parameter, which we now call gain.  We evaluate the 
stability of the closed-loop system as Λ ranges from 0 to +∞.  The system constants from 
Chapter 16 are ωb ≡ 1⁄τL  = 300 rad/sec and cθ ⁄ J = 100 sec−1.  In Section 16-5, we solved 
the characteristic equation of the closed-loop system, 1 + G(s) H(s) = 0.1  We know from 
the loci of roots calculated for this system that, with gain Λ positive and increasing, there 
is a particular value of Λ for which the oscillatory loci of roots intersect the Im[s] axis; 
for this value of Λ, the oscillatory time response is purely sinusoidal and periodic, 
without any exponential envelope.  Let’s define that intersection as the point of 
oscillatory neutral stability and denote the value of Λ there as Λns (the same as Λub in 
Section 16-5).  Accordingly, let’s denote the oscillatory frequency at that point as ωns (the 
same as ωd in Section 16-5).  We determined in Chapter 16 that Λns = )( Jcθ  × 

)( bJc ωθ + = 40,000 sec-2 and ωns = bJc ωθ )(  = 173.2 rad/sec, and that the closed-
loop system is exponentially stable for 0 < Λ < Λns , but unstable for Λ > Λns . 
 
 The loci of roots are defined by the characteristic equation: 
 

0)(1)()(1 =+≡+ sOLTFsHsG                                     (17-3) 
 
Therefore, at the point of neutral stability, with Λ = Λns and s = jωns , we have 
 

...)],3,(exp[11)(0)(1 ππωω ±±×=−=⇒=+ jjOLTFjOLTF nsns  
 

[ ] ...)],3,(exp[1)(exp)()( ππωωω ±±×=∠≡ jjOLTFjjOLTFjOLTF nsnsns  
 
Equating magnitude ratios and phase angles in the last equation gives for Λ = Λns : 
 

1)( =nsjOLTF ω      and     ...),3,()( ππω ±±=∠ nsjOLTF               (17-4) 
 
 Equations (17-4) correspond physically, for ω = ωns , to the frequency-response 
test depicted in Fig. 17-1 (a modification of Fig. 16-2) on the next page.  For steady-state 

                                                 
1 We use the Laplace complex variable s in this chapter because it is traditional for treatment of frequency-
response theory to use s, instead of complex variable p (for s = p, a solution of the characteristic equation, 
i.e., a pole of the closed-loop transfer function) that we used in Sections 16-3 through 16-6. 
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sinusoidal electrical-signal excitation ein(t) = Ein sin ωns t of the open-loop system at the 
neutral-stability frequency of the closed-loop system, ω = ωns , the magnitude ratio of the 
open-loop frequency response is exactly 1 and the output electrical signal is exactly out 
of phase with the input signal, meaning eout(t) = −Ein sin ωns t. 

Output 
position 
θ (t) 

Figure 17-1  Functional diagram of frequency-response testing of 
the open-loop portion of Figs. 16-2 and 16-3 

Moment 
actuator 

aK   J 

Position 
sensor 

θK  

Low-pass 
filter 
 Lτ  

Input signal     
ein(t) = Ein sinωt  

 cθ 

Ma (t)

Output signal     
eout(t) = Eout sin(ωt + φ) 

 
 The observation that, for Λ = Λns , output eout(t) = −Einsin ωns t in response to input 
ein(t) = Einsin ωns t provides motivation for conducting steady-state-sinusoidal tests on the 
open-loop system over a band of frequencies surrounding ωns , not just ωns , and for other 
values of Λ, not just Λns , in order determine if this type of testing provides information 
regarding the stability of the closed-loop system.  We can simulate such a test by eval-
uating numerically the open-loop frequency-response function, from Eq. (17-2): 
 

))((
)()(

b

b

jJcjj
jOLTFOLFRF

ωωωω
ω

                 (17-5) ωω
θ ++

Λ=≡

 
To begin, in order to establish a reference set of results for the neutral-stability value of 
gain, Λ = Λns , we calculate and plot from Eq. (17-5) frequency-response components 
using the following MATLAB code: 
 
>> wb=300;coj=100;wns=sqrt(wb*coj); 
>> wbar=logspace(-1,1,100);w=wbar*wns; 
>> lm=4e4;olfrf4e4=lm*wb./(j*w.*(j*w+coj).*(j*w+wb)); 
>> subplot(2,1,1),loglog(wbar,abs(olfrf4e4)),grid 
>> faz=atan(imag(olfrf4e4)./real(olfrf4e4))-pi*ones(1,length(w)); 
>> subplot(2,1,2),semilogx(wbar,faz*180/pi),grid 
 
Figure 17-2 (next page) includes the graphical results from these MATLAB operations.  
For now, we focus on just the plots of the polar components, magnitude ratio and phase 
angle, for Λ = Λns = 40,000 sec−2; the additional annotations on the phase plot for “PM” 
at other values of Λ will be explained in due course.  If we were testing the real hardware 
of Fig. 17-1, rather than just numerically simulating a test, then the magnitude ratio 
would be the measured quantity Eout / Ein as frequency ω is varied, and the phase angle φ 
would be calculated from measurements by the method presented in Section 4-4. 
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Figure 17-2  Modified Bode diagram, Eq. (17-5), frequency response for Λ = Λns = 
40,000 sec−2 of the open-loop system in Fig. 17-1 

 
Figure 17-3  Magnitude ratios, Eq. (17-5) for Λ =  4,000 and 400,000 sec−2 
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 The upper plot of Fig. 17-2 shows that, for Λ = Λns , magnitude ratio OLFRF  
varies smoothly from greater than 10 at ω = 0.1ωns , through the previously determined 
value of 1 at ω = ωns , down to less than 0.01 at ω = 10ωns .  The lower plot shows that 
phase angle  is a lag ranging from more than −90° at ω = 0.1ωns , through the 
previously determined phase of −180° at ω = ωns , down to a lag approaching −270° at ω 
= 10ωns .  We have from Eq. 17-4 for Λ = Λns ,

OLFRF∠

...),3,()( ππω ±±=∠ nsOLFRF , which is 
ambiguous regarding the multiple and sign of π that is appropriate;  the phase plot of Fig. 
17-2 removes the ambiguity, at least for this system:  clearly, πω −=∠ )( nsOLFRF  rad.2 
 
 With Fig. 17-2 for Λ = Λns as the reference open-loop frequency response repre-
senting the neutrally stable closed-loop system, we can now compute simulated open-
loop frequency responses for other values of Λ, specifically, those for which the closed-
loop system is oscillatory and either exponentially stable or unstable.  With the following 
MATLAB code, we calculate and plot on Fig. 17-3 (on the previous page) the magnitude-
ratio (only) frequency-response graphs for the gain Λ = 0.1Λns = 4,000 sec−2, for which 
we know the closed-loop system is stable, and for the gain Λ = 10Λns = 400,000 sec−2, for 
which we know the closed-loop system is unstable:   
 
>> wb=300;coj=100;wd=sqrt(wb*coj); 
>> wbar=logspace(-1,1,100);w=wbar*wd; 
>> lm=4e3;olfrf4e3=lm*wb./(j*w.*(j*w+coj).*(j*w+wb)); 
>> lm=4e5;olfrf4e5=lm*wb./(j*w.*(j*w+coj).*(j*w+wb)); 
>> subplot(2,1,1),loglog(wbar,abs(olfrf4e3)),grid 
>> subplot(2,1,2),loglog(wbar,abs(olfrf4e5)),grid 
 

If we were to calculate the phase angles for any value of Λ, we would find them to be 
identical to those on the phase-angle graph for Λ = Λns of Fig. 17-2, which is the reason 
for not repeating the phase-angle calculations.  (The theory behind this feature of open-
loop phase angle, and also the variation of open-loop magnitude for different values of Λ, 
will be presented at the end of this section.) 
 
 By comparing the open-loop magnitude-ratio graphs of Figs. 17-2 and 17-3, we 
observe the magnitudes for the closed-loop stable case Λ = 0.1Λns to be less than those 
for neutral stability, Λ = Λns , and the magnitudes for the unstable case Λ = 10Λns to be 
greater.  We conclude from this that open-loop magnitudes less than or greater than those 
for neutral stability are an indication of closed-loop absolute stability.  If we were to cal-
culate the open-loop magnitude ratios for other values between 0.1Λns and 10Λns , we 
                                                 
2 The line of MATLAB code that calculates phase requires the angles to be between −π/2 and −3π/2 rad, so 
the argument here appears to be circular.  However, if we were to use the more general MATLAB function 
angle in place of that line of code, we would find, in the range of 0.1 ≤ ω/ωns < 1.0, exactly the same lag-
ging phases as are on the phase plot of Fig. 17-2, which does validate the assertion that the appropriate val-
ue is −π rad.  We did not use angle, because it is apparently based upon MATLAB’s four-quadrant inverse 
tangent function atan2, which returns angle values only between −π and +π rad.  Therefore, on the graph 
of phase versus ω/ωns , angle would produce an artificial and confusing discontinuous jump in phase from 
−180° to +180° at ω/ωns = 1.0 and, in the range of 1.0 ≤ ω/ωns ≤ 10, phase would drop from +180° to a little 
more than +90°. 
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would find that the variation is monotonic and regular; this suggests that open-loop mag-
nitude can also provide a metric for closed-loop relative stability, i.e., the degree of sta-
bility or instability.  Indeed, there is a commonly accepted metric called gain margin 
(GM); if we denote the gain margin for a particular value of Λ as GM(Λ), then it is de-
fined as the following dimensionless ratio of open-loop magnitudes: 
 

°−=∠
=

°−=∠

°−=∠
≡Λ

ΛΛ

ΛΛ

ΛΛ

180)(at)(
1

180)(at)(

180)(at)(
)(GM

ωω

ωω

ωω

OLFRFOLFRF

OLFRFOLFRF

OLFRFOLFRF
nsns

nsns

                (17-6) 

 
In the second form of Eq. (17-6), which is the working definition, we applied the unit 
magnitude value derived in Eq. (17-4).  The condition °−=∠

Λ
180)(ωOLFRF  is called, 

descriptively, a phase crossover. 
 
 Applying Eq. (17-6) to Figs. 17-2 and 17-3, we calculate these gain margins: 
GM(0.1Λns) = 10 for the closed-loop stable system; and GM(10Λns) = 0.1 for the unstable 
system.  Clearly, GM > 1 implies closed-loop stability and 0 < GM < 1 implies instabil-
ity.  Expressing GM in terms of its logarithm to the base 10 (denoted “log”) is also of 
value, since in this form GM is positive for closed-loop stability, zero for neutral stabil-
ity, and negative for instability.  It is traditional in control-system engineering to express 
GM in decibels (dB), in which unit the value of a positive number N is 20 × log N dB.  
Accordingly, GM(0.1Λns) = +20 dB for the closed-loop stable case of Fig. 17-3, and 
GM(10Λns) = −20 dB for the unstable case. 
 

Another open-loop frequency-response metric for closed-loop degree of stability 
is the phase margin (PM).  The phase margin for a given value Λ of the control parameter 
is defined as the lag angle at the frequency for which the magnitude ratio is unity relative 
to the comparable lag angle for the neutral-stability case, Λ = Λns : 
 

( ) ( )1)(at)(1)(at)()(PM =∠−=∠=Λ
ΛΛΛΛ nsns

nsns OLFRFOLFRFOLFRFOLFRF ωωωω
 

From Eq. (17-4) and the phase plot of Fig. 17-2, the reference lag angle is just −180°, so 
 

( )1)(at)(180)(PM =∠+°=Λ
ΛΛ

ωω OLFRFOLFRF                     (17-7) 
 

The condition 1)( =
Λ

ωOLFRF  is called a gain crossover.  Reading approximately the 
appropriate phases from the phase plot of Fig. 17-2, we calculate these phase margins:  
PM(0.1Λns) ≈ 180° − 120° = +60° for the closed-loop stable system, and PM(10Λns) ≈ 
180° − 225° = −45° for the unstable system.  (See homework Problem 17.2(a) for 
calculation of the more precise values of PM annotated on Fig. 17-2.)  Clearly, PM > 0° 
implies closed-loop stability and PM < 0° implies instability. 
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Brogan, 1974, page 25, described succinctly the practical interpretation of these 
stability margins for an initially stable closed-loop system: “Gain margin GM is a mea-
sure of additional gain a system can tolerate with no change in phase, while remaining 
stable.  Phase margin PM is the additional phase shift that can be tolerated, with no gain 
change, while remaining stable.” 

 
We have defined and illustrated gain and phase margins for stable and unstable 

feedback control using the physical system of Figs. 16-2, 16-3, and 17-1.  The behavior 
of this physical system is fairly “common” in the sense that it is stable for gain Λ = 0 and 
for low positive values of Λ, but it is unstable for all values of Λ greater than a particular 
neutral-stability value, Λns .  For any such common physical system, the open-loop fre-
quency-response metrics of gain margin and phase margin described in this section are 
valid measures of absolute and relative stability.  However, for “uncommon” physical 
systems, gain margins and phase margins of open-loop frequency response can be am-
biguous and difficult to interpret; for example, such an uncommon system might have 
PM = +78° but GM = −10 dB, yet still be closed-loop stable.  For such uncommon sys-
tems, a more general and involved, but unambiguous, approach to frequency-response 
analysis is based on the Nyquist stability criterion, which is the subject of Section 17-3. 

 
Now that we know how to calculate open-loop frequency responses in the format 

of Figs. 17-2 and 17-3 using standard MATLAB commands, it is appropriate that we not 
have to do so for every problem, but, instead, that we can apply the built-in MATLAB 
functions margin and bode to produce more easily the same results.  Before calling one 
of these functions, it is necessary first to define with the tf command a MATLAB linear-
time-invariant (LTI) transfer-function model.  The following, for the gain Λ = 10Λns of 
the same system as that of Figs. 17-2 and 17-3, shows one of the many ways to do this, 
along with the MATLAB responses: 

 
>> wb=300;coj=100; 
>> s=tf('s') 
  
Transfer function: 
s 
  
>> lm=4e5;oltf4e5=lm*wb/(s*(s+coj)*(s+wb)) 
  
Transfer function: 
        1.2e008 
----------------------- 
s^3 + 400 s^2 + 30000 s 
  
>> margin(oltf4e5) 
 
This margin command produced the Bode diagram or plot of Fig. 17-4 (next page), 
which is annotated with the GM and PM for this case, Λ = 10Λns , that of the unstable 
closed-loop system.  (The bode function itself also produces the Bode diagram, but with-
out calculating and printing the GM and PM.)  Note that it was not necessary to specify 
the frequency band—MATLAB chose an appropriate band.  By comparing Fig. 17-4 with 
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Figs. 17-2 and 17-3, you should observe some differences in format, which is why Fig. 
17-2 is labeled a “modified” Bode diagram; but there are no differences in the essential 
content.  A traditional Bode diagram such as Fig. 17.4 plots the frequency-response mag-
nitude ratio (in decibels) versus frequency (in rad/sec or Hz), which is presented on a 
logarithmic scale in order to accommodate a very wide band. 

 
Figure 17-4  MATLAB’s traditional Bode diagram, Eq. (17-5), frequency response 
for Λ = 10Λns = 400,000 sec−2 of the open-loop system in Fig. 17-1 
 

To conclude this section, we consider for systems in general how changes in gain 
Λ influence open-loop frequency responses and their graphical representations on Bode 
diagrams (and Nyquist diagrams in Section 17-4).  We infer from Eqs. (16-61) and (16-
62) that an open-loop transfer function can generally be expressed in the form 
 

)()( 1 sTFsOLTF ×Λ=                                             (17-8) 
 
where the baseline transfer function TF1(s) is obviously defined as 

1
)(

=Λ
sOLTF .  The 

associated general frequency-response function is 
 

[ ])(exp)()()( 111 ωωωω jTFjjTFjTFOLFRF ∠××Λ=×Λ=              (17-9) 
 
Equation (17-9) leads to the following general forms for open-loop frequency-response 
magnitude ratio (MR) and phase angle φ :  
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MR(ω) = )()( 1 ωω jTFOLFRF ×Λ=  ≡ Λ × MR1(ω)                 (17-10) 

 
φ(ω) = )(1 ωjTF∠                                             (17-11) 

 
Equation (17-11) shows that the variation of phase angle with frequency, φ(ω), is the 
same for all values of gain Λ, as was stated earlier in the context of Figs. 17-2 and 17-3. 
 
 In the final form of Eq. (17-10), we define the baseline magnitude ratio (i.e., for 
unity gain, Λ = 1) as MR1(ω) ≡ )(1 ωjTF .  It is also informative to express Eq. (17-10) in 
a logarithmic form, either in logarithm to base 10 as on Figs. 17-2 and 17-3, or in deci-
bels as on a traditional Bode plot such as Fig. 17-4: 
 

( ) ( ))(log)log()(log 1 ωω MRMR +Λ=                              (17-12a) 
 

( ) [ ] [ ] [ ] )dB()()dB()dB()()(log20 1 ωωω MRMRMR +Λ=≡×            (17-12b) 
 
We infer from Eqs. (17-10) and (17-12) that the graphical shape of the functional varia-
tion with frequency of magnitude ratio MR(ω) does not change with changes in gain Λ.  
For modified Bode plots such as Fig. 17-2 and 17-3, given the baseline curve MR1(ω), we 
can find from Eq. (17-12a) the curve for any other gain Λ > 1 just by adding to the base-
line curve the value log(Λ), which moves the entire curve up by the distance log(Λ) along 
the magnitude-ratio axis.  The process of finding curves for different gains Λ from Eq. 
(17-12b) is easy for a traditional Bode plot such as Fig. 17-4, on which magnitude is plot-
ted in decibels with a linear scale.  For example, we can find from Fig. 17-4 the magni-
tude curve for Λ = 40,000 sec−2 simply by moving downward by 20 dB, i.e., by 20 × 
[log(40,000) − log(400,000)], the magnitude curve for Λ = 400,000 sec−2. 
 
17-2  Nyquist plots 

 
 We now depart temporarily from the analysis of stability in order to describe a 
type of frequency-response graphical representation that has not appeared previously in 
this book.  Such a graph is commonly called, in the language of control-system 
engineering, a Nyquist diagram or plot. 
 
 We begin the description of Nyquist plots by re-visiting a familiar system from 
several previous chapters:  the standard, positively damped 2nd order system.  The ODE 
of this system for output x(t) in response to input u(t) is  [Eq. 
(9-13)], and the frequency-response function is 

)(2 22 tuxxx nnn ωωζω =++ &&&
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The previous graphical representation of Eq. (10-7) in this book is Fig. 10-2, a modified 
Bode diagram displaying the variation with frequency ω of the polar components, mag-
nitude ratio )(ωFRF  and phase angle )(ωφ FRF∠= .  A Nyquist plot, in contrast, dis-
plays directly the mathematical rectangular components, in the format Im[FRF(ω)] ver-
sus Re[FRF(ω)], with frequency ω being the implicit independent variable, for which 
there is no graduated scale without extra annotation or a three-dimensional third axis per-
pendicular to the complex FRF(ω)-plane.  For example, the following MATLAB com-
mands produce Fig. 17-5, a Nyquist plot of Eq. (10-7) for undamped natural frequency ωn 
= 2π rad/sec and damping ratio ζ = 0.2: 
 
>> wn=2*pi;zt=0.2; 
>> w=wn*logspace(-2,2,400); 
>> frf=wn^2./(wn^2-w.^2+j*2*zt*wn*w); 
>> plot(real(frf),imag(frf)),grid 

 
Figure 17-5  Nyquist plot of FRF(ω) = ωn

2/(ωn
2 − ω 

2 + j2ζωnω) for ωn = 2π rad/sec 
and ζ = 0.2 
 
 Observe on Fig. 17-5 that the abscissa and ordinate axes are labeled both with the 
mathematical descriptions, Re[FRF(ω)] and Im[FRF(ω)], and with the corresponding 
physical descriptions of the response components, respectively:  in-phase (0°, also known 
as coincident) and quadrature (leading by 90°).  If you were measuring frequency re-
sponse experimentally on a damped 2nd order system you might generate the physical in-
formation of Fig. 17-5 in the following manner:  first, measure the polar components of 
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response, magnitude ratio )(ωFRF  and phase angle φ(ω) = )(ωFRF∠ , using the proce-
dure described in Section 17-1 relative to Fig. 17-2, the modified Bode diagram; then, use 
Eq. (2-5) for converting complex numbers from polar form into rectangular form to cal-
culate FRFin-phase(ω) =  )(ωFRF  × cosφ(ω) and FRFquadrature(ω) = )(ωFRF  × sinφ(ω).  
An example of this conversion is illustrated on Fig. 17-5 for ω = 0.8783ωn :  1.301 = 
2.386 × cos(−56.95°), and −2.000 = 2.386 × sin (−56.95°). 
 
 The concept of physical in-phase and quadrature frequency-response components 
might seem strange.  Moreover, their values can be either positive or negative (as Fig. 17-
5 shows for the in-phase component), and that might be confusing:  if a pure “in-phase” 
response is negative, then the response is actually 180° out of phase with the excitation; 
and if a pure “quadrature” response is negative, then the response actually lags the 
excitation by 90°.  In order to provide more clarity, even at the risk of being redundant, 
we present the following table, which lists multiple-of-90° values of phase angle φ that 
correspond to particular values or ranges of the in-phase and quadrature components.  

 
In-phase component Quadrature component Phase angle φ 

> 0 = 0 0° and 360° m
= 0 < 0 −90° and +270° 
< 0 = 0 m 180° 
= 0 > 0 −270° and +90° 

 
It might be instructive also to compare the Nyquist plot of Fig. 17-5 with the correspond-
ing polar components for ζ = 0.2 on the modified Bode plots of Fig. 10.2.  On both 
figures for ω ≈ 0, the response is essentially the static value, FRF(0) = +1 + j0.  As fre-
quency ω increases from 0+ to ωn , the magnitude ratio varies (mostly increasing) from 
+1 to 1/(2ζ) = 2.5, while the phase angle, a lag, varies from 0° to −90°.  At ω = ωn , the 
response is pure negative quadrature, FRF(ωn) = 0 − j2.5.  As ω increases above ωn , the 
magnitude ratio decreases monotonically while the phase lags further, with the magnitude 
ratio approaching zero and the phase approaching −180° as ω → ∞. 

 
Frequency response of the standard, positively damped 2nd order system is well 

behaved, especially for ω = 0, i.e., a non-zero input that is constant in time, for which the 
system has an unquestionably stable non-zero constant static output.  Let’s consider now 
Nyquist plotting for a contrasting system, an open-loop system that lacks a stable static 
response, the system of Section 17-1 (also Sections 16-3, 16-5, and 16-6).  The clearest 
indication of a possible difficulty is Eq. (17-5) for OLFRF(ω), which indicates an infinite 
response for ω = 0.  The mathematical source of this difficulty is the pole of OLTF(s) at 
the s-plane origin, which is apparent in Eq. (17-2), Fig. 16-9, and elsewhere.  The 
graphical display of frequency response magnitude becoming very large as ω → 0 is 
produced by the following MATLAB commands, which calculate frequency response 
and produce a Nyquist plot of the same numerical solution as that on Fig. 17-2, for the 
neutral-stability case Λ = Λns = 40,000 sec−2 : 
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>> wb=300;coj=100;wns=sqrt(wb*coj); 
>> wbar=logspace(-1,1,200);w=wbar*wns; 
>> lm=4e4;olfrf4e4=lm*wb./(j*w.*(j*w+coj).*(j*w+wb)); 
>> plot(real(olfrf4e4),imag(olfrf4e4)),grid 
 
Figure 17-6 is an annotated portion of the MATLAB graph that displays the noteworthy 
features of the Nyquist plot.  This plot shows that for frequency ω becoming progres-
sively smaller, the negative quadrature component of response becomes progressively 
larger.   
 

 In fact, we can calculate from Eq. 17-5 
the asymptotic nature of the variation of open-
loop frequency response as ω → 0, by applying 
the method of complex rectangular division 
described in Section 2-1: 
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Therefore, as ω → 0, 
 

28109
)(

427 )]103(400[102.1
ω

ωω
×

×−−×× jω →OLFRF

ω
4005 3

1 j−−=                       (17-13) 

 
Figure 17-6  Nyquist plot, Eq. (17-5), frequency response for Λ = Λns = 40,000 sec−2 
of the open-loop system in Fig. 17-1, with parameters ωb = 300 sec−1, cθ ⁄ J = 100 sec−1, 
and ωns = √(ωb × cθ ⁄ J) = 173.2 rad/sec 
 
17-3  The practical effects of an open-loop transfer-function pole at s = 0 + j0 

 
 The development above demonstrates an important characteristic of an open-loop 
system with a transfer-function pole at the s-plane origin:  frequency response of such a 
system increases in magnitude progressively as excitation frequency decreases, becom-
ing, in theory, infinitely large for zero frequency.  What is the significance of this type of 
response relative to experimental testing?  The question is appropriate since, as asserted 
in the introduction to this chapter, frequency-response of the open-loop portion of a prac-
tical system (actual hardware) can indicate the stability or instability of the corresponding 
closed-loop system.  Figure 17-6 and Eq. (17-13) show clearly that the frequency-re-
sponse magnitude for very low frequencies of excitation could indeed be impractically 
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large.  This might lead us to assume that, in order to avoid excessive output magnitudes, 
we would need only to excite the open-loop system at frequencies above some practical 
lower limit.  The discussion in this section will show that this would be a potentially 
harmful assumption. 
 
 What is the nature of response associated with a system’s transfer-function pole at 
the origin of the s-plane?  We know that a pole on the Re(s) axis in the right-half s-plane 
means the system’s time response (to an impulse, for example) is essentially monotoni-
cally growing exponential, an instability.  (See the discussion of Section 16-4.)  Con-
versely, a pole on the Re(s) axis in the left-half s-plane means the response is essentially 
monotonically decaying exponential, a stable response.   Can we infer, then, that a pole 
on the Re(s) axis at the origin, between the right- and left-half planes, means time re-
sponse is neither unstable nor stable, but somehow neutral?   
 
 Let’s try to answer that question, at least for the open-loop system of current 
interest that motivated this discussion, by deriving the unit-impulse response, h(t).  From 
Eq. (8-35), a system’s transfer function is also the Laplace transform of its unit-impulse 
response; accordingly, Eq. (17-2) gives L[h(t)] = )])(([ bb sJcss ωω θ ++Λ .  We could 
find the complete equation for h(t), but it is easier and equally relevant for this discussion 
to apply the final-value theorem [Eq. (15-15)] to find the steady-state response [which we 
can show follows the decay to zero of stable terms whose time functions are tJce )( θ−  and 

]:   =  = tbe ω− )(lim th
t ∞→

)]([lim
0

thLs
s

×
→ θcJΛ .  This constant-in-time response to an impulse 

excitation is unusual, since impulse response of a stable system normally decays to zero.   
 
 Let’s probe further and find the response to a step input, which is a better gauge 
of stability than impulse response.  Equation (8-40) shows that the unit-impulse response 
of any LTI-SISO system is the time derivative of the unit-step response, dtdxth H=)( .  
Therefore, the unit-step response as t → ∞ of the open-loop system of current interest 
must be  = C + )(lim txHt ∞→

tcJ )( θΛ , C being a constant.  This linear-function-of-time 

response to a constant input can increase monotonically, without bound.  This is not an 
exponential monotonic instability or exponential oscillatory instability of the type we 
have observed previously; nevertheless, for all practical purposes, it is a genuine form of 
instability. 
 
 We can be even more specific relative to frequency response.  With reference to 
the functional diagram that depicts testing of the open-loop system, Fig. 17-1, suppose 
that the input signal, in addition to the sinusoidal excitation, has a slight constant voltage 
offset, Eoff .  (Even with high-pass filtering, it is often nearly impossible to eliminate all 
such offsets from real circuitry used in experimental testing.)  Therefore, with H(t) de-
noting the Heaviside unit-step function, the complete input signal is: 
 

)(sin)( tHEtEte offinin += ω                                      (17-14) 
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With use of OLTF(s) of Eq. (17-2) and inverse Laplace transformation, we can find an 
algebraic equation for the response in time to input Eq. (17.14), assuming zero initial 
conditions.  The full equation is quite lengthy.  It includes transient-response terms whose 
time functions are tJce )( θ−  and , both of which decay quickly to insignificance.  If 
we omit those transient-response terms, then we can express the “steady-state” response 
in the form (homework Problem 17.?): 

tbe ω−
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Open-loop frequency-response magnitude ratio MR(ω) and phase angle φ(ω) are the 
quantities defined generally by Eqs. (17-10) and (17-11), respectively, and represented 
for this specific system, from Eq. (17-5), by the equations: 
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 Ideally in experimental sinusoidal testing, there would be only steady-state sinu-
soidal response.  Much less ideally, however, there are in Eq. (17-15) three types of time 
response:  the sinusoidal term, two constant-in-time terms, and a term that increases 
linearly with time.  The constant-in-time terms would be a nuisance, but they could be 
tolerable, provided they were not so large as to overcome mechanical or electrical limits.  
However, the unstable linear “drift”, tcJEoff )( θΛ  , would present a serious problem in 
the testing process.  Consider, for example, the numerical solution of Eq. (17-15) for the 
open-loop system with the ideal frequency response of Figs. (17-2) and (17-6), and for 
excitation at the neutral-stability frequency, ω = ωns .  For this case, Figs. (17-2) and (17-
6) show that MR(ωns) = 1 and φ(ωns) = −180°.  Completing the calculations in Eq. (17-15) 
with the remaining numerical values gives: 
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⎡
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15400309.2sin)( t
E
E

tEte
in

off
nsinout ω )          (17-16) 

 
Equation (17-16) shows, for example, that if the offset voltage is even a mere 1% of the 
input sinusoidal magnitude, Eoff /Ein = 0.01, then, after only one second of system re-
sponse, the linear drift increases to four times the sinusoidal-response magnitude; and the 
linear drift just continues rising inexorably thereafter.  Practical sinusoidal testing of this 
system would be possible only if the offset voltage were almost completely eliminated, in 
order to prevent, or at least minimize, this unstable drift. 
 
 The type of response represented in Eq. (17-15) and illustrated numerically in Eq. 
(17-16) would pose a formidable challenge for any type of standard experimental testing 
on any system whose mathematical model has a pole at the origin of the s-plane.  This 
mathematical model represents a general physical deficiency of such a system:   the ab-
sence of a passive mechanism that tends to restore the system toward a static equilibrium 
state after the system has been perturbed dynamically.  For example, the damped-rotor 

 17-14



 Chapter 17  Introduction to system stability:  frequency-response criteria 
 

plant of our system of current interest, Figs. (16-3) and (17-1), is the prime contributor to 
the unstable drift; this plant lacks a restoring rotational spring, and so its transfer func-
tion, Eq. (16-39), PTF(s) = ]([1 θcJss + , has a pole at the origin. 
 
17-4  The Nyquist stability criterion 

 
Section 17-1 describes how the stability margins of gain (GM) and phase (PM) 

are defined and displayed on Bode plots.  It is informative and it will turn out to be even 
more general to extract the same stability margins from Nyquist plots of frequency re-
sponse.  To begin this study, we will repeat the Nyquist plot of Fig. 17-6, the closed-loop 
neutral-stability case, for which Λ = Λns = 40,000 sec−2 and ωns = 100 3  rad/sec, but 
over a narrower band of excitation frequencies, 100 ≤ ω ≤ 1,000 rad/sec, or 31  ≤ ω/ωns 
≤ 310 ; the intent here is to restrict our attention primarily to frequency response for 
which the phase lag exceeds about 150°, i.e., for which the frequency-response curve in 
the OLFRF-plane is somewhat close to the negative real axis.  Moreover, we will add to 
the same graph the Nyquist plots of frequency response for a case of positive closed-loop 
stability with Λ = ½Λns = 20,000 sec−2, and for a case of closed-loop instability with Λ = 
2Λns = 80,000 sec−2.  The MATLAB commands follow that calculate [from Eqs. (17-5) 
and (17-9)] and plot these cases of open-loop frequency-response function, and the re-
sulting Nyquist diagram (after additional editing): 
 
>> wb=300;coj=100;w=logspace(2,3,200); 
>> olfrf01=wb./(j*w.*(j*w+coj).*(j*w+wb)); 
>> olfrf20k=20e3*olfrf01;olfrf40k=40e3*olfrf01;olfrf80k=80e3*olfrf01; 
>> plot(real(olfrf80k),imag(olfrf80k),real(olfrf40k),imag(olfrf40k),… 
real(olfrf20k),imag(olfrf20k)),grid 

 
Figure 17-7  Nyquist plots of Eq. (17-5), open-loop frequency-response functions 
(OLFRF) for Λ = (½, 1, and 2) × Λns for the system in Fig. 17-1, with parameters ωb 

= 300 sec−1, cθ ⁄ J = 100 sec−1, and ωns = √(ωb × cθ ⁄ J) = 173.2 rad/sec  
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 Gain margin and phase margin are present and measurable on Nyquist plots such 
as those of Fig. 17-7.  Gain margin (GM) is defined by Eq. (17-6), from which we find 
 

°−=∠=
Λ ΛΛ

180)(at)(
)(

1 ωω OLFRFOLFRF
GM

                 (17-17) 

 
Equation (17-17) is illustrated on Fig. 17-8 for both closed-loop stable and unstable 
cases.  Note that a closed-loop-stable case has 0 < 1/GMS < 1 so that GMS > 1, and a 
closed-loop-unstable case has 1/GMU > 1 so that 0 < GMU < 1. 

Figure 17-8  Schematic Nyquist plots of open-loop frequency-response functions 
(OLFRF) for closed-loop-stable and –unstable cases 
 
 We can measure phase margin directly by drawing on the Nyquist diagram a 
circle with radius of 1 unit and centered on the origin of the complex OLFRF-plane, so 
that it passes through the important point −1 + j0.  Phase margin is defined by 
 

( )1)(at)(180)(PM =∠+°=Λ
ΛΛ

ωω OLFRFOLFRF            (17-7, repeated) 
 
Phase margins are indicated graphically on Fig. 17-8.  The positive PMS for a closed-
loop-stable case is the counterclockwise angle from the negative Re[OLFRF] axis to the 
intersection of the unit circle with the OLFRFS curve; conversely, the negative PMU for a 
closed-loop-unstable case is the clockwise angle from the negative Re[OLFRF] axis to 
the intersection of the unit circle with the OLFRFU curve. 
 
 Note on Fig. 17-8 that the phase-crossover point (phase angle φ = −180°) and the 
gain-crossover point (magnitude ratio MR = 1) of an FRF are clearly evident on a Nyquist 
plot, perhaps even more naturally than on a Bode diagram.  On the other hand, a Bode 
diagram displays the phase-crossover and gain-crossover frequencies, which are not 
explicit on a traditional Nyquist plot. 

OLFRFU 

Im[OLFRF] 

PMS 

1/GMU 

−1 + j0

PMU 

Re[OLFRF] 

1/GMS

OLFRFS 
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 With a little imagination, we infer from the Nyquist plots of Fig. 17-7 that the 
open-loop system represented in that figure has GM > 0 and PM > 0 for 0 < Λ < Λns , and 
that GM < 0 and PM < 0 for all values of gain Λ greater than Λns ; accordingly, the asso-
ciated closed-loop system is stable for 0 < Λ < Λns , and unstable for all values of gain Λ 
greater than Λns .  Thus, this physical system (of Figs. 16-2, 16-3, and 17-1) is considered 
a “common” system, for which gain margin and phase margin provide clear and unambi-
guous metrics of stability.  Let’s consider next an “uncommon” system, for which the 
determination of stability or instability requires a more detailed examination of the sta-
bility margins.  Suppose that the open-loop transfer function of a system is3  
 

26283
1044

)262)(1(
1044)()()( 23
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+++
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sss
ss

sss
sssOLTFsHsG   (17-18) 

 
You should be able to show that the zeros of this transfer function in the complex s-plane 
are at (−2 ± j10), and the poles are at (−1 + j0) and (−1 ± j5). 
 
 In order to establish the reference for stability and instability of the closed-loop 
system corresponding to Eq. (17-18), we determine the loci of roots from the character-
istic equation, 1 + GH = 0, or  
 

0)41(26)7(4)3()1044(26283 23223 =Λ++Λ++Λ++=++Λ++++ ssssssss  
(17-19) 

 
The following MATLAB commands, adapted from the code that produced Fig. (16-7), 
calculate and plot the loci of roots: 
 
Lm=[0 .2 .4 .7 1 1.5 2.5 3.7 4.75 6.5 9 12.5 15 18.5 25 35 50 70 125 250]; 
Np=length(Lm); 
for i=1:Np; 
    a2=3+Lm(i);a3=4*(7+Lm(i));a4=26*(1+4*Lm(i)); 
    p(i,1:3)=roots([1 a2 a3 a4]).'; 
end 
plot(p,'kx'),grid,xlabel('Real part of pole (sec^-^1)') 
ylabel('Imaginary part of pole (sec^-^1)') 
 
The significant roots of Eq. (17-19) are shown on Fig. 17-9 (next page):  the complete 
locus of oscillatory roots with positive imaginary parts is shown; only the beginning of 
the locus of real (exponentially stable) roots is shown, since those roots become progres-
sively more negative as gain Λ increases from the initial small values.  The oscillatory 
roots on Fig. 17-9 show that the closed-loop system is stable for Λ = 0 up to Λ ≈ 1, it is 
unstable for Λ ≈ 1 up to Λ ≈ 15, and it becomes stable again for Λ greater than ≈ 15.  We 
regard this closed-loop system as being “uncommon” or unusual because it is stable for 
small and large values of gain Λ, but unstable for a range of intermediate values. 
                                                 
3 This transfer function was concocted for the purpose of demonstration.  It does not represent any specific 
real physical system, but it has characteristics that are representative of some real systems.  Gain Λ has 
physical units of sec−1, but we will not bother to show units in the following discussion. 
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 If we were to test experimentally the open-loop part of this system in order to 
determine the stability of the closed-loop system, what would the open-loop frequency 
responses be for different values of gain Λ?  To simulate that testing, we have from Eq. 
(17-18), the following equation for the frequency-response function: 
 

)226)(1(
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jj
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 Let’s begin this study by computing OLFRF(ω) 
and displaying it on Nyquist plots for a low value of gain, 
Λ = 0.7 (for which the closed-loop system is stable), and 
for the value corresponding to the transition from stability 
to instability on Fig. 17-9, which we denote as Λns1 ≈ 1.  
The value of Λns1 is not exactly 1, as Fig. 17-9 might sug-
gest; see homework Problem 17.2(b) for calculation of 
the more precise value Λns1 = 0.96438.  The following 
MATLAB commands calculate and plot the two 
frequency responses and also, for determining phase 
margins as shown on Fig. 17-8, an arc of the unit circle 
centered on the origin of the complex OLFRF(ω)-plane. 
 
>> w=3.4*logspace(0,2,500); 
>> olfrf01=(104-w.^2+4*j*w)./((1+j*w).*(26-
w.^2+2*j*w)); 
>> olfrf007=0.7*olfrf01; 
>> plot(real(olfrf007),imag(olfrf007)),grid 
>> cirangrad=0.8*pi:0.01:1.2*pi; 
>> hold,plot(cos(cirangrad),sin(cirangrad)) 
Current plot held 
>> olfrfns1=0.96438*olfrf01; 
>> plot(real(olfrfns1),imag(olfrfns1)) 
 

Figure 17-9  Loci of roots of Eq. (17-19) 
 
 The portions of both Nyquist plots (for Λ = 0.7 and Λ = Λns1) that are closest to 
the negative Re[OLFRF] axis are shown on Fig. 17-10 (next page).  Observe on Fig. 17-
10 the small loops beneath the negative Re[OLFRF] axis as driving frequency becomes 
very high:  the frequency responses approach zero from below the origin of the complex 
OLFRF-plane.  This is distinctly different from the Nyquist plots of a more “common” 
open-loop system on Fig. 17-7, which approach the origin from above as frequency be-
comes very high.  Another aspect of the difference between the plots on the two figures is 
particularly significant:  whereas the plots on Fig. 17-7 cross the negative Re[OLFRF] 
axis only once as driving frequency ω increases, those on Fig. 17-10 have two phase 
crossovers, i.e., the phase angle is −180° for two different values of  ω.  Since on Fig. 17-
10 there are two different frequencies at which 

Λ
)(ωOLFRF∠  = −180°, the definition of 

gain margin in Eqs. (17-6) and (17-17) is ambiguous:  at which, if either, of the phase 
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crossovers is it appropriate to read the quantity 1/GM, as shown on Fig. 17-8?  Which, if 
either, of the values calculated from that reading, GM = (1/GM)−1 is a legitimate metric 
of closed-loop stability?  Figure 17-10 includes the Nyquist plots for both Λ = 0.7 and Λ 
= Λns1 , the latter of which by definition crosses the negative Re[OLFRF] axis at the point 
−1 + j0, not far to the left of where the Λ = 0.7 plot crosses at about −0.73 + j0; therefore, 
it might be that the appropriate value of gain margin for Λ = 0.7 is found from 1/GM0.7 ≈ 
0.73, so that GM0.7 ≈ 1.37 = 2.7 dB, a small gain margin indicating that the closed-loop 
system is just weakly stable.  If, on the other hand, we were to calculate gain margin us-
ing the other phase crossing, at about −0.04 + j0, then that would lead to the exaggerated 
GM ≈ 25 = 28 dB, which is obviously a defective metric of stability.  Note that the phase 
margin for Λ = 0.7, found as shown on Fig. 17-8, is quite clear on Fig. 17-10 and not at 
all ambiguous like the gain margin:  PM0.7 ≈ +20°; this value also indicates a stable, but 
weakly so, closed-loop system. 
 

 
Figure 17-10  Nyquist plots, Eq. (17-20), open-loop frequency-response functions 
(OLFRF) for Λ = 0.7 and Λ = Λns1 = 0.96438 in the system of Eq. (17-18) 
 
 Let’s continue this study by computing OLFRF(ω) and displaying it as a Nyquist 
plot for an intermediate value of gain, Λ = 4.75, for which Fig. 17-9 shows the closed-
loop system is unstable.  The following MATLAB commands calculate [from Eqs. (17-9) 
and (17-20)] and plot the frequency response and an arc of the unit circle centered at the 
origin of the complex OLFRF(ω)-plane. 
 
w=3.4*logspace(0,2,500); 
olfrf01=(104-w.^2+4*j*w)./((1+j*w).*( 26-w.^2+2*j*w)); 
>> olfrf0475=4.75*olfrf01; 
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>> plot(real(olfrf0475),imag(olfrf0475)),grid 
>> cirangrad=0.8*pi:0.01:1.2*pi; 
>> hold,plot(cos(cirangrad),sin(cirangrad)) 
 
 The portion of the Nyquist plot for gain Λ = 4.75 that is closest to the negative 
Re[OLFRF] axis is shown on Fig. 17-11.  The Λ = Λns1 plot of Fig. 17-10 is expanded 
radially outward on Fig. 17-11 by the factor of 4.75/0.96438 = 4.9254, so the loop for 
high frequencies beneath the negative Re[OLFRF] axis is more prominent than on Fig. 
17-10.  The frequency-response curve leading into that loop crosses the Re[OLFRF] axis 
at about −0.315 + j0; if we were to use this phase crossover to calculate gain margin, then 
we would find GM ≈ 1/0.315 = 3.175 = 10.0 dB.  Moreover, if we apply for this system 
with Λ = 4.75 the MATLAB margin command to generate a Bode diagram in the same 
form as Fig. 17-4, then MATLAB annotates that diagram with the values GM = 10.007 
dB and PM = −23.721° (the same as PM4.75 shown approximately on Fig. 17-11).  We 
know from Fig. 17-9 that this case of Λ = 4.75 is closed-loop unstable.  However, the 
positive gain margin 10 dB suggests positive stability. The negative phase margin indi-
cates, to the contrary, instability.  Clearly, the calculation GM ≈ 1/0.315 is a defective 
metric of stability.  The other phase crossover, at −4.9254 + j0 (beyond the range of Fig. 
17-11), might be the appropriate point for calculation of gain margin, since it at least in-
dicates instability, GM4.75 = 1/4.9254 = 0.20303 = −13.85 dB. 
 

 
Figure 17-11  Nyquist plot, Eq. (17-20), open-loop frequency-response function 
(OLFRF) for Λ = 4.75 in the system of Eq. (17-18) 
 
 Let’s complete this study by computing OLFRF(ω) and displaying it on Nyquist 
plots for the value corresponding to the transition from instability back to stability on Fig. 
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17-9, which we denote as Λns2 ≈ 15, and for a slightly higher value, Λ =18.5, for which 
the closed-loop system is stable.  The value of Λns2 is not exactly 15, as Fig. 17-9 might 
suggest; see homework Problem 17.2(b) for calculation of the more precise value Λns2 = 
15.0356.  The portions of both Nyquist plots (for Λns2 and Λ = 18.5) that are closest to the 
negative Re[OLFRF] axis are shown on Fig. 17-12, which was produced by the MAT-
LAB commands that produced Fig. 17-10, except with gains 18.5 and Λns2 replacing, 
respectively, gains 0.7 and Λns1. 
 

 
Figure 17-12  Nyquist plots, Eq. (17-20), open-loop frequency-response functions 
(OLFRF) for Λ = Λns2 = 15.0356 and Λ = 18.5 in the system of Eq. (17-18) 
 
 For gain Λ = 18.5, there are two phase crossovers:  one evident on Fig. 17-12 at 
−18.5/15.0356 + j0 = −1.230 + j0, and the other way beyond the range of Fig. 17-12 at 
−18.5/0.96438 + j0 = −19.18 + j0.  We know from Fig. 17-9 that the closed-loop system 
with Λ = 18.5 is stable, albeit weakly.  However, the gain margin calculated from either 
of the two phase crossovers suggests instability, showing that both are deceptively 
defective metrics of stability.  On the other hand, the phase margin shown on Fig. 17-12, 
PM18.5 ≈ +12°, correctly indicates weak stability. 
 
 We draw the following conclusions from the discussions above of Figs. 17-9 
through 17-12, relative to an “uncommon” system with an open-loop transfer function 
such as Eq. (17-18):  (1) gain margin as defined on Fig. 17-8 can be an ambiguous,  un-
reliable, and even deceptive metric of closed-loop stability; (2) phase margin as defined 
on Fig. 17-8, on the other hand, is usually an unambiguous and reliable metric, with PM 
> 0 indicating closed-loop stability, and PM < 0 indicating closed-loop instability.  Con-
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clusion (2) regarding phase margin is a form of the Nyquist stability criterion, a form that 
is pertinent to systems such as that of Eq. (17-18); it is not the most general form of the 
criterion, but it suffices for the scope of this introductory textbook. 
 
 Proofs of the general Nyquist stability criterion are based on the theory of com-
plex functions of a complex variable; many textbooks on control theory present such 
proofs, one of the clearest being that of Franklin, et al., 1991, pages 261-280.  This refer-
ence shows that the form of stability criterion described above [Conclusion (2)] is not 
sufficiently general to handle all cases that might arise.  For example, the unusual case of 
an open-loop system that has unstable poles requires the general Nyquist stability crite-
rion.  However, the actual hardware of such an open-loop system could not be subjected 
to frequency-response experimental testing due to its unstable character, so a control-
system engineer would find it necessary to analyze a mathematical model of the system.  
It is likely that the most reliable theoretical analysis of such a model for closed-loop sta-
bility would be by calculation of closed-loop loci of roots, not by calculation of open-
loop frequency response.  Another unusual case that would require the general Nyquist 
stability criterion is an open-loop system with more than one gain crossover, i.e., a 
system whose frequency response curve intersects more than once the unit circle shown 
on Fig. 17-8, thus rendering ambiguous the definition of phase margin. 
 
 We conclude this chapter on frequency-response stability criteria by observing 
that margins of gain and phase are used also as engineering design goals.  For example, 
Brogan, 1974, page 25, wrote “Experience has shown that acceptable transient response 
will usually require stability margins on the order of PM > 30°, GM > 6 dB.”  Franklin, et 
al., 1991, page 285, wrote “Many engineers think directly in terms of PM in judging 
whether a control system is adequately stabilized.  In using PM this way, a phase margin 
of 30° is often judged to be the lowest acceptable PM, with values above 30° desirable.” 
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17-5 Homework problems for Chapter 17 
 
17.1  The subject of this problem is frequency response of an RC band-pass filter circuit.  
The appropriate transfer function is Eq. (13-5): 
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in which LL τω 1≡  is the low-pass break frequency and HH τω 1≡  is the high-pass 
break frequency, and for band-pass functioning it is usually specified that LH ωω << . 

(a)  This transfer function has (in the s-plane) a zero at the origin and poles at Hω−  and 

Lω− .  Consider the case for frequency response:  s = jω, ω ≥ 0.  Sketch a graph of the s-
plane that shows the zero and the poles, and sketch on the graph three complex vectors 
with tails at the zero and the poles, and heads at an arbitrary point s = jω on the positive 
imaginary axis.  Use this graphical construction to derive the frequency-response function 
in the polar form FRF(ω) = MR(ω) e jφ(ω), in which you derive explicit formulas for mag-
nitude ratio MR(ω) and phase angle φ(ω).  [NOTE:  This graphical method of deriving (or 
calculating) a frequency-response function is somewhat similar to (but simpler than) Ev-
ans’ general root-locus method described in Section 16-5, with the “locus” in this case 
being the positive imaginary axis—see, in particular, the unnumbered figure that directly 
follows Eq. (16-56).]  Partial answer:  )L(tan)(tan2)( 11

H ωωωωπωφ −− −−= radians 
 
(b)  Let Hω  = 5 rad/sec and Lω  = 500 rad/sec.  Adapt the MATLAB code that produced 
Fig. 17-2 to calculate and print a modified Bode diagram for this particular band-pass 
filter.  Your diagram should show that signals at frequencies between about 10 and 200 
rad/sec are passed through this filter with very little amplitude reduction and relatively 
little phase change, but that signals at frequencies below about 0.5 rad/sec and above 
about 5,000 rad/sec are effectively “filtered out”, removed. 
 
17.2  In these exercises, you will use MATLAB function M-files and the MATLAB 
command fzero to calculate some results that are stated but not explicitly derived in 
Chapter 17. 
 
(a)  Calculate for at least one of the gains Λ = 4,000 sec−2 and 400,000 sec−2 the more 
precise value of PM that is annotated on Fig. 17-2.  The procedure is based on the defini-
tion of PM(Λ) in Eq. (17-7), which shows that you need to find the frequency ωPM at 
which 

Λ
)(ωOLFRF  = 1, i.e., the gain-crossover frequency.  Accordingly, write a func-

tion M-file that uses Eq. (17-5) to compute the quantity 
Λ

)(ωOLFRF  − 1.  Then calcu-

late ωPM by calling that function M-file with the fzero command, in which you also in-
clude an estimate for ωPM that you read from Fig. 17-2.  Finally, use Eq. (17-5) again to 
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calculate 
Λ

∠ )(ωOLFRF  for ω = ωPM, and substitute that result into Eq. (17-7) to obtain 
the more precise value of PM(Λ). 
 
(b)  Calculate for at least one of the neutral-stability points on Fig. 17-9 the more precise 
value of gain (Λns1 and/or Λns2) that is stated in the text of Section 17-4.  The procedure is 
based on setting to zero the real part of the appropriate root of the characteristic equation, 
Eq. (17-19).  Accordingly, write a function M-file that first determines with the root 
command the three roots of Eq. (17-19), then uses MATLAB flow control features (per-
haps a for loop containing an if loop, or some alternative of your choice) to select the 
one root of the three that has a positive imaginary part, and finally computes the real part 
of this root.  Then calculate the required Λns by calling that function M-file with the 
fzero command, in which you also include an estimate for the Λns , which you read from 
Fig. 17-9.  [See homework Problem 16.8(b) for a different method of solution.] 
 
17.3  In this problem, re-visit the system of homework Problem 16.5:  it is a damped rotor 

with position feedback that is 2nd 
order low-pass-filtered.  Use the 
same component values:  ωb = 300 
rad/sec, Jcθ  = 100 sec−1, and γ = 

 R(s) 

Kθ 

Θ(s)
+ _ 

22

2

2 bb

b

ss ωγω
ω

++

Ka Kr scsJ θ+2
1Ein(s) 

Eout(s) 
21 .  Also as before, denote the 

varying control-system gain pa-
rameter as JKKa θ .  Λ≡

(a)  Show that the open-loop transfer function is 
 

)2)(()(
)(

)( 22

2

bb

b

in

out

ssJcsssE
sE

sOLTF
ωγω

ω

θ +++
Λ=≡  

 
(b)  Homework Problem 16.5(b) showed the following by loci-of-roots analysis for the 
closed-loop system:  (i) Λ ≡ Λns = 22,000 sec−2 is the neutral-stability gain, the upper 
limit of stability; and (ii) for Λ = 3,400 sec−2, the system is stable, with the dominant 
mode being oscillatory and having damping ratio ζ ≈ 21 .  Your task is to evaluate 
stability again for Λ = 3,400 sec−2 and for Λ = Λns , but now using frequency-response 
criteria.  Define the excitation-frequency range of interest to be the band 10 ≤ ω ≤ 1000 
rad/sec.  First, use appropriate MATLAB commands to calculate the baseline open-loop 
frequency-response function, i.e., OLFRF(ω) for Λ = 1 sec−2.  Now, use MATLAB to 
calculate and plot on some type (your choice) of Bode diagram the curves of magnitude 
ratio and phase angle over the defined frequency band, for both Λ = 3,400 sec−2 and Λ = 
Λns.  Estimate from your Bode diagram the gain margin GM (in both decimal form and 
dB) and the phase margin PM (in degrees) for both values of Λ. 
 
(c)  Use MATLAB’s margin function to validate the correctness of your estimated stabil-
ity margins in part (b). 
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17.4  Suppose that you have an LTI rotary motor 
with unknown transfer function .  The input 
is a voltage signal ein(t), and the output is shaft 
speed .  You want to control the shaft 
speed by sensing it with a tachometer, which has 
variable gain Λ, and feeding the tachometer voltage signal ep(t) back to the input in the 
standard form shown on the Laplace block diagram.  In order to evaluate the stability of 
the closed-loop system, you conduct a stepped-sine-sweep frequency-response test on the 
stable 

)(sG

)()( tpt ≡θ&

open-loop system, which consists of the motor and the tachometer in series, with 
the gain set at Λ = 0.4 volt per rad/sec.  Specifically, you drive the open-loop system with 
sinusoidal input voltage ein(t) = Vin sinωt with the frequency increasing in small incre-
ments through the range 0.5 ≤ ω ≤ 50 rad/sec, you measure at each sine-dwell frequency 
the steady-state sinusoidal output voltage ep(t) = [ ])(sin)( ωφωω +tVp , and then you plot 
the results for 

 
G(s) 

   Λ 

Ein(s)    P(s) 

Ep(s) 

inp VV )(ω )(ω and φ , leading to the following diagram: 

 
(a)  Would the closed-loop system be stable with the tachometer gain for which the above 
data apply, Λ = 0.4 volt/(rad/sec)?  If so, calculate from the diagram above, with as much 
accuracy as the plots permit, the phase margin PM and gain margin GM of stability.  In-
dicate the graphical representations of your PM and GM on a sketch or photocopy of the 
diagram. 
 
(b)  Would the closed-loop system be driven unstable by any positive values of tachome-
ter gain, Λ > 0?  If so, estimate those values.  Explain your reasoning clearly. 
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17.5  Figure 17-5 is in the traditional two-dimensional format of a Nyquist plot, i.e., 
Im[FRF(ω)] versus Re[FRF(ω)], on which excitation frequency ω is the implicit inde-
pendent variable.   But this format might be considered unsatisfactory for many purposes 
because it lacks a graduated scale for ω.  An enhanced-format Nyquist plot, a three-di-
mensional plot, can show such a graduated scale of frequency in addition to the scales of 
the rectangular components, Re[FRF(ω)] and Im[FRF(ω)].  In order to explore that for-
mat, run in MATLAB the following alternative version of the commands that produced 
Fig. 17-5, which applies, in particular, the plot3 command to plot three-dimensionally: 
 
>> wn=2*pi;zt=0.2; 
>> w=wn*(0:0.05:2.5); 
>> frf=wn^2./(wn^2-w.^2+j*2*zt*wn*w); 
>> plot3(real(frf),imag(frf),w/wn),grid 
>> axis equal 
 
These commands should produce a three-dimensional plot on which the Re[FRF(ω)] axis 
(the x-axis) extends from ≈ −1 to ≈ +1.5, the Im[FRF(ω)] axis (the y-axis) extends from 0 
to −2.5, and the ω /ωn axis (the z-axis) extends from 0 to 2.5.  Make a print of the initial 
plot, which probably will be from the “Default 3-D View” (azimuth = −37.5°, elevation = 
30°; Orthographic, not Perspective).  The Reference 3-D View, azimuth = 0° and eleva-
tion = 0°, is from y = −∞ looking in exactly the + y direction, so it is a two-dimensional 
projection of the x-z plane.  Azimuth angle is positive rotation (in the sense of the right-
hand rule) of the viewpoint about the z axis, relative to the Reference 3-D View; thus, for 
example, the view azimuth = 90° and elevation = 0° is from x = +∞ looking in exactly the 
− x direction, a two-dimensional projection of the y-z plane. 
 
Consider two consecutive excitation frequencies in a frequency-response experiment, de-
noted as ωi and ωj , with ωj > ωi [e.g., two consecutive values in the series represented by 
the MATLAB command w=wn*(0:0.05:2.5)], and denote Δωij = ωj − ωi ; denote the 
change from ωi to ωj of the in-phase component Re[FRF(ω)] as Δxij , and that of the 
quadrature component Im[FRF(ω)] as Δyij ; then the line segment between those two 
points in the Im[FRF(ω)]-versus-Re[FRF(ω)] plane (e.g., Fig. 17-5, the x-y plane) is Δsij 
= 22

ijij yx Δ+Δ .  Engineers who conduct stepped-sine-sweep frequency-response vibra-
tion tests on resonant systems (such as that of this problem) consider the rate of change 
Δsij /Δωij to be a physically significant quantity that leads to experimental determination 
of a system’s natural frequency, ωn .  Describe how your three-dimensional Nyquist plots 
(from whatever viewpoints are required) demonstrate that Δsij /Δωij is maximum at exci-
tation frequencies near ωn , but is below the maximum at frequencies both above and be-
low ωn . 
 
17.6  In this problem, re-visit the system of homework Problem 16.7:  the Laplace block 
diagram of the speed-control system of a magnetic-tape drive is shown in the figure on 
the next page.  The operator setting is input voltage signal ein(t), the Laplace transform of 
which is Ein(s).  Each major sub-system of the control system functions as a 1st order 
system.  The sub-system consisting of a power amplifier and a torque actuator has vari-
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able sensitivity Ka (N-m/V) and time 
constant τa = 1.0 sec.  The tape drive 
has rotational inertia J = 4.0 N-m 
per rad/sec2 and lubricated-shaft 
viscous damping constant cθ = 1.0 
N-m per rad/sec; the output of the 
tape drive in this application is rota-
tional speed p(t) in rad/sec [with 
Laplace transform P(s)], not rota-
tional position θ(t).  The rotational-speed sensor in the feedback branch has sensitivity Kp 
= 1.250 V per rad/sec; this sensor is sufficiently slow relative to the other sub-systems 
that we must account for its time constant, τp = 0.50 sec. 

Ein(s) P(s) 

1+s
K

p

p

τ
 

θcsJ +
1  

Tape drive 

1+s
K

a

a

τ+_

Speed sensor 

Amplifier-actuator

 
(a)  Defining the control gain parameter as Λ = )( papa JKK ττ , with units of sec−3, show 

that the closed-loop transfer function is 
Λ++++ −− ))()(()( 11

paain ssJcsJsE τττ θ

)(lim tp
t ∞→

+
=

−
)(

1
pa sKsP τ

.  

Consider response to a unit-step input, ein(t) = (1.0 V)H(t).  Use the final-value theorem 
(assuming system stability) to find an equation in terms of the system parameters for the 
steady-state response, after all transients have decayed, .  Select the value of sen-

sitivity Ka that makes the overall steady-state sensitivity of the control system be 0.750 
rad/sec per volt, then calculate gain Λ corresponding to that value of Ka .  (partial solu-
tion:  Λ = 7.50 sec−3) 
 
(b)  Show that the open-loop frequency-response function can be written as OLFRF(ω) = 

))()((
1

11 −− +++
×Λ

pa jjJcj τωτωω θ

.  Calculate for the given parameter values the 

phase-crossover frequency ωns , i.e., the frequency at which ∠OLFRF(ω) = −π radians = 
−180°; this task will require the numerical solution of a transcendental equation, which 
you might want to accomplish by applying the MATLAB function fzero in the manner 
described in homework Problem 17.2.  Next, calculate for the baseline case, Λ = 1 sec−3, 
the magnitude ratio at phase crossover, MR1(ωns), and the corresponding gain margin, 
GM1 .  (partial solution:  GM1 = 8.4375) 
 
(c)  Now consider the gain determined in part (a), Λ = 7.50 sec−3.  Calculate the magni-
tude ratio at phase crossover, MR7.50(ωns), and the corresponding gain margin, GM7.50 .  
Calculate the phase margin, PM7.50 , using the equation for OLFRF(ω) of part (b)—to do 
this, you will need first to find the gain-crossover frequency ω1 [MR7.50(ω1) = 1], which 
you might want to accomplish by applying again the MATLAB function fzero in the 
manner described in homework Problem 17.2; then you will need to calculate phase angle 
∠OLFRF(ω1) to use in the definition of phase margin. 
 
(d)  To validate your work in the previous parts, produce a diagram showing the Nyquist 
plots for both values of gain, Λ = 1 and 7.50 sec−3; you might wish just to adapt for this 
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case the MATLAB code that produced Fig. 17-10.  What is your assessment, based on 
the gain and phase margins, of the control system with gain Λ = 7.50 sec−3?  
 
17.7  Consider the feedback con-
trol system depicted in the La-
place block diagram at right.  As-
sume that units of all constants 
are consistent, and don’t bother 
to label units.  

 In(s) Out(s)
+_

)2( +ss
K

)3()1(
4

++ ss
 +_ s

1  

 
(a)  Combine the two feedback loops with block-diagram algebra to show that the for-
ward-branch and feedback-branch transfer functions can be written, respectively, as: 

)3)(1(
4)(

++
=

sss
sG  and 

2
)2()(

+
+ +

=
s

KssH .  Apply Routh’s criteria, as described in 

homework Problem 16.9(c), to determine the range of the sensitivity constant K over 
which the control system is stable.   
 
(b)  Use any method of your choosing to determine the value of K for which the phase  
margin PM is approximately 35°.  Note that the characteristic equation of this system 
does not have the form of either of Eqs. (16-62):  this K does not play the role of Λ in 
Eqs. (16-62).  Therefore, many of the equations developed in Chapter 17, such as Eqs. 
(17-8)-(17-12), are not applicable in this problem. 
 
(c)  To validate your work in parts (a) and (b), produce a diagram showing the Nyquist 
plots for two values of K:  both that for neutral stability (the upper-bound K for system 
stability), and that for PM ≈ 35°; you might wish just to adapt for this case the MATLAB 
code that produced Fig. 17-10.  Explain the features of the Nyquist plots that confirm the 
correctness of your results in parts (a) and (b), using annotations on the diagram and/or 
written discussion. 
 
17.8  Your task in this problem is to derive, with the assistance of MATLAB’s symbolic 
capabilities, the “steady-state” response Eq. (17-15), which includes the unstable linear 
drift due to the open-loop transfer function’s pole at s = 0 + j0.  Because the equations 
that MATLAB produces are long and complicated, it will be advantageous to separate the 
voltage input function Eq. (17-14) into the following two parts: 
 

tEte inin ωsin)(1 = )()(2 tHEte offin     and     =  

 
For each of these parts individually you will seek the voltage output solution, respec-
tively, eout1(t) and eout2(t), then you will add the two to obtain the total response. 
 
(a)  The Laplace transform of eout1(t), with the use of Eq. (17-2) and Eq. (2-30), is 
 

))((
)()]([)]([ 2211

b

b
ininout sJcsss

EsOLTFteLteL
ω

ω
ω

ω

θ ++
Λ×

+
=×=  
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You might be able to find the inverse transform of this equation in some reference, but it 
is likely that a more efficient process is to define the equation symbolically in MATLAB 
and then to use the ilaplace command to find the inverse transform.   The less appeal-
ing aspect of this approach is that MATLAB’s initial solution will probably be long and 
difficult to interpret.  To convert the initial solution equation into a more transparent 
form, use the simple and pretty commands.  You seek the “steady-state” response, so 
discard (from the equation displayed after use of pretty) the transient terms involving 
the time functions tJce )( θ−  and .  At this point, you should be able to express the so-
lution in the form: 

tbe ω−

 

)]()([
cos])([sin)(

)(
)(

2222
1

b

bb
b

in

out

Jc
tJctJc

JcE
te

ωωω
ωωωωωω

ω
ω θ

θθ

θ ++

−++−
Λ+

Λ
=  

 
The second right-hand-side term above is clearly a frequency-response term; but it is not 
yet expressed in the form from which equations for magnitude ratio and phase angle can 
be written, so you need to convert it into that form.  Use the general trigonometric 
identity )sin(sincoscossin φθφθφθ +=×+× , and follow the procedure described in 

Eqs. (4-6)-(4-8), to show that )sin(cossinω + StC 22 φωω ++= tSCt , where φ = 
)C(tan 1 S− .  Use this result to write explicit equations, in terms of cθ /J and ωb and ω, for 

magnitude ratio MR(ω) and phase angle φ(ω).  In the remainder of this problem, don’t 
write out again those somewhat lengthy equations; instead, just use the symbols MR(ω) 
and φ(ω). 
 
(b)  Use Eq. (17-2) again and MATLAB’s ilaplace command in order to solve for out-
put voltage eout2(t) in response to )()(2 tHEte offin = . 
 
(c)  Combine the response equations of parts (a) and (b) to write the complete solution 
eout(t) = eout1(t) + eout2(t), the “steady-state” response Eq. (17-15): 
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Appendix A  Table and derivations of Laplace transform pairs 
 
A-1  Table of Laplace transform pairs used in this book1 
 
 General conventions:  (1) time t is a real number, t ≥ 0; (2) Laplace variable s is a 
complex number with dimension of time−1; (3) n and k are positive, real integers; (4) p 
and σ are finite constants, with dimension of time−1; (5)  is a real, finite constant, with 
dimension of time; (6) ω is a positive, real, finite constant, with dimension of time−1. 

st

 
Function of time t, in- 
verse Laplace transform 

Function of Laplace variable s, 
forward Laplace transform 
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Eq. (2-32), derivation 
in Section A-3; note 
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Eq. (2-33), derivation 
in Section A-3 
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−

 
 

)()( 21 sFsF ×  

 
Eq. (6-2), convolution 
integral, derived in 
Section A-5 

)(tfe tσ  )( σ−sF  Eq. (9-18); σ is any 
constant 

tpe  
ps −

1  
Eq. (2-14); p is any 
constant 

)1(1
−tpe

p
 

pss −
11  

Eq. (A-15); p is any 
constant 

                                                 
1 Much more extensive tables of Laplace transform pairs are available in many references, for example, 
Cannon, 1967, Appendix J. 
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 Appendix A  Table and derivations of Laplace transform pairs 
 

 
Function of time t, in- 
verse Laplace transform 

Function of Laplace variable 
s, forward Laplace transform 

Source and notes 

)(tf  =  [F(s)]  1−L F(s) = L[ ]  )(tf General notation, p. 2-6 
 

)(tf  ∫
∞=

=

−
t

t

st dttfe
0

)( , or  ∫
∞=

=

−

−

t

t

st dttfe
0

)(
Definitions:  Eq. (2-13), 
or Eq. (8-12) if  f (t) 
involves δ (t) 

)0()( −≡ tt δδ   1 Eq. (8-13); Dirac delta 
function of Eq. (8-8) 

)( sttH −  
s

e sts−

 
Eq. (2-28); general unit-
step defined in Eq. (2-27) 

)(tH  
s
1  

Eq. (2-29); Heaviside 
unit-step function defined 
in Eq. (2-26) 

)()( ss ttHttf −−  )(sFe sst−  Ogata, 1998, p. 18; trans-
lated function of time 

t 
2

1
s

 
Eq. (A-17) 

tet σ  
2)(

1
σ−s

 Eqs. (A-17) and (9-18); σ 
is any constant 

tωsin  
22 ω

ω
+s

 Eq. (2-30); ω is a positive 
real constant 

tωcos  
22 ω+s

s  Eq. (2-31); ω is a positive 
real constant 

)cos1(1
2 tω

ω
−  

)(
1

22 ω+ss
 Eq. (A-16); ω is a 

positive real constant 

te d
t

d

n n ω
ω
ω ζω sin

2
−  22

2

)( dn

n

s ωζω
ω

++
 

Problem 9.12; ζ  < 1 , 

 =  2
dω 0)1( 22 >−ζωn

tne ζω−−1  × 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+ tt d

d

n
d ω

ω
ζωω sincos  ])[( 22

2

dn

n

ss ωζω
ω

++
 

Problem 9.12; ζ  < 1 , 

 =  2
dω 0)1( 22 >−ζωn

tne ζω−

d

 × 
( )tt dnd ωζωωω sin−cos  22)( dn

d

s
s

ωζω
ω

++
 Problem 9.15; ζ  < 1 , 

 =  2
dω 0)1( 22 >−ζωn

)cos(2 CteC t ∠+ωσ  
ps

C
ps

C
−

+
−

 
Eq. (16-9); C is complex, 
p = σ + jω, σ and ω are 
real, ω > 0 

tp
n

k k

k ke
pnDe
pNum∑

= ′1 )(
)(

 
)(
)(

sDen
sNum  

Eq. (A-7), Section A-2 
for definitions, derivation, 
and restrictions 
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Function of time t, in- 
verse Laplace transform 

Function of Laplace variable 
s, forward Laplace transform 

Source and notes 

)(tf  =  [F(s)]  1−L F(s) = L[ ]  )(tf General notation, p. 2-6 
 

)(tf  ∫
∞=

=

−
t

t

st dttfe
0

)( , or  ∫
∞=

=

−

−

t

t

st dttfe
0

)(
Definitions:  Eq. (2-13), 
or Eq. (8-12) if  f (t) 
involves δ (t) 

 
[ ])(lim)0()(lim

0from0
sFsftf

stt ∞→

+

>→
=≡

+
 

Initial-value theorem:  
Eq. (8-20) and Eq. (8-24) 
in Section 8-6 

 
[ ])(lim)(lim

0
sFstf

st →∞→
=  

Final-value theorem:  Eq. 
(15-15) and Section 15-3, 
valid only if lim  is a 

finite, constant value 

)(tf
t ∞→

 
 It is worthy of note that MATLAB’s symbolic software, which is introduced in 
homework Problem 1.6, can sometimes be helpful for finding forward and inverse La-
place transforms by applying, respectively, the laplace and ilaplace commands.  The 
following are two relatively simple examples that do not appear explicitly in the table of 
transform pairs.  In these examples, MATLAB finds the forward transform  = )][sinh(atL

)( 22 asa − , and the inverse transform [ ]])[()( 221 ω+++− asasL  = . tωcose at−

 
>> syms s t a w 
>> ft=sinh(a*t) 
  
ft = 
  
sinh(a*t) 
  
>> Lft=laplace(ft,t,s) 
  
Lft = 
  
a/(s^2-a^2) 
  
>> pretty(Lft) 
  
                                       a 
                                    ------- 
                                     2    2 
                                    s  - a 
>> Fs=(s+a)/((s+a)^2+w^2) 
  
Fs = 
  
(s+a)/((s+a)^2+w^2) 
  
>> fFs=ilaplace(Fs,s,t) 
  
fFs = 
  
exp(-a*t)*cos(w*t) 
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For functions of time t or functions of Laplace variable s that are more complicated than 
those in the examples above, MATLAB might produce solutions that are correct, but are 
expressed in an unfamiliar form, or in a long and unwieldy form that must be simplified 
by human touch in order to become useful. 
 
A-2  Laplace transform of a ratio of two polynomials, with only simple poles 
 

Suppose that we have a Laplace transform as the ratio of two polynomials, from 
Eq. (2-10): 
 

)())((
)())((

...

...
)(
)()(

211

211

1
1

21

1
1

21

n

m

n
nn

m
mm

n pspspsa
zszszsb

asasa
bsbsb

sDen
sNumsF

−−−
−−−

=
+++
+++

=≡
+

−
+

−

L

L
    (A-1) 

 
The results derived in this section are based upon three assumptions:  (1) the roots pk of 
Den(s), which are the poles of Fn(s), are not repeated (such roots are called simple poles); 
(2) the degree of Den(s) exceeds that of Num(s), 0 ≤ m < n; and (3) none of the zeros of 
(A-1) equals any of the poles.  Under these circumstances, we can expand transform (A-
1) into partial fractions, from Eq. (2-24):  
 

∑
= −

=
n

k k

k
n ps

C
sF

1
)(                                                  (A-2) 

 
In Eq. (A-2) the residues are given by Eq. (2-25b) as 
 

[ ] nk
sDen
sNumpssFpsC

k

k

ps
kpsnkk ...,,2,1,

)(
)()()()( =⎥
⎦

⎤
⎢
⎣

⎡
−=−=

=
=              (A-3) 

 
Let’s examine what might be considered the “total denominator” of Eq. (A-3): 

 

⎥
⎦

⎤
⎢
⎣

⎡
−

=
→ )(

)(lim
k

psk ps
sDenD

k

                                              (A-4) 

 
Observe from Den(s) in Eq. (A-1) that  in Eq. (A-4) has the indeterminate form 0/0.  
Since we assume that all zeros of Fn(s) are different from the poles, Num(pk) in Eq. (A-3) 
is non-zero and finite.  Therefore, Dk  must also be non-zero and finite, and we can use 
l’Hospital’s rule to cast Eq. (A-4) into a different form: 

kD

 

 
k

kk ps
k

ps
k

psk sDen
ds
d

ps
ds
d

sDen
ds
d

ps
sDenD

=
→→ ⎥⎦

⎤
⎢⎣
⎡≡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
=⎥

⎦

⎤
⎢
⎣

⎡
−

= )(
)(

)(
lim

)(
)(lim               (A-5) 
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Thus (Hildebrand, 1962, p. 548), residue (A-3) can be expressed alternatively as  
 

)(
)(

)(

)(
)(
)()(

k

k

ps

ps
kk pnDe

pNum

sDen
ds
d

sNum
sDen
sNumpsC

k

k
′

≡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=⎥
⎦

⎤
⎢
⎣

⎡
−=

=

=

               (A-6) 

 
Finally (Meirovitch, 1967, p. 532), by substituting Eq. (A-6) back into Eq. (A-2) and then 
taking the inverse Laplace transform of each term in the summation, we find  
 

[ ] tp
n

k k

k
n

ke
pnDe
pNum

sDen
sNumLsFLtf ∑

=

−−

′
=⎥

⎦

⎤
⎢
⎣

⎡
==

1

11

)(
)(

)(
)()()( , t ≥ 0                (A-7) 

 
A-3  Derivation of the Laplace transform of a definite integral 
 

Suppose that a function  has Laplace transform F(s) = L[ ], and that we 

need the transform of the definite integral .  Note the lower limit of τ = −∞; 

we usually consider  only for t ≥ 0, but occasionally the integral of  over previ-
ous time, t < 0, is also needed. 

)(tf )(tf

(tf

∫
≥=

−∞=

0

)(
t

df
τ

τ

ττ

)(tf )

 

∫ ∫∫
∞=

=

−
≥=

−∞=

≥=

−∞=
⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡ t

t

dv

ts

u

tt

dtedfdfL
0

00

)()(
876

4484476
τ

τ

τ

τ

ττττ                                 (A-8) 

 
Integrating by parts gives 
 

=⎥
⎦

⎤
⎢
⎣

⎡
∫
≥=

−∞=

0

)(
t

dfL
τ

τ

ττ −
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎥

⎦

⎤
⎢
⎣

⎡
∞=

=

−≥=

−∞=
∫

t

t

tst

s
edf

0

0

)(
τ

τ

ττ ∫ ∫
∞=

=

≥=

−∞=

−
⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛
−

t

t

t
ts dtdf
dt
de

s 0

0

)(1 τ

τ

ττ   (A-9) 

 
The derivative of the definite integral in the second right-hand-side term of Eq. (A-9) is a 
special case of Leibnitz’s rule (Hildebrand, 1962, p. 360): 
 

  )()(
0

tfdf
dt
d t

=⎥
⎦

⎤
⎢
⎣

⎡
∫
≥=

−∞=

τ

τ

ττ                                            (A-10) 

 
With the simple result (A-10), and with evaluation of the limits of the first right-hand-
side term, Eq. (A-9) becomes 
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=⎥
⎦

⎤
⎢
⎣

⎡
∫
≥=

−∞=

0

)(
t

dfL
τ

τ

ττ ∫∫
∞=

=

−
=

−∞=

+
t

t

ts dttfe
s

df
s 0

0

)(1)(1 τ

τ

ττ                         (A-11) 

 
Thus, the final form of the required general transform is 
 

=⎥
⎦

⎤
⎢
⎣

⎡
∫
≥=

−∞=

0

)(
t

dfL
τ

τ

ττ ∫
=

−∞=

+
0

)(1)(1 τ

τ

ττ df
s

sF
s

                             (A-12) 

 
For most applications, we have  = 0 for t < 0, for which the simpler transform is: )(tf
 

=⎥
⎦

⎤
⎢
⎣

⎡
∫
≥=

=

0

0

)(
t

dfL
τ

τ

ττ )(1 sF
s

                                         (A-13) 

 
If we regard the integral of  as being the first “negative” derivative (antiderivative), 
then we see that transform (A-12) is logically consistent with transform (2-15b) for a 
“positive” derivative, with respect to both power of s and the initial value term. 

)(tf

 
A-4  Applications of the Laplace transform of a definite integral 
 

A relatively painless method for deriving certain inverse transforms is based upon 
the inverse transform of Eq. (A-13),  
 

∫
≥=

=

− =⎥⎦
⎤

⎢⎣
⎡ 0

0

1 )()(1 t

dfsF
s

L
τ

τ

ττ                                          (A-14) 

 
It is necessary to apply carefully the limits of the definite integral, as is illustrated in the 
following three examples. 
 

)1(1)(111 0

0

0

0

1 −===⎥
⎦

⎤
⎢
⎣

⎡
− ∫∫

≥=

=

≥=

=

− tp
t

p
t

p e
p

ed
p

de
pss

L
τ

τ

τ
τ

τ

τ τ , t ≥ 0                 (A-15) 

 

)cos1(1)(cos1sin1
)(

1
2

0
2

0
22

1 tdd
ss

L
tt

ω
ω

ωτ
ω

τωτ
ωω

τ

τ

τ

τ

−=−==⎥
⎦

⎤
⎢
⎣

⎡
+ ∫∫

=

=

=

=

− , t ≥ 0  (A-16) 

 

tddH
ss

L
tt

∫∫
≥=

=

≥=

=

− ===⎥⎦
⎤

⎢⎣
⎡ 0

0

0

0

1 )(11 τ

τ

τ

τ

τττ , t ≥ 0                             (A-17) 
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A-5  Derivation of the Laplace transform of the convolution integral 
 
 We consider two physically realistic functions of time, f1(t) and f2(t), that are zero 
for all time t < 0 and non-zero only for t ≥ 0.  The convolution integral is defined to be a 
definite integral involving f1(t) and f2(t) in either of the following forms: 
 

ττττττ
τ

τ

τ

τ

dftfdtfftCI
tt

)()()()()( 2
0

12
0

1 ∫∫
=

=

=

=

−=−=          (6-1) repeated 

 
In these definite integrals, τ is the dummy variable of integration, and time t appears both 
in the upper limit of the integral and in argument (t − τ) of the integrand.   
 
 The Laplace transform L[CI(t)] is called the convolution transform. Let’s assume 
that the Laplace transforms of functions f1(t) and f2(t) exist:  F1(s) = L[f1(t)] and F2(s) = 
L[f2(t)].  The derivation to follow will show that the product of these two transforms 
equals the convolution transform:  
 

[ ] ⎥
⎦

⎤
⎢
⎣

⎡
−==× ∫

=

=

τττ
τ

τ

dtffLtCILsFsF
t

)()()()()( 2
0

121           (6-2) repeated 

 
 Equation (6-2) is certainly not an intuitively obvious result.  The short, formal 
derivation (Meirovitch, 1967, p. 534 and Ogata, 1998, pp. 43-44) involves interchanging 
of orders of integration.  The first step is to revise the upper limit in the convolution inte-
gral since, by definition, 0)(2 =−τtf  for 0<−τt , that is, for t>τ : 
 

ττττττ
τ

τ

τ

τ

dtffdtfftCI
t

)()()()()( 2
0

12
0

1 −=−= ∫∫
∞=

=

=

=

 

 
Next, use the standard definition of a Laplace transform: 
 

[ ] ∫ ∫∫
∞=

=

∞=

=

−
∞=

=
⎥
⎦

⎤
⎢
⎣

⎡
−=⎥

⎦

⎤
⎢
⎣

⎡
−=

t

t

st dtdtffedtffLtCIL
0

2
0

12
0

1 )()()()()( ττττττ
τ

τ

τ

τ

 

 
Now interchange the orders of integration between t and τ , an operation permitted by the 
assumed convergence of the integrals, and re-arrange the terms within the integrands: 
 

[ ] ∫ ∫
∞=

=

∞=

=

−
⎥
⎦

⎤
⎢
⎣

⎡
−=

τ

τ

τττ
0

2
0

1 )()()( ddttfeftCIL
t

t

st  

 
In the inner integral, change the integration variable to λ = t − τ , so that t = τ + λ and dt = 
dλ , since τ is regarded as a constant within this integration: 
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[ ] ∫ ∫
∞=

=

∞=

−=

+−
⎥
⎦

⎤
⎢
⎣

⎡
=

τ

τ

λ

τλ

λτ λλττ
0

2
)(

1 )()()( dfedftCIL s  

 
Now, since f2(t) = 0 for λ < 0, in the second integral we set the lower limit to zero.  Also, 
again re-arrange terms within the integrands, to find 
 

[ ] )()()()()( 21
0

2
0

1 sFsFdfedfetCIL ss ×≡⎥
⎦

⎤
⎢
⎣

⎡
= ∫ ∫

∞=

=

∞=

=

−−
τ

τ

λ

λ

λτ λλττ  

 
This completes the derivation of the convolution transform, Eq. (6-2). 
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Appendix B:  Notes on work, energy, and power in mechanical systems  
and electrical circuits 

 
© 2016 by William L. Hallauer, Jr. 

 
B-1  Definitions of work and power 
 
 Work is defined for translational motion as the product of a force times a distance 
through which the force moves.  For translation in one dimension, denoted here as x, the 
differential work of force  moving through distance dx at position x is  )(xf x

 
dxxfdW x ×= )(                                                  (B-1) 

 
So the work by a spatially varying force moving from position  to position  is 1x 2x
 

∫∫
=

=

=

=

==
2

1

2

1

)(
xx

xx
x

xx

xx

dxxfdWW                                            (B-2) 

 
with units of lb-ft, lb-inch, or N-m ≡ J (for joule). 
 
 The velocity of one-dimensional motion is dtvdxdtdxv xx =⇒= .  There-
fore, alternative expressions for work are 
 

∫
=

=

=⇒×=
2

1

tt

tt
xxxx dtvfWdtvfdW                                  (B-3) 

 
This leads to the definition of power, the time rate of work: 
 

xx vf
dt

dWP ×=≡                                                 (B-4) 

 
with units of lb-ft/sec, lb-inch/sec, or N-m/sec = J/sec ≡ W (for watt). 
 

For rotation in one dimension, denoted here as θ, the differential work of moment 
M  moving through angle θd  at position θ is θdMdW ×= , and the differential work of 
moment M  moving with velocity θ&  during interval dt is dt .  Therefore, 
the work of a possibly varying moment between states 1 and 2 can be expressed in either 
of the two form

 MdW θ&×=

s: 
 

∫∫
=

=

=

=

==
2

1

2

1

tt

tt

dtMdMW θθ
θθ

θθ

&                                           (B-5) 
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with units of lb-ft, lb-inch, or J.  The associated definition of power is 
 

θ&×= MP                                                       (B-6) 
 
with units of lb-ft/sec, hp (for horsepower, 1 hp ≡ 550 lb-ft/sec), lb-inch/sec, or W. 
 
 At least some of the work that is done on a real system might be stored in some 
form of recoverable energy, or work done might be completely dissipated and lost.  For 
all real engineering systems, at least part of the input work that is intentionally done on a 
system is lost irretrievably, not used for the intended purposes. 
 
B-2  Mechanical work, energy, and power (complementary to Chapter 3) 
 
 If a force accelerates in translation a body with mass m, xxx vmamf &== , then 
the work done by  is conserved as kinetic energy of the body, from Eq. (B-3): xf
 

( ) [ ])()(
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2
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2
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1

2

1
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dmdtvvmdtvfEW xx

tt
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=
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=

=

=

=

&    (B-7) 

 
 If a force stretches or compresses a standard ideal linear translational spring (as-
sumed here to have negligible mass), xkxf x =)( , then the work done by  is stored as 
strain energy (a form of potential energy)  within the spring, from Eq. (B-2): 

xf

 

( 2
1

2
22

1)(
2

1

2

1

xxkdxxkdxxfEW
xx

xx

xx

xx
xS −===≡ ∫∫

=

=

=

=

)                        (B-8) 

 
 At any instant, therefore, the total mechanical energy present in an ideal mass-
spring system, relative to an initially stationary and unstrained state, is  
 

22

2
1

2
1 xkvmEEE xSKMe +=+=                                     (B-9) 

 
In an ideal conservative mass-spring system, without any agent of energy augmentation 
or energy dissipation,  remains constant in time, oscillating between the kinetic ener-
gy of the mass and the strain energy within the spring. 

MeE

 
 An ideal translational viscous damper dissipates mechanical energy by exerting a 
force in opposition to velocity:  xcvcf xx &−=−= .  Thus, from Eq. (B-4), the rate of en-
ergy dissipation by the damper is 
 

2
xxxc vcvfP −==                                               (B-10) 
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 Suppose that a mass-damper-spring system is initially stationary and unstrained, 
and that an independent, externally applied force  is imposed upon the mass.  This 
force is a source of power, .  The damper, on the other hand, is a sink of me-
chanical energy.  Therefore, total mechanical energy  varies in time: 

)(tf x

MeE
xxf vtfP )(=

 

xxxxxfcxMe vtfvcxxkvvmPPxkvm
dt
dE

dt
d )(

2
1

2
1 222 +−=+⇒+=⎟

⎠
⎞

⎜
⎝
⎛ += &&  (B-11) 

 

Canceling  out of Eq. (B-11) and re-arranging terms leads to the general ODE of 
motion for a mass-damper-spring system

xvx &=
1: 

 

)(tfxkxcxm x=++ &&&                                             (B-12) 
 
 The following relations for rotational motion can be derived from the basic defini-
tions in the manner used above for translational motion.  If a moment M accelerates a 
body with rotational inertia J about the axis of rotation, then the work done by M is con-
served as kinetic energy of the body: 
 

[ )()(
2
1

1
2

2
2

2

1

ttJdtMEW
tt

tt
K θθθ &&& −==≡ ∫

=

=

]                            (B-13) 

 
If a moment M twists an ideal linear torsion (rotational) spring (assumed here to have 
negligible rotational inertia) with spring constant , then the work done by M is stored 
as strain energy within the spring: 

θk

 

( 2
1

2
22

12

1

θθθ θ

θθ

θθ

−==≡ ∫
=

=

kdMEW S )

                                                

                                (B-14) 

 

A rotational viscous damper with constant  dissipates mechanical energy by exerting a 
moment in opposition to velocity:  .  Thus, the rate of energy dissipation by 
the damper is 

θc

θc θ&M −=

 
2θθ θ
&& cMPc −==                                                (B-15) 

 

 
1 The direct power-balance method giving Eq. (B-11) and leading to ODE of motion (B-12) is also used in 
this appendix to derive governing ODEs (B-19) and (B-34).  Each of these applications is for a one-degree-
of-freedom (1-DOF) system, i.e., a system that has only one time-dependent variable.  (See Chapters 11 
and 12 for more detailed definitions of degrees of freedom and examples of multiple-DOF systems.)  
Unfortunately, this direct approach fails for systems with more than one DOF, as is observed and illustrated 
by Cannon, 1967, p. 166.  For deriving the governing ODEs of multiple-DOF systems, a more general 
energy method was developed by Joseph Louis Lagrange (French-Italian mathematician and mechanician, 
1736-1813).   Lagrange’s equations are derived and illustrated in detail by most textbooks on classical 
mechanics and structural dynamics, e.g., Bisplinghoff, et al., 1955; Cannon, 1967; Craig, 1981; 
Greenwood, 1965; and Meirovitch, 1967 and 2001.   
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 For our final example of mechanical energy, consider translation in the y direction 
of a mass m that is within a field of constant gravitational field strength g (with SI units 
newton/kilogram).  The force required to sustain the mass without acceleration (either 
stationary or at constant velocity) against gravity is 
 

gmf y =                                                       (B-16) 
 
Therefore, the work required to raise the mass without acceleration against gravity is 
stored conservatively as gravitational potential energy: 
 

)( 12

2

1

yygmdyfEW
yy

yy
yG −==≡ ∫

=

=

                                 (B-17) 

 
For reference in the next section, we define also the gravitational potential difference, 

.  The following is an application of Eq. (B-17).  Suppose that we shoot a pro-
jectile of mass m straight up against Earth’s gravity from surface elevation , with initial 
velocity  sufficiently low that g remains essentially constant over the entire trajectory.  
Let’s assume that atmospheric drag is viscous with damping constant c.

)( 12 yyg −

1v

yvc−

1y

2  Drag force 
 dissipates energy, so the total mechanical energy  varies in time: MeE
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2

1
2 )()(

2
1

yyycyMe vcygmvvmPyygmvvm
dt
dE

dt
d

−=+⇒=⎟
⎠
⎞

⎜
⎝
⎛ −+−= &&  (B-18) 

 
Canceling out  from Eq. (B-18) and re-arranging terms leads to the 1st order ODE 
describing projectile velocity: 

yvy &=

 
gmvcvm yy −=+&                                               (B-19) 

 
B-3  Work, energy, and power in electrical circuits (complementary to Chapter 5) 
 
 Electrical fields exist in spaces around and between charged particles or charged 
objects (Halliday and Resnick, 1960, Chapter 27).  The electrical field strength E (with SI 
units newton/coulomb) at a point in space is analogous in many respects to gravitational 
field strength g, as in Eq. (B-16).  Suppose that an electrical field is oriented in the y 
direction and is constant.  Experimental measurements show that the force required to 
sustain a particle of charge  without acceleration against the electrical field is pq
 

Epy qf =                                                       (B-20) 
 

                                                 
2 See homework Problem 1.7 for discussion of this projectile-velocity problem using both the viscous 
(linear) drag mathematical model and a velocity-squared (nonlinear) drag model. 
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(This linear relationship is the basis for definition of E.)  Thus, charge qp within an elec-
trical field of strength E is analogous to mass m within a gravitational field of strength g.  
We see from this analogy that the work required to move the charge without acceleration 
against the electrical field is stored conservatively as electrical potential energy: 
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EE                         (B-21) 

 
 It is customary and appropriate in electrical theory and applications to define (in 
analogy with the gravitational potential difference) the electrical potential difference in 
volts between two points in space as (Halliday and Resnick, 1960, Chapter 29) 
 

)( 1212 yyee −≡− E , or differentially, dyde E≡                           (B-22) 
 
With dyde E≡  in Eq. (B-21), the work required to move charge qp , work equal to the 
electrical potential energy, is expressed in terms of electrical potential difference as 
 

)( 12
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1

eeqdeqEW p

ee

ee
pE −==≡ ∫

=

=

                                (B-23) 

 
We infer from Eq. (B-23) the SI unit equivalence:  1 volt = 1 joule/coulomb.  Note the 
sign conventions in Eq. (B-23):   work and potential energy are positive if a positive 
charge, qp  > 0, is moved to a higher electric potential, e2 > e1 . 
 
 One useful application of Eq. (B-23) for electrical potential energy is to a capaci-
tor within a circuit.  Halliday and Resnick, 1960, p. 651, explain the physical process: 
 

… work must be done to separate two equal and opposite charges.  This 
energy is stored in the system and can be recovered if the charges are al-
lowed to come together again.  Similarly, a charged capacitor has stored in 
it an electrical potential energy U equal to the work W required to charge 
it.  This energy can be recovered if the capacitor is allowed to discharge.  
We can visualize the work of charging by imagining that an external agent 
pulls electrons from the positive plate and pushes them onto the negative 
plate, thus bringing about the charge separation; normally the work of 
charging is done by a battery, at the expense of its store of chemical en-
ergy. 
 

To derive an equation for capacitive potential energy, let’s suppose that some quantity of 
positive charge  has already been transferred from the negative 
plate of an ideal capacitor to the positive plate; the voltage 
difference between the two plates due to  is expressed in terms 
of the capacitance C, from Eq. (5-2), as 

+q

+q

+++ =− qCee1

 
 e1  e2 

 C  )1(2 , in 
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which  is a higher potential than .  From Eq. (B-23), the differential work required 
to transfer an additional differential quantity of positive charge  from the negative 
plate to the positive plate is given by 

+1e +2e

+dq

 

+++++dq ( =−= dqq
C

eedW 1)21                                    (B-24) 

 
We integrate Eq. (B-24) to find the total work required to fully charge the ideal capacitor 
from zero to a quantity q, which also is the total electrical potential energy stored in the 
capacitor: 
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                                (B-25) 

 
Whereas the energy of a capacitor, Eq. (B-25), is stored in an electrical field, that 

of an inductor is stored in the magnetic field within the inductor’s coils; this magnetic 
field exists as a consequence of the electrical current flowing in the 
wire (Halliday and Resnick, 1960, Chapter 34).  Even though it is 
magnetic field energy, we can still apply Eq. (B-23) for electrical 
work to determine an equation for the energy within an inductor 
(Halliday and Resnick, 1960, Section 36-4).  From Eq. (B-23), the 
differential work required to move a differential quantity of positive 
charge  through an ideal inductor is  +dq
 

)( 21 +++ −= eedqdW                                              (B-26) 
 
in which  is a higher potential than .  This is a conservative process, so the elec-
trical work, which might be done by a battery or some other power source, must be stored 
as magnetic field energy, .  The self-induced electrical potential difference across the 
inductor is given by Eq. (5-6), 

+1e +2e

ME
)(L2e +1 dtdi++e =− .  Also, current and charge are related 

by dt++ dq=i , so that .  Therefore, we re-write Eq. (B-26) as dti+dq+ =
 

++
+

+ =×=M= diiL
dt
diLdtidEdW                                   (B-27) 

 
Finally, we integrate Eq. (B-27) to find the total magnetic potential energy stored in the 
ideal inductor for a quantity of current i: 
 

2
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1 iLdiiLEM =W
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=
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                                      (B-28) 

 

dt
dii,  

e1 e2

 L 
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 Next, we apply Eq. (B-23) for electrical work once again in order to evaluate 
power sources and power sinks in electrical circuits (Halliday and Resnick, 1960, Section 
31-5).  Consider a general component within a circuit, a “black box.” 
This might be a passive component such as a resistor, a source of 
power such as a battery or signal generator, or a device such as a 
motor that converts electrical energy into another form of energy.  
For this derivation, let’s consider the upstream terminal of the black 
box to be at a higher potential than the downstream terminal:   > 

.  Suppose that a positive differential charge dq moves through 
the black box from higher potential to lower potential; Eq. (B-23) shows that there is a 
reduction of electrical energy:  dW  =  = 

1e

2e

EdE )( 21 eedq −−  = )( 21 eedt −i− .  Electrical 
power also is reduced: 

dt
dqi =

e1 e2
 Black box 

 

dt
dWPE =  )( 21 eei −−=                                           (B-29) 

 
 Equation (B-29) is an important formula that can be applied usefully for many 
different black boxes.  We shall consider here just two of them.  First, suppose that the 
black box is a resistor with resistance R, for which Eq. (5-1) gives ; in this 
case, the downstream terminal is at lower voltage than the upstream terminal, so Eq. (B-
29) becomes the following famous formula for the electrical power that is dissipated in 
heating the resistor: 

Riee =− 21

 
RP                                                       (B-30) Ri 2−=

 
Next, suppose that the black box is a source of input voltage  (battery or signal gen-
erator) for a circuit; in this case, the downstream voltage 

)(tei

)(tei2e =  exceeds the upstream 
voltage (for positive current i), so Eq. (B-29) gives the formula for electrical power intro-
duced into the circuit by the voltage source: 
 

eP  ])([ 1etei i −=                                                 (B-31) 
 
For most, if not all of the relatively simple circuits considered in this book, the upstream 
terminal of the voltage source is connected to the ground (zero) potential, so that 01 ≡e  
and the input power is . )(teiP ie =
 

 R 

ei(t)
C

eo(t)

i(t) 

L em An interesting application of the equations derived in 
this section is to the powered LRC circuit drawn at right, from 
the example in Section 9-2.  The total stored electromagnetic 
energy resides in the electrical field of the ideal capacitor and 
the magnetic field of the ideal inductor: 
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22

2
11

2
1 iLq

C
EEE MEEM +=+=                                   (B-32) 

 
The signal generator is a source of electrical power, and the resistor is a sink of electrical 
power, so the total electromagnetic energy varies in time: 
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Canceling  out of Eq. (B-33) and re-arranging terms leads to the general ODE for 
charge q(t) on the capacitor plates in the LRC circuit: 

qi &=

 

)(1 teq
C

qRqL i=++ &&&                                            (B-34) 

 
Since , Eq. (B-34) is essentially the same as that derived from Kirchhoff’s volt-
age law in Section 9-2 for output voltage :  

oeCq =
)(teo )()1()1()( teLCeLCeLRe iooo =++ &&& . 

 
B-4  Analogies between an m-c-k mechanical system and an LRC electrical circuit 
 
 By comparing ODEs (B-12) and (B-34) and the many other mechanical and elec-
tromagnetic equations developed in this appendix, we can identify some clearly analo-
gous variable quantities and constants between a forced m-c-k mechanical system and a 
powered LRC electrical circuit (Halliday and Resnick, 1960, Section 38-2).  The most ob-
vious analogies are listed in the following table. 
 

Forced m-c-k mechanical system Powered LRC electrical circuit 
mass m inductance L 

viscous damping constant c resistance R 
stiffness constant k inverse capacitance C1  

position of the mass  )(tx charge on the capacitor  )(tq
velocity of the mass  )()( txtvx &= current through the circuit  )()( tqti &=

excitation force  )(tf x input voltage  )(tei

kinetic energy 2
2
1

xK vmE =  magnetic energy 2
2
1 iLEM =  

strain energy 2
2
1 xkES =  electrical energy 2

2
1 )1( qCEE =  

power dissipation  2
xc vcP −= power dissipation   RP 2iR−=

power input  xxf vtfP )(= power input  iteP ie )(=

 
 The mathematical similarity of an m-c-k system to an LRC circuit is one of the 
simpler analogies between physical systems and circuits, and there are many other analo-
gous electrical circuits of greater complexity (Fifer, 1961, Vol. III, Chapter 19; MacNeal, 
1962).  In fact, during the 1940s and 1950s, methods of direct analog computation were 
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developed extensively for analysis of many physical “prototype” systems with use of 
electrical circuits.  In the introductory chapter of a 1962 book entitled Electric Circuit 
Analogies for Elastic Structures, Richard H. MacNeal wrote (pages 6-7):  “The … direct 
analog computer is … a device in which each electrical component (or group of 
components) is equivalent to a physical component of the prototype system.”  MacNeal 
stated further:  “This technique has been frequently used for the solution of problems 
concerning mechanics and elasticity, the conduction of heat, fluid flow, and electromag-
netic waves.”  However, during and after the mid-1960s, direct analog computation was 
completely eclipsed by the rapidly advancing capabilities of digital computers and soft-
ware written for digital processing.  It is an ironic twist of history that MacNeal himself 
became an innovative pioneer in the development and implementation of the finite-
element method for high-precision digital computation of structural behavior. 
  
B-5 Hysteresis and dissipation of mechanical energy by damping 
 
 Consider the ideal parallel damper-spring system of Example 3-3, shown again in 
the figure below, with the damper assumed to be an ideal viscous dashpot.  The spring 

and dashpot forces acting 
onto the link are depicted 
with arrows as positive 
toward the right so that they 
have the same polarity as 
translation x(t).  Suppose 
that x(t) is imposed by some 
external agent in a steady-

state sinusoidal form with frequency ω and constant amplitude X:  x(t) = X cos ωt.  

 
k x(t) 

c 

 fx(t)  fx(t)

FBD of link 

fd = − xc&  

fs = −kx 

Accordingly, the spring force and viscous-dashpot force are, respectively,  
 

fs(t) = tkXtkx ωcos)( −=−           and           fd(t)  = tXctxc ωω sin)( =− &  
 

lags behind x 

Let’s examine the relationships between x(t) 
and the two component forces as the system moves 
through one complete cycle.  These relationships are 
depicted graphically on Fig. B-1, on which the points 
labeled 1 represent times t = 0 and 2π ⁄ ω at the begin-
ning and end of the cycle, and the points labeled 2 
represent time t = π ⁄ ω at the middle of the cycle.  On 
Fig. B-1(a), the loci of spring force fs and dashpot 
force fd are plotted separately versus x.  Spring force 
fs is exactly out of phase with x, so its locus is simply 
a straight line.  On the other hand, dashpot force fd 

by ¼ of the cyclic period, since sin ωt = 
)2cos( πω −t , so that its locus forms a closed loop.  

A time lag such as this in cyclic motion, of an output 
quantity (fd in this case) relative to an input quantity 
(x in this case), is generally referred to as hysteresis, and the locus of the output versus 
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the input over a complete cycle is called a hysteresis loop.  As shown by the following 
equation, this particular hysteresis loop has the simple and familiar form of an ellipse, 
ne with semi-major axis X and semi-minor axis cωX: 

 
o
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x d ωω

ω
ωωω

ω
 

 
The total area A enclosed within the hysteresis loop is a significant physical quantity, and 
it is given for the ellipse of Fig. B-1(a) by the following simple formula from plane geo-

etry: 
 

A = π × semi-major axis × semi-minor axis = π c

m

ω 2X  

 
 Let’s now derive the work per cycle done by each of the component forces within 
the dam ring system.  From Eq. (B-2) the work per cycle of viscous-damper force 
fd(t) is 

per-sp

∫ dxfd , in which the symbol ∫ denotes that the integration path covers one com-

plete circuit around the loop, from point 1 to point 2 on the curve of fd ≥ 0 of Fig. B-1(a), 
nd then from point 2 back to point 1 on the curve of fd ≤ 0: 
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               (B-35) 

 
In the second form above for the integral over the path of fd ≥ 0, the limits of integration 
have been reversed, which accounts for the sign change of that entire integral.  Therefore, 
the work per cycle done by the viscous damper is simply the entire area enclosed within 
the hysteresis loop, 2XcWd ωπ−= .  Now, having completed carefully the derivation of 
work per cycle for fd(t), we can recognize without the necessity of any further mathemati-
cal derivation that the work per cycle done by any cyclic force that moves through a cy-
clic path of translation is simply the area enclosed within the hysteresis loop, even though 
the loop might not be a simple ellipse such as that for viscous-damper force fd(t).  One 
immediate application of this general result is that the work per cycle done by spring 
force fs(t) is zero, Ws = 0; for, as shown on Fig. B-1(a), the path of fs(t) for x decreasing 
from point 1 to point 2 is exactly the same as the path for x returning from point 2 back to 
point 1, so this hysteresis “loop” collapses to a line that encloses zero area.  Therefore, 

e total work per cycle done by the viscous-damper-spring system is the sum 
 

                          (B-36) 

mechanical energy.  In a real solid structural component (which is discussed next), the 

th

22 0 XcXcWWW sdsd ωπωπ −=+−=+=−

 
The polarity of Wd-s is negative because the damper-spring system actually dissipates 
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dissipated mechanical energy does not disappear, but rather is converted into thermal 
energy that raises the temperature of the component. 
 
 Imagine now that the damper-spring system is a solid, distributed-parameter 
structural component of some sort, e.g., a metal tensile-test specimen, or a hard rubber 
pad of the type used to support heavy machines.  If we were conducting a cyclic tensile 
test on this component, we would be able to measure its deformation, comparable to x(t) 
on Fig. B-1.  But the structural component could not be separated into a discrete damper 
and a discrete spring, so we would be able to measure directly only the total resisting 
force of the component, comparable to fd(t) + fs(t), but not individual damper and spring 
forces.  Therefore, Fig. B-1(b) is more representative than Fig. B-1(a) of actual physical 
measurements.  A thoughtful study of Eq. (B-35) should convince you that, even though 
the hysteresis loop of Fig. B-1(b) is not a true ellipse, the area that it encloses, and the 
work per cycle done by the viscous-damper-spring system, is still  
 

2)( XcdxffWW sdsd ωπζ −=+=≡ ∫−                               (B-37) 
 
The symbol Wζ  is introduced in Eq. (B-37), with subscript ζ indicating that this particular 
equation applies for the linear viscous-damping mathematical model,  , since ζ 
is the standard symbol for viscous-damping ratio in vibrating systems. 

xcfd &−=

 For over a century now, experimental measurements on distributed-parameter 
structural components have demonstrated that the linear frequency dependence of me-
chanical-energy dissipation in Eq. (B-37) is unrealistic (Love, 1926, pp. 117-121, Kim-
ball and Lovell, 1927; Ungar, 1998).  The subject of damping in solids under loading is 
very complicated (see books by Lazan, 1967; Nashif, et al., 1985; and de Silva, 2007):  
different solid materials behave differently, of course, and even the same material usually 
behaves differently after different time-histories of loading, temperature, exposure to cor-
rosion or chemicals, etc.  Nevertheless, laboratory measurements with structural metals 
and elastomers (rubber-like materials), at stresses below yield and fatigue endurance lim-
its, generally show that mechanical-energy dissipation (conversion of mechanical energy 
into heat energy) is not proportional to excitation frequency, as predicted by the viscous-
damping model, but, instead, is much more weakly dependent on frequency.  For this rea-
son, engineers have developed an alternative, simple, linear, approximate mathematical 
model of damping, for which mechanical-energy dissipation is specified to be independ-
ent of frequency.  Further for this model, the energy dissipation is specified to be propor-
tional to the stiffness of a solid structural component, which is at least plausible physi-
cally.  Thus, for this alternative model, we replace the term c × ω in Eq. (B-37) with the 
term k × η, in which constant of proportionality η  is generally called the damping loss 
factor.  Accordingly, the work per cycle for this model, denoted as Wη , is written as 
 

2XkW ηπη −=                                                  (B-38) 
 
Engineers have used this mathematical model of damping at least since the 1940s (Bis-
plinghoff, et al., 1955, pp. 558-568), but, unfortunately, there is no standard, recognized 
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name for it in engineering literature.3  We shall call it the internal-friction model, in re-
cognition of the 1927 article entitled “Internal Friction in Solids” by Kimball and Lovell, 
who reported the first experimental measurements of energy dissipation that is indepen-
dent (or nearly so) of cyclic frequency. 
 
 We derived Eq. (B-38) for damping energy dissipation by replacing c × ω in Eq. 
(B-37) with k × η.  Next, we need for the internal-friction model a corresponding linear 
equation for damping force that can be used directly in ODEs of motion, an equation 
comparable to  for the viscous-damping model.  Based only upon algebra, if k × 
η replaces c × ω, then 

xcfd &−=
ωηk  replaces c, and the desired equation is  

 
df  = xk &)( η ω−                       (B-39)   

 
Accordingly, the figure at right depicts a damper-spring 
system for the internal-friction model, and the ODE for 
this simple system is  
 

)()( tfxkxk x=+&ωη                   (B-40)  
 
Question:  If we want to apply damping force  = df xk &)( ωη−  for general motion x(t), 
we can probably find values for material constants k and η, but what value should we use 
for ω, since general motion is not necessarily steady-state sinusoidal?   
 
Answer:  Damping force  = df xk &)( ωη−  is mathematically consistent only for steady-
state sinusoidal motion at known frequency ω, so, in general, this equation for internal-
friction-model force should be used only in frequency-response derivations and calcula-
tions.  (However, engineers and physicists occasionally bend the rule a bit and use this 
model for more general structural motion that consists primarily of lightly damped vibra-
tion, by setting ω equal to the dominant natural frequency of the system.)   
 
 An interesting and practically relevant application of 
the internal-friction model of structural damping is to passive 
vibration isolation, which is described in homework Problem 
10.13 for the viscous-damping model.  The drawing from 
Problem 10.13 is reproduced at right.  A mass m (often a ma-
chine that includes unbalanced rotating or translating parts) is 
supported on elastomeric padding.  The padding is modeled as 
an ideal shock strut (from Example 3-3), with a spring of stiff-
ness constant k and, on the drawing, a viscous damper of con-
stant c; here we shall consider as well elastomeric padding with 
the internal-friction damping model, which is more realistic than the viscous-damping 
model.  Dynamic force f(t) is applied to m, by either external or internal agents, and 
                                                 
3 Perhaps the most common name used is “hysteretic damping”, but that name is misleading because every 
form of solid damping involves hysteresis. 

 
k x(t)

ωηk  

 fx(t)

 m 

 k/2  c 

 y(t)  f (t) 

 fR(t) 

 k/2 
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dynamic reaction force fR(t) is transmitted through the padding to the supporting struc-
ture.  The purpose of passive vibration isolation in this form is to protect the supporting 
structure, with the flexible padding designed so as to minimize the transmitted dynamic 
force fR(t). 
 
 Part of the assignment in Problem 10.13 is to derive the transfer function TF(s) = 
FR(s)/F(s) relating the floor-reaction dynamic force to the excitation force and then to 
show that the corresponding complex frequency-response function, known as transmissi-
bility, is 
 

ζββ
ζβω

ωω ωφ

2)1(
21)()()( 2
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j
je

F
FFRFjTF jR

+−
+

−=≡≡  

 
where )2( mkc≡ζ  and mkn ωωωβ =≡ .  Therefore, the magnitude of transmis-
sibility, which we denote as )(ωζT  for the viscous-damping model, is 
 

222

2

)2()1(
)2(1)()(
ζββ

ζβωωζ +−
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=≡ FRFT                             (B-41) 

 
 For the internal-friction model, the viscous-damping constant c is replaced by the 
term ωηk , Eq. (B-39).  Frequency-response functions that are derived for a mathemati-
cal model based upon viscous damping can be converted easily to apply for internal-fric-
tion damping, without the necessity of a complete re-derivation.  To show this, we write 
below the mass-damper-spring ODEs for the viscous-damping and internal-friction mod-
els and then express these ODEs in terms of ζ , ωn , and β:  
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From the terms in parentheses in the final forms of the two ODEs, we see that replacing 
2ζ with βη , everywhere 2ζ appears in any response equation derived from the viscous-
damping ODE, will convert the response equation to apply for internal-friction damping.  
We note that engineers sometimes carelessly assert that the two types of damping are 
equivalent if we simply equate 2ζ with η.  That assertion is clearly incorrect; for, even if 
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 Appendix B  Notes on work, energy, and power in mechanical systems and electrical circuits 
 

2ζ = η, the only frequency at which frequency-responses of the two different models are 
certain to be equal is ω = ωn , β = 1. 
 
 Using the replacement 2ζ   βη  in Eq. (B-41) for the viscous-damping-model 
transmissibility )(ωζT  gives the equation for transmissibility )(ωηT  that is applicable for 
internal-friction damping: 
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 Equation (B-41) is plotted below for ζ = 0.25 and 0.5, and Eq. (B-42) is plotted 
for the two values of η that produce the same transmissibility magnitude at β = 1 as the 
corresponding ζ values, namely, η = 0.5 and 1.0, respectively.  The plotted values, espe-
cially those for β  > √2, demonstrate why it is good that the frequency responses of real 
elastomeric vibration isolators are much closer to the predictions of the internal-friction 
model than to those of the viscous-damping model (Ungar, 1998). 
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A 
abs MATLAB function, 2-3, 4-16 
absolute stability, 16-18, 17-1 
absolute unit system, 3-1 
AC = aerodynamic center, 11-7 
accelerance, 10-13 
acceleration in G’s, 1-19 
accelerometer, 7-17, 9-9, 9-24, 10-13, 10-25, 10-27, 

15-4 
actions = forces or moments, 11-2 
active system, 7-1, 16-18 
actuator, dynamics, 15-4 

…, position, 15-4, 15-19 
adapting standard solutions, 3-7, 7-3, 7-17, 7-19, 7-20, 

9-4, 9-5, 9-21, 9-31, 10-21, 11-6, 13-4, 14-11 
added-mass (-inertia) method, 7-22, 12-18 
adjoint matrix, 12-3 
admittance, electrical, 10-11 

…, mechanical, 10-12 
aerodynamic center (AC) of a wing section, 11-7 
aerodynamics, coefficients, 1-21, 3-8, 11-8, 16-43 

…, drag, 1-20 
…, rolling moment, 3-8 
…, quasi-static, 11-9, 16-42 

aeroelasticity, divergence and flutter, 11-7, 16-41 
aeronautical unit system, 3-1 
aileron, 3-8, 11-9 
air density, 1-21, 3-9, 3-18, 11-8, 16-43 
air-jet thruster, 8-28 
airplane, aileron, 3-8, 11-9 

…, blowdown moment, 11-9 
…, Boeing 747, 3-18 
…, bomb release, 9-28 
…, brake release, 7-6 
…, Douglas A-4 Skyhawk, 3-18 
…, landing contact, 7-9, 7-19 
…, rolling, 3-8, 9-14 
…, trimming tab, 11-13 
…, wing, 3-8, 11-7, 11-9 

airspeed, free-stream, 3-9 
algorithms, numerical, for 1st order ODE, 6-7, 6-12, 8-

15, 8-20 
…, …, for 2nd order ODE, 8-15, 8-22 

aluminum flat, 7-21 
amp, ampere (A), unit of electrical current, 5-1 
amplification, dynamic, 10-2 
amplifier, inverting, 5-10 

…, non-inverting, 5-16 
…, summing inverting, 5-16 

amplitude modulator, 10-15 
analog computation, direct, B-8 
analog computer, electronic, 5-15, 5-17, 7-20, 9-31, 

10-31 
analogous systems, 5-6, B-8 
angle MATLAB function, 2-3, 4-16 
angle of a complex number, 2-2 
angle of attack of a wing section, 11-8 
antenna, 7-20 
apparent frequency of beating, 10-16 

apparent mass, 10-14 
approximate numerical solutions, 6-8, 8-15, 9-14 

…, convolution sum, 8-15, 9-14 
…, recurrence formulas, 6-8, 6-10, 6-12 

arctangent, four-quadrant, 2-2 
argument of a complex number, 2-2 
array multiplication, MATLAB, 1-16, 9-23, 9-27 
arrow, double-headed, 3-4 
artificial spring, 14-7, 15-14 
artificial viscous damper, 12-19, 14-16, 15-15 
asymptotes, loci of roots, 16-32 

…, low- and high-frequency, 4-7 
atan2 MATLAB function, 2-2 
attitude (vehicle rotational orientation), 14-1, 14-4, 15-

19 
automotive vehicle, 11-15, 12-14 
axis equal MATLAB function, 16-28 

B 
balloon carrying a basket, 7-3, 7-9, 7-18 
band-pass filter, 5-12, 9-21, 9-31, 13-1 
base excitation, 9-23, 10-20, 10-21, 10-25, 12-13, 13-

2, 13-4, 14-7 
baseball, 1-20 
baseline, transfer and frequency-response function, 

17-8 
battery, electrical, 5-1 
beam, structural, 7-9, 7-22 
beating of vibrating systems, 1-24, 10-14, 10-31 
beating period and frequency, 10-16 
black box, general circuit component, B-7 
block diagram, algebra, 13-2, 14-8, 14-15, 14-18 

…, closed-loop, 13-2 
…, junctions, 13-3 
…, Laplace, 13-1 
…, open-loop, 13-2 

blowdown moment, 11-9 
Bode diagram, 4-6, 10-11, 17-4, 17-7 
Boeing 747 airplane, 3-18 
branch point junction, 13-3 
branch, feedforward, 14-18 

…, forward or feedback, 13-2 
break frequency, 4-6 
break-away point, 16-20, 16-24 
break-in point, 16-20, 16-24 
buoyancy force, 7-18 

C 
cantilever (ideally clamped-free) beam, 7-12, 7-22 
capacitors, circuit components, 5-3 

…, in parallel, 5-14 
…, in series, 5-14 
…, potential energy, B-5 

capsule (re-entry vehicle), 14-3 
Cartesian coordinates x and y, 2-2 
Cartesian xyz axis system, 11-1 
causality of transfer function, 4-12, 15-13, 15-18 
cavity resonator, 7-20 
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center of mass, 11-1 
characteristic equation, 1st order ODE, 1-7 

…, 2nd order ODE, 1-22 
…, damped 2nd order system, 9-1 
…, free-vibration problem, 12-4, 12-10 
…, nth order, 16-2, 16-43 
…, polar form, 16-25 

characteristic time, 8-11 
characteristic values, 1st order ODE, 1-7 

…, 2nd order ODE, 1-22 
charge, electrical, 5-3, B-4 
circular frequency (radians/second), 1-6, 1-17, 4-8 
clamped beam, non-ideal support, 7-16 
classical control theory, 14-17 
closed loop, 13-2 

…, control, 14-6 
…, transfer function (CLTF), 13-4, 14-8, 17-2 
…, circuit for op-amp, 5-10, 15-2 

CLTF = closed-loop transfer function, 13-4 
…, general formulas, 14-9 
…, P control, 15-6, 15-14 
…, PD control, 15-15 
…, PI control, 15-8 
…, position + rate feedback, 14-15 
…, position feedback, 14-9 

coil of conducting wire, 5-6 
coincident frequency-response component, 17-10 
command, 1-2 

…, control, 9-14, 13-4, 14-1, 14-2 
common open-loop system, 17-7, 17-17 
compensator, 16-36 
complementary solution of an ODE, 1-6 
complex, arithmetic, 2-3 

…, conjugate, 2-4  
…, function F(s), 2-6 
…, number z = x + jy, 2-1 
…, variable s = σ + jω, 2-6 

compliance, dynamic, 10-13 
component of a system, 1-1 
concentrated mass, 7-15 
conjugate of a complex number, 2-4 
conservative system, B-2 
consistent mass, 7-23 
continuity condition, 5-2 
control, actuators and sensors, 15-4 

…, m-c-k system by base excitation, 13-4 
…, open-loop, 14-2, 14-6 
…, output feedback, 14-14 
…, P, 15-2, 15-6, 15-14 
…, PD, 15-2, 15-13, 15-14 
…, PI, 15-2, 15-8 
…, PID, 15-1 
…, remote (indirect), 14-1 

controller (control processor, filter), 15-1 
control theory, classical and modern, 14-17 
control-moment gyroscope (CMG), 12-13, 14-5 
conv MATLAB function, 6-2, 8-19, 8-26, 16-43 
convolution integral, 6-1, 6-3, 6-8, 7-1, 7-3, 9-7, 9-14, 

9-21, 9-30 
…, Laplace transform of, 6-1, A-7 

convolution sum, 6-2, 8-15, 8-17, 9-14 
coordinates, Cartesian, 11-1 

…, polar, 11-4 
corner frequency, 4-7 
coulomb, unit of electrical charge, 5-3 
coupled ODEs, 1-12, 3-14, 11-1, 11-11, 13-7 
critical viscous damping constant, 9-1, 10-19, 16-34 
critically damped 2nd order system, 9-2, 9-28 
crossovers, phase and gain, 17-6 
cruise-control system, 15-17 
cyclic frequency (cycles/second), 1-17, 4-8 

D 
damped natural frequency, 9-3, 14-20 
damper-spring (c-k), parallel system, 3-13, 4-2 

…, series system, 3-14, 4-16, 4-17, 5-6, 5-14, 15-3 
damping laws, nonlinear, 3-12 

structural internal-friction, B-12 
structural viscous, B-9 

dashpot (mechanical viscous damper), 3-12 
decibel (dB) scale, 4-7, 10-11, 17-6 
definite integral, Laplace transform of, 2-14, A-5 
degrees of freedom (DOFs), 11-2, 11-10, 12-1, 16-41 
density of air, 1-21, 3-9, 3-18, 11-8, 16-43 
departure angles, loci of roots, 16-32 
derivative time constant, 15-1, 15-13, 15-16 
derivative, Laplace transform of, 2-8 
design, control system, 14-21, 15-2, 15-11, 15-16, 15-

17, 16-28, 16-36, 17-22 
determinant of a matrix, 12-3 
DFBD = dynamic free-body diagram, 7-7, 11-5, 12-2 
dielectric (insulating) material, 5-3 
differentiator, approximate, 15-13, 15-18 

…, exact, 15-18 
digital camera, 7-11 
Dirac delta function, 8-3, 16-40 
direct term of partial-fraction expansion, 2-19, 15-19 
distributed-parameter system, 7-9 
disturbance, 1-2 

…, internal or external, 14-3, 14-5 
…, response of controlled system, 14-8, 14-18, 14-

20, 15-17 
divergence, aeroelastic, 11-7, 16-22, 16-43 
DOF = degree of freedom, 11-2 
dominant modes of response, 16-30, 16-43 
dot notation, 1-2 
Douglas A-4 Skyhawk airplane, 3-18 
dsolve MATLAB operation, 1-20, 1-23 
Duhamel integral, 8-15 

…, 2nd order ODE with RHS dynamics, 9-30 
…, underdamped 2nd order system, 9-14 

dummy variable of integration, 1-4, 6-1 
duration of pulse, 1-6 
dwell, vibration testing, 10-8, 17-25 
Dynaman and Dynamobile, 1-18 
dynamic, behavior, general definition, 1-1 

…, flexibility, 10-8, 10-13, 10-31 
…, free-body diagram (DFBD), 7-7, 11-5, 12-2 
…, pressure, 1-21, 3-8, 11-8, 11-9, 16-43 
…, stiffness, 10-8, 10-13, 10-31 
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E 
e, the base of natural logarithms, 1-6 
EA = elastic axis of a flexible wing, 11-7 
elastomers, 10-26, B-11, B-12 
electrical, current, 5-1 

…, field strength, B-4 
…, potential (voltage), 5-1, B-5 
…, potential energy, B-5 

electromagnetic force shaker, 10-30 
element of a system, 1-1 
emf (electromotive force), self-induced, 5-6 
energy, dissipation, B-2 

…, kinetic, B-2 
…, potential. See potential energy 
…, sinks and sources, 16-18, B-3, B-7 

engineering models, 1-5 
equations of plane motion, 11-1 
error, signal, 14-6 

…, propagation of, 7-21 
…, steady-state output, 15-7 

Euler’s equation, 2-3 
Evans, Walter R., 16-28 
excitation, general definition, 1-2 
existence of Laplace transforms, 2-10 
exponential, decay, 1st order, 3-6 

…, envelope, 16-4 
…, …, underdamped 2nd order system, 9-8 
…, rise, 1st order, 3-7 
…, stability, 16-3 
…, unit-impulse function, 8-30, 16-5 
…, unit-step function, 1-23, 8-30, 16-5 

external disturbance, 14-3 

F 
Faltung, 8-19 
farad (F), unit of electrical capacitance, 5-3 
FBD = free-body diagram, 1-3 
feed across, block diagram, 13-7 
feedback control, 7-1, 13-1, 14-1 
feedback MATLAB function, 15-20 
feedback, block diagram, 13-2, 13-3 

…, for an op-amp, 5-10 
…, output, 14-6, 14-11 
…, unity, 14-10, 14-18, 14-19 

feedforward branch, 14-18 
field strength, electrical, B-4 

…, gravitational, B-4 
filter, 2nd order low-pass, 10-7, 16-35 

…, band-pass, 5-12, 9-21, 9-31, 10-10, 13-1 
…, controller, 15-1 
…, damper-spring, 3-14, 3-19, 4-8, 4-16, 4-17, 5-6, 

5-14, 14-18 
…, high-pass, 4-17, 5-12, 5-14 
…, low-pass, 4-8, 4-16, 5-4, 5-12, 16-13 
…, RC band-pass, 5-12, 10-10, 13-1 
…, RC high-pass, 5-12, 5-14 
…, RC low-pass, 5-4, 5-12 

final-value theorem, application, 15-6, 15-8, 15-16 
…, derivation, 15-12 

first (1st ) order, LTI ODE, 1-2, 1-19 

…, system, 1-4 
flat impulse, 8-3 
flat pulse, 6-11, 8-1, 9-32 
flexibility, dynamic, 10-8, 10-13 

…, static, 10-8 
flutter, aeroelastic, 11-7, 11-10, 16-41 
folding, 8-17 
forced response, 6-3 

…, approximate numerical, 6-8, 8-15, 9-14 
forcing function, general definition, 1-2 
forward Laplace transform, 2-6 
forward path or branch, 13-2 
Fourier series, 7-14 
four-quadrant arctangent, 4-10 
four-quadrant tangent, 4-4 
fourth (4th) order system, 3-14, 11-11, 13-7 
free vibration, undamped 2nd order system, 7-4, 12-1 

…, distributed-parameter system, 7-10 
…, undamped 2-DOF system, 12-2 

free-body diagram (FBD), 1-3, 3-4, 7-9, 11-14, 11-15 
frequency of sinusoidal signal, circular (radians 

/second), 1-17 
…, cyclic (cycles/second = Hz), 1-17 

frequency response, 4-1, 10-1, 17-1 
frequency, circular and cyclic, 1-17, 4-8 
frequency, excitation, 10-3 
FRF = frequency-response function, 4-6 

…, damped 2nd order, 10-2 
…, general definition, 4-12, 10-11 
…, general derivation, 4-12 
…, m-c-k system, 4-18, 10-8 
…, open-loop (OLFRF), 17-1 
…, RC band-pass filter, 10-10, 10-24 
…, stable 1st order system, 4-6, 4-10 
…, stability criteria, 17-1 
…, undamped 2nd order system, 10-1 

G 
g, gravitational acceleration, 3-2 
gain, crossover, 17-6, 17-16, 17-22, 17-23 

…, margin (GM), 17-6, 17-16 
…, control parameter, 17-2 
…, proportional, 15-1, 15-16 

general response solution, 1st order system, 6-7 
…, stable 1st order system, 6-2 
…, undamped 2nd order system, 7-3 
…, underdamped 2nd order system, 9-6 

generalized functions, theory, 8-4 
gimbal, 9-5 
graphics, electrical circuits, 5-4 

…, engineering, 1-10 
gravitational, field strength, B-4 

…, potential difference, energy, B-4 
…, unit system, 3-1 

ground voltage, 5-4 
gyroscope, control-moment (CMG), 12-13, 14-5 

…, rate, 9-4, 9-32, 15-4 
…, rate-integrating, 9-32, 15-4 
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H 
half-amplitude formula, small damping, 9-11 
half-sine pulse, 1-6, 6-4 
hammer strike, 9-19, 9-25, 9-29 
Heaviside unit-step function, 2-12, 3-5 
helicopter rotor blade, 11-3 
henry (H), unit of inductance, 5-6 
higher-order, ODEs, 3-14, 11-1, 12-2 

…, systems, 12-8, 13-7 
high-frequency asymptote, 4-7 
high-pass filter, 4-17, 5-12, 5-14 

…, approximate differentiator, 15-13, 15-18 
…, damper-spring, 3-15, 3-19, 14-18 

homogeneous solution, 1st order ODE, 1-6 
…, damped 2nd order ODE, 9-1 
…, undamped 2nd order ODE, 7-4, 12-1 
…, undamped 2-DOF system, 12-3 

horsepower (hp), traditional unit of power, B-2 
hydroplaning, 1-18 
hyperbolic, cosine and sine, 2-18, 15-10 

…, functions, 9-8, 9-20 
hysteresis, B-9 
Hz (hertz) = cycles/second, 1-17, 4-1 

I 
IC = initial condition, 1-4 
ideal, impulse, 8-3 

…, shock strut, 3-13 
idealized physical model, 1-5 
ilaplace MATLAB function, 17-29, A-3 
imaginary number, 2-1 
impedance, electrical, 10-11 

…, low output, 5-13 
…, mechanical, 10-13 

impulse of force, 8-3, 9-19 
impulse response, 8-5, 8-7, 8-9 

…, ideal vs. real, 8-10 
…, underdamped 2nd order system, 9-13 

impulse-momentum theorem, 8-3, 14-4 
indeterminate form 0/0, 12-4 
inductor, circuit component, 5-6 

…, potential energy, B-6 
inertance, 10-13 
inertia matrix, 11-11, 12-2 
inertial, force, 3-12, 3-14 

…, moment, 11-2 
…, reference, 11-1 

initial conditions (IC), 1-4 
…, 2nd order, 1-13 
…, 2-DOF system, 12-1 
…, distributed-parameter system, 7-10 
…, nth order, 16-1 

initial-condition (IC) response, 6-3 
…, 1st order, 3-5 
…, 2-DOF system, 12-7 
…, 3rd order system, 16-15 
…, distributed-parameter system, 7-10 
…, nth order, 16-3 
…, undamped 2nd order system, 7-4 
…, underdamped 2nd order system, 9-8 

initial-value theorem, application, derivation, 8-7 
in-phase, sinusoidal response, 4-6 

…, motion, 2-DOF IC response, 12-7 
…, frequency-response component, 17-10 

input resistance, 5-9 
input, general definition, 1-2 

…, reference for control, 14-2, 14-4 
input-error operations, 14-14, 15-1 
instability, 16-3, 16-6, 16-11, 16-18, 16-20 

…, by linear drift, 17-14, 17-28 
…, degree of, 16-20 

integral time constant, 15-1, 15-11 
integrating factor, 6-7 
integration, by parts, 2-7 

…, approximate, 10-27 
integrator, electronic circuit, 7-20, 9-31 

…, op-amp circuit, 5-15 
internal disturbance, 14-3 
internal-friction model of structural damping, 10-27, 

B-12 
inverse Laplace transform, 2-7 
inverse matrix, 12-3 
inverse tangent, four-quadrant, 2-2 
IRF = unit-impulse-response function, 8-13 

…, 2nd order ODE with RHS dynamics, 9-30 
…, underdamped 2nd order system, 9-14 

J 
j = unit imaginary number, 2-1 
joule (J), SI unit of work, B-1 
junction, block diagram, 13-3 

…, branch point, 13-3 
…, summing, 13-3 

K 
KCL = Kirchhoff’s current law, 5-2, 5-3 
kilogram force (kgf), 3-2 
kinetic energy, B-2 
KVL = Kirchhoff’s voltage law, 5-7, 5-15 

L 
l’Hospital’s rule, 1-25, A-4 
labor-saving method, partial-fraction expansion, 2-9, 

4-14 
Lagrange’s equations, B-3 
Laplace block diagram, 13-1 

…, 2-DOF system, 13-7 
…, m-c-k system with base excitation, 13-3 
…, output feedback, 14-8 
…, stable 1st order system, 13-7 

laplace MATLAB function, A-3 
Laplace transform, 2-5 

…, pairs, table of, A-1 
LC electrical circuit, 7-20 
leading-lagging rotation, 11-3 
Leibnitz’s rule, A-5 
linear algebraic equations, 12-3 
linear, constant-coefficient ODEs, 1-1 
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linear, time-invariant (LTI) system, 1-1 
linearity of an ODE, 1-2 
linearized ODE, 7-3, 7-18 
linearly independent functions, 1-7 
linear-system theory, 8-13, 8-14 
liquid-layer damping, 1-12 
loci (or locus) of roots, 16-18, 16-22, 16-31, 17-17 
logarithmic decrement, 9-10 
loss factor, structural damping, B-11 
low-frequency asymptote, 4-7 
low-pass filter, 4-8, 4-16, 5-4, 5-12, 16-13 

…, damper-spring, 3-15, 15-3 
…, 2nd order, 10-7, 16-35 

LRC electrical circuit, 5-15, 9-4, 9-29, 10-6, 10-23, B-
7 

LTI = linear, time-invariant, 1-1, 8-13 
lumped-parameter system, 7-9 

M 
Mach number, 3-9 
MacNeal, Richard H., B-9 
magnetic field energy, B-6 
magnitude of a complex number, 2-2 
magnitude ratio, sinusoidal response, 4-5, 17-3 
margin MATLAB function, 17-7, 17-24 
margins, gain and phase, 17-6 
mass center, 11-1 
mass, apparent, 10-14 
mass, translational inertia, 1-3 
mass-damper (m-c) system, 1-3 
mass-damper-spring (m-c-k) system, 1-12, 1-22, 3-13, 

7-1, 9-1, 9-18, 10-7, 10-19, 13-2, 13-4, 14-12, 16-
21, 16-34, B-3 

mass-spring (m-k) system, 1-13, 2-18, 7-1, 12-1, 14-7 
Mathematica, 1-20 
mathematical model, 1-5 
MATLAB, 1-1 

…, Symbolic Math Toolbox, 1-20, 16-40, A-3 
MATLAB functions, operations, abs, 2-3, 4-16 

angle, 2-3, 4-16 
array multiplication, 1-16, 9-23, 9-27 
atan2, 2-2 
axis equal, 16-28 
bode, 17-7, 17-24 
conv, 6-2, 8-19, 8-26, 16-43 
dsolve, 1-20, 1-23 
feedback, 15-20 
ilaplace, 17-29, A-3 
laplace, A-3 
margin, 17-7, 17-24 
plot3, 17-26 
pretty, 1-20 
residue, 2-19, 16-16, 16-40 
roots, 12-16, 16-23, 16-43 
series, 15-20 
simple, 1-20 
syms, 1-20, 1-23, A-3 
tf, 15-20, 17-7 
vpa, 16-40 

MATLAB script M-file, 1-9, 1-15, 4-3, 4-16, 10-3, 12-
11, 15-10, 16-10, 16-16, 16-23 

matrix, notation, 12-3 
…, equations of motion, 11-11, 12-2, 12-9, 12-13, 

12-14, 12-15, 16-41 
…, 2-DOF mode shapes, 12-6, 12-7 
…, adjoint of, 12-3 
…, determinant of, 12-3 
…, inverse of, 12-3 
…, positive definite, 11-11, 11-15, 12-2 
…, zero determinant (singular), 12-3, 16-43 

Maxwell’s equations of electromagnetism, 5-6 
mechanical admittance, 10-31 
mechanics of materials, 7-12, 7-23 
mho, electrical impedance unit, 10-12 
MIMO = multiple-input-multiple-output, 14-17, 16-42 
missile, rolling, 3-8 
mobility, 10-13 
modal analysis, 12-8 
mode shapes, 2-DOF system, 12-6 
models (engineering, idealized physical, 

mathematical), 1-5 
modern control theory, 14-17 
modes of response, 16-25, 16-30 

…, dominant, 16-25, 16-30, 16-40 
modes of vibration, 2-DOF system, 12-6 

…, distributed-parameter system, 7-14 
…, nth order system, 16-30 

mode-shape matrix, 12-7 
modulus of a complex number, 2-2 
modulus of elasticity (Young's modulus), 7-12 
moment of inertia, rotational inertia, 3-3 

…, area, 7-12 
musical instrument, 7-14 

N 
natural frequencies of vibration, 2-18 

…, 2-DOF system, 12-5 
…, distributed-parameter system, 7-14 
…, damped, 9-3, 14-20 
…, undamped 2nd order, 1-14, 7-1, 7-5, 14-16, 15-

15 
natural logarithm, 9-10 
negative stiffness, 11-9, 16-22 
neutral stability, 17-2 
Newton, Isaac, 1-3 
Newton’s 2nd law, for forces, 1-3, 11-2, 12-2 

…, for moments, 3-4, 11-2 
Newton’s 3rd law, 3-14 
node (nodal point) of a vibration mode, 12-10 
non-homogeneous solution of an ODE, 1-7 
nonlinear ODE, 1-2, 1-21 
notation, dot, 1-2 

…, matrix, 12-3 
nth order ODE, 4-11, 16-1 
numerical approximate solutions, 6-8, 8-15, 9-14 

…, convolution sum, 8-15, 9-14 
…, recurrence formulas, 6-8, 6-10, 6-12 

Nyquist, diagram or plot, 10-11, 17-9 
…, stability criterion, 17-15, 17-22 
…, three-dimensional plot, 17-26 
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O 
O(105), e.g., order-of-magnitude symbol, 5-9 
ocean surface ship, 3-17 
ODE = ordinary differential equation, 1-1 

…, 1st order, 1-2 
…, 2nd order, 1-13 
…, derived from power balance, B-3 
…, derived from transfer function, 16-7 
…, nonlinear, 1-2, 1-21 
…, nth order, 4-11, 16-1 

offset, voltage, 10-27 
…, P control, 15-7 

ohm (Ω), unit of electrical resistance, 5-1 
Ohm’s law, 5-2 
open loop, 13-2 

…, control, 14-2, 14-6 
…, frequency-response function (OLFRF), 17-1 
…, poles and zeros, 16-31 
…, transfer function (OLTF), 16-31, 17-1 

operational amplifier (op-amp), 5-9 
…, PI controller, 15-2 

operations, control, input error, 14-14, 15-1 
…, output, 14-14 

operator setting (reference input), 14-2, 14-4 
optical encoder, 12-17 
ordinary differential equation (ODE), 1-1 
out-of-phase motion, 2-DOF IC response, 12-8 
out-of-phase, sinusoidal response, 4-6 
output, general definition, 1-2 

…, feedback, 14-6, 14-11 
…, impedance, 5-13 
…, operations, 14-14 

overdamped 2nd order system, 9-2, 9-20, 9-31, 14-19, 
15-10 

overshoot ratio, underdamped 2nd order, 9-14, 14-20 
overshoot, PI control, 15-11 

P 
pair, Laplace transform, 2-7 
parallel damper-spring low-pass filter, 4-8 
parallel, electrical components in, 5-3, 5-14 

…, mechanical components in, 3-13 
parallel-axis theorem, 11-4 
parameter identification, 3-18 
partial-fraction expansion, 2-9, 4-12, 15-5, 16-3, 16-5, 

16-40, A-4 
…, direct term, 15-19 
…, repeated poles, 16-8 

particular solution of an ODE, 1-7 
passive system, 7-1, 16-18 
peak time, underdamped 2nd order, 9-14, 14-20 
pendulum, simple, 7-2 
pendulum-spring systems, 11-14, 11-15, 12-14 
period, 4-3, 4-8 

…, of damped vibration, 7-11 
…, of sinusoidal signal, 1-17 

phase angle, sinusoidal response, 4-5, 17-3 
phase crossover, 17-6, 17-16, 17-18 
phase lead or lag, sinusoidal response, 4-5 
phase margin (PM), 17-6, 17-16 

PID = proportional-integral-derivative, 15-1 
piecewise continuous input function, 6-3 
plane motion, general, 11-3 

…, rotation about a fixed point, 11-3 
plant (controlled object or process), 14-1 
plant transfer function (PTF), 14-2, 15-3 
plausibility check, 1-11, 7-12 
plot3 MATLAB function, 17-26 
pluck testing, 7-10 
pogo stick, 7-19 
polar coordinates r and θ, 2-3, 11-4 
polar form, complex number, 2-3 

…, characteristic equation, 16-25 
poles, of a complex function, 2-6 

…, at the s-plane origin, 17-12, 17-28 
…, of a transfer function, 4-13, 16-2 
…, repeated, 16-8 
…, sub-system, 16-25 

polynomial equation, roots, 12-16, 16-3, 16-22 
polynomials, multiplication of, 8-26 
port, of operational amplifier, 5-9 
position feedback, 14-6 
positive definite matrix, 11-11, 11-15, 12-2 
potential energy, electrical, B-5 

…, gravitational, B-4 
…, magnetic field, B-6 
…, of a capacitor, B-5 
…, of an inductor, B-6 
…, strain, B-2 

potentiometer = variable resistor, 5-17 
power, B-1 
power-balance method, B-3 
prefixes indicating powers of ten, 3-2 
pretty MATLAB function, 1-20 
proof-mass actuator (PMA), 10-28, 10-29, 12-19, 15-5 
propagation of error, 7-21 
proportional (P) control, 15-2, 15-6, 15-14 
proportional gain, 15-1, 15-16 
proportional-derivative (PD) control, 15-2, 15-13, 15-

14, 16-6 
proportional-integral (PI) control, 5-17, 15-2, 15-8 
proportional-integral-derivative (PID) control, 15-1 
proximity (displacement) sensor, 7-10 
pseudo-static response, 1-17, 7-2, 9-4, 9-27, 11-15, 

14-7 
PTF ≡ plant transfer function, 14-2 
pulse duration, 1-6 
pulse, flat, 6-11, 9-32 

…, half-sine, 1-6, 6-4 
…, ramped exponential, 1-14, 16-5, 16-8 
…, sawtooth, 6-12 

Pythagoras, theorem of, 16-26 

Q 
quadratic equation, 2-1, 12-4, 16-12, 16-27 
quadrature frequency-response component, 17-10 
quadrature phase, 10-7 
quality factor Q, 10-6 
quasi-static (quasi-steady) aerodynamics, 11-9, 16-42 
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R 
radian, units in calculations, 3-10 
radio, tuning circuit, 10-7 
ramp input, 6-5 
ramped exponential pulse, 1-14, 8-31 
rate feedback, 14-11 
ratio of two polynomials, 2-6, 2-11, 14-10 
RC, band-pass filter, 5-12, 9-21, 9-31, 10-10, 13-1 

…, high-pass filter, 5-12, 5-14 
…, low-pass filter, 5-4, 5-12 

reactance, capacitive and inductive, 10-12 
reaction wheel, 3-3, 3-17, 6-5, 7-17, 14-5 
reaction-mass actuator (RMA), 10-28, 12-19, 15-5 
reality check, 1-11, 14-5, 15-13, 15-19 
receptance, 10-13 
rectangular form of complex number, 2-2 
recurrence formulas, 6-8, 6-10, 6-12 
re-entry vehicle (capsule), 14-3 
reference input (operator setting), 14-2, 14-4 
relative stability, 16-18, 17-1 
remote (indirect) control, 14-1 
residue MATLAB function, 2-19, 16-16, 16-40 
residues of partial-fraction expansion, 2-9, 16-3, 16-7 
resistance, high input, 5-9 
resistors, electrical circuit components, 5-1 

…, in parallel, 5-3 
…, in series, 5-2 

resonance, 10-2, 10-4, 12-13 
response, general definition, 1-1 
resultant of distributed force, 10-26, 11-7 
RHS = right-hand-side, 3-16 
right-hand rule, 3-4 
right-hand-side (RHS) dynamics, 3-16, 3-19, 5-12, 5-

14, 6-3, 9-23, 9-30, 10-10, 10-20, 10-21, 10-28, 14-
18, 15-9, 15-15 

rigid-body plane motion, 11-1 
rise time, underdamped 2nd order, 9-13, 9-14, 14-20 

…, PI control, 15-11 
robustness of a control system, 14-6 
roll (bank) angle of a flight vehicle, 3-8 
rolling, airplane or missile, 3-8 
root-locus (Evans') method, 16-28 
roots MATLAB function, 12-16, 16-23, 16-43 
roots of a polynomial equation, 16-3, 16-22, 16-43 
roots, loci (or locus) of, 16-18 
rotation, small, 7-3, 11-5, 11-10 
rotational (moment of) inertia, 3-3, 7-2, 11-2, 11-4 
rotational, damper-spring system, 15-2 

…, inertia-damper-spring system, 11-5 
…, inertia-spring system, 7-17, 11-7, 11-13, 12-16 

rotational velocity vector, 11-4 
rotor, 14-1, 15-2 
Routh’s stability criteria, 16-12, 16-34, 16-38, 16-40 
rule, for analysis of op-amp circuits, 5-11 

…, of thumb in control design, 15-17 

S 
sanity test, 1-11 
sawtooth pulse, 6-12 
second (2nd) area moment, 7-12 

second (2nd) order system and ODE, 1-13 
seismic motion sensors, 10-24 
seismometer, 10-25 
self-correcting control system, 14-6 
self-excited systems, 16-19, 16-41 
sensitivity of control, to disturbances, 14-5 

…, to modeling errors, 14-6 
sequence of length N, 8-16 
series damper-spring, high-pass filter, 4-17 

…, low-pass filter, 4-16, 5-6 
series MATLAB function, 15-20 
series, electrical components in, 5-2, 5-14 

…, mechanical components in, 3-14 
settling time, 3-4, 14-20 

…, 1st order, 3-6, 3-7 
…, underdamped 2nd order, 9-14 

shaker, mechanical vibration exciter, 10-8, 10-30 
shear building, 7-22 

…, structural model, 10-30 
shock strut, 3-13, 4-2 
SI unit system, 3-1 
simple MATLAB function, 1-20 
simple pendulum, 7-9 
sink, of energy, 16-18, B-3, B-7 
SISO = single-input-single-output, 4-11, 8-13, 14-8, 

16-1, 16-42 
small damping, approximation, 9-10, 9-24, 10-6, 10-7, 

10-9 
small damping, half-amplitude formula, 9-11 
small rotation, 7-3, 11-5, 11-10 
snapback testing, 7-10, 12-18 
source, of energy, 16-18, B-3, B-7 
spacecraft, attitude control, 14-3, 16-36 
specifications, step-response, 9-13, 9-14 
speed (rotor velocity), PI control, 15-17 
speed, of control system components, 15-4 

…, of system response, 15-3, 15-11 
spring, artificial, 14-7, 15-14 

…, close-wound, 7-7 
…, linear, 1-12, 3-11 

stability, 4-13, 14-16, 15-16, 16-1, 17-1 
stability, degree of, 16-20 

…, exponential, 16-3 
…, general criterion, 16-1, 16-2, 16-6 
…, Routh’s criteria, 16-12 

stable 1st order system, 3-6 
stairstep approximation, 6-9, 8-19 
standard form of ODE, stable 1st order system, 3-6 

…, damped 2nd order system, 9-3 
…, any 1st order system, 1-2, 1-19 
…, undamped 2nd order system, 7-2 

state-space representation of systems, 14-17 
static equilibrium position, 7-7, 11-5 
steady-state output error, offset, 15-7 
steady-state sinusoidal response, 4-1, 4-4, 17-1 
step response, 1st order, 3-5, 3-6 

…, physical applicability of solutions, 7-6 
…, overdamped 2nd order, 15-10 
…, P control, 15-10, 15-14 
…, PI control, 15-10 
…, position + rate feedback control, 14-16 
…, undamped 2nd order system, 7-5, 14-11 
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…, underdamped 2nd order, 9-12, 13-5, 14-12, 15-
10 

…, specifications, underdamped 2nd order, 9-13, 9-
14 

step-relaxation (twang) testing, 7-10 
stiffness matrix, 11-12, 12-2 
stiffness, dynamic, 10-13 

…, negative, 11-9, 16-22 
stimulus, 1-2 
strain energy, B-2 
strength of materials, 7-12 
stroke of a force shaker, 10-30 
structural damping model, internal-friction, B-12 

…, viscous, B-9 
structural unit system, 3-1 
subcritically damped 2nd order system, 9-3 
sub-system poles, 16-25 
summing junction, 13-3 
supercritically damped 2nd order system, 9-2, 9-20 
superposition, 1-2 

…, integral, 6-3 
…, impulse responses, 8-14 

sweep, stepped-sine, 10-8, 17-25, 17-26 
Symbolic Math Toolbox, MATLAB, 1-20, 16-40, A-3 
syms MATLAB operation, 1-20, 1-23, 16-40, A-3 
system ID = system identification, 8-11, 9-18 

…, aerodynamic coefficients, 3-18 
…, LRC circuit by FRF, 10-23 
…, m-c-k system by FRF, 10-9, 10-22, 10-23 
…, m-c-k system by pulse, 9-18, 9-29 
…, m-k system by added mass, 7-22 

system, basic definition, 1-1 

T 
t = time, independent variable, 1-1 
tachometer, 3-17 

…, control sensor, 15-17 
Taylor power series expansions, 2-3 
terminal velocity, 1-21 
tf MATLAB function, 15-20, 17-7 
TF = transfer function, 4-10, 4-12, 4-19 
third (3rd) order system, 13-7, 16-13, 16-22, 16-31 
three-dimensional Nyquist plot, 17-26 
three-DOFs problem, 11-2 
thruster, on re-entry vehicle, 14-3, 14-5 
time constant, 1st order, 1-23, 3-5 

…, derivative, 15-1, 15-13, 15-16 
…, integral, 15-1, 15-11 
…, underdamped 2nd order system, 9-8, 16-20 

time invariance, 1-2 
time lag, 4-4 

…, artificial numerical, 6-9, 8-25 
torque motor, 7-17 
transfer function (TF), 4-10, 4-12, 4-19 

…, base-excited m-c-k system, 13-3 
…, closed-loop (CLTF), 13-4, 17-2 
…, damped 2nd order, 10-3 
…, nth order, 16-2 
…, open-loop (OLTF), 16-31, 17-1 
…, plant (PTF), 14-2 
…, RC band-pass filter, 10-10 

transient response, 3-4 
translated (in time) function, 8-29 
transmissibility, 10-27, B-13 
trapezoid rule of approximate integration, 8-6 
trigonometric identity, cosine of sum, 4-4 
trimming tab, airplane, 11-13 
tugboat, 3-17 
tuned-mass damper, 10-29 
twang testing, 7-10, 9-24, 10-29, 11-13, 12-18 
two-degrees-of freedom (2-DOF) systems, 11-10, 11-

13, 11-14, 11-15, 12-2, 12-9, 12-13, 13-7 
typical-section, aeroelastic model, 11-7, 11-10, 11-14, 

12-9, 16-41 

U 
u(t) = input quantity, 1-2 
uncommon open-loop system, 17-7, 17-17 
underdamped 2nd order system, 9-3 
undetermined coefficients, method of, 1-7, 1-15, 1-19, 

1-22, 1-23, 1-24 
unit imaginary number, 2-1 
unit system, absolute, 3-1 

…, gravitational, 3-1 
…, SI, 3-1 
…, traditional aeronautical, 3-1 
…, traditional structural, 3-1 

unit vectors, Cartesian coordinates, 11-1 
…, polar coordinates, 11-4 

unit-impulse function, 8-3, 8-13, 8-30 
unit-impulse-response function, 8-13 
unit-step function, 2-13, 8-13, 8-30 

…, exponential, 1-23, 8-30, 16-5 
…, Laplace transform of, 2-13 

unit-step-response function, 8-13 
unity feedback, 14-10, 14-18, 14-19 
unstable, 1st order system, 3-6 

…, linear drift, 17-14, 17-28 
…, PD-controlled rotor 

V 
vpa MATLAB operation, 16-40 
variable resistor (AKA potentiometer, pot), 5-16 
vector operations, 11-1 
velocity (rate) feedback, 14-13 
velocity, terminal, 1-21 
vibration absorber, 12-15 
vibration isolation, 7-18, 10-26, 12-15, B-12 
vibration testing, sinusoidal, 10-8, 17-3, 17-26 
viscous damper, artificial, 14-16, 15-15 
viscous damping constant, 1-3, 1-12, 10-9, 14-20 

…, critical, 9-1, 10-19, 16-34 
viscous damping law, general linear, 3-12 
viscous damping ratio, 9-1, 9-9, 9-17, 10-3, 10-6, 10-

9, 13-4, 14-16, 14-19, 15-15 
voice coil, 5-8 
voltage, 5-1, B-5 

…, divider, 5-14 
…, follower, 5-11 
…, generator, 5-3, B-7 
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 Index-9

W 
washboard road, 10-7, 10-21 
watt (W), SI unit of power, B-1 
wing chord, planform, span, 3-9, 11-8, 16-43 
work, B-1, B-5 
Wright Flyer, 16-39 

X 
x Cartesian coordinate, 1-4, 11-1, 12-10 
x(t) = dependent variable, output quantity, 1-1 

Y 
y Cartesian coordinate, 7-7, 10-21, 11-1, 12-1 

Z 
z = x + jy complex number, 2-1 
z Cartesian coordinate, 11-1 
zeros, of a complex function, 2-6 

…, of a determinant, 12-3, 16-43 
…, of a transfer function, 16-2 

 




